Preparing Rabies Vaccination Data of Veterinary Health Professionals for Analysis and Best Practices for Rabies Vaccination for Animal Handling Personnel

Paparwee Sungkatavat Master of Public Health Candidate 2021 Kansas State University

Presentation Outline

Introduction

• Rabies overview

Applied Practice Experience

- Learning objectives
- Background
- Activities performed and products developed

MPH Competencies

Introduction

- Rabies is a zoonotic viral infectious disease.
- It is caused by RNA viruses in the family Rhabdoviridae, Genus *Lyssavirus*, most often by rabies virus (RABV).

https://www.thetraveldoctor.com.au/world-rabies-day-2013/

- Rabies occurs in more than 150 countries and territories around the world.
- According to the WHO, there are more than 59,000 deaths caused by rabies per year globally
- over 95% of the cases occur in Asia and Africa.

https://urbananimalveterinary.com/event/why-vaccinating-for-rabies-is-important/

A: Human deaths from rabies

KANSAS STATE (WHO Expert consultation on rabies TRS n°1012, 2017)

Rabies in the

https://www.mountsinai.org/health-library/diseases-conditions/rabies

- Rabies is transmitted by the bite or scratch of rabid animals but may also result from non-bite exposures
- The symptoms of rabies at the first stage may be nonspecific
- Clinical signs will progress to other neurological signs

- Once clinical signs appear, there is no effective treatment for rabies.
- This is a significant global public health concern, particularly for people who are at risk.
- Rabies can be prevented by vaccination in both humans and animals.

https://www.infectiousdiseaseadvisor.com/h ome/topics/vector-borne-illnesses/rabiesvaccine-may-be-able-to-be-administered-insimilar-fashion-to-ppd/

Applied Practice Experience

Objectives

- To design data preparation workflow that is ready to use for statistical evaluation from Rabies Laboratory Kansas State University and to create the protocol of data preparation
- To develop interprofessional teamwork and communication skills virtually during to the COVID-19 pandemic situation
- To communicate risk of rabies and vaccination to animal handling personnel by creating a summary and a poster

Background

- The Rabies Laboratory of Kansas State University is the primary diagnostic lab for the states of Kansas and Nebraska.
- The tests measuring rabies antibodies includes;
 - Fluorescent Antibody Virus Neutralization (FAVN) test
 - Rapid Fluorescent Focus Inhibition Test (RFFIT)
 - Enzyme-linked immunosorbent assay (ELISA)
- Both the ACIP and the WHO recommend the RFFIT to be the current gold standard serological assay for rabies.

RFFIT

 The RFFIT test is recommended for measuring post-vaccination immune responses and for determining whether booster vaccination is necessary.

http://www.ksvdl.org/rabies-laboratory/rffit-test/

https://www.sciencedirect.com/science/article/pii/B9780128187050000133

RFFIT

An example of a microscopic field where virus has been neutralized

An example of a microscopic field where virus was not neutralized

https://www.cdc.gov/rabies/specific_groups/hcp/serology.html

Activities performed and products developed

Preparing human laboratory data for statistical evaluation Summary of the process of preparing a set of human laboratory data for statistical evaluation

Summary of the best practices for rabies vaccination and booster timing for personnel handling animals

Poster for educating animal handling staff on rabies control and prevention

Preparing human laboratory data for statistical evaluation

ID	male	yob	region	conf	date	titer	Initia	initial_	booster1	booster1_	booster2	boster2_	booster3	booster3_	Last_	Last_	Note
							l_vx	vx_		reason		reason		reason	booster	booster_	
								reason								reason	

Template for Human Laboratory Data for Statistical Evaluation

- Sources of data
 - 1. VetView

-The laboratory information management system (LIMS) -The excel spreadsheet is a report generated by VetView containing all the results such as patient name, date of draw, results, etc.

	Conference number	titer	ID dat samp	e which each ble was drawn			Y 16		
	1 _			<u>t</u>					
REF_CASI	E_NO RESULT_VALUE	ACCESSION_NO	RECEIVED_DATE S	ITEM AMPLED_DATE MBE	_NU R ANIMAL_ID	REF_CASE_NO	TEST_CODE	RESULT_VALUE	STATUS_CODE
CVC-186	>/= 0.5 IU/mL	R15-026537	8 9/1/2015 3:42:15.820000 PM A	/29/2015 12:00:00.000000 M	1 XXX XXXX	CVC-186	RFF-1033	>/= 0.5 IU/mL	F
CVC-185	>/= 0.5 IU/mL	R15-026538	8 9/1/2015 3:42:17.367000 PM A	/29/2015 12:00:00.000000 M	1 XXX XXXX	CVC-185	RFF-1033	>/= 0.5 IU/mL	F
CVC-184	>/= 0.1 IU/mL	R15-026539	8 9/1/2015 3:42:18.913000 PM A	/29/2015 12:00:00.000000 M	1 XXX XXXX	CVC-184	RFF-1033	>/= 0.1 IU/mL	F
CVC-183	>/= 0.5 IU/mL	R15-026540	8 9/1/2015 3:42:20.523000 PM A	/29/2015 12:00:00.000000 M	1 XXX XXXX	CVC-183	RFF-1033	>/= 0.5 IU/mL	F
CVC-181	>/= 0.1 IU/mL	R15-026542	8 9/1/2015 3:42:23.757000 PM A	/29/2015 12:00:00.000000 M	1 XXX XXXX	CVC-181	RFF-1033	>/= 0.1 IU/mL	F
CVC-179	>/= 0.5 IU/mL	R15-026544	8 9/1/2015 3:42:26.975000 PM A	/29/2015 12:00:00.000000 M	1 XXX XXXX	CVC-179	RFF-1033	>/= 0.5 IU/mL	F
CVC-178	>/= 0.5 IU/mL	R15-026545	8 9/1/2015 3:42:28.835000 PM A	/29/2015 12:00:00.000000 M	1 XXX XXXX	CVC-178	RFF-1033	>/= 0.5 IU/mL	F
CVC-177	>/= 0.5 IU/mL	R15-026546	8 9/1/2015 3:42:30.600000 PM A	/29/2015 12:00:00.000000 M	1 XXX XXXX	CVC-177	RFF-1033	>/= 0.5 IU/mL	F
CVC-176	>/= 0.5 IU/mL	R15-026547	8 9/1/2015 3:42:32.288000 PM A	/29/2015 12:00:00.000000 M	1 XXX XXXX	CVC-176	RFF-1033	>/= 0.5 IU/mL	F
CVC-175	>/= 0.5 IU/mL	R15-026548	8 9/1/2015 3:42:34.319000 PM A	/29/2015 12:00:00.000000 M	1 XXX XXXX	CVC-175	RFF-1033	>/= 0.5 IU/mL	F
CVC-174	>/= 0.5 IU/mL	R15-026549	8 9/1/2015 3:42:36.256000 PM A	/29/2015 12:00:00.000000 M	1 XXX XXXX	CVC-174	RFF-1033	>/= 0.5 IU/mL	F
CVC-173	>/= 0.5 IU/mL	R15-026550	8 9/1/2015 3:42:38.178000 PM A	/29/2015 12:00:00.000000 M	1 XXX XXXX	CVC-173	RFF-1033	>/= 0.5 IU/mL	F
CVC-172	>/= 0.1 IU/mL	R15-026551	8 9/1/2015 3:42:40.022000 PM A	/29/2015 12:00:00.000000 M	1 XXX XXXX	CVC-172	RFF-1033	>/= 0.1 IU/mL	F

2. The completed rabies titer submission forms called "Rabies Serology for Vaccine Titer Response by RFFIT Screen Method for Human Specimen Only"

-The forms are electronically completed by each participant per rabies titer event and printed at the event for signature and sample processing.

-These forms are saved as scanned pdfs in batches

Kansas State Veterinary DIAGNOSTIC LABORATORY All fields need to be printed legibly. Handwrit First Name:	Serology for Vaccine Tit creen Method for Huma ies Laboratory Phone: 78 tate University Fax : 78 arch Park Circle Email: rabies(http://www.ksvdl.ov tten information is subject to interpretation by laborator DOB:	er Response by n Specimen Only 15-532-4483 15-532-4474 @vet.k-state.edu rg/rabies-laboratory/ y personnel.	RUAR	Draw date& Conference No.
Last Name:	Sex:	the design of the second se		Date of birth
Address: City: Phone Number:	State: Fax Number	Zip Code:		State
Email Address: (Rabies Titer Results will be sent to Rabies Vaccination History:	o the above email address in 3-4 weeks. Al	other results will be mailed in 2-3 weeks.)]	Vaccination
Rabies Titer Screen Comprehensive Metabolic + Lipid Panel CBC w/ Differential Glycohemoglobin A1C Lead Levels	 Prostate Specific Antigen (PSA) Lyme Disease Antibody (test code: 29477) Vitamin D Highly Sensitive C-Reactive Protein 	Thyroid Panel w/TSH Brucella antibody, IgG (test code 982) Hepatitis C PIL Client ID# 3036 - ONSITE WELLNESS Osgood Kenneth, MD		TISCOLY
I, the participant named below, have read, und hereto. No attempts by the participant to mo Laboratory, OnSite Wellness, or other related p Participant's Signature: "A signed Rabies Titer Profile/Lab Analysis Con other related parties to analyze the sample an Examiner/Collector Information: (To	derstand and agree to the terms of the Rabies Titer Profil dify or amend this form will change its terms or in any w parties. Insent Form must accompany the lab sample in order for t id release the lab results be completed at time of sample collection)	e/Lab Analysis Notice and Consent provided and attached ay be binding upon the Kansas State University Rabies Date: he Kansas State Rabies Laboratory, OnSite Wellness, or		
Participant's initials indicate v on this form	verification the barcode labels on the specime	n tubes match the barcode and firt and last name		
Sample Obtained: Yes No (If I, the examiner named above, verify that t University Rabies Laboratory. I verify that t barcode labels on the specimen tubes mat	no, please explain:	o the instructions provided by the Kansas State e participant named on this form. I have verified the		
Examiner's Signature: Payment: CashNet Receipt:	Check Number: Cash: \$	Date:		

Regions in the United States classified by United States Department of Health and Human Services

Conference number

3. Excel spreadsheet files which are compiled from the data entered into the electronic submission form

Tube ID (Nam	Client First	Client Last	Address	City	State	Zip	Phone #	Fax # Email	Tube ID (Na	Date of Dra	Test order	Sample Ty
AVMA-3997	XXX	XXXX	XXXXXXXXXX	XXX	Texas	XXXXX	XXXXXXX	0 <u>XX@XX</u>	AVMA-3997	7/13/2018	RFF-1033	SERUM
AVMA-4095	XXX	XXXX	XXXXXXXXXX	XXX	South Dakot	XXXXX	XXXXXXX	0 <u>XX@XX</u>	AVMA-4095	7/13/2018	RFF-1033	SERUM
AVMA-3993	XXX	XXXX	XXXXXXXXXX	XXX	Arizona	XXXXX	XXXXXXX	0 <u>XX@XX</u>	AVMA-3993	7/13/2018	RFF-1033	SERUM
AVMA-3935	XXX	XXXX	XXXXXXXXXX	XXX	Colorado	XXXXX	XXXXXXX	0 <u>XX@XX</u>	AVMA-3935	7/13/2018	RFF-1033	SERUM
AVMA-3933	XXX	XXXX	XXXXXXXXXX	XXX	New York	XXXXX	XXXXXXX	0 <u>XX@XX</u>	AVMA-3933	7/13/2018	RFF-1033	SERUM
AVMA-4024	XXX	XXXX	XXXXXXXXXX	XXX	Illinois	XXXXX	XXXXXXX	0 <u>XX@XX</u>	AVMA-4024	7/13/2018	RFF-1033	SERUM
AVMA-4041	XXX	XXXX	XXXXXXXXXX	XXX	Colorado	XXXXX	XXXXXXX	0 <u>XX@XX</u>	AVMA-404	7/13/2018	RFF-1033	SERUM
AVMA-4049	XXX	XXXX	XXXXXXXXXX	XXX	New Mexico	XXXXX	XXXXXXX	0 <u>XX@XX</u>	AVMA-4049	7/13/2018	RFF-1033	SERUM
AVMA-4072	XXX	XXXX	XXXXXXXXXX	XXX	Florida	XXXXX	XXXXXXX	0 <u>XX@XX</u>	AVMA-4072	7/13/2018	RFF-1033	SERUM
AVMA-3938	XXX	XXXX	XXXXXXXXXX	XXX	New Mexico	XXXXX	XXXXXXX	0 <u>XX@XX</u>	AVMA-3938	7/13/2018	RFF-1033	SERUM
AVMA-3900	XXX	XXXX	XXXXXXXXXX	XXX	Colorado	XXXXX	XXXXXXX	0 <u>XX@XX</u>	AVMA-3900	7/13/2018	RFF-1033	SERUM
AVMA-4079	XXX	XXXX	XXXXXXXXXX	XXX	North Caroli	XXXXX	XXXXXXX	0 <u>XX@XX</u>	AVMA-4079	7/13/2018	RFF-1033	SERUM
AVMA-3983	XXX	XXXX	XXXXXXXXXX	XXX	Texas	XXXXX	XXXXXXX	0 <u>XX@XX</u>	AVMA-3983	7/13/2018	RFF-1033	SERUM
AVMA-3992	XXX	XXXX	XXXXXXXXXX	XXX	Wisconsin	XXXXX	XXXXXXX	0 <u>XX@XX</u>	AVMA-3992	7/13/2018	RFF-1033	SERUM
AVMA-3932	XXX	XXXX	XXXXXXXXXX	XXX	Maine	XXXXX	XXXXXXX	0 <u>XX@XX</u>	AVMA-3932	7/13/2018	RFF-1033	SERUM

		_													C	Data f	ron	n 1.	Vet\	/iev	V						
	Excel spreadsheet files									Da	ata 1	from	2. s	ubn	nissi	on 1	forn	ns									
Tube ID (Name or ID#) Client First	Client Last	Address	City	State	Zip	Phone # Fax #	Email	Tube ID (Name o ID#)	r Date of Draw	Test ordered (RFFIT screen or RFFIT Sample endpoint) Type	ID	male	yob	region	conf	date ti	iter init	ial_vx initia	l_vx booster	booster: 1_reason	1 booster2	booster2	e booster3	booster: g_reason	3 Last booster	Last booster reason	Note
AVMA-3997 xxx	XXXX	ххх	ххх	Texas	ххххх	XXXXX	0 ххххх	AVMA- 3997	7/13/20:	18RFF-1033 SERUM	R18-03171:	1	0	1959	AVMA- 63997	>/= 7/13/2018 IU/r	15.0 nL N//	A N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	TESTED BY kSTATE 2017
AVMA-4095 xxx	хххх	ххх	ххх	South Dakota	ххххх	XXXXX	0 ххххх	AVMA- 4095 AVMA-	7/13/20:	18RFF-1033 SERUM	R18-031710	D	0	1986	AVMA- 84095 AVMA-	7/13/2018 2.4	IU/mL 0.5	2013 N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	August 2013

0 1973

9 3993

7/13/2018 IU/mL

1998 N/A

N/A

N/A

N/A N/A

0xxxxx 3993 7/13/2018 RFF-1033 SERUM R18-031709

AVMA-3935 xxx	хххх	ххх	ххх	Colorado xxxxx	xxxxx	0 ххххх	AVMA- 3935	7/13/2018 RFF-1033 SERUM	R18-031708	0	1991	AVMA- 83935	>/= 0.5 7/13/2018 IU/mL	2011 N/A	20	13 low tite	r N/A	N/A	N/A	N/A	N/A	N/A	in 2014 and was sufficient
AVMA-3933 xxx	хххх	ххх	ххх	New York xxxxx	ххххх	0 ххххх	AVMA- 3933	7/13/2018RFF-1033 SERUM	R18-031707	0	1955	AVMA- 2 3933	>/= 0.5 7/13/2018 IU/mL	2015 N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2015
AVMA-4024 xxx	хххх	ххх	ххх	Illinois xxxxx	ххххх	0 ххххх	AVMA- 4024	7/13/2018RFF-1033 SERUM	R18-031706	0	1982	AVMA- 54024	>/= 0.5 7/13/2018 IU/mL	2006 N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	January 2006
AVMA-4041 xxx	хххх	ххх	ххх	Colorado xxxxx	xxxxx	0 ххххх	AVMA- 4041	7/13/2018RFF-1033 SERUM	R18-031705	0	1971	AVMA- 84041	>/= 0.5 7/13/2018 IU/mL	2002 N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Two doses in 2002
AVMA-4049 xxx	хххх	ххх	ххх	New Mexico xxxxx	ххххх	0 ххххх	AVMA- 4049	7/13/2018RFF-1033 SERUM	R18-031704	0	1977	AVMA- 64049	>/= 0.5 7/13/2018 IU/mL	2001 N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	given 2001

Arizona xxxxx xxxxx

AVMA-3993 xxx

XXXX XXX

XXX

N/A

N/A N/A

N/A

1998

Vaccinati on series done in 2011, one booster in 2013 due to low titermost recent titer was

																Last	
						-				booster1		booster2		booster3	Last	booster_	
ID	male	yob	region	conf	date	titer	initial_vx	initial_vx	booster1	_reason	booster2	_reason	booster3	_reason	booster	reason	Note
R20-000192	1	1961	3	AAEP-6/48	12/8/2019	>/= 0.5 IU/mL	1998	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1998?
R20-000168	1	1959	5	AAEP-6749	12/8/2019	>/=0.5 IU/mL	1981	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1981
R20-000162	0	N/A	9	AAEP-6750	12/8/2019	>/=0.1 IU/mL	1996	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1 of the series in 1996
R20-000156	0	1957	9	AAEP-6751	12/8/2019	LESS THAN 0.1	1990	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1990
R20-000180	0	1977	4	AAEP-6752	12/8/2019	>/=0.5 IU/mL	2003	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2003
R20-000185	1	1959	5	AAEP-6753	12/8/2019	>/= 0.5 IU/mL	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1989	N/A	Lastbooster 1989
R20-000174	0	1979	8	AAEP-6754	12/8/2019	>/=0.1 IU/mL	2009	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	~2009
R20-000150	0	1967	2	AAEP-6755	12/8/2019	>/=0.5 IU/mL	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	yes
R20-000144	0	1966	8	AAEP-6756	12/8/2019	>/=0.5 IU/mL	1999	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1999
R20-000191	0	1949	4	AAEP-6757	12/8/2019	>/= 0.5 IU/mL	1999	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	20 years ago rabies series
R20-000179	0	1964	4	AAEP-6758	12/8/2019	>/=0.1 IU/mL	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
R20-000173	0	1960	4	AAEP-6759	12/8/2019	>/=0.5 IU/mL	2004	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	15 years ago
R20-000185	0	1992	8	AAEP-6760	12/8/2019	>/= 0.5 IU/mL	2015	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	vaccinated in 2015
R20-000161	0	1981	5	AAEP-6761	12/8/2019	>/= 0.5 IU/mL	2009	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2009
R20-000167	0	1982	1	AAEP-6762	12/8/2019	>/= 0.5 IU/mL	2009	pre exposure	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	given pre exposure 2009 titer in 2010 was adequate
R20-000155	0	1991	4	AAFP-6763	12/8/2019	>/=0.5IU/ml	2013	N/A	N/A	N/A	N/A	N/A	N /Δ	N/A	N/A	N/A	Vaccinated in 2013
920-0001/09	0	198.4	1	A A ER-6764	12/8/2019	>/=0.5111/ml	2008	N/A	N/A	N/A	N/A	N/A	N /A	N/A	N/A	N/A	1/1/2008
820-000190	0	1978	8	A A ER-6767	12/8/2019	>/=0.1111/ml	2009 or 2010	N/A	N/A	N/A	N/A	N/A	N /A	N/A	N/A	N/A	2009 or 2010, completed series
20-000135	0	1978	8	AAEP-0707	12/8/2019	>/=0.110/mL	2009 01 2010	N/A	N/A	N/A	N/A	N/A	N /A	N/A	N/A	N/A	2009 of 2010, completed series
20-000133	1	105.4	-	AAEP-0733	12/0/2019	>/=0.310/mL	2009	N/A	11/14	AL/A	N/A	N/A	N /A	N/A	hi /A	N/A	2009
20-000076	1	1083	9	AAEP-0795	12/9/2019	>/=0.110/mL	2010	N/A	N/A	N/A	N/A	N/A	N /A	N/A	201.0	N/A	Just used as in 2018
20-000125	0	198.3	0	AAEP-6/98	12/9/2019	>/= 0.5 IU/mL	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2018	N/A	last vacone in 2018
20-000088	0	1957	4	AAEP-6800	12/9/2019	>/= 0.1 IU/mL	1982	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1982
20-000107	0	1992	9	AAEP-6801	12/9/2019	>/=0.5 IU/mL	2014	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	AU14
20-000120	0	1977	3	AAEP-6802	12/9/2019	>/=0.5 IU/mL	2000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	loading series 2000
20-000100	1	1980	9	AAEP-6803	12/9/2019	>/= 0.5 IU/mL	2004	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2004
20-000124	0	1986	5	AAEP-6804	12/9/2019	>/= 0.5 IU/mL	2011	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	vaccinated in vet school 2011
20-000126	0	1980	4	AAEP-6805	12/9/2019	>/= 0.5 IU/mL	1993	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1993
20-000112	0	1975	8	AAEP-6806	12/9/2019	>/= 0.5 IU/mL	1998	1998	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1998
20-000121	1	1958	4	AAEP-6807	12/9/2019	>/= 0.1 IU/mL	1985	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1985
120-000089	0	1961	8	AAEP-6808	12/9/2019	LESS THAN 0.1	1999	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1999
20-000095	0	1989	2	AAEP-6809	12/9/2019	>/= 0.5 IU/mL	2012	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2012
20-000114	0	198.4	5	AAEP-6810	12/9/2019	>/=0.5III/ml	2008	N/A	N/A	N/A	N/A	N/A	N /A	N/A	N/A	N/A	series in 2008
20-000077	0	1075	4	AAEP-6811	12/9/2019	>/=0.510/mL	2001-2002	N/A	N/A	N/A	N/A	N/A	N /A	N/A	N/A	N/A	2001-2002
20-000077	0	1083	-	AACD (011)	12/0/2010	>/=0.510/mL	2001-2002	N/A	N/A	AL /A	N/A	AL/A	N /A	AL/A	N/A	N//A	Enrine 2004
20-000113	0	1982	5	AAEF-0012	12/ 9/ 2019	2/=0.510/mL	2004	N/A	IN/ M	N/M	N/A	N/A	N/M	N/A	N/A	N/A	spring2004
(20-000101	0	1955	6	AAEP-6813	12/9/2019	>/=0.51U/mL	1979	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	human diploid 19/9
20-000082	0	1986	3	AAEP-6815	12/9/2019	>/=0.510/mL	2015	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2015
20-000102	0	1988	3	AAEP-6816	12/9/2019	>/=0.5 IU/mL	2010-2011	N/A	2016	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Booster 3 years ago, Initila series was in 2010-201
20-000108	0	1979	S	AAEP-6817	12/9/2019	>/= 0.5 IU/mL	1990	post exposure	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	post exposure series in 1990
20-000090	0	1987	9	AAEP-6818	12/9/2019	>/=0.5 IU/mL	2009	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Series of 2 vaccines in 2009
20-000096	0	1963	2	AAEP-6819	12/9/2019	>/=0.5 IU/mL	1985	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1985
320-000122	0	1992	2	AAEP-6820	12/9/2019	>/=0.5 IU/mL	2014	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Vaccinated in 2014
20-000078	1	1966	10	AAEP-6821	12/9/2019	>/= 0.5 IU/mL	1992	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1992
20-000084	1	1958	4	A A EP-68 22	12/9/2019	>/=0.5111/ml	199.4	N/A	N/A	N/0	N/A	N/A	N /A	N/A	N /A	N/A	199.4
20-000115	1	105.3	4	A A EP-68 22	12/0/2010	>/=0.510/mL	1005	nort or popure	20.05	N/A	N/A	NI/A	N /A	N/A	N/A	N/A	Approx 1005 post exercises Approx 2005 upgring to
20-000113	-	1000	10	AAEP-0823	12/ 9/ 2019	>/=0.510/mL	2000	pust expusure	2000	AL/A	N/A	N/A	N /A	N/A	h1/A	N/A	Approx 1955 post expansive Approx 2003 vacination
20-000128	0	1980	10	AAEP-0824	12/9/2019	>/=0.510/mL	2009	N/A	N/A	N/A	N/A	N/A	N /A	N/A	N/A	N/A	vaccinated in 2009
20-000123	0	1981	4	AAEP-6825	12/9/2019	>/=0.5 IU/mL	2011	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2011
20-000109	0	1975	7	AAEP-6825	12/9/2019	>/=0.5 IU/mL	2003	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	3/2003
20-000103	0	1982	5	AAEP-6827	12/9/2019	>/=0.5 IU/mL	2009	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2009
20-000079	1	1946	8	AAEP-6828	12/9/2019	LESS THAN 0.1	1976	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1976
20-000097	0	1972	5	AAEP-6829	12/9/2019	>/=0.5 IU/mL	1999	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1999
20-000098	0	1987	8	AAEP-6830	12/9/2019	>/=0.1 IU/mL	2008	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Vacc. Approx 2008? No titer drawn
20-000085	0	1968	3	AAEP-6831	12/9/2019	>/= 0.5 IU/mL	1989	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1989
20-000104	1	1984	8	AAEP-6832	12/9/2019	>/= 0.5 IU/mL	2012	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2012
20-000093	0	1982	10	AAEP-6837	12/9/2019	>/= 0.5 IU/mL	2006	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2006
20-000099	0	1989	1	AAEP-6838	12/9/2019	>/= 0.5 IU/ml	2008	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Yes 3 shot series 2008
20-000129	1	199.2	Ash Sharina	AAEP-6840	12/9/2019	>/=0.51U/ml	2018	N/A	N/A	N/A	N/A	N/A	N /Δ	N/A	N/A	N/A	one year ago. Five doses
20-000129	1	1953	7	A A EP-0840	12/9/2019	>/=0.510/mL	199.8	N/A	N/A	N/A	N/A	N/A	N /A	N/A	N/A	N/A	Eventhal series 19982
20-000120	0	1080	7	A 6 50-50 47	12/0/2019	>/=0.5 H1/ml	2011	N/A	N/A	N/A	N/A	N/A	N /A	N/A	N/A	N/A	2011
20.000130	0	100.7	4	AACD (007)	12/0/2019	~ = 0.5 ru/mL	41/0	AL/A	n / A	rs/A	n/A	n / A	rs / M	11/A	201.2	11/A	Instrumented 2012
20-000060	0	1987	4 C	AACP COST	12/9/2019	2/20.510/mL	ni/ A	re/A	n/A	rs/A	n/A	n/A	n /A	rs/A	2012	rs/A	Last vaccinated 2012
20-000057	0	1978	5	AAEP-6857	12/9/2019	>/=0.51U/mL	2004	N/A	2009	N/A	N/A	N/A	N/A	N/A	N/A	N/A	initial vaccines in 2004, 1 booster in May 2009
20-000061	0	1962	9	AAEP-6858	12/9/2019	>/=0.5 IU/mL	1985	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1985
20-000062	0	1987	9	AAEP-6859	12/9/2019	>/=0.5 IU/mL	2014	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2014
20-000070	0	1987	3	AAEP-6860	12/9/2019	>/= 0.5 IU/mL	2015	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	vaccine 2015
20-000063	0	1991	9	AAEP-6861	12/9/2019	>/= 0.5 IU/mL	2014	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	vax 2014
20-000064	0	1988	9	AAEP-6862	12/9/2019	>/= 0.5 IU/mL	2012	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	vaccinated in 2012
20-000068	0	1982	1	AAEP-6863	12/9/2019	>/= 0.5 IU/mL	2005	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2005
20-000053	0	1960	4	AAEP-6864	12/9/2019	>/= 0.5 IU/mL	1984	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1984
20-000069	0	1982	3	AAEP-68/65	12/9/2019	>/= 0.5 IU/ml	2006	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	vaccinated in 2006
20-000055	0	1970	4	AAEP-6866	12/9/2019	>/=0.51U/ml	1993	N/A	1993	N/A	1999	N/A	N /A	N/A	N/A	N/A	N/A
20.000059	1	1981	10	AAEP-68-7	12/9/2019	>/=0.181/ml	2010	N/A	N/A	N/A	N/A	N/A	N /A	N/A	N/A	N/A	2010
20-00002*	0	1065	4	AAEP-0807	12/0/2019	>/=0.5 H1/ml	100.0	N/A	1007	N/A	N/A	N/A	N /A	N/A	N/A	N/A	1988 initial 1997 hooster
20-0000/1	0	100.0	-	AALF-0008	12/ 9/ 2019	-7-10.510/ML	1000	rsy A	1031	rs/A	m/A	14/A	en / JA	14/M	rs/34	14/ M	Loos million, 1997 DOOSEEF
zu-000065	0	1956	а	AAEP-6869	12/9/2019	>/=0.5 IU/mL	nad several	IN/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	nad several years ago
zu-000066	0	1975	9	AAEP-6870	12/9/2019	>/=0.5 IU/mL	1997	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1997 (in vet school)
20-000059	0	1967	7	AAEP-6871	12/9/2019	>/=0.5 IU/mL	2009	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2009 (Approximately)
20-000067	0	1984	1	AAEP-6872	12/9/2019	>/=0.1 IU/mL	2008	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2008
20-000056	0	1985	3	AAEP-6873	12/9/2019	>/= 0.5 IU/mL	2008	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2008
20-000054	0	1968	1	AAEP-6874	12/9/2019	>/= 0.5 IU/mL	2000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	vaccinated 2000
20-000072	0	1958	9	AAEP-6875	12/9/2019	>/=0.5 IU/ml	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
20-000016	0	1989	5	44FP-6896	12/10/2019	>/=0.5III/ml	2005	N/A	N/A	N/A	N/A	N/A	N /Δ	N/A	N/A	N/A	Varinated~2005
20,000010	0	106.2	6	AACD C0.00	12/10/2019	-, - 0.3 10/ ML	1020	AL/A	N/A	AL/A	14/A	N/A	al /A	N/A	**//A	N/A	1020
20-000011	0	1903	0	ALP-0898	12/10/2019	-/-u.siu/mL	7923	re/ A	n/A	rs/A	n/A	rs/A	rs/A	rs/A	rs/A	rs/A	1303
20-000012	1	1951	5	AAEP-6899	12/10/2019	>/=0.5 IU/mL	2004	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	15 years
20-000031	1	1958	5	AAEP-6915	12/10/2019	>/=0.5 IU/mL	1982	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1982
20-000030	1	1963	7	AAEP-6918	12/10/2019	>/= 0.5 IU/mL	>10 years	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	>10 years
20-000027	0	1980	5	AAEP-6919	12/10/2019	>/= 0.5 IU/mL	2005	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	initial 3 dose series in 2005
20-000021	1	1974	5	AAEP-6920	12/10/2019	>/= 0.5 IU/mL	2019	post exposure	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	series of 4 vaccines post exposure in July 2019
20-000017	1	1981	9	AAEP-6921	12/10/2019	>/=0.5 IU/ml	2008	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2008
		-			,												

An example of prepared human laboratory data for statistical evaluation

Summary of the process of preparing a set of human laboratory data for statistical evaluation

Source of data

- VetView is used in Kansas State Veterinary Diagnostic Laboratory (KSVDL). It is the laboratory information management system (LIMS) which is a software-based system with features that support a modern laboratory's operations. The features include workflow and data tracking support, flexible architecture, and data exchange interfaces. The excel spreadsheet is a report generated by <u>VetView</u> upon entering the search information of 'client' (the Vet Conference account #) and the output requested (patient name, date of draw, results, etc.). This is one excel that contains all the results. It is named 'RabiesTiterBooth – Excel' and is a summary to list the rabies titer results from all the 'client' rabies titer booth events.
- 2. Each of the completed rabies titer submission forms called "Rabies Serology for Vaccine Titer Response by RFFIT Screen Method for Human Specimen Only" are associated with each result. The forms are electronically completed by each participant per rabies titer event and printed at the event for signature and sample processing. Next, these forms are saved as scanned pdfs in batches (10 total files), named 'Submission Forms Batch x.pdf' (x representing the batch number).
- Excel spreadsheet files which are compiled from the data <u>entered into</u> the electronic submission form., named "'Name of conference' 'M-YYYY'', each conference/year spreadsheet contains entered data from all participants in that conference.

Methods

- Open the RabiesTiterBooth_20210106smm file, the <u>VetView</u> generated report, reformatted to adjust columns for use in the VLOOKUP formulas, see below, step c. This file will be used as source of data to copy to each conference/year excel spreadsheet ("Name of conference" 'M-YYYY").
- 2. Open the conference/year excel spreadsheet file.
 - a. Copy the 'Tube ID (Name or ID#)' column to the A column. The Tube ID will be used to link with the RabiesTiterBooth_20210106smm file.
 - b. Label each column after the last column, which is column O, starting with column P as ID, male, <u>yob</u>, region, conf, date, titer, <u>initial_vx</u>, <u>initial_vx</u>, <u>reason</u>, booster1, booster1_reason, booster2, booster2_reason, booster3, booster3_reason, and Note, respectively.

Difficulties

- The submission forms did not scan in order, so it is hard to find each sample and fill in the gender, year of birth, and vaccination history.
- Some of the data used a formula (the format is 'formula'), so when processing the data, these data is needed to be copied and pasted value to a new sheet first.
- Some conferences do not have an excel spreadsheet containing data from all participants, so data needs to be pulled out from the <u>VetView</u> manually.
- Some of the data is missing. E.g., The participants did not fill out in some part or they did not state the vaccination history clearly.

Discussion

- The template that the evaluators designed needed to be adjusted to make it consistent with the data collected.
- The submission forms were not scanned in order.
 - This could be solved by scanning the submission form in order.

 For long term use, using available technology with the submission forms could help to make it less complicated.

Electronic signature

- Some of the participants could not remember when they were vaccinated
 - In the future, if vaccination can be recorded and the participants can access the information online, this could be another way to solve this problem.

Summary of the best practices for rabies vaccination and booster timing for personnel handling animals

Best Practices for Rabies Vaccination for Animal Handling Personnel

Introduction

Robots is a control theore enough by hum-brane, there exclusionly by shells view. We define the observations of the second structure of the structure of the second structure of the structure of the second structure of the

Below is a fast in distance. The streaming of the time over headphote control, thread is a first of a rank atom of the time time in the property or probetion of the stress of a rank atom of the time of the control of the property or probe atom or the expersion. The stress of the time of the property or probetion or the property, inclusion material from a rank atom. Atom probes or probesion of the property of the time of the time of the property or probetion or the property, inclusion material the stress of the stress of the stress of the time of the stress of the time of the stress which is for the stress or the bina of the stress of the stress

Although there is no effective exercise treatment for tables once efficient aligns have shown up, ables can be pre-central by sociation and appropriate medical care after potential ables response. Fabric sociation in merammentations also shoped on risk of rables exposure regarding on eras and ecceptation. People with a higher ecceptational table watch are people sociation with rables view in laborations, and off they produces sociations, aximal handlers, widdlife officers etc.) working in rabies endemic areas should know the best practices for rabies vaccination to follow to prevent rabies infection.

Belles societas for humans shells area WBD momentadams for characterizations patients, and servins area of by AWD 20 patients are indicipated instructionals (World Hadds Oppitations, 2014). De WBD scottmentations controlly end by the indicipated patient of the service patient of the service state of the absolute patient of the service patient of the service state of the absolute patient of the service state of the service state of the absolute patient of the service state of the service state of the service state of the service state of the service of the service state in addition, a service mark absolution are patient by the service state of the service state of the service state of the service of the service state of CRC2. The service state of CRC2 is not state of the service state of the service state of CRC2 is not being the service state of CRC2 in the service state of CRC

Pre-exposure prophylaxis (PrEP)

As studied to ACP assummabilities, there are served reasons by the presponse rabbe hypothysis abuld behavioral. They for exposure polyhosis instiffed communerately elimitating for and for HDF and downsing the number of dosor of stress used. Note, 11 and 11 and 12 and

Rabies pre-exposure prophylaxis guide - United State, 2008

Risk category	Nature of risk	Typical populations	Pre-exposure recommendations
Continuous	Virus present continuously, often in high concentrations. Specific exposures likely to go unrecognized. Bite, non-bite, aerosol exposure.	Rabies research laboratory workers; rabies biologics production workers.	Primary course. Serologic testing every 6. <u>months</u> , booster vaccination or if antibody titer is below acceptable level. *
requent	Exposure usually episodic, with source recognized, but exposure also might be unrecognized. Bite, non-bite, or zerosol exposure	Rabies diagnostic laboratory workers, cavers, veterinarians and staff, and animal-control and wildlife workers in areas where rabies is enzootic. All persons who frequently handle bats.	Primary course Serologic testing every 2 be years; booster vaccination if antibody titer is below acceptable level. *
nfrequent (greater than opulation at large)	Exposure nearly always episodic with source recognized. Bite or non-bite exposure.	Veterinarians and animal-control staff working with terrestrial animals in areas where rabies is uncommon to rare. Veterinary students. Travelers visiting areas where rabies is enzootic and immediate access to appropriate medical care including biologics is limited.	Primary course. No serologic testing or booster vaccination.
Rare (population at large)	Exposure always episodic with source recognized. Bite or non-bite exposure	U.S. population at large, including persons in areas where rables is enizontic	No vaccination necessary.

* Per the ACIP 2008 the minimum level of antibody is complete neutralization at a 1:5 serum dilution in the RFFIT. A booster dose should be administered if the titer falls below this level.

<u>Primary succitations</u> Two 1.0-mil. injections of human diploid cell vaccine (HDCV) or partillel chick embryo cell vaccine (PCECV) should be administered BM (definid area), one injection per day on days 0 and 7.

area), our injection per ony on stays 0 and 2. Beenter vaccination: Boorder vaccination and menitoring antibody level ther are recommen in peeple with high risk of rabies exposure.

-For pople with continuon risk such as rabies research/diagonals laboratory sockers, and rabies biologic production sockers, printery corner, and socking let steing every from which for booser vaccination (intermestale IREV or PCRCV: 1.0 art. (definiti arte), days 6 orby) it antibody is below acceptable level (0.5 R1) and, by the rapid fluorescent forces inhibits tor) are reconstructed.

 For popel with frequent tisk usch at all persons to the frequently hand bare, printary coarse, and accologic testing every 2 spans for boostar accontains in attrabedy is below accopable level are recommonded.
 For popel with infrequent risk such as person who would with animal eventuations, account of the second second second second second personal second second second second second second second acquires to and the generator second se

testing at 1-3 years OR a booster vaccine by year 3. -For people with rare risk which are population at large, no vaccination is

Post-exposure prophylaxis (PEP)

Administration of mbies post-exposure prophylaxis is a medical urgency, not a medical mergency, but decisions must not be delayed. (Manning et al., 2008)

Introduction

Rabies pre-exposure prophylaxis risk category

Pre-exposure prophylaxis (PrEP)

- Primary vaccination
- Booster vaccination

Post-exposure prophylaxis (PEP)

- For previously vaccinated people
- For previously unvaccinated people

Educational Poster

- Rabies is a disease that can spread between animals and people which occurs worldwide.
- Once clinical signs appear, rabies is deadly and there is no effective treatment.
- However, rabies can be prevented by vaccination and appropriate medical care after potential rabies exposure.

PRE-EXPOSURE PROPHYLAXIS

Risk category Continuous risk Rabies research laboratory workers: rabies serum and vaccine production workers

Frequent risk: Rabies lab workers, cavers, veterinarians and staff, and animal-control and wildlife workers in areas where rabies is always present. All persons who frequently handle bats.
 Immune level testing every 2 years: booster vaccination if the

Infrequent risk: Veterinarians and animal-control staff working with animals in areas when rables is uncommon to rare. Veterinary students. Travelers visiting areas where rables is always present and health care is limited.

Rare risk: Most US population, including persons in areas that have rabies outbreak

Pre-exposure recommendation 3 shots of rabies vaccines injection on days 0, 7, and 21 or 28

- Immune level testing every 6 months; booster vaccination if the immune level is below the recommended minimum • 3 shots of rabies vaccines injection on days 0, 7, and 21 or 28
- immune level is below the recommended minimum
 - · 3 shots of rabies vaccines injection on days 0, 7, and 21 or 28. No immune level testing or booster vaccination

No vaccination neces

3

POST-EXPOSURE PROPHYLAXIS

Vaccination status	Treatment
Not previously vaccinated	Immediate wound cleansing with a solution that can destroy the virus Serum injected at the wound Rabies vaccine administered into muscle, 1 each on days 0, 3, 7, and 14
Previously vaccinated	Immediate wound cleansing with a solution that can destroy the virus Serum should not be injected Rabies vaccine injected into a muscle, 1 each on days 0 and 3.

- Ask your health care provider.
- · Call your local or state health department.
- Contact the Centers for Disease Control and Prevention (CDC): Call 1-800-232-4636 (1-800-CDC-INFO) or
- Visit https://www.rabiesaware.org to check rabies information by state

Rabies overview

Pre-exposure prophylaxis

Post-exposure prophylaxis

Other information

MPH Foundational Competencies

Num	ber and Competency	Description
4	Interpret results of data analysis for public health research, policy, or practice	For the prepared human laboratory data for statistical evaluation, data previously collected was transcribed into an anonymous data table.
16	Apply principles of leadership, governance and management, which include creating a vision, empowering others, fostering collaboration and guiding decision making	In many places where personnel handling animals are not aware about rabies, the summary and poster that I created will help empower personnel to have better understanding and awareness of rabies.
18	Select communication strategies for different audiences and sectors	The step-by-step summary of the process of preparing a set of human laboratory data for statistical evaluation. Creating the poster for educating animal handling staff on rabies control and prevention.

Numl	per and Competency	Description
19	Communicate audience-appropriate public health content, both in writing and through oral presentation	Creating the summary of the process of preparing a set of human laboratory data for statistical evaluation and a summary of the best practices for rabies vaccination and booster timing for personnel handling animals. The poster for educating animal handling staff on rabies control and prevention for communicating with different audiences at worksites.
21	Perform effectively on interprofessional teams	Working with the evaluators from University of Washington School of Public Health.

Acknowledgements

- MPH committee and Preceptor
 - Dr. Susan Moore
- Major advisor
 - Dr. Ellyn Mulcahy
- MPH committee
 - Dr. Justin Kastner
- MPH office
 - Barta Stevenson
- Colleagues from the University of Washington School of Public Health
 - Julianne Meisner
 - Joni Anderson
- My family and friends

References

- Callaham, M. L. (1978). Treatment of common dog bites: Infection risk factors. *Journal of the American College of Emergency Physicians*. https://doi.org/10.1016/S0361-1124(78)80063-X
- Fishbein, D. B., Bernard, K. W., Miller, K. D., Van der Vlugt, T., Gains, C. E., Bell, J. T., Sumner, J. W., Reid, F. L., Parker, R. A., & Horman, J. T. (1986). The early kinetics of the neutralizing antibody response after booster immunizations with human diploid cell rabies vaccine. *American Journal of Tropical Medicine and Hygiene*. https://doi.org/10.4269/ajtmh.1986.35.663
- Fisher, C. R., Streicker, D. G., & Schnell, M. J. (2018). The spread and evolution of rabies virus: Conquering new frontiers. In *Nature Reviews Microbiology*. https://doi.org/10.1038/nrmicro.2018.11
- How is rabies transmitted? / Transmission / CDC. (n.d.). https://www.cdc.gov/rabies/transmission/index.html
- Manning, S. E., Rupprecht, C. E., Fishbein, D., Hanlon, C. A., Lumlertdacha, B., Guerra, M., Meltzer, M. I., Dhankhar, P., Vaidya, S. A., Jenkins, S. R., Sun, B., & Hull, H. F. (2008). Human rabies prevention--United States, 2008: recommendations of the Advisory Committee on Immunization Practices. *MMWR. Recommendations and Reports : Morbidity and Mortality Weekly Report. Recommendations and Reports / Centers for Disease Control.*
- *Rabies Postexposure Prophylaxis (PEP) | Medical Care | Rabies | CDC.* (n.d.). Retrieved June 20, 2021, from https://www.cdc.gov/rabies/medical_care/index.html
- Rabies Vaccine Information Statement / CDC. (n.d.). https://www.cdc.gov/vaccines/hcp/vis/vis-statements/rabies.html

References

- Regional Offices / HHS.gov. (n.d.). https://www.hhs.gov/about/agencies/iea/regional-offices/index.html
- Rupprecht, C. E., Briggs, D., Brown, C. M., Franka, R., Katz, S. L., Kerr, H. D., Lett, S. M., Levis, R., Meltzer, M. I., Schaffner, W., & Cieslak, P. R. (2010). Use of a reduced (4-dose) vaccine schedule for postexposure prophylaxis to prevent human rabies: recommendations of the advisory committee on immunization practices. *MMWR. Recommendations and Reports : Morbidity and Mortality Weekly Report. Recommendations and Reports / Centers for Disease Control.* https://doi.org/10.1016/j.annemergmed.2010.05.020
- What are the signs and symptoms of rabies? / Symptoms / CDC. (n.d.). https://www.cdc.gov/rabies/symptoms/index.html
- World Health Organization. (2014). WHO Expert Committee on Biological Standardization. Sixty-third report. *World Health Organization Technical Report Series*.
- World Health Organization. (2018). WHO Expert Consultation on Rabies: Third Report. In World Health Organization technical report series.

Thank you

