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ABSTRACT
The redshift-space bispectrum (three point statistics) of galaxies depends on the expansion
rate, the growth rate and the geometry of the Universe, and hence can be used to measure
key cosmological parameters. In a homogeneous Universe, the bispectrum is a function of
five variables and unlike its two point statistics counterpart – the power spectrum – which is
a function of only two variables – is difficult to analyse unless the information is somehow
reduced. The most commonly considered reduction schemes rely on computing angular inte-
grals over possible orientations of the bispectrum triangle, thus reducing it to sets of function
of only three variables describing the triangle shape. We use Fisher information formalism to
study the information loss associated with this angular integration. Without any reduction, the
bispectrum alone can deliver constraints on the growth rate parameter f that are better by a fac-
tor of 2.5 compared with the power spectrum, for a sample of luminous red galaxies expected
from near future galaxy surveys at a redshift of z ∼ 0.65 if we consider all the wavenumbers
up to k ≤ 0.2 h Mpc−1. At lower redshifts the improvement could be up to a factor of 3. We
find that most of the information is in the azimuthal averages of the first three even multipoles.
This suggests that the bispectrum of every configuration can be reduced to just three numbers
(instead of a 2D function) without significant loss of cosmologically relevant information.
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1 IN T RO D U C T I O N

The statistical properties of matter distribution in the Universe de-
pend on its expansion and growth history and can be used to mea-
sure key cosmological parameters describing the composition of the
Universe, the nature of dark energy and gravity.

The power spectrum (or its Fourier conjugate the correlation
function) is currently the most widely used statistical measurement
for the purposes of cosmological analysis of galaxy surveys. The
power spectrum of matter is defined as a two-point statistics of a
Fourier transformed overdensity field δ(r),

P (k) ≡
〈|δ(k)|2〉

Vs
, (1)

where

δ(k) =
∫

dr δ(r)e−ikr , (2)

brackets denote ensemble average and Vs ≡
∫

dr is the observed

volume.
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For a statistically isotropic field, the power spectrum would de-
pend only on the magnitude of the wavevector, k = |k|. The ob-
served galaxy field is, however, anisotropic with respect to the line-
of-sight direction to the observer, mainly due to the redshift-space
distortions (RSD; Kaiser 1987) and the Alcock-Paczinsky effects
(AP; Alcock & Paczynski 1979). Because of this anisotropy, in ad-
dition, to the magnitude of the wavevector k, the power spectrum
also depends on its angle with respect to the line-of-sight θ , making
it a function of two variables.

To make the cosmological analysis numerically less demanding
the power spectrum is usually reduced to the coefficients of the
Legendre-Fourier expansion with respect to μ = cos (θ ) (Taylor &
Hamilton 1996)

P�(k) ≡ 2� + 1

2

1∫
−1

dμ P (k, μ)L�(μ), (3)

where L� are Legendre polynomials of order �.
Recent studies showed that the first three even Legendre coeffi-

cients contain almost all of the information on key cosmological
parameters. This suggests that for the purposes of cosmolog-
ical analysis, the power spectrum at each wavevector can be
replaced just by three numbers (instead of a function of μ) without a
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significant loss of information (Kazin et al. 2010; Taruya, Saito &
Nishimichi 2011; Beutler et al. 2014).

The bispectrum (or its Fourier conjugate the three-point correla-
tion function), defined as,

B(k1, k2, k3) ≡ 〈δ(k1)δ(k2)δ(k3)〉
Vs

(4)

is more difficult to measure and to model, and is not currently
used as frequently as the power spectrum to derive cosmological
constraints (Scoccimarro, Couchman & Frieman 1999; Sefusatti &
Komatsu 2007; Greig, Komatsu & Wyithe 2013; Song, Taruya &
Oka 2015). The bispectrum measurements have mostly been con-
sidered as a means of estimating the primordial non-Gaussianity
in the matter field (Sefusatti, Crocce & Desjacques 2012; Tel-
larini et al. 2016), but a number of recent studies used them
for Baryon Acoustic Oscillations and RSD constraints (Gil-Marı́n
et al. 2015, 2016; Slepian & Eisenstein 2016; Slepian et al. 2016).

If the statistical properties of the Universe are homogeneous (a
key assumption in the standard model of cosmology), the bispec-
trum is non-zero only for k1 + k2 + k3 = 0 (k vectors must make
a triangle) reducing the number of variables from nine to six. From
now on, we will write B(k1, k2) assuming the third vector to be
equal to k3 = −k1 − k2. The partial isotropy with respect to ro-
tations around the line-of-sight axis removes one more variable,
making the bispectrum a five-dimensional function. One possible
choice of these five variables is a triplet k1, k2, k3 (ki ≡ |ki |), describ-
ing the shape of the bispectrum triangle and two angles describing
its orientation, e.g. θ1 – the angle of k1 vector with respect to the
line-of-sight direction, and ξ – azimuthal angle of k2 around k1 (see
Section 2 for a formal definition).

An obvious extension of the Legendre-Fourier decomposition
of the power spectrum is a spherical harmonics decomposition of
the bispectrum for angles θ1 and ξ (Scoccimarro 2015). Unlike
the power spectrum, this double angular multipole expansion of the
bispectrum does not truncate at finite order (see Section 3). The
main objective of this work is to identify the expansion coefficients
that contain the most cosmologically relevant information (see
Section 4).

Galaxies provide a biased, discrete sampling of the underlying
matter field and along with the cosmic microwave background
experiments currently provide one of the best estimates of the
clustering of matter in the Universe (Schlegel et al. 2009; Ade
et al. 2014). Our Fisher information based computations suggest
the five-dimensional bispectrum with no reduction can deliver up
to factor of 1.2 better constraints on the growth rate parameter f
compared with the power spectrum, from a sample of emission-
line galaxies (ELG) expected from future surveys such as the Dark
Energy Spectroscopic Instrument survey (DESI; Levi et al. 2013)
and Euclid satellite surveys (Laureijs et al. 2011) at a redshift of
z ∼ 1 (see Section 5). For a sample of Luminous Red Galax-
ies (LRG) at lower redshifts the improvement could be as large
as a factor of 3.

We show that most of this information is contained in the first
three even multipoles in angle θ1 averaged over ξ . Constraints on
key cosmological parameters from these multipoles are weaker
compared with the constraints derived from the full bispectrum
by not more than 10 per cent at all redshifts and for all tracer
types we studied. This suggests that a bispectrum of each tri-
angular configuration can be replaced by just three numbers (as
opposed to a two variable function) for all practical purposes
(see Section 6).

2 R EVI EW O F POW ER SPECTRUM AND
BI SPECTRUM

2.1 Leading order model

We will start with a standard assumption that galaxies form a
Poisson sample of a biased matter density field (Peebles 1980),

n(x) = n̄

[
1 + b1δ(x) + b2

2
δ(x)2

]
, (5)

where b1 and b2 are the first-and second-order bias parameters and
we ignore higher order bias terms as well as non-local contributions
of δ(x) to the number density of galaxies.

To the leading order in δ the power spectrum is given by
(Kaiser 1987),

P (k) = (b1 + f μ2)2Pm(k), (6)

where f is a growth rate and Pm is a one-dimensional matter power
spectrum function that can be numerically computed for any cos-
mological model.1 Also in the leading order of perturbation theory
and assuming local bias the bispectrum of galaxies is given by
(Scoccimarro 2000),

B(k1, k2, k3) = 2Z1(μ1)Z1(μ2)Z2P (k1)P (k2)

+ cyclic terms, (7)

where

Z1(μ) = (
b1 + f μ2

)
, (8)

Z2 =
{

b2

2
+ b1F2(k1, k2) + f μ2

3G2(k1, k2)

− f μ3k3

2

[
μ1

k1
(b1 + f μ2

2) + μ2

k2
(b1 + f μ2

1)

]}
, (9)

F2(k1, k2) = 5

7
+ k1.k2

2k1k2

(
k1

k2
+ k2

k1

)
+ 2

7

(
k1.k2

k1k2

)2

, (10)

G2(k1, k2) = 3

7
+ k1.k2

2k1k2

(
k1

k2
+ k2

k1

)
+ 4

7

(
k1.k2

k1k2

)2

, (11)

and cyclic terms can be derived by replacing indexes 1 and 2 in the
first term by 2 and 3 and 1 and 3, respectively.

The AP effect induces distortions in the measured power spec-
trum and the bispectrum that can be modelled by substituting

k → k

α⊥

√
1 + μ2(A−2 − 1) (12)

μ → μ√
A2 + μ2(1 − A2)

(13)

and renormalizing the power spectrum by a factor of 1/α2
⊥α‖ and

the bispectrum by the square of the same factor. A = α‖/α⊥ in the
above equations and the α parameters can be linked to properties
of dark energy (Ballinger, Peacock & Heavens 1996; Simpson &
Peacock 2010; Samushia et al. 2011).

A standard practice when analysing galaxy power spectrum is
to assume that the shape of the matter power spectrum is well
determined from external cosmological data sets (e.g. the cosmic

1 The bias and the growth rate cannot be decoupled from the amplitude
parameter σ 8 when using only the galaxy clustering data on linear scales
at a single redshift. For brevity, we will continue using b and f to denote
parameter combinations bσ 8 and fσ 8.
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microwave background experiments) and to treat it as a function
of four cosmological parameters b1, f, α⊥, α‖ The bispectrum, in
addition, will depend on the second-order bias parameter b2. For
simplicity, we ignore the commonly included σ FOG (Jackson 1972)
parameter here. Its effect is to reduce information content on small
scales. Since we are interested only on the relative constraining
power of the power spectrum, the bispectrum and their multipoles,
this omission does not effect our main results.2 These parameters
then can be estimated from the measured power spectrum and the
bispectrum. We will adhere to this standard assumption and will
ignore other cosmological parameters that may be relevant (e.g. fNL

describing primordial non-Gaussianity or Neff number of neutrino
species).

2.2 Variance of the measurements

If a power spectrum is measured from an observed volume Vs using
optimal estimators (Feldman, Kaiser & Peacock 1993) the variance
of the measurement is given by

〈[	P (k)]2〉 =
(

P (k) + 1

n̄

)2

, (14)

where 	P is the difference between the true power spectrum and
the one estimated from finite (and noisy) data and n is the av-
erage number density of galaxies. In an analogous way, for the
bispectrum measured with an optimal estimator the variance is
(Scoccimarro 2000; Sefusatti et al. 2006)

〈[	B(k1, k2)]2〉 = Vs

(
P (k1) + 1

n

) (
P (k2) + 1

n

)

×
(

P (k3) + 1

n

)
. (15)

3 BISPECTRU M MULTIPOLES

3.1 Parametrization of the bispectrum

Equation (6) shows that the power spectrum can be expressed as a
function of only two variables – k and μ. This results from the az-
imuthal symmetry of the field and is true even when the linear theory
expression in equation (6) is replaced by its non-linear equivalent.

Similarly, even though the bispectrum in equation (7) is written
in terms of three vectors k1, k2 and k3, as discussed in Section 1,
because of various symmetries, only five variables are in fact inde-
pendent. Following Scoccimarro (2015), we choose these variables
to be the lengths of three wavevectors k1, k2, k3 – describing the
shape of the bispectrum triangle and the two angles describing its
orientation – the angle θ1 of wavevector k1 with respect to the line-
of-sight direction, and the azimuthal angle ξ of vector k2 around
k1. The first four variables are trivially obtained from the original
wavevectors, while the ξ can be computed from

μ2 = cos(θ1) cos(φ12) − sin(θ1) sin(φ12) cos(ξ ), (16)

where φ12 is the angle between k1 and k2,

φ12 = cos−1

(
k1k2

k1k2

)
. (17)

2 When fitting real data more ‘nuisance’ parameters are required to effec-
tively describe the shortcomings of theoretical modelling. We ignore the
effect of these ‘nuisance’ parameters here as well since they depend on the
specifics of modelling and do not effect our main results anyway.

3.2 Series expansion of bispectrum

The power spectrum can be decomposed into Legendre-Fourier
series in angle μ

P (k) =
∑

�

P�(k)L�(μ), (18)

where L� are Legendre polynomials of order � and the coef-
ficients of decomposition can be found using equation (3). In
linear theory, only the first three even coefficients are non-zero
and they contain most of the information on key cosmological
parameters.

Since 0 < θ1 < π and 0 ≤ ξ < 2π, the bispectrum can be de-
composed in spherical harmonics of θ1 and ξ

B(k1, k2, k3, θ1, ξ ) =
∑

�

�∑
m=−�

B�m(k1, k2, k3)Ym
� (θ1, ξ ). (19)

Subsequently,

B�m(k1, k2, k3) =
1∫

−1

d cos(θ )

2π∫
0

dξB(k1, k2, k3, θ1, ξ ) Ym∗
� (θ1, ξ ).

(20)

Unlike the power spectrum, the bispectrum multipole expan-
sion does not terminate at final �. Neither does it have zero odd
multipoles. Reducing bispectrum to a finite number of its an-
gular multipoles significantly simplifies the cosmological analy-
sis. This reduction, however, will inevitably result in a loss of
information.

From the practical point of view, computing multipoles with
m = 0 is especially simple (Scoccimarro 2015). It is therefore
interesting by how much the information degrades further if we
only use m = 0 multipoles in the analysis. We will show that the
loss of information associated with ignoring m larger than zero is
negligible.

We will also show that almost all of the information on key
cosmological parameters (compared to using the full bispectrum)
is contained within, the first three even multipoles (� = 0, 2, 4 with
m = 0) of the bispectrum.

3.3 Covariance of bispectrum multipoles

The bispectrum multipoles from real data can be computed by sum-
ming over all triangles with fixed values of ki and angular weights
of equation (20). This corresponds to

B�m(k′
1, k

′
2, k

′
3)

≡ 1

2π

∫
dk1dk2

δ(k1)δ(k2)δ(k3)

Vs
Ym∗

� (θ1, ξ )

× δD(k1 − k′
1)

k1

δD(k2 − k′
2)

k2

δD(k3 − k′
3)

k3

= 1

2πVs

∫
dθ1dξdφ1δ(k′

1)δ(k′
2)δ(k′

3)Ym∗
� (θ1, ξ ), (21)

where we used the transformation of coordinates

dk1dk2 = k2
1dk1d cos(θ1)dφ1k

2
2dk2d cos(θ2)dφ2

= 2πk1k2k3dk1dk2dk3d cos θ1dφ1dξ, (22)

and the factor of 2π is to ensure that the expectation value of the
estimator matches the definition in equation (19).
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The variance of the bispectrum multipoles is then

〈	B�m(k1, k2, k3)	B�′m′ (k1, k2, k3)〉
= Vs

2π

∫
d cos(θ ) dξYm∗

� (θ, ξ )Ym′∗
�′ (θ, ξ )

×
[
P (k1) + 1

n

] [
P (k2) + 1

n

] [
P (k3) + 1

n

]
(23)

The derivation of this result is analogous to the power spectrum
multipole covariance described in Yamamoto et al. (2006).

Since we work in the limit of infinitely small k-bins only the
multipoles with all ki identical are correlated, but, in general,
there is a correlation between multipoles with different values of �

and m.

4 C O N S T R A I N I N G C O S M O L O G I C A L
PA R A M E T E R S

For brevity, we will use the following notation:

VarPk ≡ 〈[	P (k)]2〉 (24)

VarBk1 k2 ≡ 〈[	B(k1 k2)]2〉
Vs

(25)

VarB�m�′m′
k1k2k3

≡ 2π
Vs

〈	B�m(k1, k2, k3)	B�′m′ (k1, k2, k3)〉. (26)

4.1 Information content of the full bispectrum

We use a Fisher information formalism (Tegmark 1997; Albrecht
et al. 2006) to derive expected constraints on cosmological param-
eters θ ≡ (b1, b2, f , α⊥, α‖).

For the power spectrum, we follow the well-established procedure
of computing:

Fij = Vs

(2π)3

∫
dk

∂P (k)

∂θi

(VarPk)−1 ∂P (k)

∂θi

. (27)

Since the Fourier transform is computed over a finite volume the
δ(k) measurements are independent only at discrete points in k
space. The density of these points is Vs/(2π)3. The factor in front
of equation (27) renormalizes the continuous integral over all k,

which would otherwise overestimate the available information.
We numerically compute the integral

Fij = Vs

(2π)2

∫
d cos(θ ) k2 ∂P (k)

∂θi

(VarPk)−1 ∂P (k)

∂θi

, (28)

where the power spectrum derivatives are obtained by numeri-
cally differentiating equation (6) and the power spectrum vari-
ance is given by equation (14). The integration limits are
0 < k < 0.2 h Mpc−1 and 0 < cos (θ ) < 1. The first restriction
reflects the fact that the statistical properties of the galaxy field are
difficult to model at high wavenumbers because of the effects of
non-linear evolution and baryonic physics and are usually omitted
from the analysis. The second restriction reflects the fact that a
Fourier transform of a real field obeys δ(k) = δ∗(−k) symmetry,
which implies that the power spectrum estimates (which are pro-
portional to |δ(k)|2) are not independent above and below the z-axis.
Equation (28) has one less factor of 2π compared with equation (27)
because we integrate over azimuthal angle 0 < φ < 2π on which
neither the power spectrum nor its variance depend.

For the full bispectrum, we similarly numerically integrate over
all possible triangles (both the shape and the configuration) and
propagate the information to the cosmological parameters. The

Fisher matrix of cosmological parameters in this case is given by

Fij = V 2
s

(2π)6

∫
dk1dk2

∂B(k1k2)

∂θi

(
VsVarBk1,k2

)−1 ∂B(k1, k2)

∂θj

,

(29)

where the factor of V 2
s /(2π)6 accounts for the density of points on

a k-grid due to finite volume of the survey, as before. The integral
can be reduced to five dimensions

Fij = Vs

(2π)5

∫
dk1dk2dk3d cos(θ1)dξ

× ∂B(k1k2)

∂θi

(
VarBk1,k2

)−1 ∂B(k1, k2)

∂θj

, (30)

as the integration over φ1 azimuthal angle is simply 2π.
We use equation (7) to compute the bispectrum (and its deriva-

tives) and equation (15) to compute the covariance matrix of the
bispectrum. A permutation of vectors ki corresponds to the same
bispectrum measurement. In order to account for this symmetry
and not double count the data, we impose a condition k1 > k2 > k3

on the integration volume in addition to ki < 0.2 h Mpc−1 restric-
tion on each wavevector. We also impose the triangularity condition
k1 − k2 < k3.

4.2 Information content of the multipoles

The Fisher matrix of cosmological parameters from bispectrum
multipoles is given a three-dimensional integral over a sum

Fij = V 2
s

(2π)6

∫
dk1dk2dk3 k1k2k3

×
∑

��′mm′

∂B�m(k1, k2, k3)

∂θi

(
Vs

2π
VarBk1k2k3

��′mm′

)−1

× ∂B�′m′ (k1, k2, k3)

∂θj

,

(31)

where the integration is over all possible triangle shapes. Similarly
to the bispectrum, we impose a restriction that k1 > k2 > k3 and that
the three sides satisfy the triangularity condition k1 − k2 < k3. We
also restrict ourselves to triangles with k1 < 0.2 h Mpc−1.

We use equation (20) to compute numerical derivatives of the
multipoles and equation (23) to compute the variance of the mul-
tipoles (and covariance between them). We evaluate the sum for
increasing values of �max. To check the effects of higher order terms
in m, we either take all values of −� ≤ m ≤ � or only the m = 0.
We also try only m = 0 modes for increasing even values of �max.

5 R ESULTS

Results in this section are derived assuming a spatially flat Lambda
cold dark matter cosmological model with �m = 0.28 and �
 =
0.72. We consider LRG and ELG samples expected from the DESI.
For the number density profile and the bias as a function of redshift,
we use the same numbers as Tellarini et al. (2016).

Fig. 1 shows the expected cosmological constraints on θ from the
bispectrum multipoles for increasing values of �max. These results
are for the LRG sample in the redshift range 0.6 < z < 0.7, We
compute this for all � and m values, all � values with only m = 0,
and for only even � modes with m = 0. We show expected constraints
from the power spectrum and the bispectrum on the same plots for
comparison.
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Figure 1. Cosmological constraints expected from the bispectrum multipoles as a function of maximum � used in the analysis for a sample of DESI LRGs in
0.6 < z < 0.7. The constraints from the power spectrum and the full bispectrum for kmax = 0.2 h Mpc−1 are also displayed for comparison. The results are
normalized to the expected power spectrum constraints so that the ordinate axis is an improvement factor over the power spectrum. The multipole constraints
can never be stronger than the full bispectrum constraints. Our top-right hand panel is consistent with this within the numerical error associated with Monte
Carlo integration.

Fig. 1 shows that the full (unreduced) bispectrum is capable of
providing better constraints compared with the power spectrum if
we use all information from scales up to kmax = 0.2 h Mpc−1. This
is especially true for the growth rate parameter f, where the im-
provement is almost a factor of 2 in the statistical errors. For the
α parameters, the constraints derived from the full bispectrum are
still a factor of about 1.5 better compared with the power spectrum,
but become slightly worse for the multipoles. In all cases, the infor-
mation in the multipoles seems to be mostly in the first three even
� modes with m = 0.

The behaviour seems to be qualitatively similar for other redshifts
and tracers. Fig. 2 shows similar results over a wider redshift range.
This means that the first even multipoles averaged over azimuthal
angle are as good as the full bispectrum for the purposes of deriving
cosmological constraints.

The bispectrum provides significantly larger improvement over
the power spectrum at low redshifts. This is due to a high number
density of galaxies and the higher amplitude of fluctuations.

6 C O N C L U S I O N S

We developed a Fisher information matrix based method of com-
puting the expected constraints on cosmological parameters from
the bispectrum and the angular multipoles of the bispectrum of a

given galaxy sample. Since the full bispectrum is difficult to anal-
yse, some kind of data reduction will inevitable have to be applied
to the measurements. We computed the information loss associated
with the commonly proposed reduction schemes that rely on angular
integration of the bispectrum.

We find that the full bispectrum alone can deliver cosmological
constraints that are a factor of few better than the ones derivable
from the power spectrum at low z. This improvement steeply scales
with kmax considered in the analysis. For kmax = 0.1 h Mpc−1 the
information content of the Bispectrum is already comparable with
the power spectrum, while for kmax = 0.2 h Mpc−1 it exceedes the
power spectrum by a factor of 2 to 3. The improvement is especially
large for the growth rate parameter f, where the improvement on the
measurement error is almost a factor of 3. The improvement is the
largest at lower redshifts, where the number density of galaxies in
the sample is the highest. Most of the information is in the first three
even multipoles with m = 0, which means that just three numbers
per bispectrum shape are enough for the purposes of obtaining
cosmological constraints.

Our results at first may seem to contradict previously published
results that claim a more modest improvement when adding the
bispectrum to the power spectrum (Sefusatti & Komatsu 2007;
Szapudi 2009; Carron & Neyrinck 2012; Carron & Szapudi 2014).
This is due to a number of reasons. Many previous works have
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Figure 2. Improvement on derived errors of cosmological parameters compared with the power spectrum for different redshifts and tracer types if we consider
all the modes up to 0.2 h Mpc−1. Red symbols (on top) represent the constraints derivable from the full bispectrum, while the blue symbols (on the bottom)
represent constraints from first three even multipoles with m = 0. For some redshifts, the multipole constraints are slightly better than the full bispectrum
constraints, but they are consistent within the numerical errors associated with the Monte Carlo integration.

looked at the monopole of the bispectrum that will obviously con-
tain much less information on f. The bispectrum information in-
creases more steeply compared with the power spectrum with the
number density of galaxies, therefore this large improvement will
only result in future dense surveys and will not necessarily show in
current and past surveys that have a lower galaxy number density.
Finally, many past claims refer to ‘amplitude like’ parameters (e.g.
primordial amplitude of fluctuations) for isotropic fields. The f pa-
rameter is not really ‘amplitude like’ since it describes an angular
dependent variations in the statistics, and the five dimensional shape
of the bispectrum turns out to be more sensitive to this parameter
than it would be to a mere change in amplitude.

Our results are consistent with the ones reported in Song et al.
(2015) if we consider only strictly linear scales of ki < 0.1 Mpc h−1.
This is expected since the bispectrum signal-to-noise ratio scales
better with increasing kmax compared with the power spectrum.
Their model includes the Finger of God effects and therefore the
forecasts are more conservative and realistic. Since our main goal
was not to produce accurate forecasts, but, rather to study the effects
of the multipole reduction, we decided to sacrifice the realism of
constraints for clarity. We explicitly checked that our main conclu-
sions are robust with respect to the choice of kmax and do not change
when we include σ FOG.

In this work, we do not consider a cross-correlation between the
power spectrum and the bispectrum measurements and it is difficult
to say how big the overall improvement in the errors is when the
two are properly combined (see Song et al. 2015, for correlated full
bispectrum DESI forecasts). We know, however, that the improve-
ment will be at least as big as the improvement from the bispectrum
(or the bispectrum multipoles) alone. Recent studies indicated that
the cosmological constraints from power spectrum and bispectrum
are not very strongly correlated (Gil-Marı́n et al. 2016; Slepian &
Eisenstein 2016; Slepian et al. 2016), so the improvement may
actually be much larger.

The main conclusions from our work are as follows:

(i) The bispectrum measurements from future surveys have a
potential of improving the growth rate measurements by at least a
factor of 2.5 at low redshifts (this is a very conservative estimate
assuming that the bispectrum information is perfectly correlated
with the power spectrum).

(ii) When expanding the bispectrum in angular multipoles,
the three numbers corresponding to the first three even terms
with m = 0 in the multipole expansion contain most of
the information relevant for the derivation of cosmological
constraints.
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APPENDI X A

We find our main conclusion – that the first three even � modes
of the bispectrum contain most of the cosmological information –
to be robust with respect to various assumptions. To show that this
assumption is robust with respect to the choice of kmax, we repeat the
computations of Section 5 for kmax = 0.1 h Mpc−1. These results are
presented on Fig. A1 that is virtually indistinguishable from Fig. 1.
The only thing that changes is the relative constraining power of the
bispectrum compared with the power spectrum that scales steeply
with the value of kmax. Even for kmax = 0.1 h Mpc−1, however, the
bispectrum constraints on f are as good as the ones resulting from
the power spectrum.
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Figure A1. Cosmological constraints expected from the bispectrum multipoles as a function of maximum � used in the analysis for a sample of DESI LRGs
in 0.6 < z < 0.7 considering strictly linear scales of k < 0.1 Mpc h−1. The constraints from the power spectrum and the full bispectrum are also displayed for
comparison.
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