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Abstract

Maximum flow problems involve finding a feasible flow of maximum value through a

single source-sink flow network. The flow must satisfy the restriction that the amount of

flow into any node other than the source and sink node equals the amount of flow out of it.

Moreover, the amount of flow across an edge cannot exceed the capacity of that edge.

Maximum multicommodity flow problems are a generalization of maximum flow problems

that involve finding an optimal flow between multiple source and sink pairs. The maximum

concurrent flow problem is a more complex and popular variation of the maximum multicom-

modity flow problem, where we are given a set of positive demands and the goal is finding

an optimal flow between multiple source-sink pairs.

The p-modulus problem provides a general framework for quantifying the richness of

a family of objects on a graph. Recent advances in the theory have led to several new

interpretations of modulus. In the case of a single source and sink, it has been shown that

the single source-sink maximum flow problem is dual to the 1-modulus problem. Similarly,

it is known that 2-modulus is related to effective resistances and ∞-modulus is related to

the shortest path problem.

Inspired by these properties of single source-sink networks, we show that the maximum

concurrent flow problem can be embedded into a one-parameter family of p-modulus prob-

lems. Using the flexibility provided by the modulus framework, this allows us to introduce

a family of generalizations of p-modulus problems. This connection to modulus provides

a natural generalization of effective resistance and shortest path to networks with multiple

source-sink pairs.
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Chapter 1

Introduction

A Graph is a mathematical representation of a network and it describes the relationship

between lines and points. A graph consists of some points (nodes) and lines between them

(edges). Network theory is the study of graphs as a representation of either symmetric

relations or asymmetric relations between discrete objects. A network can be defined as a

graph in which nodes and/or edges have attributes (e.g. names).

Network theory has applications in many disciplines including statistical physics, particle

physics, computer science, electrical engineering, biology, economics, finance, operations

research, climatology, ecology, public health, and sociology.

Some network problems involve finding an optimal way of doing something. Examples

include network flow, shortest path problems, transport problems, transshipment problems,

location problems, matching problems, assignment problems, packing problems, routing

problems and critical path analysis. The focus of this dissertation is on maximum flow

problems and, in particular, on a generalization called maximum concurrent flow.

Typically, maximum flow problems consist of a graph with capacities defined on the

edges, and a source-target pair (s, t). The goal is to send the maximum amount of some

commodity or substance from a given source node to a given sink node, while respecting the

given capacities of each edge in the network.

Consider the network in Figure 1.1 where we want to send maximum flow from source
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Figure 1.1: Maximum flow example

s to target t. The edge labels in the figure give the capacities of the corresponding edges.

When considering a flow from s to t, it is often convenient to consider the various paths a

unit of substance may follow in order to move from s to t. In this example, there are three

possible paths that the commodity can follow. These paths can be represented as a sequence

of the nodes they visit in order, as follows.

γ1 = s→ a→ b→ t

γ2 = s→ a→ b→ c→ d→ t

γ3 = s→ c→ d→ t

The paths share the network resources and the sum of flows which can be send through

certain edges should not exceed the resources on that edge. For example in this network

paths γ1 and γ2 both use edge s→ a, so they share 4 units of the capacity available on this

edge.

The maximum flow can be found by selecting the correct path flows. In this network

we can send 2 units of flow γ1 along path γ1, 2 units of flow γ2 along path γ2, and finally 3

units of flow γ3 along path γ3. So the sum of all flows are 7 units. We can check that the

capacity constraint of the edges are respected. For example γ1 send 2 units of flow along

edge s → a, and γ2 also send 2 units of flow along this edge, and the flows sum to 4 which

is not exceeding the capacity of the edge s→ a.

Although it’s not clear that this is the best possible flow, the max-flow min-cut theorem

shows that this is the best possible flow and it maximizes the flow from source to target.

In computer science and optimization theory, the max-flow min-cut theorem states that

the maximum flow through any network from a given source to a given sink is exactly the

2
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Figure 1.2: γ1=2, γ2=2, γ3=3, maximum flow = 7
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Figure 1.3: Minimum cut example

minimum sum of the edge weights that, if removed, would totally disconnect the source from

the sink.

Some of the possible cuts for the above network is shown in Figure 1.3, and as it is shown

in the graph the minimum cut in this network is 7. See Chapter 3.

Maximum concurrent flow problem is a popular version of maximum flow problem. It

consists of a set of source-sink pairs, where we are given a set of positive demands for source-

sink pairs. The edges have certain capacities, and the objective is to maximize the minimum

ratio between the value of the ith flow and its corresponding demand. Flows share the given

network resources and, hence must satisfy a joint capacity constraint.

In this dissertation, we study the dual theory of maximum concurrent flow problems, and

make a connection with a general family of problems called p-modulus problems. Modulus

is a powerful approach to the study of networks, and it provides a general framework for

quantifying the richness of a family of objects. Modulus was originally introduced by Beurling

and Ahlfors [1] in complex analysis. In recent years, the original continuum theory has been

adapted to a theory of p-modulus on discrete graphs, exploiting its nature as a convex

3



1 pair k pairs

maximum flow problem (minimum cut) maximum concurrent flow problem
p = 1 ∼ ∼

1-modulus problem concurrent 1-modulus problem
effective resistance problem ?

p = 2 ∼ ∼
2-modulus problem concurrent 2-modulus problem

shortest path problem ?
p =∞ ∼ ∼

∞-modulus problem concurrent ∞-modulus problem

Table 1.1: Connections between modulus and single- and multi-commodity flow problems.
Items written in bold are introduced in this dissertation. The question marks indicate the
questions that motivate this research.

optimization problem. This has led to several new interpretations of p-modulus, including a

probabilistic interpretation based on the concept of random objects on graphs. For certain

values of the parameter p such as 1, 2, and ∞, certain p-modulus problems recover classical

quantities such as minimum cut, effective resistance, and shortest path.

Inspired by the fact that 1-modulus is the dual convex optimization problem of the

single-source single-sink maximum flow problem (see Table 1), we have considered the dual

to the concurrent maximum flow problem, which turns out to be a parameterized 1-modulus

problem. We call this the concurrent p-modulus problem. Using the flexibility within the

modulus framework, we define a class of generalized concurrent flow problems and analyze

their properties.

This dissertation begins with a review of convex optimization problems, duality and

optimality, then recalls that the classical maximum flow problem and its relationship to 1-

modulus. This fact provides motivation to analyze the link between maximum concurrent

flows and the theory of p-modulus. As we show, the maximum concurrent flow problem

can indeed be embedded into a one-parameter family of p-modulus problems. In particular,

when p = 2 and p = ∞ we obtain “multicommodity” generalizations of effective resistance

and shortest paths. We also develop the probabilistic interpretation of these new problems

and work out several examples.

4



The remainder of the thesis is organized as follows.

• In Chapter 2, we review the optimization problem and duality theory. Then we review

the weak and strong duality and also necessary and efficient condition for optimality

by recalling Karush-Kuhn-Tucker optimality condition.

• In Chapter 3, we review the definition of the graph, networks, flow and cuts, and

maximum flow problems. We also recall the notion of p-modulus of families of objects

and the fact that the dual of maximum flow is a modulus problem.

• In Chapter 4, we review the definition of concurrent maximum flow and present a new

interpretation of its dual in the form of a parametrized modulus problem.

• In Chapter 5 we use the flexibility within the modulus framework to define a class of

generalized concurrent flow problems and analyze their properties and present some

examples to illustrate the theory thus far.
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Chapter 2

Convex optimization

This chapter gives an overview of mathematical optimization, focusing on the special role

of convex optimization. It reviews basic definitions and concepts of convex optimization,

including duality and optimality conditions.

2.1 Definitions

A set C ⊆ Rn is an affine set if the line through any two distinct points in C lies in C, i.e.,

if for any x1, x2 ∈ C and θ ∈ R, we have

θx1 + (1− θ)x2 ∈ C.

In other words, C contains the linear combination of any two points in C, provided the

coefficients in the linear combination sum to one. This idea can be generalized to more than

two points. We refer to a point of the form θ1x1 + · · ·+ θkxk, where θ1 + · · ·+ θk = 1, as an

affine combination of the points x1, · · · , xk.

A set C is a convex set if the line segment between any two points in C lies in C, i.e., if

for any x1, x2 ∈ C and any θ with 0 ≤ θ ≤ 1, we have

θx1 + (1− θ)x2 ∈ C.
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The convex hull of a set C, denoted convC, is the set of all convex combinations of points

in C:

convC = {θ1x1 + · · ·+ θkxk| xi ∈ C, θi ≥ 0, i = 1, · · · , k, θ1 + · · ·+ θk = 1}.

A set C is called a cone, or non-negative homogeneous, if for every x ∈ C and θ ≥ 0

we have θx ∈ C. A set C is a convex cone if it is convex and a cone. A point of the form

θ1x1 + · · ·+ θkxk with θ1, · · · , θk ≥ 0 is called a conic combination of x1, · · · , xk.

A hyperplane is a set of the form

{x| aTx = b},

where a ∈ Rn, a 6= 0 and b ∈ R, and it is affine set. Geometrically, a hyperplane can be

interpreted as the set of points with a constant inner product to a given vector a, or as a

hyperplane with normal vector parallel to a. A hyperplane divides Rn into two halfspaces.

A closed halfspace is a set of the form

{x| aTx ≤ b},

where a 6= 0. Halfspaces are convex, but they are not affine. The set {x| aTx < b}, which is

the interior of the halfspace {x|aTx ≤ b}, is called an open halfspace.

A polyhedron is defined as the solution set of a finite number of linear equalities and

inequalities:

{x| aTj x ≤ bj, j = 1, . . .m, cTj x = dj, j = 1, . . . , p}.

So a polyhedron is the intersection of a finite number of halfspaces and hyperplanes.

The α-sublevel set of a function f : Rn → R is defined as

Cα = {x ∈ Rn | f(x) ≤ α}.

7



A function f : Rn → Rm is an affine function if it is a sum of a linear function and a

constant, i.e., if it has the form f(x) = Ax+ b, where A ∈ Rm×n and b ∈ Rm.

A function f : Rn → R is a convex function if for all x, y ∈ Rn, and θ with 0 ≤ θ ≤ 1, we

have

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y). (2.1)

Geometrically, this inequality means that the line segment between (x, f(x)) and (y, f(y)),

which is the chord from x to y, lies above the graph of f . A function f is strictly convex if

strict inequality holds in (2.1) whenever x 6= y and 0 < θ < 1. We say f is concave function

if −f is convex function.

A matrix P ∈ Rn×n is symmetric if P = P T , where P T is the transpose of the matrix P .

P ∈ Rn×n is symmetric positive definite if it is symmetric and xTPx > 0, for all x ∈ Rn
>0.

We use notation Sn+ for the set of all symmetric positive definite matrices.

2.2 Optimization problems

One important class of optimization problems has the form

minimize
x

f0(x),

subject to fi(x) ≤ 0, i = 1, . . . ,m,

hi(x) = 0, i = 1, . . . , p.

(2.2)

This defines the problem of finding the value of x ∈ Rn that minimizes a scalar function

f0(x) among all x that satisfy the conditions fi(x) ≤ 0, i = 1, . . . ,m, and hi(x) = 0,

i = 1, . . . , p. The vector x is called the optimization variable and the function f0 : Rn → R is

called the objective function or cost function. The inequalities fi(x) ≤ 0 are called inequality

constraints, and the corresponding functions fi : Rn → R are called the inequality constraint

functions. The equations hi(x) = 0 are called the equality constraints, and the functions

hi : Rn → R are the equality constraint functions. If there are no constraints (i.e., m = p = 0)

8



we say the problem (2.2) is unconstrained.

In some cases, one or more of the fi or hi may not be defined on all of Rn. Traditionally,

such cases are treated in one of two ways. Either one introduces the concept of domain to

refer to the set of points for which a given function is defined, or one allows extended valued

functions (i.e., functions whose value might be ±∞ at certain points). In this dissertation,

the objective and constraint functions of interest can be defined on the whole space so, in

order to avoid excess notation, we shall assume here that the fi and hi are defined throughout

Rn.

A point x ∈ Rn is feasible if it satisfies the constraints fi(x) ≤ 0, i = 1, . . . ,m, and

hi(x) = 0, i = 1, . . . , p. The problem (2.2) is said to be feasible if there exists at least one

feasible point, and infeasible otherwise. The set of all feasible points is called the feasible set

or the constraint set.

The optimal value p∗ of the problem (2.2) is defined as

p∗ = inf {f0(x) | x ∈ Rn, fi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p} .

If the problem is infeasible, then p∗ is defined to be +∞, since it is the infimum of the empty

set. The problem (2.2) is said to be unbounded below if there are feasible points {xk} with

f0(xk)→ −∞ as k →∞. In this case, p∗ is defined to be −∞.

2.2.1 Convex optimization problem

A convex optimization problem has the standard form

minimize
x

f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m,

aTi x = bi, i = 1, . . . , p,

(2.3)

where f0, . . . , fm are convex functions and where ai ∈ Rn and bi ∈ R for i = 1, . . . , p.

Comparing (2.3) with the general standard form problem (2.2), the convex problem has the

9



three following additional requirements:

• the objective function is convex,

• the inequality constraint functions are convex,

• the equality constraint functions hi(x) = aTi x− bi are affine.

Such a problem is called convex both because the objective is a convex function and the

feasible points form a convex set. (The intersection of m convex sublevel sets {x|fi(x) ≤ 0}

and p hyperplanes {x|aTi x = bi} is convex).

2.2.2 Concave maximization problems

We refer to

maximize
x

f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m,

aTi x = bi, i = 1, . . . , p,

(2.4)

as a concave optimization problem if the objective function f0 is concave, and the inequality

constraint functions f1, . . . , fm are convex. This concave maximization problem is readily

converted to a convex optimization problem by minimizing the convex objective function

−f0 subject to the same set of constraints.

2.2.3 Linear optimization problems

The optimization problem (2.3) is called a linear program (LP) when the objective and

constraint functions are all affine. A general linear program has the form

minimize
x

cTx+ d

subject to Gx ≤ h,

Ax = b,

(2.5)

10



where c ∈ Rn, d ∈ R, G ∈ Rm×n, h ∈ Rm, A ∈ Rp×n and b ∈ Rp.

2.2.4 Quadratic optimization problems

The convex optimization problem (2.3) is called a quadratic program (QP) if the objective

function is (convex) quadratic, and the constraint functions are affine. A quadratic program

can be expressed in the form

minimize
x

(1/2)xTPx+ qTx+ r

subject to Gx ≤ h,

Ax = b,

(2.6)

where P ∈ Sn+, q ∈ Rn, r ∈ R, G ∈ Rm×n, h ∈ Rm, A ∈ Rp×n and b ∈ Rp. In a quadratic

program, we minimize a convex quadratic function over a polyhedron.

2.3 Duality

The concept of Lagrangian duality plays an important role in the theory of optimization.

For every minimization problem of the form (2.2), there exists a corresponding maximization

problem that provides valuable information about the original problem. In this section, we

review the basic theory of duality.

2.3.1 Lagrangian

Consider the optimization problem (2.2) with domain Rn, and denote the optimal value of

this optimization problem by p∗.

Lagrangian duality takes the constraints in (2.2) into account by augmenting the objective

function with a weighted sum of the constraint functions. We define the Lagrangian L :
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Rn × Rm × Rp → R associated with the problem (2.2) as

L(x, λ, ν) = f0(x) +
m∑
i=1

λifi(x) +

p∑
i=1

νihi(x). (2.7)

The value λi is called the Lagrange dual variable associated with the ith inequality constraint

fi(x) ≤ 0, and νi is the Lagrange dual variable associated with the ith equality constraint

hi(x) = 0. The vectors λ and ν are called the dual variables or Lagrange multiplier vectors

associated with the problem.

The Lagrangian is related to (2.2) by the fact that

inf
x∈Rn

sup
λ∈Rm≥0

ν∈Rp

L(x, λ, ν) = p∗. (2.8)

To verify this property, first assume that x is a feasible point for (2.2), i.e., fi(x) ≤ 0 and

hi(x) = 0 for all i. If λ ∈ Rm
≥0 and ν ∈ Rp then each of the terms λifi(x) in L is non-positive,

and each of the terms νihi(x) is zero. Thus,

L(x, λ, ν) = f0(x) +
m∑
i=1

λifi(x) +

p∑
i=1

νihi(x) ≤ f0(x).

Taking the supremum of both sides shows that

sup
λ∈Rm≥0

ν∈Rp

L(x, λ, ν) ≤ f0(x)

for all feasible x. In fact, since L(x, 0, 0) = f0(x), equality holds.

On the other hand, if x is not feasible, then at least one of the fi(x) is positive or at least

one of the hi(x) is nonzero. In either case, one can see that by making the corresponding λi

or νi arbitrarily large in magnitude we have

sup
λ∈Rm≥0

ν∈Rp

L(x, λ, ν) = +∞.
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Combining the two cases shows that

sup
λ∈Rm≥0

ν∈Rp

L(x, λ, ν) =


f0(x) if x is feasible,

+∞ if x is not feasible.

(2.9)

Equation (2.8) then follows.

2.3.2 The Lagrange dual problem

The max-min inequality allows us to interchange the order of the infimum and supremum

in (2.8).

p∗ = inf
x∈Rn

sup
λ∈Rm≥0

ν∈Rp

L(x, λ, ν) ≥ sup
λ∈Rm≥0

ν∈Rp

inf
x∈Rn

L(x, λ, ν). (2.10)

In light of the right-hand side of this inequality, we define the Lagrange dual objective

function g : Rm × Rp → R as

g(λ, ν) = inf
x∈Rn

L(x, λ, ν) = inf
x∈Rn

(
f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)

)
, (2.11)

for λ ∈ Rm, ν ∈ Rp. If for a given λ and ν, x 7→ L(x, λ, ν) is unbounded below, then we

define g(λ, ν) = −∞.

Inequality (2.10) shows that for each pair (λ, ν) with λ ≥ 0, the Lagrange dual function

gives us a lower bound on the optimal value p∗ of the optimization problem (2.2). The

best lower bound that can be obtained in this way is itself the solution to an optimization

problem:

maximize
λ,ν

g(λ, ν)

subject to λ ≥ 0.

(2.12)

This problem is called the Lagrange dual problem associated with the primal prob-

lem (2.2). A pair (λ, ν) where λ ∈ Rm and ν ∈ Rp is called dual feasible. A pair (λ∗, ν∗) is
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called dual optimal or optimal Lagrange multipliers if it is optimal for the problem (2.12).

The dual function g(λ, ν) is the pointwise infimum of a family of affine functions of (λ, ν),

so it is concave. (This is true even if the primal problem (2.2) is not convex.) Since the

objective to be maximized in (2.12) is concave and the constraint λ ≥ 0 are convex, the

Lagrange dual problem (2.12) is a convex optimization problem.

2.3.3 Weak duality

Recall that the dual function g(λ, ν) gives a lower bound on the primal optimal value, i.e.

g(λ, ν) ≤ p∗ for any λ ≥ 0 and ν. If we denote the optimal value of the Lagrange dual

problem (2.12) by d∗, then d∗ is the best such lower bound on p∗. In particular, we get

d∗ ≤ p∗. (2.13)

This inequality is called weak duality. The gap, p∗ − d∗, is called the optimal duality gap of

the original problem.

The bound (2.13) can be used to find a lower bound on optimal value of the problem

which is hard to solve. Since the dual problem is always convex and in many cases can be

solved efficiently to find d∗.

2.3.4 Strong duality

If the optimal duality gap is zero, then we say strong duality holds:

d∗ = p∗. (2.14)

Weak duality always holds, but strong duality does not hold in general. If the primal

problem (2.2) is convex, i.e. the objective function and all of the inequality constraints are

convex and the equality constraints are affine, then, as we shall see, we often have strong

duality. Once convexity of the primal problem is established, there are many sufficient
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conditions called constraint qualifications that imply strong duality.

2.3.5 Slater’s condition

One of the simplest constraint qualifications is Slater’s condition. Consider the original

optimization problem

minimize
x

f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m,

hi(x) = 0, i = 1, . . . , p.

The problem is said to satisfy Slater’s condition if there exists a strictly feasible point in

Rn, i.e. there exists an x ∈ Rn such that

fi(x) < 0, i = 1, . . . ,m, and hi(x) = 0, i = 1, . . . , p.

Theorem 2.3.1 (Slater’s Theorem). If Slater’s condition holds for a convex optimization

problem, then strong duality also holds, i.e. p∗ = d∗.

For a proof, see [29].

Remark 2.3.2. Slater’s theorem can be refined as follows. If the first k constraint functions

f1, . . . , fk are affine, then strong duality holds provided the following weaker condition holds:

There exists an x ∈ Rn with

fi(x) ≤ 0, i = 1, . . . , k, and fi(x) < 0, i = k + 1, . . . ,m, and hi(x) = 0, i = 1, . . . , p.

So, the affine constraints do not need to hold with strict inequality.

Both Slater’s condition and its refinement above not only imply strong duality for convex

problems, but they also imply that the dual optimal value is attained as long as d∗ > −∞,
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i.e., there exists a dual feasible (λ∗, ν∗) with

g(λ∗, ν∗) = d∗ = p∗.

2.4 KKT optimality conditions

This section studies the Karush-Kuhn-Tucker (KKT) necessary and sufficient conditions for

the optimality of optimization problems.

2.4.1 Saddle points of the Lagrangian

A point (x∗, λ∗, ν∗) ∈ Rn × Rm
≥0 × Rp is called a saddle point for the Lagrangian (2.7) if it

satisfies

L(x∗, λ, ν) ≤ L(x∗, λ∗, ν∗) ≤ L(x, λ∗, ν∗),

for every (x, λ, ν) ∈ Rn × Rm
≥0 × Rp. In other words, x∗ minimizes L(x, λ∗, ν∗) over x and

(λ∗, ν∗) maximizes L(x∗, λ, ν) over (λ, ν). So, an equivalent formulation of the saddle point

property is

L(x∗, λ∗, ν∗) = inf
x
L(x, λ∗, ν∗), L(x∗, λ∗, ν∗) = sup

λ≥0
ν

L(x∗, λ, ν). (2.15)

Saddle points of the Lagrangian are important because of the following theorems.

Theorem 2.4.1. If (x∗, λ∗, ν∗) is a saddle point of the Lagrangian, then x∗ is optimal for

the primal problem, (λ∗, ν∗) is optimal for the dual problem, and the duality gap is zero.

Theorem 2.4.2. If strong duality holds and if x∗, (λ∗, ν∗) are primal and dual optimal values

respectively, then (x∗, λ∗, ν∗) is a saddle point for the Lagrangian.

Theorems 2.4.1 and 2.4.2 are proved at the end of Section 2.4.3.

The KKT conditions provide necessary conditions for a saddle point to exist. As described

shortly, under some additional assumptions the KKT conditions are also sufficient.
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2.4.2 Primal and dual feasibility

The two simplest KKT conditions to describe are primal and dual feasibility. These are

simply the observation that x∗ must satisfy the constraints of the primal problem while

(λ∗, ν∗) must satisfy the constraints of the dual problem. That is,

fi(x
∗) ≤ 0, i = 1, . . . ,m,

hi(x
∗) = 0, i = 1, . . . , p,

λ∗i ≥ 0, i = 1, . . . ,m.

(2.16)

2.4.3 Complementary slackness

The next condition connects the inequality constraints to their corresponding dual variables.

Proposition 2.4.3. Suppose that (x∗, λ∗, ν∗) is a saddle point of the Lagrangian. Then

λ∗i fi(x
∗) = 0, i = 1, . . . ,m.

Proof. From the assumptions,

f0(x∗) = g(λ∗, ν∗)

= inf
x

(
f0(x) +

m∑
i=1

λ∗i fi(x) +

p∑
i=1

ν∗i hi(x)

)

≤ f0(x∗) +
m∑
i=1

λ∗i fi(x
∗) +

p∑
i=1

ν∗i hi(x
∗)

≤ f0(x∗).

(2.17)

To see the last inequality, note that, since x∗ is primal feasible, fi(x
∗) ≤ 0 and hi(x

∗) = 0 for

all i. Moreover, since (λ∗, ν∗) is dual feasible, λ∗i ≥ 0 for all i. Thus, each term λ∗i fi(x
∗) ≤ 0

and each term ν∗i hi(x
∗) = 0. We conclude that the two inequalities in (2.17) hold as equality,
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and therefore that
m∑
i=1

λ∗i fi(x
∗) = 0.

Since each term in this sum is non-positive, each must be zero.

The complementary slackness condition can also be expressed as either of the following

implications.

λ∗i > 0 ⇒ fi(x
∗) = 0,

fi(x
∗) < 0 ⇒ λ∗i = 0.

When fi(x
∗) = 0 for some i, we say that the ith inequality constraint is active. In words, it

means that if the ith optimal Lagrange multiplier is positive, then the ith inequality constraint

is active at the corresponding primal optimal point.

Now we are ready to prove Theorems 2.4.1 and 2.4.2.

Proof of Theorem 2.4.1. If a saddle point of the Lagrangian exists, then

p∗ = inf
x

sup
λ≥0
ν

L(x, λ, ν) by (2.8)

≤ sup
λ≥0
ν

L(x∗, λ, ν)

= inf
x
L(x, λ∗, ν∗) by (2.15)

≤ sup
λ≥0
ν

inf
x
L(x, λ, ν) = d∗.

Combining this with (2.13) we get p∗ = d∗ and all inequalities above hold as equality. In

particular,

p∗ = sup
λ≥0
ν

L(x∗, λ, ν) and d∗ = inf
x
L(x, λ∗, ν∗). (2.18)

Now we need to show that x∗ and (λ∗, ν∗) are optimal points for their respective problems.
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First we show that x∗ is an optimal point for the primal problem, i.e. p∗ = f0(x∗). The

point (x∗, λ∗, ν∗) is a saddle point, so we get

p∗ = sup
λ≥0
ν

L(x∗, λ, ν) = L(x∗, λ∗, ν∗), by (2.15) and (2.18)

= f0(x∗) +
m∑
i=1

λ∗i fi(x
∗) +

p∑
i=1

ν∗i hi(x
∗), by (2.7)

= f0(x∗), by Proposition 2.4.3

which means that x∗ is a optimal point for the primal problem.

Next we show that (λ∗, ν∗) is a dual optimal point, i.e. d∗ = g(λ∗, ν∗). By assumption,

the point (x∗, λ∗, ν∗) is a saddle point, so, by (2.18), we get

d∗ = inf
x
L(x, λ∗, ν∗) = g(λ∗, ν∗).

Therefore (λ∗, ν∗) is an optimal point for the dual problem.

Proof of Theorem 2.4.2. Since x∗ is a primal optimal point, (2.9) implies that

p∗ = f0(x∗) = sup
λ≥0
ν

L(x∗, λ, ν).

Also, since (λ∗, ν∗) is optimal for the dual problem,

d∗ = g(λ∗, ν∗) = inf
x
L(x, λ∗, ν∗).

Since the strong duality p∗ = d∗ holds by assumption, it follows that

sup
λ≥0
ν

L(x∗, λ, ν) = inf
x
L(x, λ∗, ν∗).

So,

L(x∗, λ∗, ν∗) ≤ sup
λ≥0
ν

L(x∗, λ, ν) = inf
x
L(x, λ∗, ν∗) ≤ L(x∗, λ∗, ν∗),
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which implies (2.15).

2.4.4 Stationarity

The stationarity condition is easiest to describe when fi, i = 0, . . . ,m, and hi, i = 1, . . . , p

are all differentiable. Although stationarity conditions exist for the non-differentiable case,

this is not needed for the results of this dissertation.

Proposition 2.4.4. Assume that all fi and hi are differentiable and that (x∗, λ∗, ν∗) is a

saddle point of the Lagrangian. Then,

∇f0(x∗) +
m∑
i=1

λ∗i∇fi(x∗) +

p∑
i=1

ν∗i∇hi(x∗) = 0. (2.19)

Proof. Since the variable x in (2.15) is unconstrained, the gradient of L with respect to x

must vanish at a saddle point, which gives (2.19).

Combining (2.16) with Propositions 2.4.3 and 2.4.4 yields the following set of necessary

conditions on a saddle point of the Lagrangian when the objective and all constraints are

differentiable.

fi(x
∗) ≤ 0, i = 1, . . . ,m,

hi(x
∗) = 0, i = 1, . . . , p,

λ∗i ≥ 0, i = 1, . . . ,m,

λ∗i fi(x
∗) = 0, i = 1, . . . ,m,

∇f0(x∗) +
m∑
i=1

λ∗i∇fi(x∗) +

p∑
i=1

ν∗i∇hi(x∗) = 0.

(2.20)

These set of condition are called the Karush-Kuhn-Tucker (KKT) conditions.

It is possible to solve the KKT conditions analytically in few special cases. More generally,

many algorithms for convex optimization can be interpreted as, methods for solving the KKT

conditions.
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2.4.5 KKT conditions for special cases

The KKT conditions play an important role in optimization. In this section we study the

KKT conditions for some important types of optimization problems.

KKT conditions in convex optimization problems

The optimization problem (2.3) is a convex optimization problem, where the objective and

all inequality functions are convex and all equality functions are affine functions.

For convex optimization problems, the KKT conditions also provide sufficient conditions;

there are two senses in which this can be understood.

Theorem 2.4.5. For a convex optimization problem (2.3) with differentiable objective and

constraints, a point (x∗, λ∗, ν∗) is a saddle point of the Lagrangian if and only if it satisfies

the KKT conditions.

Proof. Necessity of the KKT conditions has already been established, so it remains to show

sufficiency. By assumption, the function

x 7→ L(x, λ∗, ν∗) = f0(x) +
m∑
i=1

λ∗i fi(x) +

p∑
i=1

ν∗i (aTi x− bi)

is convex, so the stationarity condition implies that x∗ is a global minimizer of this function,

establishing the first equality in (2.15).

Using this together with weak duality and the complementary slackness condition shows

that

p∗ ≥ d∗ ≥ g(λ∗, ν∗) = inf
x
L(x, λ∗, ν∗) = L(x∗, λ∗, ν∗)

= f0(x∗) +
m∑
i=1

λ∗i fi(x
∗) +

p∑
i=1

ν∗i (aTi x
∗ − bi)

= f0(x∗) ≥ p∗,

which establishes that x∗ is primal optimal, (λ∗, ν∗) is dual feasible, and the duality gap is

zero. Thus (x∗, λ∗, ν∗) is a saddle point of the Lagrangian.
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Theorem 2.4.6. Suppose that strong duality holds for a convex optimization problem (2.3)

with differentiable objective and constraints and that the dual optimum is attained. Then x∗

is optimal for the primal problem if and only if there exists a dual feasible point (λ∗, ν∗) that,

together with x∗, satisfies the KKT conditions.

Proof. If a triple (x∗, λ∗, ν∗) satisfying the KKT conditions can be found, then Theorem 2.4.5

shows that x∗ is primal optimal. On the other hand, if an optimal x∗ exists, then the

assumptions together with Theorem 2.4.2 imply that (x∗, λ∗, ν∗) is a saddle point.

Theorem 2.4.6 is most useful when combined with a constraint qualification like Slater’s

condition. The following corollary shows an example of this.

Corollary 2.4.7. Consider a convex optimization problem (2.3) with differentiable objective

and constraints. Suppose that Slater’s condition is satisfied and that d∗ > −∞. Then x∗ is

optimal for the primal problem if and only if there exists (λ∗, ν∗) so that (x∗, λ∗, ν∗) satisfies

the KKT conditions.

KKT conditions in linear optimization problems

The Lagrangian for the linear optimization problem in (2.5) is:

L(x, λ, ν) = cTx+ d+
m∑
i=1

λi(g
T
i x− hi) +

p∑
i=1

νi(a
T
i x− bi)

= cTx+ d+
m∑
i=1

λi(g
T
i x)−

m∑
i=1

λihi +

p∑
i=1

νi(a
T
i x)−

p∑
i=1

νibi

= cTx+ d+ (λTG)x− λTh+ νTAx− νT b

= xT
(
c+GTλ+ ATν

)
+ d− λTh− νT b,
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with Lagrange dual function

g(λ, ν) = inf
x
L(x, λ, ν)

=


d− λTh− νT b if c+GTλ+ ATν = 0,

−∞ otherwise

So the dual problem takes the form

maximize
λ,ν

d− λTh− νT b,

subject to c+GTλ+ ATν = 0,

λ ∈ Rm
≥0,

ν ∈ Rp
≥0.

Let x∗ be an optimal point for the primal problem and (λ∗, ν∗) an optimal point for its

dual problem, where the the primal problem satisfies in Slater’s condition.

inf
x
L(x, λ∗, ν∗) = inf

x

(
cTx+ d+

m∑
i=1

λ∗
T

i (gix− hi) +

p∑
i=1

ν∗
T

i (aix− bi)

)

= cTx∗ + d+
m∑
i=1

λ∗
T

i (gix
∗ − hi) +

p∑
i=1

ν∗
T

i (aix
∗ − bi)

= L(x∗, λ∗, ν∗).

Since x∗ minimizes the Lagrangian, its gradient with respect to x vanishes at x∗:

∇L(x∗, λ∗, ν∗) = cT1 +
m∑
i=1

λ∗
T

i gi +

p∑
i=1

ν∗
T

i ai = 0.
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So, the KKT conditions for linear optimization problem are:

gix
∗ ≤ hi, i = 1, . . . ,m,

aix
∗ = bi, i = 1, . . . , p,

λ∗i ≥ 0, i = 1, . . . ,m,

λ∗i (g
T
i x
∗ − hi) = 0, i = 1, . . . ,m,

cT1 +
m∑
i=1

λ∗
T

i gi +

p∑
i=1

ν∗
T

i ai = 0.

KKT conditions in quadratic optimization problems

The Lagrangian for the quadratic optimization problem in (2.6) is:

L(x, λ, ν) =
1

2
xTPx+ qTx+ r + λT (Gx− h) + νT (Ax− b)

=
1

2
xTPx+ qTx+ r + λTGx− λTh+ νTAx− νT b

=
1

2
xTPx+ (GTλ+ ATν + q)Tx− λTh+ νT b+ r.

Since x∗ minimizes the Lagrangian, therefore ∇x∗L = 0, so

∇L = P Tx∗ +GTλ+ ATν + q = 0,

and x∗ = −P−1(GTλ+ ATν + q), and

g(λ, ν) = inf
x
L(x, λ, ν)

=
1

2
x∗

T

Px∗ + (GTλ+ ATν + q)Tx∗ − λTh+ νT b+ r

=
−1

2
P−1(GTλ+ ATν + q)2 − λTh+ νT b+ r.
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So the dual problem will be

minimize
λ,ν

1

2
P−1(GTλ+ ATν + q)2 + λTh− νT b− r

subject to λ ∈ Rm
≥0,

ν ∈ Rp
≥0.

Finally the KKT conditions for quadratic optimization problem are:

gix
∗ ≤ hi, i = 1, . . . ,m,

aix
∗ = bi, i = 1, . . . , p,

λ∗i ≥ 0, i = 1, . . . ,m,

λ∗i (g
T
i x
∗ − hi) = 0, i = 1, . . . ,m,

n∑
i=1

pTijxi +
m∑
i=1

gTijλ
∗
i +

p∑
i=1

aTijν
∗ + qj = 0, j = 1, . . . , n.
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Chapter 3

Flows and modulus

In this chapter, we will start with reviewing some basic definitions and properties of discrete

graphs. We will also review maximum flow and minimum cut problems. Next, we will present

modulus of families of objects on graphs and its connection to maximum flow problems.

3.1 Graph preliminaries

In this dissertation, the notation G = (V,E) represents a graph, where V is a set whose

elements are called vertices, and E is a set of elements called edges. A graph may either

be undirected, in which case the edges are unorderdered pairs of vertices, or directed, in

which case the edges are ordered pairs of vertices. The graph G is simple if it contains

no edges connecting a vertex to itself and at most one undirected edge between any two

distinct vertices. The graph is finite if the vertex set has cardinality |V | = N ∈ N. Although

the theory developed in this dissertation can be extended to other cases, for simplicity of

presentation in what follows we shall assume that G is finite, undirected and simple. Two

vertices u and v are neighbors if and only if {u, v} ∈ E. This relationship is indicated by

u ∼ v. The number of neighbors of a vertex x is the degree of x, indicated by deg(x).

Given an integer n ≥ 1, a string γ = x0e1x1e2x2 · · · enxn with xi ∈ V for i = 0, . . . , n

and ek = {xk−1, xk} ∈ E, for k = 1, . . . , n, is called a walk with n hops from x0 to xn. For
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simplicity, when a graph is simple we will just list the vertices visited by the walk, and write

γ = x1 · · ·xn. A walk that does not revisit any vertex is called a simple walk, or path. The

graph G is connected if, for any two distinct vertices x, y ∈ V , G contains a walk from x to

y. A walk γ = x0e1x1e2x2 · · · enxn such that x0e1x1e2x2 · · · en−1xn−1 is a path and xn = x0

where n ≥ 2 is called a cycle.

Given graph G and two nodes s 6= t ∈ V , the connecting family Γ(s, t) is the family of

all paths in G that start at s and end at t:

Γ(s, t) := {γ : γ is a path s; t}.

Connecting families of finite graphs are always finite families of paths.

3.2 Flows and cuts on the network

Let G = (V,E, σ) be an undirected network with finite vertex set V and edge set E. To

every edge e ∈ E there corresponds a weight 0 < σ(e) < ∞ which we will think of as a

“capacity.”

Definition 3.2.1. Given a pair of distinct vertices s, t ∈ V , an st-flow can be defined as a

function f : V × V → R with the following properties:

• Flow f is restricted to edges of the graph:

f(u, v) = 0, if {u, v} /∈ E,

• Flow f is anti-symmetric:

f(u, v) = −f(v, u), ∀u, v ∈ V,

which gives a sense of direction to the flow; if there is a positive flow from u to v, then

there is a corresponding negative flow from v to u.
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• Flow f satisfies the divergence-free condition:

divf (u) :=
∑
v∈V

f(u, v) = 0, ∀u ∈ V \ {s, t},

divergence-free condition states that the flow substance is conserved at all nodes other

than the source and sink.

Remark 3.2.2. Define the adjacency matrix as A(u, v) = 1E({u, v}). Sums over neighbors

can be extended to sums over all vertices V using the following:

divf (u) :=
∑
v∼u

f(u, v) =
∑
v∈V

A(u, v)f(u, v).

Define the value of a flow from s to t to be

Val(f) := divf (s). (3.1)

Note that the divergence-free condition and anti-symmetry lead to

Val(f) + divf (t) = divf (s) + divf (t) =
∑
u∈V

divf (u) =
∑
u∈V

∑
v∈V

A(u, v)f(u, v) = 0.

So divf (t) = −Val(f).

The flow f from s to t is feasible if:

|f(u, v)| ≤ σ(u, v), for every {u, v} ∈ E,

and write f ∈ F .

F ∗ := max
f∈F

Val(f)

A feasible flow f ∗ such that Val(f ∗) = F ∗ is called a maximum flow.

A cut C ⊂ V is a partition of the vertices of the graph into two disjoint subsets. Any

cut determines a cut-set or edge-boundary, the set of edges that have one endpoint in each
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subset of the partition

∂C := {e = {x, y} ∈ E : x ∈ C, and y /∈ C}.

An st-cut C ⊂ V is a cut C ⊂ V with s ∈ C but t /∈ C.

The capacity of a cut C is

σ(C) :=
∑
e∈∂C

σ(e).

An important relationship between st-paths and st-cuts is described by the following

theorem.

Theorem 3.2.3. If C is an st-cut then γ∩∂C 6= ∅ for all γ ∈ Γ(s, t). Conversely, if E ′ ⊆ E

has the property that γ ∩ E ′ 6= ∅ for all γ ∈ Γ(s, t), then there exists an st-cut C such that

∂C ⊆ E ′.

Theorem 3.2.4. (Max-flow min-cut Theorem [11]) Let C be the set of all cuts for flows from

s to t. Then

F ∗ = min
C∈C

σ(C).

3.3 Maximum flow problem

The maximum flow problem is defined as the maximum amount of flow that a network

would allow to flow from source to sink. This problem was first formulated in 1954 by T.

E. Harris and F. S. Ross as a simplified model of railway traffic flow [19]. The maximum

flow problems involve finding a feasible flow through a single-source, single-sink flow network

where the amount of flow being sent from a source node s to a sink node t is maximized. In

1955, L. R. Ford and D. R. Fulkerson created the first known algorithm, the FordFulkerson

algorithm. [11] [12].

Ford and Fulkerson assumed the capacities of the edges of the problem to be constant.

This problem can be easily interpreted in the evacuation context as evacuating as many as

possible people from a danger zone (source node) into a safe zone (sink node).
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Over the years, various improved algorithms for the maximum flow problem were in-

troduced, notably the shortest augmenting path algorithm of Edmonds and Karp [9] and

independently Dinitz [7], the push-relabel algorithm of Goldberg and Tarjan [15, 16], and

the binary blocking flow algorithm of Goldberg and Rao [14].

The goal in the maximum flow problem is to find the maximum value of all st-flows

satisfying a capacity constraint on every edge, which can be written as follows:

|f(u, v)| = |f(v, u)| ≤ σ(e) for all e = {u, v} ∈ E. (3.2)

For a given capacity constraints the st-flow is called feasible if in addition to the requirements

in Definition 3.2.1, the capacity constraint (3.2) also holds.

The maximum flow problem can be written as an optimization problem as follows.

maximize
f

Val(f)

subject to f is a feasible st-flow.

(3.3)

For any distinct nodes s, t ∈ V , let Γ = Γ(s, t) be the family of all paths in G connecting

s to t, and let C represent the family of all cycles. To each γ ∈ Γ(s, t), we can assign the

unit path flow f(γ) defined by

f(γ)(u, v) =


1 if γ crosses from u to v,

−1 if γ crosses from v to u,

0 otherwise.

In other words, f(γ) represents a unit flow from s to t that follows γ. In a similar way, one

can define a unit cycle flow f(c) for each cycle c ∈ C.

The family of st-flows has a natural vector space structure, with addition and scalar

multiplication of functions defined as usual, and the value function is a linear functional on
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this vector space. Any st-flow f has a decomposition in the form

f =
∑

γ∈Γ(s,t)

x(γ)f(γ) +
∑
c∈C

x(c)f(c),

where the x(γ) and x(c) are real numbers.

This structure allows every flow to be decomposed into a combination of path flows and

cycle flows (flows whose nonzero values are restricted to the edges of a path or a cycle of

the graph respectively). In the context of the maximum flow problem (3.3), cycles may be

omitted because they use capacity while contributing nothing to the value of the flow (see

Lemma 4.1.1), so for maximum-valued flow problem, we may ignore flows that contain cycles

of positive flow. For similar reasons, negative path flows x(γ) < 0 may be removed from

consideration. This observation leads to the path formulation of the maximum flow problem,

summarized here.

Since for any γ, Val(f(γ)) = 1, the value of such an f can be expressed as

Val(f) =
∑

γ∈Γ(s,t)

x(γ) Val(f(γ)) =
∑

γ∈Γ(s,t)

x(γ),

leading to the standard path formulation of the max flow problem:

maximize
x(γ)

∑
γ∈Γ(s,t)

x(γ)

subject to
∑

γ∈Γ(s,t):e∈γ

x(γ) ≤ σ(e), ∀e ∈ E,

x(γ) ≥ 0, ∀γ ∈ Γ(s, t),

(3.4)

where the notation e ∈ γ means that the path γ traverses the edge e in either direction. This

form is convenient because the flow conditions in Definition 3.2.1 are satisfied automatically;

one only needs to take care of the capacity constraint (3.2) which, as indicated, requires that

the sum of the flow strengths x(γ) along each path using a particular edge must not exceed

the capacity of that edge.
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3.4 Modulus of families of objects

The theory of modulus of families of curves in the plane was originally introduced by A.

Beurling and L. V. Ahlfors [1] to solve famous open questions in function theory. The theory

has been extended over the years to families of curves in Rn and to abstract metric spaces

as well.

R. J. Duffin [8] developed the related notion of extremal length on graphs, mostly in

the context of planar effective resistance problems. More recently, O. Schramm [30] used

a notion of modulus on graphs to prove a striking uniformization theorem with squares.

See also J. W. Cannon [6] for the relation of discrete modulus with the classical Riemann

mapping theorem, and P. Häıssinsky [18] for a nice introduction to modulus on graphs.

3.4.1 Modulus in the continuum

In the classical setting of modulus, one considers a family of curves Γ in a domain Ω in the

plane. A density in this setting is a measurable function ρ : Ω → [0,∞). The density ρ is

said to be admissible for the family Γ if

∫
γ

ρ ds ≥ 1, for all γ ∈ Γ.

The collection of all admissible densities is called the admissible set, Adm(Γ).

The 2-modulus of the family Γ is defined as

Mod2(Γ) := inf
ρ∈Adm(Γ)

∫
Ω

ρ2dA.

More generally, the p-modulus is defined as

Modp(Γ) := inf
ρ∈Adm(Γ)

∫
Ω

ρpdA.

The p-modulus framework provides a method for quantifying the richness of a family of
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curves. Families with many short curves will have a larger modulus than families with fewer

and longer curves. The parameter p in the modulus tends to favor the “many curves” aspect

when p is close to 1 and the “short curves” aspect as p becomes large.

In this research we will study the discrete version of this theory on graphs using its nature

as a convex optimization problem.

3.4.2 Families of objects

This section, reviews the basic framework of modulus on graphs. It considers families Γ

of objects γ on G, such as families of walks, cuts, trees, etc., and begins with the general

theory, which can be applied to any of these families of objects. To simplify the discussion,

we assume that Γ is finite.

A usage function, N , defined on Γ×E assigns to each object γ ∈ Γ and each edge e ∈ E

a non-negative value N (γ, e) representing the amount by which the object γ “uses” the edge

e.

The definition of usage can be tailored to the family of objects and particular application.

For instance, if Γ is a family of walks, we can defineN (γ, e) as the number of times γ traverses

e. If γ is a path, a common choice is

N (γ, e) := 1γ(e) =


1 if e ∈ γ,

0 if e /∈ γ.
(3.5)

Since we are working with finite families of objects on finite graphs, it is often convenient

to think of N as a matrix in RΓ×E
≥0 . Each row of the matrix, N (γ, ·) ∈ RE

≥0, corresponds to

a particular object γ ∈ Γ and is referred to as the usage vector for that object. It is also

often convenient to associate each γ ∈ Γ with its associated usage vector. In this way, we

may think of any family Γ as a subset of RE
≥0.

Example 3.4.1. Here are three main examples of possible object families and their corre-

sponding usage matrices.
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• A walk γ = x0e1x2e2 · · · enxn is associated to the function N (γ, e)= number times γ

traverses e. In this case N (γ, ·)T ∈ ZE≥0. Note that two distinct walks could have the

same usage function N (γ, ·).

• A set T ⊂ E, such as a spanning tree or a simple cycle, is associated to the indicator

N (T, e) = 1T (e), which is equal to 1 if e ∈ T , and equal to 0 otherwise. In this case

N (T, ·)T ∈ {0, 1}E.

• A flow f can be given the usage function N (f, e) := |f(e)|. Then, in this case,

N (γ, ·)T ∈ RE
≥0.

3.4.3 Admissible densities

Given a density ρ and an object γ ∈ Γ, the total usage cost, or ρ-length of γ is defined as

`ρ(γ) :=
∑
e∈E

N (γ, e)ρ(e) = (Nρ)(γ).

Given a family of objects Γ, a density ρ ∈ RE
≥0 is admissible for the family Γ, if

`ρ(γ) ≥ 1, ∀γ ∈ Γ.

Equivalently, ρ is admissible for Γ if

`ρ(Γ) := inf
γ∈Γ

`ρ(γ) ≥ 1.

In matrix notation, we want

Nρ ≥ 1,

where N is the Γ× E usage matrix and the inequality is understood elementwise.
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The set of admissible densities

Adm(Γ) := {ρ ∈ RE
≥0 : Nρ ≥ 1} =

⋂
γ∈Γ

{
ρ ∈ RE

≥0 :
∑
e∈E

N (γ, e)ρ(e) ≥ 1

}
(3.6)

is an intersection of closed half-spaces, and hence is a closed convex set in RE.

Example 3.4.2. Consider the unweighted graphG with two edges e1 = {a, b} and e2 = {b, c}

in series. In this case RE
≥0 = R2

≥0 is the first quadrant in the plane. Let Γ = Γ(a, c) be the

connecting family of all walks that start at a and end at c. Every walk γ ∈ Γ uses edge

e1 a number of times, n, and edge e2 a number of times, m, where n,m ≥ 1 are both odd.

Moreover, every pair of odd integers (n,m) is the usage vector for some walk γ ∈ Γ. The

corresponding line

nρ1 +mρ2 = 1

intersects the coordinate axes at ( 1
n
, 0) and (0, 1

m
). We can see by inspection that in this case

Adm(Γ) = {ρ ∈ R2
≥0 : ρ1 + ρ2 ≥ 1}, (3.7)

since the inequality with (n,m) = (1, 1) implies all of the other inequalities.

3.4.4 The p-energy

For 1 ≤ p <∞, the p-energy of a density ρ ∈ RE
≥0 is defined as

Ep,σ(ρ) :=
∑
e∈E

σ(e)ρ(e)p, (3.8)

and when p =∞, the ∞-energy is defined as

E∞,σ(ρ) := max
e∈E

σ(e)ρ(e). (3.9)

Lemma 3.4.3. Suppose that s : (1,∞) → (0,∞) is a function with the property that
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s(p)/p→ r as p→∞, for some r ∈ [0,∞). Then for any density ρ ∈ RE
≥0

lim
p→∞
Ep,σs(p)(ρ)1/p = E∞,σr(ρ).

Proof. Let p ∈ (1,∞) and let s = s(p). Choose e0 ∈ E with the property that E∞,σs/p(ρ) =

σ(e0)s/pρ(e0). Then

E∞,σs/p(ρ) = σ(e0)s/pρ(e0)

≤

(∑
e∈E

σ(e)sρ(e)p

)1/p

= Ep,σs(ρ)1/p

= E∞,σs/p(ρ)

(∑
e∈E

(
σ(e)s/pρ(e)

σ(e0)s/pρ(e0)

)p)1/p

≤ E∞,σs/p(ρ)|E|1/p.

The limit formula follows by continuity of E∞,σ(ρ) in σ.

In particular, the lemma implies the following two limits.

lim
p→∞
Ep,σ(ρ)1/p = E∞,1(ρ) and lim

p→∞
Ep,σp(ρ)1/p = E∞,σ(ρ).

3.4.5 Definition of p-modulus

Given a graph G = (V,E, σ), an exponent 1 ≤ p ≤ ∞, and a family Γ, the p-modulus of Γ

is defined as

Modp,σ(Γ) := inf
ρ∈Adm(Γ)

Ep,σ(ρ). (3.10)
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Written in more standard convex optimization notation, p-modulus is the value of the prob-

lem

minimize
ρ

Ep,σ(ρ)

subject to Nρ ≥ 1,

ρ ∈ RE
≥0.

(3.11)

where each object γ adds one constraint to be satisfied.

3.4.6 Some properties of p-modulus

Assumption 3.4.4. In what follows, we make the following assumptions on the family Γ of

objects on G = (V,E, σ).

1. Non-emptyness: Γ 6= ∅.

2. Non-triviality: Every object γ ∈ Γ has non-trivial usage N (γ, ·) 6≡ 0.

3. Discreteness: Every edge used by an object should be used a definite amount:

Nmin := inf
γ∈Γ

min
e∈E:N (γ,e) 6=0

N (γ, e) > 0.

Proposition 3.4.5. Let Γ be a family of objects as in Assumption 3.4.4, then

1. For 1 ≤ p ≤ ∞ a minimizer ρ∗ for (3.11) always exist. These minimizers are called

extremal densities.

2. Extremal densities satisfy

0 ≤ ρ∗ ≤ N−1
min.

3. For 1 < p <∞, the extremal density ρ∗ is unique.
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Proof. To prove that a minimizer ρ∗ always exist in 1, we use the non-triviality assumption.

We can choose R > 0 large enough so that

K := Adm(Γ) ∩ {ρ ∈ RE
≥0 | Ep,σ(ρ) ≤ R} 6= ∅.

K is compact, since it is a closed and bounded set and RE has finite dimension. The p-norms

are continuous and therefore there always exists a minimizer.

For 2, suppose ρ∗ is an extremal density for Modp,σ(Γ) and assume that ρ∗(e0) > N−1
min

on some edge e0 ∈ E. Define a new density ρ(e) as

ρ(e) :=


ρ∗(e) e 6= e0,

N−1
min e = e0.

We claim that ρ is admissible for Γ. If an object γ does not use e0, then `ρ(γ) = `ρ∗(γ) ≥ 1.

Otherwise, if an object γ uses e0 then,

`ρ(γ) =
∑
e6=e0

N (γ, e)ρ(e) +N (γ, eo)N−1
min ≥ 1.

However,

Ep,σ(ρ) =
∑
e6=e0

σ(e)ρ(e)p + σ(e0)N−pmin

<
∑
e6=e0

σ(e)ρ(e)p + σ(e0)(ρ∗)p = Ep,σ(ρ∗),

which is contradiction since ρ∗ is an extremal density.

Finally to prove 3, assume that we have two extremal densities ρ∗1 and ρ∗2, where ρ∗1 6= ρ∗2.

The set Adm(Γ) is convex, so

ρ0 :=
ρ∗1 + ρ∗2

2
,
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is also admissible. However, for ρ ∈ (1,∞) the function Ep,σ(ρ) is strictly convex, so

Ep,σ(ρ0) <
Ep,σ(ρ∗1) + Ep,σ(ρ∗2)

2
= Modp,σ(Γ).

which is contradiction, so ρ∗1 = ρ∗2.

Proposition 3.4.6 (Basic properties of of modulus). Let Γ be a family of walks in graph G.

The following properties hold

1. Constant walks: If Γ contains a constant walk (walk with zero hops), then

Mod(Γ) =∞.

2. Empty family: If Γ = ∅, then Mod(Γ) = 0.

3. Monotonicity: If Γ1 ⊂ Γ2, then Mod(Γ1) ≤ Mod(Γ2).

4. Countable subadditivity: Mod(
∞⋃
i=1

Γi) ≤
∞∑
i=1

Mod(Γi).

Proof. Refer to [5].

3.5 Connections between p-modulus and max flow

Let N be the usage matrix in (3.5). The standard path formulation of the maximum flow

problem in (3.4) can be rewritten as the path formulation of the maximum flow problem:

maximize
x(γ)

∑
γ∈Γ

x(γ)

subject to
∑
γ∈Γ

N (γ, e)x(γ) ≤ σ(e), ∀e ∈ E,

x(γ) ∈ RΓ
≥0.

(3.12)
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Define the vectors

x = [x(γ)], ∀γ ∈ Γ,

σ = [σ(e)], ∀e ∈ E,

1 = [1Γ],

where

1Γ =


1 γ ∈ Γ,

0 otherwise.

Then, the objective function
∑
γ∈Γ

x(γ), and constraint
∑
γ

N (γ, e)x(γ) in (3.12) can be written

as ∑
γ∈Γ

x(γ) = 1
Tx,

∑
γ∈Γ

N (γ, e)x(γ) = (N Tx)e, ∀e ∈ E.

So, the matrix form of the problem (3.12) will be

minimize
x

− 1
Tx

subject to N Tx ≤ σ,

x ≥ 0.

(3.13)

Now, consider the dual to the maximum flow problem (3.13). We start with the Lagrangian

L(x, ρ, λ) = −1Tx+ ρT (N Tx− σ)− λTx

= xT (1 +Nρ− λ)− ρTσ,

40



with

ρ = [ρ(e)], ∀e ∈ E,

λ = [λγ], γ ∈ Γ,

as dual variables, and next find the Lagrangian dual function g(ρ, λ):

g(ρ, λ) = inf
x
L(x, ρ, λ)

=


−ρTσ − 1 +Nρ− λ = 0,

−∞ else.

So, the dual problem for (3.13) takes the form:

minimize
ρ

σTρ

subject to Nρ ≥ 1,

ρ ∈ RE
≥0.

(3.14)

We use the following equality to relate this problem to the 1-modulus problem

(Nρ)γ =
∑
e

N (γ, e)ρ(e) = `ρ(γ), γ ∈ Γ,

and rewrite the equivalent form of the problem (3.14) as its modulus form:

minimize
ρ

σTρ

subject to
∑
e∈E

N (γ, e)ρ ≥ 1, γ ∈ Γ,

ρ ∈ RE
≥0.

(3.15)
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3.6 Special cases

The p-modulus, Modp,σ(Γ) problem is

minimize
ρ

Ep,σ(ρ)

subject to
∑
e∈E

N (γ, e)ρ(e) ≥ 1, γ ∈ Γ,

ρ ∈ RE
≥0.

(3.16)

When Γ = Γ(s, t), p-modulus is related to certain classical graph-theoretic quantities [3]. In

particular,

• Mod1,σ(Γ(s, t)) is the value of the maximum st-flow, where the σ are treated as capac-

ities. By the max-flow min-cut theorem, Mod1,σ(Γ(s, t)) is also equal to the value of

the min cut for s and t,

• Mod2,σ(Γ(s, t))−1 = Reff(s, t) is the effective resistance in the network between s and t,

where the σ are treated as conductances, and

• Mod∞,σ(Γ(s, t))−1 = distσ−1(s, t) is the usual graph distance measured with respect to

edge weights σ−1.

3.7 Duality and the probabilistic interpretation

Let P = P(Γ) represent the set of probability mass functions (pmfs) on the set Γ,

P(Γ) =

{
µ ∈ RΓ

≥0 :
∑
γ∈Γ

µ(γ) = 1

}
,

in other words P is the set of µ ∈ RΓ
≥0 with the property that µT1 = 1. From such a µ we

can define γ a random object in Γ sampled with a given probability µ:

Pµ(γ = γ) := µ(γ).
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For an edge e ∈ E, the value N (γ, e) is a random variable with expectation

Eµ[N (γ, e)] =
∑
γ∈Γ

N (γ, e)µ(γ).

In the particular case that N is defined as in (3.5), this expectation is actually an edge usage

probability :

Eµ[N (γ, e)] = Pµ(e ∈ γ).

The probabilistic interpretation of the dual for (3.11) can be stated as follows [4, Remark 5.5].

(
Modp,σ(Γ)

)− q
p

= min
µ∈P(Γ)

∑
e∈E

σ(e)−
q
pEµ[N (γ, e)]q, (3.17)

where q = p
p−1

.

When p = 2, and Γ is a path family with N given in (3.5), the formula simplifies to

Mod2,σ(Γ)−1 = min
µ∈P(Γ)

∑
e∈E

σ(e)−1Eµ(N (γ, e))2

= min
µ∈P(Γ)

∑
e∈E

σ(e)−1Pµ(e ∈ γ)2.

(3.18)

Remark 3.7.1. In general, (3.17) admits infinitely many minimizing pmfs µ∗. However, when

1 < p <∞, all such minimizers give the same expected edge usages

η∗(e) := Eµ[N (γ, e)].

Indeed, µ ∈ P is optimal for (3.17) if and only if its expected edge usages are given by this

unique η∗.
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Chapter 4

Maximum concurrent flow and

modulus

The extension of st-flow problems to the case of multiple source-sink pairs, called multicom-

modity flow problems has been discussed by many researchers [2, 11, 12, 21, 23, 24], but the

first work dealing with multicommodity flow problems is due to L. R. Ford, D.R. Fulkerson

and W. S. Jewell [11, 12, 22]. Even though the underlying idea is common in these various

works, the treatment of multicommodity flow tends to differ in some details such as the way

in which capacity constraints, or the objective function, are formulated.

In some of these problems, there may be capacities only on the total flow on an edge, some

cases have individual capacities for each commodity on each edge, and some have both types

of capacities. Typically, multicommodity flow problems consist of a graph with capacities

defined on the edges, and a set of source-sink pairs {(si, ti), i = 1, . . . , k}. The task is to

find flows f1, . . . , fk, where fi is a flow of the i-th commodity from si to ti, so that some

objective function of the value of these flows is optimized. The simplest multicommodity

flow problem is the maximum multicommodity flow problem. In this case the object is to

maximize the sum of the flow values. K. Onaga [20] established a necessary and sufficient

condition for the existence of a feasible multicommodity flow configuration on a capacity-

constrained undirected network when the locations of source and sink as well as the total flow

44



value are given for each commodity. A generalization of this problem is the maximum weight

multicommodity flow problem in which we are given weights and we want to maximize the

weighted sum of the flows. The maximum concurrent flow problem is a more complex and

popular variation of the maximum multicommodity flow problem, where we are given a set of

k positive demands d1, · · · , dk. F. Shahrokhi and D. W. Matula [31] developed the first fully

polynomial-time approximation scheme for the maximum concurrent flow problems with

uniform edge capacities. They introduced the idea of using an exponential length function

to control edge congestion. The maximum concurrent flow problem is also interesting in the

context of approximation algorithms, due to the fact that it is the dual of the LP relaxation

of an NP-hard sparsest cut problem [25].

A line of research based on Lagrangian relaxation and linear programming decomposition

techniques has decreased the running times for multicommodity flow problems [17, 24, 27, 28].

N. E. Young [32] described a randomized algorithm which departs from this general

theme. At every step his algorithm solves a shortest path problem, instead of a maximum

single commodity flow problem in earlier algorithms.

N. Grag and J. Könemann [13] followed a similar approach. They managed to provide an

elegant framework for solving multicommodity flow problems that yields a simple analysis

of the correctness of the obtained algorithm. While Young’s procedure pushes a unit flow at

each step along a shortest path, Grag and Könemann introduced a new but similar procedure

which pushes enough flow so as to saturate the minimum capacity edge of the path. Their

results generalize to fractional packing problems.

L. K. Fleisher [10] developed significantly faster algorithms for various multicommodity

flow problems. She noticed that we can use an approximate shortest path in order to avoid

recalculations of shortest path for commodities with a common source. Her results for

concurrent flow problems were later improved by G. Karakostas [23], who was able to reduce

the dependence of the computational complexity on the number of source-sink pairs, k.

A. Madry [26] combined the work of Grag and Könemann, and Fleischer with ideas from

dynamic graph algorithms to obtain faster (1−ε)-approximation schemes for various versions

of the multicommodity flow problem.
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This thesis studies the maximum concurrent flow problem where we are given a set of k

positive demands d1, · · · , dk, and are asked to find a multicommodity flow that is feasible

and that routes at least a fixed proportion zdi of each demand between each source-sink

pair, with the goal of maximizing the common factor of proportionality z. For simplicity, in

this dissertation we will assume that the demands add up to one. (See Remark 5.1.1.) It

will sometimes be beneficial to additionally assume that the edge capacities are all equal to

one. We will call this the unit capacity version of the problem.

4.1 Maximum concurrent flow problems

In the multicommodity maximum flow problem, the single source-sink pair (s, t) is replaced

with a set of sources and sinks D = {(s1, t1), (s2, t2), . . . , (sk, tk)}. The goal is to choose a

set of flows, f1, f2, . . . , fk, where each fi is an siti-flow. These flows represent the transfer

of k different commodities among the k sources and sinks within the network. The flows

are considered to share the network’s resources and, therefore, are given a joint capacity

constraint of the form
k∑
i=1

|fi(e)| ≤ σ(e), ∀e ∈ E.

The concurrent maximum flow problem is a type of multiobjective optimization problem.

We would like to simultaneously maximize the values of all flows. However, since the flows

share network resources, some balance among these objectives is needed. For the concurrent

maximum flow problem, this balance is achieved by maximizing the objective

min
i=1,...,k

Val(fi)

di
,

where the di are positive numbers, typically referred to as demands. By introducing an

auxiliary variable z to replace the minimum, the maximum concurrent flow problem can be
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written in the form

maximize
fi,z

z

subject to fi an siti-flow, for i = 1, . . . , k,

Val(fi) ≥ zdi, for i = 1, . . . , k,

k∑
i=1

|fi(e)| ≤ σ(e), for all e ∈ E.

Using the definitions of st-flow in Definition 3.2.1 and value of a flow Val(fi) in in (3.1),

the concurrent problem can be written equivalently as

maximize
fi,z

z

subject to 1)
∑
u∼v

fi(u, v) = 0, ∀i = 1, . . . , k, ∀v ∈ V \ {si, ti},

2)
∑
v

fi(si, v) ≥ zdi, ∀i = 1, . . . , k,

3)
k∑
i=1

|fi(e)| ≤ σ(e), ∀e ∈ E,

4)fi(u, v) = −fi(v, u), ∀i = 1, . . . , k, ∀{u, v} ∈ E.

(4.1)

The concurrent problem can also be written in path form. To do so, we let

Γi = Γ(si, ti) := { the family of paths from si to ti , for all i},

and let Γ :=
k
∪
i=1

Γi be their disjoint union. Again, since cycle flows add no value and use

resources, we can restrict attention to flows fi that can be written as a sum of path flows

along paths in Γi. For each γ ∈ Γ, we introduce a variable xγ ≥ 0 to represent the path flow

strength.

f(u, v) =
∑
γ∈Γ

(u,v)∈γ

x(γ)−
∑
γ∈Γ

(v,u)∈γ

x(γ). (4.2)
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With this insight, the path formulation of concurrent max flow problem can be written as

maximize
z,x(γ)

z

subject to 1′)
∑
γ∈Γi

x(γ) ≥ zdi, i = 1, . . . , k,

2′)
∑
γ∈Γ
e∈γ

x(γ) ≤ σ(e), ∀e ∈ E,

3′) x(γ) ≥ 0, ∀γ ∈ Γ.

(4.3)

The problems in (4.1) and in (4.3) are equivalent problems. To see this, first let {x(γ)}γ∈Γ

be a feasible choice for the problem in (4.3), we show that there exists a feasible choice for

the problem in (4.1) with the same or higher value.

Constraint 1 in problem (4.1) follows from problem (4.2) and the divergence-free condition

in Definition 3.2.1:

∑
u∼v

fi(u, v) =
∑
u∼v

( ∑
γ∈Γi

(u,v)∈γ

x(γ)−
∑
γ∈Γi

(v,u)∈γ

x(γ)
)

=
∑
u∼v

∑
γ∈Γi

(u,v)∈γ

x(γ)−
∑
u∼v

∑
γ∈Γi

(v,u)∈γ

x(γ)

= 0.

Constraint 2 follows from the constraint 1′ in (4.3) and also the fact that there are no flows

entering the sources si:

∑
v

fi(si, v) =
∑
v

∑
γ∈Γi

(si,v)∈γ

x(γ)−
∑
v

∑
γ∈Γi

(v,si)∈γ

x(γ) =
∑
v

∑
γ∈Γi
{si,v}∈γ

x(γ) ≥ zdi.

Constraint 3 in problem (4.1) follows from the triangle inequality, and constraint 2′ in (4.3).
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The absolute values can be dropped since the flows x(γ) are non-negative.

k∑
i=1

|fi(u, v)| =
k∑
i=1

∣∣∣ ∑
γ∈Γi

(u,v)∈γ

x(γ)−
∑
γ∈Γi

(v,u)∈γ

x(γ)
∣∣∣ ≤

≤
k∑
i=1


∣∣∣∣∣∣∣∣
∑
γ∈Γi

(u,v)∈γ

x(γ)

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣
∑
γ∈Γi

(v,u)∈γ

x(γ)

∣∣∣∣∣∣∣∣


=
∑
γ∈Γ

(u,v)∈γ

x(γ) +
∑
γ∈Γ

(v,u)∈γ

x(γ)

≤ σ(u, v).

Finally constraint 4 holds because

fi(u, v) =
∑
γ∈Γi

(u,v)∈γ

x(γ)−
∑
γ∈Γi

(v,u)∈γ

x(γ) = −
( ∑

γ∈Γi
(v,u)∈γ

x(γ)−
∑
γ∈Γi

(u,v)∈γ

x(γ)
)

= −fi(v, u).

So, the problem in (4.1) is an upper bound for problem in (4.3). Next, we show that the

problem in (4.3) is a upper bound for the problem in (4.1); if fi, i = 1, . . . , k are siti-flows,

and are feasible for the problem in (4.1), then there is a feasible choice for the problem

in (4.3) with the same or higher value. This follows from the following lemma.

Lemma 4.1.1. Let f be an st-flow. Then there exists a subfamily {γ1, . . . , γk} ⊂ Γ and

positive x1, . . . , xk such that, if f̃ is the flow
k∑
i=1

xkγk, then Val(f̃) ≥ Val(f) and |f̃ | ≤ |f |.

Proof. We construct the flow f̃ by first replacing the graph G = (V,E) by a directed graph

~G = (V, ~E) as follows. For each e = {u, v} ∈ E we set ~e to be exactly one of (u, v) or

(v, u) in such a way that f(~e) ≥ 0. Then ~E := {~e : e ∈ E}. Thus, f becomes a flow on

a directed graph. We then construct a new flow f̃ by Algorithm 1. This flow can then be

transferred back to the undirected graph by the antisymmetry property. We claim that f̃

has the properties described in the lemma.

First, observe that, on each iteration, the value of r on at least one edge becomes 0.
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Algorithm 1 Constructs the flow f̃ for Lemma 4.1.1

r ← f
S ← ∅
while ∃γ ∈ Γ(s, t), s.t. r(u, v) > 0, ∀(u, v) ∈ γ do
x← min

(u,v)∈γ
r(u, v)

S ← S ∪ {(γ, x)}
r(u, v)← r(u, v)− x, ∀(u, v) ∈ γ

end while
f̃ ←

∑
(γ,x)∈S

x1γ

Thus, the algorithm must terminate in no more than |E| iterations. Moreover, throughout

the algorithm, the relation

f = r +
∑

(γ,x)∈S

x1γ,

is maintained, where 1γ is the unit path flow along the path γ. In particular, this implies

that, when the algorithm terminates,

Val(f) = Val(r) +
∑

(γ,x)∈S

x = Val(r) + Val(f̃).

When the algorithm terminates, Val(r) ≤ 0 since otherwise we would be able to find a path

from s to t with positive r-flow, contradicting the stopping condition of the algorithm. Thus,

Val(f̃) ≥ Val(f). Finally, the property |f̃ | ≤ |f | holds by construction.

Using the usage matrix in (3.5) the concurrent max flow problem in (4.3) can be written

as

maximize
z,x(γ)

z

subject to
∑
γ∈Γi

x(γ) ≥ zdi, i = 1, . . . , k,

∑
γ∈Γ

N (γ, e)x(γ) ≤ σ(e), ∀e ∈ E,

x(γ) ≥ 0, ∀γ ∈ Γ.

(4.4)
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For each (si, ti) ∈ D, define the indicator function 1Γi : Γ→ {0, 1} as

1Γi(γ) =


1 if γ ∈ Γi,

0 otherwise.

Define usage matrix N of the graph G with dimension |Γ| × |E| as

N (γ, e) =


1 if e ∈ γ,

0 otherwise,

and demand matrix M with dimension k × |Γ| as

M = (1Γ1 , . . . ,1Γk)
T . (4.5)

Also, define vectors

x = [x(γ)], ∀γ ∈ Γ,

d = [di], ∀i = 1, . . . , k,

σ = [σ(e)], ∀e ∈ E.

Then, the constraints in (4.4) can be written as

∑
γ∈Γi

xγ = 1
T
Γi
x = (Mx)i, i = 1, . . . , k,

∑
γ∈Γ

N (γ, e)xγ = (N Tx)e, ∀e ∈ E.
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So, the problem in (4.4) can be expressed in the form

maximize
z,x

z

subject to Mx ≥ zd,

N Tx ≤ σ,

x ≥ 0.

(4.6)

4.2 Connecting maximum concurrent flow problem to

the modulus

Inspired by the fact that 1-modulus is the dual of the single-source single-sink max flow

problem (see Remark 5.1.3), we now consider the dual to the concurrent max flow problem

in (4.6).

The Lagrangian of this problem is

L(z, x, w, ρ, λ) = −z − wT (Mx− zd) + ρT (N Tx− σ)− λTx

= xT (−MTw +Nρ− λ) + z(−1 + wTd)− ρTσ,

where

w = [wi], ρ = [ρ(e)], λ = [λγ], d = [di], ∀e ∈ E, γ ∈ Γi, ∀i = 1, . . . , k.

The dual function g(w, ρ, λ) is

g(w, ρ, λ) = inf
z,x
L(z, x, w, ρ, λ)

=


−ρTσ −MTw +Nρ− λ = 0 and − 1 + wTd = 0,

−∞ otherwise.
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Therefore the dual problem for the problem in (4.4) takes the following form

minimize
ρ,w

σTρ

subject to Nρ ≥MTw,

wTd = 1,

w ∈ Rk
≥0,

ρ ∈ RE
≥0,

(4.7)

where

(Nρ)(γ) =
∑
e∈E

N (γ, e)ρ(e) = `ρ(γ), γ ∈ Γi, i = 1, . . . , k,

(MTw)(γ) =
k∑
i=1

1
T
Γi
w(si, ti) = wγ, γ ∈ Γi, i = 1, . . . , k.

So, the problem in (4.7) can be written as

minimize
ρ,w

σTρ

subject to
∑
e∈E

N (γ, e)ρ(e) ≥ wi, ∀γ ∈ Γi, i = 1, . . . , k,

k∑
i=1

widi ≥ 1,

w ∈ Rk
≥0, ρ ∈ RE

≥0.

(4.8)

The usage vectors of the paths γ in the usage matrix N can be scaled by their corresponding

path weight wi. Let

Nw(γ, e) =
N (γ, e)

wi
(4.9)

when for γ ∈ Γi. (See Remark 4.2.1 for the interpretation when wi = 0.)
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So the equivalent form of the problem in (4.8) will be

minimize
ρ,w

σTρ

subject to
∑
e∈E

Nw(γ, e)ρ(e) ≥ 1, ∀γ ∈ Γi, i = 1, . . . , k,

k∑
i=1

widi ≥ 1,

w ∈ Rk
≥0, ρ ∈ RE

≥0.

(4.10)

which is a parameterized 1-modulus problem.

Remark 4.2.1. The case wi = 0, requires a special interpretation. In this case, we may think

of Nw(γ, e) = +∞ if e ∈ γ ∈ Γi and Nw(γ, e) = 0 if e /∈ γ ∈ Γi. Moreover, when γ ∈ Γi in

this case, we define ∑
e∈E

Nw(γ, e)ρ(e) ≥ 1,

to be true for any ρ ∈ RE
≥0. This is consistent with the original formulation (4.8) because,

when wi = 0, the objects in Γi do not provide any additional constraints on ρ not already

implied by ρ ≥ 0.

4.3 Karush-Kuhn-Tucker conditions and optimality

At this point we study the strong duality between the primal problem in (4.4) and its dual

in (4.8). First we check the Slater’s condition for (4.8), and then look at the Karush-Kuhn-

Tucker (KKT) optimality conditions.

The objective in (4.8) is a convex function and the constraints are inequality constraints

and are convex functions, therefore the problem is a convex optimization problem. The

objective and the constraints are also differentiable. We can find an strictly feasible point in

x ∈ Rn such that all constraints hold strictly, so the problem satisfies in Slater’s condition,

therefore the strong duality holds by Theorem 2.3.1. Hence by Corollary 2.4.7 the KKT

conditions provide necessary and sufficient conditions for optimality.
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The Karush-Kuhn-Tucker (KKT) optimality conditions for (4.4) and its dual in (4.8)

include stationary and complementary slackness conditions, in addition to the feasibility

conditions for the primal and dual problems.

L(ρ, w, x, z, λ, µ) = ρTσ + xT (MTw −Nρ) + z(1− wTd)− λTw − µTρ

= ρ(σT −N Tx− µ) + wT (Mx− zd− λT1) + z

(4.11)

The gradients with respect to variables ρ and w vanish, so:

∇ρL = σ +N Tx− µ = 0,

∇wL = Mx− zd− λ = 0,

therefore the stationary conditions are:

σ(e)−
k∑
i=1

∑
γ∈Γi

N (γ, e)x(γ) = µ(e) ≥ 0, ∀ e ∈ E,

∑
γ∈Γi

x(γ)− diz = λi ≥ 0, ∀i = 1, . . . , k.

(4.12)

The complementary slackness conditions are:

∑
γ∈Γi

x(γ)(wi − `ρ(γ)) = 0, ∀ i = 1, . . . k,

z(1−
k∑
i=1

diwi) =
∑
e∈E

µ(e)ρ(e) =
k∑
i=1

λiwi = 0,

(4.13)

Where the quantities µ(e) and λi can be interpreted as the residual capacity of the edge e,

and the residual demand for the pair siti respectively.
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Chapter 5

Concurrent modulus and

generalizations of maximum

concurrent flow

In this chapter, we show that the dual form of the maximum concurrent flow problem in (4.8)

can be represented in the form of a general parametrized modulus problem. The flexibility

of the modulus framework can be used to introduce a new class of generalized forms of this

problem. This is done by considering a more general form of energy in the objective function.

We call this generalized problem concurrent modulus problem. This chapter studies this

generalization along with maximum concurrent p-modulus flow problems for certain values

of p and analyzes their properties. At the end of the chapter some examples are presented

to illustrate this theory.

5.1 Concurrent p-modulus

Using the notation of Section 4.1, suppose Γ is the disjoint union of the families Γi = Γ(si, ti)

for i = 1, . . . , k. We shall call Γ a concurrent family of paths. If we now fix a positive demand

vector d ∈ Rk
>0 and exponent p ∈ [1,∞], we can define the concurrent p-modulus, Modp,σ,d(Γ)
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as the value of the following optimization problem:

minimize
ρ,w

Ep,σ(ρ)

subject to
∑
e∈E

N (γ, e)ρ(e) ≥ wi, ∀γ ∈ Γi, ∀i = 1, . . . , k,

k∑
i=1

widi ≥ 1,

w ∈ Rk
≥0, ρ ∈ RE

≥0.

(5.1)

Remark 5.1.1. Note that if r > 0, then (ρ, w) is admissible for Modp,σ,d(Γ) if and only if

(ρ/r, w/r) is admissible for Modp,σ,rd(Γ). Moreover, Ep,σ(ρ/r) = r−pEp,σ(ρ). This shows the

scaling

Modp,σ,rd(Γ) = r−p Modp,σ,d(Γ).

This justifies the normalization adopted in this dissertation that the di sum to 1.

Remark 5.1.2. In fact, the definition in (5.1) can be easily extended to more general families

Γi, beyond just path families. The results of this section apply with only minor modifications.

5.1.1 Inner and outer problems

This problem can be better understood by considering the optimization in two stages. In

the first stage (the inner problem), we consider minimizing only over the density ρ, where w

is frozen. This gives a w-parameterized concurrent modulus problem:

minimize
ρ

Ep,σ(ρ)

subject to
∑
e∈E

N (γ, e)ρ(e) ≥ wi, ∀γ ∈ Γi, ∀i = 1, . . . , k,

ρ ∈ RE
≥0.

(5.2)
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We shall use the notation Modp,σ(Γw) to represent the value of this problem. The meaning

behind this notation can be understood as follows. If γ ∈ Γi, then

∑
e∈E

N (γ, e)ρ(e) ≥ wi ⇐⇒
∑
e∈E

w−1
i N (γ, e)ρ(e) ≥ 1.

(See Remark 4.2.1 for the interpretation when wi = 0.) Thus, the inner problem can be

viewed as a standard modulus problem wherein the objects in each Γi have been re-weighted

so that their edge usages are now w−1
i times the previous values.

With Modp,σ(Γw) defined as in (5.2), we can now recognize the concurrent modulus

Modp,σ,d(Γ) as the value of the problem

minimize
w

Modp,σ(Γw)

subject to
k∑
i=1

widi ≥ 1,

w ∈ Rk
≥0.

(5.3)

We shall refer to (5.3) as the outer problem for concurrent modulus.

For any parameter 1 ≤ p <∞, the concurrent p-modulus problem takes the form:

minimize
ρ,w

∑
e∈E

σ(e)ρ(e)p

subject to
∑
e∈E

N (γ, e)ρ(e) ≥ wi, ∀γ ∈ Γi, ∀i = 1, . . . , k,

k∑
i=1

widi ≥ 1,

w ∈ Rk
≥0, ρ ∈ RE

≥0,

(5.4)
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and concurrent ∞-modulus has the form:

minimize
ρ,w

max
e

σ(e)ρ(e)

subject to
∑
e∈E

N (γ, e)ρ(e) ≥ wi, ∀γ ∈ Γi, ∀i = 1, . . . , k,

k∑
i=1

widi ≥ 1,

w ∈ Rk
≥0, ρ ∈ RE

≥0,

(5.5)

Remark 5.1.3. If p = 1, then (5.4) is just (4.8). Thus, we may think of the concurrent

modulus problem as a generalization of the maximum concurrent flow problem. Moreover,

if k = 1 and d1 = 1, then (5.4) reduces to (3.11) with N the usage matrix for the family of

paths connecting s1 to t1. Thus, concurrent modulus is also a generalization of p-modulus.

5.1.2 Dual problems

Next, we drive the dual form of the problem to study the dual theory on concurrent modulus.

The case 1 < p < ∞. For 1 < p < ∞, it is convenient to replace the energy Ep,σ by

Ẽp,σ(ρ) :=
∑
e∈E

σ(e)|ρ(e)|p. Since Ep,σ = Ẽp,σ on RE
≥0, this does not change the value of
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modulus. With this replacement, the Lagrangian for (5.4) is

L(ρ, w, x, z, λ, µ) =
∑
e∈E

σ(e)|ρ(e)|p +
k∑
i=1

∑
γ∈Γi

x(γ)

(
wi −

∑
e∈E

N (γ, e)ρ(e)

)

+ z(1−
k∑
i=1

diwi)−
k∑
i=1

λiwi −
∑
e∈E

µ(e)ρ(e)

=
∑
e∈E

σ(e)|ρ(e)|p

−
∑
e∈E

ρ(e)
( k∑
i=1

∑
γ∈Γi

N (γ, e)x(γ) + µ(e)
)

+
k∑
i=1

wi

(∑
γ∈Γi

x(γ)− zdi − λi
)

+ z,

which is defined for all ρ ∈ RE.

To get the dual function g(x, z, λ, µ), we find the infimum value of the Lagrangian over

the variables ρ and w. Stationary condition can be used to get the extermal values ρ∗ and

w∗.

The gradient of the Lagrangian with respect to variable ρ should vanish at extemal point,

i.e. ∇ρL(ρ, w, x, z, λ, µ) = 0, which yields

pσ(e)|ρ(e)|p−1 sgn(ρ(e))−
∑
γ∈Γ

N (γ, e)x(γ)− µ(e) = 0, ∀e ∈ E,

or, equivalently,

pσ(e)|ρ(e)|p−1 sgn(ρ(e)) =
∑
γ∈Γ

N (γ, e)x(γ) + µ(e), ∀e ∈ E.

By dual feasibility and the non-negativity of N , we see that an optimal ρ must be non-
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negative, yielding the relation

pσ(e)ρ(e)p−1 =
∑
γ∈Γ

N (γ, e)x(γ) + µ(e), ∀e ∈ E. (5.6)

If µ(e) > 0, for some e ∈ E, then (5.6) would imply that ρ(e) > 0. Since this contradicts the

complementary slackness condition

µ(e)ρ(e) = 0, ∀e ∈ E,

it follows that µ = 0. Therefore the extremal density ρ is,

ρ∗(e) =

(
1

pσ(e)

∑
γ∈Γ

N (γ, e)x(γ)

) 1
p−1

, ∀e ∈ E. (5.7)

Next, we find the gradient of the Lagrangian with respect to variable w which should also

vanish at the extemal point

∇wL(ρ, w, x, z, λ, µ) = 0,

so, ∑
γ∈Γi

x(γ)− zdi − λi = 0, ∀i = 1, . . . , k.

Since λ ≥ 0, therefore ∑
γ∈Γi

x(γ)− zdi ≥ 0, ∀i = 1, . . . , k. (5.8)

Then the dual function will be

g(x, z, λ, µ) = L(ρ∗, w∗, x, z, λ, µ)

=
∑
e∈E

σ(e)ρ∗
p

(e)−
∑
e∈E

ρ∗(e)

(∑
γ∈Γ

N (γ, e)x(γ)

)
+ z.
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Using (5.7), we get

g(x, z, λ, µ) =
∑
e∈E

σ(e)ρ∗
p

(e)−
∑
e∈E

ρ∗(e)
(
ρ∗

p−1

pσ(e)
)

+ z

=
∑
e∈E

σ(e)ρ∗
p

(e)−
∑
e∈E

pσ(e)ρ∗
p

(e) + z

= (1− p)
∑
e∈E

σ(e)ρ∗
p

(e) + z.

Therefore the dual function takes the form

g(x, z, λ, µ) = (1− p)
∑
e∈E

σ(e)

(
1

pσ(e)

∑
γ∈Γ

N (γ, e)x(γ).

) p
p−1

+ z,

and the dual form of the problem (5.4) will be

maximize
x,z,µ

g(x, z, µ)

subject to
∑
γ∈Γi

x(γ) ≥ zdi, i = 1, . . . , k,

x ≥ 0.

(5.9)

The case p = 1. When p = 1, the dual problem is

maximize
z,xγ

z

subject to
∑
γ∈Γi

xγ ≥ zdi, i = 1, . . . , k,

∑
γ∈Γ

N (γ, e)xγ ≤ σ(e), ∀e ∈ E,

xγ ≥ 0, ∀γ ∈ Γ.
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The case p =∞. And as we will see in (5.21), the dual of p =∞ case takes the form

maximize
ρ,w

z

subject to
∑
e∈E

β(e) = 1

∑
γ∈Γi

x(γ) ≥ zdi, ∀i = 1, . . . , k,

∑
γ∈Γ

N(γ, e)ρ(e) ≤ β(e)σ(e), ∀e ∈ E.

5.2 Concurrent p-modulus and some special cases

By definition, the concurrent 1-modulus is the dual of the maximum concurrent flow problem.

Thus, we already have a first analog of the single source-single sink theory.

Theorem 5.2.1. Let Γ be a concurrent family with k source-sink pairs and let d ∈ Rk
>0.

Then the corresponding maximum concurrent flow problem with demand vector d has the

value Mod1,σ,d(Γ).

5.2.1 Concurrent resistance

Next we turn our attention to the p = 2 case. For p = 2 the problem in (5.1) takes the form:

minimize
ρ,w

∑
e∈E

σ(e)ρ(e)2

subject to
∑
e∈E

N (γ, e)ρ(e) ≥ wi, ∀γ ∈ Γi, ∀i = 1, . . . , k,

k∑
i=1

widi ≥ 1,

w ∈ Rk
≥0, ρ ∈ RE

≥0.

(5.10)
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The equivalent matrix form for (5.10) can be written as:

minimize
ρ,w

ρTΣρ

subject to Nρ ≥MTw,

dTw ≥ 1,

w ≥ 0, ρ ≥ 0,

(5.11)

where Σ is a diagonal matrix with dimension |E| × |E|:

Σ = Diag(σ(e1), . . . , σ(e|E|)),

and matrix M defined in (4.5).

The Lagrangian for this problem is

L(ρ, w, x, z, λ, µ) = ρTΣρ+ xT (MTw −Nρ) + z(1− dTw)− λTw − µTρ

= ρTΣρ− (N Tx+ µ)Tρ+ (Mx− zd− λ)Tw + z.

To compute the dual function g(z, λ, µ) for this problem, the infimum of Lagrangian over

variables ρ and w is needed. We can use Stationary from KKT conditions to find the extermal

ρ∗ and w∗.

∇ρL = 2Σρ−NT + µ = 0,

∇wL = Mx− zd− λ = 0.

Therefore we get optimal density as

ρ∗ =
1

2
Σ−1(NTx+ µ),
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and, from complementary slackness µ = 0, so

ρ∗ =
1

2
Σ−1(NTx).

Also, since λ ≥ 0, therefore Mx ≥ zd.

The dual function g(x, z, µ) will be

g(x, z, µ) = inf
ρ,w

L(ρ, w, x, z, µ)

=
1

4
(N Tx)TΣ−1(N Tx)− 1

2
(N Tx)TΣ−1(N Tx) + z

= z − 1

4
(N Tx)TΣ−1(N Tx).

So the dual problem for (5.11) takes the following form:

maximize
x,z

z − 1

4
(N Tx)TΣ−1(N Tx)

subject to Mx ≥ zd,

x ≥ 0,

(5.12)

or equivalently

maximize
x,z

z − 1

4

∑
e∈E

σ(e)−1

(∑
γ∈Γ

N (γ, e)x(γ)

)2

subject to
∑
γ∈Γi

x(γ) ≥ zdi, ∀i = 1, . . . , k,

x ∈ RΓ
≥0.

(5.13)
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In order to make sense of this formula, let us introduce another optimization problem:

minimize
µ

∑
e∈E

σ(e)−1

(
k∑
i=1

di
∑
γ∈Γi

N (γ, e)µ(γ)

)2

subject to
∑
γ∈Γi

µ(γ) = 1, ∀i = 1, . . . , k,

µ ∈ RΓ
≥0.

(5.14)

Noting the similarity between (5.14) and (3.18), we may interpret the restriction µi := µ|Γi
as a pmf on the family Γi, giving rise to a random object γi ∈ Γi. This provides an alternative

interpretation of the objective function as

∑
e∈E

σ(e)−1

(
k∑
i=1

diPµi(e ∈ γi)

)2

, (5.15)

where the inner sum can be interpreted as a demand-weighted average of the edge usage

probabilities corresponding to each subfamily Γi ⊂ Γ.

Remark 5.2.2. To simplify notation in what follows, we shall denote the value of (5.14) by

Rσ,d(Γ), since, in light of Remark 5.1.3, when k = 1 and d1 = 1,

Rσ,d(Γ) = Reff(s1, t1),

which is the effective resistance between s1 and t1, with the edge weights σ treated as edge

conductances.

One way to interpret the concurrent effective resistance is as follows. For each source/sink

pair (si, ti), we wish to choose a flow with value di, defined through the corresponding path

flows as

fi =
∑
γ∈Γi

diµi(γ)f(γ),

where, as before, f(γ) refers to the unit path flow along the path γ. The energy defined

in (5.15) can then be interpreted as a multi-commodity analog of dissipated power, with
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σ(e)−1 acting as the resistance of the associated resistor and the sum inside the parentheses

interpreted as the total current flowing through the corresponding resistor. In this way, (5.14)

can be seen as a multi-commodity version of Thompson’s energy minimization principle for

resistor networks.

The dual problem (5.13) provides the following duality theorem on concurrent modulus

which resembles the connection between 2-modulus and effective resistance described in

Section 3.6.

Theorem 5.2.3. Let Γ be a concurrent family with k source-sink pairs and let d ∈ Rk
≥0.

Then

Mod2,σ,d(Γ)−1 = Rσ,d(Γ). (5.16)

Moreover, if ρ∗ is optimal for (5.1) and µ∗ is optimal for (5.14), then

ρ∗(e) =
Mod2,σ,d(Γ)

σ(e)

k∑
i=1

di
∑
γ∈Γi

N (γ, e)µ∗(γ). (5.17)

Proof. Let x, z be admissible for the problem in (5.13). Define

ν := min
i

∑
γ∈Γi

x(γ)

di
> 0,

and

µ(γ) :=
x(γ)

νdi
, for γ ∈ Γi.

Then µ satisfies ∑
γ∈Γi

µ(γ) ≥ 1, ∀i = 1, . . . , k.
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With this decomposition, (5.13) can be rewritten as

maximize
ν,µ,z

z − ν2

4

∑
e∈E

σ(e)−1

(
k∑
i=1

di
∑
γ∈Γi

N (γ, e)µ(γ)

)2

subject to
∑
γ∈Γi

µ(γ) ≥ 1, ∀i = 1, . . . , k,

ν ≥ z, µ ∈ RΓ
≥0.

(5.18)

The value of z is positive, since if we set z to zero that makes all µ(γ) zero. By construction,

(ν, µ, z) are admissible for this problem, and they give the same energy as (x, z) in (5.13),

so (5.13) will be a lower bound for (5.18).

Now, let (ν, µ, z) be feasible for the problem (5.18), and define x(γ) := νdiµ(γ), for

γ ∈ Γi, then, ∑
γ∈Γi

x(γ) =
∑
γ∈Γi

νdiµ(γ) ≥ νdi ≥ zdi,

which shows (x, z) are feasible for (5.13). Also,

∑
γ∈Γ

N (γ, e)x(γ) =
∑
i

νdi
∑
γ∈Γi

N (γ, e)µ(γ),

which shows that (5.13) and (5.18) have same energies, so (5.18) will be a lower bound

for (5.13), therefore both problems are equivalent.

We also need to show that the value of the objective function in (5.13) is non-negative.

If z = 0, then the maximum value of x will be zero, which makes the energy zero. Let z > 0,

and set z := ε so,

x(γ) =
εdi
|Γi|

,
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is feasible, and the energy of the problem is

ε− 1

4

∑
e

σ−1(e)

(∑
i

εdi
|Γi|

∑
γ∈Γi

N (γ, e)

)2

=ε− ε2

4

∑
e

σ−1(e)

(∑
i

di
|Γi|

∑
γ∈Γi

N (γ, e)

)2

,

where the last equation has non-negative value for ε << 1. This restricts z to be non-

negative.

Maximizing first over µ in problem (5.18) shows that the optimal µ∗ solves (5.14). Max-

imizing over z next, shows that we should select z = ν, and we are left with the problem of

maximizing

ν − ν2

4
Rσ,d(Γ),

with respect to ν.

The maximum is attained at ν∗ = 2/Rσ,d(Γ), giving the value

ν∗ − (ν∗)2

4
Rσ,d(Γ) =

1

Rσ,d(Γ)

for (5.13), which proves (5.16).

Moreover, Lagrangian duality shows that

ρ∗(e) =
1

2σ(e)

∑
γ∈Γ

N (γ, e)x∗(γ) =
ν∗

2σ(e)

k∑
i=1

di
∑
γ∈Γi

N (γ, e)µ∗(γ),

which proves (5.17).

We say that Rσ,d is a concurrent resistance. Hence, in view of Theorem 5.2.3, the con-

current modulus Mod2,σ,d(Γ) can be thought as a concurrent conductance.
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5.2.2 Concurrent shortest path

Finally, we turn our attention to the p = ∞ case. Problem (5.1) takes the following form

when p =∞:

minimize
ρ,w

max
e∈E

σ(e)ρ(e)

subject to
∑
e∈E

N (γ, e)ρ(e) ≥ wi, ∀γ ∈ Γi, ∀i = 1, . . . , k,

k∑
i=1

widi ≥ 1,

w ∈ Rk
≥0, ρ ∈ RE

≥0.

(5.19)

Let t = max
e∈E

σ(e)ρ(e), so

σ(e)ρ(e) ≤ t, ∀e ∈ E.

Therefore the problem can be written as:

minimize
t,ρ,w

t

subject to
∑
e∈E

N (γ, e)ρ(e) ≥ wi, ∀γ ∈ Γi, ∀i = 1, . . . , k,

k∑
i=1

widi ≥ 1,

σ(e)ρ(e) ≤ t, ∀e ∈ E,

w ∈ Rk
≥0, ρ ∈ RE

≥0.

(5.20)
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To find the dual form of this problem, first we find the Lagrangian:

L(t, ρ, w, x, z, λ, µ, β) =t+
k∑
i=1

∑
γ∈Γi

x(γ)

(
wi −

∑
e∈E

N (γ, e)ρ(e)

)
+ z(1−

k∑
i=1

diwi)

+
∑
e∈E

β(e) (σ(e)ρ(e)− t)−
k∑
i=1

λiwi −
∑
e∈E

µ(e)ρ(e)

=t
(
1−

∑
e∈E

β(e)
)

+
∑
e∈E

ρ(e)
(
β(e)σ(e)−

k∑
i=1

∑
γ∈Γi

N (γ, e)x(γ)− µ(e)
)

+
k∑
i=1

wi

(∑
γ∈Γi

x(γ)− zdi − λi
)

+ z.

The dual function is:

g(x, z, λ, µ, β) = inf
t,ρ,w

L(t, ρ, x, z, λ, µ, β)

=



z if



∑
e∈E

β(e) = 1, and,

∑
γ∈Γ

N (γ, e)x(γ)− µ(e) = β(e)σ(e), and,

∑
γ∈Γi

x(γ)− zdi − λi = 0,

−∞ otherwise.

From the complementary slackness µ = 0, so

∑
γ∈Γ

N (γ, e)x(γ) = β(e)σ(e), ∀e ∈ E,

and since λ ≥ 0, therefore ∑
γ∈Γi

x(γ) ≥ zdi.
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So the dual problem for problem in (5.19) will be:

maximize
ρ,w

z

subject to β ∈ P(E),∑
γ∈Γ

N(γ, e)ρ(e) ≤ β(e)σ(e), ∀e ∈ E,

∑
γ∈Γi

x(γ) ≥ zdi, ∀i = 1, . . . , k.

(5.21)

Where P is the probability mass distribution on Γ.

Theorem 5.2.4. When p =∞ the inner problem (5.2) has value

Mod∞,σ,w = max
i
wi`σ−1(Γi)

−1.

Proof. To establish an upper bound, define

α =: max
i
wi`σ−1(Γi)

−1, and let ρ = ασ(e)−1.

Note that E∞,σ(ρ) = α. Thus, α is an upper bound for the inner problem provided we show

that ρ is admissible. To see this, let γ be an object in some Γj. Then, since

α ≥ wj`σ−1(Γj)
−1, and `σ−1(γ) ≥ `σ−1(Γj)

it follows:

`ρ(γ) = α`σ−1(γ) ≥ wj`σ−1(Γj)
−1`σ−1(Γj) = wj

establishing the upper bound.

To establish the lower bound, choose j and γ ∈ Γj such that

wj`σ−1(γ)−1 = α
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Suppose ρ ≥ 0 satisfies `ρ(γ) ≥ wj . Then we have

wj ≤
∑
e∈γ

ρ(e) =
∑
e∈γ

σ−1(e)σ(e)ρ(e) ≤ E∞,σ(ρ)
∑
e∈γ

σ−1(e) = E∞,σ(ρ)`σ−1(γ)

Thus,

Mod∞,σ,w ≥ wj`σ−1(γ−1) = α.

Theorem 5.2.5. When p =∞, the outer problem (5.3) has value

( k∑
j=1

dj`σ−1(Γj)
)−1

. (5.22)

Proof. Applying Theorem 5.2.4 shows that the problem with p =∞ case can be written as

minimim
w

maximum
i

wi`σ−1(Γsp(si, ti))
−1

subject to
k∑
i=1

widi ≥ 1,

w ≥ 0.

To establish an upper bound, define

β =:

(
k∑
j=1

dj`σ−1(Γj

)−1

.

To simplify notation, define

ξi = `σ−1(Γsp(si, ti))

and let

wi =
( k∑
j=1

ξjdj

)−1

ξj.
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Then

max
i
wiξ

−1
i =

( k∑
j=1

ξjdj

)−1

= β

so

min
w

max
i
wiξ

−1
i ≤ β

Moreover, this w is admissible since

∑
i

widi =
∑
i

(∑
j

ξjdj

)−1

ξidi = 1

showing that β is an upper bound for the outer problem.

To see that β is also a lower bound, suppose w ≥ 0 is admissible. Then

1 ≤
∑
i

widi =
∑
i

wiξ
−1
i ξidi ≤

(
max
i
wiξ

−1
)∑

i

xiidi,

showing that

max
i
wiξ

−1 ≥
(∑

i

ξidi

)−1

so

min
i

max
i
wiξ

−1 ≥ min
i

(∑
i

ξidi

)−1

= β

So, Mod−1
∞,σ,d(Γ) is the demand-weighted sum of shortest path lengths between the pairs.

5.3 Convexity of the maximum concurrent flow prob-

lem

Lemma 5.3.1. Each of the problems in (5.1), (5.2), and (5.3) is a convex optimization

problem.

Proof. Since all constraints in all three cases are affine, it remains only to verify that the
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objective functions are all convex. Convexity in (5.1) and (5.2) comes from the fact that the

p-energy is convex.

For (5.3), we need to show that the function

w 7→ Modp,σ(Γw)

is convex on Rk
≥0. To do so, let w1, w2 ∈ Rk

≥0 and 0 ≤ θ ≤ 1. Let ρ1 and ρ2 be optimal

densities for Modp,σ(Γw1) and Modp,σ(Γw2) respectively. Define w = θw1 + (1 − θ)w2 and

ρ = θρ1 + (1− θ)ρ2.

Note that ρ is admissible for Modp,σ(Γw) since, for all γ ∈ Γi,

`ρ(γ) = θ`ρ1(γ) + (1− θ)`ρ2(γ) ≥ θw1
i + (1− θ)w2

i = wi.

Thus, by the convexity of the p-energy,

Modp,σ(Γθw1+(1−θ)w2) ≤ Ep,σ(θρ1 + (1− θ)ρ2)

≤ θEp,σ(ρ1) + (1− θ)Ep,σ(ρ2)

= θModp,σ(Γw1) + (1− θ) Modp,σ(Γw2).

5.4 The probabilistic interpretation

Modulus has a probabilistic interpretation that is very useful to gain additional intuition.

We explored this formulation in Section 3.7 which is particularly simple case p = 2, see [4,

Theorem 5.1].

In analogy with the probabilistic interpretation of 2-modulus, we develop probabilistic

interpretation of the concurrent resistance defined in (5.14). Given a concurrent family Γ with

k source-sink pairs, we will only consider pmfs µ which are trivial couplings of sequences of
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a b c d

e1 e2 e3

Figure 5.1: The graph for Example 5.5.1.

pmf µi for each family Γi, i = 1, . . . , k. In other words, µ is the law for sequences (γ
1
, . . . , γ

k
)

of random paths, sampled independently and such that γ
i

has law µi. Let

P0(Γ) = {µ = (µ1, . . . , µk) : independent, µi ∈ P(Γi)}

Then, in the unweighted case, we can write

Mod2,σ,d(Γ)−1 = min
µ∈P0(Γ)

∑
e∈E

[
Eµ

(
k∑
i=1

diN
(
γ
i
, e
))]2

= min
(µ1,...,µk)∈P0(Γ)

∑
e∈E

[
k∑
i=1

diPµi
(
e ∈ γ

i

)]2

.

(5.23)

Comparing (5.23) with (3.18), we see that the expected number of random objects in Γ that

use the edge e, i.e., the expected usage of e, has been replaced by the expected number of

“demand-weighted” independent source-sink paths that contain the edge e, i.e., the expected

usage of e by sequences of independent source-sink paths.

5.5 Examples

Example 5.5.1. Consider the concurrent max flow problem for graph G in Figure 5.1. We

want to send a flow from source a to target c and from source b to target d. Let the respective

demands for these two pairs be d1 = d and d2 = 1 − d, where 0 < d < 1 is a parameter of

the problem. We assume that the capacities on e1, e2 and e3 are σ1, σ2, and σ3 respectively,

with each σi > 0.

The case p = 1. Since there is only one path between each source-sink pair, the associated
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dual problem (4.8) is relatively simple.

minimize
ρ,w

σ1ρ1 + σ2ρ2 + σ3ρ3,

subject to ρ1 + ρ2 ≥ w1,

ρ2 + ρ3 ≥ w2,

dw1 + (1− d)w2 ≥ 1,

ρ ∈ R3
≥0,

w ∈ R2
≥0.

(5.24)

One can verify directly from the KKT conditions that the maximum concurrent flow value

is

z∗ = min

{
σ1

d
, σ2,

σ3

1− d

}
. (5.25)

Each of the three possible values for z∗ corresponds to the saturation of one of the three

edges by the maximum concurrent flow. For example, consider the case that the minimum

in (5.25) is attained at σ1
d

, corresponding to the saturation of edge e1. This is equivalent to

the condition that d ≥ max
{
σ1
σ2
, σ1
σ1+σ3

}
. Suppose we let x1 = σ1 and x2 = 1−d

d
σ1, where x1

is the value of the path flow connecting a to c and x2 is the value of the path flow connecting

b to d. This flow is feasible since

x1 = σ1 ≤ σ1, x1 + x2 =
σ1

d
≤ σ2, and x2 =

1− d
d

σ1 ≤ σ3.

To verify that this flow is maximal, it is sufficient to construct dual variables ρ and w that,

together with this x satisfy the KKT conditions. It is straightforward to check that the

choices

ρ =

(
1

d
, 0, 0

)
, w =

(
1

d
, 0

)
have this property.
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Similarly, the minimum in (5.25) equals σ2 when

σ2 − σ3

σ2

≤ d ≤ σ1

σ2

,

which is only possible if σ2 ≤ σ1 + σ3. This case corresponds to the saturation of e2. One

can verify that a solution is

ρ∗ = (0, 1, 0) , w∗ = (1, 1) , x∗ = σ2(d, 1− d).

Finally, the minimum in (5.25) equals σ3
1−d when

d ≤ min

{
σ1

σ1 + σ3

,
σ2 − σ3

σ2

}
.

In this case, the critical edge is e3 and a solution is

ρ∗ =

(
0, 0,

1

1− d

)
, w∗ =

(
0,

1

1− d

)
, x∗ = σ3

(
d

1− d
, 1

)

The case p = 2. In this case we can find µ∗ from the optimization problem (5.14), so

(µ∗(γ1), µ∗(γ2)) = (1, 1).

The value of this optimization problem will be

Rσ,d(Γ) =
d2

σ1

+
1

σ2

+
(1− d)2

σ3

.

And the values of ρ∗ using the equation (5.17) are:

ρ∗ =
1

d2

σ1
+ 1

σ2
+ (1−d)2

σ3

(
d

σ1

,
1

σ2

,
1− d
σ3

)
.
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Figure 5.2: The graph for Example 5.5.2.

and

w∗ =
1

d2

σ1
+ 1

σ2
+ (1−d)2

σ3

(
d

σ1

+
1

σ2

,
1

σ2

+
1− d
σ3

)
We got ν∗ as 1

Rσ,d(Γ)
, so

ν∗ =
1

d2

σ1
+ 1

σ2
+ (1−d)2

σ3

.

then

x∗ =
1

d2

σ1
+ 1

σ2
+ (1−d)2

σ3

(d, 1− d).

The case p =∞. In this case we compute the Mod∞,σ,d(Γ) using (5.22).

Mod∞,σ,d(Γ) =

(
d

σ1

+
1

σ2

+
1− d
σ3

)−1

.

The next example demonstrates the use of the probabilistic interpretation of modulus in

the case p = 2.

Example 5.5.2. Consider the graph in Figure 5.2. Suppose the demand pairs are D =

{(a, b), (a, c)} with demands d1 = 1, d2 = 2. Here, the capacities of all the edges are 1.

To compute the concurrent conductance in this case, note that there are two families

each containing two paths:

Γ1 = {γ1 = ab, γ2 = acb} and Γ2 = {γ′1 = ac, γ′2 = abc}
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So to define µ = (µ1, µ2) ∈ P0(Γ) and the associated random object (γ, γ′) ∈ Γ in this case it

is enough to pick parameters p1, p2 ∈ [0, 1], so that Pµ1(γ = γ1) = p1 and Pµ2(γ′ = γ′1) = p2.

With this parameterization, the demand-weighted usage for edge e1 = (a, b) is

d1Pµ1(e1 ∈ γ) + d2Pµ2(e1 ∈ γ′) = d1Pµ1(γ = γ1) + d2Pµ2(γ′ = γ′2)

= p1 + 2(1− p2).

Similarly,

d1Pµ1(e2 ∈ γ) + d2Pµ2(e2 ∈ γ′) = (1− p1) + 2p2 and

d1Pµ1(e3 ∈ γ) + d2Pµ2(e3 ∈ γ′) = (1− p1) + 2(1− p2).

By squaring these usages and adding them up, we find that we want to

minimize 14− 4p1 − 16p2 + 3p2
1 + 12p2

2 − 4p1p2, subject to 0 ≤ p1, p2 ≤ 1.

Solving this gives

p1 = 1 and p2 =
5

6

Also the minimum is computed as

Mod2,d(Γ)−1 =
14

3
.

Using (5.17) we get that

ρ∗(e1) =
4

14
, ρ∗(e2) =

5

14
, ρ∗(e3) =

1

14
,

and one can check that ρ∗(e1)2 + ρ∗(e2)2 + ρ∗(e3)2 = 3/14. Also, again w∗1 = 4/14 and

w∗2 = 5/14, so ρ∗ is a feasible solution.

Example 5.5.3. We consider a complete bipartite graph Km,n, and compute the concurrent
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p-modulus for this graph for the values p = 1, 2,∞. Assume that all of the capacities of all

of the edges of the graph are one, and all the demands between pairs are the same and they

sum to one.

In Km,n, the vertex set V is naturally partitioned into two disjoint subsets V = V` ∪ Vr,

which we shall refer to as the “left side” and “right side” of the graph. In Km,n every vertex

in V` is connected to every vertex in Vr and there are no other edges. This also leads to a

natural partition on the pairs of distinct vertices (si, ti) into three classes. If both si and ti

are in V`, we refer to the pair as a left-left pair. Similarly, if both are in Vr, we say the pair

is a right-right pair. All other pairs have one vertex in V` and one in Vr, which we shall call

a left-right pair. Note that Km,n has

(
m

2

)
left-left pairs,(

n

2

)
right-right pairs,

mn left-right pairs, and(
m+ n

2

)
total pairs.

(5.26)

These counts imply the following property of binomial coefficients that will be useful.

(
m

2

)
+

(
n

2

)
=

(
m+ n

2

)
−mn. (5.27)

To establish the values of p-modulus for this problem, we construct an upper bound on

modulus using the modulus problem in (5.1) and lower bound on modulus using the problem

in (4.3) and show that they coincide.

Since the demands between the pairs in the bipartite graph sum to one, i.e.
k∑
i=1

d = 1,

we must have:

d =

(
m+ n

2

)−1

. (5.28)
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Upper bound. We can obtain an upper bound for the concurrent modulus by making an

admissible choice of ρ and w for (5.1). First we guess values of the density ρ on the edges of

the graph. By symmetry, we guess that the density is a constant number ρ for all the edges

of the graph. Next we guess the values of an admissible choice for w. Let (si, ti) be a pair of

nodes on the bipartite graph Km,n. We expect w to take three different values w``, wrr, and

w`r, depending on whether the pair is a left-left pair, a right-right pair, or a left-right pair.

Using the admissibility constraint of the problem in (5.1) we can make guesses for the

values of w. Since the shortest path connecting a left-left or a right-right pair requires two

hops, a reasonable guess is that w`` = wrr = 2ρ (recalling that we have guessed that ρ is

constant on the edges). On the other hand, each left-right pair is connected by a single edge,

suggesting the guess w`r = ρ.

Moreover, from the constraint
k∑
i=1

widi = 1 in problem (5.1) and the fact that di = d for

all i, we get
k∑
i=1

widi = d
k∑
i=1

wi = 1

Using the counts in (5.26), we see that this requires

1 =
k∑
i=1

widi = d

((
m

2

)
w`` +

(
n

2

)
wrr +mnw`r

)
= d

((
m

2

)
2ρ+

(
n

2

)
2ρ+mnρ

)
.

So, using (5.27) and (5.28), our guess for the constant vector ρ is

ρ =
d−1

2
((
m
2

)
+
(
n
2

))
+mn

=
d−1

2d−1 −mn
=

1

2−mnd
. (5.29)

Note that this guess is independent of the value of the exponent p.

Now we are ready to produce upper and lower bounds for concurrent modulus on Km,n.

By construction, the choice of ρ and w above is admissible for (5.1) and, therefore,

Modp,σ,d(Γ) ≤ Ep,σ(ρ) =
|E|

(2−mnd)p
=

mn

(2−mnd)p
(5.30)
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when 1 ≤ p <∞ and

Mod∞,σ,d(Γ) ≤ E∞,σ(ρ) =
1

2−mnd
. (5.31)

We can establish the value of Modp,σ,d for the cases p ∈ {1, 2,∞} by finding a lower

bound that coincides with this upper bound.

Lower bound for p = ∞. The value of concurrent ∞-modulus computed directly using

(5.22):

Mod∞,σ,d(Γ)−1 =
k∑
i=1

d distσ−1(si, ti)

= d

(
mn+ 2

(
m

2

)
+ 2

(
n

2

))
= d(2d−1 −mn).

Therefore, for our choice of σ and d,

Mod∞,σ,d(Γ) = (2− dmn)−1 =

(
m+n

2

)(
m+n

2

)
+
(
m
2

)
+
(
n
2

) . (5.32)

By (5.31), our guess for ρ and w attains this value and, therefore, are optimal for∞-modulus.

Lower bound for p = 1. Next, we obtain a lower bound on the 1-modulus by making

a guess for the values xγ in the dual problem (4.3). We make the following guess: xγ > 0

only if γ is either a one-hop or a two-hop path. In other words, we guess that x is supported

on the disjoint union Γ`` ∪ Γrr ∪ Γ`r, where Γ`` is the family of two-hop paths connecting a

left-left pair, Γrr is the family of two hop paths connecting a right-right pair, and Γ`r is the
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family of one-hop paths. By symmetry, we guess an x of the form

xγ =



α if γ ∈ Γ``,

β if γ ∈ Γrr,

δ if γ ∈ Γ`r,

0 otherwise.

The following counts can be verified for an arbitrary e ∈ E.

|{γ ∈ Γ`` : e ∈ γ}| = m− 1,

|{γ ∈ Γrr : e ∈ γ}| = n− 1,

|{γ ∈ Γ`r : e ∈ γ}| = 1.

(5.33)

If we assume that each edge is used to full capacity in the dual problem, then we should

satisfy

α(m− 1) + β(n− 1) + δ = 1. (5.34)

Now, consider the constraint
∑
γ∈Γi

xγ ≥ zdi in problem (4.3) for each source-sink pair

(si, ti). Again by the symmetry of the problem, we expect that the optimal choice of x will

realize this inequality as equality for each pair. For a left-left pair, then, we guess that

zd =
∑
γ∈Γi

xγ =
∑

γ∈Γi∩Γ``

xγ = nα,

since there are exactly n two-hop paths connecting si to ti. By similar arguments for right-

right and left-right pairs, we assume that

zd = mβ = δ.
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Substituting these guesses into (5.34) yields the relation

zd

(
n− 1

m
+
m− 1

n
+ 1

)
= 1,

which we can use to produce a guess for z.

Rewriting this shows that we should guess z so that

1 =
zd

mn
(n(n− 1) +m(m− 1) +mn)

=
zd

mn

(
2

(
m

2

)
+ 2

(
n

2

)
+mn

)
=

zd

mn
(2d−1 −mn),

where the last equality follows from (5.27). This provides the guess

z =
mn

2−mnd
.

This choice of x and z is admissible for (4.3), showing that

Mod1,σ,d(Γ) ≥ mn

2−mnd
.

This lower bound coincides with the upper bound in (5.30) when p = 1. Therefore, for our

choice of σ and d,

Mod1,σ,d(Γ) =
mn

2− dmn
=

mn
(
m+n

2

)(
m+n

2

)
+
(
m
2

)
+
(
n
2

) . (5.35)

Lower bound for p = 2. In the p = 2 case, we use Theorem 5.2.3. In order to establish

the bound, we need to choose a PMF µi for each Γ(si, ti). We do this as follows. For a left-left

pair, we distribute the probability uniformly on the n two-hop paths. For a right-right pair,

we distribute the probability uniformly on the m two hop paths. For a left-right pair, we

concentrate the probability on the single one-hop connecting path. For a given pair (si, ti)

and a given edge e, this results in the following probabilities.
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If the pair is a left-left pair, then

Pµi(e ∈ γi) =


1
n

if e is incident on si or ti,

0 otherwise.

Similarly, for a right-right pair,

Pµi(e ∈ γi) =


1
m

if e is incident on si or ti,

0 otherwise.

Finally, for a left-right pair,

Pµi(e ∈ γi) =


1 if e = {si, ti},

0 otherwise.

Using the counts in (5.33), this choice yields the inequality

Mod2,σ,d(Γ)−1 ≤
∑
e∈E

(
d

k∑
i=1

Pµi(e ∈ γi)

)2

= d2mn

(
m− 1

n
+
n− 1

m
+ 1

)2

=
d2

mn

(
2

(
m

2

)
+ 2

(
n

2

)
+mn

)2

=
d2

mn

(
2d−1 −mn

)2

=
(2−mnd)2

mn

where we have used (5.27). This proves the lower bound

Mod2,σ,d(Γ) ≥ mn

(2−mnd)2
,
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Figure 5.3: Grid graph with source-sink pairs in adjacent corners

which coincides with (5.30) when p = 2. Therefore, for our choice of σ and d,

Mod2,σ,d(Γ) =
mn

(2− dmn)2
=

mn
(
m+n

2

)2((
m+n

2

)
+
(
m
2

)
+
(
n
2

))2 . (5.36)

Example 5.5.4. Consider a square grid graph with 400 nodes, and let (s1, t1) and (s2, t2) be

source-sink pairs with demands d1 and d2 respectively. Consider a set of different demands

between nodes s1 and t1 as:

d1 ∈ D :=

{
0,

1

6
,
1

3
,
1

2

}
,

where d2 = 1− d1. The graph is unit capacity and all the edges have capacity one. Consider

the following two cases for the positions of the source-sink pairs:

Pairs in adjacent corners: Each source node and its corresponding sink node are in

adjacent corners of the graph as shown in Figure 5.3. The nodes in red color represents the

pair (s1, t1) and the nodes in blue represent the pair (s2, t2). Here we compute the concurrent

2-modulus values numerically for the source-sink pairs {(s1, t1), (s2, t2)}. Figure 5.4 shows

the amount of flows for different demands in set D. When there is no demand in pair (s1, t1),

i.e. d1 = 0, the value the flow f1 from s1 to t1 is zero, and f2 uses all of the resources to send

the maximum flow from s2 to t2. As the demand d1 for the pair (s1, t1) increases, the amount

of flow f1 also increases. Finally when the demands d1 and d2 are same and both are equal
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Figure 5.4: Flows f1 and f2 for some values of demands with pairs on adjacent corners

Figure 5.5: Concurrent 2-modulus v.s demand d1 demands on adjacent corners

to half, the amount of flows f1 and f2 are also same. The reason is the symmetry in the

grid graph and also positions of the source-sink pairs in adjacent corners, where the flows f1

and f2 don’t compete much over the resources. Figure 5.5 shows the values of concurrent

2-modulus as a function of demand d1 over interval [0, 0.5] in two case; first when the families

of paths between pairs (s1, t1) and (s2, t2) have some interactions. The value of concurrent

2-modulus in this case is shown in blue. Second when the families of paths between pairs

(s1, t1) and (s2, t2) have no interactions. The value of concurrent 2-modulus in this case

have shown in orange which is just slightly higher than the case where families have some

interactions. When the pairs are in adjacent corners, they don’t compete over the resources

very much therefore the concurrent 2-modulus for these two cases are not very different.

Pairs in opposite corners: Next consider each source node and its corresponding sink

node are in opposite corners of the graph as shown in Figure 5.6. The nodes in red color

represents the pair (s1, t1) and the nodes in blue shows (s2, t2). As figure 5.7 shows when we
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Figure 5.6: Grid graph with source-sink pairs in apposite corners

Figure 5.7: Flows f1 and f2 for some values of demands with pairs on apposite corners

increase the demand d1 from zero to 1
2
, the flow f1 from s1 to t1 also increases.

Also, Figure 5.8 compares the concurrent 2-modulus as a function of demand d1 on

interval [0, 0.5] for two cases. First the families between pairs have some interactions and

the concurrent 2-modulus is graphed in blue v.s when the families between pairs have no

interaction and the concurrent 2-modulus is graphed in orange. As the graph shows the flows

f1 and f2 in this graph compete over the given resources therefore concurrent 2-modulus

increases when there is no interaction between families.
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Figure 5.8: Concurrent 2-modulus v.s demand d1 demands on apposite corners
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Chapter 6

Conclusion and future work

In this dissertation we showed that maximum concurrent flow problem can be embedded

into a family of p-modulus problems. In particular we studied p = 1, 2 and ∞ cases and

also developed the probabilistic interpretation of p-modulus problems. The key results are

summarized in Table 6.

Items of particular interest for future research include

• a better understanding of concurrent modulus problems for general p,

• and exploration of the dependence of the concurrent modulus problem on the param-

eters σ and ρ,

• an exploration of the properties of concurrent modulus problem using different families

of objects,

• centrality measures for networks with multiple sources and targets, and

• applications of concurrent modulus.
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1 pair k pairs

maximum flow (minimum cut) problem maximum concurrent flow problem
p = 1 ∼ ∼

1-modulus problem concurrent 1-modulus problem
effective resistance problem concurrent resistance problem

p = 2 ∼ ∼
2-modulus problem concurrent 2-modulus problem

shortest path problem weighted shortest path problem
p =∞ ∼ ∼

∞-modulus problem concurrent ∞-modulus problem

Table 6.1: Summary of connections between modulus and single- and multi-commodity flow
problems. The items in bold indicate the contributions of this dissertation.
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