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I. INTRODUCTION

In studying the problem of a noncoherent frequency shift keyed (FSK)
system operating in the presence of multipath fading, one finds there
is substantial literature available dealing with the subject.

One of the earliest and surely most important is that of Chadwick (1).
In this paper, the results of the work by Glenn (2) and Boyd (3) on non-
coherent FSK detection were used and their technique was applied to the
problem of multipath interference. This technique relies on the sampling
theorem to evaluate the output of an integrate and dump stage in the form
of a summation. Variations on this method can be found in papers by
Austin (4), Austin and Milstein (5) and Schuchman (6). All of these rely
on the approximation of the postdetection filter by sampling and summing
techniques.

Probably the most useful work can be found in a paper by Kwon and
Shehadeh (7). Unlike the aforementioned authors, they have used the
sinusoidal series expansion technique for the representation of a band-
limited Gaussian process as developed by Yaglum (8).

Figure 1 shows a diagram of a typlcal system. The received signal
has both direct aand reflected components. The most general case must
assume the receivar and/or the transmitter are mobile units. The re-
lationship between the reflected and direct signals is thus a random
process. Because the characteristics of the direct signal are known,
those of the reflected signal are random variables. In addition, the
noise in the channel can be assumed to be white Gaussian noise. Because
of these factors, signal processing techniques, as well as communication

theory, are basic to the study of the problem.
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The major purpose of this paper is to show the development of a
package of computer programs to generate the values for probability of
error as calculated from the equations derived by Kwon and Shehadeh.

This report begins with a review of the derivation with additiomal
comments where appropriate to clarify some points due to the conciseness
of the reference. It is then shown that the equations derived in an
earlier paper by Kwon and Shehadeh (9) associated with the noncoherent
detection of FSK are a special case of this derivation.

With this, the programs were developed to incorporate the results
of both cases (7), (9) and to simulate either system at the user's
discretion.

Some considerations in the development which imposed major constraints
on the structure and logical flow of the programs were memory available,
excessive run time and round-off error. The implications of these
factors and the techniques used to overcome them are discussed in detail

as their effects appear in the generation of the programs.



II. DERIVATION OF EQUATIONS FOR SYSTEM WITH MULTIPATH FADING

The following section is an explanation and clarification of the
derivation by Kwon and Shehadeh (7). In analyzing the problem one must
begin with a diagram of the receiver, Figure 2. Although this is by
no means neither the only system nor the optimum one, it is one that is
commonly used for the detection of FSK signals.

The received signal is the sum of the direct signal, the reflected

signal and the noise.

r(t) = 5,(t) + S_(t) + N(t) CEEET
where
Sd(:) = Acos (mit + Awt) i=0,1
§.(t) = R(t)cos [wt + ¢(¢)] 1)

R(t) and ¢(t) have Rayleigh and uniform distributions, respectively,
and are assumed to be statistically independent.

When setting up the model one has two extreme conditions for fading.
One is that of fast fading. This is the case when the fading bandwidth
is much larger than the information bandwidth. The other condition is
called slow fading and occurs when the fading bandwidth is much smaller
than that of the information signal. In the general model both fast
and slow fading exist simultaneously. In the case of slow fading, all the
reflected signal is passed through the band pass filter. This results
in maximum fading degradation. We will analyze the system for this worst
case.

The time delay of the reflected signal with respect to the direct

signal will in general be a random variable. We will consider the two
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specific cases which give the best and worst performances.
1. Direct and reflected signals both at the frequency fo over
the entire bit interval,
2. Direct signal is at frequency fo whole the reflected
signal is at frequency fl over the entire bit interval.
Since any system will be a combination of the two cases the performance
will fall somewhere between the best and worst case. We can assume the
cases occur with equal probability, .5. Then we can analyze the system
under Case 1. From these results we can then generalize the results
for Case 2, which we average to obtain the final result. Under these

assumptions: slow fading and Case 1;
zo(t) = Sdo(t) + Sro(:) + No(t)
Zy(t) = N, (t)

where

Sdo(t) = Acos mot
SrO(t) = yco(t) cos wyt + yso(t) sin mot

No(t) = Nco(t) cos mot -+ NSO(t) sin woc

Nl(t) Ncl{t) cos w,t + Nsl(t) sin w,t (2)

1 5 §

Thus, the output of the integrate and dump stage can be written as

Y(t)-dﬁ—dl-(d +d - (d,, +d (3)

o1 ¥ do2) n ¥4

where

T 2
d01 = &) [A + Nco(t) + yco(:}] dt

. 2
dys = % [Nso(t) + yso(t)l dt



T
d,, = fo Nil(t) dt

11

T ..2
| d12 = J’O Nsl(t) dt (4>

The decision is made to accept hypothesis H. 1if ¥(t) > 0. The

0

probability of error can be expressed as
P(E) = P[d, < dllno]
= a
= fo Pq (a)[fo P4 (B) dB] da (5)
0 1
The next step is to derive these probability density functions
and Pq *

0 1
A band limited signal with Gaussian power spectral density function

Py

has a correlation function that can be written as
Rn(t) = E[n(t) n(s)] T = t-g
= {: Sn(f) cos 2n £t df

m
= 1lim I h, cos 2vr £, T (6)
i i
me i=]
when {hi’ fi} are the weights and abscissas with respect to the weight
function Sn(f).

Yaglom has shown (8) that a narrow band Gaussian process n{t) with

zero mean and correlation function given by Eq. 6 can be expanded as

m
n(t) = 1lim I n_ cos 27 fit + nsisin 2n fit (7)
me i=]

where n,y and n, are independent Gaussian random variables with zero
means and variances hi' The correlation function of n(t), which is an
ideal band-limited Gaussian process with zero mean and power spectral

density Sn(f) equal to NG over the frequency interval [-B, B], may be

expressed as



oco8 2nfr df = 2BN0 lim I hicos 2nBz {7 (8)
mre i=]

R(t:)-f N

where h1 and z, are the weights and abscissas of a GQR with respect

to the unit weight function over the interval [-1,1]. From Eqs. 6, 7,
and 8 we can write ncO’ ch as

uco(t) =g lim 131 n ,cos 2nBz t + n_ sin Zsz t

m
0(l:) =¥ 1lim I ¥y
mre i=]

01608 2nBrz t + Ve sin 2nBrz t (9)

where g = (ZBNO)% and ¥ = (AZIZYZ)%. 72 is the ratio of the direct

to the reflected power. uci’ nsi, yci’ are independent Gaussian
random variables with zero means and variances hi‘ Substituting Eq. 9

in Eq. 4 reveals d01 is the integral of the product of trucated summations.

These are much easier to manipulate as matrix products.

d01 = i_.i: ZBNOT 0 [A la + 2A/0 C X + X COXO] dt (10)

XO is a column vector with elements X4 being independent Gaussian

random variables with zero means and variances

2 2 2, 2 2
O i+2m = xi+3m hi! /o SNR hi/T 2BT (11)

The elements of EO are

"
cOi = cos ZHBTzit

coi+1n = gin 2wBTzit

ne

01+2m = cos ZwBrTzit

ne

0i+3m ~ sin ZaBrTzit (12)



T 1%T
ifCO-{) CO

1
fOi,j = Jb cos

f = &) cos

01, 4+m

1
£ =/

0i,j+2m cos

f = [ cos

0i,j+3m

O

=

f =

Oi+m, j+m Kin

a2

fo14m, y+2m = H SIm

fo1+m, 43m = fo 1o

f cos

0i+2m, +2m

fo1+2m,g43m = Jo <08

foi+3m, j+3m = N sin

and the elements of

c., = ﬂ} cos

0i

1
€0 i4+m fo sin

c = fl cos
0i+2m 0

i
o1+3m = o sin

dt and F

1 TV
-fo

0 070

ZﬂBTzit cos ZﬂBszt

ZwBTzit sin anszt

ZﬂBTZit cos ZwBrszt

ZnBTzit sin ZnBrTth

27BTz :I.t sin 2rBrTz jt

ZﬂBTzit cos ZwBrszt dt

2nBTz it sin ZHBrTz jt dt

ZwBrTzit cos ZwBrszt dt

ZiBrTz t sin ZwBrTz t dt

2 3

ZWBrTz t sin 21rBrTz t dt

i k|

T
CD are

ZwBTzit dt
ZnBTzit dt

27B Tz.t dt
r i

2B _Tz.t dt
r i

C.C. dt the elements of F, are

0

(13)

(14)

Making these substitutions leads to

do a lim ZBNOT{A2/02 + 2A/c ch

M-

T
" 0 + XDFUXOI (15)
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i

At this point it is convenient to make a sequence of substitutions
that simplify the calculations needed to find the characteristic

function of dOl' First, let DOVO = xo, where the elements Voi of VO

are independent Gaussian random variables with zero means and unit

variances andlh is a diagonal matrix with elements

0i i

T
oo
of DOFODO in columns. Then the Ung of U0 are independent Gaussian random

variables with zero means and unit variances. Making these substitutions

Next, let U0 = M V_ , where Hﬁ is formed by ordering the eigenvectors

yields

T
2AC
d.. = lim 2,2 0 T
01 ZBNDT[A /o< + e COMOUO - U§M0D0F0D0H0U01 (17)

It is obvious by looking at Eq. 17 that MEDOFODOMO is a similarity

transformation of DOFOD Since MO is the eigenvector matrix of DOFOD0

0'
this is the Karhunen Loeve transform of DOFOD0 yielding the diagonal

matrix which we denote D,. The elements A of D, are the eigenvalues

A 0i A
T T
of DDFODO. By making the substitution Ro CODOM0
2 2ARU, o
¢:l01 = ,]:: ZBNOT =3 + e + UOD]‘U0 (18)

Rewriting these matrix products as summations

4m 2 2
d01 = 1im I AOi(uo1 + rOiA /101) +
me i+]1
4m
2,2 2
Afo"(1 - I ron/lon) (19)

n=1
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2, 2 bm
The last term A“/a” (L - I t. /A. ) can be shown to be zero
Pl On" "On

using the properties of the orthogonal functions which are the

solutions of the equation
T
A1¢i(t) =5 Kn(t,s) ¢,(s) ds (20)

where Kn(t,s) is the covariance function of the process.

4m

2 2
dgy = lm I ;!u(n(uuo1 + 1y A /AOi) (21)
mre i=]
The characteristic function of d01 can be written as
My (v) = Elexp(jvdyy)] (22)
01
4m
1im 2 2
= E[""p “‘""’LEJ. v Agq(Mpy + Voq A Agy) ]” (23)
- 4m 2 2
=lim J_ expy I Jv A, (uy +ry A /AOi) dd,, (24)
m>e i=1
- 4m 2 2
=1im J &K exp(j_ A.,(u.. +r.. A°/x_ _)%)dd (25)
o v 0101 T Toi 01 01
4m exp{jv AOirgiAzlkgiaz(l-jZAOiv)l
= 1lim R T (26)
me i=] (1-2jA0iv)

The characteristic functions of doz, dll’ 412 can be obtained by

setting A=0 in Eq. 21. Since d01, dOZ’ d11 and dl2 are independent

random variables the characteristic functions of d,. and d. are

0 1l
dm exp[jv A r2 A2/A2 cz(l-Zjl v)]
01 01 01i 0i
My (v) = lim T -237 %) (27)
0 m i=1 0i

Mdl(v) = E[exp(del)]

4m Ki

=lm I (28)
mo i=1 233y



12

where
2m
K, = T 1/(1-11j/111) (29)
j=1
1#j
{lli} are the eigenvalues of D1F1D1 where D1 is a diagonal matrix with
elements
dli - dOi i - 1.2,...2!1

F1 has elements

fli,j = fOi,j i,j=1,2,...2m
Cl has elements
cli = 04 i=1,2,...2m
The elements of R1 are
1.'1i = tGi i=1,2,...2m (30)

The probability density functions of Hd (v) and M, (v), p, (a)
0 4 4o

and Py (B) can be found as the transforms of Eq. 27 and Eq. 28,
1

respectively. Putting these into Eq. 5

- 2m Kli

a
py; (@) |4y lim I —
dO 0 me j=] 4 2:”‘lif?’

PI(E) = J'o dg|da (31)

2m
=/ p, (e) lim © K,, exp(-a/2X,.) da (32)
0o Pqa g M 11

2m
= 1lim I Kli Io Py (a) exp(—u/Zl\li) da (33)
mre i=] 0
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Since Py (e¢) = 0 for a<0 this can be written as

2m
P (E) = 1im ¢ ! p, (a) exp(- u/Zh ) da (34)
e 1=l gt dg

This is the inverse transform of P4 (v) at jv = -1/2A11 or

a
Hdo(v)|jv = -1/24, (35)
so
2m 4m exp[-r lzl g (1 + l /l )]
Pj(E) = lm I K, , T 7 iiko iy 12 (36)
meo =] n=1 On' "14i
2,2
But A/g” = SNR/BT, thus
2
2m 4m exp[-r. SNR/ZBTA . (A,. + x. )]
P(E) = lim I Ky, T 2. TR 3: i1 On (37)
mre i=] n=1 On" '11i

With this result for Case 1, which is the case of both direct and
reflected signal at frequency fD over the entire bit interval, we can
obtain the result for Case 2, which is direct signal at frequency :E0
while reflected signal is at frequency fl’ through a similar procedure

yielding;
2
e, © = 1in 4; K01 2; exp[-rlnSNf/iB:AI?:AOi + Aln)] _—
e =} n=1 In" 7041
The average probability of error can be expressed as
B(E) = 4P, (E) + P,(E)] (39)

With this, we now have an expression for the probability of error
for a noncoherent FSK system in the presence of multipath fading as

a function of SNR, BT, direct to reflected power ratio and fading



bandwidth. Kwon and Shehadeh claim this approximation is as much as

.5 dB better than that of Chadwick for the combination of SNR 2 14 dB,

y2 = 10 dB, BT = .5, B = B.

14
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ITI. EXTENSION TO THE CASE OF NONCOHERENT
DETECTION OF FSK SIGNALS

It can be shown that the derivation presented in an earlier paper
by Kwon and Shehadeh (9) on noncoherent detection of FSK is a special
case of the equations just derived. 1In the average FSK system, multi-
path fading is not a concern and analysis of the system need only take
into account the uncertainty in the received signal due to the noise
in the channel. The approach used to derive the equations for probability
of error in this case is very similar to that just presented.

The received signal is the sum of the information term and the noise.

The result in Eq. 4 in this case looks like

T 2
d01 = fo [A + nco(:)] dt
T 2
dc‘2 = .ro nso(t) dt

T 2
djp = Jo By () de

-IT

d 0

» ngl(t) dt (40)

The same matrix multiplication technique can be used so that

= 1im 2BN0T[A2102 + 2A/o CTDHU + UTMTDFDHU] (41)

do1
m-”

but CT has elements

1
oH fo cos 2nBTzit dt i=1,2,...m

1
Fr IO sin ZﬂBTzit dt (42)
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F has the elements

1
fi,j fb cos ZwBTzit cos ZwBszt dt

fl cos 2wBTz.t sin 2nBTz, t dt

fi3m = Yo i 1

J,.l

£ 0

sin ZuBTzit sin 2wBTz t dt (43)

i+m,j+m i

D is a diagonal matrix with elements

5 -
c.r1 = di+n = (hi) - R B S— (44)

Again, Eq. 41 can be written as

T T.

d.. = 1im 2BN.T[A%/o® + 24/ R'U + UD U] (45)

01" 0“0

Where RT = CTDH and D, is a diagonal matrix with elements Ai being

the eigenvalues of DFD.

2m 2 2
= ]1im I A (ui + riA /li) (46)

d
me =] 1

01

The characteristic function of d01 is

2m exp[jvliriAzlliaz(l—Zjliv)]
Hd (v) = 1im I »
ol me iw] (1-j2x 1\?)

(47)

The characteristic equations for dDZ' d d12 can be found by setting

11°

A= (0 in Eq. 45. Since d01, d02’ dll and d12 are independent random

variables the characteristic functions of dD and dl are

2m exp[jvriAZIAicz(l-jZAiv)]

M, (v) = 1im I
dg mre im] (1=32A;v)

(48)
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2m Ki
M. (v) =lim I 55— (49)
dl e {ml 1 Zinv

where

K, = (1—zjx1v>ud1(v) l3v = -1/22,

From the transform of M& (v) the probability density functions are

1
2m
p, (B) = 1im I K,/2X, exp(-B/2X,) (50)
d; oo fm] + 1 i

Thus, the probability of error is

P(E) = [y py (@) ' py (B) d& da (s1)
0 1
zm (-]
=1lim I K, /., p, (a) exp(~a/2X,) da (52)
e §1 i7°0 do i
2m -
= lim I K:l. I P4 (a) exp(-a/ZAi) da (53)
mre i=] ]
= Hdo(v)|jv = =1/2), (54)
2m 2m exp[--riSNR/?.BT(Ai + A )A ]
=lm £ K, 1 W LA (55)
mre =] n=1 n i

This 1s very similar to Eqs. 37 and 38 and would be the result if Eq. 37
were set equal to Eq. 38. 1In this case, there are some interesting
characteristics of the eigenvalues. They approach zero rapidly for

i > (2BT + 1) and therefore, the K, approach zero rapidly for

1
2m

i > (2BT + 1). Another property is that 121 Ai = 1.
=

Kwon and Shehadeh claim that this technique results in a marked
improvement in the approximation as compared to the sampling and summing
technique. It shows an improvement of 1 dB for BT = 2.5 and .3 dB for

BT = 2 dB at high SNR.
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IV. DEVELOPMENT OF THE COMPUTER PROGRAM

Before beginning the development of the program, it is necessary
to make some comments concerning the computer used. It was a Data
General Nova 1200 which has 64K of core memory and one disk drive. The
language in which it was written was FORTRAN.

The first step is to define the problem. What was needed was a
program that would input values for SNR, BT, Br/B’ and 72 and return
with a value for the probability of error in accordance with Eq. 39.
Since the final result would be most convenient as a relationship between
a series of values for SNR and the corresponding values for P(E), SNR
could be increased by a known amount each time through a DO loop which
calculates P(E). In order to take advantage of the graphics capabilities
of the terminal used, these values for P(E) had to be writtem out to
disk. With this sketchy outline, the next step is to decide what values
are necessary to calculate the final result.

Besides the above-mentioned parameters, a value for m, which is
the factor setting the number of terms to be incorporated, needed to be
input. Also, the GQR coefficients corresponding to this m must be input.
The only way available to get the GQR coefficients in this case was to
look them up in a reference (10). This required a decision to be made
on the value of m needed because the simplest way to get these coef-
ficients into the program was to incorporate them as part of the program
code. Discussion of the value chosen for m will be left for a later
discussion when its importance becomes more apparent.

The next step is to set up the matrices: Do, Dl’ FO, Fl' CO’ Cl,

according to the corresponding equations. These matrices are multiplied
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to get DUEOD0 and D1F1D1’ whose eigenvalues and eigenvector matrices
are then computed. With these values RO’ Rl’ K., and Kl are generated.
This now gives all the values needed to calculate P(E). When committing
these steps to code, one almost immediately runs into the problem of
lack of memory. Kwon and Shehadeh suggest an adequate value for m to
be 10. A look at the matrices needed and their sizes yielded a total
of more than 12K floating point numbers to be stored. With this system
each single precision number takes 4 bytes of memory to store it. This
means more than 48K of memory would be needed to store the matrix
elements. Obviously, there is not enough memory available to accom-
modate such a program.
There were 4 methods available to alleviate this problem. The first
and most obvious was to reduce the size of the matrices, meaning, make
m smaller. A tentative value of m = 6 was chosen with the stipulation
that too much deviation from known results would require m to be increased.
Another technique employed was that of matrix compression. This
can be used on the matrices: qo,-Dl,Fb, and Fl' Becauselb and D1 are

diagonal matrices, only the diagonal need be stored in vector form. By

definitian,Fh and F, are symmetric non-negative definite, so only the

1
upper half plus the diagonal of each requires storage.

A third method, although very useful, often results in ambiguous
coding. This is the elimination of unique intermediate matrix storage.
Also, where possible, final results can be stored in one of the original
matrices. This technique was used as sparingly as possible in order to
obtain useful and understandable code.

The final method for decreasing the memory needed for storage was

not directly related to matrix storage, but more related to code storage.
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The initial estimate of code length was about 40K bytes. With this
much code in core it was evident that no matrix manipulation could be
accomplished. Upon examining the equations, it was found that those
needed to set up the Fo matrix constituted a large part of the code.
It was decided that these equations should be written in a separate
program to generate FO and store it on disk. This disk file would
then be read into the main program. This routine must be run previous
to the execution of the main routine.

Because of the parallel calculations for terms inveolving limits
of 4m and those of 2m, it was evident a subroutine should be incorpor-
ated. This subroutine would take the matrices set up in the main
routine, do all the matrix calculations and return with the values for
’1’*1"1 for each case.

Upon the first execution of the program, it was found that the
calculated eigenvalues were accurate to the point at which they became
less than about 10 °. It was decided that, due to the round-off error
of the system, the packaged routine EIGEN would not be able to calculate
those eigenvalues less than 10-9. The proposed solution was to set up
the program for double-precision accuracy. Because of the peculiarities
of the machine, all the values and calculations in the supporting soft-
ware had to be changed to double-precision. This doubled the amount of
memory needed to store the matrices and increased the run-time by a
factor of 8. With this change to double-precision, those eigenvalues
as small as 10-'18 could be found accurately. Those eigenvalues smaller

18

than 10~ do not affect the accuracy of the final result due to the

fact that the associated r, is less than 1l’.l'-16 and the corresponding
Ki is less than 10-150. Because of the computations involving these
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eigenvalues, they could not be set to zero. Therefore, it was neces-
sary to set them to values approximating what they would be if they
could be calculated.

The subroutine to find these eigenvalues and the corresponding
eigenvectors is by far the slowest link in the program. To calculate
one probability of error value, it took about 14 minutes. About 13
minutes of this time was spent in this subroutine,

An equation for the run-time for single precision is

£ =10 N (u + 2v)
where the dimensions of the matrix are N x N, u is the multiplication
time of the machine, v is the addition time.

For the double precision, Nd = 2N, so

£y = 80 N (u + 2v)
It was fortunate that m = 6 was chosen instead of any value higher.

If m = 10 had been used, t = 85 minutes. It would have taken more

d,10
than ten hours to accumulate enough data to plot one curve,

Because of this excessive run-time, the program was set up to
calculate P(E) for ten values of SNR ranging from 0 to 18 dB. When
plotted, this resulted in a fairly smooth curve.

Curves for this case are shown in Figure 3. It should be noted
that the shape of the curve is dependent more on 72 than any of the
other parameters. When these curves are compared to those presented
by Kwon and Shehadeh, it is extremely difficult to find any deviation

even though m = 6 was used instead of m = 10, Table 1 shows the values

A
of L, K and r. It can be seen that i = 17 is the point at which the
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TABLE 1

Numerical Values for Multipath System

0.79158715
0.20659897
0.11755455x10
0.10387424x10"
0.34853788x10
0.22887496x10
0.10917050x10"
0.27014795x10
0.11808980x10
0.47029827x10
0.80336030x10"
0.52422517x10"°
0.25806665x10 11
0.98170922x10" 14
0.25221692x10" 18
0.26044510x10"+2
0.10000000x10~17
0.10000000x10™1?
0.10000000x1-"2%
0.10000000x10~ 23
0.10000000x10"2>
0.10000000x10™%7
0.10000000x10™2?
0.10000000x10™ >+
0.78336878
0.20503983
0.11373989x10"
0.21521849%10
0.21572193x10"
0.13610926x10"
0.59188319x10
0.18829990x10
0.45931491x10
0.75844397x10°
0.10000000x10"
0.10000000x10™2

1
1
2
2
2
-3
-3

4
6

L
3
3
7
10
12
15
18
21
3

To1

02
03
To4
05
06
07
08
09
010
To11
012
013
014
015
016
017
018
019
020
To21
022
To23
024

r

r

r
r
r
T
r

T

T110
By
T112

= -0.10191454x10
= -0.93135978x10

= 0.88389645

= -0,80359465x10

0.83323205x10

0.50199167x10
-0.38613699x10
= 0.17224013x10
= (.75815993x10
= 0,23585613x10
= 0.57733104x10
= 0.49319542x10
= 0.25987506x10 "
= -0.48780051x10
= -0,74562616x10
= 0,19565402x10"
= 0.10000000x10"
= 0.10000000x10"

-
-
-
-
-

= 0.10000000x10"
= 0.10000000x10"
= 0.10000000x10
= 0.10000000x10"
= 0.10000000g10"

= 0.87951834
= -0.10615016x10" "
= -0.11937155x10"*

= ~0.22768245x10 1
= 0.23875466x10°
= 0.29798619x10
= -0.66188564x10
= 0.11827968x10*
= -0.55245521x10
0.10137290x10"
0.10000000x10
0.10000000x10"

3
2
2

&4

3

3
-4

'y

4

6
8
14
16
16
19
19
0.10000000x10">2
19
19
19

19
19

16
10

15
16
-19
19

CJN
[wert

ON
~

DW
w

e
(o=
&

ON
W

-~
(=]
o

CJN
-4

CJN
o

(=]
0

010
011
012
013
014
015
016
017
018
019
020
021
022
23
Ko24

i |
K12
o
14
Kis
16
b7
K18
K19
K110
Eiag
K112

N A" R AR

_RR XN R R ROR

~ AN

=%

23

1.40474904
-0.40857538
0.15786580x10"
~-0.12028302x10"
0.77924669x10"
-0.99106078x10
0.57170029x10
-0.22395217x10"
0.29942669x10
-0.45319098x10"
0.44443817x10
-0.39482904x10"
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
1.37487670
-0.37575883
0.88214019x10"
-0.56259515x10"
0.56002102x10"
-0.55670195x10" 27
0.37525726x10™*1
-0.12353444x107°8
0.00000000
0.00000000
0.00000000
0.00000000

1
1
4
5
7
11
14
18

36
60

3
8
16
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eigenvalues become less than 10_18. Table 2 shows values of P(E) for

BT = .5, 72 = 20 dB, Br = B and SNR ranging from 0 to 18 dB.

The noncoherent detection of FSK without regard to fading is the
case most generally encountered and studied. Because this is a special
case of the system with fading the capability to generate the probabil-
ity of error for this special case is built into the program. When

queried by the computer, by replying "Paper = 1," the user can simulate
the system described by the equation derived in the first paper by Kwon
and Shehadeh (9). Because it is only necessary to find the eigenvalues
of DIFIDI once for this case and the fact that D1

element long, the run-time for this case is reduced to only a few minutes.

is a vector, only 2m

Probability of error curves for this case are shown in Figure 4.
As one would expect, by decreasing the bandwidth of the message, and also
correspondingly decreasing thé bandwidth of the filter Hl(f), the prob-
ability of error increases much more rapidly for increasing signal to
noise ratio.

Table 3 shows the values of ki’ r., K, and P(E), for BT = .5. These

: Sl ¢
values correspond to those presented by Kwon and Shehadeh as closely as

the seventh decimal place for most values of i.



TABLE 2

Values of Probability of Error for Multipath System

SNR = 0 dB PE = 0.26931934

SNR = 2 dB PE = 0.18730122

SNR = 4 dB PE = 0.10534453

SNR = 6 dB  PE = 0.42480663x10 +
SNR = 8 dB  PE = 0.10246072x10™+
SNR = 10 dB  PE = 0.11352198x10 >
SNR = 12 dB  PE = 0.39953080x10 "
SNR = 14 dB  PE = 0.27605609x10™°
SNR = 16 dB  PE = 0.21927799x10 >

13

SNR = 18 dB PE = 0.12854767x10
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TABLE 3

27

Numerical Values for Noencoherent Detection of FSK

0.49052313
0.37481009

0.12179650

0.12323273x10"
0.53302987x10"
0.13707566x10
0.24013907x10
0.30666013x10
0.29856769x10
0.22915534x10"
0.14131188x10°

0.71359684x10

1
3
-4

&
-8

10
12

14
17

SNR
SNR

SNR

SNR
SNR
SNR

SNR

H 1 R H R H
O WS O BWwN

H H H H H

o
(R =

dB

dB

dB

dB

dB

dB

dB

dB

dB

dB

0.66225975

6

-0.82440644x10™ L K,

0.11324031
-0.60091693x10
-0.56155333x10
-0.17685836%10
-0.26259339x10~°
0.14425804x10
-0.33083612x10" K
-0.10278427x10" 16
0.15640835x10 T
-0.11361755x10"

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

18
3
16

16
10

4
16

0.3255364397
0.2510333997

0.1645001572

0.8239602481x10 "+

0.2649048905x10 ™+

0.4117330880x10" 2

0.1970329406x10" >

0.1431725860x10

0.5263848726x10 >

0.1764359267x10"*

&

Kl = 5.,79117616

-4.9687792
0.17770627
-0.10319623x10"
0.31614452%10°
-0.344264461x107
0.98118466x10™ 2
-0.53896183x10 ™+
0.43286208x10 >
-0.39860462x10°
0.00000000
0.00000000

3
9
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V. CONCLUSION

In this paper, a mathematical model for a receiver used to detect
noncoherent FSK signals in the presence of multipath fading is derived
This derivation relies on the fact that a bandlimited Guassion process
can be expanded in a sinusoidal series. This expansion avoids the
problem of evaluating the integral of (20).

With this derivation, a package of computer programs was developed
to calculate the numerical values for the probability of error. The
curves generated by these programs very closely approximate those
presented by Kwon and Shehadeh (7) and (9). This method of calcula-

tion shows much improvement over that used by other studying the problem.
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FPROBERR.FR
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4/26/79 18112338 DISK 07 DIR FORT 39

AR KR KK 0 K KK K A KKK KKK K K K . 30K KKK A KK AR OK 80K KKK KKK KKK ROR RO ORoR

FROGRAM FPROBERR

FURFOSE

THIS PROGRAM FINDS THE PROBABILITY OF ERROR AS A
FUNCTION OF SNR FOR FSK IN THE FPRESENCE OF

MULTIPATH FADING THIS PROGRAM WAS ADAPTED FROM

THE DERIVATION PRESENTED IN A PAFER EBY § Y KWON AND

N M SHEHADEH: NONCOHERNET DETECTION OF FSK SIGNALS

IN THE PRESENCE OF MULTIPATH FADINGs IEEE TRANSACTIONS ON
COMMUNICATIONS» JAN.» 1978. THIS FROGRAM CAN ALSO

BE USED TO FIND THE FROBABILITY OF ERROR FOR THE CASE
OF NO MULTIPATH FADING AS DESCRIBED IN AN EARLIER FAFER
BY KWON AND SHEHADEH ANALYSIS OF INCOHERENT FSK SYSTEMS»
IEEE TRANSACTIONS ON COMMINICATIONSy NOV,.» 1975

DEFINITIONS OF PARAMETERS

BT IS THE PRODUCT OF THE MESSAGE EANDWILTH
AND THE BIT TIME

BR/B IS THE RATIO OF THE BANDWIDTH OF THE
REFLECTED SIGNAL TO THAT OF THE DIRECT SIGNAL
GAMMA SQUARED IS THE RATIO OF REFLECTED POWER
TO DIRECT POWER

N IS THE NUMBER OF DATA FOINTS DESIRED

REMARKS

THE PROGRAM FMATRIX MUST BE RUN BEFORE
EXECUTION OF THIS FROGRAM TO GENERATE
THE DISK FILE DFDA.FP UNLESS THE
SUBRROUTINE VERSION FMTRX HAS BEEN
INCORFORATED

SUBROUTINES REQUIRED

SUBROUTINE MATRIX MUST BE SUPPLIED
SUBROUTINE FMTRX IS OPTIONAL

METHOD

EVALUATION IS LONE BY MEANS OF A SERIES EXFPANSION OF
THE CHARACTERISTIC EQUATION FOR THE OUTFUT OF THE
INTEGRATE AND DUMF STAGE ON THE INTERVAL L[O»T1.

THEN BY USE OF A GAUSS GQUADRATURE RULE WITH

RESFECT TO THE UNIT WEIGHT FUNCTION OVER [-1s13

ONE CAN WRITE THESE CHARACTERISTIC EQUATIONS IN
MATRIX FORM. THESE EQUATIONS CAN THEN BE SOLVED
YIELDING THE FPROBABILITY OF ERROR.

AUTHOR: LOREN BAREISSs MARCH» 1979

03000 30 200 308K KK R K R K K038 0 K KK R 6 0 6 3 K 2K KR K 0K K B8R 3 Ok K OK KK K 3 R OROK
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[

NN R

a0

11

Goaoon

A

DOUBLE FRECISION KA(24)sKB(12)sRA(24)sRB(12)»
@ DFDAC300)DFDB(78)LA(24),LB(12)>CA(24)»CRB(12)
@ DA(24)sDB(12)yR(24)sH{S)»Z(&8)»FE(10)
DOUBLE PRECISION GAMS»GAMSOBsKBTsKBRTsBT»BRTsSNR»
@ PIsBRBy»SNRDBsFOEYFTE,FROD
REAL LFE(10)
INTEGER FAPER
FORMAT(3Xy "SNRIOB="sG612.6:2Xs "BT="5G12.6+2Xs "BR/B=">G8.2>»
@ GAMSDE=",G8.2)
FORMAT(3Xs "PE="2G17.10+2Xs"LPE=">G11.4)
FORMAT (3X)
FORMAT(3X» "OUTPUT CHANNEL CODE"®)
FORMAT(3Xs "CRT CONSOLE: NC=10» TELETYPE: NC=0")
FORMAT(3Xs "FAPER #"»I1)
FORMAT(2Xs "PAPER=1» NO MULTIFATH FADING®)
FORMAT (2X» "FAPER=2y MULTIPATH FADING")
FORMAT (1X» *NUMBER OF DATA POINTS DESIRED, 1-107 2
CALL OPEN(O»"$TTO1"»3rIERR)
WRITE(10:4)
WRITE(10:5)
ACCEPT"NC=7 "»NC
WRITE(10+7)
WRITE(10-8)
ACCEPT*WHICH FAFPER? "yPAPER

INFUT VALUES OF BT» BR/B» GAMSDE, N

ACCEFT"BT=T "»BT

IF(FAFER.EQ.1)G0 TO 11

ACCEFT*BR/B=7 "s»BRE

ACCEFT "GAMMA SQUARED IN DBR=7? *,GAMSDE
CONTINUE

WRITE(10:9)

ACCEFT N

ASSIGN VALUES OF H(I) AND Z(I)>. THESE VALUES ARE THE WEIGHTS
AND ABCISSAS OF A GAUSS QUADRATURE RULE WITH RESPECT TO
THE UNIT WEIGHT FUNCTION OVER THE INTERVAL [-1»11.

H{(1)=0.249147045813402783D0
H{2)=0.,2334%9253653835480900
H{3)=0.2031674267230465922D0
H(4)=0.16007832834334622400
~H(3)=0.,1069393259935318431D0
H{46)=0.47175334638465118272D0-1
Z2(1)=0.12523340851144891300
Z(2)=0.3678314989981801%4N0
Z(3)=0.38731793428464617447000
Z{(4)=0,746990267419430468700
Z(5)=0.904117256370474857010
Z(46)=0.9813560463424671225110



PROBERR.FR 4/26/79 18312338 DISK 07 DIR FORT 39

INITIONALIZATION

o000

M=&

SNRIDB=-2,000

BRT=ERBXRT

MT4=4%M

MT2=2%XM
GAMS=10.000%%(GAMSDB/10.000)
PI=3.,141592465358979323800
KET=2.000%PIXBT
KBRT=KBTXERE

SET UFP CA AND CB MATRICES THESE VALUES COME FROM
EQUATION 14

aooon

DO 10 I=1-M
CACI)=(DSINC(KBTXZ(I)))/(KBTXZ(I))
CA(I+M)=(1.0D0-DCOS(KBTXZ(I)))/(KBTXZ(I))
CA(I+2%M)=(DSIN(KBRTXZ(I)))/(KBRTXZ(I))
CACI+3%M)=(1,0D00-DCOS(KBRTXZ(I)))/(KBRTXZ(I))
CB(I)=CA(I)
CEB(I+M)=CA(I+M)

0 CONTINUE

GENERATE VALUES FOR SNR

OO0 &

DO 180 IK=1sN
SNRDB=SNRDE+2.00D0 .
SNR=10.0D0%X (SNRDB/10.0D0)
IF(IK.EQ.1)GO TO 20
IF(FAPER.EQ.1)G0 TO 140
CONTINUE

<

READ FA MATRIX FROM DISK UNDER THE NAME LFDA

FA IS SET UFP IN THE FROGRAM FMATRIX FROM EQUATION 13
THIS CAN BE AVOIDED BY USING THE SURROUTINE

FMTRX» REMOVING THE C FROM THE FOLLOWING

STATEMENT AND DELETING STATEMENTS 3040550

CALL FMTRX(BTsBRE»DFDA)

OoOonOoo0On00On

(7]
o

CALL OFEN(1»"DFDA.FF"»1,IERRs300%8)
CALL READR(1s,0sDFDAs1sIERR)
CALL CLOSE(1sIERR)

THE FB MATRIX IS5 MADE FROM THE UFPER LEFT
QUADRANT OF THE FA MATRIX. CALL IT DFDB

oot ud
SO

NR=0
DO 60 I=1,MT2 .
D0 60 J=1,1I
NR=NR+1
OFDB(NR)=DFDA(NR)
=14 CONTINUE



PROBERR.FR 4/26/79 18112138 DISK 07 DIR FORT 33 '."Iw

ARE DIAGONAL MATRICES WRITTEN IN STANDARD VECTOR FORM.

O0O0oon

SET UP DA AND DB ACCORDING TO EQUATION 16. DA AND DE

DO 70 I=1,M

DACI)=DSQRT(H(I))

DACI+M)=DACI)

DB(I)=DACI)

DB(I+M)=DA(I)

DA(I+2%M)=DSQRT (H(I)XSNR/(2XGAMSKET))
DA CI+3%M)=DACI+2%M)

CONTINUE

IF(PAFER.EQ,1)GO TO 80 .

N
o

FIND THE EIGENVALUES AND EIGENVECTORS OF THE FRODUCT
OF DAXDFDAXDA. CALL THE EIGENVALUES LA AND USE

THESE EIGENVALUES TO -FIND THE KA‘S. MULTIFLY THE
NORMALIZED EIGENVECTOR MATRIX BY THE PRODUCT OF

CA AND DA TO FIND THE RA’S ACCORDING TO ERUATION 18

CALL MATRIX(DAsDFDOA>CAsRAsLAYKAIMT4)
CONTINUE

FIND THE EIGENVALUES AND EIGENVECTORS OF THE

FRODUCT OF DBXDFDBXDOB. CALL THE EIGENVALUES LB AND

USE THESE EIGENVALUES TO FIND THE KE’S. MULTIFLY

THE NORMALIZED EIGENVECTOR MATRIX BY THE FRODUCT

OF CB AND DB TO FIND THE RE‘S ACCORDING TO EQUATION 18

nnnﬂﬂnnnnng onooooaooonn

CALL MATRIX(DBsDFLEB,CBsREsLBsKBsMT2)

C
c .
C FIND PROBAEBRILITY OF ERROR PE FOR THE CASE OF MULTIPATH
(I FADING THIS COMES FROM EQUATIONS 34,37 AND 38
c
IF(PAFER.EQ.1)G0 TO 130
FOE=0.,0D0
DO 100 I=1,MT2
FROD=1.000
D0 20 J=1,MT4
FROD=FRODX((DEXP{({—(RA(JIXXR2) IXSNR)I /(2. ODOXBTX(LACJI+LEB(I))
e XLACIII I/ (1.0D0+LACID /LE(ID D)
20 CONTINUE

POE=FOE+KE(I)%XPROD
100 CONTINUE



PROBERR.FR 4/26/7%9 18112138 DISK 07 DIR FORT 34 T

PTE=0.000
D0 120 I=1sMT4
PROD=1.0D0
D0 110 J=1,MT2 ' .
PROD=FRODX ( (DEXP( ((—(RB(JIX%2)IXSNR) /(2. 00OXBTX(LACI+LB(J))

@ ¥LB(J)I) I/ (1.0D0+LEBCII/LACI))) |

110 CONTINUE :

PTE=PTE+KA(I)%PROD
120 CONTINUE

PE{IK)=FOE/2.0D0O+PTE/2.0D0
130 CONTINUE
140 CONTINUE
C
c FIND PROBARILTIY OF ERROR PE FOR THE CASE OF NO FADING
(W USING EQUATION 55
c .

IF(FPAFPER.EQ.2)G0O TO 170

FOE=0.0D0

DO 140 I=1sMT2

PROD=1,000

00 130 J=1sMT2
FPROD=FRODX((DEXP(( (- (RB(JOXXK2) IKSNR) /(2. 0D0XBTX(LB(I)+
@ LBCD)IXRLEBC(II )Y/ (1. 0D0+LE(J)/LBC(I)))

150 CONTINUE

FOE=FOE+REB(I)%XPROLD
160 CONTINUE

PE(IK)=FOE
170 CONTINUE

LPE(IK)=SNGL (DLOG1O(FE(IK)))
c
c OUTFUT VALUES FOR SNR AND PE TD DESIGNATED CHANNEL» NC
c

WRITE(NCr1) SNRDBsBT:BREsGAMSDE

WRITE(NC»2) PE(IK)sLPE(IK)

WRITE(NC»3)

WRITE(NC»3)
180 CONTINUE
c
C WRITE LOG1O(PE) TO DISK
c

CaALL OFPEN{(1»"LPE.FP"s3+»IERROs10%4)
CALL WRITR(1s0sLPEs1»IERRO)

CAaLL CLOSE(1sIERRO)

CaLL CLOSE(O»IERR)

STOP

END



FMTRX+FR

ooooonooooooOooo0cOocooaonOaoonoooOononoong

OOOoOOo0OR-=O0O0

4/26/79 18113112 DISK 07 DIR FORT 35

200 0 3K 4 KK 0 K K 2 K 0K 30 0K e K B OK KOKOK KR KK K KKK KK K K KKK oK K Kk R K
PROGRAM FMATRIX

PURPOSE
THIS PROGRAM .SETS UF THE FA MATRIX USED
IN THE FROGRAM PROBERR
EACH MATRIX ELEMENT IS CALCULATED FROM A CLOSED
INTEGRAL OVER [O»1] OF A COMBINATION OF SINE
AND COSINE ARGUMENTS ACCORDING TO EQUATION 13

DEFINITION OF PARAMETERS
BT IS THE PRODUCT OF THE MESSAGE EANDWIDTH
AND THE BIT TIME
BR/B IS THE RATIO OF THE BANDWIDTH OF THE
REFLECTED SIGNAL TO THAT OF THE DIRECT SIGNAL

SUBROUTINES REQUIRED
NONE

REMARRS
THIS FROGRAM CAN BE MADE A SUBROUTINE BY
REMOVING THE C FROM THE NEXT LINE
SUBROUTINE FMTRX(BTs+BRE»DFDA)
ALS0 YOU MAY REMOVE STATEMENTS 1 THROUGH 8

AUTHOR: LOREN BAREISS, MARCH» 19279

0 202 KKK 00 kK 009K 6 K 908 K K R 0 ORI ROR K R R KOKOK 30K KK 0K K ROK K K KK KKK

DOUBLE FRECISION FA(24,24),Z(&)DFDA(300)
DOUBLE FRECISION KBT»KERT»BTsEBREsFI

INFUT VALUES OF BT»BR/BsM

ACCEFT"BT=7"»BT
ACCEFT*BER/B=T7"sBRE

ASSIGN VALUES OF Z<(I). THESE VALUES ARE THE
ABCISSAS OF A GAUSS QUADRATURE RULE WITH RESFECT TO
THE UNIT WEIGHT FUNCTION OVER THE INTERVAL [-1-13.

Z(1)=,120233408511468%91300
Z(2)=,36783149899818017400
Z2(3)=.58731795428661744700
Z(4)=,76990267419430468700
Z(5)=,90411725637047485700
Z(&6)=,9815606342446719231000
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OoO0ONO0000DO0000NO00N0000G0O00000

ooof

=
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0

203808k 80 R B K R 3K 3K 88 K 282 3 38K 2K 0 0 0 0 3 R R ROR K K B0 R b K K KKK KKK K ROK R KKK
SUBROUTINE MATRIX

FURFOSE
- TO FIND THE EIGENVALUES AND THE NORMALIZED
EIGENVECTOR MATRIX OF THE PRODUCT OF
THE INFPUT MATRICES DI AND DFD AND TO
MULTIFPLY THE NORMALIZED EIGENVECTOR MATRIX
BY THE PRODUCT OF THE INPUT MATRICES C AND D.

USAGE
CALL MATRIX(DsDFOsCsRrsLsK»N)

DESCRIFTIONS OF PARAMETERS
Dy DFD AND C ARE THE INPUT MATRICES
R» L AND K ARE THE OUTPUT VECTORS
N IS THE LENGTH OF THESE VECTORS

REMARKS
THE ORIGINAL MATRIX DFD IS DESTROYED
IN COMPUTATION

SUBROUTINES REQUIRED
SUBROUTINE DEIG MUST BE SUPPLIED

AUTHOR: LOREN BAREISS» MARCH» 1779

30 0K K38 38 86500k 20 30K KK KKK 8 B0 0 K K R K K 5 3k ¢ 08 KKK K 8 0Ok 0K K K 3808 K 3 3KOK K K KoK K

SUBROUTINE MATRIX(LsDFDsCyRsLsKyN)
DOUBLE FRECISION DC1)»DFDOC1)»M(S786)sC(1)sL(1)sR(1)COC24)sK(1)
NOUBLE FRECISION XJ»PROD

FIND THE PRODUCT OF D AND DFD AND THEN POSTMULTIFLY DY
I AND CALL THE RESULT DFD

KO=0

D0 20 J=1sN

DO 10 I=1»J

KO=K0+1
DFO(KO)=DOC(I)XDFO(KO) XD CJ)
CONTINUE

CONTINUE

FINDOD THE EIGENVALUES AND EIGENVECTORS OF DFD AND CALL
THE EIGENVALUES L AND THE EIGENVECTOR MATRIX M

CALL DEIG(DOFDsM»N)
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e Nyl

Ooou

OO0

OO0

70

OO

100

110

PICK OUT EIGENVALUES

KR=0

LM=0

DO 30 I=1sN
LM=LM+I
KR=KR+1
L{KRY=DFD(LM)
CONTINUE

FIND THE FRODUCT OF C AND D AND CALL IT CD

DO 40 I=1sN
CDCI>=C(I)%XD(I)
CONTINUE

FIND THE PRODUCT OF CD AND M AND CALL IT R

KR=0

D0 60 I=1sN

XJ=0.000
DO S0 J=1sN
KR=KR+1
XJ=XJ+CD(JIXM(KR)
CONTINUE

R(I)=XJ

CONTINUE

FIXUFP FOR ERRANT EIGENVALUES

D0 20 I=1sN
IF(LC(IY.BT.1.0D0-200G0 TO 90
IF(N.EQ.12)G0 TO 70
L(I)=1,00-18%((1.0D-2)%X%(I-17))
GO TO 80

CONTINUE
L(I)=1.0D-18%((1.00-2)%x%{(I-92))
CONTINUE

R(I)=1.0D-20

CONTINUE

USE THESE L’S TO FIND THE K’S THROUGH A HEAVISIDE EXFANSION

DO 110 I=1sN

FROD=1,00L0
DO 100 II=1sN
IF(II.EQ.IXGO TO 100
PROD=FRODX(1,000/¢1,000-LC(II)/L(I)))
CONTINUE

K<I)=FROD

CONTINUE

RETURN

END
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INITIALIZATION

PI=3.141592465358979323800
KET=2,000%FPIXEBT
KBRT=KBTXERE

M=6é

SET UP FA MATRIX

THERE ARE 4 COMBINATIONS OF THE PARAMETERS
BR/B AND Z NEEDED TO FIND THE FA MATRIX.
CASE1--BR/B.EQ.1sZ(J).EQ.Z(I)
CASE2--BR/B.EQ+192Z(I)NE.Z(J)

CASE3--BR/B.NE.1+Z(I).EQ.Z{(J)
CASE4--BR/B.NE+1+Z(I).NE.Z(J)

LOOFP1 TAKES CARE OF CASES 2-4

DO 20 I=1-M

DO 10 J=1sM

IF(ILER.J)GO TD 10

FACIyJ)=(DSINCKBTX(Z(I)=Z(J))) )/ (2, 0D0KKETK(Z(I)~2Z(¢J)))
@+(DSIN(KBTX(Z(I)+Z(J))))/(2.,0D0KKBTK(Z(I)+Z(J)))

FACIyJ+M)=(1,000-DCOSC(KETR(Z(IY+Z(¢J)))) /(2. 0DOXKETX(Z(ID+Z(J)))
@-(1,0D0-DCOS(KBTX(Z(I)=Z(J))))/ (2, 0DOXKKBTX(Z(I)~Z(¢(J)))

FACI s J+2%XM)=(OSIN(KBTXRZ(I)~-KERTXZ(J))>)/(2.0D0%(KBTXZ(I)
@-KBRTXZ(J) ) )+(DSIN(KBTXZ(I)+KBRTXZ(J)) )/ (2. 0DOK(KETXZ(I)
@+KBRTXZ(J))) hd

FACI+My J+2%M)=(1.,000-DCOSC(KBTXZ(I)-KERTX*Z(J)))/
@(2.000kK(KBTXZ(I)-KBRT%Z(J)))+(1.,0D0-DCOS(KBTXZ(I)
@+KBRTXZ(J)) )/ (2, 0DOKKBTXZ(I)+KBRT*Z(J))

FACI+My JEM)=(DSIN(KBTRC(Z(I)=Z(J))) ) /{2, ODOKKBTR(Z(I)=Z(J)))>
@-(DSIN(KBTR(Z(IV+Z(J)) ) )/ (2. 0D0KKERTK(Z(ID+Z(J)))

FA(I» J+3%M)=(1.,000-DCOS(KETXZ(I)+KBRTXZ(J))>)

@/(2, 000K (KETXZ(I)+KBRTXZ(J)))=(1,000~0OCOS(KBTXZ(I)~KERTXZ(J)))
@/(2.,000K(KETXZ(I)-KBRTXZ(J)))

FACI4+M» J+3XM)=(DSIN(KBTXZ(I)-KBRTXZ(J)))
@/(2,0D0K(KBTXZ(I)~KBRT¥Z{(J)))=(DSIN(KBTXZ(I)+KBRTXZ(J)))
@/¢2.,0D0K(KBTXZ(I)+KBRTXZ(J)))

FAC(I+2XMs J+2XM)=(DSINCKBRTX(Z(I)=Z(J)))) /(2. 0D0KKERTK(Z(I)=Z(J)))
@+ (DSINC(KBRTX(Z(ID+Z(J))))/ (2. ODOXKBRTX(Z(I)+Z(J)))

FACI+2KMy J+3%kM)=(1,000~-DCOS(KERTX(Z(J)+Z(I))))

/(2. OD0XKKBRTR(Z(J)+Z(I)))=(1.,000-DCOS(KBRTX(Z(J)=Z(I))))
B/ (2., 000KKERTX(Z(J)=~Z(I)))

FACI+3%kMs J+3XkM)=(DSIN(KERTX(Z(I)=Z(J))))/ (2, ODOKKERT*(Z(I)=Z(J)))
@-(DSIN(KBRTX(Z(IX+Z(J))))/ (2., 0DOXKBRTX(Z(I)+Z(J)))

CONTINUE

CONTINUE
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LOOFP2 TAKES CARE OF CASE 1

IF(BRB.NE.1.0D0)G0O TO 40

Do 30 I=1sM

Do 30 J=1sM

IF(I.NE.J)GO TD 30
FACI»J)=,5D00+(DSINC(2,000XkKBTXZ(I)>))/{4,0D0%KBTXZ(I))

FACI» JEM)=((DSINC(KBTXZ(I)))%X%2)/(2,0D0XKBTXZ(I))
FAC(I»J+2%M)=.5D0+(DSINC2,0D0XKBTXZ(I)))/(4,0DOKKETXZ(I))
FA(I»J+3XM)=((DBSIN(KBTXZ(I)))%X2)/(2.0D0XKBT%*Z(I))

FACI+My J+2%M)=( (DSINCKBTXZ(I)))%kX2)/(2.000XKBETXZ(I))

FAC(I+M» J+3%kM)=.5D0~(DSINC2,0NOXKBTXZ(I>))/(4.,000XKBTXZ(I))
FA(I+M» JtMI)=,500-(DSIN(2.QDOXKBTXZ(I)) )/ (4. ODOKKBTHZ(I))
FAC(I+2%My J+2%M)=.500+(DSIN(2.,0D0OXKEBTXZ(I)))/(4,.0D0KKBTXZ(I))
FACI+2%My J+3AkM)=( (DSIN(KBTXZ(I)))%XX2)/(2,0N0XKETXZ(I))
FA(I+3%Ms J+3%M)=,.500-(NOSIN(2.0D0OKKBTXZ(I)})/(4,0DOKKBTXZ(I))
CONTINUE

CONTINUE

LOOFP3 TAKES CARE OF CASE3

IF(BRB.EQ.1.0D0)G0 TO &0,
DO 50 I=1+M
no S0 J=1-M
IF(I.NE.J)GO TO 50 :
FA(IsJ)=.500+(DSIN(2.0D0KKBTXZ(I)))/{(4.,0L0XKETXZ(I))
FA(I»JtMI=C((OSIN(KBTXZ(I)))%%2)/(2.0D0XKBTXZ(I))
FA(I» J+2XkM)=(DSINCZ(I)X(KBT-KBRT>))/(2,000%Z(I)X{KBT~KBRT) )+
@(DSIN(Z(I)X(KBT+KBRT)>))/(2.0D0%XZ(I)X{(KBT+KEBRT)) ;
FA(I»J+3%kM)=(1.,000-DCOSC(ZC(I)X(KBT+RKEBRT)>))/(2,0LOXZ(I)*(KBT
@+KBT)>)-(1.000-DCOS(Z{IYX(RKBT-KBRT)>)>/{(2,0DOXZ(I)X{(KBT-KEBRT))
FACI+My J+M)=.5D0~-(DSIN{2,0D0KKBTXZ(I))>)/(4 ., 0D0OKKBTXZ(I))
FACI+M» J+2%XM)=(1.000~-0OCAS(Z(IXX(KBRT+KBT)>)/
@(2+0DOXZ(INK(KERT+KET))—(1.000-DNCOSC(Z(I)X(KBRT-KETJ)))/
(2, 0D0XZ(I)X(KBRT-KET))
FACI+My J+3XM)=(DSINCZ(I) X (KBT-KEBRT)))}/(2.,0D0OXZ(I) X (KBT~KBRT) )~
B(DSINCZ(I)KR(KBT+KBRT)))/(2.000%Z(I)¥(KBT+KBRT))
FACI+2XM» J+2%M)=,500+(DSINC2,ODOKKERTXZ(I)))/(4.,0D0XKERTXKZ(I))
FACI+2XMy J+3KkM)=( (DSIN(KBRTXZ(I)))%%2)/(2,0L0XKBRTXZ(I))
FA(I+3%XMy J+3¥M)=,.500-(DSINC2,OD0KKBRRTXZ(I)>)>)/(4,0D0XKBRTXRZ(I))
CONTINUE
CONTINUE

FUT FA INTO THE CUSTOMARY VECTOR FORM FOR A
SYMMETRIC MATRIX AND CALL IT DFDA

MT4=4%XM

NR=0

00 70 J=1,MT4
Dg 70 I=1»J
NR=NR+1
DFDACNRI=FA(IsJ)
CONTINUE
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c3

C4 WRITE DFDA TO DISC

c3

-] CALL OPEN(Os"DFDA.FP"»3,IERRO,300%8)
7 CALL WRITR(O:0sDFDAs1»IERRQ)

a8 CaLL CLOSE(OsIERRO)

STOP
END
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SUBROUTINE DEIG

FURPOSE
COMPUTE THE DOUBLE PRECISION EIGENVALUES AND EIGENVECTORS
OF A REAL SYMMETRIC MATRIX

USAGE
CALL DEIG(AsRsN)

DESCRIPTION OF PARAMETERS
A - ORIGINAL MATRIX '(SYMMETRIC)» DESTROYED IN COMPUTATION.
RESULTANT EIGENVALUES ARE DEVELOPED IN DIAGONAL OF
MATRIX A IN DESCENDING ORDER.
R — RESULTANT MATRIX OF EIGENVECTORS (STORED COLUMNWISE.
IN SAME SEQUENCE AS EIGENVALUES)
N - ORDER OF MATRICES A AND R

REMARKS
ORIGINAL MATRIX A MUST BE REAL SYMMETRIC
MATRIX A CANNOT BE IN THE SAME LOCATION AS MATRIX R

SUBROUTINES REQUIRED
NONE

METHOD
DIAGONALIZATION METHOD ORIGINATED BY JACORI AND ADAFTED
BY'VON NEUMANN FOR LARGE COMPUTERS AS FOUND IN ’‘MATHEMATICAL
METHODS FOR DIGITAL COMPUTERS’y EDRITED BY A. RALSTON AND
HeS+ WILFy JOHN WILEY AND SONS» NEW YORKs 1962y CHAFTER 7

K0 0K KK K K 3 0K 3 K 3K 03 K 3K K K 5K K 2K 2 KK R K KK KK KK KK R OK KKK K KK KKK XKOK0K KK

oOoooOooaoOooonOocOooooOoonOoOooOoon0OnonOO0000n

SUBROUTINE DEIG(AsRrN)

DIMENSION A(1)sR(1)

DOUBLE FRECISION AsRrANORMsANRMX>THR»X»Y»SINXySINX2,COSXy
@ COSX2»SINCS»RANGE

GENERATE IDENTITY MATRIX

a0

MV=0
5 RANGE=1.0D-25
IF(MV-1) 10,25510
10 IQ=-N
00 20 J=1sN
IQ=IG+N
DO 20 I=1sN
IJ=I0+I
R(IJ)=0.0D0
IF(I-J) 20+,15,20
15 R(IJI=1.0D0
20 CONTINUE
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COMPUTE INITIAL AND FINAL NORMS (ANORM AND ANORMX)

aoon

23 ANORM=0.0D0
DO 35 I=1»sN
DO 35 J=IsN

IF(I-J) 30235,30
30 IA=I+(J%xJ-U)/2

ANORM= ANDRH+A(IA)*A(IA)
35 CONTINUE
IF (ANORM) 16355165540

40 ANORM=1.414DOXDSQRT(ANORM)
ANRMX=ANORMXRANGE/DFLOAT(N)

INITIALIZE INDICATORS AND COMPUTE THRESHOLDy THR

ao0on

IND=0

THR=ANORM
45 THR=THR/DFLOAT(N)
90 L=1
55 M=L+1

COMPUTE SIN AND COS

oon

60 MQA=(MkxM-M)/2
LA=(LXL-L)/2
LM=L+MQ
62 IF(DABS(A(LM))~-THR) 130s635s65
63 IND=1
LL=L+LQ
MM=M+MG
X=0.300X(A(LL)-A(MM))
68 Y=—-A(LM)/DSART(A(LM)XA(LM)+XX%XX)
IF(X) 70975+75
70 Y==Y
75 SINX=Y/OSQRT(2.,0D0%(1,000+(LSART(1.0D0-YXY))))
SINX2=SINXXkSINX
78 COSX=DSART(1.000-SINX2)
COSX2=COSX*COSX
SINCS =SINXXCOSX

ROTATE L AND M COLUMNS

aoon

ILQ=N%(L-1)
IMQ=N%X(M-1)
DO 125 I=1sN
IG=(IXI-I)/2
IF(I-L) 80:115+80
80 IF(I-M) 85,115,%0
85 IM=I+MQ
GO TO 95
20 IM=M+IQ
93 IF(I-L) 100,103,105
100 IL=I+LQ
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GO TO 110

IL=L+IQ
X=A(IL)XCOSX-A(IM)IXSINX
ACIM)=ACIL)XSINX+A(IM)XCOSX
A(IL)Y=X

IF(MV-1) 120,125,120

ILR=ILQ+I

IMR=IMQ+I
X=R(ILR)XCOSX-R{IMR)XSINX
R(IMR)=R(ILR)XSINX+R(IMR)XCOSX
R(ILR)=X

CONTINUE

X=2.0D0XA(LMIXSINCS
Y=A(LL)XCOSX2+A(MM)XSINX2-X
X=A(LL)XSINX2+A(MM)*COSX2+X
A(LMI=(A(LL)-A(MM) ) XSINCS+A(LM)X(COSX2-5INX2)
A(LL)=Y

A(MMI=X

TESTS FOR COMPLETION
TEST FOR M = LAST COLUMN

IF(M~N) 1351405135
M=M+1
GO TO &0

TEST FOR L = SECOND FROM LAST COLUMN

IF(L=(N-1)) 145,150,145
L=L+1

GO TQ S5

IF(IND-1) 160,155,160
IND=0

GO TO S0

COMPARE THRESHOLD WITH FINAL NORM
IF(THR-ANRMX) 163,16353+45
SORT EIGENVALUES AND EIGENVECORS

IG=-N

DO 185 I=1sN
IG=IQ+N
LL=I+(IXI-I)>/2
JA=NX(I-2)

DO 185 J=IsN
JA=JQ+N
MM=J+(JkJ-J) /2
IF(ACLL)-A(MM)) 170,185,185 ®
X=A(LL)
ACLLY=A(MM)
A(MM) =X

DIR FORT 43
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IF(MV-1) 175,185,175
175 DO 180 K=1sN
ILR=IQ+K
IMR=JQ+K
X=R(ILR)
R(ILRY=R(IMR)
180 R(IMR)=X
185 CONTINUE
RETURN
END
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ABSTRACT

The derivation of a mathematical model for a noncoherent frequency
shift keyed system by Kwon and Shehadeh is used to develop a computer
program to generate numerical values for the probability of error.
These values of probability of error are plotted as a function of the
system parameters BT, signal to noise ratio, fading bandwi&th and

direct to reflected signal power ratio.



