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Abstract
An algorithm based on dynamic mode decomposition (DMD) is presented for acceleration

of the power method (PM) and flattened power method (FPM) that takes advantage of

prediction from a restarted DMD process to correct an unconverged solution. The power

method is a simple iterative scheme for determining the dominant eigenmode, and its variants,

such as flattened power method, have long been used to solve the k-eigenvalue problem in

reactor analysis. DMD is a data driven technique that extracts dynamics information from

time-series data with which a reduced-order surrogate model can be constructed. DMD-

accelerated PM (DMD-PM) and DMD-accelerated FPM (DMD-FPM) generate “snapshots”

from a few iterations and extrapolate space in “fictitious time” to produce a more accurate

estimate of the dominant mode. This process is repeated until the solution is converged

to within a suitable tolerance. To illustrate the performance of both two schemes, a 1-D

test problem designed to resemble a boiling water reactor (BWR) and the well-studied 2-D

C5G7 benchmark were analyzed. Compared to the PM without acceleration, these tests have

demonstrated that DMD-PM and DMD-FPM method can reduce the number of iterations

significantly.
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Chapter 1

Introduction

Nuclear power was initially studied in the 1940s and has become an important source of

energy worldwide. The nuclear reactor core containing the fuel is where the chain reactions

take place. The amount of heat generation is proportional to the neutron population in the

core, which itself is proportional to the number of fission events. Without somehow modeling

the neutron population, it is impossible to understand the control of the neutronic systems

and to generate suitable designs. In nuclear reactor physics, computational simulations play a

critical role in the optimization of these designs and the prediction of the dynamics. However,

explicit modeling a full reactor core remains too computationally expensive even with the

most advanced, large-scale, supercomputers. Therefore, accurate and efficient approaches are

needed to solve the various problems of reactor physics, including determining criticality and

the neutron distribution.

1.1 Motivation

The generalized eigenvalue form of the neutron transport equation and its use for criticality

analysis is central to computational reactor physics. The dominant eigenvector and cor-

responding eigenvalue of this equation can represent a system in steady-state conditions.
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Though the criticality problem is a simplification of the time-dependent processes, it is often

sufficient to reduce the transport equation into the steady-state form. The steady-state

transport equation can be written in the generic form

Ax =
1

k
Bx , (1.1)

where x describes the scalar flux, A represents neutron losses, B represents the fission neutron

gains from neutron, and the eigenvalue k represents the ratio of gains to losses. The so-called

criticality of a reactor is determined by examining the dominant eigenvalue k, where k = 1 is

“critical” (the neutron population holds steady), k < 1 is “subcritical” (the neutron density

decreases over time), and k > 1 is “supercritical” (the neutron density increases over time).

The eigenvector corresponding to the largest eigenvalue k is often called the fundamental

(or dominant) eigenmode and corresponds to the scalar flux distribution when the system

reaches a steady state. A more generalized multigroup neutron transport equation will be

presented along with its diffusion approximation in Chapter 2.

The numerical solution of the transport equation requires the use of iterative techniques.

A classical method for solving Eq. (1.1) is the power method, which requires the repeated

application of A−1B. The operator A−1 represents the solution of inhomogeneous transport

(or diffusion) equation which also often requires the use of iterative techniques, e.g., Richardson

(or “source”) iteration and Gauss-Seidel iteration. Iterative techniques have traditionally

dominated the transport community because the explicit construction of A is prohibitively

expensive with respect to both memory and processing costs. In other words, various iterative

methods provide a way to solve the eigenvalue equation without forming a matrix inverse.

The actual application of A depends on the specific numerical method used (e.g., discrete

ordinates or finite-volume diffusion), some details of which are described later. However,

the cost of any methods is proportional to the number of applications of A, and various

techniques have been explored that greatly outperform the traditional methods. Of these,

several have emerged from the broader numerical linear algebra community and include the
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family of Krylov subspace methods, e.g., Generalized minimal residual method (GMRES)1

for linear systems and generalized Davidson (GD)2 for the generalized eigenvalue problem.

Other methods are “physics driven” and include diffusion synthetic acceleration (DSA) for

inhomogenous problems3;4, and nonlinear diffusion acceleration methods like CMFD5.

These advanced methods work well but require specialized treatments of the transport (or

diffusion) equations. As an alternative, data-driven techniques may be able to take as input

a series of unconverged iterates from a classical iterative scheme (like the power method) and

produce as output a greatly improved estimate for the converged solution. Dynamic mode

decomposition (DMD) is one such approach that has emerged from the computational fluid

dynamics community. This data-driven method can produce reduced-dimensional “surrogate”

models by gathering modes directly from a sequence of states from some time-dependent

process.

1.2 Summary of previous work

Before continuing, it is useful to review in brief past applications that demonstrated the

utility of DMD. This technique was initially proposed by Schmid 6 7 to extract dynamics

information from time-series data of fluids observations. He applied DMD to both numerical

Navier-Stokes code results and experimentally measured data and illustrated how DMD can

identify coherent structure in the fluid dynamic system. As opposed to proper orthogonal

decomposition (POD)8, DMD is a purely data-based procedure and does not project a higher-

order system and equations on a reduced space. DMD was shown to be related to Koopman

analysis9;10 of nonlinear dynamical systems and can be used to extract dynamic modes to

describe the global spatiotemporal behavior. In Schmid’s original work, the time-dependent

dynamic systems are described in the form of snapshots of an observable xi in time, or

XN
1 = {x0,x1, . . . ,xN} . (1.2)
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We assume that there exists a linear mapping operator A that produces the snapshot sequence

Eq. (1.2) in the form of the Krylov subspace when applied to the initial snapshot x0 repeatedly,

i.e.,

XN
1 = {x0, Ax1, A

2x1, , A
N−1x1} . (1.3)

Schmid applied the singular value decomposition (SVD) to obtain the robust approxima-

tion

Ã = UHXN−1
1 VΣ−1 , (1.4)

where XN−1
1 = UΣVH . The eigenvector xi of Ã and left eigenvector matrix U are used to

define the DMD modes,

Ψi = Uxi , (1.5)

and, therefore, recover the reduced the mapping operator A. This scheme is often referred to

as the “standard” DMD approach in later research11, and a more detailed discussion of the

standard DMD scheme is presented in Chapter 4.

Many practical theories have been developed based on this original work of Schmid. Following

Tu et al. 11 12, let

X0 , {x0,x1, . . . ,xN−1} , (1.6)

X1 , {x1,x1, . . . ,xN} . (1.7)

To proposed an “exact” DMD with which the operator A can be acquired alternatively

as

A , X1X
†
0 , (1.8)

where X†0 is the pseudoinverse of X0.

The DMD modes and eigenvalues can be found by a direct eigendecomposition; however, it

may be too expensive in practice to construct the eigendecomposition of A. Again, by use of
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SVD, one can compute DMD modes or

xi =
1

λ
X1VΣ−1Φ . (1.9)

Kutz et al. 13 summarized many variations on the DMD algorithm and illustrated the

applicability of each to several complex systems. Fundamental theoretical foundations of

DMD and the Koopman operator were also developed in their monograph.

Recent efforts applied DMD to nuclear reactor simulations. For example, Abdo et al. 14 used

DMD as a direct, explicit-in-time surrogate for black-box models, e.g., to model the evolution

of nuclear reactor isotopics over long time periods as well as the nonlinear response of reactor

power during short transients.15 16

1.2.1 DMD Accelerated Iterative Methods

As mentioned briefly, a way to achieve acceleration of iterative methods is to correct the

solution estimated at each iteration to reduce the total number of iterations. One way to do

this is to use the results from a lower-dimensional, projected system to predict the solution

to the higher-dimensional system that we wish to solve.

Andersson and Eriksson 17 first used DMD to accelerate the convergence of a time-dependent

finite-volume solver for compressible flow to steady-state conditions. Their time-stepping

method can be written in the form

xn+1 = Axn + b , (1.10)

where n donated time. Here, difference of consecutive samples are used to define the snapshots

matrix

V− = {x2 − x1, ...,xn+1 − xn} , (1.11)

V+ = {x3 − x2, ...,xn+2 − xn+1} , (1.12)
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They defined the QR decomposition

V− = QR , (1.13)

with which

V+ = AV− = AQR , (1.14)

and, hence

QTV+ = QTAQR = ÃR , (1.15)

or

Ã = QTV+R−1 . (1.16)

Because steady state implies xn+1 = xn, one actually seeks x such that Ax = B. Given an

unconverged iterate xn+1 define Vn = xn+1 − xn and solve

(I−A)Vn + (I−A)xn+1 = b , (1.17)

or

(I−A)Vn = (xn+2 − xn+1) . (1.18)

Now let xn = Qyn. Then

QT (I−A)Qyn = (I− Ã)yn

= QT (xn+2 − xn+1) .

(1.19)

By noting ximprovedn+2 ≈ xn+1 + Q(I− Ã)
−1

QT (xn+2 − xn+1). In other words, the solution is

updated by solving a lower-dimensional problem. By performing this process several times to

correct the solution, both the number of iterations and the average fluctuation were reduced

almost 30% for compressible flow problems.

Then, McClarren and Haut 18 presented an equivalent acceleration technique for improving the
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convergence of Richardson(source) iteration for source-driven neutronics problems. Richardson

iteration can be expressed as

x(n+1) = (I−A)x(n) + b . (1.20)

Their algorithm also employed a set of successive differences x(n) − x(n−1) to produce data

matrices V+ and V−, while the standard DMD with SVD decomposition was applied to form

the approximation Ã. The algorithm is as follows

1. Perform R source iterations: xl = Axl−1 + b

2. Compute K source iterations to form V+ and V−. The last column of Y− we call xK−1

3. Compute x = xK−1 + U∆y.

where U is the left unitary matrix from SVD decomposition of V− and ∆y is computed

by

(I− Ã)∆y = UT (xK − xK−1) . (1.21)

McClarren’s results of a homogeneous slab problem and a multi-dimensional pipe problem

suggest that a sequence of Richardson iterations followed by corrections reduces the number

of iterations required by about one order of magnitude.

These past applications show that DMD has the potential to accelerated a wide variety of

simple iterative methods, including the power method.

1.3 Objective

The primary focus of this thesis is to estimate accurate fundamental eigenmodes using DMD

to accelerate the power method and other, related methods. Roberts et al. 19 proposed a

restarted, DMD-accelerated power method scheme (DMD-PM(n)), and, Xu et al. 20 then

extended this theory to the flattened power method (or fixed-point iteration (FPI)). To
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achieve these goals, we will expand this theory in certain ways in the following chapters.

Chapter 2 will introduce the multigroup neutron transport and diffusion equations, and

Chapter 3 discusses the mathematical background of the power and flatten power methods.

Following that, DMD-PM(n) is presented in Chapter 4, while a DMD-based, accelerated,

flattened power method DMD-FPM(n) is presented in Chapter 5. Then, the results using

either of acceleration schemes on compute analyzing a 1-D boiling water reactor(BWR) model

and the famous 2-D C5G7 test problem, are discussed in Chapter 6. Chapter 7 will include

conclusions and future work including the possibility of combining this theory with other

methods.

8



Chapter 2

The MultiGroup Transport and

Diffusion Equation

This chapter contains a complete description of the multigroup transport and diffusion

equations used to describe steady-state neutron systems, and, thus, provides a more detailed

representation of the eigenvalue problem defined by Eq. (1.1).

2.1 Transport Theory

Neutron transport can be well modeled by linearization of the Boltzmann transport equation,

which was initially used to describes the statistical behavior of particles in the dynamic thermal

systems. This equation was developed and applied to determine the neutron distributions

within the development of nuclear reactors as early as the 1940s. It is impossible to solve

the full neutron transport equation analytically for any realistic, three-dimensional problems.

Instead, approximations are made to simplify the often, intractable dependence of neutron

cross sections on energy leading to the multigroup transport equation

9



Ω̂ · ∇ψg(r, Ω̂) + Σtg(r)ψg(r, Ω̂) =

1

4π

Ng∑
g′=1

Σsgg′(r)φg′(r) +
χg

4πk

Ng∑
g′=1

νΣfg′(r)φg′(r) + s(r, Ω̂) ,
(2.1)

where φg represents the scalar flux and ψg is the angular flux in the discretized energy interval

(or “group”). Here, r and Ω̂ indicate the position vector and angle of travel. In addition,

Σt,g, Σs,g′g, and Σf,g represent the group dependent cross sections for total, scattering, and

fission reactions, respectively. Moreover, χg is the fission spectrum, ν is the average number

of neutrons emitted per fission, and the k-eigenvalue (or “multiplication factor”) represents

the balance of neutron gains (by fission) to losses (by absorption and leakage). As mentioned

in the last chapter, the value of k indicates whether the reactor is critical, subcritical or

supercritical.

There are two basic types of neutron transport problems: fixed-source problems and eigenvalue

(criticality) problems. The fixed-source problems are solved to determine the neutron

population distribution given a known, external neutron source and are common for shielding

and detector applications’. On the other hand, the eigenvalue problem is used to describe

the neutron population from a fission chain reaction, and, hence, are important for analysis

of criticality in nuclear reactors and related systems. The k-eigenvalue problem mentioned in

Chapter 1 is the most common type of eigenvalue problem. Both fixed-source and criticality

problems can be solved using deterministic methods or stochastic methods. Based on our

research attempts, we think the DMD-PM(n) method and DMD-FPM(n) should also be able

to accelerate the Monte Carlo method. However, we only focus on using DMD to accelerate

deterministic approaches to solving eigenvalue problems.
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2.2 Operator Notation

The multigroup neutron transport Equation (2.1) can be defined in operator form, which is

more convenient during numerical implementation. First, let a discrete-to-moment operator

D satisfy

φg = Dψg , (2.2)

where the spatial dependence (continuous or discretized) is implicit. Also a moment-to-discrete

operator M satisfies

ψg = Mφg . (2.3)

Then, we can define the operator

Lg(·) = (Ω̂ · ∇+ Σtg(r))(·) , (2.4)

With this the notation, the multigroup transport equation generalizes to21

Lgψg = M

Ng∑
g′=1

(Sgg′ +
1

k
XgFg′)φg′ + qg , (2.5)

where S = Σs(r), F represent the fission operator, X represent the fission spectrum in

operator form χg.

To simplify, we can define the space-angle transport sweep operator DL−1 and multiply it on

both side of Eq. (2.5), which leads to

Dψ = DL−1MSφ+
1

k
DL−1MFφ , (2.6)

In practice, we are only interested in the scalar flux, and the angular flux is rarely stored

explicitly. Therefore, the transport equation can be represented using only the scalar flux by
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substitution of Eq. (2.2) into Eq. (2.6), which yields

(I−DL−1MS)φ =
1

k
DL−1MFφ , (2.7)

which is equivalent to Equation (1.1) with

T = (I−DL−1MS) , (2.8)

and

B = DL−1MF . (2.9)

2.3 Diffusion Theory

Neutron diffusion theory is sufficiently accurate for many reactor problems. This theory

is simplified from neutron transport theory and can be formally derived by assuming the

angular flux is at most linearly anisotropic and that the source, including external sources

and fission sources, is isotropic.22.

We also assume that the source, including external source and fission source, is isotropic, and

scattering is at most linearly anisotropic. However, we illustrate a more heuristic derivation.

First, integrate both sides of Eq. (2.1) to obtain

∫
Ω̂

[(Ω̂ · ∇ψg(r, Ω̂) + Σtg(r)ψg(r, Ω̂)]dΩ̂ =∫
Ω̂

[
1

4π

Ng∑
g′=1

Σsgg′(r)φg′(r) +
χg

4πk

Ng∑
g′=1

νΣfg′(r)φg′(r)]dΩ̂ + s(r, Ω̂) .

(2.10)

The neutron current is defined as

J =

∫
4π

Ω̂ψdΩ̂ . (2.11)

The right hand side can be treated as a single source term Q, which leads to the continuity
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equation

∇ · Jg + Σtgφg = Q . (2.12)

Substitution of Fick’s law, i.e.,

J = −D∇φ , (2.13)

into Eq. (2.12) leads to

∇ · −D∇φ+ Σtφ = Q . (2.14)

or

−∇ ·Dg(r)∇φg(r) + Σrg(r)φg(r) =

Ng∑
g′=1

Σsgg′(r)φg′(r) +
χg
k

Ng∑
g′=1

νΣfg′(r)φg′(r) , (2.15)

where the group diffusion coefficient can be defined using

Dg(r) =
1

3Σt

. (2.16)

or more accurate definitions. A two-group neutron diffusion Equation (6.1) is used in one of

our numerical tests and discussed in Chapter 6.
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Chapter 3

The Power and Flattened-Power

Methods

This chapter contains a general description of the power method and the flattened-power

method and describes their application to the k-eigenvalue neutron transport problem. All the

eigenvalues and eigenvectors of a system matrix can be calculated by solving the characteristic

equation,

det(A− λI) = 0 , (3.1)

where I represents the identity matrix. However, the computational cost of solving this

equation directly can be extremely high for large systems.

Iterative algorithms solve the eigenvalue problem by producing sequences that converge to

the eigenvalues or the eigenvectors. In common applications, the eigenvalue sequences and

eigenvector sequences are expressed as sequences of similar matrices. Those sequences will

converge to a triangular or diagonal form, which reveal the eigenvalues directly.

Such iterative algorithms have been used for a variety of applications. Throughout scientific

computing, some algorithms might not be applicable to general systems, but might be applied

to hermitian or symmetric systems. On the other hand, the cost per iteration and the
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convergence rates can also depend greatly on the problem, which could be more than an

order of magnitude sometimes.

Some of those iterative algorithms can produce all the eigenpairs or eigenvalues. However,

as mentioned in Chapter 1, only the largest eigenvalue and corresponding eigenvector are

relevant in the k-eigenvalue transport problem. Although there are many iterative methods

used for this type of eigenvalue problem, such as the QR algorithm, the Bisection method,

and the Jacobi eigenvalue algorithm, the traditional power iteration is the simplest method

to determine the fundamental mode and corresponding eigenvalue. This method goes by

many names such as power iteration and Von Mises iteration23. Moreover, some of the

more advanced eigenvalue algorithms are in some sense variations of the power iteration; for

example, Arnoldi iteration24, like the power method, requires the repeated application of A,

but takes advantage of the whole Krylov subspace.

3.1 The Power Method

The power method is a simple algorithm for identifying the largest real eigenvalue of a matrix

A and its corresponding eigenvector. The basic algorithm is summarized in the following

steps:

1. Let λ
(0)
0 = 1 and x

(0)
0 be a random, real vector normalized such the ||x(0)

0 || = 1.

2. Set x
(i)
0 = Ax

(i−1)
0 , where (i) represents the ith iteration.

3. Update λi = k||x(i)
0 || and set x(i) =

xi

||xi||
.

4. Repeat steps 2 and 3 for i = 1, 2, . . . until ||x(i) − x(i−1)|| < τ for some tolerance τ .

Here the subscripts (i) indicates the iteration.
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3.2 Convergence

The convergence rate is an important evaluation criteria on for comparing iterative method.

In practice, the rate of convergence of the power method depends on the relative magnitudes

of the leading eigenvalues. In other words, the usefulness of the power method depends upon

the ratio |λ1|/|λ0|.

The initial guess x
(0)
0 can be expressed as a sum of the weighted eigenvectors of A, i.e.,

x(0) = c′0x0 + c′1x1 + c′2x2 . . .

= c′0

(
x0 +

c′1
c′0

x1 +
c′2
c′0

x2 . . .

)
= c′0 (x0 + c1x1 + c2x2 . . .) .

(3.2)

Because normalization of an eigenvector is arbitrary, let c′0 = 1. Then, application of the

operator A to this initial guess leads to

Ax(0) = Ax0 + c1Ax1 + c2Ax2 + . . .

= λ0x0 + c1λ1x1 + c2λ2x2 + . . .

= λ0

(
x0 + c1

λ1

λ0

x1 + c2
λ2

λ0

x2 + . . .

)
.

(3.3)

Consequently, the repeated application of A yields

Anx(0) = λn0

(
x0 + c1

(
λ1

λ0

)n
x1 + c2

(
λ2

λ0

)n
x2 + . . .

)
, (3.4)

which shows that if |λ0| > |λ1|, then Anx
(0)
0 will tend toward the direction x0 at a rate

governed by the “dominance ratio” |λ1|/|λ0|. Because λn0 may grow without bound (or

vanish), normalization is required during the iteration, as is included in the algorithm

above.

As long as the fundamental mode and its corresponding eigenvalue are real and the initial
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guess x(0) is not perpendicular to the fundamental mode x0 (i.e., xT0 x(0) 6= 0), the power

method will converge to the dominant eigenpair (x0, λ0).

3.3 Application to the K-eigenvalue

Consider again Eq. (1.1), the k-eigenvalue problem. Such a problem is a generalized eigenvalue

problem. In order to apply the power method to this problem, one must set A = T−1F

and recognize k0 = λ0, the dominant eigenvalue shown in Chapter 2, the operator T is the

discrete-ordinates equation, while T = (I−DL−1MS) when diffusion is applied. Because

the matrix T is readily constructed in the diffusion approximation, the application of T−1

implies a straightforward converged solution of a linear system. However, for transport, the

process is much more complicated, and the operator T is rarely constructed in practice. Each

application of T−1 requires a complete solution of the inhomogeneous multigroup equation

Txi = Fxi−1. Because T is not formed explicitly, iterative techniques based on the application

of T are needed. The number of transport sweeps (over space and angle) is a good measure for

the total computational cost of a method because a sweep is the single most computationally

expensive operation. To distinguish it from power iterations, the iterations required to solve

the inhomogeneous equation needed to invert T are called inner iterations. As a result, the

power method leads to two, nested iteration levels: the outer iteration(eigeniteration) and
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inner(source iteration). This algorithm is summarized as follows.

Algorithm 1: Power Method for K-eigenvalue Problem

Result: dominant eigenvalue and steady-state neutron flux

initialize scalar flux φ0 and eigenvalue k ;

while RHS not converged do

compute fission source (b = 1
k
DL−1MFφi−1);

while LHS not converged do

compute scattering source (Tφi = b);

end

update eigenvalue k;

normalize eigenvector φi ;

end

3.4 Flattened Power iteration

The power method can be modified in many ways to improve the overall efficiency, and one

possible way is achieved by varying the level of precision of the inner iterations. For example,

by setting the inner tolerance to be proportional to the current outer residual or some other

measure of the current level of error in the outer iteration, one reduces time spent solving the

multigroup equation with unconverged fission sources. Another would be to fix the number

of inner iterations for each outer iteration. Note that the scattering and fission sources are

not completely converged in every outer iteration while either of the inner iteration strategies

is used.25

The outer iteration in the full power method often requires fewer and fewer inner iterations

to converge when it gets close to the final solution, and, therefore, eventually just one

inner iteration may be required the solution. This observation has lead to an important

alternative often used in practice, called flattened power iteration (FPI), in which a single

(space-angle-energy) transport sweep is performed for every power iteration. The flattened
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power method converges the scattering and fission sources simultaneously.

The scattering matrix is moved to the right side of Equation 2.7, and, thus, step 2 from the

full power iteration becomes

x(i) = DL−1M(S +
1

k
F)x(i−1) . (3.5)

In this formulation, the inner iteration level is eliminated, by using a single sweep over all

the phase-space variable when validating on the neutron flux from the previous iteration,

Compared to the traditional power iteration, the computational cost of a single iteration in

FPI in this form is obviously cheaper. Although this scheme may require more outer-most

iterations (i.e., updates of k), the total cost of solving the k-eigenvalue problem is often

reduced significantly.25 Another great feature of this approach is easy to incorporate in existing

power method implementation by limiting the number of inner iterations to one.
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Chapter 4

Dynamic Mode Decomposition

Before introducing how to use dynamic mode decomposition to accelerate the power and

flattened power methods, we will first review the details of DMD. As mentioned in Chapter 1,

the details of DMD are different based on the application. However, most of these varieties

share a familiar, straightforward frame. Here, the most widely-used variant (called “standard

DMD” here) will be shown as an example to represent the algorithm.

To start, first consider the generic, dynamic problem defined by

dx

dt
= f(x, t) , (4.1)

where x ∈ Rn is the n-dimensional state vector at time t. With sufficiently small steps in

time, the evolution of x can be well approximated by a relationship of the form

dx(t)

dt
= Ax , (4.2)

where the evolution operator A may be unknown and can be considered a “black-box” system.

However, one can obtain the system state xn at different times, which are then stacked as
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the past and future snapshot matrices X0 and X1, i.e.,

X0 = [x0,x1, . . . ,xm−1] , (4.3)

and

X1 = [x1,x2, . . . ,xm] . (4.4)

Suppose A is the discrete-time approximation of the mapping operator A:

A = eA∆t . (4.5)

Then,

xk+1 = Axk, k = 0, 1, ..., . (4.6)

In general, the approximate operator A not reproduce the xi exactly, but a “best” approxi-

mation can be formed in a least-squares or minimum-norm sense by solving

A = argmin
A
||X1 −AX0||F . (4.7)

Thus, the best-fit operator A is formally given by

A = X1X
†
0 , (4.8)

where X†0 is the Moore-Penrose generalized inverse of X1. It is possible (and typical) to use

SVD factorization to find the inverse of X1 by

X0 = UΣV∗ → X†0 = VΣ−1U∗ , (4.9)

where U ∈ Cm×n, V ∈ Cn×n, Σ ∈ Cn×n, and ∗ indicate the conjugate transposes.

However, considering that the number of unknowns in this matrix is often large during
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numerical simulations, the matrix A is not computed explicitly. A low-rank approximation

of the original dynamic system Ã is formed, i.e.,

Ã = U∗rAUr . (4.10)

Then using Eq. (4.8), the reduced order Ã is defined by

Ã = U∗rX1VΣ−1 . (4.11)

Now extract the r largest eigenvalue and corresponding eigenvectors from Ã as the DMD

modes Φ, which can be treated as the leading r eigenvectors of A. Note that the solution of

Eq. (4.2) is

x(t) = eAtx(0) , (4.12)

and A is a discrete-time approximation of eA∆, which can be applied to the initial condition

using the matrix exponential to compute the solution at a particular time. Moreover, the

discrete eigenvalues λi of A can be used to compute the continuous eigenvalues ωi = log(λi)/∆t.

Subsequently, the state can be reconstructed at any time t by a given initial condition

xDMD(t) ,
r∑
i=1

φie
ωitbi , (4.13)

where b = Φ†x0.

The general DMD scheme is summarized as

1. Compute SVD decomposition of the forward snapshots matrix, i.e., X0 = UrΣrV
∗
r,

where r indicates the rank of matrix.

2. Compute Ã = U∗rAUr = U∗rX1VrΣ
−1
r , where A and Ã are similar matrices.

3. Compute the eigendecomposition ÃW̃ = ΛW̃.

4. Calculate the DMD modes as Φ = X1VrΣ
−1
r W̃.
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5. Predict the response by xDMD(t) ≈∑r
i=1φie

ωitbi = Φdiag(eωt)b, where b = Φ†x0.
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Chapter 5

The DMD-PM(n) Method and The

DMD-FPM(n) Method

5.1 An Accelerated Power Method using DMD

The ultimate goal of this section is to develop a method that uses DMD to extrapolate

eigenvectors and eigenvalues from a reasonably small number size of snapshots to produce

an estimated eigenvector close to the final, steady-state solution. The difficult part of this

strategy is that DMD itself needs to extract information from a time-dependent, dynamic

system due to extrapolating the prediction results in the “future”. However, the power

iteration does not recover the realistic physics transient process.

Note that because ωi = log(λi) while ∆ = 1, xDMD(t) is a “fictitious” time step corresponding

to a single power iteration. First, suppose that m power iterations have been performed to

produce the snapshot matrices X0 and X1, where the series of snapshots are not ordered by

the sequence of time but rather by the number of power iterations. We follow the standard

DMD approach as discussed in Chapter 4 and generate leading r DMD modes and eigenvalues.

Next, we can set t to a value much larger than the current number of snapshots employed
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and predict a new x, which can be normalized and applied as an initial guess for a new

application of the power method.

Here, we will explore a modification from the original recovery scheme. The eigendecomposi-

tion of A or the reduced-order approximation of Ã leads to a set of approximate eigenvectors

and eigenvalues ej ≈ λj/λ0. As previously discussed in Section 3.2, the convergence of the

power method requires that λ0 is larger than any other eigenvalues, thus

e0 = 1 and ej < 1, j = 1, 2, 3, 4... . (5.1)

There are many strategies to select the optimal rank of DMD modes r used to fit the original

system A. Alternatively, because the power method can only reveal a single, dominant

mode if the assumptions described in Chapter 3 are satisfied, only one mode recovered by

DMD should remain at t = ∞, which is the fundamental eigenmode. This phenomenon

can also be proven in a numerical perspective, as mentioned at Eq. (5.1), all other modes

with eigenvalue smaller than one will vanish eventually when the diagonal matrix eωt is

applied at t =∞. Therefore, instead of computing all the DMD modes and predicting the

response by Eq. (4.13), we can simply compute only the dominant DMD mode and predict

the steady-state solution

xDMD(∞) ≈ φ0b0 , (5.2)

where b0 = φT0 x0.

This simplification eliminates the noise from higher modes, which decreases the cost of

reconstructing the future solution. In order to accelerate the power method with DMD, the

following DMD-PM(n) algorithm is proposed:

1. Guess x(0) and normalize.

2. Perform n power iterations to produce X0 and X1

3. Compute the DMD modes and frequencies using a rank-r, truncated SVD (i.e., r < n)
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4. Apply Eq. (4.13) or Eq. (5.2) to estimate x(∞) = x(∞), i.e., estimate the steady-state,

dominant mode after an equivalent of ∞ power iterations.

5. Set x(0) = <(x(∞))/||x(∞)||.

6. Repeat Steps 1 through 5 until converged.

By restarting the process, numerical errors caused by ill-conditioned snapshot matrices can

be minimized. Stability analysis using either Eq. (4.13) or Eq. (5.2) and other numerical

challenges are represent in Chapter 6. Note that the normalization in step 5 is important for

reducing numerical round-off errors introduced by growing (or decaying) iterates.

5.2 The DMD-FPM(n) Method

As mentioned in Chapter 3, the flattened power method is a more efficient approach for solving

the multigroup neutron transport equation. We have discussed a restarted, DMD-accelerated

power method scheme, which suggests that there is potential to develop this algorithm to fit

the flattened power method. This section contains a complete description of an accelerated

flattened power method using DMD.

The basic framework of DMD-FPM(n) is similar to DMD-PM(n). The main difference is that

the snapshots are now generated by the flattened power method. In short, a set of flattened

power iterations are performed, then, DMD uses the snapshots to correct the dominant mode

and eigenvalue, which is used to continue power iterations. The process can be repeated until

the results converge, which leads to a restarted DMD-FPM (or DMD-FPM(n)).

5.2.1 Aitken Extrapolation

Note that not only is the eigenvector required at every restarting point but also the corre-

sponding eigenvalue. The updated eigenvalue in the DMD-PM(n) algorithm is equal to the

norm of the DMD predicted eigenmodes. One significant drawback of the flattened power
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method is that we cannot compute the corresponding eigenvalue by the DMD response,

because the eigenvalue has already been applied to the snapshots of neutron flux. In other

words, there is no easy way to find the eigenvalue k associated with the predicted x, which is

projected forward in “time”. Therefore, there would be an inherent mismatch between the

accelerated dominant eigenvector and its eigenvalue.

Many mathematical approaches were tested to extrapolate an eigenvalue to match the DMD

eigenvector. A first attempt used the last computed eigenvalue, i.e., an eigenvalue that may

be the equivalent of tens or hundreds of flattened power iterations in the “past.” However,

the error caused by that choice of eigenvalue tended to reduce the improvement of the DMD

extrapolation significantly, which erased all the improvement from DMD sometimes. Another

attempt was to insert the eigenvalue as the first element in the snapshot, which did not

work either. The reason might be that we modified the standard DMD algorithm, and only

dominant modes were used. Some other failures include linear and polynomial extrapolation.

In order to predict a more appropriate eigenvalue, Aitken extrapolation was employed26

as

kaitken = ki−2 −
(ki−1 − ki−2)2

(ki − 2ki−1 + ki−2)
, (5.3)

where ki is the eigenvalue from the ith iteration of the flattened power iteration. Although

Aitken extrapolation does not eliminate the error from eigenvector/eigenvalue mismatch

completely, significant improvement in all the numerical tests was observed.

The procedure for applying DMD to the flattened power iteration with Aitken extrapolation

is summarized as follows.

1. Assume k(0), x(0) and normalize.

2. Perform n flattened operator applications (Eq. (3.5)) to produce X0 and X1.

3. Compute the DMD modes and frequencies using a rank-r, truncated SVD (i.e., r < n).

4. Apply equation x0 =
b0φ0

||b0φ0||
to estimate x(∞) = x(∞), i.e., estimate the steady-state,

dominant mode after an equivalent of ∞ power iterations.
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5. Update k(0) by Aitken extrapolation.

6. Repeat Steps 1 through 5 until converged.

Both DMD-PM(n) and DMD-FPM(n) are tested to verify the performance to accelerate

solving neutron transport/diffusion problem. The testing cases and numerical analysis are

presented in the following chapter.
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Chapter 6

Results and Analysis

This section contains a complete description of the test problems for modeling as well as

results from numerical studies. To illustrate the performance of using the DMD-PM(n)

method and the DMD-FPM(n) method, several test problems were analyzed. In all cases,

the fundamental eigenmode was computed using a power method implementation as the

benchmark and the snapshot generator for use with DMD.

6.1 Test problem

The test problems considered are (1) the 2-D, IAEA diffusion benchmark27, (2) a 1-D,

70-pin BWR core model28, and (3) the 2-D C5G7 benchmark29. Problem(1) is used to test

the DMD-PM(n) method, and Problem(2) Problem(3) are used to test the DMD-FPM(n)

method.

6.1.1 Test problem for DMD-PM(n)

The well-known, two-dimensional (2-D) International Atomic Energy Agency (IAEA) diffusion

benchmark was used to test the DMD acceleration algorithm proposed in Chapter 4. The
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governing diffusion equations are

−∇D(r)1∇φ1(r) + Σr1(r)φ1(r) =
1

k
(νΣf1φ1(r) + νΣf2φ2(r))

−∇D(r)2∇φ2(r) + Σa2(r)φ2(r) = Σs1→2φ1(r) ,

(6.1)

where the notation defined in Chapter 2. All parameters including the cross sections are

defined in the technical report published from Argonne National Laboratory. The basic core

layout is shown in Figure 6.1, where the west and south boundary are reflective, and the

north and east boundary are subject to vacuum conditions.
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Figure 6.1: Geometry as modeled for the IAEA 2-D diffusion benchmark. Material properties
can be found in the benchmark documentation. Materials 0 and 1 are fuel, material 2
represents control, while material 3 represents the outer reflector.

The mesh-center, finite-volume approximation was employed on a uniform, 45 × 45 spatial

mesh. The discrete ordinates transport code DETRAN was used to generate the explicit
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system matrix A. Upon discretization, the entire set of equations was cast in terms of the

fission source density, i.e., f = νΣf1φ1(r) +νΣf2φ2(r), which results in a 2025×2025 operator.

Hence, problem(1) is not large, but it proved to be a valuable test case for the method, and,

therefore, ensured a reasonable computing time while debugging the code.

All calculations were initialized with a vector in which each element was sampled from

the uniform distribution U [0, 1]. This randomized starting vector helps to ensure that all

eigenmodes can be present. A formal sensitivity study was not performed to understand

how this initial guess impacts the algorithm performance, but scoping studies suggest there

is little impact on the number of iterations required for any particular algorithm. In this

case, a reference solution was computed using the implicitly-restarted Arnoldi method as

implemented in SciPy30. All DMD calculations were performed using the Python package

PyDMD31.

6.1.2 Test problem for DMD-FPM(n)

To illustrate the performance of this method, a simple 1-D test problem was designed

to resemble a slab BWR core. This testing case was adapted from previous, transport

applications from Rahnema et al. 28 . The geometry of the 2-group BWR test case is shown in

Fig. 6.2.

Core 1

VacuumVacuum

Assembly 1 Assembly 2

1.1176 cm3.2512 cm

UO2-1 UO2-2 UO2-Gd Water

Figure 6.2: Configuration for the BWR Test Problem

This core configuration had two unique assemblies. Three fuel types were used, including 4.5

% enriched UO2 , 2.5% enriched UO2 , and 4.5 % enriched UO2 with 5 wt% Gd2O3. Fuel

pins for this problem were 3.2512 cm thick with 1.1176 cm of a moderator on each side. The
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baseline pincell discretization consisted of 18 mesh cells of fuel enclosed by six mesh cells of

moderator; therefore, each pincell contained 30 mesh points. Boundary conditions on both

sides for this case are subject to vacuum conditions.

The final test problem was the well-studied 2-D C5G7 benchmark29, which was used to verify

the performance of the algorithm for multi-dimensional problems. The configuration of the

benchmark was adapted from Reed 32 . The configuration of a quarter core contains four

fuel-pin assemblies and five moderator assemblies as shown in Figure 6.3. Each fuel assembly

used 17 × 17 individual pincells, and the geometry of a UO2 assembly is shown in Fig. 6.4,

while that of a MOX assembly is shown in Fig. 6.5. Here, each pincell is discretized on a 7×7

Cartesian mesh. The dimensions are shown in Fig. 6.5.
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Figure 6.3: Configuration for the C5G7 benchmark. Each square represents the area of a
17× 17 pin assembly

Here, the neutron transport equation for both 1-D and 2-D problems are solved by the

discrete ordinates method, and all DMD calculations were performed using the PyDMD31.

An S4 Gauss-Legendre quadrature was used with the diamond difference approximation. The

reference eigenvalue and eigenvector were computed using full power iteration (i.e., fully

converging the scattering source at each eigen iteration).

32



Figure 6.4: Configuration for a UO2 fuel bundle. The green represents a UO2 pincell, while
the blue represents a guide tube modeled as a pincell filled with moderator

6.2 Results for DMD-PM(n)

As mentioned in the previous chapters, the major cost of the power method is from solving

Ax = b. In this case, the computational time is proportional to the number of iterations.

Thus, the number of iterations is used as the indicator of computational cost in the following

comparisons.

6.2.1 Skipping Ahead with DMD-PM(n)

As a first test of the method of DMD-PM(n), the goal was to verify that DMD predicted

eigenmodes prediction are closer to converged solutions. A series of n power iterations were

performed to generate the snapshots, then the dominant eigenmode was reconstructed as

a function of iteration using Eq. (4.13). The absolute error with respect to the reference
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Figure 6.5: Configuration for a MOX bundle. The light red represents 4.3% MOX fuel, the
medium red represents 7.0 % MOX fuel, and the dark red represents 8.7% MOX fuel. The
blue represents moderator (i.e., light water)

eigenmode was computed as the euclidean norm of the differences, or

||e|| = ||x∗i − xref ||2 . (6.2)

The results shown in Figure 6.7 are predicted using different number n of snapshots where

“time” is increasing. Shown in parentheses is the number of equivalent power iterations

to which the final, saturated error in the DMD prediction corresponds. For example, the

application of 30 power iterations leads to a DMD surrogate that can predict an eigenmode

with an accuracy equal to 149 power iterations, a substantial skip ahead in the number of

iterations.

The error is shown in Figure 6.7 approaches an asymptotic, lower bound as predictions

are made beyond the number of power iterations used to generate the DMD surrogate. As

expected, a larger snapshot matrix can provide more information for learning the function

and mapping a more accurate output. Note that the final result reaching the lower bound
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1.26 cm

0.54 cm

Figure 6.6: Configuration for pincell. The circular fuel element had a radius of 0.54 cm and
was homogenized with cladding for this model.

here is very closed to the direct solution predicted by only the dominant DMD modes Φ0,

which demonstrates that our modified Equation (5.2) can produce results with the same level

of accuracy.

6.2.2 Application of Restarted DMD-PM(n)

As mentioned in Chapter 4, the DMD-PM(n) should restart from a set of snapshots multiple

times until the solution converges. To test the performance of the iterative application of the

DMD-PM(n) scheme, we used a fixed number n at every restart to research the convergence.

The results are shown in Figure 6.8, which also includes the error for the unaccelerated PM

and the Arnoldi method. Here, the Arnoldi method was used without restarts. The results

shown for the Arnoldi method are as a function of the size of the subspace used.

Note that the restart value for Restarted DMD-PM(n) were selected as same as the skip

ahead test. Although a larger restart value can often yield a better acceleration, storing a

larger number of snapshots uses more memory and requires more operations during the SVD

decomposition. Here, we consider each DMD extrapolation process as an iteration on the

horizontal, and, therefore, the final points do not match exactly.

In this case, 10−14 is used as the tolerance for convergence. For reference, approximately 800

unaccelerated power iterations are required to reach this error. Ignoring the cost from DMD,
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Figure 6.7: Error in the DMD-predicted, dominant eigenmode as a function of iteration.
The legend shows the number of power iterations n used to construct the surrogate, and in
parentheses is the effective number of power iterations the DMD surrogate can produce.

the best DMD-PM(50) only required around 150 iterations to reach the same error, thus

providing (5×) speedup compared to unaccelerated power iterations.

On the other hand, there is a significant performance difference between DMD-PM(n) and

the Arnoldi method, which is also expected. The Arnoldi method only requires around 40

iterations to converge. The Arnoldi method is based on a subspace that undergoes continuous

orthonormalization, which produces a better-conditioned and, likely, richer basis than can be

produced by successive application of A to a single vector. Consequently, it is inapplicable

when the explicit form of A is not available.
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Figure 6.8: The error in the predicted eigenmode for DMD-PM(n), where n is the number
of power iterations performed. Errors are also included for the power method (PM) and
Arnoldi’s method.

6.2.3 Restarted DMD-PM(n) for Higher Modes

Note that DMD-PM(n) is based on construction of Krylov subspace, therefore, it should be

able to recover the higher-order modes approximately. However, an unrestarted DMD-PM

approximation produces to an ill-conditioned basis and, hence, cannot produce approximations

for higher-order modes with reliable accuracy. Moreover, the iterative DMD-PM(n) using

Eq. (5.2) throws away all higher-order modes upon the restart. Instead of using only the

dominant DMD modes, the dominant mode was kept with a small contribution from the next

two modes in order to capture the three modes with the largest eigenvalues. Specifically, the

initial guess at each restarts was computed by x0 + ε(x1 + x2), where ε is a small value (here,

10−4). Consequently, the next iteration contains some contribution from the higher-order

space.

The reference modes are shown in Figure 6.9. The largest three eigenvalues and their
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corresponding modes were recovered using the second, third, or fourth iterations of DMD-

PM(30) as approximations for the first three eigenpairs of the original system. Errors in

higher-order mode estimates were found to depend on the randomized initial guess for the

first power iteration, and the representative values of the absolute errors in the DMD-PM(n)

approximations are shown in Figure 6.10, where computed eigenvectors were normalized to

unity.

As can be observed, the error in the dominant mode after two iterations (1.77 × 10−7) is

nearly unchanged from the case in which higher modes are not kept (1.54× 10−7); see Figure

6.8. However, the performance does degrade somewhat thereafter, with errors after three

and four iterations of approximately 4.94× 10−9 and 1.38× 10−10, respectively, compared to

9.90× 10−11 and 3.00× 10−12 in Figure 6.8.

The absolute errors in the two higher-order modes (and their eigenvalues) are much larger

than the error for the dominant mode, and these errors are also decreasing with each iteration.

Similarly, the third and fourth iteration also degrade for the two higher-order modes, especially

the third largest eigenpairs. The error of the second order modes reach 1.28× 10−3 after 3

iterations, and still provide fair improvement in the fourth iteration. Meanwhile, the error of

the third order eigenpair only reaches 5.18× 10−2 after 3 iterations and keep at the same

level in the next iteration.

λ0/λ0 = 1.000000 λ1/λ0 = 0.972373 λ2/λ0 = 0.962023

−0.05

0.05

Figure 6.9: First three reference eigenmodes; the corresponding eigenvalue ratios are shown
above.
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e0 = 1.000000 e1 = 0.972414 e2 = 0.960899

−0.05

0.05

1.77×10−7 7.39×10−3 1.00×10−1

−4×10−3

1×10−3

7×10−3

(a) Two iterations of DMD-PI(30) with retention of 3 approximate modes.

e0 = 1.000000 e1 = 0.972376 e2 = 0.962036

−0.05

0.05

4.94×10−9 1.28×10−3 5.18×10−2

−9×10−5

1×10−3

2×10−3

(b) Three iterations of DMD-PI(30) with retention of 3 approximate modes.

e0 = 1.000000 e1 = 0.972373 e2 = 0.962023

−0.05

0.05

1.38×10−10 8.60×10−5 5.19×10−2

−5×10−6

1×10−3

2×10−3

(c) Four iterations of DMD-PI(30) with retention of 3 approximate modes.

Figure 6.10: Shown in the top row of each subfigure are the first three modes as computed
from several applications of DMD-PM(30). The second row shows the error ei = xreference

i −
xapproximate
i . The corresponding ei ≈ λi/λ0 (top row) and norm of the error ||ei||2 (bottom

row) are also shown.
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6.3 Results for DMD-FPM(n)

As mentioned in the Chapter 3, the flattened PM eliminates the inner iterations and only

apply one transport sweep each iteration. Therefore, we used the number of sweeps as the

measure for the total computational cost, which is equivalent to the number of iterations.

Two similar tests on different geometries are conducted and solved for a variety of restart

values n to study the optimum condition. The reference solutions were computed using the

power method (i.e.,fully converging the scattering source at each eigeniteration). The error is

defined as the same as Equation (6.2), and the tolerance of convergence is set as 10−8.

6.3.1 DMD-FPM(n) for 1D BWR Test Problem

To compare performance, the generalized k−eigenvalue problem was solved first by flattened

power iteration, which used 3445 transport sweeps for this BWR problem. The best DMD-

FPM(n) algorithm used 40 snapshots, and required approximately 270 transport sweeps, thus

providing more than an order of magnitude reduction in the computational cost.

This case shows that using a larger number of snapshots cannot promise a faster convergence for

DMD-FPM(n). The reason might be the error remaining from mismatched eigenvalues.

6.3.2 DMD-FPM(n) for 2D C5G7 Test Problem

Similar to the 1-D results, the results of C5G7 2-D benchmark also show that the best

condition of DMD-FPM(n) algorithm has significant speedup compared to flattened power

iteration, which required 351 transport sweep to reduce error to 1e−8 while using 30 snapshots

each restart. For reference, approximately 1570 unaccelerated flattened power sweeps are

required for this problem to be fully converged. As expected in this case, a small increase

in error may be observed more obviously for each application of DMD-FPM(n) due to the

previously discussed eigenvalue error. And the best case is not using the most number of
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Figure 6.11: The absolute error in the predicted eigenmode for DMD-PM-aitken(n) for the
1D BWR problem, where n is the number of transport sweeps performed.

snapshots, though the difference of sweeps is relatively small.

Using DMD too frequently (i.e., small n) might produce a large numerical error from SVD

decomposition, the error increase many levels of magnitude from DMD. This is the reason

why DMD-FPM(10) did not reduce the error to within the target range. The total numbers

of transport sweeps required to reach a tolerance of 10−8 are shown in Table 6.1.

Table 6.1: Number of transport sweep

FPM DMD-FPM(10) DMD-FPM(20) DMD-FPM(30) DMD-FPM(40) DMD-FPM(50)

BWR 3444 515 307 267 256 363
C5G7 1570 N/A 395 351 377 395
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Figure 6.12: The absolute error in the predicted eigenmode for DMD-PM-Aitken(n) for the
2D C5G7 problem, where n is the number of transport sweeps performed.
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Chapter 7

Conclusions and Future Work

7.1 Summary

First, the principal objective of this thesis was to accurately estimate fundamental eigenmodes

by using DMD to accelerate the power method and flattened power method for multigroup

neutron transport/diffusion problems. Although DMD is a useful tool for extracting informa-

tion from data, often it can only be applied on the snapshots from the time-dependent dynamic

systems. In Chapter 5, we have presented a new scheme for identifying fundamental eigenvec-

tor by an improved DMD algorithm using only the dominant DMD modes, which allows us

to correct the solution by a more accurate estimation of the steady solution. This restarted

version DMD-PM(n) can be applied repeatedly to accelerate the power method.

Flattened iterations update the fission and scattering source at the same time and reduced

the total number of transport sweeps in practice, and, thus, are widely used as an more

efficient alternative of the power method. Therefore, we also explored a similar scheme

DMD-FPM(n) to improve the convergence rate of the flattened power method. Because the

eigenvalue cannot be computed by the eigenvector from flattened operator, the Aitken method

is employed to extrapolate the eigenvalues corresponding to the DMD prediction.
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For the comparison, three test problems were conducted, which include (1) a 2-D, IAEA

diffusion benchmark, (2) a 1-D, 70-pin BWR core model, and (3) the 2-D C5G7 benchmark.

Through all the numerical examples, we demonstrated that both acceleration schemes provide

promising speedup. The choice of the number of snapshots to DMD greatly impacts the

effectiveness, the DMD-PM(50) case used only 25% number of power iterations to solve the

IAEA diffusion problem. This scheme has also been used to produce an approximation of

higher-order modes. Unfortunately, the accuracy of the two higher-order modes is not as good

as the dominant mode. Although DMD-PM(n) might not be competitive with other advance

acceleration schemes (e.g., the Arnold method), there do exist applications for which access

to iterates is only available in a postprocessing sense. As can be expected, DMD-FPM(n)

provided approximately a 5x−10x speedup for the two cases studied. However, the failure of

DMD-FPM(10) in solving C5G7 case indicate that DMD might produce a large numerical

error from SVD when the results are closed to the steady-state solution because the snapshots

are linearly dependent. In this case, the DMD should be stopped, then use only the power or

flattened power method to reduce the error to within the target range.

7.2 Future Research

In this section, we describe the future direction and substantial value of using these methods

in other areas. While these results are promising, the performance of both schemes is

not expected to outperform some other popular methods, such as the generalized Davidson

method33 and coarse-mesh finite difference5. In reactor analysis, the use of stochastic methods

(i.e. Monte Carlo simulations) is widespread. Following this thesis, the application of DMD-

PM(n) and DMD-FPM(n) may be able to accelerate Monte Carlo eigenvalue problems for

convergence by regressing the distribution tendency of neutron population from DMD modes.

In this way, only a small size of neutron populations are sufficient to generate snapshots and

extract information, which might be comparable to the other acceleration methods.

Although Aitken extrapolation could estimate the eigenvalues corresponding to DMD re-
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sponses, errors still exist at almost every restart point, and, therefore, reducing the desired

accuracy. More work can also be done in the future to compute the corresponding eigenvalues,

which can improve the performance while a great amount of restarted process is required in

the large scale systems.
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