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CHAPTER I

INTRODUCTION

In the past two decades, powerful and extremely general techniques

have been developed for the analysis and control of mechanical and elec-

trical systems. Today the field covers the mathematical areas of the

theory of equations, differential equations, operational calculus, Laplace

transform theory and functions of a complex variable. Two characteristic

(2)
features of such systems are as follows v y

: first is the feed back loop

by means of which (a) the actual response of the system is compared

with the input (desired value) and (b) their difference is fed back

into the system to reduce the difference to the desired value. The

second important feature is that input and load (disturbance) affect

the behavior of the system but are themselves unaffected by it. There

are certain obvious analogies between such systems and production and

inventory control systems. Even though at present one may not be ready

to use the full range of techniques available to the servomechanism

engineer to analyze and control management systems, one can subject to

test the depth of the obvious analogies by analyzing specific production

and inventory control systems using control theory. The purpose of this

report is to explore such analogies.

In Chapter II a brief review of the techniques of control theory is

presented, and in Chapter III application of these techniques on specific

inventory and production control systems is discussed. Emphasis has been

placed on formulating the problem in the language of control theory and
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determining criteria for evaluating the merit of a control system.



CHAPTER II

SELECTED THEORIES, PROCEDURES AND TECHNIQUES USEFUL

IN THE ANALYSIS OF CONTROL SYSTEMS

To adequately describe control theory with all its facets and

ramifications would be the work of a multivolume technical series.

Therefore, control theory will be reviewed merely in terms of procedures

and techniques useful in the synthesis and analysis of control systems.

I. Terminology

A. Open Loop and Closed Loop Systems

For the purpose of clarification, it will be convenient to

classify control systems into two broad types. The distinction

between the two systems is best shown by giving an example of each.

Suppose that a heat treating furnace is to be carried through a

prescribed temperature cycle. One method of accomplishing this task

is to construct the system so that the rate of gas flow, and hence

the furnace temperature, is controlled by adjusting the gas valve by

means of a rotating cam. By proper design and calibration, the

system will cause the furnace temperature to follow the desired time

variation. A little reflection will, however, reveal some important

limitations on the performance of such a system. Although the cam

controls the position of the valve, the furnace temperature depends

on several other things also. For instance, if the gas supply

pressure should change from that assumed in design, a different gas
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flow rate would exist for a given valve position, resulting in a

different temperature. In fact, any change from the design or cali-

bration will cause a deviation from the desired temperature-time

curve. A system which cannot take into account changes from cali-

bration conditions, is called an open loop control system.

Consider the other type of control system. A good example of a

closed loop system (or feedback control system) is the temperature

control in a home heating system. In such a system there is a

bimetallic element which measures temperature by means of the

differential thermal expansion of two dissimilar metals. The

element is designed to make and break the contact when the room

temperature is low and high respectively. As the room heats up and

when the desired temperature is reached, the bimetal opens the

circuit and the burner will shut off. Should the room cool down,

the contacts will close, starting the burner and returning the

temperature to a desired level. This system will maintain the

temperature near desired value irrespective of changes in fuel

heating value, powerline voltage, environmental temperature or

other conditions. Thus the closed loop control system actually

measures the quantity to be controlled, compares the actual value

to the desired value, and if they are not the same, institutes

corrective action.

B. The Block Diagram

It is possible to describe the action of all types of feedback



control systems in terras of a functional block diagram ^\ The

blocks in the diagram should be interpreted as representing functions

of components, and not isolated pieces of equipment. The lines and

arrows on the diagram indicate the direction of the flov; of infor-

mation, energy or material.

Energy and/or
Material

Final Control
Element

Disturbances

Process

Controller f^

T

Controlled
Variable

->

Measuring
Means

Desired Value of
Controlled Variable

Figure 1. Functional block diagram of closed loop control systems.

The term process in this diagram is to be thought of in its most

general sense. Thus some typical process might be heating a room,

positioning the tool slide on a machine tool, or producing a

certain number of an item. In general, there will be one or more

conditions in a process which we wish to control in some way. One
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might wish to hold them constant at some predetermined value or vary

them according to a given program or schedule. If it is desired to

hold them constant, then the main reason for having a control at all

is that there are disturbances acting on the system tending to change

the process from its desired conditions.

In order to control the process, it is necessary to measure its

actual condition as directly as possible. The controlled variable

will be measured by the measuring means and the information will be

sent back to the controller . Here the actual condition of the process

is compared with the desired condition; and if they differ, the

controller acts to correct the error; that is it signals the final

control element to adjust the flow of material" and/or energy to

the process in such a direction as to decrease the error.

In discussing the nature of control system specifications, and

also in our further analysis, standardized nomenclature will be used

wherever it is desirable. This nomenclature is illustrated in

Figure 2 which shows a generalized operational block diagram for a

(3)
feedback control system . An actual system may be more or less

complicated than the diagram of Figure 2, but can in general be

represented in terms of the symbols given there.
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II. Representation of the System Under Study by a Time Differential
Equation

After having captured the system in a block diagram, the analysis

can be carried out by one of two ways: (1 ) the direct approach and

(2) the indirect approach.

A. The Direct Approach

The direct approach which is common to almost all phases of

deterministic engineering analysis is to represent the system under

study by a time differential equation. (Many of the systems that are

dealt with by mechanical and electrical engineers are described at

least approximately by systems of linear differential equations with

constant coefficients.) System stability (transient behavior) is

determined from the homogeneous solution of the equation, and the

steady state performance for any given input function (forcing

function) from the particular solution obtained from substitution of

the forcing input function in the basic equation. The usual solution

method for linear homogeneous equations is to assume a solution of the

form © (t) = e where ©q is the system output at time t, and "r" is a

real or complex number to be evaluated.

This form reduces the homogeneous differential to an algebraic

equation, the solution of which is a linear combination of

t eo (W,2...n) where "n" is the order of the system equation,

ii is the i root of the resulting algebraic equation, and "b" is an

integer between zero and one less than the multiplicity of the root.

The constants are then evaluated from initial or other boundary
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conditions. Solutions of the particular equation depend on the form

of the forcing input function, hence no general treatment is

available '

.

B. The Indirect Methods

The differential equations representing many practical systems

prove to be extremely difficult to solve by direct means. In such

cases, one of two general approaches may be followed, either singly

or in combination. The first of these is essentially analytic and

involves the use of Laplace transforms. The second, an empirical

approach, is to construct an experimental model and observe its

performance under given test conditions. In further analysis the

method used will employ Laplace transforms.

Laplace transforms are employed to provide system representation

in terms of the complex frequency S = tn + jw where j = \J -1

.

After transformation to the S-plane, which for linear systems

results in algebraic equations, the equation is rearranged to

isolate either the error or the output in terms of the system

parameters and forcing functions. The denominator of the error

or output expression is factored and a partial fraction expansion

effected which results in a linear series of functions of S.

Ideally the inverse transformations of these are well known so that

transformation back to the time domain is readily accomplished.

The resulting expression represents the system error or output

as a function of time, i. e. the solution to the original system
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differential equations. The defining equations and symbols of

transform mathematics as applied to control theory are:

J'(t) = any function of ' time.

S = a complex variable having the formr"~+ jw.

F(S) = the resulting equation in the transform variable, S,

when >i"(t) had been operated on by a Laplace integral.

= an operational symbol indicating that the quantity which
it prefixes is to be transformed by the Laplace integral.

Thus F(S) =^U"(t)| where the symbol = means "equal to by

definition." The Laplace integral, which has been represented by

is defined as: 7 = / e dt

Therefore

>(t)] =£
>

<T
>%

dt[j-(t)] =JjP(t).e-
St

dt.

Thus the Laplace transform of any equation or term in an equation

-St
may by obtained by multiplying by e and then integrating the

product from t = to t =co . The following table ' presents the

Laplace transforms to a few common functions.

{.

&
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{ (t) / lf(t)]

A (a constant) A

S

-it
e

A e"^ A

Ae"
At + e'

Bt Va+S ) + _

t

L+s) +

SinBt
B
/(S2+B2 )

CosBt
S/(S

2
+B

2
)

Vs2

t
2 2

/S
3

t
n

n i/s
n+1

Not only can we go from the "t" domain to the complex "S" domain

by use of Laplace transform; we can also perform inverse transformation

which may be denoted symbolically as: J^ F(S) = ,f"(t)

A
Thus 1.) If F(S) - A/S then J^"

1 S =

2. ) If F(S) = V^+s) then X
~ 1

"£+S) - e""^

3.) If F(S) = B/(S2+ B2 ) then X" 1 S^Tb2 = SinBt
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In addition, the following theorems about Laplace transforms will also

be useful in the later analysis. These theorems without attempting

proofs are:

Real differentiation theorem.

'- SF(S) - f(0
+

)

ft*"?
where f (0+) is the initial value of f(t) evaluated at t ->

from positive values.

Real integration theorem.

/[/f (t)dt] =i/[m)j + i[ff(t)dt] t=o
+

Final value theorem.

Lim f(t) = Lim s7 k(t)J if the limit exists,

t -»«*> S -»
U

Initial value theorem.

Lim f(t) = Lim s/[f(t)|
t -^ S -}co L J

These theorems will be of great use when studying the steady

state and transient behavior of the system in Chapter III.

III. Performance Measures

A. Stability Consideration

Once the system equation is solved either by the direct method

(classical method of solving differential equation) or by indirect

method (Laplace transform method), the results can be compared with
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given performance requirements.

Chief among the performance parameters is that of stability or

the convergence of the transient response. A system in which

transients grow or fail to die out is immediately eliminated from

further practical consideration since such a system cannot compensate

for any error induced in the system.. A procedure by which system

stability can be determined directly from the system equation is the

application of Routh-Hurwitz stability criterion. This criterion is

based on the relationships between the form of the coefficients of

the system output equation and location of singularities (poles in

the case of real systems) of the equation.

B. Steady State Error

Next to stability the performance measure of interest is the

steady state error. This is the difference between the desired and

actual values when the system has attained equilibrium (steady state).

The system response to step input, cyclic input such as sinusoidal

excitation are factors to be considered.

With this brief review of control theory some of the applications

to industrial processes will be demonstrated.



CHAPTER III

APPLICATIONS

I. Simple Inventory and Production Control Problems

In this chapter the control of the rate of production of a single item

shall be considered. The item is supposed to be manufactured to standard

specifications, placed in stock, and shipped out on order of customers.

The item is manufactured continuously, and the control consists in

issuing instructions that vary continually with the quantity to be manu-

factured per day (or other unit of time)»

The aim of the control system is to minimize the cost of manufacture

over a period of time. This cost, or the variable part of it, is assumed

to depend on (1 ) the variations in the manufacturing rate (i.e. it

costs more to make 1,000 items if the manufacturing rate fluctuates than

if it is constant) and (2) the inventory of finished goods (i.e. increase

in this inventory involves carrying costs: decrease in the inventory below

a certain point involves delay in filling customers' orders). Hence the

criterion by which we will judge the system will be some function of the

magnitude of the fluctuations in manufacturing rate and the inventory of

finished goods.

Let 6 be the desired inventory level in number of units of product,

I to be the actual inventory level. E will represent the deviation

between actual and desired inventory level in units of product. Further

symbols will be as follows:
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D
T

= inventory decision function

P = production order in units of product per unit of time

I* = rate of change of inventory

I = actual inventory = / I* dt

L = customer order rate in units of product per unit time

Such a system can be represented in the block diagram as in Figure 3*

Load L

Desired
Inventory 6 v >T> E=6-lJ Dj

Level

Figure 3. Simple production and inventory control system.

The equations of the system are:

E - ©- I

P-Dj (E) -Dj (e-i)

r« (p-l)

3. 1

3. 2

3. 3

Converting these into the "S" domain by taking Laplace transforms of

each side of the equation:

A) -/(e) -/?« 3. 4

s/(n -A> vca) s. 6
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Substituting the values from equations 3.5 and 3.4 into equation 3.6

and rearranging terms will give the following:

S^l) + Dj/d) = DI/(6) -^L) 3. 7

from which is obtained

/(D- hfie) -/(l) 3.8
<^ S+Dj S+Dj

Since we ideally want zero inventory to be kept, we let Q = 0. Thus

the following:

/(i) - f- _J_] ^?
S+Dn

The term in the bracket

a)

- 1

S+Di

3. 9

is called the inventory transfer

function "Y", relating inventory to customer order pattern. To derive

a production transfer function one goes back to equations 3.5 and 3.4

and gets the relation:

jf(
p ) = Di/(e) -Di/(D 3.10

-Dj (e) -DI
/(P) + DI /(L)

pf(P) « Dl/(&) + Dl/(L)/S 3.11

1+Di 1+D,

Again letting 6 = the following results:

A) =
(S+DT )

/a) 3.12

D
The quantity I in the above equation 3.12 is the production

S+DT

transfer function, relating production to customer order pattern.
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A. Steady State Behavior

One can now examine the inventory transfer function to discover

for the particular system the decision rule D-j- that will induce

appropriate behavior in the actual inventory I. It is desired that I

be as small as possible. Consider the steady state behavior of the

system by using the final value theorem given in the previous section

which is reproduced here.

Lim f(t) = Lim SjMf(t)j if the limit exists

t -^eo S -^0

Therefore I steady state = Lim - S^£(L) 3.13
S -> S+Dj

Case 1 - Suppose that up to time t = 0, customer orders have been

zero, and after that time they are received at the rate of one order

per unit of time.

i.e. L = 1 3.U

:.~{iX) =1 (from table of 3.15
S Laplace transforms)

/. Iss = Lim - J 3.16
S -f S+Dj

Since it is desired that Iqq be as close to zero as possible, this

can be accomplished for example by choosing Dj as:

DT
= 1 (a+bS). Where k > 1, a > 0, 3.17
~^~ b>0

Ioe = Lim -1

S -+ S+2 (a+bS)

Sk

the result is:

k

Sk+1+t+bS

Iss
= Lim -S = 3.18
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That is if the customer orders have been one order per unit of

time, this kind of a decision function would result in zero steady

state error.

Case 2 - Suppose that up to time t = orders have been zero and that

after that time they are received at the rate of tn units per unit

time.

i.e.

L = for t<0 3.19

= t
n for t>

;*f (L) = n! 3.20
£n+T~

Iss
= Lim -n/Sn = ^1 3.21

S ^ S+Dj S^\s\

In this case one can assure a zero steady state error with Dj of the

same form as before (as in case 1, equation 3.17) but with

k^(n+0.

Case 3 - Suppose L(t) = cos(wt), for t> 0. For such an input one

would like to study what the steady state output would be. It is known

that if L (t) is sinusoidal, then the steady state output would also

be a sinusoidal with the same frequency but altered amplitude and

phase.
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i.e.

ISS ft) = B cos (wt+^)

where

B =4 Y(>) . Y(-jw)

where Y is the inventory transfer function

(-1 )

S+Dj

and 3 = nJ-1

and (0 = tan" Imaginary part of Y(.j)

Real part of Y(j)

If for example the decision function Dj is given by Dj = 1

S

(a+bS), then,

Y(S) = -1 = - S

S+a+b
S

S^+bS+a

Let S = jw

then,

YCtwl - ~-w1 V Jw >
~"

-w'H-bjw+a

Yf-jwl = .iw

-w^-bjw+a

Therefore

Y(jw) . Y(-jw) = w2

(a--w2 ) 2+b2wk;

and

R = W
^(a-w)2^^2
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When w = 0, B is also zero and then as w increases, B increases

to a maximum value; and then as w becomes greater and greater, B tends

to get smaller and smaller.

Limit B = w =
—}coW —h CO W'2

A

The effects of a and b on the transient response of the system

can be studied. We have the inventory transfer function "Y" given by:

(D-T ./a)

for L = cos(vrt),

A (I) - Y ^f(cos wt)

= -S .

s

S^bS+a S2+v/2

If k-j, k£, ko, and k^ are constants and S-j and S
2 the roots of the

quadratic expression S^+bS+a, then one can write the above equation

using partial fraction expansion as:

L(I) » k
1 + k

2 + k
3
&fk4

S-Si S-S2 s2+^2~

Converting these to time domain, the following results:

k-j e"
-b+b2-4a

+k
2
e:H^]

+k5 cos (wt+/)

The quantity given by the first two expressions of the above

equation represents the transient response and the last term

represents the steady state response. In order to have as small a

transient as possible, a and b should be chosen such that the terms

in the brackets in the above equation will be as large as possible.
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It is now indicated that the properties that the decision rule

(operator Dj) must possess to assure small or vanishing steady state

inventory excesses and deficiencies for various customer orders or

loads.

B. Stability of the System

A system will be stable if the roots of the characteristic

equation of the system have negative real parts. If the roots have

large negative real parts, the transient will be strongly damped.

Examine now the aspect of stability for some decision functions.

Case 1

Let DT = a, a >
1

S

then Y = _£!_ = - S
S+a S^a

S

Using partial fraction expansion of denominator gives

+ k2
S+j J~aT S-j -Ta" i

k2 _) + . . .

/S+j ^fa" S-J vT*"

I = kl e-J <*t + k2 e j >f~at~ + . . .

With this decision function termination will be with sustained

oscillations because e H at will never die out.
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Case 2

Let Dj = 1 (a+bS), a and b are real.
S

s2+bS+a

The roots of the equation are (-b- \| b -ha.

)

2

The system will be stable if b2> 4a, a>0, b>0. Otherwise it is

unstable.

Case 3

Let D = 1 (a+bS+cS )
1

S

with a, b, c real.

Then

* -S

TT^cls^fbS+a

Then the root of the denominator is

+ 2
S = -b- \jb^-4a(l+c)

2(1+c)

The system is stable if a, b and (c+1 ) are all of the same sign;

otherwise unstable. Looking at these decision rules, we realize that

there is no hard and fast rule to find best values and the question

of optimization is still a little farther off and not quite understood,

C. Interpretation of the Decision Operator

The operator LV represents a rule of decision.

E P

7 S 7
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Since X^P) ~J^\^ D
I>

this rule determines on the Dasis of

information as to current deficit or excess of inventory E, at what

rate P manufacture should be carried on. Among the operators that

were previously found to possess satisfactory properties is

Dj = a + b, with a and b large positive constants.

S

With this operator one can write:

^
>

(P)=/
?

(E) (|+b)

i.e. P = a /e dt + bE

Taking derivatives

P = a E + b E

which, interpreted, means: the rate of production should be

increased or decreased by an amount proportional to the deficiency

or excess of inventory plus an amount proportional to the rate at

which the inventory is decreasing. The constants of proportionality

a, and b, should be large if it is desired to keep the inventory

within narrow bounds.

The foregoing is obvious. What is perhaps not obvious is that

derivative control (the term bE in the above equation) is essential

to the stability of the system. Basing changes in production rate

only on the size of the inventory (b=0) would introduce undamped

fluctuations in the system.

II. System with Production Lag

The most important features missing from the previous system are a

production lag and the availability of information about new orders. In
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actual cases a period of time will elapse from the moment when

instructions are issued to increase the rate of production to the moment

when increased flow of goods is actually produced. One is now ready to

study a system that approximates more closely the problems expected to be

encountered in actual situations.

In Figure 4 is shown a system with production lag.

L(t)

v*>

e(t) tAE=e-i AjfrV

D

(t)

Ahl ^§ml i (ti

Figure 4. Inventory control system with production lag.

The equations of this system are:

E = e - I

Aj = Dj (E)

AL = DL (D

A = AL + AX

P= (G) (A)

I* = P - L

4. 1

4. 2

4. 3

4. 4

4. 5

4. 6
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The variable A represents the overall adjustment order at time t as to

the production rate. Adjustment order A and the actual rate of production

P are connected by factory G. The operators Dj and D^ correspond to the

decision rule, which now depends both on inventory level and rate of new

orders. Both operators are at one's disposal in seeking an optimal

scheduling rule.

Assume that at the factory "G" there is a delay of T.

i.e. P (t) = A (t-T) 4. 7

i.e. jf(?) =jf(k) e~
TS

4. 8

Transforming all the equations from (4.1) to (4.6) into nS" domain

and combining all the equations and setting 0=0, the inventory transfer

function is obtained as:

jf(l) = r e-TSDL-l I^L) 4. 9

S-hF^iJ

and the production transfer function as:

/«- Dl e-^ + S DL e"
-TS

m
S + Dl 3

-TS
—

A(L) 4.10

A comparison of 4.9 to the corresponding equation with no production lags

reveals that both numerator and denominator have been affected by the

introduction of the production lag.

Consideration of the numerator of the inventory transfer function

in equation 4.9 shows that control is not an easy problem. Setting

D-^ = 1 makes the numerator (e~™S_i ) t which approaches zero only as S

approaches 2n)7 i , where n is zero or any integer. Hence this procedure
T
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would stabilize the inventory only for a sinusoidal load whose frequency

is an exact multiple of the frequency corresponding to the production

lag. One can say with Dt = 1 the system performs better than when there

is no information about orders.

A. Feed Forward of Information about New Orders

It shall now be seen what happens if the value of customers'

orders L (Load) for T units of time can be predicted in advance of

the actual receipt of orders.

Setting DL
- eTS 4.11

Then the numerator of 4.9 becomes

e-TS e
TS _ , =

Defining the variable Jo so that

(Zf (S) = e
TS;#L) 4.12

Taking the inverse transformation of both sides:

/5 (t) = L (t+T) 4.13

TS
Hence, setting D^ = e corresponds to predicting the value of

L for T units of time in advance of the actual receipt of orders.

If orders could be predicted over the time interval T, production

could be scheduled in anticipation of the actual receipt of these

orders thus avoiding any inventory fluctuation whatsoever. It will

not be attempted to explore the problem of forecasting L (t+T), but

optimal decision rules will be considered when future orders are not

known with certainty.

B. Feed Back of Information about Inventories

Consider now the denominator of 4.9 which is S+e"" jDj . Because
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T3
of the sinusoidal character of e~ this will behave roughly like

(S+D
T ). Hence the system will behave in the same general manner as

the system with no production lag.

—TS a
For Dl = (g + b) the denominator becomes S+e (§ + b).

The roots of the characteristic equation,

S2 + (a+bS)e"
TS = 4.14

are not easily evaluated. So a method is suggested by which the

TS
fixed lag with operator e is replaced by a distributed lag which

retains the algebraic character of the system transform but avoids the

difficulties encountered in equation (4.14).

P (t) = A (t-T) can be replaced by

P(t) - f* Pr (T) A (t-T) dT 4.15

where f%(T) dt = 1

Pr (T) may be regarded as the probability that the lag in producing a

particular scheduled item will be of length T. For large values of T

one would expect Pr (T) to be zero.

Suppose Pr (T) = a2 e
-aT 4.16

then L(Pr) = a2 4.17

a^+S2
^

and

y a2 DL - 1 *
(I) = ^S^" X (L) 4.18

S + a2 5^
aS+S2
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The system transform defined by the above equation 4.18 can be

analyzed by methods previously employed to determine suitable forms

of D
L
and Dj.

III. System with Production Lag Distributed with Probability Density

Function Pr(T)

Now consider the period of time between the moment when instructions

are issued to increase the rate of production to the moment when the

increased flow of goods is actually produced to be a random variable with

probability density function, Pr(T). It is represented by a system as in

Figure 5 below. ^

E=0-I Al
->

Delay
Pr(T) p +v/0\ r /

Figure 5. Inventory control system with varying production lag.

All the variables except Pr(T) are' as defined previously

Pr(T)dt = probability that the lag in producing a particular scheduled

item will be between length T and T+dt.
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And

Pr(T)dT = 1, since Pr(T)dT = 0.0.

The system equations can be written as follows:

jf&) =/(G) -/(I) 5. 1

/(A
x ) = Dj/CE) 5. 2

/(al ) = Dj/a) 5.

3

/(A) =/(A
I ) + /(AL ) 5. 4

/(P) =/[Pr(T)| ./(L) 5. 5

s/l) = /(P) -/(L) 5. 6

From equations 5.5 and 5.6:

s/(l) =<^Pr(T)] .^f(A) -/(L)

-/[PrdggfcAj) +/(AL )] -/(L) 5.7

-/[PrCT)]^^) - Cl3J + D(LJ^L)|-/(L)

Since 9 = (desired inventory)

«/(e) - o

Then:

^(l)^S+D/[Pr(T)]j =/(L^|r(T^ D
L

-1? 5. 8

The inventory transfer function is given as

Y = <^t[ )
mjf TPr(T)lDT - 1 5. 9(I) =/[pr(T)]DL^^ S + Dj fr(T3
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Similarly for obtaining the production transfer function,

^(P) =4Pr(T)] . /(A)

^[PrCT^A-^/cAjj 5.10

= /[Pr(T)] [Dj/d) + DL /(L))

-/|r(T)] [-^fi/CP) " ^L)j 4- Dl/(l]

=/fPr(T)l [-^/(P) +/(L) ^ +
SDjJl

The resulting production transfer function is:

Z=^|L=/[Pr(T)] [D
I
+ SD

L]
5.11^ L; s+/]Mt2

—
A. Stability of the System

Assume the distribution of lag time to be exponential. Then

PT(T) = Ae"^

and,

/[Pf(T)] -^V^^dt 5.12

= 7iJ%-(*+S)t dt

A+S

Therefore,

,£ (D=_iL_ DL- 1 />
%

D J>, x

S + Dj A S^ + SA+Dj^

= -S + (PL - 1 )A^(L) 5.13

S
2 + SA +DiA
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Given an inventory decision function such as

DT = 1 (a+bS) 5.14
1*

Then:

/{!) = -S-f (
DL- 1)* Ah)

S
2+S^+ 1 (a+bS)^

= -S
k+1

+ S
kA(DL-l)/(L) 5.15

sk+2+sk+1x + bS^+ a ^

The stability criterion dictates that all powers of S in the

denominator expression from S to a should be present. Otherwise the

system is unstable.

For the characteristic equation

S
k+2

+ sk+1* + bSA + a* =0 $.16

k may have values 0, 1 , -1 , -2, -3 which will permit stable system

operation. All other values k might have do not lead to stable system

operation.

IV. Cost Consideration in the Control of Inventories and Production Rate
Fluctuation

The general criterion for the optimality of a production and inventory

control system of the kind we are analyzing is minimizing the cost of

production.

Large inventories involve warehousing costs, interest costs, possible

costs through physical depreciation in storage. An inventory deficiency

on the other hand involves a cost in the sense of delay in filling orders
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and consequent loss of customer good will, etc. Therefore in order to

achieve optimality one should balance these two kinds of costs. It also

appears reasonable to assume that the cost of producing a given quantity

of output over a period of time is minimized if output remains the same

during that period of time. If output is represented as a constant M,

plus an oscillating function with zero mean, then it may be assumed that

the rate at which cost is being incurred is a function of M and the

frequency and amplitude of M(t).

From equation 4.6,

dl = P(t) - L(t) 5.17
dt

If it is succeeded in stabilizing I at I = 0, actual production rate P

will not be constant but will follow L(t). Conversely if P is stabilized,

I will not be constant but will follow the integral of L(t). A system

cannot be devised that will simultaneously eliminate inventory and

production fluctuations, but must instead, establish a balance between

the two.

Consider the steady state of the system under sinusoidal inputs and

outputs. If customer order pattern is sinusoidal then in steady state the

actual rate of production P and the actual inventory I will also behave

sinusoidally with the same period (but differing in amplitude). It is

assumed that the cost associated with production rate P is proportional

to the square of the amplitude of oscillation. Let this constant of

proportionality be Cj. Similarly it is assumed that the cost of

maintaining inventories I is proportional to the square of its amplitude
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of oscillation and with the constant of proportionality being represented

by C2 .

And:

L(t) = a cos(wt) 5.18

P(t) = b cos(wt) + £ sin(wt) 5.19

I(t) = c cos(wt) + frsin(wt) 5.20

with a, b, c,j3, Jr being real values.

From the relation dl = P(t) - L(t),

dt
-C^Si^wt) + fc"w cos(wt) = b cos(wt) + B sin(wt) -a cos(wt)

5.21

equating the coefficients of life terms, results

Wy = b-a, -wc = j9 5.22

The criterion function to be minimized it

C^b2
+P

2
) + C

2
(C
2 + tf

2
) = Z 5.23

Substituting for c and 3" from (5.22) into the cost equation, taking

derivatives of Z with respect to b and ^9, and setting these equal to zero,

gives,

b=_jfi_ and B =0 5.24
C,w2 + C2

Therefore

aC w
c = 0» *" - 1 5.25

(C 1W2+C2 )

for small w: b -^ a 5.26

and X -}
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for large W:

b -}

<T -$ 5.27

W^-4 -a

When interpreted, these results mean that the optimal decision-rule

will adjust production rate and hold inventories down for long period

fluctuations in customer order pattern, but for rapid fluctuations in

orders it will stabilize production and permit inventories to fluctuate.

The amplitude of manufacturing fluctuations b will vary inversely with

w. The magnitude of inventory fluctuations ft" will have a maximum for

w2 = C2/C
1

.

It is seen how feed back control theory can be used to analyze the

behavior of a continuous inventory control system when it is presented

with specific patterns of inputs (customer orders). The response to

any other arbitrary input can be obtained by the same general approach.

V. Discrete Inventory and Production Control Systems

Although the assumption that customers' orders and production vary

continuously in time may be a reasonable approximation to reality in

some situations, in many inventory processes customers' orders are

reviewed and production schedules are set at discrete intervals of time.

It would be interesting to see how this change will modify the analysis.

The block diagram, loop relations, etc., are as used before. A schematic

representation of a discrete system is as shown in Figure 6.
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Figure 6. Schematic representation of a discrete inventory control system.

The main differences between the continuous and discrete system are as

follows. The discrete system is a sample data system because only at

discrete intervals is information about the stock levels available.

When the relay in the discrete system is closed information is transmitted

about stock level. When the relay is open there is no flow of information.

Also, summation replaces the integral operator.

A considerable body of information on discrete systems has been

developed for use in control processes. The approach is similar to

that for continuous systems except that it operates on difference

equations and "Z-transforms" instead of differential equations and Laplace

transforms.

The underlying basis for Z-transforms is quite simple. The Z-

transform of a variable fn -which takes on values at the points n = 0,

1,2 is defined as:
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00

f(z) - y f z
n

6. 1n
n=

For example, suppose fn = an , then,

F(Z) =Jr fn
Z
n
=XI (aZ)n = _L_ 6.2

rRD n=0 1-aZ

If the input distribution (distribution of customer order) is a pulse

then

fn
-i, A-o

= when n ^ 6. 3

F(Z)=]T>nZ
n

n=0

= (1 )Z° = (0)Z 1 + . . . . 6.4

= 1

For a unit step input,

fn = 1 n >/

= n <C 6. 5

F(Z) = (1)Z°+ (1)Z 1 + (1)Z2 + . . . .

= _]_
1-Z 6. 6

For a unit ramp (trend input),

fn
= n; n>/0

= n< 6. 7

F(Z) = (0)Z° + (1)Z 1 + 2Z2 + . . . .

= Z [(0)Z
_1

+ (1)Z° + (2)Z 1 + 3Z
2 + . . . .]
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The series within the bracket on the right hand side is the derivative

of the step-input series. Taking the derivative

M
LTT^zF)dZ [(1-Z)2| 6. 8

Therefore F(Z) = Z 6. 9

An abbreviated table of Z-transforms is given below.

Table of Z-Transforms

Original Function Z-Trans form

unit impulse, t 1

unit step, a constant 1

1-Z

unit ramp, trend Z

(1-Z)2

Pt (function of t) P(Z)

Pt+1
P(Z?

pt-k p(z)

Pa. p(z)
t Tuz7

Consider a discrete inventory system in which we make the extra
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production in the j+1
st period a fraction of the inventory shortage at the

end of the j period.

Defining:

L. = incremental sales (Load) during period j

P. = incremental production during period j

I = inventory shortage at end of period j
J

6.10

6.11

6.12

6.13

Transforming

np?) J j=0 n=0 j=0 /h=0

Using the table of Z-transforms,

P(Z) + a P(Z) = a L(Z) 6.1$
Z 1-Z 1-Z

P(Z) [l-Z+az] = aZS(Z) 6.16

So the production transfer function is

P(Z) = aZ 6.17
L(Z) 1-(1-a)Z

The syst em equations are

Ji-
n=0

V = aI
J

p
3
+1

n=0
-P )

n

P
J
+1

3
0*

aV~" L
n=0 n
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and the inventory transfer function is

I(Z) = 1 6.18
L(Z) 1-(1-a)Z

A. System Response to Specific Inputs

Impulse Input

Suppose up until time t customer orders remain the same and

then there is sudden increase in demand followed by a return to the

previous stage existing at t = 0.

For unit impulse

L(Z) =1 7. 1

From equation 6. 17,

P(Z) = aZ 7. 2

1-(1-a)Z

Similarly from 6.18,

KZ) " 1 7. 3
1-(1-a)Z

Performing inverse transformation on 7.2 and 7.3,

Pj = a(l-a)3-
1

7. 4

and

Ij - 0-ap 7. 5
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Equations 7.4 and 7.5 are plotted in Figure 7.

a(1-a)
a(1-a)'

1-a

(1-a) ,
(1-a)3

_L J12 3 3

Figure 7. Production and inventory responses for impulse input,

Production comes back to the steady state and inventory shortages die

out and hence the system response is satisfactory for impulse input.

Step Input

Suppose that up to time unit t = customers' orders have been

zero and after that they are received at the rate of one order per

unit of time.

For unit step, from the table of Z-transforms,

L(Z) =J_ 8. 1

1-Z

Substituting L(Z) in production and inventory transfer functions

(6.17) and (6.18) yields

P(Z) = aZ = 1 + -1 8. 2

(1-Z)[]-(1-a)Z] 1-Z 1-(1-a)Z
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and

I(Z)-
1-a

(1-Z) [l-(1-a)ZJ

Taking inverse transforms,

P = 1-(1-a)J

_*_ +
1-Z 1-(1-a)Z

3

= 1 - 2zi(l-a) J = l[l-(l-a)3
+1

J

8. 3

8. 4

8. 5

Figure 8 represents the production and inventory responses to the

step input.

1
1 -(1-a)3

1-(l-a)
2

p.
J

I L

Figure 8. Production and inventory responses to step input.

The production catches up to unity fairly rapidly and therefore

is a satisfactory response. However the inventory shortage becomes

larger and larger with each period reaching a maximum of j_. So
a

inventory response is unsatisfactory.

It can be noticed that if a=1 an impulse of sales will be

controlled after one period, a very fast response. Nevertheless, a
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step in sales will create a constant unit inventory discrepancy.

Naturally a ramp increase in customer orders will cause a linear

increase in inventory shortage.

An important feature of the decision function

P +1 = a^ (Vpn>J n=0

is that when a = 1 the equation represents the familiar P-model

regulator when the output is being measured from theXo level as a

base. Under the P- system of inventory control there is a fixed

order period and varying order size. The procedure is that at

periodic intervals—the period being analytically determined—the

amount of inventory is reviewed and an order is placed. The P-model

regulator can be represented by the following decision function.

P
H1

=M-E(I)+^ (I^-Pn ) 8. 6
J n=0

Where M is the maximum stock level defined for the P-model and E(l)

is the expected inventory level.

Let x,

n
= expected order quantity

i.e. X = M-E(I) 8. 7

P
j+1

=Xo+^ (L
n"Pn) 8.8

n=0

but if one considers the P^+^ as being measured from Xo level as a

base

n=0
j+1 =^ <VP

n > 8
« 9

So the results obtained when a = 1 will be the response of the P-model
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for inventory control.

B. Time Lag in the Implementation of Production Decisions .

Consider the effect of time lag on the system representing the

P-model. Assume that the demand distribution is stationary and let k

be the period of delay in the implementation of production decisions.

Let the period of delay be k.

Thus the model becomes

_J-k j-k
pj+ 1 =51 Vk 2_ pn-k 9.1

n=0 n=0

Using the table of Z-transforms 9.1 can be written as

P(Z) I(Z) - P(Z) 9. 2

z Z
K
(1-Z) Z

k
(l-Z)

Reducing we get the production transfer function

mL - I(Z?Z£? 9.3
itzT I-Z+Z*+1

and for I*,

Vl = *** 9. 4

P(Z) = IGO or P(Z) - Z^KZ) 9. 5

Z Z"*
1^

So combining the two P(Z) equations and simplifying yields the

inventory transfer function as

I(Z) = J 9. 6

L(Z) UZ+Z13^

When k the equation 8.14 and 8.15 reduce to equation 8.16 and 8.17

when there is no delay. Now study the effect of such impulse in demand
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on the system.

Let k = 1, then:

P(Z) = 7? 9. 7
1-Z+Z*

S (Z) 1 9. 8
1-Z+Z*

These transformations are not in the table of Z-transforms presented

but they are obtained by using long division to obtain a power series,

and these power series are

P(Z)=(0)Z°+(0)Z l+(l)Z2+(l)Z3+(0)
4+(-l)Z5+(-1)Z6+ ....

9. 9

and

i(z)=(i)z°+(i)z 1+(o)z2+(-i)z3+(-i)z^+(o)z
5
+(i)z

6
+ ....

9.10

What these equations show is that inventory shortage oscillates.

Figure 9 illustrates endless oscillations which the system

experiences.
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Inventory-

Shortage

-1

2 Z>

A

12
-/

jrtime

Figure 9. Production and inventory response for the system with
time lag.

The cost of this oscillatory behavior can be very high indeed.

This is the weakness of the P-model. It is extremely vulnerable to

transmission and process delays.

C. A Further Consideration of the Decision Rule .

It will now be seen if a decision rule can be used in which

cumulative shortage days as well as actual shortage levels are used to

see if it will have superior step and ramp responses.



Consider the model

P
j+1

= A2I (VPn) +B2_ 2- ^-Pn) 10
-

1

nR) n=0 n

where

n=

and

(I^-Pjj) = units short during period to j

(L -Pn ) = number of unit-days short.

n=0 n=U

Obtaining Z-transforms of the equation 10.1,

P(Z)=AL(Z)+BL(Z)-AP(Z)-BP(Z) 10. 2

Z 1-Z ( 1-Z
)Z 1-Z (1-Z)*

which yields the production transfer function as

10. 3P(Z)= f(A+B)Z-AZ
2

L(Z) [(A+B-2)Z+(1-A)Z^+1

46

and similarly the inventory transfer function is

i(z) = i-z 10. 4

L(zT (A+B-2)Z + (1-A)Z2+1

An IBM 1620 computer program is written to simulate the responses

of the system with this decision rule to an impulse input when A and B

take on different values. Figures 10a, b, and c and d present the

responses graphically.
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o

c

gH

-1

-2

-3

-4

4?

1

1

!

1

K3

j time

Figure 10a. For A = 2, B = 1, divergent oscillations,

+4

+3

+2

+1
1

1
-1

-2

-3

-4

i
j time —

Figure 10b. For A = 1, B 2, undamped oscillations.
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Figure 10c. For A = ^, B = 0, overdamping.

n

I
^ j time

Figure 10d. For A = 1, B = 1, critical damping.

48

Both over damping and critical damping seem to be permissible.

However when A = 1 , B =
1 , one has the case of critical damping

restoring the stock level to its original value.
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So "critical damping" for this system corresponds to A=B=1

.

One should use these values if production facilities permit their use,

Thus with A = 1j B = 1; from 10.3 and 10.4:

m 2Z-Z2 11. 1

and

m = 1-Z 11. 2

1

Figure 11 represents the production and inventory responses

of this system to impulse, step and ramp inputs.
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2.0

-1

Impulse Response

P(Z) = 2Z-Z2

i
1

7
;

i(z) - 1-Z

1^ 3 4

2.0

P< 1.0

Step Response

2^3 P(Z)=2Z - Z
Z

<//, 1Z 1-Z

12 3 4

1(2) = 1

12 3 4

3.0

2.0

1.0

Ramp Response
^

P(Z)=(2Z-ZT Z

I

1-Z'

I12 3 4 12 3 4 5

Figure 11. Production and inventory responses to impulse, step and
ramp inputs.
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It is observed from Figure 1 1 that impulse and step responses

are quite satisfactory. For ramp input, although production response

is satisfactory, a constant inventory shortage of one unit will

occur. The control exerted by this system is generally satisfactory.

Note the simplification in the system that has been produced.

Instead of a system which depends upon inventory shortage and

shortage days a more easily implemented result has been obtained.

The impulse response shows that the production in the next month

is made equal to twice the present month's sales less previous

month's sales. Such simplification can often by obtained

using the systems analysis.
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CHAPTER IV

CONCLUSIONS

In this report only a few decision functions and very simplified

versions of the real life production and inventory problems were

studied. However many other similar problems with more complications

can be studied with the same general approach. Which of these is to be

preferred in a given case depends upon the circumstances of specific

problems

.

The general conclusion to be drawn from this study is that the basic

approach and fundamental techniques of control theory can be profitably

applied in the analysis and design of production and inventory control

systems. The conclusions that have been reached about the inventory

control problem studied might in a qualitative sense by reached

intuitively, but intuition has been aided by the frame of reference

that control theory provides. Even at this early stage, the theory

permits actual numbers to be inserted for the construction of

specific decision rules that would apply to actual situations. The

method could also provide a means of optimizing work processing and

communications by means of block diagrams. The application of feed

back control techniques to industrial functions represents an area in

which investigations and studies will improve the performance of

industrial enterprises.
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Determining the quantity of product to produce in any given

period of time is one of the major problems encountered in connection

with the operation of a manufacturing organization. In this report

the problem of controlling the rate of production is stated in terms

of feed back control theory and the well developed methods of that

theory are employed to study the behavior of a control system. This

is illustrated for both the continuous and discrete systems.

Continuous systems are those in which it is assumed that information

about customer orders and inventory levels are available continually,

whereas discrete systems are those in which such information is not

continually available. The production and inventory control system

under study is represented by means of time differential equations

for continuous system and difference equations in the case of

discrete system. Laplace transform and Z-transform methods are

introduced and some of their elementary uses for studying the

stability and steady state behavior of production and inventory

control systems are illustrated.

Included in the production systems studied are systems with no

production lag, with fixed production lag, and with random production

lag. Response of the system to specific customer order patterns

and alternative decision functions are studied. A cost criterion

based on costs due to fluctuating production, carrying costs, and

shortage costs is constructed to evaluate alternative decision

rules. The general conclusion from this study is that the basic



approach and fundamental techniques of control theory can profitably

be applied in the analysis and design of production and inventory

control systems.


