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Abstract 

For soil mapping, legacy (survey) data has its greatest potential in the disaggregation of 

complex soil mapping units. Disaggregation in this context is possible by relating different soils 

within a single map unit to other known characteristics of the landscape such as slope and 

curvature. For the United States soil map SSURGO, virtually all current soil map units have 

multiple soil types (known as “series”) described within them, indicating there is great potential 

for such disaggregation. In this study SSURGO map units are disaggregated using descriptions 

of soil map units and Digital Elevation Models (DEMs) for three locations in the central United 

States. The model presented disaggregates soil map units using information already within the 

soil description such as the curvature and slope in which a certain soil series is found.  First, 

slope and curvature are calculated using National Elevation Dataset 10m resolution DEMs. Next, 

soils are assigned preferentially using fuzzy membership functions to the slope and curvature 

values for each map unit until all the possible soils are disaggregated. The area percentage of 

each new soil is calculated, and the model is adjusted until the SSURGO-stipulated percentage of 

each component is reached. The method worked best for county size areas and the newly created 

maps increased the number of map polygons by over 100%. The new maps were then compared 

to soil point data and showed similar accuracy to SSURGO and better accuracy than a similar 

digital soil mapping approach.  
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 Introduction 

Soil maps are used for a variety of purposes ranging from scientific research, agricultural 

needs, and community planning. Additionally, the soil information within these maps is also 

crucial for measuring climate change indicators such as soil carbon storage (Causarano et al., 

2008; Davidson & Lefebvre, 1993). Because of their importance across different fields, soil 

maps are available in a wide range of scales, resolutions, and for many geographic regions. The 

United Nations’ Food and Agricultural Organization and Educational, Scientific and Cultural 

Organization (FAO/UNESCO) Soil Map of the World is a soil map of the entire world mapped 

at a 1:5,000,000 million scale that  provided the first real overview of soils globally (FAO-UN - 

Land and Water Division (CBL), 2007). Since then, soil and soil property maps such as 

SoilGrids and the FAO Global Soil Organic Carbon Map (GSOCmap) fueled by global soil point 

datasets such as the Harmonized World Soil Database (HWSD) have improved and added to the 

global overview of soil information(FAO, 2020; ISRIC, 2020; Nachtergaele et al., 2009). 

Looking at a more regional extent other soil maps focus within their respective countries’ 

borders such as the Digital Soil Map of the Netherlands, SOil and TERrain Database (SOTER) in 

Southern Africa, and the Australian Soil Resource Information System (ASRIS).  

The most actively used set of soil maps within the United States is the National Soil 

Survey Geographic Database (SSURGO). SSURGO is maintained and updated by the USDA’s 

Natural Resources Conservation Service (NRCS). SSURGO is a collection of digitized soil maps 

that are available in vector (polygon) and raster formats as well as a series of related tables 

containing landscape information, soil properties, usage restrictions, and soil classification 

information for the soil map units within the maps. Even though the SSURGO database is a rich 

collection of useful soil information, all SSURGO maps have soil units mapped as consociations, 
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complexes, and associations. Consociations are map units dominated by a single component 

where the remaining soils are similar and do not affect the overall interpretation of the soil (Soil 

Science Division Staff. 2017). Associations are two or more major soil components that occur in 

a regular repeating pattern within a soil map unit. Often, components of an association could 

have been delineated into individually mapped units, but subdivision was impractical at the time 

of the original mapping. Complexes, thirdly, contain different components that can occur in a 

regular or irregular pattern, however not on a traditionally mappable scale (Soil Science Division 

Staff. 2017). Within the context of SSURGO, this means that there are almost always several 

soils mapped within one polygon unit on the map. The combination of these soils essentially 

decreases the map value since it is not clear which soil type can be encountered where in the 

polygon without resorting to field inspection aided by the written description of the soil map 

unit.  

The need for more detailed maps has been increasing with the advent of more complex 

soil modeling studies, precision agriculture techniques, and agroforestry (Bobryk et al., 2016; 

Jiang et al., 2015; Jin et al., 2017).  Precision agriculture involves the use of subsections of fields 

referred to as management zones and the current resolution of SSURGO data is not adequate at 

this resolution (Bobryk et al., 2016). In agroforestry such as Jiang et al.  (2015) SSURGO soil 

data is used as inputs for predictive models of site productivity for different tree species and the 

current resolution does not fully support this modelling. These fields would  benefit from more 

detailed and higher resolution soil data.  

One potential solution for this growing problem is disaggregation of existing maps. 

Generally, disaggregation refers to breaking down existing map units into smaller units (Figure 

1). Disaggregation can be extremely powerful in increasing data resolution and often can be 
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completed with already existing data. This ability to improve the potential utility of data is a 

useful technique and as a result a wide variety of disaggregation techniques have been developed 

(Nauman et al., 2012; Odgers et al., 2014; Stoorvogel et al., 2017). Disaggregation results can 

range from a raster of specific soil properties to maps that assign soils to specific landscape 

features. This thesis is concerned with the latter. 

 

Figure 1: Simplified disaggregation procedure using landscape position to delineate components 

 

 Within soil mapping, disaggregation typically is accomplished using the existing 

descriptions of the relations of individual soils described within an association or complex to 

other known characteristics of the landscape. Different soil types within a single map unit are 

mostly organized by geographic positions and these geographic positions of soil in theory, can be 

distinguished using derivatives of a Digital Elevation Model (DEM) such as slope and curvature 

(e.g. Stoorvogel et al 2017). Most disaggregation methods in soil science revolve around this 

concept but result in two distinctly different outcomes. Polygon preserving methods such as 

those used by Häring et al., (2012) preserve the original map units and disaggregate within the 
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existing units.  Conversely, Continuous raster methods such as the Disaggregation and 

Harmonization of Soil Map Units Through Resampled Classification Trees 

(DSMART)algorithm and POLARIS create a continuous prediction of soils and their properties 

in a raster surface (Chaney et al., 2016; Odgers et al., 2014).  

While the spatial resolution of SSURGO soil map units currently does not fully meet user 

needs, the written descriptions attached to these units provides a higher resolution view of the 

soils. The main remaining unknown is how well using the descriptive information attached to 

these units works to disaggregate the polygons into a finer resolution and achieve better map 

accuracy. In terms of the original boundaries, preserving them is not inherently necessary 

provided they can be reconstructed to be merged into the existing digital soil map database 

structure. Additionally, it is important to note that many times the descriptions between different 

soil types can overlap because they occupy similar landscape positions. This may complicate 

approaches to disaggregate map units. 

My objective in this thesis is to develop, implement, and test a SSURGO-tailored 

method to disaggregate existing soil map units based on slope steepness and other landscape 

position information contained within map unit descriptions across three locations in the North 

Central region of the United States. I will seek to answer three research questions. First, I will 

evaluate whether this approach is practical and efficient given the native data structure and 

computational limitations. Second, I will determine the impact of this process on map accuracy 

by comparing existing independent soil measurements in the field to the predictions in both the 

original SSURGO maps and the newly disaggregated maps. Lastly, I will look for regional 

variation of error across the different locations to determine if there are regional differences that 

assist or hinder the disaggregation process.  
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If the method is evaluated successfully, this model will be included in software package 

for NCRS to use to disaggregate polygons on the national level. Currently, NRCS is actively 

working on completing the soil map for the entirety of the United States and updating existing 

soil maps that are outdated or at too low resolution. A successful package resulting from this 

thesis ideally would allow NRCS soil scientists to further disaggregate components within map 

units using legacy data that are widely present and available. Additionally, the process can 

provide support in the creation of new soil map unit rasters by helping to identify component 

locations within the map units. 
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Background 

To create and test a potential disaggregation methodology it is critical to understand both 

the NRCS soil surveying methodology and the state of traditional and digital soil mapping and 

disaggregation. Figure 2 outlines the order and structure of the background section as well as the 

relationships between the different types of data within traditional and digital soil mapping and 

disaggregation procedures. 

 

Figure 2 The relationships among traditional soil mapping, digital soil mapping, and disaggregation techniques. 
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 Traditional Soil Mapping 

Traditional soil mapping began before the advent of modern technology and had to be 

completed without satellite spectral imagery, advanced computer resources or predictive soil 

models. Therefore, much traditional mapping projects were completed by the tacit knowledge of 

the mapper and series of observations of different soil pedons at various locations throughout a 

landscape, a process that required both extensive training and long experience (Hudson, 1992). 

As outlined within the Soil Survey Manual (2017), traditional soils surveys were and are 

completed by the mapper first delineating landscape bodies into landforms. This delineation 

identifies areas with similar soil forming factors and similar catenas. The five soil forming 

factors are Climate (CL), Organisms (O), Relief (R), Parent Material (P), and Time (T) and the 

interaction of these 5 soil forming factors (CLORPT) leads to the formation of a particular soil 

(Jenny, 1941). Catenas are soil landscape conceptual models that capture how different soils 

occur in a predictable pattern along a transect of a landscape (Milne, 1936).  This is because 

areas with similar soil forming factors will produce the same soil and when all are constant 

except the relief (R), soils can be predicted by their relative location in the landscape  (Soil 

Survey Staff, 2017).  

Next the mapper makes a prediction about the pattern of soils within this delineation 

based off previous knowledge of the area. The knowledge the prediction is based on is the result 

of thousands of hours of describing and mapping soil within the mapper’s region. Provided that 

this knowledge and prediction is accurate, only a few strategic point observations are needed to 

create an adequate soil map (Hudson, 1992; Soil Survey Staff, 2017).  
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Third the mapper tests the delineation prediction by sampling pedons through pits, 

augering, and naturally occurring soil exposures. Finally, based on these observations the soil 

scientist either confirms the original model or rejects it and creates a new one to be tested.  

If the accuracy of the soil map and its underlying hypotheses for soil distribution within 

landforms are found adequate, the product is certified and published. A typical final map 

contains delineated map units (polygons) based on the models created by soil scientists and 

provides support for a variety of agricultural, construction, and scientific endeavors. Note that at 

this completed state, still several different soil types are described within a single soil map unit 

(polygon), as consociate, complex, etc. Each one of these soils represents a different soil series 

within the map unit. A soil series is a set of soils with similar or the same profiles, parent 

material, and climate that have been identified and explicitly described by soil scientists. The 

expected location of each soils within a soil map unit polygon is provided as a textual 

description. Thus, a traditional map such as Error! Reference source not found. provides a 

eneral overview of the likely soils within an area, but it does not necessarily provide the visual or 

geospatial resolution necessary for all contemporary analyses.  

 

 Digital Soil Mapping 

Moving into a modern age it became possible and necessary to add quantitative elements 

to soil mapping. Some early steps included purely spatial approaches that attempted to predict 

soils based purely on spatial relation to observations (McBratney et al., 2003). This improved to 

become more regionalized in the case of kriging and even implementing several covariates 

within the local area in the case of cokriging. Soon GIS techniques improved to allow for more 

geostatistical and computationally intensive techniques. This culminated in a new model 
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proposed by McBratney et al. (2003) that consisted of the original soil forming factors of  

climate (C), organisms (O), relief (R), parent material (P), and age/time (A) but added two new 

factors soil (S) and spatial locations (N). This new model, SCORPAN, formalized all the 

previous approaches into an overarching framework. Adding a soil covariate (S) allowed for soil 

properties to be predicted using other better known or available soil properties. Adding a spatial 

covariate (N) allowed for spatial coordinates and relative position to be used within the model 

like the previous purely spatial approaches.  This new field, Digital Soil Mapping, unlike 

Traditional Soil Mapping, estimates a quantitative predictive model of soil types and properties 

that uses observation point data, but has only limited abilities to include the previously described 

knowledge of soil-landscape patterns, acquired by decades of fieldwork by soil experts (Figure 

2).  

Digital soil mapping is actively implemented within the United State and even with 

SSURGO data. Some digital soil mapping approaches are used to predict soil type such as 

Brungard et al., 2015 method in which they predict soil taxonomic classes in areas in New 

Mexico, Wyoming, and Utah. In this case they used machine learning methods to implement 

different digital soil mapping methods. Others focus on deriving individual soil properties using 

digital soil mapping methods such as Simbahan et al., 2006 methods to map soil organic carbon 

stocks in fields in Nebraska. Other methods take it even further and remap SSURGO data for the 

entire United States using into continuous raster surface of soil series probabilities such as 

POLARIS (Chaney et al., 2016).  

Digital soil mapping requires extensive amounts or high-density soil observation point 

data to estimate and evaluate predicted soil types or properties. The legacy data-based 

disaggregation method proposed in this thesis contains some similarities to digital soil mapping. 
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However, it avoids this intensive data need. Additionally, the soil data is not being used to model 

soil types or properties, but instead assign more specific geographic locations to the soils 

described in the map units. 

 Disaggregation Techniques  

The disaggregation work within soil mapping reflects elements of both traditional and 

digital soil mapping (Figure 2). Some disaggregation methods work with traditional soil maps 

boundaries (Häring et al., 2012). Other methods are closer to digital soil mapping and use legacy 

data merely as covariates (S in SCORPAN) or as calibration data for their quantitative models 

such as Odgers et al., (2014) and Stoorvogel et al., (2017). 

One early set of methods such as those used by Bui & Moran (2001) compared three 

disaggregation models to discern which was the most effective to create a continuous raster 

surface form  existing soil units in Australia. The first model used a restructuring element based 

on landscape relief classes calculated from the DEM and then related these to the soil position 

description attached to the units. The second model used a clustering method (k-means 

algorithm) based on vegetation coverage associated with the described soils as well as a slope 

map to disaggregate the soil units. The third model used a decision tree approach allowing for 

the use of both quantitative and categorical variables such as lithology, DEMs, relief, transport 

energy, and LANDSAT data. They found the best method was heavily dependent on the region 

and the preexisting soil information available. 

In a more traditional boundary-preserving approach, Häring et al., (2012) focused on 

drawing new boundaries within polygons instead of creating a new continuous raster map of soil 

types in south east Germany. A data-driven random forest method was used to calculate 

probability of a soil occurring at a location with 7 terrain attributes: topographical wetness index, 
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relative height floodplain index, a modified floodplain index, a mass balance index, slope 

gradients, mid-slope positions. A soil-designation threshold of a probability value above 0.7 was 

used. Any location where no soil reached a probability of presence above 0.7 was classified as 

“indifferent.” Haring et al found that slope, along with flood plain index values and relative 

height were the strongest predictors in the model (2017).  

Other methods push even further into the data driven digital soil mapping and SCORPAN 

methodologies. SCORPAN’s use in the disaggregation of soil map units is best seen with the 

Disaggregation and Harmonization of Soil Map Units through Resampled Classification Trees 

(DSMART) (Odgers et al. 2014). In this approach continuous raster surfaces were created using 

a series of SCORPAN covariates, legacy information from the map unit descriptions, and 

decision trees. Subsequent approaches such as Vincent et al., 2018 expanded on this approach in 

Northwestern France. As inputs for the algorithm, they used landscape position and “expert 

knowledge” from soil surveyors as well as environmental covariates such as geology, land use, 

and terrain attributes. Within the decision trees parent material and original map polygons were 

used 100% of the time and other covariates were used less. Overall accuracy varied from ~40% 

to ~ 70% showing some success for this approach. Even though original soil map polygons were 

used as a covariate this did not prevent those soils from existing outside the boundaries.  

Other digital soil mapping approaches to disaggregation include Stoorvogel et al. (2017) 

S-world approach to disaggregate polygon-based soil maps using expert knowledge and simple 

statistics (2017). However, in this case the goal was to generate soil property maps not 

disaggregate soil map units into their individual soil types. In this approach Stoorvogel et al. 

accomplished the disaggregation of map units by starting from the bottom of topographic 
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sequences of soils and assigning soils sequentially by their relative topographic positions pulled 

from the soil legacy data. 

Some approaches such as Nauman and Thompson (2014) and Chaney et al. (2016) use 

SSURGO data within their disaggregation. Nauman and Thompson wanted to disaggregate 

adjacent surveys into a single universal map without the original survey boundaries. Their 

disaggregation procedure used a supervised classification procedure based on the soil 

descriptions and hillslope, landform, slope, elevation, aspect, and catchment area rasters as 

inputs. All the descriptions were obtained from SSURGO tables. Then, based on the SSURGO 

soil descriptions, two soil properties (rock content and soil organic carbon percentage) were 

assigned a probability value and a continuous soil properties raster surface was calculated. This 

procedure was very time intensive, required extensive code and failed to produce accurate maps 

at a local scale (Nauman & Thompson, 2014). It also bears reminding that their end goal was a 

soil property map and not disaggregated SSURGO units. 

Chaney et al., 2016 in their creation of POLARIS used the DSMART algorithm to 

disaggregate SSURGO data for the contiguous United States (CONUS). Their approach started 

with a suite of environmental covariates such as elevation, slope, curvature, parent materials, 

land cover, and topographic indices as well as legacy SSURGO data. Using these as inputs the 

DSMART algorithm randomly samples at least 100 soil observations per map unit and calibrates 

decision trees that predict the most likely components out of the thousands of possible 

components. The components are assigned a rank by likelihood for the first 50 components. 

Overall, at rank 1 the accuracy was around 17% for each soil series and reached 68% percent 

when all 50 ranks were considered.  
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Overall, most of these methods employ the use of the existing legacy data to calibrate or 

provide covariates for their models. In most cases it was to either supplement or reduce the 

pedon data needed within each study. Additionally, much of the success was either regionally or 

scale dependent. However, none of these studies have looked to update existing map units within 

SSURGO while still preserving the current format and structure. 

 

Study Sites 

Two locations in the north central region of the United States were selected to create and 

test the proposed disaggregation methodology. These are the entirety of Mason County Michigan 

and the Mille Lacs Region of Minnesota. These two sites cover different spatial extents, varying 

climates, soil types, and geologic histories. 

Table 1 Overview of climate information of the two study sites. (Derived from USDA Annual Precipitation 

and Temperatures for the Conterminous United States) 

 

Study Site Area (km2 ) Average Maximum 

Temp (C o) 

Average Minimum 

Temp (C o) 

Average 

Precipitation (mm) 

Mason County 1320.1 12.5 2.5 863.6 

Mille Lacs  5078.4 11.1 -0.8 736.6 

 

 Mason County, Michigan 

The first site, Mason County, MI, is on the eastern side of lake Michigan and covers over 

1320 kilometers. The county has a marginally wetter climate on average than the Mille Lacs site 

and is generally cooler overall. The area is dominated by prior glacial activity and current lake 

Michigan activity resulting in large deposits of sand and glacial moraine till as well as active 

dune land especially near the lake shore. Looking broadly this area is covered by mainly four 
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different soil orders Entisols, Spodosols, Alfisols, and Histosols. Entisols are generally described 

as weakly developed, are often from recent depositions of largely unaltered parent material, and 

have not accumulated substantial amounts of organic matter. The Entisols present are mostly 

comprised of the duneland near the lake shore that have steep slopes, with fast deposition and 

erosion rates inhibiting major soil development. Additionally, associated with the coarse sandy 

material of the region is the spodosols which are soils where organic matter and aluminum are 

weathered into the subsoil. Alfisols are soils that experience leaching and weathering, causing 

the clay within the surface layers to move down into the subsoil. This allows soil moisture and 

other plant benefiting nutrients to be present within the subsoil and support more complex and 

deeper root networks. As a result, they generally occur with forest or other relatively heavy 

vegetative cover. Alfisols cover most of the county, dominantly in areas that are at relatively 

higher elevations than the lake. Histosols are extremely organic rich soils and are saturated 

almost throughout the year and throughout the profile. They generally occur in peatbog or 

swamp type settings where water content is high and organic plant remains deposit faster than 

they decay. Histosols mostly occur within the county in areas that are at lower elevations and 

within depressions. 

Looking more specifically the area is dominated by very sandy soil series resulting from 

the lake and prior glacial activity such as the Cover, Grattan, Kingsville Mucky, and Spinks-

Coloma sands (Soil Survey Staff, 2020). These series are present in over 181.3 km2 or just under 

14% of the entire county. The series differ mostly in their drainage ability. The Grattan Sands are 

excessively drained while the Covert series have more moderate drainage and the Kingsville is 

very poorly drained. The Spinks Coloma series is associated with dunes and drifting sands and 

are distinguished from one another by the absence or presence of clay accumulation in the 
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subsoil. Other common soil series within the county includes the Wixom-Capac Complex which 

formed from sandy and loamy till deposits and covers about 49.2 km2(Soil Survey Staff, 2020). 

They are distinguished from another by the presence of coarse sandy material in the upper 

horizon, the Wixom, or the lack of this sandy material, the Capac otherwise they occupy similar 

landscape positions. Occupying similar landscape positions and being distinguishable only by 

horizon differences may provide issues in terms of this approach because it relies on landscape 

position. 

 Overall, Mason county consists of about 75.6 % consociations, 21.6 % complexes, and 

the other 3 % is undifferentiated groups. Since Mason county has many different townships there 

are some artificial boundaries and previous survey borders present within the soil map (Figure 

3). However, the entire county is mapped at order 2: the second highest order of soil mapping.  

 

 Mille Lacs Region, Minnesota 

The second study site, the Mille Lacs Region, is significantly larger covering about 

5078.4 km2and spanning over 9 counties in Minnesota. The Mille Lacs region is colder and drier 

on average. Like Mason County, the region is dominated by prior glacial activity which has 

impacted the topology and geology for the area. However, in the Mille Lacs Region the glacial 

activity was a series of alternating glacial retreats and advances resulting in glacial till as a 

prominent parent material within the soils in the area. The major soil orders within the areas are 

Alfisols, Entisols, and Histosols, and are identical to those present in Mason County. This 

reflects the similar landscape and vegetative features such as coastal beach and dune activity, 

swamps and bogs, and forest cover. Looking more specifically the major soils series within the 

area consist of the Mora-Ronneby complex that covers 400.5 km2, the Milaca 164.6 km2 and the 
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Milaca-Millward complex 109.8 km2, the Seelyville 122.7 km2, and the Rifle 99.1 km2 (Soil 

Survey Staff, 2020). The largest soil series within the map units, the Mora-Ronneby Complex, 

occurs on glacial drumlins and moraines at 1 to 7 % slopes. Both the Mora and Ronnebysoil 

series have a densic contact at around 100-150 cm and are mostly distinguished by landscape 

position with the Mora series occupying shallower slopes or lower elevations and the Ronneby 

series occurring in flats or depressions. The Milaca and Millward series are like the previous 

soils forming on glacial drumlines and moraines and having a rocky contact at around 100-150 

cm from the surface. However, these soils occur at steeper slopes than the Mora or Ronneby. The 

Millward series within the complex units is distinguished from Milaca by a sandy layer between 

the surface and densic rock contact layers. The other soil series most common within the area are 

the Rifle and Seelyeville series and they reflect the swampy fraction of the Mille Lacs region. 

The Rifle series is characterized by poorly drained peat with more than 130 cm of organic 

material in depressional areas. The Seelyeville is very similar in positions and drainage 

characteristics however, it is not characterized as peat and is instead classified as muck. Within 

soil science muck is generally classified as sapric, less fibrous , while peat is classified as fibric, 

mostly fibrous (Soil Survey Staff, 2014). Overall, the Mille Lacs region consists of about 65.2 % 

consociations, 30.6 % complexes, 0.2 % associations, and the other 4 % is undifferentiated 

groups. Like Mason County, the Mille Lacs region also contains artificial discontinuities and 

borders within the original map especially along county lines. However, unlike Mason County 

only 38.4 % is classified as order 2 with rest being older and unclassified.  
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Figure 3 The gSSURGO Soil Map for the Mason County, Michigan Study Site and the sample locations for the 

evaluation data. 
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 Figure 4 The gSSURGO Soil Map for the Mille Lacs, Minnesota Study Site and the sample locations for the 

evaluation data. 
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Methods 

 The method within this thesis requires a variety of data inputs that need to be integrated 

at different steps within the process. The data used and its order within the method is outlined in  

 

Figure 5 Overview of the methods and evaluation within this thesis, showing the input soil and elevation data, the 

preparation steps leading into the procedure, and the evaluation of the original and produced maps. 

 

 Soil Data 

The starting soil data was sourced from the Gridded Soil Survey Geographic Database 

(gSSURGO) through the USDA/NRCS: Geospatial Data Gateway as a file geodatabase for each 

state. The soil geodatabase contains extensive soil information, but only the tabular component, 

slope, curvature, and landform information, a map unit polygon feature class, and the soil map 

unit raster at 10-meter resolution was extracted (Figure 5). The two feature classes, the map unit 

polygon and soil map unit raster, were clipped to the respective study area. The tables were 

joined by their related fields and condensed to individually mappable components that are 

distinguishable by slope or curvature, and that consist of one or several soil series. This newly 

generated table, the Disaggregation index (Table 2), provides information about which 

components of soil map units can be disaggregated as well as the landscape positions under 
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which these components are found. In some cases, two components cannot be separated from 

each other based on the landscape position. Where this happens those two components are 

merged in the disaggregation index and will form on soil map unit. The index contains all the 

necessary input slope and curvature information to set the fuzzy functions targets, retains the 

component keys and area percent information, and all the original map unit keys. An example 

fraction of a Disaggregation Index is shown in Table 2. 
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Table 2  A fraction of the Disaggregation Index for Mason County with the slope information from the 

descriptions such as slope low, representative, and high values. The table also contains curvature information such 

as planar curvature (Shape Across) and profile curvature (Shape Down). Finally, the table contains the first and last 

component keys and their respective area component percentages within an existing SSURGO map unit. Illustrating 

this with the third row in the index for example, the unit-to-be-created is currently part of existing SSURGO map 

unit key 1382763. It still consists of two components that cannot be disaggregated based on SSURGO legacy 

descriptions (namely, 18311190 and 18311193). The unit-to-be-created is one of three creatable new units within the 

original map unit 1382763 and differs from the other two (in the first two rows of the index) in terms of its slope 

range. Specifically, the slope range extends to 2% slopes: the highest of the three creatable units within that map 

unit. The two components in the creatable new map unit together make up 10 percent of the existing map unit. 
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1382763 0 0 1 Linear Linear 18311191 18311191 5 

1382763 0 1 1 Linear Linear 18311192 18311192 85 

1382763 0 1 2 Linear Linear 18311190 18311193 10 

1382764 0 0 1 Concave Concave 18311146 18311146 1 

1382764 1 2 3 Convex Convex 18311147 18311147 9 

1382764 1 2 3 Linear Convex 18311145 18311145 90 

1382765 0 0 1 Concave Concave 18311075 18311075 1 

1382765 1 2 3 Convex Convex 18311077 18311077 7 

1382765 2 7 12 Linear Convex 18311076 18311076 2 

1382765 3 5 7 Linear Concave 18311078 18311078 3 

1382765 3 5 7 Linear Convex 18311074 18311074 85 

1382765 3 5 7 Linear Linear 18311073 18311073 2 

… … … … … … … … … 
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 Elevation Data  

 The DEM data was sourced from the National Elevation Dataset (NED) through the 

Geospatial Data Gateway and is at 10 m resolution (U.S. Geological Survey, 2015). This 

resolution was chosen because it is available across the United States, including the study sites, 

and it matches the resolution of the Soil map raster within the gSSURGO geodatabase. Next, 

DEM derivatives were calculated consisting of the original slope, planar curvature, and profile 

curvature (Figure 6). To obtain a higher level of generalization to complement the 10 m 

resolution, the DEM was aggregated by a factor of 5 to a 50-m resolution. Slope, profile 

curvature, and planar curvature were calculated using standard ArcGIS tools for both the 10-m 

and 50-m DEM. After these six terrain attributes were calculated, a focal mean filter was passed 

over each of the results. At this point, twelve rasters with terrain attributes were available for 

further analysis (Figure 8). 

During the disaggregation procedure, these twelve terrain attributes were used to have 

some control over the patterning of the disaggregated map. For example, weighting the 

aggregated version of the terrain information higher will cause the resulting map to coarsen 

because each 5 by 5 block of cells has been converted to a single value. Conversely in the focal 

mean the terrain information is averaged for each cell in relation to the 8 cells surrounding the 

cell. Unlike the aggregated version each cell will keep an individual value however, it has been 

averaged compared to the surrounding cells and will smooth the resulting map. The information 

from the 12 attributes was saved in one table, the terrain index, with the number of rows equal to 

the number of cells in the study area, and the number of columns equal to the number of DEM 

derivative variants (Table 3).  
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Figure 6 The 12 DEM derivative variants following from two DEMs with different resolutions, with and 

without smoothing using the Focal Mean operation. These serve as inputs during the disaggregation procedure 

and allow control over the resolution and smoothness of the disaggregated soil map 
 

  



24 

 

Table 3 A fraction of the Terrain Index Table for Mason County. It contains values for all of the 12 DEM variants 

for every cell in a study area as well as the map unit key referencing the originally mapped soil map unit. Note that 

aggregated values calculated over larger resolutions are repeated several times at the smaller resolution of the terrain 

index. 

 

 Disaggregation Procedure 

It is now possible to disaggregate the components similar to what is seen in Figure 1. The 

soil map units were disaggregated based on their recorded landscape positions using the 

Disaggregation Index created from the information in the gSSURGO database, the 12 DEM 

terrain derivatives in the Terrain Index, and the gSSURGO 10-meter resolution soil map unit 

raster. However, as visible in Table 2, soil map components cannot be directly assigned to areas 

of a certain slope or curvature values because they are described in a range around their 

recorded values or in the case of curvature, they become more likely as the convexity or 
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2605773 0.552 0.539 83.562 57.221 -0.020 -0.010 -17.938 -2.483 0.015 -0.011 -18.179 -57.798 

2605773 0.537 0.513 83.562 57.221 -0.030 -0.017 -17.938 -2.483 0.024 -0.010 -18.179 -57.798 

2605773 0.462 0.458 83.562 57.221 -0.020 0.014 -17.938 -2.483 -0.014 -0.011 -18.179 -57.798 

2605773 0.344 0.440 83.562 57.221 0.074 0.025 -17.938 -2.483 0.009 -0.008 -18.179 -57.798 

2605773 0.432 0.395 83.562 57.221 0.050 0.034 -17.938 -2.483 -0.023 0.005 -18.179 -57.798 

2605773 0.299 0.363 11.639 38.886 0.022 0.019 0.514 -3.511 0.026 -0.002 -0.215 -19.197 

2605773 0.279 0.363 11.639 38.886 0.030 0.021 0.514 -3.511 -0.047 -0.010 -0.215 -19.197 

2605773 0.416 0.459 11.639 38.886 0.029 0.036 0.514 -3.511 -0.003 -0.032 -0.215 -19.197 

2605773 0.604 0.654 11.639 38.886 0.032 0.026 0.514 -3.511 -0.059 -0.035 -0.215 -19.197 

2605773 0.915 0.797 11.639 38.886 0.034 0.023 0.514 -3.511 -0.063 -0.016 -0.215 -19.197 

2605773 0.890 0.798 21.521 27.036 -0.022 0.013 0.183 0.553 0.074 0.015 -0.501 0.028 

2605773 0.616 0.679 21.521 27.036 -0.008 0.005 0.183 0.553 0.041 0.025 -0.501 0.028 

2605773 0.552 0.697 21.521 27.036 0.015 -0.001 0.183 0.553 -0.036 -0.034 -0.501 0.028 

2605773 0.955 1.005 21.521 27.036 -0.019 -0.008 0.183 0.553 -0.118 -0.075 -0.501 0.028 
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concavity increases or decreases. Additionally, slope ranges and curvatures for multiple new soil 

map units often partially overlap making it impossible to directly assign new soil map units to a 

location. To account for this difficulty, gaussian fuzzy functions are used to assign scores to each 

component based on how strongly (instead of whether) the location fits the descriptions of each 

disaggregated soil map unit (Figure 7). Using a fuzzy function allows for a smooth transition 

away from the most probable values of slope and curvature instead of a binary yes or no 

assessment. The partial probability, 𝜇, of soil in a location is thus predicted using a gaussian 

fuzzy function such as Equation 1: 

 

Figure 7 Example of three gaussian functions with a center value (f2) of 10.  

 

The gaussian fuzzy functions consist of three main elements, the input x or in this case 

the slope/curvature value, the spread f1, and the midpoint f2 or the value target. For instance, in 

the case of slope, xs is the value of slope at a given cell, s, within the map. f2 is the target value of 

𝜇(𝑥)𝑠,𝑖 = 𝑒−𝑓1∗(𝑥𝑠,𝑖−𝑓2𝑠,𝑖)2
 1 
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slope for the component being assigned. As x approaches the f2 value the output approaches 1. 

The f1 values determines how quickly the output values moves away or towards the value of 1. 

The Gaussian fuzzy functions midpoints (f2) were set using the expected component slope ranges 

and curvature values pulled from the Disaggregation Index.  

The terrain information was inserted as x into the function and was pulled from the 

Terrain Index. Finally, a constant (0.1) was set as the spread (f1) and the relative likelihood that a 

soil is found within a single raster cell for a particular terrain attribute is determined. The 

likelihoods are not probabilities but scores that are relative to the likelihoods of the same original 

map unit soils within that unit.  

The 12 fuzzy function outcomes – one for each version of each terrain derivative - are 

combined into an overall soil component score that expresses the partial relative likelihood of 

each possible soil component i for a raster cell s (Equation 2):  

 

𝛼 +  𝛽 +  𝛾 +  𝛿 = 1 

 

 

3 

Equation 2 is comprised of two elements: the gaussian fuzzy function results of each of 

the 12 DEM derivatives in location s for component i and respective weight coefficients α, β, γ, 

or δ that allow for control over the resulting maps shape, coarsening or smoothing. For example, 

increasing the value of γ would increase the weight of the aggregated DEMs therefore increasing 

𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝑆𝑜𝑖𝑙 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑆𝑐𝑜𝑟𝑒 𝑠,𝑖 = 

𝛼 ∗ 𝜇(𝑠𝑙𝑜𝑝𝑒)𝑠,𝑖 + 𝛽 ∗ 𝜇(𝑚𝑠𝑙𝑜𝑝𝑒)𝑠,𝑖 + 𝛾 ∗ 𝜇(5𝑠𝑙𝑜𝑝𝑒)𝑠,𝑖 + 𝛿 ∗ 𝜇(𝑚5𝑠𝑙𝑜𝑝𝑒)𝑠,𝑖 + 𝛼 ∗

𝜇(𝑝𝑙𝑎𝑛𝑐𝑢𝑟𝑣)𝑠,𝑖 + 𝛽 ∗ 𝜇(𝑚𝑝𝑙𝑎𝑛𝑐𝑢𝑟𝑣)𝑠,𝑖  + 𝛾 ∗ 𝜇(5𝑝𝑙𝑎𝑛𝑐𝑢𝑟𝑣)𝑠,𝑖 + 𝛿 ∗ 𝜇(𝑚5𝑝𝑙𝑎𝑛𝑐𝑢𝑟𝑣)𝑠,𝑖 +

𝛼 ∗ 𝜇(𝑝𝑟𝑜𝑓𝑐𝑢𝑟𝑣)𝑠,𝑖 + 𝛽 ∗ 𝜇(𝑚𝑝𝑟𝑜𝑓𝑐𝑢𝑟𝑣)𝑠,𝑖 + 𝛾 ∗ 𝜇(5𝑝𝑟𝑜𝑓𝑐𝑢𝑟𝑣)𝑠,𝑖 + 𝛿 ∗ 𝜇(𝑚5𝑝𝑟𝑜𝑓𝑐𝑢𝑟𝑣)𝑠,𝑖  

2 
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their impact on the resulting score. As a result, the map would coarsen because the aggregated 

cells would have more influence over the result.  

The four coefficients, α, β, γ, or δ, add up to 1 and since the individual fuzzy scores are 

values from 0 to 1, the resulting score from this equation will also be between 0 to 1. These four 

coefficients are currently held stable for all s and i but may be varied by mappers to better reflect 

their understanding of a region’s soils. For instance, when a component locally does not have a 

clear relation to the landscape a locally coarser map with high γ, or δ may provide a better 

estimate. 

At this point, it is possible to assign the soil components with the highest score to each 

location (grid cell) in a map. However, this would not ensure that each component occupies the 

SSURGO-prescribed percentage of each original soil map unit (Table 2). 1 

To gain control over the relative area percentages predicted for each component i, a 

calibration parameter εi is introduced. The parameter is used to make components less or more 

likely relative to other components, regardless of location s (Equations 4 and 5): 

 

 𝐹𝑖𝑛𝑎𝑙 𝑆𝑜𝑖𝑙 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑆𝑐𝑜𝑟𝑒𝑠,𝑖 =  𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝑆𝑜𝑖𝑙 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑆𝑐𝑜𝑟𝑒𝑠,𝑖  + ε𝑖  4 

 

𝑀𝑎𝑝𝑝𝑒𝑑 𝑆𝑜𝑖𝑙 =  𝑀𝑎𝑥 (𝑆𝑜𝑖𝑙 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑆𝑐𝑜𝑟𝑒𝑠,𝑖) 5 

 

Using a first guess for εi =.5, the final component score is calculated for each possible 

component i in each location s (raster cell) and the component with the highest score is assigned. 

                                                 

1 SSURGO soil map unit descriptions proscribe the relative proportion of the unit that is occupied by each 

component, as in Table 2” 
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Once every cell within a map unit has been assigned a component, the percent cover of each 

component is calculated, and the value is compared to the required area percent described in 

SSURGO and recorded in the disaggregation index. Εi is then iteratively increased if a 

component was predicted over less area than required and iteratively decreased if a component 

was predicted over more than required. This process is repeated until the area percent deviation 

is within a user specified range. I chose +-2% of the original soil map unit component percentage 

for this range because it provided a practical and reachable target and decreasing it any further 

did not affect accuracy assessment results. However, in some cases it was not a reachable target 

and the model would stop trying to reach it after the 50 iterations I allowed and assign the best 

result it reached. 

Once acceptable assigned areas have been reached for all newly disaggregated soil map 

units in each original polygon, the newly disaggregated map units are assigned their component 

keys and are saved as new map units. This process is repeated for each map unit and the results 

are merged back into one raster soil map. The outcome of the procedure is therefore a new soil 

map raster that has disaggregated soil map units in SSURGO format and that best matches the 

area percentages described in the original SSURGO soil map unit descriptions.  

To evaluate each disaggregated map, independent soil point pedon data were collected 

for each site.  For Mason County a total of 167 points were described, consisting of recent 

randomly assigned points within complexes (41) and a set of older unused soil descriptions 

provided by NRCS soil scientists from the region (126) (Figure 3). The point description data set 

for Mille Lacs consists of 400 random points collected for various recent digital soil mapping 

projects and other regional mapping projects (Error! Reference source not found.). Each of 



29 

hese datasets are effectively random in relation to this study and provide adequate coverage of 

each area. 

 Accuracy assessment 

 To determine accuracies, each sampled point was checked to see if the observed soil 

series matched any of the predicted soil series in the new soil map unit and the original SSURGO 

map. Accuracy was expressed as the mean error of all n observations in Mille Lacs and Mason 

County (Equation 6): 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 −  
1

𝑛
∑(𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑜𝑏𝑠,𝑖 − 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑝𝑟𝑒𝑑,𝑖)

𝑛

𝑖=1

 
6 

where fractionobs is the areal fraction assigned to the observed soil series, and fractionpred is the 

areal fraction of the same soil series that was predicted. In all cases, fractionobs,i was 1, i.e. field 

observations always resulted in only clear soil series, not a mix of soil series. Therefore, if all 

fractionpred,i are zero (i.e. if the observed soil series is never among the predicted soil series in 

any disaggregated soil map unit), then accuracy is 0.  

 

The tables with the partial scores for both the SSURGO and the disaggregated map are 

provided in the appendix as Error! Reference source not found. and Error! Reference source 

t found. for Mason County. To better compare to other methods such as POLARIS that use a 30-

meter resolution DEM the accuracy assessment was also completed using a 3 by 3 window 

around the sample points. In that case, the score was calculated as in equation 6 for each of the 9 

cells in the 3X3 window and the highest score was kept. This essentially allowed 9 attempts for 

each sample point. 
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 To help assess accuracy, assessment confusion matrices were generated at the soil order 

level. Confusion matrices provide a variety of insights into classification success such as user 

accuracy and producer’s accuracy. User’s accuracy reflects the number of correctly predicted 

samples divided by the number of samples within the row and provides a measure of reliability 

of the observations (Janssen & van der Wel, 1994). Producer’s accuracy on the other hand is the 

number of correctly predicted samples divided by the total number of samples in the column. 

Producer’s accuracy provides a measure of the percentage of a class that was correctly classified 

(Janssen & van der Wel, 1994). To generate confusion matrices within this project the soil order 

of the sample point (reference) was determined using the SSURGO tabular data and then was 

compared to the soil order of the component of the disaggregated map (observation). After 

matches were determined, user’s and producer’s accuracies were generated using the correctly 

assigned divided by the row or column total respectively.  
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Results 

 Practicality of The Approach  

Because the model is designed to be a practical and efficient the procedure was run on 

standard office computers and the specifications are provided below (Table 4). The size of the 

study area greatly affected runtimes (Table 5). The runtimes for Mason County were relatively 

quick and ranged from just over 1 minute to create the Disaggregation Index to about 2 hours 25 

minutes to create the disaggregated map. In contrast the runtimes for the largest study site, the 

Mille Lacs, region ranged from a little over 4 minutes for the Disaggregation Index creation to 

over 45 hours to disaggregate the map. This size of the files also followed this trend with the 

sizes for Mason County being relatively small ranging from a just over 50 kilobytes to around 

6.7 gigabytes. For the larger site, the Mille Lacs region, these values greatly increased especially 

for the disaggregated map to over 49 gigabytes. Additionally, for the Mille Lacs region the files 

became too large to be run at once and needed to be split into four different parts.  

 

Table 4 Computer specifications for the office computers used for the disaggregation procedure. 

Computer Specifications    
Model Dell Precision T3600 

Processor Intel® Xeon® CPU E5-1620 0 @ 3.60 GHz  

Installed Ram 16.0 GB 

System Type 64-bit operating system 
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Table 5 The script runtimes for each study site and their areas. 

 

 

Table 6 The file size of each output/input during the disaggregation procedure. 

 

 

Disaggregated Maps 

Disaggregated SSURGO format soil maps were created for each study area using the 

model and inputs described previously. Because of the size of the other study areas the figures 

reflect the insets established before within each map and the full maps are provided in the 

Appendix. Looking closer within each original map unit new disaggregated components are 

visible (Figure 8, & Figure 9). This is further shown by the increase in the number of smaller 

polygons within each map in the histograms (Figure 10). The number of polygons increased 

dramatically in the first several bins for the study sites. 

Other additional metrics were calculated such as the difference between minimum and 

maximum epsilons and the deviations between the disaggregated and SSURGO-prescribed are 

Study Site Area 

(Km2) 

Disaggregation 

Index Creation 

Terrain Index 

Creation 

Disaggregated 

Map Creation 

Mason County, 

MI 

1320.1 

 

1 m 12 s 43 m 42 s 2h 25m 51s 

Mille Lacs, MN 5078.4 4 m 21 s 4 h 54 m 18 s 45h 38m 08s 

Study Site Area 

(Km2) 

Disaggregation 

Index Size  

Terrain 

Index Size 

Disaggregated 

Map Size 

Mason County, 

MI 

1320.1 54.3 KB 2.31 GB 6.71 GB 

Mille Lacs, MN 5078.4 234 KB 16.7GB 49.1GB 
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percentages (Figure 11 -Figure 14). The epsilon maps reflect the difference between the 

minimum and maximum epsilons values of the components within each original polygon. The 

area percentage maps reflect the difference between the newly disaggregated component area 

percentages and the component percentages originally listed in SSURGO. 
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Figure 8 Before disaggregation and after disaggregation versions of the Mason County Inset Soil Map. 
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Figure 9 Before disaggregation and after disaggregation versions of the Mille Lacs region Inset Soil Map. 
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Figure 10 Histograms demonstrating the count of polygons by area. After disaggregation the number of 

smaller polygons increased. 
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Figure 11 The difference between epsilon minimum and maximum for the Mason County inset. This reflects how 

difficult it was to assign the soils to the landscape based on the SSURGO descriptions. The higher the value the 

more manipulation was needed to assign the correct amount of soil. 

 

Figure 12 The difference between the area percentage assigned and the area percentage described within the 

SSURGO data for the Mason County Inset. Higher/redder values reflect further deviation from the SSURGO 

percentages. Dark green reflects areas where the models assigned the soils on the first attempt. 
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Figure 13 The difference between epsilon minimum and maximum for the Mille Lacs inset. This reflects how 

difficult it was to assign the soils to the landscape based on the SSURGO descriptions. The higher the value the 

more manipulation was needed to assign the correct amount of soil. 

 

Figure 14 The difference between the area percentage assigned and the area percentage described within the 

SSURGO data for the Mille Lacs Inset. Higher/redder values reflect further deviation from the SSURGO 

percentages. 
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 Accuracy Assessment  

Finally, the set of evaluation pedon points were compared to both the original soil maps 

as well as the newly disaggregated maps (Table 8). In the case of Mason County, using all 

available observation points (n = 167), the original map correctly predicted the correct soil 42 % 

of the time overall while the disaggregated map correctly predicted the soil 40 % of the time. 

When using only the randomly sampled observations (n = 41), the SSURGO map marginally 

underperformed with 41.7 % while the disaggregated map scored 41.9 %. The numbers for the 

Mille Lacs regions (n =400) were substantially smaller with the SSURGO maps scoring 18% and 

the disaggregated map scoring 16%. 

Separately, accuracies were calculated for disaggregated maps with different sets of 

values for α, β, γ, and δ (Table 8). Each alternative set of parameters raised one parameter to 

70% and lowered the other parameters to 10%. The increased importance for derivatives 

calculated from unaltered DEMs (α = 70%) results in best accuracies, with the focal mean DEM 

variants (β = 70% or δ = 70%) scoring the worst. More extreme values of α, β, γ, and δ had little 

additional impact. 

All accuracies were also calculated using a 3 x 3 window and are reported in Table 8. The 

3 x 3 window improved accuracies of both the SSURGO and the disaggregated maps. However, 

the increase was generally larger in the disaggregated maps. Looking only at the random sample 

in Mason County, when using a 3 x 3 window the unaltered DEMs (α = 70%) score increased 

from 43% to 55% while the original SSURGO map’s score only increased from 42% to 46%.  

To inspect accuracies in more detail confusion matrices at the level of soil orders were 

created for the original SSURGO map and the disaggregated map. Additional confusion matrix 

derivatives,  producer and user accuracies, were also calculated (Figure 15, Figure 16, and Table 
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7). Overall, the model had the most difficulty in distinguishing the Spodosols from the Alfisols 

in Mason County. Additionally, the model was unable to accurately assign Mollisols within 

Mason County with a spread of predictions across all soil orders. For the Mille Lacs region, the 

model had the most difficulty distinguishing the Alfisols from Inceptisols and Mollisols. 

 

 

 

 
Figure 15 Confusion matrix of soil orders of Mason County with the prediction, the disaggregated map and the 

reference, the soil observation points. 

. 
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Figure 16 Confusion matrix of soil orders of Mille Lacs region with the prediction, the disaggregated map and the 

reference, the soil observation points. 

 
Table 7 User's and Producer's accuracies for Mason County and Mille Lacs Region. 

Mason County Soil Order 

User's 

Accuracy  

Producer's 

Accuracy 

 Alfisols 71% 59% 

 Entisols 43% 41% 

 Histosols 31% 28% 

 Inceptisols 57% 31% 

 Mollisols 14% 17% 

 Spodosols 58% 74% 

Mille Lacs Region    

 Alfisols 95% 63% 

 Entisols 33% 100% 

 Histosols 68% 38% 

 Inceptisols 9% 56% 

 Mollisols 0% NA 

 Spodosols 0% NA 
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Table 8 The scores for the original SSURGO maps, the disaggregated maps, and all the variants of the new maps. Overall reflects the score of both the paper 

copies of NASIS points and the points collected from a random field sample. NASIS is only the paper NASIS soil descriptions and random sample is only the 

random points collected in the field. In the case of the Mille Lacs region only a set of random NASIS points was used.  
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Mason County  All (n=167) 42% 40% 41% 38% 40% 37% 

      NASIS (n=126) 42% 39% 41% 37% 38% 35% 

      Random (n=41) 42% 42% 43% 39% 47% 44% 

        

Mille Lacs All (largely random, n=400)) 18% 16% 19% 18% 17% 16% 

        

3 X 3 Window        

Mason County  All (n=167) 44% 46% 47% 46% 44% 45% 

      NASIS (n=126) 44% 45% 45% 45% 42% 42% 

      Random (n=41) 46% 49% 55% 48% 50% 54% 

        

Mille Lacs All (largely random, n=400)) 22% 24% 26% 25% 25% 22% 
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Discussion 

 Practicality of the Approach 

Looking at the runtimes and the file sizes it is clear there is a size limit to the practicality 

of this approach (Table 6 and Table 8). County sized areas seem to work best with having 

workable runtimes, manageable file sizes, and stability while executing. The biggest limiter to 

the size of the area that can be disaggregated is the Terrain Index. This index created large files 

and decreased the stability of the script. This is likely because the Terrain Index was too large to 

run in memory while the script was running and had to use disk space. The most practical 

method to avoid this problem was splitting the Mille Lacs region into smaller more manageable 

sections. Overall, the method is quick and effective for small to county size areas but struggles 

with larger areas on a traditional office computer. Possible improvements that may be explored 

include polygon by polygon disaggregation and storing double precision numbers as single 

precision. 

 Disaggregated Maps 

Looking at the maps themselves it is obvious the number of individual spatial 

components (i.e. polygons) increased (Figure 8 and Figure 9). Examining further, within the 

histograms, there was a substantial increase in the number of smaller polygons. This increase 

reflects the higher resolution of the disaggregated map compared to the original map. 

Additionally, the increase is seen across the first couple bins within each histogram showing that 

the polygons increase is not merely the result of single cell “polygons” being created. Overall, 

this indicates disaggregation successfully assigned more narrowly defined soil map units to more 

specific locations and the catena information in SSURGO is at least partially reflecting real 

continuous landforms 
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Other metrics such as the difference in epsilon ranges and the area percent deviations 

highlight interesting phenomena within the model and SSURGO data. Overall, areas with higher 

epsilon differences reflect regions that had to be heavily manipulated to match SSURGO 

descriptions and assign soils to the landscape. Additionally, a large difference between minimum 

and maximum epsilon coincided generally with areas with low area percent deviations, 

indicating methodological success. This is best seen the southwest corner of Figure 11 and 

Figure 12 where the epsilon values are high and the percent deviation is low. This reflects areas 

where the model had to work harder to match the landscape to the SSURGO descriptions and 

provides insight into what areas may need more soil information or more detailed descriptions.  

Other possible combinations exist within the maps such as areas with high epsilons and 

relatively high percent deviations and areas with low epsilons and high percent deviations. In the 

case of high epsilons and high percent deviations this could be the result of several complications 

within the model. In these cases, it is likely that the SSURGO description does not match the 

landscape and no amount of adjustment can overcome and assign the prescribed percent. 

Other areas have lower values of epsilon and higher values of deviation from the 

prescribed percent. In these cases, it is likely because the terrain difference between two 

components is very small and at a relatively landscape extreme such as 39 % versus 40% slope. 

As a result when epsilon adjusts only a few pixels may change between each iteration. Since 

epsilon changes based on area percentages epsilon is put into continuous cycle of alternating 

percent deviations and as a result the epsilon values settled at the best result they could assign. 

Within this study the original component percentages provided in SSURGO were used 

because they provided the only available target. However, sometimes the slope or curvature of 

landscape does not allow for the percentages to be met and results in a large deviation from the 
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SSURGO area percentages. It is possible that adding more terrain information such as aspect, 

landforms, or raw elevation could reduce this issue by providing additional targets. Additionally, 

since the SSURGO percentages themselves are estimates it is possible that a lower or higher 

amount of a soil series is present than what is listed within SSURGO. 

 Accuracy Assessment 

First, looking at the evaluation data for Mason County, the disaggregated maps produce 

results that are very similar to the original SSURGO data (Table 8). When all points are 

considered (n = 167) the scores are marginally underperforming SSURGO across all variants of 

α, β, γ, and δ. SSURGO scores 42% overall with the highest disaggregated map variant (α=70%) 

scoring 41%.  

However, when only considering observations from the random sample (n=41) the 

disaggregated maps performance varies compared to SSURGO. Almost all the disaggregated 

map variants match or outperform SSURGO except for (β =70%). This truly random sample is a 

better test of the maps accuracies because NASIS points are not truly random. NASIS points are 

often strategically chosen point locations to help create or update soil maps. Additionally, the 

NASIS points are more random in relation to the disaggregated map than to the SSURGO map.  

When the accuracy assessment is done using a 3 X 3 window within Mason County all 

variants of the disaggregated map match or outperform SSURGO when all points are considered 

(n =167The only times SSURGO could perform better in a 3 x 3 windows are when the 

surrounding map units are within the 9-cell window. This suggests some potential boundary 

issues within the data. 

Mille Lacs, even though the scores overall were lower still followed a similar pattern. 

However, the unaltered DEMS (α = 70 %) marginally outperformed SSURGO without the 3 X 3 
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window. When expanded to a 3 X 3 window all DEM variants match or outperform SSURGO 

showing the same pattern to what is seen in Mason County. The lower scores in the Mille Lacs 

regions are likely the result of the mapping detail and overall information. Overall, only 38.4 % 

is mapped as order 2 while the entirety of Mason County is mapped as order 2. Additionally, the 

Mille Lacs disaggregation index consist mostly of singular components. At first this appears as 

evidence that there is more specific information and that all the components can be isolated. 

However, the lack of grouped components is the result of more generic descriptions that do not 

start with many components and as a result are less likely or able to match the sample 

observation points. 

Looking closer overall, between both study sites, at the different variants of α, β, γ, and δ 

it appears that the unaltered DEMs (α = 70 %) perform the best and approach or surpass 

SSURGO accuracy. It appears altering the DEMs to change the resulting map shape negatively 

impacts accuracy in almost all cases. However, the range of accuracies overall demonstrates that 

weighting does measurably impact the result.  

The confusion matrices show some insight into the errors for each region as well. Within 

Mason County the model had the most difficult time distinguishing the Alfisols from the 

Spodosols. This is not surprising because Alfisols are soils that leach clay into the subsurface 

while Spodosols are soils that leach aluminum into the subsurface with both happening in 

similar, well drained landscape positions. The major classification between them is impossible to 

determine using landscape position alone. Within the Mille Lacs regions Alfisols had a higher 

producer’s accuracy of 95% but a middling User’s accuracy of 63%. This reflects that out of all 

the Alfisols sample by the reference points 95 % were classified as Alfisols. However, a lot of 

other points, especially Inceptisols, were also incorrectly classified as Alfisols resulting in the 
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low User’s accuracy. This likely occurred because Inceptisols is a relatively loose soil order of 

soils that did not meet the criteria of the other soil orders and do not have distinct diagnostic 

characteristics. Overall, the confusion matrices demonstrate some potential gaps within the 

method of soils that differ between each other by soil forming factors other than landscape 

position.  

Compared to other similar studies such as POLARIS, (Chaney et al., 2016), this method 

outperforms POLARIS in soil series level predictions. The most probable soil series within 

POLARIS at a 30-meter resolution correctly matched the soil series 17% of the time at rank one, 

55% at ranks through 10, and 68% when expanded to rank 50.  

Within this study only one soil series rank is predicted, and the highest success rate was 

41% overall within Mason County at a 10-meter resolution. When expanded to a 3 x 3 search 

window to match the 30-meter resolution of POLARIS the maximum score further increased to 

47%. Overall, the model in this study thus outperforms the POLARIS substantially on a cell-by-

cell basis and better matches the deterministic ability of SSURGO to predict the most probable 

component while sacrificing the national-level validity. 

Furthermore, POLARIS by its nature removes artificial discontinuities and boundaries 

present within the original national-level SSURGO data. Our method disaggregates purely based 

on SSURGO data and therefore does not remove artificial boundaries. 
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Conclusion 

Overall, the disaggregation procedure produced adequate results. The process appears to 

work best for smaller areas but can be expanded about the size of the average county without 

further improvements. Larger areas create bigger and more difficult to manipulate files. The 

model overall assigned components successfully to much more specific locations and was mostly 

limited by the descriptions themselves especially in the less detailed mapped Mille Lacs region. 

The model produced accuracies like that of the SSURGO data and better than that of similar 

purely digital soil mapping approaches such as POLARIS when determining the soil series 

present (Chaney et al., 2016). Even though there was not much accuracy improvement from 

SSURGO the disaggregated maps overall were able to increase the resolution to the SSURGO 

data while maintaining the overall accuracy of the map, Additionally, regional variations within 

the SSURGO data are evident by the difference in the accuracies between Mason County and the 

Mille Lacs region. Existing and disaggregated maps for the Mille Lacs regions underperform 

those of Mason County. Confusion matrices showed that there is more confusion within Mille 

Lacs region compared to what is seen in Mason County. These differences are likely a 

combination of better descriptions and higher order mapping in Mason County compared to the 

mapping in the Mille Lacs region. Looking ahead, much work still needs to be done to address 

artificial boundaries and discontinuities within the original maps. Additionally, application of 

this methodology in other regions of the United States may highlight potential regional issues or 

benefits to this methodology.  
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