
A COMPARISON OF TWO MICROCOMPUTER DATABASE
MANAGEMENT SYSTEM PRODUCTS

by

Gary A. Radke

B.S., Kansas State University, 1979

A MASTERS REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1989

Approved by :

Major Professor

3IM mEDS 3D5D?3

,'Pt

cmsc

TABLE OF CONTENTS

LIST OF FIGURES i

CHAPTER 1 INTRODUCTION 1

CHAPTER 2 PROBLEM ENVIRONMENT AND DATABASE DESIGN 5

CHAPTER 3 DBASE I 11+ IMPLEMENTATION 10

3.0 Introduction 10
3.1 Common Actions 11

3.1.0 Locate a Member 11
3.1.1 Browse Member File 13
3.1.2 Browse Supplier File 13

3.2 Enter/Update Information 15
3.3 Reports 30
3.4 Summary 44

CHAPTER 4 RBASE 5000 IMPLEMENTATION 45

4.0 Introduction 45
4.1 Enter/Update Information 47
4.2 Reports 59

CHAPTER 5 COMPARISON 71

5.0 Introduction 71
5.1 User friendliness 71
5.2 Implementation considerations 73

Chapter 6 CONCLUSION 78

BIBLIOGRAPHY 80

APPENDIX A: dBASE III+ Program Listing 81

APPENDIX B: RBASE 5000 Program Listing 153

APPENDIX C: Data Dictionary 182

LIST OF FIGURES

Page

2.1 Entities of the System 9

3.1 dBASE I 11+ Main Menu 12
3-2 Prompt for Member Identification number 12
3-3 Prompt to Browse Membership File 14
3-4 Prompt to Browse Supplier File 14
3-5 Membership Information Menu 16
3-6 Membership Information Form 16
3-7 Member Order Menu 18
3-8 Member Order Information Form 18
3-9 Supplier Information Menu 20
3-10 Supplier Information Form 20
3-11 Product Catalog Menu 23
3-12 Product Information Form 23
3-13 Product Update Menu 24
3-14 Product Selection Prompt 24
3-15 Consignment Information Menu 26
3-16 Consignment Information Form 26
3-17 Expense Information Menu 29
3-18 Expense Information Form 29
3-19 Prompt to Browse Expense File 31
3-20 Product Breakdown Menu 31
3-21 Product Breakdown Label Prompt 32
3-22 Product Breakdown Label 32
3-23 Order Bill Menu 34
3-24 Order Bill Report 34
3-25 Consignment Reports Menu 36
3-26 Sold, Unpaid Consignments Summary for

a Given Member 36
3-27 Summary of Sold, Unpaid Consignments for

All Members 3g
3-28 Summary of Sold and Unsold, Unpaid Consignments 38
3-29 Combined Order Menu 39
3—30 Combined Order Report 39
3-31 Finances Reports Menu 41
3-32 Expense Report For a Given Month and Year 41
3-33 Report of Gross Sales and Total Expenses

for a Given Month and Year
3-34 Report of Unpaid Expenses
3-35 Summary of Outstanding Debt
4-1 RBASE 5000 Main Menu
4-2 Enter/Update Options Menu
4-3 Report Options Menu
4-4 Member Information Menu
4-5 Member Information Form
4-6 Supplier Information Menu
4-7 Supplier Information Form
4-8 Member Order Menu
4-9 Member Order Form

42

42

43
46

4 6

48

48

50
50
52

52

54

ii

4-10 Product Information Menu 54
4-11 Product Information Form 56
4—12 Consignment Menu 56
4-13 Consignment Information Form 58
4-14 Expense Information Menu 58
4-15 Expense Data Form 60
4-16 Product Breakdown Label Menu 60
4-17 Product Breakdown Label Report 62
4-18 Order Bill Menu 62
4-19 Order Bill Report 64
4-20 Order Summary Menu 64
4-21 Order Summary Report 65
4-22 Consignment Reports Options Menu 65
4-23 Report of Consignments Sold but Member Unpaid

for a Given Member 67
4-24 Summary of Sold Unpaid Consignments

for All Members 67
4-25 Sold and Unsold Consignments Report 68
4-26 Expense Report Options Menu 68
4-27 Itemized Expense Report for a Given Month 70
4-28 Expense and Gross Sales Report for a 70

Given Month
5-1 Table of System Comparisons 77

Chapter 1

Introduction

The software market is currently crowded with microcomputer

based database management systems. The complexity of the systems

available ranges from simple information management systems which

are inflexible in their format to the advanced systems with

programmable products that allow the user to easily write an

application tailored to their precise needs. The simple systems

force the user to adapt their application to the structure of the

database management system; the advanced systems often do not

require the user to learn a great deal more about database

management systems. The reviews of these -database systems typically

consist of a table that lists the various products on one axis and

categories of system features on the other axis with a mark denoting

whether or not a product supports a given feature. These tables are

frequently accompanied by statistics such as the number of database

files that can be kept open at one time, the possible number of

records per file, the time required to index a given number of

records and other similar information meant to allow a potential

user to decide which product would best meet their needs.

Unfortunately, comparisons of these products is seldom made using

the implementation of a real life business application and thus

having the potential of providing information on the relative ease

of implementation of a front end for these products and the

useability of the final product. This report will attempt to provide

1

a qualitative comparison of two of the more advanced computer

database management systems.

At the time this report was initiated (1986) the two most

favorably reviewed computer based, relational, programmable database

management systems on the market were dBASE III+ and RBASE 5000. A

review of their technical specifications showed them to be fairly

comparable in system requirements and features offered so these two

systems were chosen for comparison by implementation.

DBASE III+ is a product of Ashton Tate Inc. It is a single or

multiuser relational database management system with the minimum

requirements of 256 K memory and two disk drives. A database created

with dBASE 1 11+ may be manipulated from the assist mode which

provides a series of menus that guide the user through the steps

necessary to create a database file, add records to the database,

delete records from it or to browse through and modify existing

database records. The assist mode may also be used to build queries

for the database. These tasks may also be performed from the "dot

prompt" without the aid of the assistant. An editor is also provided

to take advantage of the programming capabilities of the system.

RBASE 5000 is a Microrim product. It too is a single or

multiuser system with the minimum system requirements of 320 K of

memory and a hard disk. RBASE 5000 provides a prompt mode, similar

to the assist mode of dBASE III+, that guides the user through

database creation and manipulation and it provides an editor for use

when creating custom applications.

To provide a basis of comparison for these two systems, an

application was needed that would both benefit from implementation

with a database management system and was sufficiently large to

provide information on the effort required for the implementation.

The application also had to be small enough so as to not require an

unreasonable amount of time to complete the implementation. Another

desirable characteristic of the enterprise to be considered was that

the end users of the application should not be computer

professionals, thus requiring that the user interface allow database

manipulation with little chance of the database integrity being

compromised. These criteria were met by the Peoples' Grocery

Cooperative Exchange which was the enterprise chosen for

implementation. The operation of Peoples' Grocery is described

elsewhere in this report.

The implementation of the application was accomplished in the

following manner. The logical design of the database was developed

and this logical design was then implemented in both dBASE III+ and

RBASE 5000. The aim was for the final application of each product to

perform essentially the same function. In this way the effort

necessary to product the application could be evaluated and the

resulting user interface could be compared. It should be noted here

that the RBASE 5000 package used is a promotional package and as

such it contains all of the standard RBASE 5000 features, commands

and functions but it is limited in the number of tables and records.

Even though it was limited in this way the package was adequate to

complete the task at hand.

This report will discuss the creation of an extensible, "user

friendly" front end for the database of a small enterprise. A user

interface has been developed using both dBASE III+ and RBASE 5000

with the object of providing qualitative information on the effort

required to establish the database and produce a user interface for

each of these systems.

This chapter has discussed the need for practical information

when evaluating a database management system. Chapter 2 will

describe the enterprise to be implemented. Chapter 3 will cover the

operation of the application developed in dBASE III+ while chapter A

will provide similar information for the application developed in

RBASE 5000. Chapter 5 will compare the development of the two

applications and provide comments on various aspects of the process.

Chapter 6 will review both database management system

implementations and provide suggestions for future study.

Chapter 2

Problem Environment and Database Design

Introduction:

Among the problems faced by a small enterprise that wishes to

implement and maintain a DBMS as part of its operation is that the

people actually manipulating the database may not fully understand

the results of their actions on the database. Though the database

may be well designed, indiscriminate entry of new records and access

to all records by an inexperienced user may result in operational

chaos for the enterprise. To alleviate this potential problem, it

may prove useful in many instances to provide a front end to a given

DBMS which is customized to accommodate the needs of an enterprise.

This front end should meet the operational requirements of the

enterprise while preventing misuse of the database.

This chapter will describe the operation of a small enterprise

and the design of the database, and the user interface used to

satisfy the requirements of the enterprise.

Enterprise Description:

Peoples' Grocery Cooperative Exchange is a member owned food

buying club that also operates a small retail grocery store in

Manhattan, Kansas. Its business is conducted in the following

manner.

Every two weeks an order is placed to the grocery's main

supplier. At this time members have the opportunity to submit an

individual order in which they may order a full or a partial case of

an item. If they order a partial case, other members, or the store,

must order the balance of the case before the given item may be

ordered. When all of the individual orders have been submitted, they

are compiled into an order which is placed to the supplier. Between

the time the order is placed and the time it is delivered, labels

are prepared by hand which detail the catalog number and description

of an item, who ordered the item and how much of the item each

member ordered. When the shipment is delivered, it is distributed

among members in accordance with the prepared labels. At this time

note is taken of items which were not delivered or which were

refused due to damage in transit or substandard quality. Adjustments

reflecting these undelivered goods are made to the orders involved.

Finally, incidental costs such as shipping, markup, taxes and member

equity are added to the base price of the items received, and this

bill is presented to the participating member for immediate payment.

After members have received their orders they may remove them

for home consumption or they may sell all or a portion of their

order by consignment through the groceries retail storefront.

To do this the member repackages the items they wish to sell,

prices them and identifies each package with her/his member

identification number. The number, price, and description of the

item are recorded along with the identification number of the member

selling the item. As the items are sold, their sale is recorded and

when all of a given item has been sold, the consigning member is

paid the price she/he requested.

Providing members the opportunity to sell merchandise on

consignment is not without cost. Rental of the retail space,

utilities, equipment, repairs, and the salaries of the manager and

cashier are all expenses which are paid for by the markup the

grocery adds on to the cost of the goods sold to the members and

through the retail storefront.

Given this mode of operation, there are two areas in which a

database management system would be helpful.

First, the effort involved in compiling, submitting and

distributing any order is done by a frequently changing cast of

volunteers. Some of the work is tedious and error prone which may

prompt more frequent turn over of volunteers willing to devote their

time to complete the necessary work. Thus, easing this task may keep

them enthused and willing to participate.

Secondly, the business is small and while expenses remain

fairly constant, the amount of sales may vary considerably from

month to month. For this reason, some outstanding debts or members

who are owed money for consignments which have already been sold may

remain unpaid so the grocery can maintain a positive bank balance.

To avoid serious financial difficulty, it would prove useful to

have the ability to assess the gross financial situation of the

grocery with relative ease so that prudent decisions can be made in

a timely manner.

A database to be used for the purpose of addressing these needs

has been implemented using Dbase III plus, a product of Ashton Tate,

and Rbase 5000, a microrim product. Both are relational database

products designed for use on personal computers.

Logical Design:

The logical design for the database needed to accomplish the

work necessary is given initially through the entities/objects of

concern given in figure 2.1

Each of the entities will be implemented as relations in the

Dbase III + and Rbase 5000 systems. These relations were checked for

normal form and they are in 3NF.

Summary

:

The aim of the system supporting the database is to maintain

enough information so as to allow removal of some of the burden of

order preparation and distribution through a user friendly system

that virtually anyone can use after a small amount of instruction.

The system must insure that when information is entered all of the

information necessary for proper system operation is entered. It

must also ensure that an inexperienced user does not corrupt the

database by inadvertently removing existing records or by entering

duplicate records. Thus, record removal is left to the system

administrator and entry of duplicate records is not allowed. The

next chapter further describes the user interface and system

implementation.

MEMBER
Member id, First name, Last name, Street address, City, State,
Zipcode, Home phone, Work phone: Key Member id.

SUPPLIER
Supplier name, Street address, City, State, Zipcode, Phone number,
Contact name: Key Supplier name.

PRODUCT CATALOG
Supplier name, Product identification number, Description, Case
price, Unit price, Shipping weight: Key Supplier name, Product
identification number.

MEMBER ORDER
Member id, Supplier name, Product identification number, Date,
Quantity
:Key Member id, Supplier name, Product identification number, Date.

CONSIGNMENTS
Member id, Description, Date, Price, All sold, Member paid:
Key Member id, Description, Date, Price.

EXPENSES
Date, Amount, Description, Paid to, Paid: Key Date, Amount,
Description, Paid to.

Figure 2.1 Entities of the syste

Chapter 3

Dbase III+ Implementation

3.0 Introduction:

The overall goals of this system are twofold. First it aims to

aid Peoples' Grocery in the completion of time consuming, frequently

performed, error prone tasks by reducing the effort required to get

the work done, while reducing the chance for errors. Secondly, it is

meant to give the management the ability to assess the general

fiscal health of the operation on short notice.

To do this, an interface with dBASE III + was created which

allows a naive user to enter data into the database without

inadvertently corrupting it. Additionally, the user is able to

generate reports of a predetermined format with a minimum amount of

effort and a reduced chance for error.

The system is driven by a main menu from which the user can

initiate any of the tasks the application can perform (figure 3-1).

Options in the menu fall into the broad categories of data

entry/update and report generation. With the options that appear in

the data entry/update section the user is allowed to enter

information for members, order information, supplier data, product

data, consignment information and store expense information. From

this set of options the user may also make changes to selected

fields in existing records. Data entry is accomplished through the

use of forms which prompt the user for input. The system checks for

and disallows duplicate forms and it requires that key fields in

each form have data entered in them. Report form generation is

generally accomplished by the user answering yes or no to a system

prompt or by entering a date. The options in the reports section

allow the user to print product breakdown labels, order summaries,

bills for individual member orders as well as reports of consignment

status and reports summarizing expenses. To accomplish all of the

work done by the application required 2500 lines of code in 99

procedures. The rest of this chapter is devoted to describing in

more detail the actions taken by the system when options are chosen

from the main menu.

3.1 Common Actions:

There are actions which are commonly and repeatedly performed

in various parts of the program; these will be described in this

section here and referred to later in the text.

These are l)locate a member using the member identification number,

2)browse the file of current members, and 3)browse the file of

current suppliers.

3.1.0 Locate a member using the member identification number:

The purpose of this action is to identify an existing member.

The user is prompted to enter a member's identification number

(figure 3-2). If the number entered does not exist in the database,

an error message is displayed and the user is allowed to try again .

If the number entered does exist, the appropriate data for the

action to be performed is retrieved.

11

PEOPLES GROCERY DATABASE

- INPUT / UPDATE

^M::>™::

A. Member Infc ,

B. Member Orders

C. New Consignments

D. Suppliers

E. Product Catalogs

F. Store Expenses

•I REPORTS

'm:m:

G. Product / Member Labels

H. Members Order Bill

I. Consignment Summary

J. Combined Order

K. Finances

%M\mmi^ r Selection (A -I, or X to quit) : :]

Figure 3.1 dBASE III+ Main Menu

ENTER MEMBERS NUMBER

Figure 3-2 Prompt for Member Identification number

12

3.1.1 Browse the file of current members:

On occasion, the user may not know a given member's

identification number. The browse member file action allows the

examination of identification numbers and their associated names.

The names and identification numbers are displayed along with three

user response options (figure 3-3). By typing 'Y' the user is

choosing to perform an action involving the member displayed. By

typing 'N' the user is choosing to not take an action involving this

member. With this response, another member name and number is

displayed and the user is again allowed to respond. In this way all

member names and identification numbers will be displayed in

ascending order of identification numbers. When the entire file has

been examined, the user is informed and returned to the previous

menu. The third possible response is 'X' which abandons the browsing

operation and returns to the previous menu.

3.1.2 Browse the file of current suppliers:

Some actions require identification of a supplier. To avoid the

spelling errors possible when entering a supplier's name, names of

the suppliers are displayed one at a time and the user is presented

with the same response options as in the browse member file (figure

3-4). The actions taken for a given response are also the same only

of course associated with the supplier instead of a member.

13

MEMBER I 1 NAME DON HALEY

UPDATE MEMBERSHIP INFO FOR THIS MEMBER? Y/N

Y - UPDATE INFORMATION FOR THIS MEMBER.

N - SKIP THIS MEMBER, LOOK AT THE NEXT.

X - RETURN TO THE PREVIOUS MENU.

Figure 3-3 Prompt to Browse Membership File

SUPPLIER BLOOMING PRARIE

UPDATE INFO FOR THIS SUPPLIER? Y/N

Y DISPLAYS INFO FOR THIS SUPPLIER

N SHOWS YOU THE NEXT SUPPLIER

X RETURNS YOU TO THE PREVIOUS MENU

Figure 3-4 Prompt to Browse Supplier File

14

3.2 Entering and updating information:

Selection of an action in this set of options (figure 3-1)

allows the user to enter or update information for the following

entities, Member Information, Product Catalog, Supplier Information,

Member Orders, Consignments, and Expenses.

Member information:

When this action is chosen it displays a menu (figure 3-5)

allowing the user to add a new member, update an existing member

record or return to the main menu.

Adding a new member: This action displays a form (figure 3-6)

with spaces for an identification number, first name, last

name, street address, city, state, zip code, home phone number

and work phone number.

The module requires the entry of an identification number and

a first and last name. Failure to enter this information

results in an error message and then returns the user to the

form entry mode. It also checks for and disallows duplicate

identification numbers. Once the form has been completed the

user is allowed to store the information as entered, go back

and make changes, or abandon the operation without storing any

data. Acceptance or abandonment of the operation returns the

user to the membership information menu.

15

A. ADD A NEW MEMBER

B. UPDATE A CURRENT MEMBER

C. RETURN TO MAIN MENU

ENTER SELECTION A-C i : |

Figure 3-5 Membership Information Menu

PEOPLES GROCERY COOPERATIVE

MEMBERSHIP INFORMATION FORM

MEMBER i

FIRST NAME

ADDRESS

STREET

CITY

STATE ZIP CC

HOME PHONE

WORK PHONE

LAST NAME

DE

Figure 3-6 Membership Information Form

16

Updating an existing member: When this action is chosen, it

displays a menu that allows the user to enter a known

identification number, as described in section 3.1.0, browse

the member file a record at a time, as described in section

3.1.1, or return to the previous menu.

When a member has been identified, the member information

form (figure 3-6) is displayed, and the user may make changes

to the address and phone number fields. As before, upon

completion of the changes, the user is allowed to save the

changes, return to the form to make corrections or abandon the

operation without saving the changes. After acceptance or

abandonment, the user is returned to the previous menu.

Member Order

:

When this action is chosen, a menu (figure 3-7) is displayed

allowing the user to enter a new order or update an existing order.

Entering a new order: The supplier to which the order is to

be placed, and the member placing the order are selected as

described in sections 3.1.1 and 3.1.2 respectively. When these

tasks have been successfully completed, an order form is

displayed (figure 3-8) in which the user enters the product

identification number. If the number entered doesn't exist for

the chosen supplier an error message is displayed and the user

is allowed to reenter. After a valid product identification

number has been entered, the user may enter the number of units

17

. : \y::mim

A. ENTER A MEMBERS ORDER

B. UPDATE All EXISTING ORDER

C. RETURN TO MAIN MENU

IllENTER SELECTION A-C : :

gure 3-7 Member Order Menu

MEMBER ORDER FORM

MEMBER 1 209 DATE 03/17/89

MEMBER NAME BECKY O'DONNELL SUPPLIER BLOOMING PRARIE

CATALOG 1 NUMBER OF UNITS

(J OF POUNDS, OUNCES, BAGS, CANS ETC.)

ITEM DESCRIPTION

LAS1

FOR

ITEM ORDERED

MEMBER THIS DATE

Figure 3-8 Member Order Information Form

18

the member wishes to order. The only other items of information

stored with the order are the supplier name, member

identification number and the order date. The supplier and

member have already been identified and the date is taken to be

the system date. When the form is complete, it can be saved,

corrected, or abandoned. If saved, the user may order another

item for the chosen member or choose a new member for whom to

place an order.

Update an existing order: A supplier and member are

identified, e.g.; when submitting a new order. The order form

is displayed (figure 3-8) and the user is allowed to enter the

date of the order to be updated. If the chosen member hasn't

placed an order with the chosen supplier on the date entered,

an error message is displayed. Then they are allowed to reenter

the date. When a valid date has been entered the user enters

the identification number of the ordered item for change. If

the item hasn't been ordered by the given member on the given

date, an error message is displayed and the user has the option

of abandoning the operation or trying again. When an ordered

item has been successfully identified and the desired changes

made, the user is given the option of changing another item for

this supplier and member. If no further changes for this member

are needed, a change of order for another member or return to

the enter / update menu is possible.

19

Supplier Information:

When this action is chosen, it displays a menu (figure 3-9)

allowing the user to add a new supplier, update an existing supplier

record or return to the main menu.

Add a new supplier: When this action is chosen it displays

the supplier information form (figure 3-10) in which may be

entered the supplier name, street address, city, state,

zipcode, phone number and the name of the supplier's

representative with whom the grocery has contact. A value must

be entered for the supplier's name but entry of all other

values is optional. Upon completion of the form, if no value

has been entered for the supplier's name an error message is

displayed, and the user is returned to the form. This is also

the case if the supplier name already exists in the database.

After completion, the form is stored, or abandoned as described

in the member information section.

Update an existing supplier: When this action is chosen.it

prompts the user to browse through the supplier file as

described in the section 3.1.2.

When the proper supplier has been identified, the current

information for that supplier is displayed (figure 3-10) and

the user may update all of the fields except the supplier name.

The changes may be accepted, changed again or the whole

operation abandoned as previously described.

20

--.;-;,-.;
:

-.;;"..:;

A. ADD A NEW SUPPLIER

B. UPDATE A CURRENT SUPPLIERS RECORD

C. RETURN TO MAIN MENU

ESTER SELECTION A-C : :

Figure 3-9 Supplier Information Menu

PEOPLES GROCERY COOPERATIVE

SUPPLIER INFORMATION FORM

SUPPLIER NAME

NAME OF CONTACT

ADDRESS

STREET

CITY

STATE ZIP CODE

PHONE

Figure 3-10 Supplier Information Form

21

Product Catalog:

When this action is chosen it displays a menu (figure 3-11)

allowing the user to add a new product to a given supplier catalog,

update product information or return to the main menu.

Add a new product: When this action is chosen it displays a

form (figure 3-12) with spaces for the product identification

number, supplier name, product description, shipping weight,

case price, and unit price.

The module requires that every space in this form have an

entry and it checks for and disallows duplicate identification

numbers for the same supplier. Upon completion of the form, the

user may save the information abandon the operation with no

change to the database or return to the form to make

corrections.

Saving the form or abandonment of the operation returns the

user to the enter/update menu (figure 3-11).

Update an existing product: When this action is chosen, the

user is asked to select a supplier as described in section

3.1.1. When a supplier has been chosen for product update, a

menu is displayed (figure 3-13) allowing the user to enter a

known product identification number.

Enter identification number: When this action is chosen

it allows the user to enter a product identification

number (figure 3-1A). If the number is not present in the

22

rii'iii :

;;;.: '•'
:

-
:

: :

"

: '

v .-'.:.".';; '..::"" :

-

? :^:;;- !

A. ADD A NEW PRODUCT TO A CATALOG

B. UPDATE PRODUCT INFO

C. DELETE A PRODUCT FROM THE CATALOG

ENTER SELECTION AC -
:

Figure 3-11 Product Catalog Menu

PRODUCT INFORMATION

SUPPLIER BLOOMING PRARIE

ITEM DESCRIPTION

CATALOG I:

SHIPPING WT. UNIT PRICE CASE PRICE

0.00 0.00

Figure 3-12 Product Information Form

23

r—

—

i
A. ENTER All ITEM *

B. RETURN TO THE PREVIOUS MENU

: ,: ENTER SELECTION A-B : :

Figure 3-13 Product Update Menu

UPDATE CATALOG FOR PRODUCT I

Figure 3-14 Product Selection Prompt

24

chosen supplier's catalog, the user is informed and asked

to reenter the number. If the number is presenl , the

product form is displayed (figure 3-12) and the user may

make changes to the shipping weight, case price and unit

price fields. When changes are complete, they may be

saved, the operation abandoned, or the user may return to

the form to make corrections if necessary.

When the changes are saved or abandoned, the user is

asked if they want to make other changes in this

supplier's catalog. To do this, another product

identification number is entered and the process is

repeated. After all updates have been completed for the

current supplier, a new supplier can be chosen and the

update process repeated, or the user may choose to return

to the enter/update menu (figure 3-1).

Consignments:

When this action is chosen it displays a menu (figure 3-15)

allowing the user to enter a new consignment or update existing

consignments.

Enter a new consignment: When this action is chosen it

displays the consignment information form (figure 3-16)

allowing the user to enter the member identification number,

date, consignment description, the number of items placed on

consignment, the price to be paid to the member for each item,

25

:

,

-:^;.::;; ;

. .^.^X:i; f
.

; ; :
; :,;,.; -/.:;, ;, .,i;.-.;-

i
|,: ?

A. ADD NEW CONSIGNMENTS

B. UPDATE EXISTING CONSIGNMENTS

C. RETURN TO MAIN MENU

mnmi ENTER SELECTION A-C : :

Figure 3-15 Consignment Information Menu

PRODUCT CONSIGNMENT FORM

MEMBER I DATE 03/17/89

PRODUCT DESCRIPTION NUMBER PLACED PRICE / ITEM PAID

ON CONSIGNMENT TO MEMBER

0.00

ALL ITEMS SOLD F MEMBER PAID F

Figure 3-16 Consignment Information Form

26

a field that designates when all of the items have been sold,

and a field that designates if the member has been paid for

these items. For this form the date is taken to be the system

date but it may be changed. All fields except "all sold" and

"member paid" must have an entry. An error message is displayed

if any fields are left blank and the user is returned to the

form. Duplicates are checked for and disallowed.

When the form has been completed, the user may go back and

make changes to it, save it or abandon the operation with no

change.

Update an existing consignment: Allows the user to enter a

known member as described in section 3.1.0 identification

number or browse the member file as described in section 3.1.1.

When a member has been identified, the user is allowed to

browse through the items this member has on consignment in a

manner similar to browsing the member file. The member name,

consignment, date and consignment description are displayed

along with a user response menu. Typing 'Y' allows the user to

change the number of items on consignment, the price of each

item, the "all sold" field, and the "member paid" field. When

changes have been completed, the form may be saved, modified

further, or abandoned with no changes made. By typing 'N'the

user is shown the next consignment in the members file. When

all consignments for this member have been displayed, the user

is notified and returned to the choose member identification

27

number menu. Typing 'X' returns the user to the choose member

identification number menu.

Expenses

:

When chosen this option displays a menu (figure 3-17) that

allows the user to enter a new expense form or to browse and update

existing forms.

Enter an expense: When this action is chosen it displays an

expense form (figure 3-18) that allows the user enter the date,

the amount of the expense, who was paid, a description of the

expense and whether or not the bill has been paid. All fields

but the "paid" field must have an entry and duplicate fields

are checked for and disallowed.

When the form has been completed it may be saved, modified,

if necessary, or abandoned without being saved.

Browse the expense file: This action displays existing

expense forms (figure 3-19) beginning with the most recent, and

a user response menu. Typing 'Y' retrieves the current form and

allows the user to change the boolean expense paid field.

Typing 'N' causes the next record to be displayed, and Typing

X' abandons the browsing operation and returns the user to the

previous menu.

28

_ ..;.

A. ENTER AN EXPENSE

B. BROWSE EXPENSE FILE

C. RETURN TO MAIN MENU

EWTER SELECTION A-C : :

Figure 3-17 Expense Information Menu

EXPENSE FORM

DATE 03/17/89 AMOUNT 0.00

PAID TO

DESCRIPTION

PAID? F

Figure 3-18 Expense Information Form

29

3.4 REPORTS

There are reports that are used routinely during the operation

of the grocery e.g., product breakdown labels, member order bills

and combined order summaries. These forms must be prepared whenever

the grocery submits an order to a supplier. In addition to these

reports, there are others that are required on a sporadic basis;

consignment summaries and reports regarding the stores expenses may

be requested at any time. The actions the user must take to generate

these reports are described in this section.

Product breakdown label:

When this action is chosen it displays a menu (figure 3-20)

allowing the user to print product breakdown labels or return to the

main menu.

Print product breakdown labels: When this action is taken, a

message (figure 3-21) is displayed asking if creation of labels

for the order placed to the displayed supplier on the displayed

date is desired. By typing 'Y' labels are printed showing the

date of the order, the catalog number of the item and its

description. The rest of the label consists of the

identification number and name of each member that has ordered

this item as well as the quantity they ordered (figure 3-22).

When labels for all ordered items have been printed, the user

is returned to the main menu.

By typing 'N' at the prompt in figure 3-21 another supplier

30

EXPENSE FORM

DATE 05/20/87 AMOUNT 20.00

PAID TO KPL

DESCRIPTION ELECTRICITY

PAID? F

Y LETS YOU UPDATE THIS EXPENSE FORM

N SHOWS YOU THE NEXT EXPENSE FORM

X RETURNS YOU TO THE PREVIOUS MENU

ENTER RESPONSE

Figure 3-19 Prompt to Browse Expense File

:;.-:-;-. V Y :.
:

;-.;. :_::

A. GENERATE PRODUCT BREAKDOWN LABELS FOR A

SPECIFIED ORDER.

B. RETURN TO MAIN MENU

: SELECTION A-B : :

Figure 3-20 Product Breakdown Menu

31

PRINT LABELS FOR ORDER SUBMITTED TO BLOOMING PRASIE ON 02/21/89

Y/N ?

Figure 3-21 Product Breakdown Label Prompt

PRODUCT BREAK DOWN LABEL

ORDER DATE 02/21/89

CATALOG I 1001

DESCRIPTION WHEAT BERRIES

MEMBER I MEMBER NAME QUANTITY

2 JAYNE LINK 5.00

209 BECKY O'DONNELL 50.00

Press any key to continue...

Figure 3-22 Product Breakdown Label

32

name and date combination is displayed. When all possible order

date and supplier combinations have been examined, the user may

reexamine the list or return to the main menu.

Order bill:

When this action is chosen it displays a menu (figure 3-23)

allowing the user to continue with the operation or return to the

main menu.

Print order bill: When this action is chosen, the appropriate

date and supplier are chosen as described in section 3.1.2 and

the user is asked if any items were not delivered or were

refused when the order arrived. If this case exists, the

catalog numbers of those items are entered and the items are

deleted from the order. Otherwise, the user is asked to enter

some information that varies from order to order. These are

shipping cost as price per pound, member equity charge sales

tax rate, price markup rate and discount. At this point, the

user may go back and make corrections, abandon the operation or

continue. If the continue option is chosen, a bill is printed

(figure 3-24) for each member participating in this order. Each

bill lists the members name, identification number, the

suppliers name and the order date plus the catalog numbers

descriptions, quantity ordered, unit cost, and total price for

each item this member has ordered. Any adjustments as entered

above are also listed along with the total cost to the member.

33

:

I
FOR EACH MEMBER PARTICIPATING IN A GIVEN

B. RETURN TO MAIN MENU

: ENTER SELECTION A-B : :

Figure 3-23 Order Bill Menu

ORDER BILL FOR JATNE LINK

SUPPLIER BLOOMING PRARIE

1001 WHEAT BERRIES

. I 2

ORDER DATE 02/21/89

CATALOG I DESCRIPTION QUANTITY ORDERED UNIT COST TOTAL PRICE

5.00 0.50 2.50

SUBTOTAL 2.50

MARKUP 0.38

DISCOUNT - 0.00

TAX 0.16

EQUITY 0.00

TOTAL SHIPPING COST 0.00

TOTAL COST S 3.03
Press any key to continue...

Figure 3-24 Order Bill Report

34

Consignment Summary:

When this action is chosen it displays a menu (figure 3-25)

that gives the user the option to produce one of three consignment

reports these are sold unpaid consignments for a given member, all

members with sold unpaid consignments, all members with sold and

unsold unpaid consignments.

List sold unpaid consignments of a given member: This action

lets the user identify a member via the actions described in

sections 3.1.0 or 3.1.1. If the chosen member has any

consignments which have been sold but for which they have not

been paid, the consignment descriptions and the values of those

consignments are listed, as well as the sum value of all sold,

unpaid consignments for this member (figure 3-26). If the

chosen member has no sold, unpaid consignments, a message to

that effect is displayed and the user is allowed to continue

browsing the member file or abandon the operation and return to

the main menu.

List all members with sold unpaid consignments: This report

lists each member that has items on consignment which have been

sold but for which they have not been paid by the grocery. The

total amount owed to each member for their sold consignments is

listed along with the total owed to all members for sold

consignments (figure 3-27).

i'j

A. LIST PRODUCTS SOLD BUT MEMBER UNPAID

FOR A GIVEN MEMBER

B. TOTAL ITEMS SOLD BUT MEMBERS UNPAID

FOR ALL MEMBERS

C. TOTAL AMOUNT OWED FOR CONSIGNMENTS FOR

SOLD AND UNSOLD ITEMS.

D. RETURN TO MAIN MENU

Upm SELECTION A-D : :§

Figure 3-25 Consignment Reports Menu

SUMMART OF CONSIGNMENTS SOLD BUT FOR WHICH MEMBER HAS

NOT BEEN PAID

MEMBER * 209

DESCRIPTION

MEMBER NAME BECKY O'DONNELL

UNITS UNIT PRICE CONSIGNMENT VAL

BROWN RICE

GARLIC

GOOSE EGGS

TOTAL AMOUNT OWED THIS MEMBER FOR SOLD ITEMS

Press any key to continue...

3 1.00 3.00

10 0.25 2.50

10 0.50 5.00

10.50

Figure 3-26 Sold, Unpaid Consignments Summary for a Given Member

!h

List all members with sold and unsold unpaid consignments:

This report lists each member having items on consignment and

the total amount owed to them for both sold and unsold

consignments as well as the total owed to all members for

consignments (figure 3-28).

Combined order:

When this action is chosen it displays a menu (figure 3-29)

allowing the user to print the combined member order or return to

the main menu.

Print combined member order: When this action is chosen, a

supplier is identified as described in section 3.1.2, an order

date is chosen, and a report is printed which contains the

supplier name, date of the order, catalog numbers descriptions

number of cases , case price and total cost for each item

ordered (figure 3-30). When all items have been listed, the

total value of the order is given and the user is returned to

the combined order menu.

Finances:

When chosen, this action displays a menu (figure 3-31) giving

the user the option to produce three reports. These reports are list

37

SUMMARY OF SOLD, UPAID CONSIGNMENTS FOR ALL MEMBERS

MEMBER I MEMBER NAME AMOUNT OWED

4 HUGH KNOX 100.00

209 BECKY O'DONNELL 10.50

TOTAL AMOUNT OWED TO ALL MEMBERS FOR SOLD CONSIGNMENTS 110.50

Press any key to continue...

Figure 3-27 Summary of Sold, Unpaid Consignments for All Members

SUMMARY OF AMOUNT OWED TO MEMBERS FOR SOLD AND UNSOLD CONSIGNMENTS

MEMBER } MEMBER NAME AMOUNT SOLD AMOUNT UNSOLD

1 DON HALEY 0.00 4.00
2 JAYNE LINK 0.00 15.00

4 HUGH KNOX 100.00 189.50

13 MARY ASH 0.00 3.00
60 PAUL WEIDHAAS 0.00 500.00

209 BECKY O'DONNELL 10.50 305.50

TOTAL AMOUNT OWED FOR SOLD

AND UNSOLD CONSIGNMENT ITEMS 1127.50
Press any key to continue...

Figure 3-28 Summary of Sold and Unsold, Unpaid Consignments

38

A. LIST THE TOTAL ITEMIZED ORDER FOR A
GIVEN DATE

B. RETURN TO MAIN MENU

ENTER SELECTION A-B AND TOUCH RETURN

Figure 3-29 Combined Order Menu

ORDER SUMMARY FOR BLOOMING PRARIE 02/22/89

CATALOG* DESCRIPTION | CASES CASE PRICE TOTAL COST

1001 WHEAT BERRIES 1 25.00
1002 BARLEY 2 15^00

1003 CORN 2 lo!o0

25.00

30.00

20.00

TOTAL ORDER COST
$ 75,00

Press any key to continue...

Figure 3-30 Combined Order Report

39

itemized expenses for a given month and year, list gross sales and

total expenses for a given month and year, and list all unpaid

expenses

.

List itemized expenses for a given month and year: When this

action is chosen, the user is prompted to enter the month and

year for which to list expenses. When the month and year have

been entered, the date the expense was incurred, who was paid,

a description of the goods or services, and the amount of the

expense as well as the sum of the months expenses are listed

(figure 3-32).

List gross sales and total expenses for a given month and

year: When this action is chosen, the user is prompted to enter

a month and year for which to generate a report. When the month

and year have been entered, the gross sales and total expenses

for a chosen month and year are listed (figure 3-33). The

figures given are lump sums with no indication as to the nature

of the expenses or sales.

List all unpaid expenses: When this action is chosen, all

unpaid bills are listed (figures 3-34 4 3-35). Itemized in the

report are who is owed, a description of the goods or services

received, and the amount as well as the sum of all outstanding

expenses. Additionally, consignments for which members have not

been paid are summed and the total amount owed to members for

40

.

J

.

:; :'.:,', ...-.:<:.
: . . : v

A. LIST ITEMIZED EXPENSES FOR A GIVEN MONTH

B. LIST TOTAL MONTHLY EXPENSES i GROSS SALES

FOR A GIVEN MONTH

C. LIST OUTSTANDING DEBTS INCLUDING AMOUNTS

OVED FOR SOLD AND UNSOLD CONSIGNED ITEMS.

D. RETURN TO MAIN MENU

!mmmm^^By^mm selection a-d .•

:

mu'H

Figure 3-31 Finances Reports Menu

SUMMARY OF STORE EXPENSES FOR THE MONTH OF March 1989

DATE PAID TO DESCRIPTION AMOUNT

TOTAL MONTHLY EXPENSES $ 0.00
Press any key to continue...

Figure 3-32 Expense Report For a Given Month and Year

41

MONTHLY GROSS SALES / EXPENSE REPORT

FOR THE MONTH OF March 1989

TOTAL GROSS SALES FOR THIS MONTH $ 0.00

TOTAL EXPENSES FOR THIS MONTH $ 0.00

Press any key to continue...

Figure 3-33 Report of Sales and Expenses for a Given Month and Year

REPORT OF ALL OUTSTANDING DEBTS

UNPAID BILLS

PAID TO DESCRIPTION AMOUNT

KPL ELECTRICITT 20.00

TOTAL UNPAID BILLS $ 20.00
Press any key to continue...

Figure 3-34 Report of Unpaid Expenses

42

UNPAID CONSINGMENTS

NAME CONSIGNMENT AMOUNT

DON HALEY

JAYNE LINK

HUGH KNOX

MARY ASH

PAUL WEIDHAAS

BECKY O'DONNELL

TOTAL UNPAID CONSIGNMENTS

TOTAL OUTSTANDING DEBT

e...

4.00

15.00

289.50

3.00

500.00

308.50

5 1,120.00

Press any key to continu

5 1,140.00

Figure 3-35 Sumnary of Outstanding Debt

43

consignments is given. The combined total owed for both

expenses and unpaid consignments is given as well.

3.5 Summary

The system allows members of Peoples' Grocery to expedite the

process of ordering goods through the grocery from the submission of

an order to a supplier, through the distribution of the order to

participating members. It also allows the management of the

financial status of the grocery.

To take care of data entry, the system uses a series of screen

forms which most people should be able to fill out with a small

amount of instruction and with reduced danger of these users

corrupting the database.

The reports generated by the system require a minimum of data

entry by the user.

44

Chapter 4

Rbase 5000 Implementation

4.0 Introduction:

The RBASE implementation of the Peoples' Grocery database uses

the same logical design and accomplishes the same objectives as the

dBase 1 11+ implementation though not in the same manner due to

differences between the two systems. As with the dBase III+ system

the Rbase system is menu driven and this chapter will examine the

actions taken in response to choosing the various menu options.

Unlike the dBase III+ application which can access all tasks

from the main menu, the RBASE 5000 application must access one of

two submenus before any work can be initiated. These sumbenus are

entitled; Enter/Update Information, and Reports (see figue 4-1).

When the Enter/Update Information option is chosen, another menu

(figure 4-2) is displayed which lists the areas for data entry.

Choosing any of the data entry/update options displays another menu

which lets the user add new information to the database or to update

existing information, or to return to the data entry/update options

menu.

Information is entered into the database or updated via a form

tailored to each entity. When each field available in a form has

been accessed, a system generated menu is displayed which allows the

user to save the form, abandon it without changes to the database or

to reedit the form. Saving or abandoning the form returns the user

to the menu from which the form was accessed.

45

PEOPLES GROCERY DATABASE

(1) ENTER/UPDATE INFORMATION

(2) REPORTS

(3) EXIT

Figure 4-1 RBASE 5000 Main Menu

R/UFDATE INFORMATION=

(1) MEMBER SHIP INFORMATION

(2) SUPPLIER INFORMATION

(3) PRODUCT CATALOG

(4) MEMBER ORDERS

(5) CONSIGNMENTS

(6) EXPENSES

Figure 4-2 Enter/Update Options Menu

46

The RBASE 5000 system also generates reports of a predetermined

format. When the 'Reports' option is chosen from the main menu, A

menu (figure 4-3) listing report category options is displayed. As

with the dBase III+ implementation, the reports generated require a

minimum of user input. Though both the dBase III+ application and

the RBASE 5000 application preform essentially the same the tasks,

the RBASE 5000 does so with significantly less code, 1500 lines of

code in 25 procedures.

4.1 Enter/Update information:

When this action is chosen, it displays a menu (figure 4-2) that

allows the user to enter or update information for the following

entities, Member Information, Product Catalog, Supplier Information,

Member Orders, Consignments, and Expenses.

Member information:

When this option is chosen it displays a menu (figure 4-4) with

the options of adding new member information or updating information

for an existing member or returning to the previous menu.

Add a new member: When this option is chosen, a form is

displayed (figure 4-5) allowing the user to enter a members

identification number, first name, last name, street address,

city, state, zipcode, home phone, work phone number.

Information must be entered in the identification number and

name fields, and duplicate identification numbers are checked

47

PEOPLES GROCERY REPORTS=

(1) PRODUCT DISTRIBUTION LABELS

(2) PRINT MEMBER ORDER BILLS

(3) CONSIGNMENT SUMMART

(4) COMBINED ORDER

(5) STORE EXPENSE SUMMARY

(6) EXIT

Figure 4-3 Report Options Menu

MEMBER SHIP INFORMATION

(1) ENTER A NEW MEMBER

(2) UPDATE INFORMATION FOR AN EXISTING MEMBER

(3) EXIT

Figure 4-4 Member Information Menu

48

for and disallowed. When the form has been completed, it can be

saved edited, or abandoned. Saving or abandonment returns the

user to the member information menu.

Update an existing member: When this action is chosen, it

results in a prompt asking the user to enter the identification

number of the member of interest. If the number entered does

not exist the user is returned to the member information menu.

When a valid number has been entered, the appropriate form is

displayed and the user may make changes to any field. After

updating, the new information may be saved or the operation may

be abandoned with no changes made to the database.

Supplier Information:

When this action is chosen, a menu giving the user the option

of entering a new supplier into the database or updating an existing

supplier is displayed (figure 4-6).

Enter a new supplier: When this action is chosen, a form is

displayed (figure 4-7) that allows the user to enter the

supplier name, street address, city, state, zipcode, contact

name, and phone number.

When completed, the form may be saved, reedited, or

abandoned with no changes made to the system. A supplier name

must be entered and duplicate supplier names are checked. If no

supplier name has been entered or a duplicate is found in the

49

PEOPLES GROCERY MEMBER INFORMATION FORM

MEMBER 1

1

|

FIRST NAME:

LAST NAME:

ADDRESS

STREET:

CITY:

STATE:

ZIPCODE:

HOME PHONE: ()
-

WORK PHONE: () -

Figure 4-5 Member Information Form

iUPPLIER INF0RMATI0N=

(1) ADD A NEW SUPPLIER

(2) UPDATE AN EXISTING SUPPLIER

(3) RETURN TO PREVIOUS MENU

Figure 4-6 Supplier Information Menu

50

database, an error message is displayed and the user is given a

chance to correct the error.

Update an existing supplier: When this action is chosen,

the user is prompted for the name of the supplier to update. If

the name entered does not exist in the database, no message is

given and the user is returned to the supplier information

entry/update menu. If the supplier does exist, the appropriate

form is displayed and the user may change any field before

saving or abandoning the operation.

Member Order

:

When chosen, displays a menu (figure 4-8) allowing the user to

enter new order information, or update existing information.

Enter a new order: When this action is chosen, a form is

displayed (figure 4-9) that allows the user to enter the member

identification number, order date, supplier name, product

identification number, and the amount ordered. When the form is

complete, it may be saved or the operation abandoned.

Information must be entered in all fields and duplicate records

are not allowed. If any field is left blank or a duplicate

record is found, an error message is displayed and the user is

given the opportunity to make corrections before saving or

abandoning the operation.

51

SUPPLIER INFORMATION FOR

SUPPLIER NAME:

ADDRESS:

STREET

TOWN

STATE

ZIPCODE

PHONE () -

CONTACTS

NAME:

Figure 4-7 Supplier Information Form

=MEMBER ORDERS=

(1) ENTER AN ITEM ORDER

(2) UPDATE AN ITEM ORDER

(3) EXIT

Figure 4-8 Member Order Menu

52

Update an existing order: When this option is chosen, the

user is prompted to enter a member identification number and

the date of the order. If the designated member has submitted

an order on the given date, all of the items the member ordered

on that date are listed and changes may be made to any field

before saving or abandoning the changes. If a record matching

the entered information does not exist, the user is returned to

the member order entry/update menu.

Product Catalog:

When this action is chosen, it displays a menu (figure 4-10)

that allows the user to add a new item to the product catalog,

update existing items, or return to the enter/update menu.

Add a new item: When this action is chosen, a form is

displayed (figure 4-11) that allows information for the

supplier name, product identification number, product

description, case price, unit price and shipping weight to be

entered. After all fields have been accessed, the user may save

the new record or abandon the operation, all the fields in this

record must have an entry. If a field is left blank or an

attempt is made to enter a duplicate record, an error message

is displayed and the user is allowed to correct the error and

then save the new record or abandon the operation.

Update an existing product: When this action is chosen, the

53

MEMBER ORDER FORM

MEMBER 1: DATE

CATALOG I QUANTITY:

ITEM DESCRIPTION:

SUPPLIER:

Figure 4-9 Member Order Form

(1)

=PRODUCT CATALOC ,i

ENTER A NEW PRODUCT

(2) UPDATE PRODUCT INFORMATION

(3) EXIT

Figure 4-10 Product Information Menu

54

user is prompted to enter the name of a supplier and the

product identification number. If a record with the requested

information exists, it is retrieved and the user may modify any

field before saving the new information or abandoning the

operation. If a matching record is not found, the user is

returned to the update menu.

Consignments:

When this option is chosen a menu is displayed (figure 4-12)

that allows the user to enter a new consignment, update existing

consignments or return to the enter/update menu.

Enter a new consignment: When this action is chosen, a

consignment form is displayed (figure 4-13) in which the user

enters the member identification number, date, the consignment

description, the number of the given item placed on

consignment, the price to be paid to the consignor for each

item, whether or not all items have been sold, and whether or

not the member has been paid for the consignments sold. Entries

must be made in the member identification, description, date,

amount paid and number of items fields. Duplicate records are

not allowed. The existence of a duplicate record or the failure

to enter data in a field that requires data to be entered

55

PRODUCT CATALOG ITEM ENTRY FORM

CATALOG f: SUPPLIER:

DESCRIPTION:

UNIT PRICE: CASE PRICE:

SHIPPING WEIGHT:

Figure 4-11 Product Information Form

£NTER/UPDATE CONSIGNMENTS

(1) ENTER A CONSIGNMENT

(2) UPDATE CONSIGNMENTS

(3) EXIT

Figure 4-12 Consignment Menu

56

prompts an error message and the user is allowed to make the

necessary corrections before saving the record or abandoning

the operation.

Update an existing consignment: When this action is chosen,

the user is prompted to enter the identification number of the

member whose consignments they want to update. All existing

consignments for this member are listed and the user may make

changes to any field of any record and then save or abandon the

modifications. If the given member has no consignments on

record, the user is returned immediately to the consignment

entry/update menu.

Expenses

:

When this action is chosen, it displays a menu (figure 4-14)

that allows the user to enter a new expense or to update an existing

expense.

Enter a new expense: When this action is chosen, a form is

displayed (figure 4-15) that allows the user to enter the date,

who was paid, a description of the goods or services received,

the amount of the expense and whether or not the expense has

been paid. All fields but the expense paid field must have an

entry and as usual, duplicate records are not allowed. If any

field but the 'expense paid' field is left empty or a duplicate

record is found, an error message is displayed and the user is

57

CONSIGNMENT ENTRY/UPDATE FORM

MEMBER 1: DATE:

NAME:

CONSIGNMENT

DESCRIPTION:

// OF ITEMS: PRICE PAID TO MEMBER:

ALL ITEMS SOLD? MEMBER PAID?

Figure 4-13 Consignment Information Form

=ENTER/UPDATE EXPENSES=

(1) ENTER AN EXPENSE

(2) UPDATE AN EXPENSE

(3) EXIT

Figure 4-14 Expense Information Menu

58

given the opportunity to make necessary corrections after which

the user may save the record or abandon the operation.

Update existing expense records: When this action is

chosen, all existing expense records are displayed and the user

may update any field in any record after which changes may be

saved or the update operation abandoned.

4.2 REPORTS

When the report option is chosen from the main menu, the menu

(figure 4-3) listing the report categories is displayed. These

categories are product breakdown labels, member order bills,

combined order summary, consignments, and finances. This section

will describe the actions taken when these options are chosen.

Product breakdown labels:

When this action is chosen, another menu (figure 4-16) is

displayed that allows the users to print a product breakdown label

for a selected order or to return to the main menu.

Print product breakdown label for a specified order: When this

action is chosen, the user is prompted to enter an order date

and the name of the supplier ordered from. If no such date /

supplier combination exists in the database, all order dates

and suppliers are listed and the user is allowed to reenter the

requested information. Upon entry of a valid date and supplier

59

EXPENSE FORM

DATE:

PAID TO:

PAID FOR:

PAID?

AMOUNT:

Figure 4-15 Expense Data Form

PRODUCT DISTRIBUTION LABELS=

(1) PRINT PRODUCT DISTRIBUTION LABELS FOR A SPECIFIED ORDER

(2) EXIT

Figure 4-16 Product Breakdown Label Menu

hi)

a product breakdown label for each item ordered Is printed

(figure 4-17). Listed are the item name, the names of the

members ordering the item and the amount of the item each

member ordered.

Member order bills:

When this action is chosen, another menu (figure 4-18) is

displayed that allows the users to print an itemized bill for each

member participating in a selected order or return to the main menu.

Print bills for members participating in a selected order:

When this action is chosen, the user is prompted to enter an

order date and the name of the supplier ordered from. If no

such date / supplier combination exists in the database, all

order dates and suppliers are listed and the user is allowed to

reenter the requested information. Upon entry of a valid date

and supplier the user may change information that varies from

order to order. The items that may be changed at this point are

the tax rate, percentage of markup, shipping cost, member

equity charges, and discount rate. After these changes have

been made the user is prompted to enter any items that were not

delivered because they were out of stock, damaged in transit or

otherwise unacceptable. These products are deleted from the

order and a bill is printed for each member participating in

the order (figure 4-19).

61

ITEM DISTRIBUTION LABEL

Item Description: CHICKEN

MEMBER NAME QUANTITY

BECKY ODONNELL 5.

Figure 4-17 Product Breakdown Label Report

=0RDER BILLS=

(1) PRINT ITEMIZED BILLS FOR EACH MEMBER IN A SPECIFIED ORDER

(2) EXIT

Figure A-18 Order Bill Menu

62

Combined order summary

:

When this action is chosen, another menu (figure 4-20) is

displayed that allows the users to print a summary of the items

ordered for a selected order or to return to the main menu.

Print an order summary for a specified order: When this action

is chosen, the user is prompted to enter an order date and the

name of the supplier ordered from. If no such date / supplier

combination exists in the database, all order dates and

suppliers are listed and the user is allowed to reenter the

requested information. Upon entry of a valid date and supplier

a summary of the order is printed (figure 4-21). Listed are the

product identification number, the item description, the number

of cases ordered, the total value of the ordered item and the

value of the whole order.

Consignments:

When this action is chosen, another menu (figure 4-22) is

displayed which lists the reports that are produced by this section.

These reports are list products sold but member unpaid for a given

member, list total items sold but members unpaid for all members,

and list total amount owed for sold and unsold consignments.

List products sold but member unpaid for a given member: When

this action is chosen, the user is prompted to enter the

desired members identification number. This member's

63

MEMBER ORDER BILL

Member Name: BECKY ODONNELL

CATALOG i DESCRIPTION QUANTITY PRICE

201 CHICKEN 5.

VALUE OF ORDER

MEMBER EQUITY CHARGE

MARKUP PRE EQUITY TOTAL X 15. percent

TAX 4.5 percent

SHIPPING COST

$10.00

$10.00

$0.20

$1.50

$0.52

$0.40

TOTAL CHARGE $12.62

Figure 4-19 Order Bill Report

COMBINED ORDER REPORT=

(1) ITEMIZE TOTAL ORDER FOR A GIVEN DATE AND SUPPLER

(2) EXIT

Figure 4-20 Order Summary Menu

64

DATE: 11/21/88

ITEM// DESCRIPTION

ORDER SUMMARY

SUPPLER: blooming prarie

TOTAL 0UA1TCITY VALUE

S10.00
201 CHICKEN 5,

TOTAL VALUE OF ORDER $10.00

Figure 4-21 Order Summary Report

CONSIGNMENT SUMMARY=

(1) LIST PRODUCTS SOLD BUT MEMBER UNPAID FOR A GIVEN MEMBER

(2) LIST TOTAL ITEMS SOLD BUT MEMBERS UNPAID FOR ALL MEMBERS

(3) LIST TOTAL AMOUNT OWED FOR SOLD AND UNSOLD CONSIGNMENTS

(4) EXIT

Figure 4-22 Consignment Reports Options Menu

65

consignments which have been sold but for which the member has

not been paid are then itemized ant the total amount owed the

member is displayed (figure 4-23). If the chosen member has no

sold, unpaid consignments, a list of all members with sold

unpaid consignments is displayed and the user is allowed to

reenter a new identification number.

List amount for items sold but members unpaid for all

members: When this action is chosen, a form is produced (figure

4-24) which lists each member who has consignments which have

been sold but for which the member has not been paid. Also

given is the amount owed to each of these members and the total

amount owed to all members.

Expenses

:

When this option is chosen, a menu is displayed (figure 4-25)

that lists three possible expense reports. These reports are 1)

itemize expenses for a given month, 2) total expenses and gross

sales for a given month, and 3) total outstanding debt.

Itemize expenses for a given month: When this option is

chosen, the user is prompted to enter a date for which to

itemize expenses. Upon entry of the chosen date, a form (figure

4-26) listing the description of the expense, the amounts paid,

who was paid and the total expenses for the month is produced.

hh

SUMMARY OF SOLD BUT UNPAID CONSIGNMENTS

Member Name: BECKY ODONNELL

DESCRIPTION UNITS UNIT PRICE VALUE

eggs 5 $0.75 S3. 75

tomatoes 5 $0,25 $1.25

FLOUR 1 $1.00 $1.00

TOTAL SOLD BUT UNPAID CONSIGNMENTS $6.00

Figure 4-23 Consignments Sold but Member Unpaid for a Given Member

SUMMARY OF SOLD UNPAID CONSIGNMENTS

MEMBER NAME AMOUNT

BECKY ODONNELL $1.25

TOTAL SOLD BUT UNPAID CONSIGNMENTS $1.25

Figure 4-24 Summary of Sold Unpaid Consignments for All Members

6 7

SUMMARY OF UNPAID CONSIGNMENTS SOLD AND UNSOLD

MEMBER NAME

JOE SMITH $9.00

BECKY ODONNELL $12.25

SUMMARY OF TOTAL UNPAID CONSIGNMENTS $21.25

Figure 4-25 Sold and Unsold Consignments Report

EXPENSE REPORT MENU=

(1) LIST ITEMIZED EXPENSES FOR A GIVEN MONTH

(2) LIST TOTAL EXPENSES AND GROSS SALES FOR A GIVEN MONTH

(3) LIST OUTSTANDING DEBTS INCLUDING AMOUNT OWED FOR CONSIGNMENT

(4) EXIT

Figure 4-26 Expense Report Options Menu

68

Total expenses and gross sales: When this action is chosen,

the user is prompted to enter the date for which to produce the

report. Upon entry of a date, a form is produced (figure 4-27)

which lists the total expenses of the grocery for the

designated month along with the total gross sales of the

grocery for the same month.

Outstanding debt: when this action is chosen a form is

produced (figure 4-28) which lists the total amount owed for

unpaid expenses and the total amount owed for consignments.

Summary:

The RBASE 5000 application performs the same tasks as the dBase

III+ application. However, there are some system dependent

differences in accomplishing these tasks. The next chapter will

qualitatively compare RBASE 5000 and dBASE III+.

!,':>

SUMMARY OF ALL EXPENSES FOR MONTH OF November 1988

DESCRIPTION AMOUNT

ART WORK $5.00

TYPING $5.00

Panting $8.00

TOTAL EXPENSES FOR THE MONTH $18.00

Figure 4-27 Itemized Expense Report for a Given Month

SALES / EXPENSE REPORT FOR THE MONTH OF November 1988

TOTAL VALUE OF GOODS ORDERED FROM SUPPLIERS THIS MONTH $10.00

TOTAL MONTHLY EXPENSES $0.00

Figure 4-28 Expense and Gross Sales Report for a Given Month

70

Chapter 5

Comparison

5.0 Introduction:

Given the previously described enterprise, and implementations

of dBase III+ and RBASE 5000, several comparisons can be made which

can help judge the suitability of each system for use in developing

other prospective database implementations. Among the possible

points of comparison are 1) the "user friendliness" of the system,

2) ease of implementation, 3) the ease with which the system may be

adapted to a specific application.

5.1 User friendliness:

The ability to develop a user friendly system is a primary

concern when building a front-end for a database management system.

In the case of the Peoples' Grocery database, the members using the

system will change frequently and they will come to use the system

with a widely varying knowledge of how the database is organized or

even how to use a computer. Therefore, it is essential that the

front-end lead the user through the necessary operations while

allowing them to easily make corrections or return to the starting

point without changing the database.

One of the important attributes of a "user friendly" system is

the consistency of command actions [SIME 85] that is a response to a

command, no matter how often or where the command appears, should

71

result in the same action. The command structure of an application

developed with EBASE 5000 is dictated primarily by the code

generation facility which enforces consistency of command actions.

The application generation facility creates a tree of menus and

actions taken as options of these menus. This tree must be traversed

menu by menu. Likewise when the action or the use of a menu is

finished, the user is returned to the previous menu.

The command structure of dBASE III+ gives much more flexibility

to the programmer. Menus and the actions taken from those menus are

determined solely by the programmer writing the application. This

could lead to a breakdown in the consistency of program behavior but

it is a simple matter to develop a pattern of menu and user query

presentation which can be maintained throughout an application.

Screen formatting is an important aspect of user friendliness

and again RBASE 5000 exerts more rigid control over final screen

appearance than dBASE III+. When designing menus in RBASE 5000 the

user enters the menu title and option headings and the system

automatically formats the screen using the information given (figure

4-x). Slightly more flexibility is given when developing forms or

reports in that the user may place text wherever desired and place

form borders wherever wanted. But, there is no choice of what may

used for the border or the option of using other visual amenities to

make the screen more attractive.

DBASE III+, to the contrary, gives the programmer full control

over how the screen will appear. The programmer can determine the

dimensions of a menu or form and what to use as the border (figure

72

3-1). This flexibility of course places a greater burden on the

programmer but can produce a more varied and interesting result.

5.2 Implementation considerations:

From the implementation standpoint, comparisons may be made

between dBASE III+ and RBASE 5000 for the following points: 1) the

code generation capabilities of each system, 2) the size of the code

needed to accomplish the same work on each system, 3) the

implementation of the rules used to select records and maintain the

integrity of the database.

Code generation:

Both dBASE III+ and RBASE 5000 are able to generate code for use

in specific applications but there are significant differences in

the complexity of the code each can generate. The code generated by

dBASE III+ is rudimentary and impractical to use.

This token gesture at code generation is in sharp contrast to

the way code is produced in RBASE 5000. Code generation in RBASE

5000 is integral to the system. In fact, little useful work can be

performed, from a program, without using the code generation

facilities. When used, the code generator leads the user through a

logical series of steps to build menus, and define the actions that

may be taken by choosing options contained in the menus. Menus may

be nested up to seven levels deep. Data is entered into the database

via predefined forms and user produced code can be incorporated

73

where desired. In this manner, with a little experimentation, simple

applications can be developed fairly quickly and the person

preparing the code is rewarded with the sense of having accomplished

a significant amount of work in a relatively short amount of time.

Overall, the code generation facility of RBASE 5000 is very well

done but there are at least two shortcomings worth mentioning.

First, the application generator keeps track of the names of the

subroutines that the user has incorporated, and it prevents the

programmer from using a given subroutine more than once. Thus,

frequently used code that would normally be placed in a subroutine

and called repeatedly from various points in a program must be

placed wherever it is needed, as often as it is needed.

The second deficiency concerns code modification. The user

generated pieces of code are developed via the Rbase 5000 editor.

However, once a given piece of code has been incorporated into an

application via the code generation facility, that code must thence

forth be modified from the code generation facility. This

requirement is not clearly stated in the manuals provided and it

necessitates a considerable amount of effort since the application

generation procedure must be traversed to the point of

modification, the modification made, and the application recompiled

whenever a change is desired.

Size of code:

In the Peoples' Grocery implementations, the RBASE 5000 version

occupied 41000 bytes while the dBASE III+ version used 81000.

74

The code used by RBASE 5000 was gathered into three RBASE files

which contain the database records and associated information and

the various application files produced by the user and the code

generator during application implementation.

The dBASE III+ implementation was not nearly as tidy. Unlike

RBASE 5000, dBASE III+ does not permit several subroutines to be

stored in a single file and the dBASE III+ editor can only handle

files with a maximum size of 5000 bytes. Consequently, the dBASE

III+ implementation of the Peoples' Grocery database is spread out

over 99 program files plus the data files.

Maintaining system integrity:

Both RBASE 5000 and dBASE III+ provide methods for filtering

data before it is committed to the database but their methods differ

markedly. To assure database integrity, RBASE 5000 maintains a table

of rules that is built as an application is being developed.

Whenever the situation arises that requires the validity of a piece

of data to be checked before it is allowed into the database, a

condition against which the data must be compared is constructed and

added to the rule table. When the rule checking is activated, all

fields in a record are checked to see that they meet the constraints

of every pertinent rule existing in the rule table before the record

is written to the database. This behavior is too restrictive.

To maintain data integrity in dBASE III+, the user establishes

the conditions to be checked and compares incoming data against

those conditions at the appropriate place in the program. A given

75

set of conditions are used only where they are applicable.

Summary:

With the user given virtually total control of all aspects of

dBASE III+ application implementations, the initial development of

an application proceeds slowly but improves as the user gains

experience., The systems integrity can be strictly maintained and a

consistent, easy to use system interface can be developed which will

provide for modifications as the need arises.

In the RBASE 5000 environment, the broad aspects of application

development are controlled by the system thus the data entry and

update tasks as well as the outline of other portions of the system

can be developed very quickly. Data manipulation and report

generation proceed more slowly until considerable experience has

been gained using the programming commands provided by the system.

The final product is predictable in its reaction to user responses

to application prompts.

Table 5-1 summarizes the comparison of the friendliness of the

user interface and the facilities available for implementation of

applications in both dBASE III+ and RBASE 5000. Chapter 6 will

discuss these points further.

76

RBASE 5000 dBase I 11+

Command Actions System enforced;
consistent

Screen Formatting Menus

;

dictated by system

User defined;
potentially
inconsistent

All aspects
under user
control

Forms and Reports;
User defined

Code Generation
Capabilities

Integral to syste Rudimentary

Size of Code Relatively compact;
1500 lines of code
in 25 procedures

Integrity Maintenence Rigid;
all or none

Large;
2500 lines of

code in 99

procedures

Flexible;
may be enforced
only at point of
data entry

Figure 5-1 System Comparison Table

77

Chapter 6

Conclusion

Both dBASE 1 11+ and RBASE 5000 proved adequate for developing a

front-end application for a small enterprise. Each system excelled

in certain areas and each also had deficiencies that are worthy of

further discussion. This chapter will review both the areas of

excellence and the shortcomings of both systems.

To its credit RBASE 5000 has an excellent code generation

facility that allows the programmer to produce the bulk of an

application quickly. Once the menu and data entry facilities are in

place, the programmer can incorporate hand written code specifically

designed for the application. Navigation through applications thus

produced is consistent and easy to learn. The code data for an

application can be kept in a few files which are easy for a database

administrator to maintain. RBASE 5000 has an excellent on line help

facility. This facility is needed when writing code because the

syntax of the programming commands is clumsy and unforgiving of

misplaced spaces and the error messages produced when a syntax error

is encountered are not very helpful in identifying and rectifying

the problem. Another and perhaps the most serious drawback of RBASE

5000 is the interruption of and potential termination of program

execution if the keyboard is touched when the application is not

expecting keyboard input. This behavior is very disconcerting and

detrimental to the overall friendliness of the system.

There are no system produced, surprise exits in dBASE III+. The

78

programming commands are plentiful and their use, with a little

practice is intuitive. Though a significant burden is placed on the

programmer for the development of an application, "boiler plate"

programs simplify development significantly and accomplish in

essence, the service the RBASE 5000 code generator provides.

At this point one application has been implemented using two

microcomputer based database management system products. This leaves

many products as well as many application environments unexplored.

It would prove useful to select a set of application environments

with a variety of requirements with regards to security, data

integrity, flexibility of the user interface, and size of the

database to name a few. Once a cross section of application

environments has been chosen, each could be implemented using the

existing database management system products. This would provide a

bench mark which potential users might consult when considering

acquisition of a DBMS. The user could choose the bench mark

environment that most closely matches their requirements and

evaluate the relative strengths and weaknesses of a DBMS based on

how it preforms in that environment.

As new DBMS software becomes available in the market place, and

existing DBMS are updated, it would prove useful to continue to

qualitatively compare them using practical, real life business

application bench marks in addition to the technical quantitative

tabular comparisons commonly employed in software evaluation.

79

BIBLIOGRAPHY

[Asht 86] DBASE III+ Version 1.0 Manual. Ashton Tate 1986.

[Bern 82] Bernstein, P. A. Notes on Database Management Systems.
Aiken Computation Laboratory, Harvard Univ. Cambridge
Mass. 1982.

[Dick 86] Dickinson, J. "Programmable Relational Databases" PC
Magazine 5:12 (1986).

[Eric 86] Erickson, J. and Baran, N. Using RBASE 5000. Osborne
Mcgraw-Hill 1986.

[Gabe 86] Gabel D. "Designing a Database Application" Supplement to
PC Week 3:17 (1986)

[Kroe 83] Kroenke, D. Database Processing. Science Research
Associates 1983.

[Micr 86] R:BASE System V Learning Guide. Version 1.0. Microrim
1986.

[Shac 86] Shackel B. "Ergonomics in Design tor Usability." In
'People and Computers: Designing for Usability.
Proceedings of the Second Conference of the British
Computer Society Human Computer Interaction Specialist
Group.' Univ. of York 23-26 Sept. 1986 M.D. Harrison,
A.F. Monk (eds.). pp. 44-77 Cambridge University Press,
Cambridge.

[Sime 85] Simes, D.K. and Sirsky, P. A. "Human Factors: An
Exploration of the Psychology of Human Computer
Dialogues." In 'Advances in Human-Computer Interaction.'
vol 1, Hartson, H.R. ed. Ablex Publishing Corp., Norwood,
New Jersey. 1985

[Ullm 82] Ullman, J.D. Principles of Database Systems. Computer
Science Press 1982.

an

APPENDIX A: dBase I 11+ PROGRAM LISTING

''PROGRAM PEOPLESM
WRITTEN FOR PEOPLES GROCRERY DATABASE
*BY GARY RADKE
*MAIN ROUTINE

CLEAR ALL
SET SCOREBOARD OFF
SET TALK OFF
SET ESCAPE OFF
SET BELL OFF
SET HEADING OFF
SET HELP OFF
SET MENU OFF
SET SAFETY OFF
SET STATUS OFF

DO WHILE .T.

* DO WHILE .T. means DO WHILE TRUE i.e. DO FOREVER
* The DO WHILE will be terminated by an EXIT command

* Clear the screen and display the main menu
CLEAR
DO MenuTEMP

DO WHILE .T.

i=INKEY(

)

@ 15,58 SAY ""

IF UPPER(CHR(i))$"ABCDEFGHIJKX"
EXIT

ENDIF
i=0

@ 15,58 SAY UPPER(CHR(i))
ENDDO

* process user's response
DO CASE

CASE CHR(i) $ "Aa"
DO MEMINF

CASE CHR(i) $ "Bb"
DO MEMORD1

CASE CHR(i) $ "Cc"
DO NEWCON1

CASE CHR(i) $ "Dd"
DO SUPP

CASE CHR(i) $ "Ee"
DO PRODUCT

81

CASE CHR(i) $ "Ff"
DO EXPENSES

CASE CHR(i) $ "Gg"
DO LABELS

CASE CHR(i) $ "Hh"
DO BILLING

CASE CHR(i) $ "Ii"
DO CONSSUMM

CASE CHR(i) $"Jj"
DO STOREORD

CASE CHR(i) $ "Kk"
DO FINANCES

CASE CHR(i) $ "Xx"
EXIT

ENDCASE

ENDDO
SET TALK ON
SET ESCAPE ON
SET BELL ON
SET HEADING ON
SET HELP ON
SET MENU ON
SET SAFETY ON
SET STATUS ON
CLEAR ALL
CLEAR
RETURN
* Eof:

* Program.: MENUTEMP.PRG
* Author..: Gary Radke
* Date : March 1987
* Notes...: Menu screen for Peoples Grocery database

@ 1,21 TO 3,51
@ 4,1 TO 23,77 DOUBLE
9 6,3 TO 14,37
@ 5,4 TO 7,21 DOUBLE
@ 6,5 SAY SPACE(16)
@ 6,41 TO 14,75
@ 5,42 TO 7,53 DOUBLE
@ 6,43 SAY SPACE(IO)

82

@ 5,2 SAY CHR(176)+CHR(176)
@ 6,2 SAY CHR(176)
@ 7,2 SAY CHR(176)
@ 8,2 SAY CHR(176)
@ 9,2 SAY CHR(176)
@ 10,2 SAY CHR(176)
@ 11,2 SAY CHR(176)
@ 12,2 SAY CHR(176)
@ 13,2 SAY CHR(176)
@ 14,2 SAY CHR(176)
@ 16,2 SAY REPLICATE(CHR(176),75)
@ 17,2 SAY REPLICATE(CHR(176),75)
@ 18,2 SAY REPLICATE(CHR(176),75)
@ 19,2 SAY REPLICATE(CHR(176),75)
@ 20,2 SAY REPLICATE(CHR(176),75)
@ 21,2 SAY REPLICATE(CHR(176),75)
@ 22,2 SAY REPLICATE(CHR(176),75)
@ 14,76 SAY CHR(176)
@ 13,76 SAY CHR(176)
@ 12,76 SAY CHR(176)
@ 11,76 SAY CHR(176)
@ 10,76 SAY CHR(176)
@ 9,76 SAY CHR(176)
@ 8,76 SAY CHR(176)
@ 7,76 SAY CHR(176)
@ 6,76 SAY CHR(176)
@ 5,54 SAY REPLICATE(CHR(176),23)
(3 5,22 SAY REPLICATE(CHR(176),19)
@ 6,38 SAY REPLICATE(CHR(176),3)
@ 7,38 SAY REPLICATE(CHR(176),3)
@ 8,38 SAY REPLICATE(CHR(176),3)
@ 9,38 SAY REPLICATE(CHR(176),3)
@ 10,38 SAY REPLICATE(CHR(176),3)
@ 11,38 SAY REPLICATE(CHR(176),3)
@ 12,38 SAY REPLICATE(CHR(176),3)
@ 13,38 SAY REPLICATE(CHR(176),3)
@ 14,38 SAY REPLICATE(CHR(176),3)
@ 2,24 SAY "PEOPLES GROCERY DATABASE"
@ 6,6 SAY "INPUT / UPDATE"
@ 6,44 SAY "REPORTS"
@ 8,8 SAY "A. Member Info."
@ 9,8 SAY "B. Member Orders"
@ 10,8 SAY "C. New Consignments"
@ 11,8 SAY "D. Suppliers"
@ 12,8 SAY "E. Product Catalogs"
@ 13,8 SAY "F. Store Expenses"
@ 8,46 SAY "G. Product / Member Labels"
@ 9,46 SAY "H. Members Order Bill"
@ 10,46 SAY "I. Consingment Summary"
@ 11,46 SAY "J. Combined Order"
@ 12,46 SAY "K. Finances"
@ 15,18 SAY "[Enter Selection (A - L, or X to quit) : :

]'

83

9 15,2 SAY REPLICATE(CHR(176),16)
@ 15,61 SAY REPLICATE(CHR(176),16)
RETURN
* Eof :Menutemp.prg

*PROGRAM MEMINF.PRG
*WRITTEN BY GARY RADKE
*FOR PEOPLES GROCERY DATABASE

CLEAR
SELECT 1

USE MEMBER INDEX MEMNO
* Cursor coordinates in menu queries
XIT=.F.
ERR=.T.
XC0RD=11
YC0RD=51
* Messages and menu queries
ERRMESS=SPACE(60)
DUPMESS="THIS MEMBER II IS ALREADY IN USE, PLEASE USE ANOTHER.
DUPNUM="MEMBER II

"

MEMESS="UPDATE MEMBERSHIP INFO FOR THIS MEMBER? Y/N"
YMESS="Y - UPDATE INFORMATION FOR THIS MEMBER."
NMESS="N - SKIP THIS MEMBER, LOOK AT THE NEXT."
XMESS="X - RETURN TO THE PREVIOUS MENU."
MESS1="MEMBER I? IS INVALID USE ONE LESS THAN 1000"
MESS2="YOU MUST ENTER A MEMBER NUMBER"
MESS3="YOU MUST ENTER A MEMBER NAME"

DO WHILE .T.

* DO WHILE .T. means DO WHILE TRUE i.e. DO FOREVER
* The DO WHILE will be terminated by an EXIT command

* Clear the screen and display the main menu
CLEAR
DO BACKGRD3
DO MOPT

* Accept only allowed responses
DO CONFIRMM

* process user's response
MMEMNO =
MLAST=SPACE(15)
MFIRST=SPACE(9)
MSTREET=SPACE(20)
MCITY=SPACE(15)
MZIP=00000
MHOME=SPACE(13)
MWORK=SPACE(13)
MSTATE=SPACE(2)

84

DO CASE
* Enter a record for a new member
CASE CHR(i) $ "Aa"

DO NEWMEM

* Allow update of an existing membership record
* Excluding update of member //

CASE CHR(i) $ "Bb"
DO UPDTMEM

* Return to main menu
CASE CHR(i) $ "Cc"

EXIT
ENDCASE

ENDDO
RELEASE ALL
CLOSE ALL
RETURN

* Eof:

* PROGRAM MEMORD.PRG
* WRITTEN BY GARY RADKE
* FOR PEOPLES GROCERY DATABASE
* ENTERS AND UPDATES MEMBER PRODUCT ORDERS
CLEAR
ERRMESS=SPACE(60)
DUPMESS="THIS ORDER ALREADY EXISTS PLEASE REENTER"
MESS1="CATAL0G It DOES NOT EXIST FOR THIS SUPPLIER, TRY ANOTHER"
QUANTM="YOU MUST ENTER A VALUE FOR THE QUANTITY"
XC0RD=11
YC0RD=51
QUERY1="UPDATE ORDER FOR MEMBER //

"

QUERY2="C0NTINUE ORDERING WITH A NEW MEMBER? Y/N"
QUERY3="CONTINUE ORDERING WITH A NEW SUPPLIER? Y/N"
QUERY4="UPDATE ORDER FOR MEMBER It

"

SUPMESS="SUBMIT ORDER TO THIS SUPPLIER?"
SYMESS="Y - ORDER FROM THIS SUPPLIER"
SNMESS="N - DO NOT ORDER FROM THIS SUPPLIER"
SXMESS="X - RETURN TO PREVIOUS MENU"
MEMESS="SUBMIT ORDER FOR THIS MEMBER?"
YMESS="Y - SUBMIT ORDER FOR THIS MEMBER"
NMESS="N - DISPLAY NEXT MEMBER"
XMESS="X - RETURN TO PREVIOUS MENU"
MEMNAME=SPACE (20

)

MSUPNAME=SPACE(20)

MMEMNO=0
MITEMNO=0
MQUANTITY=0
MDATE=DATE()
MDESCRIPT=SPACE (60

)

LASTITEM=SPACE(50)

B5

XIT=.F.
ERR=.T.
SELECT 1

USE MEMBER INDEX MEMNO
SELECT 2

USE PRODCAT INDEX NAMEITNO
SELECT 3

USE ITEM_ORD
SELECT 4

USE SUPPLIER
DO WHILE .T.

* DO WHILE .T. means DO WHILE TRUE i.e. DO FOREVER
* The DO WHILE will be terminated by an EXIT command

* Clear the screen and display the main menu
CLEAR
DO BACKGRD3
DO ORDOPT
DO CONFIRMM

* process user's response
DO CASE

* Submit a new order
CASE CHR(i) $ "Aa"
DO NEWORD

* Update an existing order
CASE CHR(i) $ "Bb"
DO UPDTORD

* Return to the main menu
CASE CHR(i) $ "Cc"
EXIT

ENDCASE
ENDDO
CLEAR ALL
RELEASE ALL
RETURN
* Eof:

^PROGRAM CONSIGN
'•'WRITTEN BY GARY RADKE
*FOR PEOPLES GROCERY DATABASE
CLEAR
ERROR= . F

.

XCORD=l

1

YCORD=51
MEMESS="UPDATE CONSIGNMENT FOR THIS MEMBER? Y/N"
YMESS="Y - DISPLAYS CONSIGNMENTS FOR THIS MEMBER."
NMESS="N - SHOWS YOU THE NEXT MEMBER."
XMESS="X - RETURNS YOU TO THE PREVIOUS MENU"
MESS1="Y0U MUST ENTER A CONSIGNMENT DESCRIPTION"

86

MESS2="Y0U MUST ENTER A VALUE FOR QUANTITY"
MESS3="YOU MUST ENTER A CONSIGNMENT PRICE"
MESS4="MEMBER II DOES NOT EXIST IN THE DATABASE"
MESS5="THIS MEMBER HAS NOTHING ON CONSIGNMENT"
MESS6="THIS CONSIGNMENT ALREADY EXISTS IN THE DATABASE"
ERRORMESS=SPACE(60

)

SELECT 1

USE MEMBER INDEX MEMNO
SELECT 2

USE MEMBER_C INDEX CMEMNO
DO WHILE .T.

* DO WHILE .T. means DO WHILE TRUE i.e. DO FOREVER
* The DO WHILE will be terminated by an EXIT command

* Clear the screen and display the main menu
CLEAR
DO BACKGRD3
* print menu background
DO CONOPT
* print consignment options

* accept users response
DO CONFIRMM
MMEMNO=0
MEMNAME=SPACE(40)
MDESCRIPT=SPACE(20)
MNUMITEM=0
MPRICE=000.00
MSOLD=.F.
MPAID=.F.
MDATE=DATE()
* process user's response
DO CASE

* add a consignment
CASE CHR(i) $ "Aa"

DO ECON

CASE CHR(i) $ "Bb"
DO CCON

CASE CHR(i) $ "Cc"
EXIT

ENDCASE
ENDDO
CLOSE ALL
RELEASE ALL
RETURN
* Eof:

87

'''PROGRAM SUPP
•-'WRITTEN BY GARY RADKE
"-•FOR THE PEOPLES GROCERY DATABASE
"--ENTERS SUPPLIER INFORMATION INTO SUPPLIER. DBF

CLEAR
XIT=.F.
ERR=.T.
XCORD=l

1

YCORD=51
MESSl="YOU MUST ENTER A SUPPLIER NAME"
MESS2="THIS SUPPLIER NAME ALREADY EXISTS IN THE DATABASE"
SELECT 1

USE SUPPLIER
DO WHILE .T.

* DO WHILE .T. means DO WHILE TRUE i.e. DO FOREVER
* The DO WHILE will be terminated by an EXIT command

* Clear the screen and display the main menu
CLEAR
DO BACKGRD3
DO SUPPOPT
MSUPNAME=SPACE (20

)

MCONTACT=SPACE(20

)

MSTREET=SPACE(20)
MCITY=SPACE(15)
MZIP=00000
MPHONE=SPACE(13)
MSTATE=SPACE(2)
DO CONFIRMM

* process user's response
DO CASE

CASE CHR(i) $ "Aa"
DO WHILE .T.

DO SUPFMASK
DO ADDSUP
LOCATE FOR RTRIM(MSUPNAME)=RTRIM(SUPNAME)
IF FOUND ()

@ 22,5 SAY MESS2
WAIT
@ 22,5
@ 23,5
LOOP

ENDIF
IF (LEN(RTRIM(MSUPNAME))<1)

@ 22,5 SAY MESS1
WAIT
@ 22,5

aa

@ 23,5
LOOP

ENDIF
DO CONFIRMQ
DO CONFIRML

DO CASE
CASE CHR(i) $ "Yy"

APPEND BLANK
REPLACE SUPNAME WITH MSUPNAME
REPLACE CONTACT WITH MCONTACT
REPLACE STREET WITH MSTREET
REPLACE TOWN WITH MCITY
REPLACE ZIPCODE WITH MZIP
REPLACE STATE WITH MSTATE
REPLACE PHONE WITH MPHONE
@ 22,5
@ 23,5
WAIT
EXIT

CASE CHR(i) $ "Nn"
LOOP

CASE CHR(i) $ "Xx"
EXIT

ENDCASE
ENDDO

* Update an existing supplier
CASE CHR(i) $ "Bb"
CLEAR
* Start at the top of the file and work through
* it until the desired supplier is found
USE SUPPLIER
DO WHILE .T.

MSUPNAME= RTRIM (SUPNAME)
@ 3,5 SAY "SUPPLIER"
@ 3,15 SAY MSUPNAME
@ 5,5 SAY "UPDATE INFO FOR THIS SUPPLIER? Y/N"
@ 7,0 TO 13,55 DOUBLE
@ 8,5 SAY "Y DISPLAYS INFO FOR THIS SUPPLIER"
@ 10,5 SAY "N SHOWS YOU THE NEXT SUPPLIER"
@ 12,5 SAY "X RETURNS YOU TO THE PREVIOUS MENU"
DO CONFIRML
DO CASE

CASE CHR(i) $ "Yy"
MSUPNAME=SUPNAME
EXIT

CASE CHR(i) $ "Nn"
SKIP
IF E0F()

@ 22,5 SAY "END OF SUPPLIER FILE"

o9

WAIT
@ 22,5
@ 23,5
EXIT

ELSE
@ 3,15

ENDIF
CASE CHR(i) $ "Xx"

EXIT
ENDCASE

ENDDO

IF (CHR(i) $ "Xx") .OR. (EOF())
LOOP

ENDIF
* Update the chosen supplier record
MCONTACT = CONTACT
MSTREET = STREET
MCITY = TOWN
MZIP = ZIPCODE
MSTATE = STATE
MPHONE = PHONE
DO WHILE .T.

DO SUPFMASK
DO UPSUPRD
@ 22,5 SAY "IS THIS INFORMATION CORRECT? Y/N"
@ 23,5 SAY "TYPE X TO RETURN TO THE PREVIOUS MENU"
DO CONFIRML
DO CASE

CASE CHR(i) $ "Yy"
REPLACE CONTACT WITH MCONTACT
REPLACE STREET WITH MSTREET
REPLACE TOWN WITH MCITY
REPLACE ZIPCODE WITH MZIP
REPLACE STATE WITH MSTATE
REPLACE PHONE WITH MPHONE
@ 22,0
@ 23,0
WAIT
EXIT

CASE CHR(i) $ "Nn"
LOOP

CASE CHR (i) $ "Xx"
EXIT

ENDCASE
ENDDO

* Return to main menu
CASE CHR(i) $ "Cc"

EXIT
ENDCASE

ENDDO

90

CLEAR ALL
RELEASE ALL
RETURN
* Eof:

* PROGRAM PRODUCT
* WRITTEN BY GARY RADKE
* FOR PEOPLES GROCERY DATABASE
* ENTER AND UPDATE ITEMS IN A SUPPLIERS CATALOG

CLEAR
SELECT 1

USE SUPPLIER
SELECT 2

USE PRODCAT INDEX PRODORD
XCORD=l

1

YCORD=51
ERROR=.T.
XIT=.F.
ERRMESS=SPACE(60)
MESS1="THIS CATALOG t ALREADY EXISTS FOR THIS SUPPLIER, REENTER"
MESS2="A SHIPPING WEIGHT MUST BE ENTERED"
MESS3="A UNIT PRICE MUST BE ENTERED"
MESS4="A CASE PRICE MUST BE ENTERED"
MESS5="A PRODUCT DESCRIPTION MUST BE ENTERED"
MESS6="A CATALOG It MUST BE ENTERED"
DO WHILE .T.

* DO WHILE .T. means DO WHILE TRUE i.e. DO FOREVER
* The DO WHILE will be terminated by an EXIT command

* Clear the screen and display the main menu
CLEAR
SUPMESS="ENTER ITEMS IN CATALOG FOR THIS SUPPLIER?"
SYMESS="Y - USE THIS SUPPLIERS CATALOG"
SNMESS="N - LOOK AT NEXT SUPPLIER"
SXMESS="X - RETURN TO PREVIOUS MENU"
MITEMNO=0
MDESCRIPT= SPACE (60)
MSHIPWT=0
MUPRICEO0.00
MCASPRICE=000.00
MSUPNAME=SPACE(20

)

DO BACKGRD3
DO PRODOPT
DO CONFIRMM

* process user's response
DO CASE

CASE CHR(i) $ "Aa"
SELECT 1

USE SUPPLIER

91

DO GETSUPP
IF XIT
LOOP

ENDIF
SELECT 2

DO ENTPROD
LOOP

CASE CHE(i) $ "Bb"
SELECT 1

USE SUPPLIER
DO GETSUPP
IF XIT
LOOP

ENDIF
SELECT 2

DO UPDTPRD
LOOP

CASE CHR(i) $ "Cc"
EXIT

ENDCASE
ENDDO
CLOSE ALL
RELEASE ALL
RETURN
* Eof:

* Program expenses
* Written by Gary Radke
* For Peoples Grocery Database
* Allows for entry and update of expense records
SELECT 1

USE EXPENC
CLEAR
XCORD=l

1

YC0RD=51
ERRMESS=SPACE(60

)

MESS1="THIS EXPENSE RECORD ALREADY EXISTS IN DATABASE"
MESS2="AN EXPENSE AMOUNT MUST BE ENTERED"
MESS3="AN ENTRY MUST BE MADE IN THE PAID TO SPACE"
MESS4="AN EXPENSE DESCRIPTION MUST BE ENTERED"
ERROR=.T.
DO WHILE .T.

* DO WHILE .T. means DO WHILE TRUE i.e. DO FOREVER
* The DO WHILE will be terminated by an EXIT command

* Clear the screen and display the main menu
CLEAR
DO BACKGRD3
DO EXPOPT
MDATE=DATE()

92

MAMOUNT=0.00
MPAIDTO=SPACE(20)
MDESCRIPTI=SPACE(57)
MPAID=.F.
* Accept only the responses available in the menu
DO CONFIRMM

* process user's response
DO CASE

* Add a new expense
CASE CHR(i) $ "Aa"

CLEAR
DO WHILE .T.

DO EXPFMASK
DO ADDEXP
DO CHKEXP
IF ERROR

@ 22,5 SAY ERRMESS
WAIT
@ 22,5
@ 23,5
LOOP

ENDIF
DO CONFIRMQ
DO CONFIRML
DO CASE
* If everything is ok, save the new record

CASE CHR(i) $ "Yy"
APPEND BLANK
REPLACE DATE WITH MDATE
REPLACE AMOUNT WITH MAMOUNT
REPLACE PAID_TO WITH MPAIDTO
REPLACE DESCRIPTIO WITH MDESCRIPTI
@ 22,5
@ 23,5
WAIT
EXIT

* Allow correction of errors
CASE CHR(i) $ "Nn"

LOOP
* Return to the previous menu

CASE CHR(i) $ "Xx"
EXIT

ENDCASE
ENDDO

* Review existing expense records
CASE CHR(i) $ "Bb"
CLEAR
USE EXPENC
DO WHILE .T.

DO EXPFMASK

•):.

DO BRSEXP
@ 15,0 TO 21,55
@ 16,5 SAY "Y LETS YOU UPDATE THIS EXPENSE FORM"
@ 17,5 SAY "N SHOWS YOU THE NEXT EXPENSE FORM"
6 18,5 SAY "X RETURNS YOU TO THE PREVIOUS MENU"
@ 20,5 SAY "ENTER RESPONSE"
DO CONFIRML
DO CASE

CASE CHR(l) $ "Yy"
LOOP

CASE CHR(l) $ "Nn"
SKIP
IF EOFQ

@ 23,5 SAY "END OF EXPENSE FILE"
WAIT
GO TOP
EXIT

ENDIF
LOOP

CASE CHR(i) $ "Xx"
EXIT

ENDCASE
ENDDO

* Return to previous menu
CASE CHR(i) $ "Cc"

EXIT
ENDCASE

ENDDO
USE
RETURN
* Eof:

* Program Labels
* Written by Gary Radke
* For Peoples' Grocery Database

CLEAR
XC0RD=11
YC0RD=51
DO WHILE .T.

* DO WHILE .T. means DO WHILE TRUE i.e. DO FOREVER
* The DO WHILE will be terminated by an EXIT command

* Clear the screen and display the main menu
CLEAR
DO BACKGRD3
DO LABOPT
DO CONFIRMM

* process user's response

94

DO CASE

CASE CHR(i) $ "Aa"
DO PRINTLBL
EXIT

CASE CHR(i) $ "Bb"
EXIT

CASE CHR(i) $ "Cc"
EXIT

ENDCASE
ENDDO
RETURN
* Eof:

* PROGRAM BILLING
* WRITTEN BY GARY RADKE
* FOR PEOPLES GROCERY DATABASE
* GENERATES AN ITEMIZED BILL FOR EACH MEMBER PARTICIPATING
* IN A GIVEN ORDER.

XCORD=ll
YCORD=51
XIT=.F.
CLEAR
G01="PREPARE BILLS FOR ORDER SUBMITTED TO "

MSUPNAME=SPACE(20)
MDATE=DATE()
MM1="WERE THERE ANY ITEMS WHICH WERE NOT DELIVERED OR "

MM2="REFUSED WHEN THE ORDER"
MM3="SUBMITTED TO "

MM4=" ON "

MM5="WAS DELIVERED. —Y/N TO EXIT BILLING TYPE X."
MM6="ITEM NUMBER GIVEN WAS NOT INCLUDED IN THE ORDER"
DO WHILE .T.

* DO WHILE .T. means DO WHILE TRUE i.e. DO FOREVER
* The DO WHILE will be terminated by an EXIT command

* Clear the screen and display the main menu
CLEAR
DO BACKGRD4
DO BILLOPT
DO CONFIRMM
* process user's response
DO CASE

CASE CHR(i) $ "Aa"
DO GETORD
CLEAR
IF XIT
XIT=.F.

95

LOOP
ENDIF
@ 3,5 SAY MM1
@ 3,5+LEN(MMl) SAY MM2
@ 4,5 SAY MM3
@ 4,5+LEN(MM3) SAY MSUPNAME
@ 4,5+LEN(MM3)+LEN(RTRIM(MSUPNAME)) SAY MM4
@ 4,5+LEN(MM3)+LEN(RTRIM(MSUPNAME))+LEN(MM4) SAY MDATE
@ 5,5 SAY MM5
DO CONFIRML
DO CASE

CASE CHR(i) $ "Yy"
DO ADJSTORD

CASE CHR(i) $ "Xx"
EXIT

ENDCASE
CLEAR
DO PRINTBIL

CASE CHR(i) $ "Bb"
EXIT

ENDCASE
ENDDO
CLOSE ALL
RELEASE ALL
RETURN
* Eof:

* PROGRAM CONSSUMM
* WRITTEN BY GARY RADKE
* FOR PEOPLES GROCERY DATABASE
* GENERATES CONSIGNMENT SUMMARY REPORTS
XCORD=15
YCORD=51
YMESS="Y - PREPARE SUMMARY FOR THIS MEMBER"
NMESS="N - SKIP TO THE NEXT MEMBER"
XMESS="X - RETURN TO THE PREVIOUS MENU"
CLEAR
DO WHILE .T.

* DO WHILE .T. means DO WHILE TRUE i.e. DO FOREVER
* The DO WHILE will be terminated by an EXIT command

* Clear the screen and display the main menu
CLEAR
DO BACKGRD5
DO CONSOPT
DO WHILE .T.

i=INKEY(

)

IF UPPER(CHR(i))$"ABCD"
EXIT

ENDIF
i=0

@ XCORD.YCORD SAY UPPER(CHR(i)

)

96

ENDDO

* process user's response
DO CASE

CASE CHR(i) $ "Aa"
DO SOLDUPD

CASE CHR(l) $ "Bb"
DO ALLUSC

CASE CHR(i) $ "Cc"
DO ALLC

CASE CHR(i) $ "Dd"
EXIT

ENDCASE
ENDDO
CLOSE ALL
RELEASE ALL
RETURN
* Eof:

* Program Storeord
* Written by Gary Radke
* For Peoples Grocery Database
* Prints a summary of a given combined store order

XIT=.F.
CLEAR
DO WHILE .T.

* DO WHILE .T. means DO WHILE TRUE i.e. DO FOREVER
* The DO WHILE will be terminated by an EXIT command

* Clear the screen and display the main menu
CLEAR
DO BACKGRD3
DO STOROPT
DO WHILE .T.

i=INKEY(

)

IF UPPER(CHR(i))$"AB"
EXIT

ENDIF
i=0

@ 15,58 SAY UPPER(CHR(i))
ENDDO

* process user's response
DO CASE

CASE CHR(i) $ "Aa"
DO COMBORD

97

CASE CHR(i) $ "Bb"
EXIT

ENDCASE
ENDDO
RETURN
* Eof:

* Program Finances
* Written by Gary Radke
* For Peoples Grocery Database

CLEAR
DO WHILE .T.

* DO WHILE .T. means DO WHILE TRUE i.e. DO FOREVER
* The DO WHILE will be terminated by an EXIT command

* Clear the screen and display the main menu
CLEAR
DO BACKGRD5
DO FINOPT
XC0RD=15
YC0RD=51
DO WHILE .T.

i=INKEY()
IF UPPER(CHR(i))$"ABCD"

EXIT
ENDIF
i=0

@ XCORD.YCORD SAY UPPER(CHR(i)

)

ENDDO

* process user's response
DO CASE

CASE CHR(i) $ "Aa"
DO LISTEX

CASE CHR(i) $ "Bb"
DO EXP_SAL

CASE CHR(i) $ "Cc"
DO CONEXP

CASE CHR(i) $ "Dd"
EXIT

ENDCASE
ENDDO
CLOSE ALL
RELEASE ALL

08

RETURN
* Eof:

'•PROGRAM BACKGRD3
•-'WRITTEN BY GARY RADKE
*FOR THE PEOPLES GROCERY DATABASE
'''PRODUCES A GENERIC BACKGROUND FOR A MENU WITH THREE OPTIONS
CLEAR
91,1 TO 12,77
@3,3 TO 10,75 DOUBLE
@ 2,2 SAY REPLICATE (CHR (176), 75)
@3,2 SAY CHR (176)
@ 4,2 SAY CHR (176)
@ 5,2 SAY CHR (176)
@ 6,2 SAY CHR (176)
@ 7,2 SAY CHR (176)
@ 8,2 SAY CHR (176)
@ 9,2 SAY CHR (176)
@ 10,2 SAY CHR (176)
@ 3,76 SAY CHR (176)
@ 4,76 SAY CHR (176)
@ 5,76 SAY CHR (176)
@ 6,76 SAY CHR (176)
@ 7,76 SAY CHR (176)
@ 8,76 SAY CHR (176)
@ 9,76 SAY CHR (176)
@ 10,76 SAY CHR (176)
@ 11,2 SAY REPLICATE (CHR (176), 75)
RETURN
*Eof

;

*PROGRAM MOPT
*WRITTEN BY GARY RADKE
*FOR THE PEOPLES GROCERY DATABASE
'•'LISTS THE OPTIONS FOR ADDING A NEW MEMBER TO OR UPDATING
'^INFORMATION ON A CURRENT MEMBER
@ 4,27 SAY " A. ADD A NEW MEMBER"
@ 6,27 SAY " B. UPDATE A CURRENT MEMBER"
@ 8,27 SAY " C. RETURN TO MAIN MENU"
@ 11,30 SAY "ENTER SELECTION A-C :

:"

RETURN
*Eof;

* PROGRAM MEMDUP
* WRITTEN BY GARY RADKE
* FOR PEOPLES GROCERY DATABASE
* CHECKS FOR DUPLICATE MEMBER RECORDS BY SEARCHING FOR DUPLICATE
* MEMBER // S WHEN A NEW MEMBER IS ADDED
SET TALK OFF
SELECT 1

USE MEMBER INDEX MEMNO
SEEK MMEMNO

99

IF FOUND () THEN
CLEAR
@ 3,5 SAY DUPNUM
@ 3,5 + LEN(DUPNUM) SAY MMEMNO
@ 4,5 SAY DUPMESS
WAIT

ENDIF
RETURN
*Eof

* PROGRAM CONFIRMM.PRG
* USED IN PEOPLES GROCERY DATABASE
* CONFIRMS RESPONSE TO VARIOUS MENU CHOICES IN THE
* PROGRAM. ONLY ALLOWS A, B, OR C AS A RESPONSE

DO WHILE .T.

1=INKEY(

)

IF UPPER(CHR(i))$"ABC"
EXIT

ENDIF
i=0

@ XCORD.YCORD SAY UPPER(CHR(i)

)

ENDDO
RETURN
* Eof:

* PROGRAM NEWMEM
* WRITTEN BY GARY RADKE
* FOR PEOPLES GROCERY DATABASE
* ENTERS A NEW MEMBER RECORD INTO THE MEMBER DBF
CLEAR
DO WHILE .T.

* Display membership form
DO MEMFMASK
DO ADDMEM
DO CHKMEM
IF ERR

@ 22,5 SAY ERRMESS
WAIT
@ 22,0
@ 23,0
LOOP

ENDIF
* Accept only allowed responses
DO CONFIRMQ
DO CONFIRML
DO CASE

* Add the record to the db
CASE CHR(i) $ "Yy"
APPEND BLANK
REPLACE MEM_NO WITH MMEMNO
REPLACE FIRSTNAME WITH MFIRST

1 00

REPLACE LASTNAME WITH MLAST
REPLACE STREET WITH MSTREET
REPLACE TOWN WITH MCITY
REPLACE ZIPCODE WITH MZIP
REPLACE STATE WITH MSTATE
REPLACE HOMEPHONE WITH MHOME
REPLACE WORKPHONE WITH MWORK
INDEX ON MEM_NO TO MEMNO
@ 22,0
@ 23,0
WAIT
EXIT

* Allow corrections
CASE CHR(i) $ "Nn"

LOOP
* Abandon operation
CASE CHR (i) $ "Xx"

EXIT
ENDCASE

ENDDO
RETURN
*Eof

* PROGRAM MEMFMASK.PRG
* WRITTEN BY GARY RADKE
* FOR PEOPLES GROCERY DATABASE
* TEMPLATE FOR MEMBER INFORMATION FORM
CLEAR
@ 0,0 TO 21,79 DOUBLE
@ 2,23 TO 5,53
@ 3,25 SAY "PEOPLES GROCERY COOPERATIVE"
@ 4, 25 SAY "MEMBERSHIP INFORMATION FORM"
@ 6,9 SAY "MEMBER //"

@ 8,9 SAY "FIRST NAME"
@ 8,30 SAY "LAST NAME"
9 10,5 SAY "ADDRESS"
@ 12,9 SAY "STREET"
@ 13,9 SAY "CITY"
@ 14,9 SAY "STATE"
@ 14,18 SAY "ZIP CODE"
@ 17,9 SAY "HOME PHONE"
@ 18,9 SAY "WORK PHONE"
RETURN
*Eof

'•'PROGRAM ADDMEM.PRG
^WRITTEN BY GARY RADKE
*FOR PEOPLES GROCERY DATABASE
*READS MEMBER INFORMATION INPUT

@6,18 GET MMEMNO

101

98,20 GET MFIRST
@ 8,41 GET MLAST
@ 12,16 GET MSTREET
@ 13,14 GET MCITY
@ 14,15 GET MSTATE
@ 14,27 GET MZIP
@ 17,20 GET MHOME
@ 18,20 GET MWORK
READ
RETURN
* Eof:

* PROGRAM CHKMEM
* WRITTEN BY GARY RADKE
* CHECKS FOR ERRORS WHEN A NEW MEMBER RECORD IS ENTERED
ERR=.T.
DO CASE

* Check to see if this member // is to large
CASE (MMEMNO > 999)

ERRMESS=MESS1

* Make sure a member // has been entered
CASE (MMEMNO < 1) THEN
ERRMESS=MESS2

*Make sure a member name has been entered
CASE (LEN(RTRIM(MFIRST)) < 1)
ERRMESS=MESS3

OTHERWISE
ERR=.F.

ENDCASE
* Check to see if this member // already exists in db
SEEK MMEMNO
* If it exists, use another
IF FOUNDO THEN
ERRMESS=DUPMESS
ERR=.T.

ENDIF
RETURN
*Eof

""'PROGRAM CONFIRMQ.PRG
*WRITTEN BY GARY RADKE
*FOR PEOPLES GROCERY DATABASE
@ 22,5 SAY "IS THIS INFORMATION CORRECT? Y/N"
@ 23,5 SAY "TYPE 'X' TO ABANDON OPERATION"
RETURN
* Eof:

*PROGRAM CONFIRML.PRG
•-'WRITTEN BY GARY RADKE

102

*FOR PEOPLES GROCERY DATABASE
*ACCEPTS ONLY Y, N, OR X AS A RESPONSE TO PROGRAM
*QUERIES
DO WHILE .T.

i=INKEY()

IF UPPER(CHR(i))$"YNX"
EXIT

ENDIF
i=0

@ 22,53 SAY UPPER(CHR(i))
ENDDO
@ 22,5
@ 23,5
RETURN
*Eof

*PROGRAM MEMUOPT
'''WRITTEN BY GARY RADKE
*FOR THE PEOPLES GROCERY DATABASE
*LISTS THE OPTIONS FOR ADDING A NEW MEMBER TO OR UPDATING
'•'INFORMATION ON A CURRENT MEMBER
@ 4,27 SAY " A. ENTER MEMBER II"

@ 6,27 SAY " B. BROWSE MEMBER FILE"
@ 8,27 SAY " C. RETURN TO PREVIOUS MENU"
@ 11,30 SAY "ENTER SELECTION A-C :

:"

RETURN
*Eof

*PROGRAM GETMEM.PRG
*WRITTEN BY GARY RADKE
*FOR PEOPLES GROCERY DATABASE
'"LOCATES A MEMBERS MEMBERSHIP RECORD SO INFORMATION FROM IT
*MAY BE USED ELSEWHERE IN THE APPLICATION
XIT=.F.
MEMNAME=SPACE(20)
MMEMNO=0
CLEAR
* Step throuhg the member info db and display
* member // and name for each record examined
IF (.NOT. EOFQ)
DO WHILE .T.

MEMNAME= RTRIM(FIRSTNAME) + " " + RTRIM(LASTNAME)
@ 3,5 SAY "MEMBER //"

@ 3,14 SAY MEM_NO
@ 3,25 SAY "NAME"
@ 3,30 SAY MEMNAME
@ 5,5 SAY MEMESS
@ 7,0 TO 13,55 DOUBLE
@ 8,5 SAY YMESS
@ 10,5 SAY NMESS

12,5 SAY XMESS
DO CONFIRML

L03

DO CASE
* Use this record as a reference
* or in an operation
CASE CHR(i) $ "Yy"
MMEMNO=MEM_NO
EXIT

* Ignore this record look at the next
CASE CHR(l) $ "Nn"

SKIP
IF EOF()

@ 23,5 SAY "END OF MEMBER FILE"
WAIT
XIT=.T.
EXIT

ELSE
@ 3,30
LOOP

ENDIF
* Abandon operation
CASE CHR(i) $ "Xx"
XIT=.T.
EXIT

ENDCASE
ENDDO

ENDIF
RETURN
* Eof:

-PROGRAM UPMEMRD.PRG
*WRITTEN BY GARY RADKE
*FOR PEOPLES GROCERY DATABASE
*READS MEMBERSHIP UPDATE INFORMATION

@ 6,18 SAY MEM_N0
@ 8,20 SAY FIRSTNAME
@ 8,41 SAY LASTNAME
@ 12,16 GET MSTREET
@ 13,14 GET MCITY
@ 14,15 GET MSTATE
9 14,27 GET MZIP
@ 17,20 GET MHOME
@ 18,20 GET MWORK
READ
RETURN
* Eof:

* PROGRAM UPDTMEM
* WRITTEN BY GARY RADKEA
* FOR PEOPLESM GROCERY DATABASE
* ALLOWS UPDATE OF EXISTING MEMBER RECORDS

SELECT 1

104

DO WHILE .T.

* Clear screen and display menu
CLEAR
DO BACKGRD3
DO MEMUOPT
* Accept only allowed responses
DO CONFIRMM

DO CASE
* Enter a members number and locate that record
CASE CHR(i) $ "Aa"
DO WHILE .T.

CLEAR
MMEMNO=0
8 3,5 SAY "ENTER MEMBERS NUMBER"
@ 3,26 GET MMEMNO
READ
SEEK MMEMNO
IF .NOT. FOUND()

@ 4,5 SAY "MEMBER // DOES NOT EXIST IN DATABASE"
@ 5,5 SAY "TRY ANOTHER"
WAIT
LOOP

ELSE
EXIT

END IF
ENDDO
CLEAR

* Browse through the db to locate a record
CASE CHR(i) $ "Bb"
CLEAR
GO TOP
DO GETMEM
IF XIT
LOOP

ENDIF
* Abandon operation
CASE CHR(i) $"Cc"

EXIT
ENDCASE
IF CHR(i) $ "Xx"
LOOP

ENDIF
* Initialize temp variables with chosen record
* values
MSTREET = STREET
MCITY = TOWN
MSTATE = STATE
MZIP = ZIPCODE
MHOME = HOMEPHONE
MWORK = WORKPHONE

105

DO WHILE .T.
* Display membership form and get new info
DO MEMFMASK
DO UPMEMRD
DO CONFIRMQ
* Accept only allowed responses
DO CONFIRML
DO CASE

* Replace record values with new values
CASE CHR(i) $ "Yy"

REPLACE STREET WITH MSTREET
REPLACE TOWN WITH MCITY
REPLACE ZIPCODE WITH MZIP
REPLACE STATE WITH MSTATE
REPLACE HOMEPHONE WITH MHOME
REPLACE WORKPHONE WITH MWORK
@ 22,0
@ 23,0
WAIT
EXIT

* Allow corrections
CASE CHR(i) $ "Nn"
LOOP

* Abandon operations
CASE CHR (i) $ "Xx"

EXIT
ENDCASE

ENDDO
ENDDO
RETURN
*Eof;

'••PROGRAM ORDOPT
''WRITTEN BY GARY RADKE
*FOR THE PEOPLES GROCERY DATABASE
*LISTS THE OPTIONS FOR UPDATING THE MEMBER ORDER DATABASE
8 4,27 SAY " A. ENTER A MEMBERS ORDER"
@ 6,27 SAY " B. UPDATE AN EXISTING ORDER"
@ 8,27 SAY " C. RETURN TO MAIN MENU"
@ 11,30 SAY "ENTER SELECTION A-C :

:"

RETURN
*Eof;

*PROGRAM NEWORD
* WRITTEN BY GARY RADKE
* FOR PEOPLES GROCERY DATABASE
* ENTERS ITEM ORDERS FOR COOP MEMBERS
* Select a supplier to order from
SELECT 4

GO TOP
DO GETSUPP
IF XIT

1 Oh

RETURN
ENDIF
MSUPNAME=SUPNAME
DO WHILE .T.

* Display menu to choose member to order for
MMEMNO=0
MITEMNO=0
MQUANTITY=0
DO BACKGRD3
DO MORDOPT
DO CONFIRMM
DO CASE

* Enter a known member //

CASE CHR (i) $ "Aa"
DO WHILE .T.

CLEAR
@ 3,5 SAY QUERY1
@ 3,5+LEN(QUERYl) GET MMEMNO
READ
* Make sure given member // exists in db
SELECT 1

SEEK MMEMNO
IF (.NOT. FOUNDQ) THEN

@ 5,5 SAY "MEMBER tl DOES NOT EXIST IN"
@ 6,5 SAY "DATABASE, TRY ANOTHER"
WAIT
LOOP

ENDIF
MEMNAME = RTRIM (FIRSTNAME) + " " + RTRIM (LASTNAME)
CLEAR
EXIT

ENDDO
* Browse member file
CASE CHR(i) $ "Bb"

SELECT 1

GO TOP
DO GETMEM
IF XIT

LOOP
ENDIF
MMEMNO=MEM_N0

* Return to first menu in this application
CASE CHR(i) $ "Cc"

EXIT
ENDCASE
* Display an order form as long as the user wants to
* submit orders
DO WHILE .T.

DO MOFMASK
@ 7,14 SAY MMEMNO
@ 7,65 SAY MDATE
@ 9,17 SAY MEMNAME

107

@ 9,49 SAY MSUPNAME
8 13,6 GET MITEMNO
@ 20,26 SAY LASTITEM
READ
SELECT 2

LOCATE FOR MSUPNAME=SUPNAME .AND. MITEMN0=ITEMN0
* Tell user if requested item is not in the product
* catalog for this supplier
IF (.NOT. FOUNDO) THEN

@ 22,5 SAY MESS1
WAIT
@ 22,0
@ 23,0

LOOP
END IF
MDESCRIPT = RTRIM(DESCRIPT)
@ 17,9 SAY MDESCRIPT
@ 13,49 GET MQUANTITY
READ
DO CHKORD
IF ERR

@ 22,5 SAY ERRMESS
WAIT
@ 22,0
@ 23,0
LOOP

ENDIF
DO CONFIRMQ
DO CONFIRML
DO CASE

CASE CHR(i) $ "Yy"
* Make sure order is not a duplicate
* Create a new order record and enter given values
APPEND BLANK
REPLACE SUPNAME WITH MSUPNAME
REPLACE MEM_N0 WITH MMEMN0
REPLACE ITEMNO WITH MITEMNO
REPLACE QUANTITY WITH MQUANTITY
REPLACE DATE WITH MDATE
@ 22,0
@ 23,0
INDEX ON DTOC(DATE) + SUPNAME TO STORORD
@ 22,5 SAY "ORDER ANOTHER ITEM FOR THIS MEMBER? Y/N "

DO CONFIRML
@ 22,0
IF UPPER(CHR(i)) $ "Y"

LASTITEM=MDESCRIPT
MITEMNO=0
MQUANTITY=0
LOOP

ENDIF
EXIT

108

* If a mistake was made, let user correct it
CASE CHR(i) $ "Nn"
LOOP
* Return to previous menu

CASE CHR(i) $ "Xx"
CLEAR
EXIT

ENDCASE
ENDDO

ENDDO
RETURN
*Eof

'''PROGRAM GETSUPP
''•WRITTEN BY GARY RADKE
•'FOR THE PEOPLES GROCERY DATABASE
''BROWSE THROUGH SUPPLIERS
>' DO WHILE .T. means DO WHILE TRUE i.e. DO FOREVER
* The DO WHILE will be terminated by an EXIT command
XIT=.F.
CLEAR
IF (.NOT. EOFQ)
DO WHILE .T.

MSUPNAME= RTRIM (SUPNAME)
@ 3,5 SAY "SUPPLIER"
@ 3,15 SAY MSUPNAME
@ 5,5 SAY SUPMESS
@ 7,0 TO 13,55 DOUBLE
@ 8,5 SAY SYMESS
@ 10,5 SAY SNMESS
@ 12,5 SAY SXMESS
DO CONFIRML
DO CASE

CASE CHR(i) $ "Yy"
MSUPNAME=SUPNAME
EXIT

CASE CHR(i) $ "Nn"
SKIP
IF EOF()

@ 23,5 SAY "END OF SUPPLIER FILE"
WAIT
XIT=.T.
EXIT

ELSE
@ 3,15
LOOP

ENDIF
CASE CHR(i) $ "Xx"
XIT=.T.
EXIT

ENDCASE
ENDDO

109

ENDIF
RETURN
* Eof:

'--PROGRAM MORDOPT
'•'WRITTEN BY GARY RADKE
*FOR THE PEOPLES GROCERY DATABASE
*LISTS THE OPTIONS FOR ENTERING A MEMBER ORDER
@ 4,27 SAY " A. ENTER KNOWN MEMBER //"

@ 6,27 SAY " B. BROWSE MEMBER LIST TO FIND MEMBER II
"

@ 8,27 SAY " C. RETURN TO PREVIOUS MENU"
@ 11,30 SAY "ENTER SELECTION A-C :

:"

RETURN
*Eof

* PROGRAM MOFMASK.PRG
* WRITTEN BY GARY RADKE
* FOR PEOPLES GROCERY DATABASE
* TEMPLATE FOR MEMBER ORDER FORM
CLEAR
@ 0,0 TO 21,79 DOUBLE
@ 2,31 TO 4,49
@ 3,32 SAY "MEMBER ORDER FORM"
@ 7,5 SAY "MEMBER II"

% 7,60 SAY "DATE"
@ 9,5 SAY "MEMBER NAME"
@ 9,40 SAY "SUPPLIER"
@ 11,7 SAY "CATALOG II"

@ 15,32 SAY "ITEM DESCRIPTION"
@ 16,8 TO 18,71
@ 11,50 SAY "NUMBER OF UNITS"
@ 12,38 SAY "(// OF POUNDS, OUNCES, BAGS, CANS ETC.)"
@ 19,5 SAY "LAST ITEM ORDERED"
@ 20,5 SAY "FOR MEMBER THIS DATE"
RETURN
* Eof

* PROGRAM CHKORD
* WRITTEN BY GARY RADKE
* FOR PEOPLES GROCERY DATABASE
* CHECKS FOR ORDER ENTRY ERRORS
ERR=.T.
SELECT 3

* Check to see if there is a duplicate order
DO ORDDUP
DO CASE

* Require the order of at least one item unit
CASE (MQUANTITY < 1)

ERRMESS= QUANTM
CASE FOUND ()

ERRMESS=DUPMESS
OTHERWISE

110

ERR=.F.
ENDCASE
RETURN
*Eof;

* PROGRAM ORDDUP
* WRITTEN BY GARY RADKE
* FOR PEOPLES GROCERY DATABASE
* CHECKS AN ENTERED ORDER TO SEE IF IT IS A DPULICATE
* OF AN ORDER ENTERED EARLIER

DUP = .T.

LOCATE FOR MMEMNO=MEM_NO .AND. MITEMNO=ITEMNO .AND. MDATE=DATE .AND.
QUANTITY=MQUANTITY
IF EOF() THEN
DUP =.F.

ENDIF
RETURN
*Eof

•--PROGRAM UPDTORD
*WRITTEN BY GARY RADKE
*FOR PEOPLES GROCERY DATABASE
^PROGRAM UPDATES AN EXISTING MEMBER ORDER
DO WHILE .T.

* Select a supplier
SELECT 4

GO TOP
DO GETSUPP
IF XIT

EXIT
ENDIF
MSUPNAME=SUPNAME
DO WHILE .T.

* Display menu for selecting a member
DO BACKGRD3
DO MORDOPT
DO CONFIRMM
DO CASE

CASE CHR (i) $ "Aa"
CLEAR
* Enter known member
DO WHILE .T.

@ 3,5 SAY QUERY

4

@ 3,5+LEN(QUERY4) GET MMEMNO
READ
SELECT 1

* See if member // exists in db
SEEK MMEMNO
IF (.NOT. FOUNDO) THEN

@ 5,5 SAY "MEMBER g DOES NOT EXIST IN"

111

@ 6,5 SAY "DATABASE, TRY ANOTHER"
WAIT
8 5,0

@ 6,0
LOOP

ENDIF
MEMNAME = RTRIM (FIRSTNAME) + " " + RTRIM(LASTNAME)
CLEAR
EXIT

ENDDO

* Browse member file
CASE CHR(i) $ "Bb"

SELECT 1

GO TOP
DO GETMEM
MMEMNO=MEM_NO
IF XIT THEN

EXIT
ENDIF

* Return to first menu in this application
CASE CHR(i) $ "Cc"

EXIT
ENDCASE
DO WHILE .T.

* Display order form S let user enter date and itemno
DO MOFMASK
@ 7,14 SAY MMEMNO
8 7,65 GET MDATE
8 9,17 SAY MEMNAME
@ 9,49 SAY MSUPNAME
8 13,6 GET MITEMNO
READ
* See if given order exists in order file
SELECT 3

LOCATE FOR MSUPNAME=SUPNAME .AND. MITEMNO=ITEMNO .AND.
MDATE=DATE
IF E0F()

8 22,5 SAY "THIS MEMBER HAS NOT ORDERED THIS ITEM ON GIVEN
DATE"
WAIT
8 22,0
@ 23,0
8 22,5 SAY "ABANDON UPDATE THIS MEMBER? Y/N"
DO CONFIRML
IF (UPPER(CHR(i)) = "Y")
EXIT

END IF
8 22,0
8 23,0
LOOP

ENDIF

112

* Find ordered product so the description can be
* displayed
SELECT 2

LOCATE FOR MSUPNAME=SUPNAME .AND. MITEMNO=ITEMNO
MDESCRIPT = RTRIM(DESCRIPT)
SELECT 3

@ 17,9 SAY MDESCRIPT
@ 13,49 GET MQUANTITY
READ
* Require the user to order some of the selected
* i t em
IF (MQUANTITY < 1) THEN

@ 22,5 SAY QUANTM
WAIT
@ 22,5
@ 23,5
LOOP

ENDIF
DO CONFIRMQ
DO CONFIRML
@ 22,0
@ 23,0
DO CASE

* If entered info is correct then store it
CASE CHR(i) $ "Yy"

SELECT 3

REPLACE SUPNAME WITH MSUPNAME
REPLACE MEM_N0 WITH MMEMNO
REPLACE ITEMNO WITH MITEMNO
REPLACE QUANTITY WITH MQUANTITY
REPLACE DATE WITH MDATE
@ 22,5 SAY "UPDATE ANOTHER ITEM FOR THIS MEMBER? Y/N
DO CONFIRML
@ 22,0
IF CHR(i) $ "Yy"
LASTITEM=MDESCRIPT
MITEMNO=0
MQUANTITY=0
LOOP

ENDIF
EXIT

CASE CHR(i) $ "Nn"
EXIT
*LOOP

CASE CHR(i) $ "Xx"
EXIT

ENDCASE
ENDDO
* Repeat the process with a new member?
@ 22,0

@ 22,5 SAY "UPDATE ORDER FOR A NEW MEMBER? Y/N"
DO CONFIRML

113

DO CASE
CASE CHR(i) $ "Yy"
LOOP

CASE CHR(i) $ "Nn"
EXIT

CASE CHR(i) $ "Xx"
ENDCASE

ENDDO
IF (UPPER(CHR(i))="C")

EXIT
ENDIF
@ 22,5
@ 22,5 SAY "UPDATE AN ORDER WITH A NEW SUPPLIER? Y/N"
DO CONFIRML
DO CASE

CASE CHR(i) $ "Yy"
LOOP

CASE CHR(i) $ "Nn"
EXIT

CASE CHR(i) $ "Xx"
EXIT

ENDCASE
ENDDO
RETURN
*Eof

'-'PROGRAM CONOPT
'•'WRITTEN BY GARY RADKE
*FOR THE PEOPLES GROCERY DATABASE
*LISTS THE OPTIONS FOR MAINTAINING THE CONSIGNMENTS DATABASE
@ 4,27 SAY " A. ADD NEW CONSIGNMENTS"
@ 6,27 SAY " B. UPDATE EXISTING CONSIGNMENTS"
@ 8,27 SAY " C. RETURN TO MAIN MENU"
@ 11,30 SAY "ENTER SELECTION A-C : :"

RETURN
*Eof

* PROGRAM ECON
* WRITTEN BY GARY RADKE
* FOR PEOPLESM GROCERY DATABASE'
* ENTERS A NEW CONSIGNMENT INTO THE CONSIGNMENT DBF

* continue adding consignments until user is done
DO WHILE .T.

CLEAR
DO CONFMASK
DO ADDCON
DO CHECKCON
IF ERROR

@ 21,5 SAY ERRORMESS
WAIT
@ 21,0

114

@ 22,0
LOOP

ENDIF
DO CONFIRMQ
DO CONFIRML
SELECT 2

DO CASE
* append this record to consignments
CASE CHR(i) $ "Yy"
APPEND BLANK
REPLACE MEM_NO WITH MMEMNO
REPLACE DESCRIPT WITH MDESCRIPT
REPLACE NO__OF_ITEM WITH MNUMITEM
REPLACE CONSGRPRIC WITH MPRICE
REPLACE ALL_SOLD WITH MSOLD
REPLACE DATE WITH MDATE
REPLACE MEMPAID WITH MPAID
@ 21,0
@ 22,0
INDEX ON MEM_NO TO CMEMNO
* let the user change incorrect information

CASE CHR(i) $ "Nn"
@ 21,0
@ 22,0
LOOP
* abandon consignment entry without adding anything

CASE CHR(i) $"Xx"
EXIT

ENDCASE
* let user add as many consignments as they want
@ 22,5 SAY "ENTER ANOTHER CONSIGNMENT Y/N"
DO CONFIRML
IF CHR(i) $ "Yy"

* reset the memory variables in preperation of next
* consignment entry otherwise exit
CLEAR
MMEMNO=0
MEMNAME=SPACE(40)
MDESCRI PT=SPACE (20

)

MNUMITEM=0
MPRICE=000.00
MSOLD=.F.
MPAID=.F.
MDATE=DATE()
LOOP

ENDIF
EXIT

ENDDO
RETURN
*Eof

]JS

* PROGRAM CCON
* WRITTEN BY GARY RADKE
* FOR PEOPLES GROCERY DATABASE
* ALLOWS UPDATE OF AN EXISTING CONSIGNMENT RECORD
XIT=.F.
DO WHILE .T.

DO BACKGRD3
DO UPCOPT
DO CONFIRMM
SELECT 1

GO TOP
DO CASE

* Enter a known member I and update their consignment
CASE CHR(i) $ "Aa"

DO WHILE .T.

CLEAR
@ 3,5 SAY "UPDATE CONSIGNMENT FOR MEMBER //"

@ 3,37 GET MMEMNO
READ
SELECT 1

SEEK MMEMNO
IF((.NOT. FOUND()).OR. (MMEMNO < 1))

@ 22,5 SAY MESS4
WAIT
@ 22,0
@ 23,0
LOOP

ENDIF
MEMNAME= RTRIM (FIRSTNAME) + " " + RTRIM(LASTNAME)
SELECT 2

SEEK MMEMNO
IF (.NOT. FOUNDO)

@ 22,5 SAY MESS5
WAIT
@ 22,0
@ 23,0
LOOP

ENDIF
EXIT

ENDDO
DO CONUPD
* Browse through the member file to find the right one

CASE CHR(i) $ "Bb"
DO WHILE .T.

CLEAR
SELECT 1

DO GETMEM
DO CASE

CASE CHR(i) $ "Yy"
SELECT 2

SEEK MMEMNO

116

IF (.NOT. FOUND())
@ 22,5 SAY MESS5
WAIT
@ 22,0
@ 23,0
SELECT 1

LOOP
ENDIF
DO CONUPD
IF XIT
LOOP

ENDIF
EXIT

CASE CHR(i) $ "Xx"
EXIT

ENDCASE
ENDDO
* Exit and return to main menu this module
CASE CHR(i) $ "Cc"

EXIT
ENDCASE

ENDDO
RETURN
*Eof

* PROGRAM CONFMASK.PRG
* WRITTEN BY GARY RADKE
* FOR PEOPLES GROCERY DATABASE
* TEMPLATE FOR PRODUCT CONSIGNMENT FORM
CLEAR
@ 0,0 TO 20,79 DOUBLE
@ 2,25 TO 4,53
@ 3,27 SAY "PRODUCT CONSIGNMENT FORM"
@ 7,9 SAY "MEMBER //"

@ 7,60 SAY "DATE"
@ 10,5 SAY "PRODUCT DESCRIPTION"
@ 10,27 SAY "NUMBER PLACED"
@ 11,27 SAY "ON CONSIGNMENT"
@ 10,45 SAY "PRICE / ITEM PAID"
@ 11,49 SAY "TO MEMBER"
@ 17,10 SAY "ALL ITEMS SOLD"
@ 17,55 SAY "MEMBER PAID"
RETURN
*Eof

^PROGRAM ADDCON
*WRITTEN BY GARY RADKE
*FOR PEOPLES GROCERY DATABASE
'"PROGRAM READS CONSIGNMENT ENTRY INFORMATION

7,19 GET MMEMNO
@ 7,65 GET MDATE
@ 13,5 GET MDESCRIPT

117

@ 13,32 GET MNUMITEM
@ 13,50 GET MPRICE
@ 17,25 GET MSOLD
@ 17,68 GET MPAID
READ
RETURN
* Eof:

* PROGRAM CHECKCON
* WRITTEN BY GARY RADKE
* FOR PEOPLES GROCERY DATABASE
* MAKES SURE VALUES HAVE BEEN ENTERED IN FIELDS
* THAT REQUIRE A VALUE TO MAKE THE RECORD VALID
* ASSIGNS AN ERROR MESSAGE IF AN INCORRECT VALUE IS FOUND.
ERR0R=.T.
SELECT 1

SEEK MMEMNO
DO CASE

CASE (LEN(RTRIM(MDESCRIPT)) < 1)
ERR0RMESS=MESS1

CASE (MNUMITEM < 1)
ERRORMESS=MESS2

CASE (MPRICE < 0.01)
ERRORMESS=MESS3

CASE (.NOT. FOUND() .OR. MMEMNO < 1)
ERRORMESS=MESS4

OTHERWISE
ERROR=.F.

ENDCASE
SELECT 2

LOCATE FOR MMEMNO = MEM_N0 .AND. RTRIM(DESCRIPT) = RTRIM(MDESCRIPT)
.AND. MNUMITEM = N0_0F_ITEM .AND. MPRICE = CONSGRPRICE .AND.
DATE=MDATE
IF FOUND()
ERRORMESS=MESS6
ERR0R=.T.

ENDIF
SELECT 2

RETURN
* Eof

^PROGRAM UPCOPT
-''WRITTEN BY GARY RADKE
*FOR THE PEOPLES GROCERY DATABASE
*LISTS THE OPTIONS FOR MAINTAINING THE CONSIGNMENTS DATABASE
@ 4,27 SAY " A. UPDATE CONSIGNMENTS WHERE MEMBER § IS KNOWN"
@ 6,27 SAY " B. FIND MEMBER # TO UPDATE CONSIGNMENTS"
@ 8,27 SAY " C. RETURN TO PREVIOUS MENU"
@ 11,30 SAY "ENTER SELECTION A-C : :"

RETURN
*Eof

118

^PROGRAM CONUPD
*WRITTEN BY GARY RADKE
*FOR PEOPLES GROCERY DATABASE
^UPDATES AN EXISTING CONSIGNMENT RECORD

* Use the consignment dbf
* Locate the first record for the selected member //

LOCATE FOR MMEMNO=MEM_NO
DO WHILE .T.

CLEAR
* See if this is the record the user wants to update
DO CONBMSK
DO CONFIRML
DO CASE

CASE CHR(i) $ "Yy"
CLEAR
* Allow update of the chosen record
DO CONFMASK
CONNUM=RECNO()
MNUMI TEM=NO_OF_I TEM
MPRICE=CONSGRPRIC
MSOLD=ALL_SOLD
MPAID=MEMPAID
MDESCRIPT=DESCRIPT
DO WHILE .T.

SELECT 2

DO UPCONRD
* Check for missing values
DO CHECKCON
* Ignore duplicate error otherwise print error message
DO CASE

CASE(ERR0RMESS=MESS2)
@ 21,5 SAY ERRORMESS
WAIT
8 21,0
@ 22,0
GO CONNUM
LOOP

CASE(ERRORMESS=MESS3)
@ 21,5 SAY ERRORMESS
WAIT
@ 21,0
@ 22,0
GO CONNUM
LOOP

OTHERWISE
ENDCASE

DO CONFIRMQ
DO CONFIRML

119

DO CASE
* Save changes
CASE CHR(i) $ "Yy"
REPLACE NO_OF_ITEM WITH MNUMITEM
REPLACE CONSGRPRIC WITH MPRICE
REPLACE ALL_SOLD WITH MSOLD
REPLACE DATE WITH MDATE
REPLACE MEMPAID WITH MPAID
@ 21,5
@ 22,5

23,0
XIT=.T.
EXIT

* Allow corrections
CASE CHR(i) $ "Nn"

@ 21,0
@ 22,0
@ 23,0
GO CONNUM && THE CONSIGNMENT RECORD BEING OPERATED ON
LOOP

CASE CHR(i) $ "Xx"
@ 21,0
@ 22,0
EXIT

ENDCASE
XIT=.T.
EXIT

ENDDO

* If this isn't the one to update, look at the next
CASE CHR(i) $ "Nn"

CONTINUE
IF EOFQ

@ 22,5 SAY " END OF CONSIGNMENT RECORDS FOR THIS MEMBER"
WAIT
EXIT

ELSE
@ 8,29
@ 8,29 SAY DESCRIPT
LOOP

ENDIF
* Exit update loop
CASE CHR(i) $ "Xx"
XIT=.T.
EXIT

ENDCASE
* Return to consignment program
IF ((UPPER(CHR(i)) $ "X") .OR. (XIT))

EXIT
ENDIF

ENDDO

120

GO TOP
RETURN

* Eof:

*PROGRAM UPCONRD
*WRITTEN BY GARY RADKE
*FOR PEOPLES GROCERY DATABASE
^TEMPLATE FOR INPUT TO AN EXISTING CONSIGNMENT RECORD

@ 7,19 SAY MEM_NO
@ 7,65 SAY DATE
@ 8,11 SAY MEMNAME
@ 13,5 SAY DESCRIPT
@ 13,32 GET MNUMITEM
@ 13,50 GET MPRICE
@ 17,25 GET MSOLD

17,68 GET MPAID
READ
RETURN
* Eof:

*PROGRAM CONBMSK
*WRITTEN BY GARY RADKE
*FOR PEOPLES GROCERY DATABASE
*MASK FOR BROWSING THROUGH A MEMBERS CONSIGNMENT
'''RECORDS TO FIND THE ONE TO UPDATE
@ 3,5 SAY "MEMBER //"

@ 3,50 SAY "DATE"
@ 6,5 SAY "MEMBER NAME"
@ 8,5 SAY "CONSIGNMENT DESCRIPTION"
@ 3,14 SAY MEM_N0
@ 3,56 SAY DATE
@ 6,17 SAY MEMNAME
@ 8,29 SAY DESCRIPT
@ 10,5 SAY "UPDATE THIS CONSIGNMENT RECORD? Y/N"
@ 13,0 TO 21,60 DOUBLE
@ 14,5 SAY "TYPING Y RETREIVES THIS RECORD"
@ 16,5 SAY "TYPING N LOCATES THE NEXT CONSIGNMENT RECORD FOR"
@ 17,5 SAY "THIS MEMBER"
@ 19,5 SAY "TYPING X RETURNS YOU TO THE PREVIOUS MENU"
RETURN
* Eof:

*PROGRAM SUPPOPT
*WRITTEN BY GARY RADKE
*F0R THE PEOPLES GROCERY DATABASE
*LISTS THE OPTIONS FOR UPDATING THE SUPPLIERS DATABASE
@ 4,27 SAY " A. ADD A NEW SUPPLIER"
@ 6,27 SAY " B. UPDATE A CURRENT SUPPLIERS RECORD"
@ 8,27 SAY " C. RETURN TO MAIN MENU"

121

@ 11,30 SAY "ENTER SELECTION A-C :
:

"

RETURN
*Eof

* PROGRAM SUPFMASK.PRG
* WRITTEN BY GARY RADKE
* FOR PEOPLES GROCERY DATABASE
* TEMPLATE FOR SUPPLIER INFORMATION FORM
CLEAR
@ 0,0 TO 21,79 DOUBLE
@ 2,23 TO 5,53
@ 3,25 SAY "PEOPLES GROCERY COOPERATIVE"
@ 4, 26 SAY "SUPPLIER INFORMATION FORM"
@ 7,9 SAY "SUPPLIER NAME"
@ 9,9 SAY "NAME OF CONTACT"
@ 12,5 SAY "ADDRESS"
@ 14,9 SAY "STREET"
@ 15,9 SAY "CITY"
@ 16,9 SAY "STATE"
@ 16,18 SAY "ZIP CODE"
@ 19,9 SAY "PHONE"
RETURN
*Eof

---PROGRAM ADDSUP
*WRITTEN BY GARY RADKE
*FOR THE PEOPLES GROCERY DATABASE
*ENTERS SUPPLIER INFORMATION INTO SUPPLIER. DBF
MSUPNAME=SPACE (20

)

@ 7,23 GET MSUPNAME
@ 9,25 GET MCONTACT
@ 14,16 GET MSTREET
@ 15,14 GET MCITY
@ 16,15 GET MSTATE
@ 16,27 GET MZIP
@ 19,15 GET MPHONE
READ
RETURN
* Eof:

*PROGRAM UPSUPRD
''-WRITTEN BY GARY RADKE
*FOR THE PEOPLES GROCERY DATABASE
'•'UPDATES SUPPLIER INFORMATION IN SUPPLIER. DBF
@7,23 SAY MSUPNAME
@ 9,25 SAY MCONTACT
@ 14,16 SAY MSTREET
@ 15,14 SAY MCITY
@ 16,15 SAY MSTATE
@ 16,27 SAY MZIP
@ 19,15 SAY MPHONE
@ 9,25 GET MCONTACT

122

@ 14,16 GET MSTREET
@ 15,14 GET MCITY
@ 16,15 GET MSTATE
@ 16,27 GET MZIP
@ 19,15 GET MPHONE
READ
RETURN
* Eof:

*PROGRAM PRODOPT
*WRITTEN BY GARY RADKE
*FOR THE PEOPLES GROCERY DATABASE
*LISTS THE OPTIONS FOR UPDATING PRODUCT CATALOGS
@ 4,27 SAY " A. ADD A NEW PRODUCT TO A CATALOG"
@ 6,27 SAY " B. UPDATE PRODUCT INFO"
@ 8,27 SAY " C. DELETE A PRODUCT FROM THE CATALOG"
@ 11,30 SAY "ENTER SELECTION A-C : :"

RETURN
*Eof

* PROGRAM ENTPROD
* WRITTEN BY GARY RADKE
* FOR PEOPLES GROCERY DATABASE
SELECT 2

CLEAR
DO WHILE .T.

* Print the product entry form and read new values
DO PRDFMASK
DO ADDPRD
* Check to see that all required values have been entered
* And that there are no duplicate catalog //s for any one
* supplier
DO CHKPRD
* If there has been an error in entry print the appropriate
* message and allow it to be corrected
IF ERROR

@ 22,5 SAY ERRMESS
WAIT
@ 22,5
@ 23,5
ERRMESS=SPACE(60)
LOOP

ENDIF
DO CONFIRMQ
1=0

DO CONFIRML
DO CASE

* Enter a new product in the product dbf
CASE CHR(i) $ "Yy"

APPEND BLANK
REPLACE ITEMNO WITH MITEMNO
REPLACE DESCRIPT WITH MDESCRIPT

12J

REPLACE SHIP_WT WITH MSHIPWT
REPLACE UPRICE WITH MUPRICE
REPLACE CAS_PRICE WITH MCASPRICE
REPLACE SUPNAME WITH MSUPNAME
DO MOREQ
DO CONFIRML
DO CASE

* Rinitialize values for entrance of a new product
CASE CHR(i) $"Yy"
MITEMNO=0
MDESCRI PT=SPACE(60

)

MSHIPWT=0
MUPRICE=00.00
MCASPRICE=000.00
LOOP

* Return to the previous menu
CASE CHR(i) $ "Nn"

EXIT
ENDCASE

* Allow correction of incorrect information
CASE CHR(i) $ "Nn"
LOOP

* Return to previous menu
CASE CHR(i) $ "Xx"

EXIT
ENDCASE

ENDDO
RETURN
*Eof

* PROGRAM UPDTPROD
* WRITTEN BY GARY RADKE
* FOR PEOPLES GROCERY DATABASE
CLEAR
SUPMESS="UPDATE ITEMS IN CATALOG FOR SUPPLIER"
NOTEXIST="CATALOG // DOES NOT EXIST FOR THIS SUPPLIER—REENTER"
NOPRDS="NO PRODUCTS CURRENTLY IN THIS SUPPLIERS CATALOG"
DO WHILE .T.

* Check to see that there are products for this supplier
LOCATE FOR SUPNAME=MSUPNAME
IF (.NOT. FOUNDO)

@ 22,5 SAY NOPRDS
WAIT
@ 22,0
@ 23,0
EXIT

ENDIF
* Print product update menu and options
DO BACKGRD3
DO UPRDOPT
DO CONFIRMM
DO CASE

12/,

CASE CHR(i) $ "Aa"
DO WHILE .T.

i=0
* Get the number of the item to update
DO GETITNO
* If the item does not exist for chosen supplier,
* Print an error message and allow it to be reentered
IF(.NOT. FOUNDO)

@ 22,5 SAY NOTEXIST
WAIT
LOOP

ENDIF
* Print the product form and accept new values
DO PRDFMASK
DO CHANGCAT
* Make sure values still exist in fields where values
* Must exist- ignore the duplicate error message this time
DO CHKPRD
IF((ERROR) .AND. ((RTRIM(ERRMESS) <> MESS1)))

@ 22,5 SAY ERRMESS
WAIT
@ 22,5
@ 23,5
LOOP

ENDIF
DO CONFIRMQ
DO CONFIRML
@ 22,5
@ 23,5
DO CASE

* If everything is ok, update the product dbf
CASE CHR(i) $ "Yy"

DO MKPRDCHG
* Allow corrections
CASE CHR(i) $ "Nn"

LOOP
* Return to previous menu without making changes
CASE CHR(i) $ "Xx"

EXIT
ENDCASE
* Ask if user wants to make more changes
@ 22,5 SAY "UPDATE ANOTHER PRODUCT? Y/N"
DO CONFIRML
IF CHR(i) $ "Yy"
LOOP

ELSE
EXIT

ENDIF
ENDDO

* Return to previous menu
CASE CHR(i) $"Bb"

125

EXIT

ENDCASE
ENDDO
RETURN
*Eof

* PROGRAM PRDFMASK.PRG
* WRITTEN BY GARY RADKE
* FOR PEOPLES GROCERY DATABASE
* TEMPLATE FOR PRODUCT ENTRY FORM
CLEAR
@ 0,0 TO 16,79 DOUBLE
@ 2,29 TO 4,50
@ 3,30 SAY "PRODUCT INFORMATION"
@ 7,5 SAY "SUPPLIER"
@ 7,40 SAY "CATALOG II:"

@ 9,5 SAY "ITEM DESCRIPTION"
@ 10,5 TO 12,67
@ 13,5 SAY "SHIPPING WT."
@ 13,20 SAY "UNIT PRICE"
@ 13,35 SAY "CASE PRICE"
RETURN
* Eof

* PROGRAM ADDPRD.PRG
* WRITTEN BY GARY RADKE
* FOR PEOPLES GROCERY DATABASE
* TEMPLATE FOR ENTRY OF PRODUCT INFORMATION
@ 7,14 SAY MSUPNAME
@ 7,51 GET MITEMNO
@ 11,6 GET MDESCRIPT
@ 14,5 GET MSHIPWT
@ 14,20 GET MUPRICE
@ 14,35 GET MCASPRICE
READ
RETURN
* Eof

* Program chkprd
* Written by Gary Radke
* For Peoples Grocery Database
* Checks to see that newly entered catalog numbers
* are not duplicates of an existing catalog // for a given
* supplier. Also checks to see that some value is
* entered in fields that require a value.
LOCATE FOR MSUPNAME=SUPNAME .AND. MITEMN0=ITEMN0
ERROR=.T.
DO CASE

CASE (MITEMNO < 1)

ERRMESS=MESS6

126

CASE FOUND ()

ERRMESS=MESS1
CASE (LEN(RTRIM(MDESCRIPT))<1)

ERRMESS=MESS5
CASE (MSHIPWT < 1)

ERRMESS=MESS2
case (muprice < o.oi)
ERRMESS=MESS3

CASE (MCASPRICE < 0.01)
ERRMESS=MESS4

OTHERWISE
ERROR=.F.

ENDCASE
RETURN
*Eof

^PROGRAM MOREQ.PRG
'''WRITTEN BY GARY RADKE
*FOR PEOPLES GROCERY DATABASE

@ 22,5 SAY "ENTER ANOTHER? Y/N"
* Eof:

*PROGRAM UPRDOPT
^WRITTEN BY GARY RADKE
*FOR THE PEOPLES GROCERY DATABASE
*LISTS THE OPTIONS FOR UPDATING THE MEMBER ORDER DATABASE
@ 4,27 SAY " A. ENTER AN ITEM //"

@ 6,27 SAY " B. RETURN TO THE PREVIOUS MENU"
@ 11,30 SAY "ENTER SELECTION A-B : :"

RETURN
*Eof

'•'PROGRAM GETITNO
^WRITTEN BY GARY RADKE
''FOR PEOPLES GROCERY DATABASE
CLEAR
@ 3,5 SAY "UPDATE CATALOG FOR PRODUCT //"

@ 3,37 GET MITEMNO
READ
USE PRODCAT
LOCATE FOR ITEMNO = MITEMNO .AND. SUPNAME=MSUPNAME
RETURN
* Eof:

* PROGRAM CHANGCAT.PRG
* WRITTEN BY GARY RADKE
* FOR PEOPLES GROCERY DATABASE
* TEMPLATE FOR ENTRY OF PRODUCT INFORMATION
MSHIPWT=SHIP_WT
MDESCRIPT=DESCRIPT
MUPRICE=UPRICE
MCASPRICE=CAS_PRICE

127

@ 7,14 SAY MSUPNAME
@ 7,51 SAY MITEMNO
@ 11,6 GET MDESCRIPT
@ 14,5 GET MSHIPWT
@ 14,20 GET MUPRICE
@ 14,35 GET MCASPRICE
READ
RETURN
* Eof

* PROGRAM MKPRDCHG
* WRITTEN BY GARY RADKE
* FOR PEOPLES GROCERY DATABASE
REPLACE DESCRIPT WITH MDESCRIPT
REPLACE SHIP_WT WITH MSHIPWT
REPLACE UPRICE WITH MUPRICE
REPLACE CAS_PRICE WITH MCASPRICE
RETURN
*Eof

'-•PROGRAM EXPOPT
*WRITTEN BY GARY RADKE
*FOR THE PEOPLES GROCERY DATABASE
*LISTS THE OPTIONS FOR MAINTAINING THE COOPERATIVE EXPENSES
^DATABASE
I? 4,27 SAY " A. ENTER AN EXPENSE"
@ 6,27 SAY " B. BROWSE EXPENSE FILE"
@ 8,27 SAY " C. RETURN TO MAIN MENU"
@ 11,30 SAY "ENTER SELECTION A-C : :"

RETURN
*Eof

* PROGRAM MEMFMASK.PRG
* WRITTEN BY GARY RADKE
* FOR PEOPLES GROCERY DATABASE
* TEMPLATE FOR EXPENSE INFORMATION FORM
CLEAR
@ 0,0 TO 14,79 DOUBLE
@ 2,31 TO 4,47
@ 3,33 SAY "EXPENSE FORM"
@ 7,9 SAY "DATE"
@ 7,50 SAY "AMOUNT"
@ 10,9 SAY "PAID TO"
@ 12,9 SAY "DESCRIPTION"
@ 13,9 SAY "PAID?"
RETURN
*Eof

*PROGRAM ADDEXP
*WRITTEN BY GARY RADKE
*FOR THE PEOPLES GROCERY DATABASE
*ENTERS EXPENSE INFORMATION INTO EXPNEC.DBF

128

@ 7,14 GET MDATE
6 7,60 GET MAMOUNT
@ 10,17 GET MPAIDTO
@ 12,21 GET MDESCRIPTI
READ
RETURN
* Eof:

* PROGRAM CHKEXP
* WRITTEN BY GARY RADKE
* FOR PEOPLES GROCERY DATABASE
* CHECKS FOR DUPLICATE RECORDS AND MAKES SURE
* ENTRIES ARE MADE IN THE REQUIRED FIELDS
ERROR=.T.
LOCATE FOR DATE=MDATE .AND. PAID_TO=MPAIDTO .AND. AMOUNT=MAMOUNT

;

.AND. DESCRIPTIO=MDESCRIPTI
DO CASE

CASE FOUND ()

ERRMESS=MESS1
CASE MAMOUNT < 0.01
ERRMESS=MESS2

CASE LEN(RTRIM(MPAIDTO)) < 1

ERRMESS=MESS3
CASE LEN(RTRIM(MDESCRIPTI)) < 1

ERRMESS=MESS4
OTHERWISE

ERROR=.F.
ENDCASE
RETURN
* Eof

^PROGRAM BRSEXP
*WRITTEN BY GARY RADKE
*FOR THE PEOPLES GROCERY DATABASE
*DISPLAYS EXPENSE INFORMATION IN EXPNEC.DBF
@ 7,14 SAY DATE
@ 7,60 SAY AMOUNT
@ 10,17 SAY PAID_TO
@ 12,21 SAY DESCRIPTIO
@ 13,15 SAY PAID
RETURN
* Eof:

*PROGRAM LABOPT
*WRITTEN BY GARY RADKE
*FOR THE PEOPLES GROCERY DATABASE
*LISTS THE OPTIONS FOR GENERATING PRODUCT BREAKDOWN LABELS
@ 4,27 SAY " A. GENERATE PRODUCT BREAKDOWN LABELS FOR A"
@ 5,27 SAY " SPECIFIED ORDER."
@ 8,27 SAY " B. RETURN TO MAIN MENU"
@ 11,30 SAY "ENTER SELECTION A-B : :"

129

RETURN
*Eof

* PROGRAM PRINTLBL
* WRITTEN BY GARY RADKE
* FOR PEOPLES GROCERY DATABASE
* THIS PROGRAM PRINTS THE PRODUCT BREAK DOWN LABELS
* FOR A GIVEN ORDER

XIT=.F.
MMEMNO=0
MDATE=DATE()
MM4="ON "

G01="PRINT LABELS FOR ORDER SUBMITTED TO "

L01="ORDER DATE "

L02="CATALOG //
"

L03="DESCRIPTION "

L04="MEMBER I
"

L05="MEMBER NAME "

L06="QUANTITY "

L07="PRODUCT BREAK DOWN LABEL"
CENT=(79-LEN(L07))/2
DO GETORD
* Let user return to main menu if order for label printing is not
* found
IF XIT
RETURN

ENDIF
SELECT 5

USE MEMBER
INDEX ON MEM_NO TO MEMNO
SELECT 4

USE PRODCAT
SELECT 1

USE ITEM_ORD
JOIN WITH D TO ORDLFIL FOR ITEMNO = D->ITEMNO .AND. SUPNAME =
D->SUPNAME FIELDS ITEMNO, D->DESCRIPT, QUANTITY, DATE, MEM_NO
INDEX ON DTOC(DATE)+STR(ITEMNO) TO LBLFIL
SELECT 1

USE ORDLFIL INDEX LBLFIL
LOCATE FOR DATE=MDATE
DO WHILE DATE=MDATE

CLEAR
MITEMNO=ITEMNO
@ 1 , CENT SAY L07
@ 2,5 SAY LOl

@ 2,5+LEN(L01) SAY DATE
@ 3,5 SAY L02
@ 3,5+LEN(L02) SAY ITEMNO
@ 4,5 SAY L03
@ 4,5+LEN(L03) SAY DESCRIPT
@ 5,1 TO 5,79

130

@ 7,5 SAY L04
9 7,25 SAY L05
@ 7,45 SAY L06
R0WN=9
DO WHILE ITEMNO=MITEMNO

8 ROWN.5 SAY MEM_NO
MMEMNO=MEM_NO
SELECT 5

USE MEMBER INDEX MEMNO
SEEK MMEMNO
@ ROWN.20 SAY RTRIM(FIRSTNAME)+" "+RTRIM(LASTNAME)
SELECT 1

@ ROWN.45 SAY QUANTITY
ROWN=ROWN+l
SKIP
IF EOF()
EXIT

ENDIF
ENDDO
IF EOF()
EXIT

ENDIF
ENDDO

WAIT
RELEASE ALL
CLOSE ALL
RETURN
*Eof

•'PROGRAM BILLOPT
'''WRITTEN BY GARY RADKE
*FOR THE PEOPLES GROCERY DATABASE
*LISTS THE OPTIONS FOR PRODUCING ORDER BILLING REPORTS FOR EVERY
'••MEMBER PARTICIPATING IN A GIVEN ORDER
@ 4,27 SAY " A. THIS MODULE PRODUCES A BILL ITEMIZING"
@ 5,27 SAY " PRODUCTS PRICES, TOTAL MARKUP AND TAXES"
@ 6,27 SAY " FOR EACH MEMBER PARTICIPATING IN A GIVEN"
@ 7,27 SAY " ORDER."
@ 9,27 SAY " B. RETURN TO MAIN MENU"
@ 11,30 SAY "ENTER SELECTION A-B : :"

RETURN
*Eof

* PROGRAM GETORD
* WRITTEN BY GARY RADKE
* FOR PEOPLES GROCERY DATABASE
* LOCATES AN ORDER SUPPLIER AND DATE SO THE ORDER MAY BE
* ADJUSTED BEFORE BILLING OCCURS
G02="Y/N"
G03="NO OTHER ORDERS HAVE BEEN SUBMITTED. DO YOU WANT TO LOOK"
G04=" AT THE"

131

G05="0RDER LIST AGAIN Y/N"
CLEAR
SELECT 1

USE ITEM_ORD INDEX STORORD
@ 3,5 SAY GOl

@ 3,5+LEN(G01) SAY RTRIM(SUPNAME)
@ 3,5+LEN(G01)+LEN(RTRIM(SUPNAME))+l SAY MM4
@ 3,5+LEN(G01)+LEN(RTRIM(SUPNAME))+l+LEN(MM4) SAY DATE
@ 4,5 SAY "Y/N ?"

DO CONFIRML
IF CHR(i) $ "Yy"
MSUPNAME=SUPNAME
MDATE=DATE

ELSE
MSUPNAME=SUPNAME
MDATE=DATE
LOCATE FOR MDATEoDATE .OR. MSUPNAMEoSUPNAME
DO WHILE .T.

IF (.NOT. EOF())
@ 3,5 SAY GOl
@ 3,5+LEN(G01) SAY RTRIM(SUPNAME)
@ 3,5+LEN(G01)+LEN(RTRIM(SUPNAME))+l SAY MM4
@ 3,5+LEN(G01)+LEN(RTRIM(SUPNAME))+l+LEN(MM4) SAY DATE
@ 4,5 SAY "Y/N"
DO CONFIRML
DO CASE

CASE CHR(i) $ "Yy"
MSUPNAME=SUPNAME
MDATE=DATE
EXIT

CASE CHR(i) $ "Nn"
@ 3,5+LEN(G01)
CONTINUE
MDATE=DATE
MSUPNAME=SUPNAME
LOOP

ENDCASE
ELSE

@ 7,5 SAY G03
@ 7,5+LEN(G03) SAY G04
@ 8,5 SAY G05
DO CONFIRML
IF CHR(i) $ "Yy"
GO TOP
@ 7,5
@ 8,5
* LOCATE FOR MDATEoDATE .OR. MSUPNAMEoSUPNAME
LOOP

ELSE
XIT=.T.
EXIT

ENDIF

132

ENDIF
ENDDO

ENDIF
RETURN
*Eof

* PROGRAM ADJUST ORDER
* WRITTEN BY GARY RADKE
* FOR PEOPLES GROCERY DATABASE
* THIS ROUTINE REMOVES REFUSED OR UNDELIVERED ITEMS
* FROM A GIVEN ORDER SO THAT A MEMBERS BILLS MAY BE PRINTED
* PROPERLY

AOl ="ENTER THE CATALOG I OF AN UNDELIVERED OR REFUSED ITEM"
A02 ="IF THERE ARE NO FURTHER UNDELIVERED OR REFUSED ITEMS"
A03 ="TO BE ENTERED, TYPE 0000 "

A04 ="REMOVE CATALOG //
"

A05 =" FROM THIS ORDER? Y/N "

A06 ="DELETE THIS ITEM FROM THE ORDER OF MEMBER //
"

A07 ="NO OTHER MEMBERS HAVE ORDERED "

A08 ="? Y/N"
A09 ="GIVEN ITEM // WAS NOT INCLUDED IN THIS ORDER"
RESPONSE=SPACE(4)
SELECT 6

USE MEMBER INDEX MEMNO
SELECT 1

DO WHILE .1.

CLEAR
@ 3,5 SAY AOl

@ 4,5 SAY A02
@ 5,5 SAY A03 GET RESPONSE
READ
IF RESPONSE = "0000"

EXIT
ELSE

LOCATE FOR ITEMNO=VAL(RESPONSE) .AND. DATE=MDATE .AND.
SUPNAME=MSUPNAME
IF (.NOT. FOUNDO)

@ 7,5 SAY A09
WAIT
@ 7,0
LOOP

ENDIF
SELECT 4

USE PRODCAT
LOCATE FOR VAL(RESPONSE)=ITEMNO
CLEAR
@ 3,5 SAY A04
@ 3,5+LEN(A04) SAY ITEMNO
@ 4,5 SAY DESCRIPT
@ 4,5+ LEN(RTRIM(DESCRIPT)) SAY A05
DO CONFIRML

133

IF CHR(i) $ "Yy"
SELECT 1

LOCATE FOR VAL(RESPONSE)=ITEMNO .AND. MDATE=DATE
THISMEM=MEM_NO
CLEAR
DO WHILE .T.

IF .NOT. EOF()
SELECT 6

SEEK THISMEM
MEMNAME=RTRIM(FIRSTNAME)+" "+RTRIM(LASTNAME)
SELECT 1

@ 3,5 SAY A06
CVAL=LEN(MEMNAME)
@ 3,5+LEN(A06) SAY LTRIM(STR(MEM_NO)

)

@ 4,5 SAY MEMNAME
@ 4,5 + CVAL SAY A08
DO CONFIRML
IF CHR(l) $ "Yy"
DELETE
CONTINUE
THISMEM=MEM_NO

ELSE
CONTINUE
THISMEM=MEM_NO

ENDIF
ELSE

SELECT 4

@ 7,5 SAY A07
@ 7,5 + LEN(A07) SAY DESCRIPT
WAIT
SELECT 1

EXIT
ENDIF
ENDDO

ENDIF
RESPONSE=" "

SELECT 1

ENDDO
PACK
DISPLAY ALL
WAIT
SELECT 6

USE
SELECT 1

RETURN
END
*Eof

* PROGRAM PRINTBIL
* WRITTEN BY GARY RADKE
* FOR PEOPLES GROCERY DATABASE
* ROUTINE ACCEPTS INPUT OF SHIPPING COST, TAX, MEMBER EQUITY

1 34

* CHARGE AND SALES TAX AND CALCULATES THE AMOUNT A MEMBER OWES
* FOR THE ITEMS HE/SHE HAS RECEIVED IN THIS ORDER.
SET DECIMALS TO 2

B01="ENTER THE SHIPPING COST IN PRICE PER POUND FOR THIS "

B02="ORDER."
B03="ENTER THE MEMBER EQUITY CHARGED FOR THIS ORDER AS PERCENT."
B04="ENTER SALES TAX AS PERCENT"
B05="ENTER MARKUP AS PERCENT"
B06="ENTER ANY DISCOUNT AS PERCENT"
B07="PRICE PER POUND SHIPPING"
B08="TOTAL SHIPPING COST"
B09="MARKUP"
B10="ORDER BILL FOR "

B11="MEMBER //
"

B12="ORDER DATE "

B13="SUPPLIER "

B 14=" SUBTOTAL"
B15="TAX"
B16="DISCOUNT -"

B17="EQUITY"
MESS1="SHIPPING COST MAY NOT BE LESS THAN 0"

MESS2="MEMBER EQUITY MAY NOT BE LESS THAN 0"

MESS3="MARKUP RATE MAY NOT BE LESS THAN 0"

MESS4="DISCOUNT RATE MAY NOT BE LESS THAN 0"

MESS5="TAX RATE MAY NOT BE LESS THAN 5.5%"
MESS6="PLEASE WAIT"
ERRMESS=SPACE(60)
ERR=.T.
ADJSTMNTS=0.00
SHIPRATE=0.00
EQUITYR=0.0
TAXRATE=5 .

5

MARKUPR=15.0
DISCOUNTR=0.0
SHIPCOST=0.00
EQUITYC=0.00
TAX=0 . 00

DISCOUNTS. 00
MARKUP=0 . 00
SUBTOT=0.00
UNITPCAS=0
WTPUNIT=0
SHIPWT=0
XIT=.F.
@ 3,5 SAY MESS6
SELECT 4

USE PRODCAT
SELECT 1

USE ITEM_ORD
JOIN WITH D TO ORDFIL FOR ITEMNO = D->ITEMNO .AND.;
SUPNAME = D->SUPNAME FIELDS D->DESCRIPT, ITEMNO, SUPNAME, QUANTITY,
MEM_NO,D->UPRICE, DATE, SHIP_WT, CASJPRICE

135

INDEX ON DTOC(DATE)+STR(MEM_NO)+STR(ITEMNO)+SUPNAME TO BILFIL
SELECT 1

USE ORDFIL ALIAS ORDRINFO INDEX BILFIL
LOCATE FOR DATE=MDATE
6 3,0
DO WHILE .T.

DO B I LADJ
DO CONFIRMQ
DO CONFIRML
IF CHR(i) $ "Nn"
LOOP

ENDIF
IF CHR(i) $ "Xx"
XIT=.T.

ENDIF
@ 22,0
@ 23,0
DO CHKBADJ
IF ERR

@ 22,5 SAY ERRMESS
WAIT
ERRMESS = SPACE (60)
@ 22,0
@ 23,0
LOOP

ENDIF
EXIT

ENDDO
IF XIT
RETURN

ENDIF
DO WHILE .T.

CLEAR
MMEMNO=MEM_NO
@ 5,5 SAY BIO
SELECT 5

USE MEMBER
LOCATE FOR MEM_NO=MMEMNO
@ 5,5+LEN(B10) SAY RTRIM(FIRSTNAME)+" "+RTRIM(LASTNAME)
SELECT ORDRINFO
@ 5,60 SAY Bll

@ 5,60+LEN(Bll) SAY MEM_N0
@ 7,5 SAY B13

@ 7,5+LEN(B13) SAY SUPNAME
@ 7,55 SAY B12

@ 7,55+LEN(B12)SAY DATE
@ 9,0 TO 9,79 DOUBLE
@ 10,3 SAY "CATALOG II"

@ 10,15 SAY "DESCRIPTION"
@ 10,35 SAY "QUANTITY ORDERED"
@ 10,55 SAY "UNIT COST"

10,65 SAY "TOTAL PRICE"

136

8 12,0 TO 12,79
R0WN=14
DO WHILE MMEMN0=MEM_NO .AND. MDATE=DATE

@ R0WN,3 SAY ITEMNO
@ ROWN, 10 SAY DESCRIPT
@ ROWN, 35 SAY QUANTITY
@ ROWN, 55 SAY UPRICE
PRICE=UPRICE*QUANTITY
UNITPCAS=CAS_PRICE/UPRICE
WTPUNIT=SHIP_WT/UNITPCAS
SHIPWT=SHIPWT+(QUANTITY*WTPUNIT)
SET DECIMALS TO 2

UNITPCAS=0
WTPUNIT=0
@ ROWN, 70 SAY PRICE PICTURE '@ Mill .1111'

SUBTOT=SUBTOT + PRICE
SKIP
R0WN=R0WN+1

ENDDO
R0WN=R0WN+2
@ ROWN, 50 SAY B14
@ ROWN, 70 SAY SUBTOT PICTURE '@ §§#.##'
EQUITYC=(EQUITYR/ 100) *SUBTOT
DISCOUNT=(DISCOUNTR/100)*SUBTOT
MARKUP=SUBTOT* (MARKUPR/ 1 00

)

SUBTOT=SUBTOT+MARKUP
SHIPCOST=SHIPRATE*SHIPWT
ROWN=ROWN+l
@ ROWN, 50 SAY B09

@ ROWN, 70 SAY ROUND (MARKUP, 2) PICTURE '@ Mill .Ml'
ROWN=ROWN+l
@ ROWN.50 SAY B16
@ ROWN.70 SAY ROUND(DISCOUNT, 2) PICTURE '<? Mill .If II'

R0WN=R0WN+1
SUBTOT=SUBTOT-DI SCOUNT
TAX= (TAXRATE/ 1 00) *SUBTOT
SUBTOT=SUBTOT+TAX
@ ROWN ,50 SAY B15
@ ROWN, 70 SAY ROUND(TAX,2) PICTURE '(? Mill. Ml'
ROWN=ROWN+l
@ ROWN, 50 SAY B17

@ ROWN, 70 SAY ROUND(EQUITYC, 2) PICTURE '@ 111111.1111'

R0WN=R0WN+1
SUBTOT=SUBTOT+EQUITYC
@ ROWN, 50 SAY B08
@ ROWN, 70 SAY ROUND(SHIPCOST, 2) PICTURE '@ 111111.1111'

ROWN=ROWN+l
SUBTOT=SUBTOT+SHI PCOST
@ ROWN, 65 TO ROWN, 79 DOUBLE
@ ROWN+1,50 SAY "TOTAL COST $"

@ ROWN+1,70 SAY ROUND (SUBTOT, 2) PICTURE '@ Mill .1111'

137

WAIT
IF DATE=MDATE THEN

I=INKEY()
IF CHR(I) $ "X" THEN

EXIT
ELSE

SUBTOT=0.00
ADJSTMNTS=0.00
TAX=0 . 00

EQUITYC=0.00
DISCOUNTS. 00
MARKUP=0.00
SHIPCOST=0.00
SHIPWT=0
LOOP

ENDIF
ELSE

EXIT
ENDIF

ENDDO
WAIT
RETURN
END
* Eof

* PROGRAM B ILAD

J

* WRITTEN BY GARY RADKE
* FOR PEOPLES GROCERY DATABASE
* ALLOWS ENTRY OF MARKUP, TAXRATE, DISCOUNT RATE MEMBER EQUITY
* RATE, AND SHIPPING COST / POUND SO AN INDIVIDUAL MEMBERS BILL
* MAY BE ADJUSTED ACCORDINGLY

TITLE="ORDER ADJUSTMENTS"
@ 4,0 TO 20,79 DOUBLE
CENT=(79-LEN(TITLE))/2
@ 2, CENT SAY TITLE
@ 6,5 SAY BOl

@ 6,5+LEN(B01)+LEN(B02) SAY SHIPRATE
8 6,5 +LEN(B01) SAY B02 GET SHIPRATE
@ 8,5 + LEN(B03) SAY EQUITYR
@ 8,5 SAY B03 GET EQUITYR
@ 11,5+LEN(B04) SAY TAXRATE
@ 11,5 SAY B04 GET TAXRATE
@ 13,5+LEN(B05) SAY MARKUPR
@ 13,5 SAY B05 GET MARKUPR
@ 15,5+LEN(B06) SAY DISCOUNTR
@ 15,5 SAY B06 GET DISCOUNTR
READ
RETURN
*Eo£

138

* PROGRAM CHKBADJ
* WRITTEN BY GARY RADKE
* FOR PEOPLES GROCERY DATABASE
* CHECKS TO SEE THAT ORDER ADJUSTMENT ENTRIES
* ARE NOT OUT OF BOUNDS

ERR=.T.
DO CASE

CASE SHIPRATE <

ERRMESS=MESS1
CASE EQUITYR <
ERRMESS=MESS2

CASE MARKUPR <
ERRMESS=MESS3

CASE DISCOUNTR <
ERRMESS=MESS4

CASE TAXRATE < 5.5
ERRMESS=MESS5

OTHERWISE
ERR= . F

.

ENDCASE
RETURN
*Eof

^PROGRAM BACKGRD5
*WRITTEN BY GARY RADKE
>'<FOR THE PEOPLES GROCERY DATABASE
'•'PRODUCES A GENERIC BACKGROUND FOR A MENU WITH FIVE OPTIONS.
CLEAR
@1,1 TO 16,77
@3,3 TO 14,75 DOUBLE
@ 2,2 SAY REPLICATE (CHR (176), 75)
@3,2 SAY CHR (176)
@ 4,2 SAY CHR (176)
@ 5,2 SAY CHR (176)
@ 6,2 SAY CHR (176)
@ 7,2 SAY CHR (176)
@ 8,2 SAY CHR (176)
@ 9,2 SAY CHR (176)
@ 10,2 SAY CHR (176)
@ 11,2 SAY CHR (176)
@ 12,2 SAY CHR (176)
@ 13,2 SAY CHR (176)
@ 14,2 SAY CHR (176)
@ 3,76 SAY CHR (176)
@ 4,76 SAY CHR (176)
@ 5,76 SAY CHR (176)
@ 6,76 SAY CHR (176)

139

@ 7,76 SAY CHR (176)
@ 8,76 SAY CHR (176)
@ 9,76 SAY CHR (176)
@ 10,76 SAY CHR (176)
@ 11,76 SAY CHR (176)
@ 12,76 SAY CHR (176)
@ 13,76 SAY CHR (176)
@ 14,76 SAY CHR (176)
@ 15,2 SAY REPLICATE (CHR (176), 75)
RETURN
*Eof

^PROGRAM CONSOPT
'''WRITTEN BY GARY RADKE
-'FOR THE PEOPLES GROCERY DATABASE
*LISTS THE OPTIONS FOR GENERATING CONSIGNMENT SUMMARY REPORTS
@ 4,27 SAY " A. LIST PRODUCTS SOLD BUT MEMBER UNPAID"
@ 5,27 SAY " FOR A GIVEN MEMBER"
@ 7,27 SAY " B. TOTAL ITEMS SOLD BUT MEMBERS UNPAID"
@ 8,27 SAY " FOR ALL MEMBERS"
@ 10,27 SAY " C. TOTAL AMOUNT OWED FOR CONSIGNMENTS FOR"
@ 11,27 SAY " SOLD AND UNSOLD ITEMS."
@ 13,27 SAY " D. RETURN TO MAIN MENU"
@ 15,30 SAY "ENTER SELECTION A-D : :"

RETURN
*Eof

* PROGRAM SOLDUPD
* WRITTEN BY GARY RADKE
* FOR PEOPLES GROCERY DATABASE
* GENERATES REPORT FOR CONSIGNMENTS WHICH HAVE BEEN SOLD THROUGH
* THE STORE FRONT BUT FOR WHICH THE CONSIGNING MEMBER HAS NOT
* BEEN PAID.

CLEAR
Yl=5
Y2=42
Y3=50
Y4=65
Y5=79
MEMESS="PREPARE CONSIGNMENT SUMMARY FOR THIS MEMBER? Y/N/X"
MESS1=" HAS NO SOLD BUT UNPAID CONSIGNMENTS"
HEADER1="SUMMARY OF CONSIGNMENTS SOLD BUT FOR WHICH MEMBER HAS "

HEADER2="NOT BEEN PAID"
HEADER3="MEMBER //

"

HEADER4="MEMBER NAME "

COLUMNl="DESCRIPTION"
COLUMN2="UNITS"
COLUMN3="UNIT PRICE"
COLUMN4="CONSIGNMENT VALUE"
COLUMN5=""
TOT=0 . 00

140

GRANDTOT=0.00
XIT=.F.
SELECT 1

USE MEMBER INDEX MEMNO
SELECT 2

USE MEMBER_C
INDEX ON MEM_NO TO SOLDUORD
DO WHILE .T.

SELECT 1

DO GETMEM
IF XIT
RETURN

ENDIF
CLEAR
NAME=RTRIM(FIRSTNAME)+" "+RTRIM(LASTNAME)
SELECT 2

LOCATE FOR (MEM_NO=A->MEM_JJO) .AND. (ALL_SOLD) .AND. (.NOT.
MEMPAID)

IF (.NOT. FOUNDO)
@ 2,2 SAY NAME
@ 2,2+LEN(RTRIM(NAME)) SAY MESS1
WAIT
@ 2,0
LOOP

ENDIF
EXIT

ENDDO
LOCATE FOR MEM_NO=A->MEM_NO
@ 2,2 SAY HEADER1
@ 3,2 SAY HEADER2
@ 5,2 SAY HEADER3
@ 5,2+LEN(HEADER3) SAY MEM_NO
@ 5,30 SAY HEADER4
@ 5,30 + LEN(HEADER4) SAY NAME
@ 6,0 TO 6,79 DOUBLE
ROWN=7
DO PRINTCOL
ROWN=ROWN+l
@ ROWN.O TO ROWN.79
ROWN=ROWN+l
DO WHILE MEM_NO=A->MEM_NO

IF (ALL_SOLD) .AND. (.NOT. MEMPAID) THEN
TOT=TOT+ (NO_OF_ITEM*CONSGRPRI C)

GRANDTOT=GRANDTOT+TOT
@ ROWN.5 SAY DESCRIPT
@ ROWN.42 SAY NO_OF_ITEM

ROWN.50 SAY CONSGRPRIC
@ ROWN.65 SAY TOT
TOT=0.00
R0WN=R0WN+1
SKIP

ELSE

1 ', I

SKIP
ENDIF
IF ROWN>55
R0WN=4
* EJECT
DO PRINTCOL

ENDIF
ENDDO
@ ROWN.60 TO ROWN.79 DOUBLE
@ ROWN+1 ,2 SAY "TOTAL AMOUNT OWED THIS MEMBER FOR SOLD ITEMS"
(3 ROWN+1, 65 SAY GRANDTOT
*EJECT
WAIT
CLOSE ALL
RETURN
END
* Eof

* PROGRAM ALLUSC
* WRITTEN BY GARY RADKE
* FOR PEOPLES GROCERY DATABASE
* LISTS THE AMOUNT OWED TO EACH MEMBER FOR SOLD CONSIGNMENTS
* AND THE SUM OF THE AMOUNT OWED FOR SOLD CONSIGNMENTS

CLEAR
SELECT 1

USE MEMBER INDEX MEMNO
SELECT 2

USE MEMBER_C
INDEX ON MEM_NO TO SOLDORD
'''DISPLAY ALL
*WAIT

SUMMARY OF SOLD, UPAID CONSIGNMENTS FOR ALL MEMBERS"
MEMBER //"

MEMBER NAME"
AMOUNT OWED"

HEADER1
COLUMN

1

COLUMN2
COLUMN 3:

COLUMNS
COLUMN 5

Yl=3
Y2=15
Y3=60
Y4=79
Y5=79
UPMEM=0
TOT=0 . 00
GRANDTOT=0.00
CENT=(79-LEN(HEADERl))/2
@ 2, CENT SAY HEADER1
ROWN=4
@ ROWN.O TO ROWN.79
R0WN=5
DO PRINTCOL

142

R0WN=R0WN+1
@ ROWN.O TO ROWN.79 DOUBLE
ROWN=ROWN+l
MMEMNO=MEM_NO
DO VmiLE .NOT. EOF()

DO WHILE (MEM_NO=MMEMNO)
IF (ALL_SOLD) THEN

IF .NOT. MEMPAID THEN
TOT=TOT + (NO_OF_ITEM * CONSGRPRIC)
SKIP

ELSE
SKIP

ENDIF
ELSE

SKIP
ENDIF

ENDDO
IF TOT>0 THEN

SELECT 1

SEEK MMEMNO
NAME=RTRIM(FIRSTNAME) +" "+RTRIM(LASTNAME)
@ ROWN.5 SAY MEM_NO
@ ROWN.15 SAY NAME
@ ROWN.55 SAY TOT
GRANDTOT=GRANDTOT+TOT
TOT=0 . 00

ROWN=ROWN+l
SELECT 2

ENDIF
IF ROWN>55 THEN

* EJECT
ROWN=3
DO PRINTHDR

ENDIF
MMEMNO=MEM_NO
ENDDO
@ ROWN.58 TO ROWN.70 DOUBLE
@ ROWN+1,0 SAY "TOTAL AMOUNT OWED TO ALL MEMBERS FOR SOLD
CONSIGNMENTS"
@ ROWN+1,55 SAY GRANDTOT
*EJECT
WAIT
CLOSE ALL
RETURN
*Eof

* PROGRAM ALLC
* WRITTEN BY GARY RADKE
* FOR PEOPLES GROCERY DATABASE
* THIS PROGRAM GENERATES A REPORT THAT SUMMARIZES THE AMOUNT OWED
* TO MEMBERS FOR ALL SOLD AND UNSOLD CONSIGNMENTS

143

CLEAR
SELECT 1

USE MEMBER INDEX MEMNO
SELECT 2

USE MEMBER_C
INDEX ON MEM_NO TO SOLDORD
HEADER1="SUMMARY OF AMOUNT OWED TO MEMBERS FOR SOLD AND UNSOLD 1

CONSIGNMENTS"
COLUMNl="MEMBER II"

COLUMN2="MEMBER NAME"
COLUMN3="AMOUNT SOLD"
COLUMN4="AMOUNT UNSOLD"
COLUMN5=""
Yl=3
Y2=20
Y3=50
Y4=65
Y5=79
ROWN=5
ASOLD=0 . 00
ASUNSOLD=0.00
GTAS=0.00
GTAUS=0.00
@ 2,2 SAY HEADER1
@ 4,0 TO 4,79
DO PRINTCOL
ROWN=ROWN+l
@ ROWN.O TO ROWN.79 DOUBLE
ROWN=ROWN+l
MMEMNO=MEM_NO
DO VJHILE .NOT. EOF()

DO WHILE MEM_NO=MMEMNO
DO CASE

CASE (ALL_SOLD .AND. MEMPAID)
SKIP

CASE (ALL_SOLD .AND. (.NOT. MEMPAID))
ASOLD=ASOLD+(NO__OF_ITEM*CONSGRPRIC)
SKIP

OTHERWISE
ASUNSOLD=ASUNSOLD+(NO__OF_ITEM*C0NSGRPRIC)
SKIP

ENDCASE
ENDDO
IF((AS0LD>0) .OR. (ASUNSOLD>0))
GTAS=GTAS+ASOLD
GTAUS=GTAUS+ASUNSOLD
SELECT 1

SEEK MMEMNO
@ R0WN,5 SAY MEM_JTO

NAME=RTRIM(FIRSTNAME)+ " " + RTRIM(LASTNAME)
@ R0WN.20 SAY NAME
SELECT 2

144

@ ROWN.45 SAY ASOLD
@ ROWN.60 SAY ASUNSOLD
ASOLD=0 . 00
ASUNSOLD=0.00
R0WN=R0WN+1

ENDIF
IF R0WN>55 THEN

* EJECT
R0WN=5
DO PRINTCOL

ENDIF
MMEMNO=MEM_NO
ENDDO
R0WN=R0WN+1
@ ROWN+1,5 SAY "TOTAL AMOUNT OWED FOR SOLD "

@ ROWN+2,5 SAY "AND UNSOLD CONSIGNMENT ITEMS"
@ ROWN.45 TO ROWN.75 DOUBLE
@ ROWN+2,60 SAY GTAUS+GTAS
WAIT
*EJECT
CLOSE ALL
RETURN
*Eof

* PROGRAM PRINTCOL
* WRITTEN BY GARY RADKE
* FOR PEOPLES GROCERY DATABASE
* PROGRAM PRINTS COLUMN HEADINGS FOR VARIOUS PROGRAMS
@ ROWN.Y1 SAY COLUMN1
@ R0WN.Y2 SAY COLUMN2
@ R0WN.Y3 SAY C0LUMN3
@ ROWN.Y4 SAY COLUMN4
@ ROWN.Y5 SAY COLUMN5
RETURN
*Eof

'••PROGRAM STOROPT
•'•WRITTEN BY GARY RADKE
*FOR THE PEOPLES GROCERY DATABASE
*LISTS THE OPTIONS FOR GENERATING A STORE ORDER REPORT
@ 4,27 SAY " A. LIST THE TOTAL ITEMIZED ORDER FOR A"
@ 5,27 SAY " GIVEN DATE"
@ 7,27 SAY " B. RETURN TO MAIN MENU"
@ 11,22 SAY "ENTER SELECTION A-B AND TOUCH RETURN"
RETURN
*Eof

* PROGRAM COMBORD
* WRITTEN BY GARY RADKE
* FOR PEOPLES GROCERY DATABASE
* SUMMARIZES AN ORDER FOR A GIVEN DATE AND SUPPLIER
* PRINTS THE CATALOG //, ITEM DESCRIPTION, TOTAL QUANTITY

145

* WANTED, UNIT PRICE, TOTAL PRICE, AND TOTAL VALUE OF THE ORDER
CLEAR
HEADERl="ORDER SUMMARY FOR "

G01="PREPARE STORE ORDER FOR ORDER SUBMITTED TO "

MM4="ON "

COLUMNl="CATALOG II"

COLUMN2="DESCRIPTION"
COLUMN3="# CASES"
COLUMN4="CASE PRICE"
COLUMN5="TOTAL COST"
Y1=0
Y2=12
Y3=47
Y4=56
Y5=70
TDATE=DATE()
TOTQUANT=0
TOTPRIC=0
SELECT 3

USE PRODCAT INDEX PRODORD
GRANDTOT=0.00
SELECT 1

USE ITEM_ORD
INDEX ON DTOC(DATE) + SUPNAME + STR(ITEMNO, 4) TO STORORD
DO GETORD
IF XIT
XIT=.F.
RETURN

ENDIF
TDATE=DATE
MSUPNAME=SUPNAME
CLEAR
CENT=(79-(LEN(HEADER1)+LEN(RTRIM(SUPNAME))+LEN(DTOC(DATE))))/2
@ 3, CENT SAY HEADER1
@ 3,CENT+LEN(HEADER1)+1 SAY SUPNAME
@ 3,CENT+LEN(HEADERl)+LEN(RTRIM(SUPNAME))+2 SAY DATE
ROWN=4
@ ROWN.O TO ROWN.79
ROWN=ROWN+l
DO PRINTCOL
ROWN=ROWN+l
@ ROWN.O TO ROWN.79 DOUBLE
ROWN=ROWN+l
DO WHILE (DATE=TDATE) .AND. (SUPNAME=MSUPNAME

)

MITEMNO=ITEMNO
SELECT 3

SEEK MITEMNO
MDESCRIPT=DESCRIPT
MCASPRI C=CAS_PRI CE
MWEIGHT=SHIP_WT
MPRICE=UPRICE
SELECT 1

146

DO WHILE ITEMNO=MITEMNO
TOTQUANT=TOTQUANT+QUANT ITY
SKIP

ENDDO
TOTPRI CE=TOTQUANT*C->UPRI CE
NUMCASE=TOTPRICE/C->CAS_j'RICE
@ ROWN.Y1 SAY MITEMNO
@ ROWN.Y2 SAY C->DESCRIPT
@ ROWN.Y3 SAY NUMCASE PICTURE '@ //////'

@ ROWN.Y4 SAY C->CAS_PRICE PICTURE !

@ 111111.1111'

@ R0WN.Y5 SAY TOTPRICE PICTURE '@ II II II .1111'

GRANDTOT=GRANDTOT+TOTPRI CE
TOTPRICE=0.00
ROWN=ROWN+l
IF ROWN> 65 THEN

* EJECT
ROWN=4
DO PRINTCOL

ENDIF
ENDDO
@ ROWN.Y5-5 TO ROWN.79 DOUBLE
ROWN=ROWN+l
@ ROWN.Y2 SAY "TOTAL ORDER COST"
@ ROWN.Y4 SAY "$"

@ R0WN.Y5-2 SAY GRANDTOT PICTURE '@ 11,111111.1111'

WAIT
CLOSE ALL
RETURN
* Eof

*PROGRAM FINOPT
'''WRITTEN BY GARY RADKE
*FOR THE PEOPLES GROCERY DATABASE
*LISTS THE OPTIONS FOR GENERATING FINANCE SUMMARY REPORTS
@ 4,22 SAY " A. LIST ITEMIZED EXPENSES FOR A GIVEN MONTH"
@ 6,22 SAY " B. LIST TOTAL MONTHLY EXPENSES & GROSS SALES"
@ 7,22 SAY " FOR A GIVEN MONTH"
@ 9,22 SAY " C. LIST OUTSTANDING DEBTS INCLUDING AMOUNTS"
@ 10,22 SAY " OWED FOR SOLD AND UNSOLD CONSIGNED ITEMS."
@ 12,22 SAY " D. RETURN TO MAIN MENU"
@ 15,30 SAY "ENTER SELECTION A-D : :"

RETURN
*Eof

* PROGRAM LISTEX
* WRITTEN BY GARY RADKE
* FOR PEOPLES GROCERY DATABASE
* THE PROGRAM GENERATES A REPORT THAT LISTS EXPENSES FOR THE
* IN A GIVEN MONTH
CLEAR
HEADER1=" SUMMARY OF STORE EXPENSES FOR THE MONTH OF"
C0LUMN1="DATE"

147

C0LUMN2="PAID TO"
COLUMN3="DESCRIPTION"
COLUMN4="AMOUNT"
COLUMN5=""
Yl=5
Y2=16
Y3=38
Y4=72
Y5=79
TDATE=DATE()
TOT=0.00
ROWN=5
DO GETPERIO
CLEAR
@ ROWN.5 SAY HEADER1
@ ROWN,5+LEN(HEADERl)+l SAY CMONTH(TDATE)
@ ROWN,5+LEN(HEADERl)+LEN(CMONTH(TDATE))+l SAY YEAR(TDATE)
ROWN=ROWN+l
@ ROWN.O TO ROWN.79
ROWN=ROWN+l
DO PRINTCOL
ROWN=ROWN+l
@ ROWN.O TO ROWN.79 DOUBLE
SELECT 1

USE EXPENC
INDEX ON DATE TO EXPORD
LOCATE FOR MONTH (DATE)=MONTH(TDATE)
ROWN=ROWN+l
DO WHILE MONTH(DATE)=MONTH(TDATE)

@ ROWN.Y1 SAY DATE
@ ROWN.Y2 SAY PAID_TO
@ ROWN.Y3 SAY DESCRIPTIO
@ ROWN.Y4 SAY AMOUNT
TOT=TOT+AMOUNT
ROWN=ROWN+l
SKIP
IF ROWN>60

* EJECT
ROWN=4
DO PRINTCOL

ENDIF
ENDDO
@ ROWN.Y4 TO ROWN.79 DOUBLE
@ ROWN+1,15 SAY "TOTAL MONTHLY EXPENSES"

ROWN+1.Y4-5 SAY '$'

@ ROWN+1.Y4-1 SAY TOT PICTURE '@ It , IHHf . It It

'

*EJECT
WAIT
CLOSE ALL
RETURN
END
*Eof

148

* PROGRAM EXPC_SAL
* WRITTEN BY GARY RADKE
* PROGRAM ITEMIZES MONTHLY EXPENSES AND GROSS SALES FOR A
* GIVEN MONTH
CLEAR
TOTSALE=0.00
TOTEXP=0.00
TDATE=DATE()
TITEM=0
HEADERl="MONTHLY GROSS SALES / EXPENSE REPORT"
HEADER2="FOR THE MONTH OF"
SALELBL="TOTAL GROSS SALES FOR THIS MONTH"
EXPLBL="TOTAL EXPENSES FOR THIS MONTH"
DO GETPERIOD
CLEAR
SELECT 2

USE PRODCAT
INDEX ON ITEMNO TO PRODORD
SELECT 1

USE ITEM_ORD
INDEX ON DATE TO EXPFIL
LOCATE FOR MONTH(DATE)=MONTH(TDATE) .AND. YEAR(DATE)=YEAR(TDATE)
TITEM=ITEMNO
DO WHILE (MONTH(DATE)=MONTH(TDATE)) .AND. (YEAR(DATE)=YEAR(TDATE)

)

SELECT 2

SEEK TITEM
TOTSALE=TOTSALE+(A->QUANTITY * UPRICE)
SELECT 1

SKIP
TITEM=ITEMNO

ENDDO
SELECT 3

USE EXPENC
INDEX ON DATE TO EXPORD
LOCATE FOR MONTH(DATE)=MONTH(TDATE) .AND. YEAR(DATE)=YEAR(TDATE)
DO WHILE MONTH(DATE)=MONTH(TDATE) .AND. YEAR(DATE)=YEAR(TDATE)
TOTEXP=TOTEXP+AMOUNT
SKIP

ENDDO
CENT=(79-LEN(HEADERl))/2
@ 3, CENT SAY HEADER1
@ 5,5 SAY HEADER2
@ 5,5+LEN(HEADER2)+l SAY CMONTH(TDATE)
@ 5,7+LEN(HEADER2)+LEN(CMONTH(TDATE)) SAY YEAR(TDATE)
@ 7,0 TO 7,79
@ 10,5 SAY SALELBL
@ 10, 15+LEN(SALELBL) SAY '$'

@ 10,15 + LEN(SALELBL)+5 SAY TOTSALE PICTURE '@ #,###.##'
@ 12,5 SAY EXPLBL
@ 12, 15+LEN(SALELBL) SAY '$'

@ 12,15 + LEN(SALELBL)+5 SAY TOTEXP PICTURE '@ #,//////.#//'

149

@ 15,0 TO 15,79 DOUBLE
WAIT
*EJECT
CLOSE ALL
RETURN
* Eof

* PROGRAM CONEXP
* WRITTEN BY GARY RADKE
* FOR PEOPLES GROCERY DATABASE
* PROGRAM PRODUCES A REPORT THAT SUMMARIZES ALL OUTSTANDING
* DEBTS INCLUDING UNPAID CONSIGNMENTS

CLEAR
HEADER1="REP0RT OF ALL OUTSTANDING DEBTS"
HEADER2="UNPAID BILLS"
HEADER3="UNPAID CONSINGMENTS"
HEADER4="TOTAL UNPAID BILLS"
HEADER5="TOTAL UNPAID CONSIGNMENTS"
C0LUMN1="PAID TO"
C0LUMN2="DESCRIPTI0N"
C0LUMN3="AM0UNT"
C0LUMN4=""
COLUMN5=""

Yl=3
Y2=28
Y3=68
Y4=79
Y5=79
NAME=SPACE(25)
UPBILLS=0.00
TOTOWED=0.00
OWEDTM=0.00
TEMPMEM=0
ROWN=3
CENT=(79-LEN(HEADERl))/2
@ ROWN.CENT SAY HEADER1
R0WN=ROWN+2
@ ROWN.O SAY HEADER2
ROWN=ROWN+l
@ ROWN.O TO ROWN.79
R0WN=R0WN+1
DO PRINTCOL
ROWN=ROWN+l
@ ROWN.O TO ROWN.79 DOUBLE
ROWN=ROWN+l
SELECT 3

USE MEMBER INDEX MEMNO
SELECT 1

USE EXPENC
DO WHILE .NOT. EOFQ

IF .NOT. PAID

1 Mi

@ R0WN.Y1 SAY PAID_TO
9 ROWN.Y2 SAY DESCRIPTIO
@ ROWN.Y3 SAY AMOUNT
TOTOWED=TOTOWED+AMOUNT

ENDIF
ROWN=ROWN+l
SKIP

ENDDO
UPBILLS=TOTOWED
@ ROWN.60 TO ROWN.79
ROWN=ROWN+l
@ ROWN.35 SAY HEADER4
@ ROWN.Y3-5 SAY '$'

@ ROWN.Y3 SAY UPBILLS PICTURE '@ It , II IHt . IHI

'

WAIT
CLEAR
ROWN=3
COLUMNl="NAME"
COLUMN2="CONSIGNMENT AMOUNT"
COLUMN3=""
COLUMN4=""
COLUMN5=""
Y2=60
Y3=79
@ ROWN.O TO ROWN,79
ROWN=ROWN+2
@ ROWN.O SAY HEADER3
ROWN=ROWN+l
@ ROWN.O TO ROWN.79
ROWN=ROWN+l
DO PRINTCOL
ROWN=ROWN+l
@ ROWN.O TO ROWN.79 DOUBLE
ROWN=ROWN+l
SELECT 2

USE MEMBER_C
INDEX ON MEM_NO TO CONORD
DO WHILE .NOT. EOF()
TEMPMEM=MEM_NO
SELECT 3

SEEK TEMPMEM
NAME=RTRIM(FIRSTNAME) + " "+ RTRIM(LASTNAME)
SELECT 2

DO WHILE MEM_NO=TEMPMEM
IF (.NOT. MEMPAID)
OWEDTM=OWEDTM+(NO_OF_ITEM*CONSGRPRIC)
TOTOWED=TOTOWED+(NO_OF_ITEM*CONSGRPRIC)

ENDIF
SKIP

ENDDO
@ ROWN.Y1 SAY NAME
@ ROWN.Y2 SAY OWEDTM PICTURE '@ It , IHI II . IHI

'

151

OWEDTM=0.00
R0WN=R0WN+1
IF ROWN>55 THEN

* EJECT
R0WN=4

ENDIF
ENDDO
@ ROWN.60 TO ROWN.79
ROWN=ROWN+l
@ ROWN.25 SAY HEADER5
@ ROWN.Y2-5 SAY '$'

@ ROWN.Y2 SAY TOTOWED-UPBILLS PICTURE '@ //,//##.////'

@ ROWN+2,60 TO ROWN+2,79 DOUBLE
@ ROWN+3,25 SAY "TOTAL OUTSTANDING DEBT"
@ ROWN+3.Y2-5 SAY '$'

@ ROWN+3.Y2 SAY TOTOWED PICTURE '@ IIJIIHIJIII'

*EJECT
WAIT
CLOSE ALL
RELEASE ALL
RETURN
* Eof

* PROGRAM GETPERIOD
* WRITTEN BY GARY RADKE
* FOR PEOPLES GROCERY DATABASE
* LETS USER ENTER THE MONTH AND YEAR FOR WHICH THEY WANT TO
* SUMMARIZE COOP FINANCES

CLEAR
ERMESS="CAN'T LIST EXPENSES FOR A FUTURE MONTH. PLEASE REENTER"
MESS1="ENTER THE MONTH AND YEAR YOU WANT SUMMARIZED."
MESS2="DATE "

DO WHILE .T.

@ 3,5 SAY MESS1
@ 5,5 SAY MESS2

5,LEN(MESS2)+5 SAY DATE()
@ 5,LEN(MESS2)+5 GET TDATE
READ
IF (TDATE <= DATEQ) THEN
EXIT

ELSE
CLEAR
@ 3,5 SAY ERMESS
WAIT
CLEAR
LOOP

ENDIF
ENDDO
RETURN
*Eof

L52

APPENDIX B: RBASE 5000 PROGRAM LISTING

$COMMAND
PG
SET MESSAGE OFF
OPEN PEOPLES
SET ERROR MESSAGE OFF
SET COLOR BACKGRND BLACK
SET COLOR FOREGRND GRAY
SET BELL OFF
SET VAR PICK1 INT
LABEL STARTAPP
NEWPAGE
CHOOSE PICK1 FROM Main IN PG.APX
IF PICK1 EQ THEN
GOTO ENDAPP

ENDIF
IF PICK1 EQ 1 THEN
SET VAR PICK2 INT
SET VAR LEVEL2 INT
SET VAR LEVEL2 TO
WHILE LEVEL2 EQ THEN

NEWPAGE
CHOOSE PICK2 FROM ENTUPD IN PG.APX
IF PICK2 EQ THEN
BREAK

ENDIF
IF PICK2 EQ 1 THEN
SET VAR PICK3 INT
SET VAR LEVEL3 INT
SET VAR LEVEL3 TO
WHILE LEVEL3 EQ THEN

NEWPAGE
CHOOSE PICK3 FROM MEMI IN PG.APX
IF PICK3 EQ THEN

BREAK
ENDIF
IF PICK3 EQ 1 THEN
ENTER MEMINF

ENDIF
IF PICK3 EQ 2 THEN
RUN STRULOF IN PG.APX
SET VARIABLE WHVAL1 TO TEXT
FILLIN WHVAL1 USING "ENTER It OF MEMBER TO UPDATE
it

EDIT USING MEMINF +
SORTED BY mem_no=A +
WHERE mem_no EQ .WHVAL1

CLEAR WHVAL1
RUN STRULON IN PG.APX

ENDIF

153

IF PICK3 EQ 3 THEN
BREAK

ENDIF
ENDWHILE
CLEAR LEVEL3
CLEAR PICK3

ENDIF
IF PICK2 EQ 2 THEN
SET VAR PICK3 INT
SET VAR LEVEL3 INT
SET VAR LEVEL3 TO
WHILE LEVEL3 EQ THEN

NEWPAGE
CHOOSE PICK3 FROM SUPINF IN PG.APX
IF PICK3 EQ THEN
BREAK

ENDIF
IF PICK3 EQ 1 THEN
ENTER SUPPLIER

ENDIF
IF PICK3 EQ 2 THEN
RUN SUPRULOF IN PG.APX
SET VARIABLE WHVAL1 TO TEXT
FILLIN WHVAL1 USING "ENTER NAME OF SUPPLIER TO
UPDATE "

EDIT USING SUPPLIER +
SORTED BY supname=A +
WHERE supname EQ .WHVAL1

CLEAR WHVAL1
RUN SUPRULON IN PG.APX

ENDIF
IF PICK3 EQ 3 THEN
BREAK

ENDIF
ENDWHILE
CLEAR LEVEL3
CLEAR PICK3

ENDIF
IF PICK2 EQ 3 THEN

SET VAR PICK3 INT
SET VAR LEVEL3 INT
SET VAR LEVEL3 TO
WHILE LEVEL3 EQ THEN

NEWPAGE
CHOOSE PICK3 FROM PRDCAT IN PG.APX
IF PICK3 EQ THEN
BREAK

ENDIF
IF PICK3 EQ 1 THEN
ENTER PRODUCT

ENDIF
IF PICK3 EQ 2 THEN

1 54

RUN STPRULOF IN PG.APX
SET VARIABLE WHVAL1 TO TEXT
FILLIN WHVAL1 USING "PLEASE ENTER SUPPLIER NAME
it

SET VARIABLE WHVAL2 TO ' r*r^!^r
FILLIN WHVAL2 USING "ENTER CATALOG II OF ITEM TO
UPDATE "

EDIT USING PRODUCT +
SORTED BY supname=A itemno=A +
WHERE supname EQ .WHVAL1 +
AND itemno EQ .WHVAL2

CLEAR WHVAL1
CLEAR WHVAL2
RUN STPRULON IN PG.APX

ENDIF
IF PICK3 EQ 3 THEN
BREAK

ENDIF
ENDWHILE
CLEAR LEVEL3
CLEAR PICK3

ENDIF
IF PICK2 EQ h THEN

SET VAR PICK3 INT
SET VAR LEVEL3 INT
SET VAR LEVEL3 TO
WHILE LEVEL3 EQ THEN

NEWPAGE
CHOOSE PICO FROM MEMORD IN PG.APX
IF PICK3 EQ THEN

BREAK
ENDIF
IF PICK3 EQ 1 THEN
ENTER ITEMORD
RUN DDUPITOR IN PG.APX

ENDIF
IF PICK3 EQ 2 THEN

SET VARIABLE WHVAL1 TO TEXT
FILLIN WHVAL1 USING "UPDATE ORDER FOR WHICH
MEMBER // ?

"

SET VARIABLE WHVAL2 TO DATE
FILLIN WHVAL2 USING "ENTER DATE OF ORDER TO UPDATE

ii

EDIT +
item_.no date quantity supname +
FROM item_ord +
SORTED BY date=D +
WHERE mem_.no EQ .WHVAL1 +
AND date EQ .WHVAL2

CLEAR WHVAL1
CLEAR WHVAL2
RUN D2DUPIT0 IN PG.APX

155

ENDIF
IF PICK3 EQ 3 THEN

BREAK
ENDIF

ENDWHILE
CLEAR LEVEL3
CLEAR PICK3

ENDIF
IF PICK2 EQ 5 THEN

SET VAR PICK3 INT
SET VAR LEVEL3 INT
SET VAR LEVEL3 TO
WHILE LEVEL3 EQ THEN

NEWPAGE
CHOOSE PICK3 FROM CONSGMTS IN PG.APX
IF PICK3 EQ THEN

BREAK
ENDIF
IF PICK3 EQ 1 THEN
ENTER CONSIGN
RUN CONDUPD IN PG.APX

ENDIF
IF PICK3 EQ 2 THEN

SET VARIABLE WHVAL1 TO TEXT
FILLIN WHVAL1 USING "UPDATE CONSIGNMENTS FOR WHICH

MEMBER // ?
"

EDIT +
date descript consgrpr no„of_it mempaid

all_sold +
FROM member_c +
SORTED BY date=D +
WHERE mem_no EQ .WHVAL1

CLEAR WHVAL1
RUN CONMDUPD IN PG.APX

ENDIF
IF PICK3 EQ 3 THEN

BREAK
ENDIF

ENDWHILE
CLEAR LEVEL3
CLEAR PICK3

ENDIF
IF PICK2 EQ 6 THEN
SET VAR PICK3 INT
SET VAR LEVEL3 INT
SET VAR LEVEL3 TO
WHILE LEVEL3 EQ THEN

NEWPAGE
CHOOSE PICK3 FROM EXPENSES IN PG.APX
IF PICK3 EQ THEN
BREAK

ENDIF

156

IF PICO EQ 1 THEN
ENTER EXPENSES
RUN EXPDUPD IN PG.APX

ENDIF
IF PICK3 EQ 2 THEN
EDIT +
date amount paid_to descript paid
FROM expenc +

SORTED BY date=D
RUN EXPMDUPD IN PG.APX

ENDIF
IF PICK3 EQ 3 THEN
BREAK

ENDIF
ENDWHILE
CLEAR LEVEL3
CLEAR PICK3

ENDIF
ENDWHILE
CLEAR LEVEL2
CLEAR PICK2
GOTO STARTAPP

ENDIF
IF PICK1 EQ 2 THEN

SET VAR PICK2 INT
SET VAR LEVEL2 INT
SET VAR LEVEL2 TO
WHILE LEVEL2 EQ THEN

NEWPAGE
CHOOSE PICK2 FROM REPTMAIN IN PG.APX
IF PICK2 EQ THEN
BREAK

ENDIF
IF PICK2 EQ 1 THEN
SET VAR PICK3 INT
SET VAR LEVEL3 INT
SET VAR LEVEL3 TO
WHILE LEVEL3 EQ THEN

NEWPAGE
CHOOSE PICK3 FROM PRTL IN PG.APX
IF PICK3 EQ THEN
BREAK

ENDIF
IF PICK3 EQ 1 THEN
RUN PRTLBL IN PG.APX

ENDIF
IF PICK3 EQ 2 THEN
BREAK

ENDIF
ENDWHILE
CLEAR LEVEL3
CLEAR PICK3

L57

1 THEN
IN PG.APX

ENDIF
IF PICK2 EQ 2 THEN
SET VAR PICK3 INT
SET VAR LEVEL3 INT
SET VAR LEVEL3 TO
WHILE LEVEL3 EQ THEN

NEWPAGE
CHOOSE PICK3 FROM PRBIL IN PG.APX
IF PICK3 EQ THEN
BREAK

ENDIF
IF PICK3 EQ
RUN PB

ENDIF
IF PICK3 EQ 2 THEN
BREAK

ENDIF
ENDWHILE
CLEAR LEVEL3
CLEAR PICK3

ENDIF
IF PICK2 EQ 3 THEN

SET VAR PICK3 INT
SET VAR LEVEL3 INT
SET VAR LEVEL3 TO
WHILE LEVEL3 EQ THEN

NEWPAGE
CHOOSE PICK3 FROM CONSGMT IN PG.APX
IF PICK3 EQ THEN
BREAK

ENDIF
IF PICK3 EQ 1

RUN CONUPD
ENDIF
IF PICK3 EQ 2

RUN AUPD
ENDIF
IF PICK3 EQ 3

RUN AUNPD
ENDIF
IF PICK3 EQ 4 THEN
BREAK

ENDIF
ENDWHILE
CLEAR LEVEL3
CLEAR PICK3

ENDIF
IF PICK2 EQ 4 THEN
SET VAR PICK3 INT
SET VAR LEVEL3 INT
SET VAR LEVEL3 TO
WHILE LEVEL3 EQ THEN

THEN
IN PG.APX

THEN
IN PG.APX

THEN
IN PG.APX

158

THEN
IN PG.APX

NEWPAGE
CHOOSE PICK3 FROM COMBO IN PG.APX
IF PICK3 EQ THEN

BREAK
ENDIF
IF PICK3 EQ 1

RUN COMBORD
ENDIF
IF PICO EQ 2 THEN

BREAK
ENDIF

ENDWHILE
CLEAR LEVEL3
CLEAR PICK3

ENDIF
IF PICK2 EQ 5 THEN
SET VAR PICK3 INT
SET VAR LEVEL3 INT
SET VAR LEVEL3 TO
WHILE LEVEL3 EQ THEN

NEWPAGE
CHOOSE PICK3 FROM EXPENSE IN PG.APX
IF PICK3 EQ THEN
BREAK

ENDIF
IF PICK3 EQ 1

RUN LISTEX
ENDIF
IF PICK3 EQ 2

RUN OD
ENDIF
IF PICK3 EQ 3

RUN EXCON
ENDIF
IF PICK3 EQ 4 THEN
BREAK

ENDIF
ENDWHILE
CLEAR LEVEL3
CLEAR PICK3

ENDIF
IF PICK2 EQ 6 THEN

BREAK
ENDIF

ENDWHILE
CLEAR LEVEL2
CLEAR PICK2
GOTO STARTAPP

ENDIF
IF PICK1 EQ 3 THEN
GOTO ENDAPP

ENDIF

THEN
IN PG.APX

THEN
IN PG.APX

THEN
IN PG.APX

1 59

GOTO STARTAPP
LABEL ENDAPP
CLEAR PICK1
RETURN
$MENU
Main
COLUMN PEOPLES GROCERY DATABASE
ENTER/UPDATE INFORMATION
REPORTS
EXIT
$MENU
ENTUPD
COLUMN ENTER/UPDATE INFORMATION
MEMBER SHIP INFORMATION
SUPPLIER INFORMATION
PRODUCT CATALOG
MEMBER ORDERS
CONSIGNMENTS
EXPENSES
$MENU
MEMI
COLUMN MEMBER SHIP INFORMATION
ENTER A NEW MEMBER
UPDATE INFORMATION FOR AN EXISTING MEMBER
EXIT
$MENU
SUPINF
COLUMN SUPPLIER INFORMATION
ADD A NEW SUPPLIER
UPDATE AN EXISTING SUPPLIER
RETURN TO PREVIOUS MENU
$MENU
PRDCAT
COLUMN PRODUCT CATALOG
ENTER A NEW PRODUCT
UPDATE PRODUCT INFORMATION
EXIT
$MENU
MEMORD
COLUMN MEMBER ORDERS
ENTER AN ITEM ORDER
UPDATE AN ITEM ORDER
EXIT
$MENU
CONSGMTS
COLUMN ENTER/UPDATE CONSIGNMENTS
ENTER A CONSIGNMENT
UPDATE CONSIGNMENTS
EXIT
$MENU
EXPENSES
COLUMN ENTER/UPDATE EXPENSES

1 60

ENTER AN EXPENSE
UPDATE AN EXPENSE
EXIT
$MENU
REPTMAIN
COLUMN PEOPLES GROCERY REPORTS
PRODUCT DISTRIBUTION LABELS
PRINT MEMBER ORDER BILLS
CONSIGNMENT SUMMARY
COMBINED ORDER
STORE EXPENSE SUMMARY
EXIT
$MENU
CONSGMT
COLUMN CONSIGNMENT SUMMARY
LIST PRODUCTS SOLD BUT MEMBER UNPAID FOR A GIVEN MEMBER
LIST TOTAL ITEMS SOLD BUT MEMBERS UNPAID FOR ALL MEMBERS
LIST TOTAL AMOUNT OWED FOR SOLD AND UNSOLD CONSIGNMENTS
EXIT
$MENU
COMBO
COLUMN COMBINED ORDER REPORT
ITEMIZE TOTAL ORDER FOR A GIVEN DATE AND SUPPLER
EXIT
$MENU
EXPENSE
COLUMN EXPENSE REPORT MENU
LIST ITEMIZED EXPENSES FOR A GIVEN MONTH
LIST TOTAL EXPENSES AND GROSS SALES FOR A GIVEN MONTH
LIST OUTSTANDING DEBTS INCLUDING AMOUNT OWED FOR CONSIGNMENT
EXIT
$MENU
PRTL
COLUMN PRODUCT DISTRIBUTION LABELS
PRINT PRODUCT DISTRIBUTION LABELS FOR A SPECIFIED ORDER
EXIT
$MENU
PRBIL
COLUMN ORDER BILLS
PRINT ITEMIZED BILLS FOR EACH MEMBER IN A SPECIFIED ORDER
EXIT
$COMMAND
STRULOF
SET RULES OFF
RETURN

$COMMAND
STRULON
SET RULES ON
RETURN

$COMMAND

161

SUPEULOF
SET RULES OFF
RETURN

$COMMAND
SUPRULON
SET RULES ON
RETURN

$COMMAND
STPRULOF
SET RULES OFF
RETURN

$ COMMAND
STPRULON
SET RULES ON
RETURN

$COMMAND
DDUPITOR
delete duplicates from item_ord

$COMMAND
D2DUPITO
delete duplicates from item_ord

$COMMAND
CONDUPD
delete duplicates from member_c
return

$COMMAND
CONMDUPD
delete duplicates from member_c
return

$COMMAND
EXPDUPD
delete duplicates from expenc
return

$COMMAND
EXPMDUPD
delete duplicates from expenc
return

$COMMAND
CONUPD
*(THIS MODULE ITEMIZES CONSIGNMENTS WHICH HAVE BEEN SOLD BUT FOR
WHICH THE)

162

-'-(CONSIGNER HAS NOT BEEN PAID)
* (WRITTEN BY GARY RADKE)
*(FOR PEOPLES GROCERY DATABASE)

els
set messages off
set error messages off
set var qpaid to n ^(conditional comparison values)
set var qsold to y *()

set var tmem integer *(member //)

set var answer to text *(generic variable used to evaluate
queries)
set var fname to text *(full name of member)
set var rown to 8 *(row position designator)
set var ttotal currency "(total value of sold unpaid consignments)
set var tquant integer -(number of a given item placed on
consignment)
set var tuprice currency -(unit price of a given item placed on
consignment)
set var header to "SUMMARY OF SOLD BUT UNPAID CONSIGNMENTS"
set var total to "TOTAL SOLD BUT UNPAID CONSIGNMENTS"
set var ttotal =
set var cont to "press any key to continue"
label entmem
"(get number of member to summarize)
run entmem in consmod
*(if no number is entered, give user a chance to quit otherwise
reenter)
if tmem fails then

if answer ne x then
goto entmem

else
goto quit

endif
end if
els
write "PLEASE WAIT"
*(create a temporary file containing only those records of sold
unpaid)
*(consignments for all members)

project upcons from member_c using mem_no where mempaid eq .qpaid
and 4-

all_sold eq .qsold
delete duplicates from upcons
*(check to see if the chosen member // exists in the temporary file,
if not)
^(report the error and show which member its do exist and allow
reentry of //)

set pointer #1 pi for upcons where menwio eq .tmem
if pi ne then

run nocons in consmod
goto entmem

163

end if
els
remove upcons
*(create a temporary file containing only those records of sold,
unpaid)
^(consignments for the chosen member)
project consold from member_c using all sorted by date where mem_no
eq +.tmem and mempaid eq .qpaid and all_sold eq .qsold
set var tfirst to firstnam in member where mem_no eq . tmem
set var tlast to lastname in member where mem_.no eq .tmem
set var fname to (.tfirst & .tlast)
run conshdr in consmod
set pointer //l pi for consold where mem_no eq .tmem
while pi eq then

set var tdescrip to descript in //l

set var tquant to no_of_.it in III

set var tuprice to consgrpr in //l

set var tvalue = .tquant * .tuprice
set var ttotal = .ttotal + .tvalue
write .tdescrip at .rown,

2

write .tquant at .rown, 35
write .tuprice at .rown, 45
write .tvalue at .rown, 57

next if I pi

set var rown to .rown + 1

endwhile
write " " at .rown, 57
set var rown to .rown + 2

write .total at .rown, 10

write .ttotal at .rown, 57
write .cont at 23,5
pause
label quit
remove consold
C Is

clear tpaid tsold tmem answer fname rown ttotal tquant tuprice total
+header

$C0MMAND
AUPD
* (MODULE SUMMARIZES TOTAL AMOUNT OWED FOR CONSIGMENTS WHICH HAVE
BEEN SOLD)
* (WRITTEN BY GARY RADKE)
*(FOR PEOPLES GROCERY DATABASE)
els
set messages off
set error messages off
set var tpaid to n ^(conditional comparison variables)
set var tsold to y *()

set var tmem text ^(member id variable)

164

set var fname to text ^(members full name)
set var rown to 8 *(row position variable)
set var ttotal currency "(total value of unpaid
consignments)
set var tquant integer *(number of a given consignment
item)

set var tuprice currency *(unit price of a given consignment
item)
set var header to "SUMMARY OF SOLD UNPAID CONSIGNMENTS"
set var total to "TOTAL SOLD BUT UNPAID CONSIGNMENTS"
set var ttotal =

set var cont to "press any key to continue"
label entnum
*(create a temporary file containing only records of sold but
unpaid)
"(consignment items)
project allupaid from member_c using all sorted by mem__no where
mempaid eq +.tpaid and all_sold eq .tsold
run achdr in consmod
set var tmem to mem_no in allupaid
set pointer //2 p2 for allupaid where mem_.no eq .tmem
while p2 eq then
*(find the name of the current member in question)

set var tfirst to firstnam in member where mem_no eq .tmem
set var tlast to lastname in member where mem_no eq .tmem
set var fname to (.tfirst & .tlast)
set pointer ill pi for allupaid where mem_no eq .tmem
*(total all consignments sold but for which the member has not

been paid)
while pi eq then

set var tquant to no__of_.it in if I

set var tuprice to consgrpr in #1

set var tvalue = .tquant * .tuprice
set var ttotal = .ttotal + .tvalue
write .fname at .rown,

2

write .tvalue at .rown, 47

next If I pi

set var rown to .rown + 1

endwhile
set pointer //2 p2 for allupaid where mem_no gt .tmem
set var tmem to mem_no in ?/2

endwhile
write " " at .rown, 47
set var rown to .rown + 2

write .total at .rown,

6

write .ttotal at .rown, 47

label quit
remove allupaid
write .cont at 23,5
pause
els
clear tpaid tsold tmem fname rown ttotal tquant tuprice cont header

1 6 5

$COMMAND
AUNPD
''•(MODULE SUMMARIZES TOTAL AMOUNT OWED TO MEMBERS FOR CONSIGNMENTS
BOTH SOLD)
*(AND UNSOLD)
*(WRITTEN BY GARY RADKE)
*(FOR PEOPLES GROCERY DATABASE)

els
set messages off
set error messages off
set var tpaid to n ^(conditional comparison variables)
set var tsold to y *()

set var tmem text *(member id // variable)
set var fname to text *(variable for full member name)
set var rown to 8 *(row position designator)
set var ttotal currency *(total value of consignments)
set var tquant integer ^(number of a given item on consignment)
set var tuprice currency *(cost of a consignment item)
set var header to "SUMMARY OF UNPAID CONSIGNMENTS SOLD AND UNSOLD"
set var total to "SUMMARY OF TOTAL UNPAID CONSIGNMENTS"
set var ttotal =
set var tmemval currency *(value of a members consignment items)
set var tmemval =

set var cont to "press any key to continue"
project allupaid from member_c using all sorted by mem_no where
mempaid eq +
.tpaid
run achdr in consmod
set var tmem to mem_no in allupaid
set pointer 111 p2 for allupaid where mem_no eq .tmem
while p2 eq then
*(find the name of the current member under consideration)

set var tfirst to firstnam in member where mem_no eq .tmem
set var tlast to lastname in member where mem_no eq .tmem
set var fname to (.tfirst S .tlast)
set pointer #1 pi for allupaid where memjio eq .tmem
*(total the value of consignments for this member)
while pi eq then

set var tquant to no_of_it in III

set var tuprice to consgrpr in 111

set var tvalue = .tquant * .tuprice
set var tmemval = .tmemval + tvalue
set var ttotal = .ttotal + .tvalue
next III pi

endwhile
write .fname at .rown,

2

write .tmemval at .rown, 47
set pointer 112 p2 for allupaid where mem_no gt .tmem

166

set var tmem to mem__no in 02
set var rown to .rown + 1

set var tmemval =
endwhile
write " " at .rown, 4

7

set var rown to .rown + 2

write .total at .rown,

6

write .ttotal at .rown, 47

remove allupaid
write .cont at 23,5
pause
els
clear tpaid tsold tmem
tmemval cont +
header
return

fname rown ttotal tquant tuprice total

$COMMAND
COMBORD
^(SUMMARIZES AN ORDER SUBMITTED TO A USER SELECTED SUPPLIER ON A
USER)
^(SELECTED DATE. DISPLAYS PRODUCTS ORDERED, QUANTITY, AND VALUE)
* (WRITTEN BY GARY RADKE)
*(FOR PEOPLES GROCERY DATABASE)

els

set messages off
set error messages off
set var tdescrip text
set var tquant real
set var tupr currency
set var totquant real
set var rown integer
set var itval currency
set var rown to 9

set var tquant = 0.0
set var totquant = 0.0
set var itval = 0.0
set var totval currency
set var totval =0.0
set var cont to "press any key to continue"
label entrdate
*(get the date of the order to summarize)
run entdate in ordlabs
*(if no date is entered, report the error and allow the user to
reenter)
*(or exit the module)
if tdate fails then

if answer ne x then
goto entrdate

else

L67

goto quit
end if

end if
els
write "PLEASE WAIT" AT 2,5
^(create a temporary file containing order dates and suppliers)
project orders from item_ord using date, supname sorted by date
delete duplicates from orders
*(if no order was submitted on the entered date, report the error
and)
*(let the user reenter)
set pointer //l pi for item_ord where date eq . tdate
if pi ne then
run noord in ordlabs
goto entrdate

end if

label entsup
set var answer to " "

*(allow the user to enter the name of the suppler for the order to
be)

^(summarized)
run entsup in ordlabs
* (i f no supplier is entered , report the error and let the user
reenter)
*(or exit this module)
if vsupname fails then

if answer ne x then
goto entsup

else
goto quit

end if
end if
set pointer //l pi for item_ord where date eq .tdate and supname eq
.vsupname
*(if no order was submitted to the given supplier on the given date,
report)
-v (the error, display order dates and suppliers and let the user
reenter)
if pi ne then
run nosup in ordlabs
goto entsup

endif
remove orders
^(create a temporary file containing only those records in the
specified order)
project storeord from item_ord using all sorted by item_no where
date eq + .tdate and supname eq .vsupname
set var titem to item_no in storeord
*(find the first record of the temporary file)
set pointer #1 pi for storeord where item_no eq .titem
els

L68

run combhdr in combo
while pi eq then

set pointer If 2 p2 for storeord where item__.no eq . titem
while p2 eq then

*(step through the temporary file and tally the total amount of
an ordered item and its total value)
set var tquant to quantity in //2

set var totquant = .totquant + .tquant
set var tupr to uprice in prodcat where item__.no eq .titem
set var itval = .itval + (.tquant * .tupr)
next //2 p2

endwhile
*(write the item //, description, total quantity ordered, and

total value)
set var totval = . totval + .itval
write .titem at .rown,

4

set var tdescrip to descript in prodcat where item_no eq .titem
set pointer //I pi for storeord where item__no gt .titem
set var titem to item__.no in //l

write .tdescrip at .rown, 14

write .tquant at .rown, 50
write .itval at .rown, 61

set var rown to .rown +1

set var itval = 0.0
set var totquant =0,0
set var tquant = 0.0

endwhile
"(report total value of order before equity and other added costs)
write " " at .rown, 61

set var rown to .rown + 1

write "TOTAL VALUE OF ORDER" AT .rown ,20
write .totval at .rown, 61

label quit
write .cont at 23,1
pause
clear tdescrip tquant tupr totquant rown itval
remove storeord
return

$C0MMAND
LISTEX

* (MODULE SUMMARIZES EXPENSES FOR ANY MONTH DESIGNATED BY THE USER)
^(EXPENSE DESCRIPTIONS AND AMOUNTS ARE LISTED AS WELL AS TOTAL OF)

*(GIVEN MONTHS EXPENSES)
els
set messages off
set error messages off
set var tdate date ''-'(period for expense summarization)

U>9

set var tamt currency *(expense amount variable)
set var tdescrip text *(expense description)
set var rown integer *(row location)
set var dcol integer *(description column location)
set var acol integer *(amount column location)
set var tot currency --(total expense amount)

set var tamout currency
set var rown = 8

set var dcol = 7

set var dmess to "DESCRIPTION"
set var amess to "AMOUNT"
set var cont to "press any key to continue"
set var summary to "SUMMARY OF ALL EXPENSES FOR MONTH OF "

set var space to " "

set var acol = 55set var line
set var sline to
label entperio
write "ENTER MONTH AND YEAR OF PERIOD YOU WANT SUMMARIZED" AT 3,5
set var mess to ("mm/dd/yy ")

fillin tdate using .mess at 3,56
if tdate fails then

goto entperio
endif

els

*< create a new file containing only expenses occuring in the month
and year of the date entered above)
project expe from expenc using date, amount, paid_to, descript
sorted by date + where imon(date) eq imon(. tdate) and iyr(date) eq
iyr(. tdate)
set var tamt =0.0
set var tot =0.0
set pointer Hi pi for expe where amount gt .tamt
set var header to (.summary & tmon(.tdate))
set var tyear to iyr(. tdate)
write .line at 1,1
write .header AT 3,17
write .tyear at 3,65
write .line at 4,1
write .dmess at 5,. dcol
write .amess at 5,. acol
write .line at 6,1
*(step through the new file and print the description and amount of)
*(all of the records it contains. Keep a running total and print the
total)
*(at the end of the report)
while pi eq then
set var tdescrip to descript in #1
set var tamout to amount in 111

1/0

write .tdescrip at . rown , .dcol
write .tamout at .rown, .acol
set var tot to .tot + .tamout
next ft I pi

set var rown to .rown + 1

endwhile
set var rown to .rown + 1

write " " at .rown, .acol
set var rown to .rown + 2

write "TOTAL EXPENSES FOR THE MONTH" AT .rown, 12
write .tot at .rown,. acol
write .cont at 23,5
pause
remove expe
clear tdate tamt tdescrip town dcol acol tot tamout dmess amess cont
summary +
space line si ine
return

$COMMAND
OD
* (MODULE SUMMARIZES TOTAL ORDERS SUBMITTED TO SUPPLIERS AND ALL
EXPENSES)
*(FOR ANY GIVEN MONTH IN A YEAR SPECIFIED BY THE USER)

els
set messages off
set error messages off
set var line text
set var header text
set var titem integer
set var tdate date
set var t sales currency
set var texp currency
set var cost currency
set var tsup to text
set var tamount real
set var tsales to 0.0
set var cost to 0.00
set var tamount to

set var cexp currency
set var cexp to 0.00
set var texp to 0.00
set var header to "SALES / EXPENSE REPORT FOR THE MONTH OF "

set var sal to "TOTAL VALUE OF GOODS ORDERED FROM SUPPLIERS THIS
MONTH "

set var exhdr to "TOTAL MONTHLY EXPENSES"set var line to
" — +

*(item number variable)
*(date variable)
*(total sales variable)
*(total expenses)
A

(product cost)

*(supplier name variable)
*(number of items purchased)

*(temporary expense variable)

1/1

set var cont to "press any key to continue"
*(get the date of the period the user wants summarized)
label entdate
write "Enter date to summarize" at 3,5
fillin tdate using "mm/dd/yy " at 4,5
if tdate fails then

goto entdate
endif
set var header to (header & tmon(. tdate))
set var tyear to iyr(. tdate)
els
write "PLEASE WAIT" AT 3,5
*(create a temporary file containing only sales records within the
period specified above)
project sales from item_ord using all sorted by item_no +
where imon(date) eq imon(. tdate) and iyr(date) eq iyr(. tdate)
set var tamount to quantity in sales
set pointer 111 pi for sales where quantity gt
*(step through new file and total period sales)
while pi eq then

set var tamount to quantity in III

set var tsup to supname in #1
set var titem to item_no in 111

set var cost to uprice in prodcat where Item_no eq .titem
set var ocost = .cost * .tamount
set var tsales = .tsales + .ocost
next 111 pi

endwhile
*(create a temporary file containing only expense records within the
period specified above)
project aexp from expenc using all where imon(date) eq imon(. tdate)
+ and iyr(date) eq iyr(. tdate)
set var cexp to amount in aexp
set pointer 111 pi for aexp where amount gt
*(step through new expense file and total all expenses)
while pi eq then

set var cexp to amount in 111

.cexpset var texp = . tex
next #1 pi

endwhi le

els

write .cont
pause
els

write .line at 2,1
write .header at 3,14
write .tyear at 3,64
write .line at 4,1
write .line at 5,1
write .sal at 7,5
write .tsales at 7,65

172

write .exhdr at 11,5
write .texp at 11,65
write .line at 15,1
remove sales
remove aexp
write .cont at 23,5
pause
clear titem tdate tsales texp cost tsup tamount cexp header sal
exhdr line + cont
return

$COMMAND
EXCON
*(PRINTS SUMMARY OF OUTSTANDING DEBTS INCLUDING SOLD AND UNSOLD
CONSIGNMENTS)

els

set messages off
set error messages off
set var Icol to 5

set var rcol to 50
set var notp to "n"
set var pt text
set var des text
set var tamt currency
set var rown integer
set var rown to 9

set var tupexp currency
set var tupexp to 0.00
set var conpr currency
set var conpr to 0.00
set var tquant integer
set var tval currency
member has)
set var tval to 0.00set v

*(left column location)
*(right column location)
*(not paid value for conditional)
*(paid to temporary variable)
-(description temporary variable)
*(total amount owed)
»(row designator)

*(total unpaid expenses)

*(price consigner wants for product)

*(number of a given item on consignment)
*(total value of consignments a given

set var shrtlin to
set var contmes to 'press any key to continue"
set var hdr to "REPORT OF ALL OUTSTANDING DEBTS"
set var exphdr to "UNPAID EXPENSES"
messages)

set var conhdr to "UNPAID CONSIGNMENTS"
set var ttot to "TOTAL "

set var cont to "press any key to continue"
write .hdr at 2,24
write .line at 3,1
write .exphdr at 5,5

*()

*{ report

)

)

173

write .line at 6,1
write .line at 7,1

*(create the file upexp containing only unpaid expenses)
project upexp from expenc using all where paid eq .notp
set pointer //l pi for upexp where amount gt
'•(step through the new file printing the expense description, amount
and keep a running total of unpaid expenses)
while pi eq then

set var pt to paid_to in //l

set var des to descript in //l

set var tamt to amount in //l

set var tupexp = .tupexp + .tamt
write .des at .rown,.lcol
write . tamt at .rown, .rcol
next //l pi

set var rown to .rown + 1

endwhile
set var mess to (.ttot & .exphdr)
write .shrtlin at .rown, 47

set var rown to .rown + 1

write .mess at .rown, 15

write .tupexp at .rown,. rcol
set var .rown to 9

write .cont at 23,3
pause
els

write .line at 3,1
write . conhdr at 5,5
write .line at 6,1
write .line at 7,1
^(create a new file containing only consignments for which members
have not paid.

)

project upconsg from member_c using all sorted by mem_no where
mempaid eq + .notp
set var tmem to mem_no in upconsg
set pointer //l pi for upconsg where mem_no eq .tmem
set var tamt to 0.00
*(step through the file totaling the unpaid consignment values for
each member and print them)
while pi eq then

set var tval to 0.00
set var fnam to firstnam in member where mem_no eq .tmem
set var lnam to lastname in member where mem_no eq .tmem
set var fulnam to (.fnam & .lnam)
set pointer //2 p2 for upconsg where mem_no eq .tmem
while p2 eq then

set var conpr to consgrpr in //2

set var tquant to no_of_it in #2
set var vtcon = .conpr * .tquant
set var tval = .tval + .vtcon
next //2 p2

174

endwhile
set var rown to .rown + 1

set var tamt to .tamt + , tval
write .fulnam at .rown .lcol
write .tval at .rown, .rcol
set pointer #1 pi for upconsg where mem_no gt . tmem
set var tmem to mem_.no in //l

endwhile
set var rown to .rown + 1

"(display total unpaid consignment value)
write .shrtlin at .rown, 47
set var rown to .rown +1
set var mess to (.ttot & .conhdr)
write .mess at .rown, 15

write .tamt at .rown, .rcol
*(remove temporary tables)
remove upexp
remove upconsg
write .cont at 23,5
pause
set messages on
set error messages on
return

$COMMAND
PRTLBL
'--(PROGRAM PRINT LABELS)
^(PRINTS PRODUCT BREAKDOWN LABELS FOR A GIVEN ORDER)
els
set messages off
set error messages off

SET VAR rown TO 8

SET VAR tdate date
SET VAR vsupname TO text
set var tdescrip text
set var err text
set var answer to " "

LABEL entrdate
-(find date of order for which to print labels)

RUN entdate IN ordlabs
*(if no date is entered let user retry or quit module)
if tdate fails then

if answer ne x then
goto entrdate

else
goto quit

endif

175

end if
*(make a temporary file of all order dates and suppliers)

project orders from item_ord using date, supname sorted by date
delete duplicates from orders
"(if entered order date doesn't exist in temporary file, display
error message, display all order dates and suppliers and let user
reenter)
set pointer #1 pi for orders where date eq .tdate
if pi ne then

run noord in ordlabs
goto entrdate

endif

CLS
set var answer to " "

label entrsup
*(find supplier for which to print order distribution labels)
run entsup in ordlabs
*(if no supplier is entered display error message and let user
reenter)

if vsupname fails then
if answer ne x then

goto entrsup
else

goto quit
endif

endif
set pointer //l pi for orders where date eq .tdate and supname eq
.vsupname
*(if no order was placed to entered supplier on entered date,
display error)
-(message, display order dates and suppliers, and let user reenter)

if pi ne then
run nosup in ordlabs
goto entrsup

endif
A (delete temporary file)
remove orders
^(create a temporary file containing only those records matching the
entered)
-'•(order date and supplier)

PROJECT ordlab FROM item_ord USING ALL SORTED BY item_no WHERE date
EQ + .tdate AND supname EQ .vsupname
CLS
SET VAR nit TO item_no IN ordlab
SET POINTER 01 pi FOR ordlab WHERE item_no EQ .nit
-(step through the temporary file by item number and print member
names and the amount they ordered)

176

WHILE pi EQ THEN
SET VAR vit to item_no IN 111

SET POINTER 113 p3 FOR ordlab WHERE item_no EQ .nit
set var tdescrip to descript in prodcat where item_no eq
*(print the order label header)
run lblhdr in ordlabs
WHILE p3 EQ THEN

SET VAR vmem TO mem_no in 113

set pointer 112 p2 for member where memjio eq .vmem
set var vfirst to firstnam in 111

set var vlast to lastname in 111

set var fname to (.vfirst & .vlast)
set var vquant to quantity in 113

write .fname at .rown, 10
write .vquant at .rown, 50
set var rown to .rown +1

next 113 p3
endwhile
write "PRESS ANY KEY TO CONTINUE " AT 23,1
pause
els

*(find the next item number in the temporary file)
set pointer #1 pi for ordlab where item_no gt .vit
set var nit to item_no in 111

set var rown to 8

endwhile
label quit
Remove ordlab
clear rown tdate vsupname tdescrip err answer
return

$ COMMAND
PB

*(M0DULE PRINTS AN ITEMIZED BILL FOR EACH MEMBER PARTICIPATING IN A)
•'(GIVEN ORDER. REPORTS ORDER DATE, SUPPLER CATALOG //, DESCRIPTION)
*(QUANTITY AND PRICE FOR EACH ITEM ORDERED. MEMBER EQUITY, SHIPPING
COST, MARKUP AND TAX ARE ADDED TO ORDER TOTAL.)
els
set messages off
set error messages off
set var answer text
set var ctax real *(tax rate variables)
set var ttax real
set var cmarkup real *(markup variables)
set var tmarkup real
set var cequity real '-(member equity variables)
set var tequity real
set var cship currency '-''(shipping cost variables)
set var tship currency
set var tdate date *(order date)
set var nmem to text *(member name)

177

*(supplier name)

*(first name of member)
*(last name of member)
"(full name of member)
"(total cost of goods)
^'(description of item)
^(member //)

*(row designator)
*(item catalog number)
*(unit price of item)
"(case price of item)
^(shipping weight of item)
"(units per case of an item)
*(unit weight)
^(weight per item)

*(total weight of order)
*(amount of markup)
"(quantity of an item ordered)

set var vsupname to text
set var tfirst to text
set var tlast to text
set var fname to text
set var tprice currency
set var tdescrip to text
set var vmem to text
set var rown to 8

set var teat integer
set var tupr currency
set var teas currency
set var tswt integer
set var upcas integer
set var uwt real
set var itwt integer
set var tval currency
set var totwt integer
set var vmarkup currency
set var tquant real
set var totwt =
set var cont to "press any key to continue"
set var taxm to "SALES TAX "

set var markup to "MARKUP "

set var bpe to "MEMBER EQUITY "

set var shipping to "SHIPPING COST PER POUND "

set var ctax = 4.5
set var cmarkup =15
set var cequity = 2

set var cship = .02
label enterdate
*(get date of order)
run entdate in pbl
*(if no date is entered, report error and let user reenter or exit
module)
if tdate fails then

if answer ne x then
goto enterdate

else
goto quit

end if
end if
els
write "PLEASE WAIT" AT 2,5
*(create a temporary file containing both order and catalog
information)
intersect prodcat with item_ord forming prodord using cas_pric
item__no +
shipwt uprice supname mem_.no date quantity descript
^(create a temporary file containing order dates and suppliers)
project orders from item_ord using date, supname sorted by date
delete duplicates from orders

178

"(check to see if an order was submitted on the day entered. If not,
display order dates and suppliers and report the error allow
reentry)
set pointer //l pi for item_ord where date eq .tdate
if pi ne then
run noord in pbl
goto enterdate

endif
*(enter name of order supplier.)

label entrsup
run entsup in pbl

*(If no supplier is entered report the error and give the user an
opportunity)
*(to cancel the operation otherwise give them another chance)
if vsupname fails then

if answer ne x then
goto entrsup

else
goto quit

endif
endif
set pointer //l pi for item_ord where date eq .tdate and supname eq
.vsupname

*(if no order was submitted to this suppler on this date report the
error)
'"'(display order dates and suppliers and let the user reenter)
if pi ne then
run nosup in pbl
goto entrsup

endif
remove orders
^(display current tax rate, get update if necessary)
run gtax in pbl
^(display current markup rate, get update if necessary)
run gmarkup in pbl
--(display current equity charge, get update if necessary)
run gequity in pbl
^(display current shipping cost rate, get update if necessary)
run gship in pbl
els
^(create a temporary file containing only those records involving
the)
A (date and supplier entered above)
project prbil from prodord using all sorted by mem__no item_no where
date eq + .tdate and supname eq .vsupname
set var answer to "a"
run adjust in pbl
set var nmem to mem__.no in prbil
if answer eq x then

goto quit
endif
^(compile the full member name)

179

set pointer 111 pi for prbil where mem_no eq .nmem
set var tequity = .cequity / 100
set var tmarkup = .cmarkup / 100
set var ttax = .ctax / 100
while pi eq then

set var tfirst to firstnam in member where mem_no eq .nmem
set var tlast to lastname in member where mem_no eq .nmem
set var fname to (.tfirst & .tlast)
set var tval =

run bilhdr in pbl
set var vmem to mem_no in 111

set pointer 112 p2 for prbil where mem_no eq .vmem
*(itemize order for member)
while p2 eq then

set var teas to cas_pric in 112

set var tupr to uprice in 112

set var tswt to shipwt in 112

set var upcas = .teas / .tupr
set var uwt = .tswt / .upcas
set var teat to item_no in 112

set var tdescrip to descript in 111

set var tquant to quantity in 112

set var tupr to uprice in 112

set var itwt = .uwt * tquant
set var totwt = .totwt + .itwt
set var tprice = .tupr * .tquant
set var tval = .tval + .tprice
write .teat at .rown,2
write .tdescrip at .rown, 15
write .tquant at .rown, 50
write .tprice at ,rown,65
set var rown to .rown + 1

next 112 p2
endwhile
write " " at .rown, 65
set var rown to .rown + 1

set var messl to "VALUE OF ORDER "

write .messl at .rown, 22
write .tval at .rown, 65
set var rown to .rown + 1

set var shipcost = .totwt * .cship
set var equicost = .tval * .tequity
set var mess2 to "MEMBER EQUITY CHARGE "

write ,mess2 at .rown, 22
write .equicost at .rown, 65
set var rown to .rown + 1

set var vmarkup = . tmarkup * . tval
set var m3 to "MARKUP (PRE EQUITY TOTAL X "

6, ctxt(. cmarkup) &
"percent)"
write ,m3 at .rown, 22
write .vmarkup at .rown, 65
set var rown to .rown + 1

180

set var tval = .tval + .vmarkup
set var txval = .tval * .ttax
set var mess4 to "TAX " & ctxt(.ctax) & "percent"
write „mess4 a .rown, 22
write . txval at . rown, 65

set var rown to .rown +1

set var mess5 to "SHIPPING COST"
write .mess5 at .rown, 22
write .shipcost at .rown, 65
set var rown to .rown + 1

set var tval = .tval + .txval
set var tval = .tval + .equicost
set var tval = .tval + .shipcost
set var mess6 to "TOTAL CHARGE"
write " " at .rown, 65

set var rown to .rown + 1

write .mess6 at .rown, 30
write .tval at .rown, 65

set pointer //I pi for prbil where mem_.no gt .vmem
set var nmem to mem__no in //l

set var rown to 8

write .cont at 23,5
pause
set var totwt =
set var tval =0.0
set var vmarkup = 0.0
set var shipcost =0.0
set var equicost =0.0
els

endwhile
label quit
remove prbil
remove prodord
clear ctax ttax cmarkup tmarkup cequity t equity cship tship tdate
nmem vsupname tfirst tlast fname tprice tdescrip vmem rown teat tupr
teas tswt upcas uwt itwt tval totwt vmarkup tquant
els
return

1S1

APPENDIX C:DATA DICTIONARY

ADDRESS: The mailing address of a member or supplier.

ALL_SOLD: A boolean that indicates if all units of a given
item placed on consignment have been sold.

AMOUNT: Dollar amount paid for an expense.

CASPRICE: Price of the minimum quantity of an item that can be
ordered from a supplier.

CONSGRPRICE: The price a member wants to receive for an item
he/she has placed on consignment.

CONTACT: The name of a suppliers representative with whom the
cooperative deals.

DATE: Month/day/year of a transaction, be it an order, an
expense payment, or placing an item on consignment.

DESCRIPT: Description of a product being ordered or placed on
consignment

.

DESCRIPTIO: Description of goods or services the cooperative
receives which are not resold, i.e. insurance, utilities, equipment
repairs.

FIRSTNAME: A members first name.

HOMEPHONE: A members home phone number.

ITEMNO: A catalog number associated with products offered by various
suppliers. Numbers are unique within the products offered by any
single supplier but may be duplicated by different suppliers.

LASTNAME: A members last name.

MEM_NO: A unique number assigned to each member that joins the
cooperative.

NO_OF_ITEM: The number of items of a given description a member has
placed on consignment on a given date.

PAID: A boolean that when true designates that an expense has been
paid.

PAIDTO: The name of an individual, or organization receiving money
from the cooperative for services or goods not destined for resale,
i.e. advertising, mailing costs, utilities.

182

PHONE: A suppliers business phone number.

QUANTITY: The number of units of an item a member has ordered.

SHIPWT: The shipping weight of the smallest unit a supplier will
sell.

STATE: The abbreviation for the state in which a member resides or a

supplier is located

SUPNAME: The names of companies or individuals that supply goods to
the cooperative.

TOWN: The town in which a supplier is located or a member resides.

UNITPRICE: Price / unit charged by a supplier, where a unit may be a
pound, can, jar, packet, etc.

WORKPHONE: A members phone number at work, if any.

ZIPCODE: The five digit postal service zipcode for a members or
suppliers address.

183

A COMPARISON OF TWO MICRO COMPUTER DATABASE
MANAGEMENT SYSTEM PRODUCTS

by

Gary A. Radke

B.S., Kansas State University, 1979

AN ABSTRACT OF A MASTERS REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1989

The software market is currently crowded with micro computer

based database management systems . The complexity of the systems

available ranges from simple information management systems which

are inflexible in their format to the advanced systems with

programmable products that allow the user to easily write an

application tailored to their precise needs. The simple systems

force the user to adapt their application to the structure of the

database management system; the advanced systems often do not

require the user to learn a great deal more about database

management systems

.

This report will discuss the creation of an extensible, "user

friendly" front end for the database of a small enterprise. A user

interface has been developed using both dBASE III+ and RBASE 5000

with the object of providing qualitative information on the effort

required to establish the database and produce a user interface for

each of these systems.

The need for practical information when evaluating a database

management system, the enterprise to be implemented, the operation

of the applications developed in dBASE III+ and RBASE 5000 are

discussed. In addition, the development of the two applications and

various aspects of the process are presented. Areas for possible

future study are also suggested.

