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Abstract

Since the inception of Deep Reinforcement Learning (DRL) algorithms, there has been

a growing interest from both the research and the industrial communities in the promising

potentials of this paradigm. The list of current and envisioned applications of deep RL

ranges from autonomous navigation and robotics to control applications in the critical in-

frastructure, air traffic control, defense technologies, and cybersecurity. While the landscape

of opportunities and the advantages of deep RL algorithms are justifiably vast, the security

risks and issues in such algorithms remain largely unexplored. It has been shown that DRL

algorithms are very brittle in terms of their sensitivity to small perturbations of their obser-

vations of the state. Furthermore, recent reports demonstrate that such perturbations can

be applied by an adversary to manipulate the performance and behavior of DRL agents. To

address such problems, this dissertation aims to advance the current state of the art in three

separate, but interdependent directions. First, I build on the recent developments in adver-

sarial machine learning and robust reinforcement learning to develop techniques and metrics

for evaluating the resilience and robustness of DRL agents to adversarial perturbations ap-

plied to the observations of state transitions. A main objective of this task is to disentangle

the vulnerabilities in the learned representation of state from those that stem from the sensi-

tivity of DRL policies to changes in transition dynamics. A further objective is to investigate

evaluation methods that are independent of attack techniques and their specific parameters.

Accordingly, I develop two DRL-based algorithms that enable the quantitative measurement

and benchmarking of worst-case resilience and robustness in DRL policies. Second, I present

an analysis of adversarial training as a solution to the brittleness of Deep Q-Network (DQN)

policies, and investigate the impact of hyperparameters on the training-time resilience of

policies. I also propose a new exploration mechanism for sample-efficient adversarial train-

ing of DRL agents. Third, I address the previously unexplored problem of model extraction



attacks on DRL agents. Accordingly, I demonstrate that imitation learning techniques can

be used to effectively replicate a DRL policy from observations of its behavior. Moreover,

I establish that the replicated policies can be used to launch effective black-box adversarial

attacks through the transferability of adversarial examples. Lastly, I address the problem of

detecting replicated models by developing a novel technique for embedding sequential water-

marks in DRL policies. The dissertation concludes with remarks on the remaining challenges

and future directions of research in emerging domain of DRL security.
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Chapter 1

Introduction

Since its inception, a founding objective of Artificial Intelligence (AI) has been the creation

of agents that are able to autonomously learn various skills and behaviors from self-guided in-

teractions with the environment. This objective is greatly motivated by a biological analogue

in natural learning, which is the process of learning through utilization of past experiences

to evaluate and enact behaviors that result in higher benefits [2]. Inspired by the models

and analyses of this mechanism, machine learning research has developed the framework of

Reinforcement Learning (RL) to leverage such developments in the engineering of AI agents.

The basic formulation and algorithms of RL have been available for decades[3]. However,

for much of this time, the feasibility and applicability of this framework remained severely

constrained to simple problems and environments. This was mainly due to the high compu-

tational requirements of such algorithms, as well as the need for manual feature engineering

of the RL agent’s operating environments[4]. In recent years, these limitations have begun to

overturn with the increasing accessibility of high-performance computing (e.g., via GPUs),

as well as the advancements in deep learning [5]. The latter provides RL with the powerful

feature learning capabilities of deep neural networks, thus enabling the end-to-end learning

of complex skills from raw sensory inputs in complex environments. This new framework,

named Deep RL (DRL), has led to groundbreaking results in a variety of complex tasks,

such as learning to play video games [6], beating the human champion at the game of Go

1



[7], and autonomous navigation [8].

This recent surge in the versatility and feasibility of DRL has motivated extensive research

on its application to many domains, ranging from autonomous navigation [9] and robotic

manipulation [10] to healthcare [11], algorithmic trading [12], and automated control of com-

plex systems such as smart grids [13], transportation systems [14] and air traffic management

[15]. In some domains, such as robotics [16] and portfolio management [16], applications of

DRL are grown beyond academic interest and into deployed commercial products.

With the increasing adoption of DRL into commercial and critical systems, ensuring the

security of these applications is of growing importance. Integration of DRL controllers with

cyber-physical and financial systems gives rise to a novel and attractive attack surface to

adversaries aiming to manipulate and compromise such systems. As detailed in Chapter 3,

the problems arising from the security requirements of DRL are widely different from those

studied in seemingly similar areas, such as safe RL [17]. The objective of safe RL is to

ensure that in the natural dynamics of application environments, the agent does not learn to

behave in ways that are in breach of compliance with some given criteria for safe operation.

In the formulation of safe RL problems, the compliance of policies with such requirement

is both defined and evaluated within the confines of assumptions about the natural states

and dynamics of the operating environment. In contrast, the security problem is concerned

with settings in which an adversarial element intentionally seeks to compromise the natural

states and dynamics of the system for malicious purposes. For instance, a safety requirement

imposed on RL-based policies of autonomous navigation is collision avoidance. From a high-

level perspective, this requirement can be defined as maintaining a minimum distance with

other vehicles and objects, as measured by the on-board sensors of the vehicle. In the

safety problem, this fundamental measurement is assumed to be either perfectly accurate, or

with errors arising from the inherent imperfections of the sensors. However, in the security

problem, the adversary may intentionally manipulate the sensory measurements by inducing

perturbations that are different in type and scale to those that may naturally occur in the

sensors. Targeted crafting of such perturbations may thus force a “safe” RL agent into

collision states [18]. Hence, while there are overlaps between RL safety and security, a

2



different perspective and approach is required to study the security problem in DRL.

Similar challenges in supervised and unsupervised machine learning models has given

rise in the growing area of “adversarial machine learning”. However, as detailed in Chapter

2, while the security of supervised and unsupervised machine learning systems has enjoyed

extensive attention from the research community [19][20][21], the work on vulnerabilities

and security of DRL is sparse and sporadic. Since the reports by Behzadan & Munir [1] and

Huang et al. [22] in early 2017, the proceeding literature have studied this problem with

focus on narrow aspects of security in DRL. Therefore, there remains a pressing demand for

holistic and foundational studies in this emerging area.

1.1 Motivation

As discussed in Chapter 4, a major emphasis of the state of the art in DRL security is on

the vulnerability of policies to state-space perturbations. In particular, the manipulation

of the policy via adversarial examples has remained a main focus of current literature on

this issue. However, this bias towards adversarial example attacks had led to two critical

shortcomings: first, the analyses of such attacks fail to disentangle the vulnerability caused

by the learned representation and that which is due to the sensitivity of the DRL dynamics

to distributional shifts in state transitions. Second, the performance of defenses proposed

for adversarial example attacks are inherently limited to the considered attack mechanisms.

As a promising technique for mitigation of adversarial examples, adversarial training is

known to enhance the robustness of machine learning models to the type of attack used for

generating the training adversarial examples, while leaving the model vulnerable to other

types of attacks[23].

Furthermore, the current literature fails to provide solutions and frameworks which can

be used in practice to evaluate and improve the robustness and resilience of DRL policies

to attacks that exploit their sensitivity to state transitions. Hence, there remains a need for

quantitative approaches to measure and benchmark the resilience and robustness of DRL

policies in a reusable and generalizable manner.
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Moreover, the focus on state-space attacks leaves an important aspect of DRL security

completely unexplored –that of targeting the confidentiality of DRL policies. With the

envisioned growth of DRL applications, a critical business risk in developing DRL solutions

stems from the unauthorized replication and stealing of proprietary policies. Also, similar

to the case of supervised models, replicated policies may enable the adversaries to launch

more efficient black-box attacks against DRL agents. Hence, the investigation of this aspect

is of paramount importance for commercial use-cases of DRL.

1.2 Problem Statement and Scope

In response to such gaps, this dissertation aims to extend the current state of the art by

addressing three fundamental research problems, enumerated as follows:

1. Development of general techniques and metrics for quantitative measurement and

benchmarking of the resilience and robustness of DRL policies to state-space pertur-

bations.

2. Understanding the dynamics of training-time perturbations, and the impact of design

choices on the resilience of policies to training-time attacks.

3. Investigating the vulnerability of DRL agents to the theft or unauthorized replication

of policies.

This dissertation is focused on two types of security compromises, adversarial pertur-

bation of the states, and model replication attacks. Other classes of attacks (reviewed

in Chapter 3) are beyond the scope of this work. Furthermore, the work on adversarial

state perturbation aims for strict independence from assumptions on the attack technique

or parameters. In particular, we refrain from considering adversarial example attacks in all

research tasks related to state perturbation attacks. This is to ensure the generalization of

results.

Also, this work is restricted to model-free DRL algorithms applied in environments with

discrete action-spaces. This restriction is mainly to constrain the problem space to a tangible
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extent for doctoral research. It is also intended to preserve the coherence and relevance of the

formal and experimental results, and enable the meaningful comparison of findings across

different research tasks.

1.3 Overview of Contributions

1. We develop two DRL-based techniques and corresponding metrics for the measure-

ment and benchmarking of resilience and robustness of DRL policies to state-space

perturbations, and evaluate their performance on Deep Q-Network (DQN), Advantage

Actor-Critic (A2C), and Proximal Policy Optimization (PPO2) agents.

2. We formulate and analyze the problem of training-time attacks against DQN agents,

and experimentally study the impact of hyperparameters and design choices on the

resilience of DQN to such attacks, the results of which are presented as design-level

guidelines.

3. We formally analyze the limitations of adversarial training for DQN agents, and es-

tablish an upper bound on the ratio of perturbed to nominal states for the successful

adversarial training of DQN agents.

4. We address the sample-inefficiency of blanket adversarial training by proposing an

adversarially-guided exploration mechanism for improved sample-efficiency and per-

formance in the adversarial training of DQN agents.

5. We formulate the problem of policy imitation attacks, and present a proof-of-concept

methodology for efficient black-box state perturbations based on the Deep Q-Learning

from Demonstrations (DQfD) algorithm.

6. We investigate the transferability of adversarial examples between replicated and orig-

inal policies, and demonstrate the application of this phenomenon in black-box adver-

sarial attacks.
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7. We investigate the problem of detecting stolen policies, and develop a novel scheme for

the watermarking of DRL policies with sequential triggers.

1.4 Organization

This dissertation is organized in three parts. In Part 1, we present an overview of the

required background for this work. Accordingly, Chapter 2 reviews the fundamentals of RL

and DRL, and provides an overview of adversarial machine learning. Chapter 3 formulates

the security problem in RL, and presents threat models for adversarial attacks against DRL.

Chapter 4 reviews the current state of the art in the types and mechanisms for attacks

at training and inference phases of DRL, the defenses against such attacks, and relevant

evaluation metrics.

Part 2 investigates the resilience and robustness of DRL agents to adversarial state per-

turbations. Chapter 5 provides the formulation of resilience and robustness in DRL policies,

and presents the details of two proposed techniques for the measurement and benchmarking

of resilience and robustness at test-time. Chapter 6 extends the analysis to training-time

attacks on DQN agents, and investigates the effect of design parameters on the training-time

resilience of DQN policies. Chapter 6 presents a formal analysis of adversarial training for

improving the robustness of DQN policies, and proposes a novel exploration mechanism with

a better sample-efficiency as an alternative to blanket adversarial training.

Part 3 Focuses on the attacks targeting the confidentiality aspect of DRL policies.

Chapter 8 introduces the problem of adversarial policy imitation, and presents two proof-of-

concept attacks to establish the severity of adversarial policy imitation. Chapter 9 presents

a novel scheme for sequential watermarking of DRL policies.

To conclude the dissertation, Chapter 10 presents a summary of the main contributions

of this work, as well as remarks on future directions of research.
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Background
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Chapter 2

Preliminaries

2.1 Deep Reinforcement Learning

Reinforcement learning is concerned with agents that interact with an environment and

exploit their experiences to optimize a decision-making policy. The generic RL problem can

be formally modeled as learning to control a Markov Decision Process (MDP), described by

the tuple MDP = (S,A,R,P), where S is the set of reachable states in the process, A is

the set of available actions, R is the mapping of transitions to the immediate reward, and P

represents the transition probabilities (i.e., state dynamics), which are initially unknown to

RL agents. At any given time-step t, the MDP is at a state st ∈ S. The RL agent’s choice of

action at time t, at ∈ A causes a transition from st to a state st+1 according to the transition

probability P(st+1|st, at). The agent receives a reward rt+1 = R(st, at, st+1) for choosing the

action at at state st. Interactions of the agent with MDP are determined by the policy π.

When such interactions are deterministic, the policy π : S → A is a mapping between the

states and their corresponding actions. A stochastic policy π(s) represents the probability

distribution of implementing any action a ∈ A at state s. The goal of RL is to learn a

policy that maximizes the expected discounted return E[Rt], where Rt =
∑∞

k=0 γ
krt+k; with

rt denoting the instantaneous reward received at time t, and γ is a discount factor γ ∈ [0, 1].

The value of a state st is defined as the expected discounted return from st following a policy
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π, that is, V π(st) = E[Rt|st, π]. The action-value (Q-value) Qπ(st, at) = E[Rt|st, at, π] is the

value of state st after applying action at and following a policy π thereafter.

There are three main approaches to solving RL problems according to their optimization

objective: methods that are based on value iteration, those that are based on policy search,

and a hybrid of the two in actor-critic configurations. The details of each approach is

presented as follows:

2.1.1 Value Iteration and Deep Q-Network

Value iteration refers to a class of algorithms for RL that optimize a value function (e.g.,

V (.) or Q(., .)) to extract the optimal policy from it. As an instance of value iteration algo-

rithms, Q-Learning aims to maximize for the action-value function Q through the iterative

formulation of Eq. (2.1):

Q(s, a) = R(s, a) + γmaxa′(Q(s′, a′)) (2.1)

Where s′ is the state that emerges as a result of action a, and a′ is a possible action in

state s′. The optimal Q value given a policy π is hence defined as: Q∗(s, a) = maxπQ
π(s, a),

and the optimal policy is given by π∗(s) = arg maxaQ(s, a).

The Q-learning method estimates the optimal action policies by using the Bellman for-

mulation to iteratively reduce the TD-Error given by Qi+1(s, a)−E[r+γmaxaQi] for the it-

erative update of a value iteration technique. Practical implementation of Q-learning is com-

monly based on function approximation of the parametrized Q-function Q(s, a; θ) ≈ Q∗(s, a).

A common technique for approximating the parametrized non-linear Q-function is via neural

network models whose weights correspond to the parameter vector θ. Such neural networks,

commonly referred to as Q-networks, are trained such that at every iteration i, the following

loss function is minimized:

Li(θi) = Es,a∼ρ(.)[(yi −Q(s, a, ; θi))
2] (2.2)
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where yi = E[r+ γmaxa′ Q(s′, a′; θi−1)|s, a], and ρ(s, a) is a probability distribution over

states s and actions a. This optimization problem is typically solved using computationally

efficient techniques such as Stochastic Gradient Descent (SGD).

Classical Q-networks introduce a number of major problems in the Q-learning process.

First, the sequential processing of consecutive observations breaks the i.i.d. (Independent

and Identically Distributed) assumption on the training data, as successive samples are

correlated. Furthermore, slight changes to Q-values leads to rapid changes in the policy

estimated by Q-network, thus giving rise to policy oscillations. Also, since the values of

rewards and Qs are unbounded, the gradients of Q-networks may become sufficiently large

to render the backpropagation process unstable.

A Deep Q-Network (DQN) [6] is a training algorithm designed to resolve these problems.

To overcome the issue of correlation between consecutive observations, DQN employs a

technique called experience replay : instead of training on successive observations, experience

replay samples a random batch of previous observations stored in the replay memory to

train on. As a result, the correlation between successive training samples is broken and

the i.i.d. setting is re-established. In order to avoid oscillations, DQN fixes the parameters

of a network Q̂, which represents the optimization target yi. These parameters are then

updated at regular intervals by adopting the current weights of the Q-network. The issue

of instability in backpropagation is also solved in DQN by normalizing the reward values to

the range [−1,+1], thus preventing Q-values from becoming too large.

Mnih et al. [6] demonstrate the application of this new Q-network technique to end-to-end

learning of Q values in playing Atari games based on observations of pixel values in the game

environtment. To capture the movements in the game environment, Mnih et al. use stacks of

four consecutive image frames as the input to the network. To train the network, a random

batch is sampled from the previous observation tuples < st, at, rt, st+1 >, where rt denotes

the reward at time t. Each observation is then processed by two layers of convolutional

neural networks to learn the features of input images, which are then employed by feed-

forward layers to approximate the Q-function. The target network Q̂, with parameters θ−,

is synchronized with the parameters of the original Q network at fixed periods intervals. i.e.,
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at every ith iteration, θ−t = θt, and is kept fixed until the next synchronization. The target

value for optimization of DQN thus becomes:

yt ≡ rt+1 + γmaxa′Q̂(st+1, a
′; θ−) (2.3)

Accordingly, the update rule for the parameters in the DQN training process can be

stated as:

θt+1 = θt + α(yt −Q(st, at; θt))∇θtQ(st, at; θt) (2.4)

As for the exploration mechanism, the original DQN employs the ε-greedy technique,

which monotonically decreases the probability of taking random actions as the training

progresses [3]. However, recent literature proposes various alternatives such as parameter-

space noise exploration [24]. Although adding independent noise for exploration is usable

in continuous control problems, more sophisticated strategies inject noise that is correlated

over time (e.g., from stochastic processes) in order to better preserve momentum [25].

The procedure of the original DQN technique is presented in Algorithm 1:
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Algorithm 1 Deep Q-Network (DQN)[6]

Input: observations xt, reward value rt

Output: Q-function

Initialize replay memory D

Initialize action-value function Q with random weights θ

Initialize target action-value function Q̂ with weights θ− = θ

for episode = 1 to M do

Initialize sequence s1 = x1 and pre-processed sequence φ1 = φ(s1)

for t = 1 to T do

Following ε-greedy policy, select at =


a random action with probability ε

arg maxaQ(φ(st), a; θ) otherwise

Execute action ai in the emulator and observe reward rt and state xt+1

Set st+1 = st, at, xt+1 and preprocess φt+1 = φ(st+1)

Store transition < φt, at, rt, φt+1 > in D

{// Experience Replay}

Sample random minibatch of transitions < φj, aj, rj, φj+1 > from D

Set yj =


rj if episode terminates at step j + 1

rj + γmaxa′ Q̂(φj+1, a
′; θ−) otherwise

Perform a gradient descent step on (yj −Q(φj, aj; θ))
2 w.r.t. the network parameter

θ

{// periodic update of target network}

Every C steps reset Q̂ = Q, i.e., set θ− = θ

end for

end for

In [26], Hasselt et al. demonstrate that the single estimator used in the target rule

(provided in Eq (2.3)) overestimates the expected return, as it uses the maximum operator

to both select and evaluate an action. To alleviate this issue, Hasselt et al. propose a solution
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[27] based on an extension of the Double Q-learning algorithm [26] to Double DQN (DDQN).

Accordingly, this algorithm uses the online network Q to evaluate the policy, and uses the

target network Q̂ to estimate the action value. This is achieved by modifying Eq (2.3) as

follows:

yt ≡ rt+1 + γQ̂(st+1, arg max
a′

Q(st+1, a
′; θ); θ−) (2.5)

Prioritized Experience Replay

In the original DQN algorithm, the training process uniformly samples experiences from the

replay memory. A proposed improvement of this approach is prioritized experience replay

[28], in which the more significant experiences are assigned a higher probability of being

sampled. The measure of significance considered in this technique is TD errors, the higher

values of which indicate higher significance. The proposed procedure for prioritized replay

uses importance sampling to avoid the introduction of bias in the update distribution. The

evaluation of this technique in Atari environments demonstrate improved performance in

both DQN and DDQN agents.

2.1.2 Policy Search Methods

The objective of policy search methods is to directly optimize the policy via either gradient-

free or gradient-based methods. While gradient-free methods (e.g., evolutionary strategies)

have resulted in some success in this area, much of the recent developments are focused on

policy gradient (i.e., gradient-based) methods [5]. In such techniques, the policy is directly

parametrized in the form π(a|s; θ), where π is a probability distribution over actions a

when observing state s, as parameterized by θ, which can represent the weights of a neural

network. In the training process of policy gradient methods, the agent applies this policy

in the environment and collects experience samples, which are periodically used to update

θ by estimating the gradient ∇θE[Rt]. Typically, the agent then discard these samples and
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repeats this process on new samples, optimizing the policy iteratively. Two of the most

significant algorithms for solving policy gradient are TRPO and PPO, detailed below:

Trust Region Policy Optimization (TRPO): TRPO has been shown to be rela-

tively robust and applicable to domains with high-dimensional inputs [29]. To achieve this,

TRPO optimizes a surrogate objective function, constrained using a quadratic approxima-

tion of the Kullback-Leibler (KL) divergence, as denoted by Eq.(2.6). Whilst TRPO can

be used as a pure policy gradient method with a simple baseline, later work by Schulman

et al. [30] introduces Generalized Advantage Estimation (GAE), which proposes several,

more advanced variance reduction baselines. The combination of TRPO and GAE remains

one of the stateof-the-art RL techniques in continuous control. However, the constrained

optimization of TRPO requires calculating second-order gradients, limiting its applicability.

The high-level procedure of TRPO is presented in Algorithm 2:

max
θ

Et[
πθ(at|st)
πθold(at|st)

Ât] (2.6)

s.t. : Et[KL[πθold(.|st), πθ(.|st)]] ≤ δ (2.7)

Algorithm 2 Trust Region Policy Optimization[29]

Initialize π0

for i = 0, 1, 2, ... until convergence do

Run πi for T timesteps (or N trajectories)

Estimate advantage values Aπi(s, a) at all timesteps

Compute policy gradient g

Use the conjugate gradient method to compute F−1g

Compute rescaled step s = αF−1g with line search

Apply update: θ = θold + αF−1g

end for

Proximal Policy Optimization (PPO): PPO [31] is a closely related algorithm that
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improves on TRPO’s sample complexity (i.e., the number of samples required to learn an

optimal policy) by increasing the training use of each sample. It maximizes a clipped “sur-

rogate” objective function:

Lt(θ) = Et[LCLIPt (θ)− c1LV Ft (θ) + c2S[φθ](st) (2.8)

where LV Ft = (Vθ(st)− V target
t )2, S denotes an entropy bonus, and LCLIPt is given by:

LCLIPt (θ) = Et[min(ρt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât] (2.9)

with rt(θ) = πθ(at|st)
πθold (at|st)

, and ε is a hyperparameter with a typical value of 0.2. The clip

function modifies the surrogate objective by clipping the probability ratio, thus removing

the incentive for moving rt outside of the interval [1− ε, 1 + ε]. The high-level procedure of

the PPO algorithm is presented in Algorithm 3:

Algorithm 3 Proximal Policy Optimization[31]

for iteration= 1, 2, ... do

for iteration= 1, 2, ..., N do

Run policy πθold in environment for T timesteps

Compute advantage estimates Â1, ..., ÂT

end for

Optimize surrogate L wrt θ, with K epochs and minibatch size M ≤ NT

θold ← θ

end for

The PPO2 algorithm [31] follows the same procedure as PPO, however its implementation

is modified to leverage GPUs for faster computation.
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2.1.3 Actor-Critic Methods

Actor-critic methods combine value functions with an explicit representation of the policy.

In such methods, the actor represents a policy that leverages the bootstrapping over an

approximation of a value function (i.e., critic) to reduce variance and improve the rate

of convergence [3]. A notable instance of such techniques are the advantage actor-critic

algorithms, which are comprised of a policy π(at|st; θ) and an estimate of the value function

V (st; θv). The policy and the value function are updated after every tmax steps, or when a

terminal state is reached. The update performed by the algorithm is computed via:

∇θ′ log π(at|st; θ′)A(st, at; θ, θv) (2.10)

where A(st, at; θ, θv) provides an estimate of the advantage function given by:

k−1∑
i=1

γirt+1 + γkV (st+k; θv)− V (st; θv) (2.11)

the value of k may vary from state to state, with an upper-bound of tmax.

A variant of this method is Asynchronous Advantage Actor-Critic (A3C), in which the

policy and value function estimates are updated with n-step returns in the forward view,

in a manner similar to that of using minibatches. A3C uses separate actor-learner threads

that sample the environment steps and update a centralized copy of the parameters asyn-

chronously to each other. Also, the gradient update for A3C adds a entropy parameter

β∇θ′H(π(st; θ
′)) to the loss function of eq. (2.10) to improve exploration by discouraging

premature convergence to sub-optimal deterministic policies[32]. The high-level procedure

of A3C is provided in Algorithm 4:
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Algorithm 4 Asynchronous Advantage Actor-Critic (A3C) [32]

Global shared parameter vectors θ and θv, thread-specific parameter vectors θ
′

and θ
′
v

Global shared counter T = 0, Tmax

Initialize step counter t← 1

for T ≤ Tmax do

Reset gradients, dθ ← 0 and dθv ← 0

Synchronize thread-specific parameters θ
′
= θ and θ

′
v = θv

Set tstart = t, get state st

for st not terminal and t− tstart ≤ tmax do

Take at according to policy π(at|st; θ′)

Receive reward rt and new state st+1

t← t+ 1, T ← T + 1

end for

R =


0 for terminalst

V (st, θ
′
v) otherwise

for i ∈ {t− 1, ..., tstart} do

R← ri + γR

accumulate gradients wrt θ
′
: dθ ← dθ +∇θ′ logπ(ai|si; θ

′
)(R− V (si; θ

′
v))

accumulate gradients wrt θ
′
v : dθv ← dθv +∇θ′v

(R− V (si; θ
′
v))

2

end for

Update asynchronously θ using dθ, and θv using dθv

end for

On the other hand, the Advantage Actor-Critic (A2C) algorithm [33] uses a synchronous

approach to sample from separate environment instances and collects all data into one mini-

batch to compute the gradient.
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2.2 Security of Machine Learning

As data-driven systems, machine learning algorithms are known to be vulnerable to various

types of adversarial actions. Such actions can be broadly classified as those affecting the

training phase of the learning process, and those targeting the inference (i.e., test) phase

[19].

In the training phase, adversaries may aim to influence the learning process by manip-

ulating the training data. This type of attack is generally referred to as poisoning [34].

An example of poisoning attacks is the case of online spam classifiers, where an adversary

can intentionally mislabel spam emails as benign to compromise the accuracy of the model

retrained on new data [35].

In the inference phase, the adversary may implement an evasion attack by providing

malicious input that induce incorrect inferences at the output of a machine learning model

[36]. This type of malicious input is generally referred to as adversarial example [37]. A

noteworthy property of adversarial examples in their transferability: an adversarial example

crafted for a particular model may also affect other models with different architectures that

are trained on datasets with similar distributions to that of the original model [38].

According to the objective of adversaries, adversarial example attacks are generally clas-

sified into the following two categories:

1. Misclassification attacks, which aim for generating examples that are classified incor-

rectly by the target network

2. Targeted attacks, whose goal is to generate samples that the target misclassifies into

an arbitrary class designated by the attacker.

To generate such adversarial examples, several algorithms have been proposed, such as the

Fast Gradient Sign Method (FGSM) by Goodfellow et al., [39], and the Jacobian Saliency

Map Algorithm (JSMA) approach by Papernot et al. [40]. A grounding assumption in

many of the crafting algorithms is that the attacker has complete knowledge of the target

neural networks such as its architecture, weights, and other hyperparameters. In response,
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Papernot et al. [41] proposed the first blackbox approach to generating adversarial examples.

This method exploits the transferability of adversarial examples: an adversarial example

generated for a neural network classifier applies to most other neural network classifiers that

perform the same classification task, regardless of their architecture, parameters, and even

the distribution of training data. Accordingly, the approach of [41] is based on generating

a replica of the target network. To train this replica, the attacker creates and trains over

a dataset from a mixture of samples obtained by observing target’s interaction with the

environment, and synthetically generated inputs and label pairs. Once trained, any of the

algorithms that require knowledge of the target network for crafting adversarial examples can

be applied to the replica. Due to the transferability of adversarial examples, the perturbed

data points generated for the replica network can induce misclassifications in many of the

other networks that perform the same task.

Another class of adversarial actions is comprised of those that aim to infer information

about the internal parameters of the model or the training dataset [19]. One instance of such

attacks is that of model extraction [42], in which the adversary estimates the parameters

of a model from observations of its input-output data points. Besides compromising the

confidentiality of models as intellectual properties, an adversary may utilize the extracted

model in circumventing the difficulties of blackbox attacks [41]. Other instances of attacks

on confidentiality are training data extraction [43] and membership attacks [44], which aim

to infer information about the training set and extract personally-identifiable information

from the model.

While the current literature on machine learning security includes various proposals for

mitigation of these attacks, the majority of solutions provide ad hoc alleviation of the problem

and are not generalizable to other classes of algorithms. For training-time attacks, notable

solutions are those that aim to minimize the impact of outliers in models based on Principle

Component Analysis (e.g., [45]) and Support Vector Machines (e.g., [46]). As for attacks

targeting the inference phase, notable solutions include gradient masking (e.g., [47] and [48])

and injecting adversarial examples in the training dataset (e.g., [39]). Yet, all such defenses

are shown to be weak against adaptive adversaries [19]. For more in-depth studies on the
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state of security in machine learning, readers can refer to [19] and [21].
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Chapter 3

DRL Threat Model

As with other types of machine learning techniques, DRL is also prone to adversarial ac-

tions [49][50] similar to those mentioned in Section 2.2. While many of the mechanisms

and architectural aspects of DRL are similar to other machine learning techniques such as

deep learning classifiers, the inherent differences in their learning dynamics and applications

gives rise to security issues that are unique to DRL. A notable difference between DRL and

classical machine learning techniques stems from the fact that DRL agents train to solve a

sequential decision-making (i.e., control or planning) problem, whereas classical supervised

and supervised methods are only concerned with a single-step prediction. The interdepen-

dence of a DRL agent’s actions on its previous “decisions” increases the degrees of freedom

for adversarial actions, and also gives rise to new challenges in detecting and mitigating such

attacks. An example of these challenges is posed in the detection of attacks – a single obser-

vation of misclassification in deep learning models may indicate an adversarial perturbation;

but for DRL agents, the objective of optimizing for maximum cumulative reward allows for

short-term sacrifices. In many cases, this optimization objective implies a delayed-reward

mechanism. For example, when playing chess, one may not receive any reward for any of

its actions until the game is over. This is fundamentally different from supervised learning,

where the availability of labels enable straightforward calculation of accuracy and other per-

formance metrics for the model. Hence, observing even multitudes of seemingly incorrect
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actions performed by a DRL agent is not necessarily indicative of malicious perturbations. A

further challenge arises from the nature of DRL training : in general, supervised learning is

trained on a dataset sampled from a fixed distribution. One consequence of this fact is that

poisoning attacks cause a shift in the distribution, and hence detection and mitigation of

such shifts has been the primary approach in defending against poisoning attacks. However,

the exploratory behavior of DRL agents inevitably results in changes in the distribution of

training samples. In other words, both the attack mechanism and any defensive approach

against poisoning attacks on DRL are fundamentally different from those of supervised learn-

ing. Also, even after the training phase, many environments necessitate an optimal DRL

policy to retain a level of randomness in their output actions (i.e., the action at is not al-

ways derived from a deterministic policy). A well-known example of such environments is

the game of rock, paper, scissors [3]. Consequently, distinguishing adversarial attacks from

benign actions derived from stochastic policies is not as straightforward as the case of su-

pervised learning. To solidify our argument for the existence of unique challenges in the

security of DRL, we note that both supervised and unsupervised mechanisms are shown to

be reducible from the RL framework (i.e., can be formulated as instances of RL), but the

inverse is not true [51]. In other words, DRL inherits the fundamental security issues in

supervised and unsupervised learning, while its increased complexity give rise to other issues

that are unique to RL and DRL.

As detailed in Section 2.2, adversarial attacks against DRL agents aim to compromise the

normal operating criteria of such agents. Behzadan et al. [49] investigate such compromises

from the standpoint of cybersecurity, in which the compromise may be viewed as affecting

one or more dimensions of the Confidentiality, Integrity, Availability (CIA) triad [52], as

detailed below:

Confidentiality of a DRL agent refers to the need for keeping the internal configurations

of the agent from exposure to adversaries. These configurations include agent’s reward

function, the training mechanism (e.g., hyperparameters, algorithm), and the learned policy

function. For instance, inference of the policy function can result in loss of proprietary assets.

Furthermore, knowledge of the internal configurations may enable the adversary to launch
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further attacks with more precision and efficiency.

Integrity in DRL is the ability to learn or enact policies in the manner intended by the

designer. Adversaries may compromise the integrity of a DRL agent by forcing it to learn

incorrect policies, or to perform actions other than those prescribed by a learned policy.

Availability is the ability of a DRL agent to perform training or actions when needed.

Adversarial compromise of this dimension may be in the form of denying convergence during

DRL training, or preventing the agent from acting in response to changes in the environment.

The problem of DRL security may resemble those studied under safe RL [17], but as

mentioned in Chapter 1, the presence of adversarial intention in the security problem gives

rise to challenges that are beyond the scope of safe RL. Also, we must differentiate between

DRL security and the area of adversarial RL [53]. The latter is concerned with multi-agent

RL settings, in which agents aim to maximize their returns in competition with other agents.

While some DRL security problems can be modeled as adversarial RL [18], this cannot be

generalized as the adversary is not necessarily a learning agent.

3.1 Attack Surface

Figure 3.1 presents a high-level depiction of a DRL agent and its components. Each of these

components can be targeted in adversarial attacks, as detailed below:

Environment : According to the Markovian assumption of the MDP model presented in

Section 2.1, the interaction between a DRL agent and its environment at time t are captured

by the tuple < st, at, rt+1, st+1 >. In the RL settings, the environmental awareness of an

agent is greatly dependent on its observation of the state st, and its transition to st+1. Hence,

by perturbing the environment and its configuration by some vector δt (i.e, s′t = st + δt ),

an adversary is able to manipulate the agent’s estimation of the current state, as well as the

dynamics of the environment.

Observation Channel : DRL agents observe the environment via their sensors, and the

sensory observatio of the state st may contain noise αst , that is, ot = st + αst . Adversarial

manipulation of αst through perturbing the sensor readings can compromise both the training
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Figure 3.1: Components of a DRL agent

and inference processes [49]. Such attacks can be classified into two categories: those that

exploit the imperfect representation learning of DRL agents (e.g., adversarial examples [1]),

and those that target the imperfect generalization of DRL policies by manipulating the

observation of state transition dynamics.

Reward Channel : Manipulation of the reward values rt generated as a result of the

actions of a DRL agent (and the consequent transitions) can greatly affect the training

process. This case constitutes an instance of the corrupted reward channel problem [54], and

can be formulated as follows: Given a true reward function Ṙ and a corruption function C,

the observed reward function is defined as R̂ : S → R̂ as R̂(s) := Cs(Ṙ). The corrupted

reward thus induces an observed MDP < S,A,R, P, R̂ >, which may poison the experience

memory with potentially corrupted observations of rewards.
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Actuator : DRL agents influence their environments by performing actions at via actu-

ators. If the adversary can manipulate the actuator, the actual action performed will be

different than that chosen by the agent, and hence the observed experience is corrupted,

which can translate into poisoning of the experience memory.

Experience Storage and Selection: Direct manipulation of stored experiences of an agent

enables the adversary to greatly influence the training process of the DRL agent. Such

manipulations are essentially equivalent to perturbing the observations of an agent, but

potentially at a lower cost and complexity for the adversary. Also, the experience selection

mechanism can also be targeted to manipulate the training process. The analysis of such

attacks (presented in Chapter 6) establish that techniques such as prioritized replay may in

fact facilitate the poisoning of policy learning.

3.2 Attack Model

Threat modeling of the adversary is comprised of two components, actions available to the

adversary, and the information at his disposal [19]. These capabilities define the adversarial

limitations, and determine the extent and impact of implementing different attack vectors

in the threat landscape of a DRL agent. Behzadan et al. [49] investigate the availability of a

priori information to the attacker (with respect to initiation of attacks) according to the type

of available information. Accordingly, their work defines agent information as the adversary’s

available knowledge of the target model, its parameters, algorithm, and the reward function.

Similarly, information about the dynamics and configuration of the environment comprise the

environment information. The adversary may have varying degrees of access to either type

of information. For instance, adversary may have complete knowledge of the environment’s

dynamics, but may only have access to partial or noisy observations of changes in the state of

the environment. Also, the set of actions available to the attacker may include perturbations

of the environment, the observation, the reward signal, experience memory, or actuators in

a DRL setting, constrained by a budget that determines the permitted extent of actions.

As a clarifying example, consider the case of crafting visual adversarial examples to perturb
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observations. In such settings, the adversary may be limited to a maximum of Bp pixel

modifications at each step. In the same example, the budget may also limit the frequency

of perturbations to a maximum of one frame per every Bf samples.

We explore the the different attack vectors available to adversaries according to the

targeted learning phase (training or testing), as detailed in the following:

3.2.1 Inference Phase

Similar to test-time attacks discussed in Section 2.2, inference-time attacks against DRL do

not tamper the learned policy and experience data of the target. Such attacks can be active

or passive. Passive attacks do not disturb the normal functioning of the target, but aim

to infer the agent information via observation of state-inference pairs. On the other hand,

active attacks are similar to evasion attacks, as both aim to manipulate the output of the

model.

Depending on the information available to the adversary, attacks can take various forms.

If the adversary has access to the agent information at a level sufficient for precise crafting

of malicious input (e.g., adversarial examples) to the agent, then the attack is considered

whitebox. Conversely, if such information is not available to the adversary, adversarial action

is constrained to blackbox attacks. Similarly, if the agent has access to a degree of knowledge

of the environment that is sufficient for direct exploitation in adversarial actions, the attack

is of the perfect information type. For instance, knowledge of the dynamics of the Atari game

Pong, as well as perfect observation of target’s actions, enables the adversary to predict the

future states and exploit this foresight in devising a sequence of perturbations to manipulate

the DRL agent into performing poorly. On the other hand, if the adversary has complete

knowledge of the game dynamics but can only have noisy or intermittent observability on the

agent’s actions, utilizing predictive control for adversarial actions may be rendered infeasible

and the adversary will have to pursue attacks of type imperfect information.

26



3.2.2 Training Phase

The objective of attacks targeting the training phase is to extract, manipulate, or disable the

policy learning mechanism of the DRL agent. Similar to those under the inference phase,

extraction attacks are generally passive, and aim to extract the model parameters or contents

of experience memory. A simple instance of extraction attacks at training phase is direct

access to the training software or memory. Other techniques may include inference of pa-

rameters based on observations of the training process. Analogous to training-time attacks

against supervised learners [46], manipulation or disruption of the training process can be

achieved via two strategies: injection and modification. Injection refers to alteration of the

experience memory via insertion of experience tuples that change the distribution of obser-

vations. A suitable technique for injection attacks is the manipulation of the environment

itself. Modification attacks aim to change the contents of actual experiences. Adversarial

example attacks against DRL at training time are a representative example of such attacks.

The taxonomy of the adversarial attacks enumerated in this section is presented in Figure

(3.2).
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Chapter 4

State of the Art

1 In this section, we present an overview of the prominent literature on the security of

DRL. While this body of work is still at its early stages, the research on security of DRL

has produced notable results which motivate and shed light on potential venues of further

advancements. At a high-level, the studies on DRL security can be categorized in the two

classes of offensive and defensive proposals. It is noteworthy that, with the exception of a

few papers, current studies on offensive techniques are generally focused on either inference-

time attacks or training-time attacks, but not both. Accordingly, we adopt this high-level

classification as the foundation for our exploration of these literature. We begin with an

overview of the offensive literature (as enumerated in Table 4.1), followed by a review of

the literature on defensive techniques (as listed in Table 4.2). This review is prepared

with the aim of extending current surveys [49][50] to recent developments and present a

comprehensive survey of relevant literature. However, it must be noted that due to the fast

rate of publications in machine learning, a number of very recent, yet notable papers may

be missing from this review.

1This chapter extends and amends the previous work of the author [49].
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Phase Mode
Attack Surface

Observation State Reward

Test-Time
Whitebox Behzadan & Munir [1], Huang et al. [22],

Patthanaik et al. [55], Lin et al. [56], Han et al [57] , Clark et al. [58] Han et al. [57]

Tretschk et al. [59]

Blackbox Behzadan & Munir [1], Huang et al. [22] Behzadan & Munir [18] Han et al. [57]

Training-Time
Whitebox Kos & Song [60] — Han et al. [57]

Blackbox Behzadan & Munir [1] — —

Table 4.1: Summary of Literature on Attack Mechanisms

4.1 Test-time Attacks

Behzadan & Munir [1] published the first report on test-time vulnerabilities of DRL. Based

on the fact that DQN policies and deep classifiers are essentially of the same structure and

function, therefore DQN policies must also be vulnerable to adversarial examples. Accord-

ingly, their paper tests the applicability of adversarial examples crafted with FGSM and

JSMA versus DQN policies under whitebox settings, and demonstrate that such policies are

also vulnerable to test-time manipulation using adversarial examples. In whitebox settings,

the adversary performs a Man in The Middle (MITM) attack. He observes the state of the

environment, and with complete and perfect knowledge of the targets policy parameters,

crafts adversarial examples such that the observed state by the target s′t = st + δt results in

different state-action values Q(s′t, at) 6= Q(st, at), thus leading to the selection of an alterna-

tive action a′t = arg maxat Q(s′t, at) instead of the original selection a∗t = arg maxat Q(st, at).

Furthermore, this paper demonstrates the practicality of blackbox test-time attacks uti-

lizing the transferability of adversarial examples [41]. Their experiment follows an attack

flow where the adversary first trains a DQN agent on the same environment based on the

known reward function of the target, then follows the attack procedure of whitebox attacks,

with the difference that adversarial examples are crafted for the dual policy trained for the

adversary and applied to the target. To validate the feasibility of such attacks, the paper re-

ports the transferability of adversarial examples crafted via FGSM and JSMA against DQN
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policies, showing that more than 70% of such perturbations are transferable between the two

models.

It is noteworthy that the work by Behzadan & Munir [1] and the proceeding literature on

adversarial example attacks are instances of observation channel perturbations via exploiting

the imperfections of learned representations in DRL models.

Following the report presented in [1], Huang et al. [22] analyzed the vulnerability of two

other DRL algorithms to test-time attacks, namely TRPO and A3C. Leveraging the same

attack process introduced by Behzadan & Munir [1] for whitebox settings, this paper reports

that TRPO and A3C are also vulnerable to test-time adversarial example attacks crafted

with FGSM. Also, the paper compares DQN policies trained on Atari games with those of

TRPO and A3C, and demonstrates that policies trained with DQN are more susceptible to

such attacks than TRPO and A3C. Furthermore, [22] analyzes the susceptibility of all three

algorithms to blackbox attacks that exploit transferability. The corresponding experiments

analyze two types of blackbox attacks: one in which the adversary has complete access

to the environment information, and has knowledge of the target’s training algorithm and

hyperparameters, but not its random initialization; and one in which the adversary has no

knowledge of the target’s training algorithm or hyperparameters.

While the proofs of concept presented in previous studies are generally based on classical

adversarial example crafting techniques (e.g., FGSM and JSMA), Patthanaik et al. [55] argue

that the classical form of FGSM used in previous attacks on DRL do not use an optimal cost

function in crafting DRL-specific adversarial examples. Consequently, this paper proposes

two more effective whitebox approaches to computing such adversarial perturbations. The

first approach is based on a novel cost function for attacks. The authors formally prove

that if the optimal policy of an agent is given by the probability mass function π∗(a|s), the

objective function whose minimization leads to optimal adversarial attack on the agent is

given by:

J(s, π∗) = −
n∑
i=1

pi log π∗i , (4.1)
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where π∗i = π∗(ai|s), pi = P (ai); with P denoting the adversarial probability distribution.

Accordingly, the paper [55] proposes an attack mechanism which solves this minimization

problem via sample-based search. Alternatively, the second approach leverages Stochastic

Gradient Descent (SGD) to replace the sample-based approach. Validation of these attacks

is performed via experiments on attacking Double DQN and Radial Basis Function based Q-

learning (RBFQ) [61] agents trained in the CartPole and Mountain Car environments. The

reported results indicate that the attacks based on sample-based search perform consistently

better than FGSM and the SGD-based approaches in degrading the performance of targeted

agents. Another noteworthy observation in these results is that RBFQ agents behave with

superior resilience to adversarial example attacks compared to DDQN.

The attack methodologies proposed in the aforementioned papers are all based on con-

tinuous and uniform perturbation of all observations by the adversary. However, Lin et

al. [56] note that this type of attack may be both practically infeasible and easy to detect.

Instead, they propose whitebox attacks that aim to minimize the number of required pertur-

bations. Accordingly, two types of attacks are proposed in [56]: strategically-timed attacks

and enchanting attacks

Strategically-timed attacks aim at perturbing the minimum subset of observations in an

episode that results in the desired degradation or performance. This is achieved by identifying

those states in which the difference between the value or preference of the agent’s best and

worst actions is greater than an arbitrary threshold defined by the adversary. At such states,

the adversary implements adversarial examples to induce the selection of the least preferred

action over the optimal one. The crafting algorithm used in [56] for generation of adversarial

perturbations is that of Carlini and Wagner (C&W) [62].

On the other hand, Enchanting attacks aim to “lure” the target agent from a current

state st at time t to a specified target state sg in H steps. The proposed attack mechanism

is an online planning algorithm, which utilizes generative modeling to predict the future

states and a sampling-based cross-entropy method [63] to compute a minimum sequence of

control actions that steers the targeted DRL agent towards the state sg. The control actions

of this attack are adversarial perturbations crafted via the C&W technique such that the
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implemented action of the target agent is one that steers the agent closer to the state sg.

The experimental evaluation of these two attacks were performed on DQN and A3C agents

trained on five Atari games.

The reported results demonstrate that for both types of agents, perturbing only 25% of

observations via strategically-timed attacks can achieve the same levels of degradation as

those resulting from uniform attacks. In accord with the findings of [22], these experiments

also indicate that DQNs are more vulnerable than A3C agents against test-time adversarial

example attacks. In the case of enchanting attacks, the results claim a 70% success rate

in enchanting both types of agents (DQN and A3C) in three of the five games in less than

H = 40 steps. The authors claim that failure in the remaining two games (Seaquest and

ChopperCommand) was due to the existence of multiple random enemies that were not

accurately modeled by the prediction models.

Similar to the enchanting mechanism of [56], Tretschk et al. [59] propose a whitebox

attack mechanism that aims to maneuver the target agent to pursue an adversarial goal.

Formally, the goal of this attack is to make a DRL agent trained for the original reward rO

to maximize an arbitrary adversarial reward rA through a sequence of state perturbations.

To this end, the authors develop a mechanism based on an Adversarial Transformer Network

(ATN) [64], which is a freedforward deep neural network gθ : X → X that computes the

adversarial perturbation to be added to the input of the target DRL agent. Considering

DQNs as the target of this attack, the proposed mechanism of [59] is to learn gθ by training

in combination with a dual of the target DQN agent Qφ. Accordingly, the model to be

learned is x → Qφ(x + gθ(x)) where the target’s parameters φ are fixed and only the ATN

parameters θ are learned. [59] claims that the generalizability of gθ to unseen states allows

the adversary to feed the input state through gθ and then to the target DQN to achieve

the desired outcome. Similar to the previously discussed attacks, this mechanism is also an

MITM attack that assumes the adversary can manipulate the state before it is observed by

the target. Furthermore, it requires complete knowledge of the agent information, as well as

access to the target environment for training the ATN. The experimental results performed

on the case of targeting a Pong-playing DQN agent demonstrate that the adversary can
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successfully manipulate the agent into pursuing the adversarial policy at test-time, given a

large-enough threshold for degree of perturbation.

The literature on test-time attacks on DRL that are not based on adversarial examples is

still very scarce. For instance, Han et al. [57] investigate the case of a DRL agent in a Software

Defined Network (SDN), tasked with preventing the propagation of a malware in the network

by identifying the compromised nodes and deciding on taking one of the following actions at

each time step: isolating and patching a node, reconnecting a node and its links, migrating

the critical server, and taking no action. The reward value for this agent depends on whether

the critical servers are compromised and the number of reachable nodes from such servers,

as well as the number of compromised nodes, and the cost of migration. It is also assumed

that the detection mechanism of the agent can be manipulated by the adversary (i.e., the

adversary can induce False Positive (FP) or False Negative (FN) results in the detector),

but is constrained by a threshold on how many such manipulations can be implemented at

each time step. The test-time attacks proposed in [57] are two-fold: indiscriminate attacks

aim to prevent the DRL agent from taking the optimal action at at time t, and targeted

attacks aim to force the agent into taking a specific action a′t at time t. Considering DDQN

and A3C as DRL algorithms for the target agent, the objective for targeting DDQN agents

is to maximize Q(st + δt, a
′
t) for action a′t at state st using perturbation δt. Similarly, the

objective for targeting A3C is to maximize π(a′t|st + δt) for the stochastic policy π. For

these attacks, [57] develops a whitebox attack methodology, where the attacker can access

the target’s model. This attack requires the computation of those nodes whose FP or FN

detection would facilitate the adversarial objective. Accordingly, [57] proposes an integer

programming approach to deriving the set of such nodes at each time step. The authors

also propose a blackbox attack technique, which is based on training surrogate models of the

target with either the same or different hyperparameters and then following the procedure of

the whitebox attacks. The experimental results produced in this paper indicate that in the

majority of cases, both whitebox and blackbox attacks succeed in compromising the critical

servers. It is also noted that there is no significant difference between the success rate of

whitebox and blackbox attacks.
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Clark et al. [58] demonstrate that the Q-learning policy of an autonomous navigation

robot is susceptible to sensory manipulation. In this work, the ultrasonic collision avoidance

of the robot was manipulated via artificial ultrasonic “pings” that would allow the attacker

to manipulate the trajectory of the robot. Within the domain of autonomous navigation,

Behzadan & Munir [18] propose an adversarial DRL agent specifically trained to manipulate

the operating environment of an autonomously navigating DRL agent and induce collisions

or trajectory manipulations by exploiting the collision avoidance policy of the target. In this

attack, the adversarial DRL agent is trained as another autonomous navigation agent with a

reward function that incorporates adversarial objectives, such as pursuing trajectories that

will lead to the target colliding with itself or other objects in the environment. This attack

is whitebox and requires access to the trained policy of the adversary, but not necessarily its

parameters and hyperparameters used in its training.

4.2 Training-Time Attacks

The original paper of Behzadan & Munir [1] also demonstrates the vulnerability of DRL to

training-time attacks. This paper investigates the feasibility of policy manipulation attacks

against DQN agents leveraging adversarial examples. Accordingly, the authors develop the

policy manipulation attack, the mechanism of which is illustrated in Figure 4.1. In this

attack, the adversary aims at inducing an arbitrary policy πadv on the target DQN at training

time. This attack mechanism assumes a blackbox adversary, who does not have access to the

parameters of the target θt at any time step t, but is aware of its reward function, training

algorithm, and architecture. Furthermore, the adversary is assumed to have complete access

to and knowledge of the training environment. The only parameter that the adversary can

manipulate using this attack is the observed state of the environment, hence this adversary

can be considered an MITM capable of perturbing the input stream from the environment

to the target DQN agent.

At every iteration of the training process, a DQN agent following ε-greedy exploration
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performs an action determined by the following mechanism:

at =


random action, with probability ε

arg max
a
Q(st, a), with probability 1− ε

(4.2)

Once the action is performed, the observation tuple (st, at, rt+1, st+1) is stored in experi-

ence replay. At every p iterations, the agent samples a random minibatch of observations,

and performs a gradient descent step on Equation 2.4 with respect to the parameters of

the native Q-network. As discussed in Chapter 2, the DQN framework is comprised of two

neural networks, one is the native Q-network and the other is the target network Q̂ whose

architecture and parameters are copies of the native network sampled once every c iterations.

Consequently, the attacker can manipulate the learning process of DQN by crafting states

st such that Q̂(st+1, a; θ−t ) identifies an incorrect choice of optimal action at st+1. If the

attacker is capable of crafting adversarial inputs s′t and s′t+1 such that the value of Equation

2.4 is minimized for a specific action a′, then the policy learned by DQN at this training step

is optimized towards suggesting a′ as the optimal action given the state st. In the proposed

attack mechanism, the attacker observes interactions of its target with the environment

(st−1, at−1, rt, st). If the resulting state st is not terminal (i.e., the episode does not end at

that state), the attacker then calculates the perturbation vectors δ̂t for the current state

st such that maxa′Q̂(st + δ̂t, a
′; θ−t ) causes Q̂ to be maximum when a′ = π∗adv(st), i.e., the

maximum expected return is obtained when the action taken at st is determined by the

attacker’s policy. The attacker then reveals the perturbed state s′t to the target, and re-

trains the replica based on the new state and action.

Considering that the attacker is not aware of the target’s network architecture and its

parameters at every time step, crafting adversarial states relies on a blackbox technique

exploiting the transferability of adversarial examples by training a replica DQN agent and

obtaining the state perturbations from the replica’s Q′ and Q̂′ networks that correspond to

the target’s Q and Q̂ networks, respectively.

Accordingly, Behzadan and Munir [1] divide this attack into the two phases of initializa-
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Figure 4.1: Exploitation cycle of policy induction attack [1]
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tion and exploitation. The initialization phase implements processes that must be performed

before the target begins interacting with the environment, which are:

1. Train a DQN based on attacker’s reward function R′ to obtain the adversarial policy

π∗adv

2. Create a replica of the target’s DQN and initialize with random parameters

The exploitation phase implements the attack process and crafting adversarial inputs,

such that the target DQN performs an action dictated by π∗adv. This phase constitutes an

attack cycle depicted in figure 4.1. The cycle initiates with the attacker’s first observation

of the environment, and runs in tandem with the target’s operation. The authors report

experimental verification of this attack against a Pong-playing DQN. In their experiment,

the algorithm used to craft adversarial perturbations is JSMA. The results indicate that the

adversary is capable of manipulating the agent towards an always-losing policy in almost the

same number of training steps required to achieve optimal (i.e., best reported) performance.

In [60], Kos & Song present an experimental analysis of whitebox training-time attacks

on DRL. Considering A3C agents training on Pong, the paper first demonstrates that in

comparison to random perturbations, adversarial example attacks crafted via FGSM are

significantly more effective in degrading the training performance of the agent. Then, the

authors investigate the feasibility of non-contiguous attacks, in which not all the states of

the environment are perturbed. To this end, three attack scenarios are studied: perturbing

observations at every N frames (frequency-based), recomputing adversarial perturbation at

every N frame and applying the last computed perturbation in the intermediate frames,

and using the value function to estimate when to inject adversarial perturbations to be

most effective. In the corresponding experiments, the attack is initiated after the agent has

reached the optimal (i.e., baseline) performance. Presented results indicate that while the

frequency-based attack fails to be particularly effective, recomputing at every tenth frame

and reusing the previous perturbation in intermediate frames is almost as effective as the

original attack. For the latter case, the paper develops an attack mechanism in which the
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adversarial perturbations are injected only when the value function, computed over the

original frame, is above a threshold. The authors present the rationale behind this method

by noting that they only wish to disrupt the agent in crucial moments, when it is close to

achieving a reward. The results demonstrate that this technique is far more effective than

the previous two cases, and is argued to be more efficient than uniform perturbation of all

frames.

Similar to the case of test-time attacks, the body of work on training-time attacks that

are not based on adversarial examples is very thin. In the previously discussed paper by

Han et al. [57], the target model is considered to be an online learner, and hence the authors

investigate attacks that aim to manipulate the training phase of the target DRL. To this

end, [57] presents a poisoning attack based on flipping the reward signs, with the goal of

maximizing the loss function in the target DDQN agent. In this attack, once the target

samples a batch of experiences for training, the adversary calculates the gradient of the loss

function with respect to each of the observed reward signals, and flips the sign of experience

with the largest absolute value of this gradient. In experimental validation of this attack, the

authors impose limit of 5% on the maximum number of experiences that can be tampered at

each training step. While the results demonstrate that this attack effectively degrades the

training performance of the target, the authors note that this type of attack only delays the

convergence as, given enough time, the agent still learns the optimal actions.

4.3 State of Defenses

Approach Papers

Adversarial Training Kos & Song [60], Pattanaik et al. [55], Behzadan & Munir [65]

Secure Exploration Behzadan & Munir [66]

Predictive Lin et al. [67]

Hierarchical RL Havens et al. [68]

Game Theoretic Ogunmolu et al. [69], Bravo & Mertikopoulos [70]

Table 4.2: Summary of Literature on Defensive Techniques
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A major area of focus in mitigation of attacks on DRL is adversarial training. This

approach was first used as a framework for evaluation of different algorithms. Littman [71]

proposed an adversarial setting for Q-learning algorithms to fit into a multi-agent game,

and training these agents to evaluate their performances. Recent research has shown that

adversarial training can also be leveraged to enhance the robustness of RL agents. Recall

from Chapter 2 that in RL, the typical objective of an agent is to maximize its expected

long-term return R over possible trajectories τ , assuming a fixed transition model P (st, at; Φ)

characterized by parameters Φ. That is,

R(π, P ) = Eτ [
T∑
t=0

γtr(st, at)|s0, π, P ] (4.3)

However, if there is variation in transition model, then criteria might be to perform well

in expectation over all the possible transition models. Thus, leading to optimization of the

mean performance of agent. The objective function in this scenario can be modified to

R(π) = EP [R(π, P )] (4.4)

This is commonly known as the risk neutral formulation. However, one underlying as-

sumption in this formulation is that the distribution over transition model parameters is

known a priori. It may not perform well over the transition model distributions because of

high variance. Thus, conditional Value of Risk (CVaR), denoted by RRC , can be used as

optimization criteria for robust control [72]:

RRC(π) = EP [R(π, P )|P(R(π, P ) ≤ β) = α] (4.5)

Hence, the problem boils down to maximizing the expected return over the worst α percentile

of returns. Thereafter, for sampling these bad trajectories, Rajeswaran et al. [73] changed

transition model parameters and sample trajectories by performing rollouts with different

parameters. Morimoto and Doya [74] as well as Pinto et al. [75] adopted an indirect approach
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where instead of sampling worst trajectories from rollout, an adversary is employed which

attempts to lead the RL agent into undesired states. The adversary is trained by pursuing a

reward function that is the negative of the RL agent’s reward, thereby resulting in max-min

game theoretic formulation. However, it is usually difficult to find this equilibrium [55].

Inspired by previous results in mitigation of adversarial example attacks against classi-

fiers, the aforementioned paper by Kos & Song [60] experimentally explores the effectiveness

of re-training DRL agents on adversarial perturbations in improving the resilience of agents.

In their experiments, after the initial training in non-noisy environment, the agent is first

allowed to re-train while an adversary injects either random noise or FGSM perturbations on

each frame. Once the agent reaches good performance, the training is frozen and evaluated

in a new environment with training-time attacks. The results presented in [60] demonstrate

that re-trained agents can be resilient against certain levels of FGSM perturbation. Also, the

paper reports that the re-trained agent is resilient against FGSM perturbations of greater

or smaller magnitude than that of the perturbations used during re-training.

In the work of Pattanaik et al. [55], once the test-time attack techniques are developed,

the authors investigate the effectiveness of adversarial re-training in test-time resiliency of

DDQN and DDPG agents to adversarial perturbations. In response to the shortcomings

of approaches proposed in [73] and [74], the proposed approach utilizes an adversary that

fools the agent into sampling worst trajectories directly. In this approach, the algorithm

is first trained in non-noisy environments. Then, the agent is retrained by training in a

noisy environment in which an adversary constantly attacks the agent using the previously

detailed gradient based attack. Presented results indicate that adversarial training of DDQN

and DDPG agents enhances their resilience to test-time adversarial example attacks.

In [65], Behzadan & Munir investigate the test-time and training-time resilience of DQN

agents trained under noncontiguous training-time attacks -that is, attacks that do not aim

to perturb all observations. In this work, the attack mechanism follows that of [1], but

instead of perturbing all state samples, the adversary either applies FGSM perturbation to

each observation with a fixed probability P (attack) or leaves it untouched. In experimental

analysis of such attacks, the authors compare DQN agents training on the Pong and Breakout

41



environments. The attacks were initiated at or close to the convergence of mean return

towards the optimal (i.e., baseline) value. The results indicate that in both environments,

DQN agents are able to recover from noncontiguous attacks with attack probabilities p = 0.2

and p = 0.4 and converge to optimal performance, while they fail to recover under attacks

with p = 0.8 and p = 1.0 (contiguous attack). It is observed that for the agents that

recover, the training performance deteriorates almost uniformly until a minimum point is

reached, from which onward the agent begins to recover and adjust the policy towards

optimal performance. The authors’ interpretation of this behavior is based on the statistics

of experience replay: for the agent to recover from adversarial perturbations, the number

of interactions with the perturbed environment must reach a critical threshold, so that

the randomly sampled batches from the experience memory can represent the statistical

significance of perturbations. Furthermore, the test-time resilience of these adversarially

trained agents is also studied under the worst-case test-time attack scenario of p = 1.0. The

results demonstrate that under test-time attacks, the agents that manage to recover during

adversarial training perform almost as well as the unperturbed agents.

Another venue of research on mitigation techniques is focused on secure exploration mech-

anisms. It must be noted that secure exploration differs from research on safe exploration [17];

the latter considers accidental and harmful actions that may arise during exploration of RL

agents, while the former is interested in exploration mechanisms that enhance or preserve the

security of DRL agents against intentional adversarial attacks. For instance, [66] presents

a comparative study of resilience to adversarial example attacks between two DQN agents,

one adopting the ε-greedy exploration mechanism, and the other implementing a parameter-

space noise exploration technique known as NoisyNet [24]. Contrary to classical exploration

heuristics such as ε-greedy [3], parameter-space noise is iteratively and adaptively applied to

the parameters of the learning model, such as weights of the neural network. The results for

the NoisyNet implementation of this paradigm [24] demonstrate that the addition of adaptive

noise to the parameters of deep RL architectures greatly enhances the exploration behavior

and convergence speed of such algorithms. Accordingly, the authors in [66] hypothesize that

the randomness introduced via parameter noise, not only enhances the discovery of more
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creative and robust policies, but also reduces the effect of whitebox and blackbox adversarial

example attacks at both test-time and training-time.

To test the validity of this hypothesis, [66] presents an evaluation of the test-time and

training-time resiliency of DQN agents based on both NoisyNet and ε-greedy in three Atari

game environments: Enduro, Assault, and Blackout. Under test-time attacks, the results

demonstrate that while both models are susceptible of FGSM perturbations, NoisyNet DQNs

are more resilient to such attacks than those based on ε-greedy. Furthermore, comparison

of performance under blackbox attacks demonstrates significant improvements in Noisynets,

as observed in all three cases.

In experiments on training-time attacks, while both types of agents are shown to be sub-

ject to deterioration as a result of the attack based on the blackbox mechanism of Behzadan

& Munir [1], NoisyNet agents demonstrate significantly stronger resilience to such attacks

than ε-greedy agents. The authors argue that this is due to the enhanced generalization and

reduced transferability in NoisyNet models.

In [67], Liu et al. propose a defense mechanism to defend RL agent from test-time white-

box adversarial attacks by leveraging the temporal coherence of multiple observations in

sequential decision-making tasks. To this end, a visual forsight module is trained to predict

the current observation based on past observations and actions. Accordingly, at time step

t, the action-conditioned observation prediction model Gθg takes m previous observations

xt−m:t−1 and corresponding m actions at−m:t−1 as input to predict the current observation

x̂t. Given a normal observation xnormalt at the current time step t, the action distribution

that the agent uses to sample an action from is πθπ(xnormalt ), which should be similar to

the action distribution of πθπ(x̂t) from the predicted observation. On the other hand, if the

current input is adversarially perturbed, that is the agent observed xadvt instead of xnormalt ,

then the resulting action distribution πθπ(xadvt ) should differ from πθπ(x̂t) because the goal

of the adversary is to perturb the input observation xt to cause the agent to take a different

action. Therefore, the similarity between two action distributions can be used to detect the

presence of adversarial attacks. To validate this claim, the paper presents an experiment

on DQN agents trained on five Atari games (Pong, Seaquest, Freeway, ChopperCommand,

43



and MsPacman). Also, the experiment applies three types of adversarial example crafting

algorithms, namely: FGSM, Basic Iterative Method [76], and C&W. The presented results

indicate that the proposed method is able to detect 60% to 100% of adversarial exam-

ple attacks against all DQN agents, and is shown to have superior detection performance

to adversarial example detection techniques developed for deep classifiers, namely Feature

Squeezer [77], AutoEncoder [78], and Dropout [79].

During policy learning, information perturbation can be generally viewed as a bias that

can prevent the agent from effectively learning the desired policy. Inspired by this idea,

Havens et al. [68] propose a hierarchical meta-learning framework, named Meta-Learned

Advantage Hierarchy (MLAH). Their work considers a policy learning problem where there

are periods of adversarial attacks that corrupt state observations during the continuous

learning of the agent, and aims at the online mitigation of the bias introduced by the attack

into the nominal policy. The proposed MLAH algorithm is based on the assumption that

DRL agents learn sub-policies (i.e., skills) en route to learning the ultimate task. Given

that the agent has developed accurate expectations of its sub-policies, if the underlying

task were to change at anytime, the agent may notice that the result of its action has

changed with respect to what was expected. In an RL framework, comparing the expected

return of a state to the observed return of some action is typically known as the advantage.

Accordingly, MLAH uses the estimated of advantage as a measure of underlying changes in

a task, and leverages this metric to switch from one sub-policy to another more appropriate

sub-policy. Consequntly, even if the adversary could compute a series of likely states to

fool an MLAH-based agent, the advantage would still be affected and a master agent may

detect the attack. The adversary would have to consecutively fool the agent with a state

that would be expected to give an equally bad reward as that of the manipulated state.

The authors claim that this constraint would make the perturbation especially hard or

infeasible to compute. Experimental results presented in the paper demonstrate that for PPO

agents, MLAH-based agents demonstrate superior robustness and resilience to noncontiguous

adversarial example attacks at training-time.

Another area of research is that of approaches based on game-theoretic modeling. A
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well-known instance of such approaches is in the field of multi-agent reinforcement learning,

where agents are engaged in zero-sum games and utilize manipulation and misinformation

to beat the other agents and maximize individual rewards [53]. More recently, Ogunmolu

et al. [69] present such an approach by modeling the adversarial interaction between a DRL

agent and a training-time adversary as a minimax iterative dynamic game, and present

a meta-algorithm for controlling the training process and steering it towards saddle-point

equilibria. In [70], Bravo & Mertikopoulos formulate the problem of corrupt reward channel

(defined in Chapter 3) as a zero-sum evolutionary game between the RL agent and the

adversary, and formally analyze the Nash equilibria in such settings.

4.4 Benchmarks and Metrics

As discussed in the previous sections, the majority of current literature on secure RL utilize

experimental analysis for validation of their proposals. Another observation from this review

is that while one particular problem may be approached by various research efforts, lack of

consistent metrics renders the quantitative comparison of their proposals and results difficult.

This section aims to provide an overview of the simulation benchmarks and evaluation metrics

that are used in the current literature with the goals of facilitating further research and

providing the grounds for a more consistent body of work in the future.

4.4.1 Simulation Benchmarks

Similar to the general research on DRL, many of the reviewed papers on secure DRL base

their experimental analysis on Atari games and similar arcade-like environments provided

within the OpenAI Gym platform [80]. Gym provides an RL-friendly interface with a variety

of benchmarks for RL research, including the Arcade Learning Environment [81], RLLab

benchmark for continuous control [82], and many more. The Gym interface provides a

seamless platform for the integration of RL agents with the simulation environment. This

interface provides the agent with access to the state information (e.g., game frames, score,
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etc.), game controls, and the progression speed of the environment (e.g., waiting for training

step to complete before progressing to the next step). While seldom referenced in the secure

DRL literature, OpenAI has introduced two more advanced platforms to Gym, OpenAI

Universe [80] and OpenAI Retro2, which provide access to more complex environments, as

well as enhanced implementations for benchmarking and recording the experiment.

With regards to implementations of adversarial example attacks, Cleverhans [83] is the

most popular choice in the current research. This library provides standardized reference

implementations of adversarial example construction techniques and adversarial training.

While originally developed on the Tensorflow [84] stack, the interface to Cleverhans is de-

signed to accept models implemented using any model framework (such as Keras [85] and

PyTorch [86]). To facilitate the utilization of this library for experiments on DRL, Behzadan

& Munir have developed RLAttack [87] as an interface between DRL agents implemented

in Tensorflow and the adversarial example techniques in Cleverhans. The current version

of this tool is compatible with all DRL algorithms available in OpenAI Baselines [88], and

supports training-time and test-time attacks, contiguous and noncontiguous attacks, and

both blackbox and whitebox attacks on DRL agents.

Another benchmark used by current secure DRL research is DeepMind’s AI Safety Grid-

worlds [89]. This benchmark provides simple environments based on the classic Gridworld

settings for experiments on RL safety issues that include safe interruptibility, avoidance of

side effects, reward hacking, safe exploration, and robustness to adversaries.

4.4.2 Metrics

Evaluation metrics utilized in the current literature of DRL are generally ad hoc and non-

generalizable. For adversarial example attacks, the robustness of an agent is often measured

by the minimum value of perturbation threshold ε that results in successful attacks. In studies

on both training-time and test-time attacks, a popular metric is the number of steps (e.g.,

training epochs, episodes, iterations) required to achieve an adversarial objective. Similarly,

2https://github.com/openai/retro
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in blackbox attacks, percentage of transferable adversarial examples between models is an

often-used metric as a measure of susceptibility. In all studies, the common metric of success

for adversarial attacks is (mean) return over episodes or epochs, which demonstrates the

feasibility and effectiveness of attacks with respect to computational cost and time.
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Part II

State-Space Attacks on DRL
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Chapter 5

Adversarial Resilience and

Robustness of DRL Policies

Since the reports by Behzadan & Munir [1] and Huang et al. [22], the primary emphasis of the

state of the art in DRL security [49] has been on the vulnerability of policies to state-space

perturbations. In particular, the manipulation of the policy via adversarial examples [39]

has remained the main focus of current literature on this issue. However, this bias towards

adversarial example attacks gives rise to a critical shortcoming: the analyses of such attacks

fail to disentangle the vulnerability caused by the learned representation and that which is

due to the sensitivity of the DRL dynamics to distributional shifts in state transitions. Also,

the performance of defenses proposed for adversarial example attacks are inherently limited

to the considered attack mechanisms. As the most successful technique for mitigation of

adversarial examples, adversarial training is known to enhance the robustness of machine

learning models to the type of attack used for generating the training adversarial examples,

while leaving the model vulnerable to other types of attacks [23]. Furthermore, the current

literature fails to provide solutions and approaches which can be used in practice to evaluate

and improve the robustness and resilience of DRL policies to attacks that exploit the sensi-

tivity to state transitions. Also, there remains a need for quantitative approaches to measure

and benchmark the resilience and robustness of DRL policies in a reusable and generalizable
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manner.

In response to these shortcomings, this chapter aims to address the problem of quantifying

and benchmarking the robustness and resilience of a DRL agent to adversarial perturbations

of state transitions at test-time, in a manner that is independent of the attack type. This

improves the generalization of current techniques that analyze the model against specific

adversarial example attacks. Accordingly, the main contributions of this chapter are as

follows:

1. We present formulations of the resilience and robustness problems that enable the

disentanglement of limitation in representation learning from sensitivity of policies to

state transition dynamics.

2. We propose two RL-based techniques and corresponding metrics for the measurement

and benchmarking of resilience and robustness of DRL policies to perturbations of

state transitions,

3. We demonstrate the feasibility of our proposal through experimental evaluation of their

performance on DQN, A2C, and PPO2 agents trained in the Cartpole environment.

This chapter is organized as follows: Section 5.1 defines and formulates the problems of

adversarial resilience and robustness in DRL. Our proposed methods for benchmarking the

test-time resilience and robustness of DRL policies are presented in Sections 5.2 and 5.3.

Section 5.4 provides the details of experimental setup for evaluating the performance of our

proposals, with the corresponding results presented in Section 5.5. Section 5.6 concludes this

chapter with a summary of findings and remarks on future directions of research.

5.1 Problem Formulation

We consider the the generic problem of RL in the settings of a Markov Decision Process

(MDP), described by the tuple MDP :=< S,A,R,P >, where S is the set of reachable

states in the process, A is the set of available actions, R is the mapping of transitions to
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the immediate reward, and P represents the transition probabilities (i.e., state dynamics),

which are initially unknown to RL agents. At any given time-step t, the MDP is at a state

st ∈ S. The RL agent’s choice of action at time t, at ∈ A causes a transition from st to a

state st+1 according to the transition probability P (st+1|st, at). The agent receives a reward

rt+1 = R(st, at, st+1) for choosing the action at at state st. Interactions of the agent with

MDP are determined by the policy π. When such interactions are deterministic, the policy

π : S → A is a mapping between the states and their corresponding actions. A stochastic

policy π(s) represents the probability distribution of implementing any action a ∈ A at state

s. The goal of RL is to learn a policy that maximizes the expected discounted return E[Rt],

where Rt =
∑∞

k=0 γ
krt+k; with rt denoting the instantaneous reward received at time t, and

γ is a discount factor γ ∈ [0, 1].

To facilitate the formal statement of adversarial resilience and robustness, we first intro-

duce the following definitions:

• Adversarial Regret at time T is the difference between return obtained by the nominal

(unperturbed) agent at time T and the return obtained by the perturbed agent at time

T . Formally: R̂adv(T ) = Rnominal(T )−Rperturbed(T ). The time T may represent either

the terminal time step of an episode, or the time-horizon of interest in the analysis.

• Adversarial Budget is defined by one or more of the following parameters: the maximum

number of features that can be perturbed in the observations (Omax ∈ [0,∞] ), the

maximum number of observations that can be perturbed ( Nmax ∈ [0,∞] ), and the

probability of perturbing each observation ( P (perturb) ∈ [0, 1] ).

Building on these two concepts, we define the problems of adversarial resilience and

robustness as follows:

1. Test-Time Resilience: The minimum number of state perturbations required to

incur the maximum reduction to the total return at time T (denoted by R̂adv(T )) for

an agent driven by a policy π(s) in an environment with transition dynamics P.
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2. Test-Time Robustness: The maximum adversarial regret R̂adv(T ) = εmax achiev-

able via a maximum of δmax state perturbations for an agent driven by a policy π(s)

in an environment with transition dynamics P.

The following sections provide the details of our proposed solutions to each of the afore-

mentioned problem settings.

5.2 Benchmarking of Test-Time Resilience

This problem can be modeled as that of finding an optimal adversarial policy πadv(s) that

minimizes the cost incurred to the adversary Cadv in order to impose the maximum adversar-

ial regret R̂adv(T ), the worst-case value of which is the highest cumulative reward achieved by

the target policy Rmax. Our proposed approach is through the formulation of this problem

in the settings of reinforcement learning. The state space in the corresponding MDP is the

set of states in the target MDP, augmented with the action of the target in that state, i.e.,

S ′ = {∀s ∈ S : (s, π(s))}. For the purpose of measuring a lower bound for the resilience, we

consider the worst-case white-box adversary, which is able to impose targeted state pertur-

bations with a 100% success rate, to induce any action within the permissible action-set of

the target A which has the lowest Q-value at any state s according to the target’s optimal

state-action value function Q∗. In this case, the set of permissible adversarial actions at any

state s is given by:

Aadv(s) = {No Action} ∪ A \ π∗(s) (5.1)

where A is the action set of the targeted agent, and π : S → A is the policy of the tar-

geted agent. In the proposed approach, the adversarial reward value is determined via the

procedure detailed in Algorithm 5:
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Algorithm 5 Reward Assignment of RL Agent for Measuring Adversarial Resilience

Require: Target policy π∗, Perturbation cost function cadv(., .), Maximum achievable score

Rmax, Optimal state-action value function Q∗(., .), Current adversarial policy πadv, Current

state st, Current count of adversarial actions AdvCount, Current score Rt

Set ToPerturb ← πadv(st)

if ToPerturb is False then

at ← π∗(st)

Reward← 0

else

a′t ← arg minaQ
∗(st, a)

Reward← −cadv(st, a′t)

end if

if either st or s′t is terminal then

Reward+ = (Rmax −Rt)

end if

where c(st, a
′
t) is the cost of imposing the state perturbation which induces the adversarial

action a′t at state st. It is noteworthy that if the value of c(st, a
′
t) is invariant with respect

to a′t, the adversarial action set reduces to:

Aadv(s) = {No Action, Induce arg min
a

Q(s, a)} (5.2)

To obtain the test-time resilience of policy π∗ to state perturbations, we propose the

following procedure:

1. If the state-action value function of the target Q∗ is not available (i.e., black-box test-

ing), approximate Q∗ via policy imitation from the policy using Algorithm 8 (Section

8.2).

2. Train the adversarial agent against the target following π in its training environment,

53



report the optimal adversarial return R∗perturbed and the maximum adversarial regret

R∗adv(T ).

3. Apply the adversarial policy against the target in N episodes, record total cost Cadv

for each episode,

4. Report the average of Cadv over N episodes as the mean test-time resilience of π in the

given environment.

This procedure introduces 3 metrics for the quantification of test-time resilience: the optimal

adversarial return R∗perturbed achieved in the training process of the adversarial policy, the

maximum adversarial regret R∗adv(T ) achieved during training, and the mean per-episode of

the total cost Cadv. These metrics provide the means to benchmark and compare the test-

time resilience of different policies trained to optimize the agent’s performance in a given

environment.

For the purpose of measuring resilience, we consider convergence to be reached if the

average adversarial regret over 200 episodes remains constant. This definition relaxes the

instabilities that may arise due to the configuration and architecture of the DRL training

process. It is noteworthy that depending on the training algorithm and design parameters,

this procedure is not guaranteed to converge to global optima. However, by reporting the

number of iterations and configuration of random number generators with a constant seed,

the reported results present a reproducible loose lower bound on the adversarial resilience

of the target. Also, the trained adversarial policy can be used to test other policies for

comparison of such lower bounds under the same adversarial strategy.

5.3 Benchmarking of Test-Time Robustness

For this problem, we propose a modified version of the procedure developed for benchmarking

the test-time resilience. Accordingly, the reward function is adjusted to account for the lack

of a target ε, as well as the addition of an adversarial budget constraint δmax. The reward

measurement of this process is outlined in Algorithm 6:
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Algorithm 6 Reward Assignment of RL Agent for Measuring Adversarial Robustness

Require: Maximum perturbation budget δmax, Perturbation cost function cadv(., .), Maxi-

mum achievable score Rmax, Optimal state-action value function Q∗(., .), Current adver-

sarial policy πadv, Current state s, Current count of adversarial actions AdvCount, Current

score Rt

Set AdversarialAction ← πadv(s)

if AdversarialAction is NoAction then

Reward← 0

else if AdvCount ≥ δmax then

Reward← −cadv(s, AdversarialAction)× δmax

AdvCount+ = 1

else

Reward← −cadv(s, AdversarialAction)

AdvCount+ = 1

end if

if s is terminal then

Reward+ = 1.0 ∗ (Rmax −Rt)

AdvCount← 0

end if

The proposed procedure for measuring the test-time robustness of a given DRL policy to

adversarial state perturbations is as follows:

1. If the state-action value function of the target Q∗ is not available (i.e., black-box testing

settings), approximate Q∗ from the policy using imitation learning (e.g., Algorithm 8

– Section 8.2)

2. Train the adversarial agent against the target policy π∗ in its training environment,

report the maximum adversarial regret R∗adv(T ) for time T achieved at adversarial

optimality,
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3. Apply the adversarial policy against the target for N episodes, record the adversarial

regret at the end of each episode Radv(T ),

4. Report the average of Radv(T ) over N episodes as the mean per-episode test-time

robustness of π∗ in the given environment.

5.4 Experiment Setup

Environment and Target Policies: To demonstrate the performance of the proposed

procedures for benchmarking the test-time robustness and resilience in DRL policies, we

present the analysis of the aforementioned measurements for policies trained in the CartPole

environment in OpenAI Gym [80]. The considered policies are chosen to represent the

commonly-adopted state of the art method from each class of DRL algorithms. From the

class of value-iteration approaches, we consider DQN with prioritized replay. From policy

gradient approaches, we consider PPO2. As for actor-critic methods, we investigate the A2C

method. Table 5.4 presents the specifications of the CartPole environment, and Tables 5.4

– 5.4 provide the parameter settings of each target policy.

Table 5.1: Specifications of the CartPole Environment

Observation Space

Cart Position [-4.8, +4.8]

Cart Velocity [-inf, +inf]

Pole Angle [-24 deg, +24 deg]

Pole Velocity at Tip [-inf, +inf]

Action Space
0 : Push cart to the left

1 : Push cart to the right

Reward +1 for every step taken

Termination

Pole Angle is more than 12 degrees

Cart Position is more than 2.4

Episode length is greater than 500
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Table 5.2: Parameters of DQN Policy

No. Time steps 105

γ 0.99

Learning Rate 10−3

Replay Buffer Size 50000

First Learning Step 1000

Target Network Update Freq. 500

Prioritized Replay True

Exploration Parameter-Space Noise

Exploration Fraction 0.1

Final Exploration Prob. 0.02

Max. Total Reward 500

Table 5.3: Parameters of A2C Policy

No. Time steps 5× 105

γ 0.99

Learning Rate 7× 10−4

Entropy Coefficient 0.0

Value Function Coefficient 0.25

Max. Total Reward 500
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Table 5.4: Parameters of A2C Policy

No. Environments 8

No. Time steps 106

No. Runs per Environment per Update 2048

No. Minibatches per update 32

Bias-Variance Trade-Off Factor 0.95

No. Surrogate Epochs 10

γ 0.99

Learning Rate 3× 10−4

Entropy Coefficient 0.0

Value Function Coefficient 0.5

Max. Total Reward 500

Adversarial Agent: In these experiments, the adversarial agent is a DQN agent with

the hyperparameters provided in Table 5.4. We consider a homogeneous perturbation cost

function for all state perturbations, that is, ∀s, a′ : cadv(s, a′) = cadv. For both the resilience

and robustness measurements, we set cadv = 1 (i.e., each perturbation incurs a cost of 1 to

the adversary). The training process is terminated when the adversarial regret is maximized

and the 100-episode average of the number of adversarial perturbations is quasi-stable for

200 episodes.
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Table 5.5: Parameters of DQN Policy

Max. Time steps 105

γ 0.99

Learning Rate 10−3

Replay Buffer Size 50000

First Learning Step 1000

Target Network Update Freq. 500

Experience Selection Prioritized Replay

Exploration Parameter-Space Noise

Exploration Fraction 0.1

Final Exploration Prob. 0.02

5.5 Results

5.5.1 Resilience Benchmarks

We consider the white-box settings in the training of adversarial agents for resilience mea-

surement. For the DQN target, the optimal state-action value function Q∗ of the target is

directly utilized. As for the A2C and PPO2 targets, the state-action value function is calcu-

lated from the internally-available state value estimations V ∗ (s) according to the following

transformation:

Q∗(st, a) = r(st, a) + γV ∗(st+1) (5.3)

where st+1 is the state resulting from a transition out of state st by implementing action a.

The training progress plots of adversarial DQN policy on the three target policies are

presented in Fig.5.1–5.3. It can be seen that all three policies converge to the same optima.

However, for the adversary targeting the DQN policies, the convergence is achieved at a

higher number of training steps.
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It is noteworthy that for all three policies, the mean-per-100 episodes of the minimum

number of perturbations at convergence is almost similar (as reported in Table 5.5.1), with

A2C having the largest value of 7.69 perturbations, PPO2 at a value of 7.49 perturbations,

and DQN having the lowest value of 7.13. Also, the test-time performance of these trained

policies indicate similar results, with DQN requiring 6.95 perturbations to incur an adver-

sarial regret of 491.15, PPO2 requiring 7.72 perturbations for an adversarial regret of 490.47,

and A2C requiring 8.71 perturbations for an adversarial regret of 488.16. Accordingly, we

can interpret these results as follows: the DQN policy has the lowest adversarial resilience

among the three, followed by the PPO2 policy. Within the context of this comparison, the

A2C policy is found to be the most resilient to state-space perturbation attacks.
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Figure 5.1: Adversarial Training Progress for Resilience Benchmarking of the DQN Policy

To investigate the state-transition vulnerability of each policy, we also study the frequency

of perturbing states at each time step of an episode for the three adversarial policies. The

results, presented in Fig. 5.4 – 5.6 illustrate that in all three policies, the initial time steps

have been the subject of most perturbations. This result is noteworthy, as it contradicts the

assumption of Lin et al. [56] that the most effective adversarial perturbations are those that

are mounted towards the terminal state of the environment.
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Figure 5.2: Adversarial Training Progress for Resilience Benchmarking of the A2C Policy
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Figure 5.3: Adversarial Training Progress for Resilience Benchmarking of the PPO2 Policy

Table 5.6: Comparison of Test-Time and Training-Time Resilience Measurements
Target Policy Max. Regret Avg. Regret (Training) Avg. No. Perturbations (Training) Avg. Regret Avg. No. Perturbations

DQN 492 491.24 7.13 491.15 6.95

A2C 492 491.44 7.69 488.16 8.71

PPO2 492 491.72 7.49 490.47 7.72

5.5.2 Robustness Benchmarks

To demonstrate the performance of our proposed technique for benchmarking the robustness

of DRL policies, we provide the training-time results for two cases of δmax = 10 and δmax = 5

for DQN, A2C, and PPO2 Policies. As illustrated in Fig.5.7 – 5.9, all three adversarial
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Figure 5.4: Perturbation Count Per Episodic Time Step in 100 Runs Targeting DQN Policy
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Figure 5.5: Perturbation Count Per Episodic Time Step in 100 Runs Targeting A2C Policy

policies converge with similar minimum perturbation counts as those obtained in resilience

analysis. This is expected, as the resilience analysis established that the minimum number

of actions required for maximum regret is 7.5, which is less than the available budget of

δmax = 10 As for the case of δmax = 5, Fig.5.10 – 5.12 demonstrate significant differences

between the three policies. In Fig.5.10, it can be seen that at 5 actions, the convergence

occurs with an adversarial regret of 462.5, while for A2C, the best 5-action indication of

convergence occurs at an adversarial regret of 224. As for PPO2, this value is at 268.2.

These results indicate a similar ranking of the robustness in these policies, with DQN being

the least-robust to maximum of 5 perturbations, and the A2C prevailing as the most robust
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Figure 5.6: Perturbation Count Per Episodic Time Step in 100 Runs Targeting PPO Policy

policy to maximum of 5 perturbations.

Case 1: δmax = 10:
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Figure 5.7: Adversarial Training Progress for Robustness Benchmarking - DQN, δmax = 10
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Figure 5.8: Adversarial Training Progress for Robustness Benchmarking - A2C, δmax = 10
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Figure 5.9: Adversarial Training Progress for Robustness Benchmarking - PPO2, δmax = 10

Case 2: δmax = 5:
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Figure 5.10: Adversarial Training Progress for Robustness Benchmarking - DQN, δmax = 5
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Figure 5.11: Adversarial Training Progress for Robustness Benchmarking - A2C, δmax = 5
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Figure 5.12: Adversarial Training Progress for Robustness Benchmarking - PPO2, δmax = 5

5.6 Conclusion

We presented two RL-based techniques for benchmarking the resilience and robustness of

DRL policies to adversarial perturbations of state transition dynamics. Experimental evalua-

tion of our proposals demonstrates the feasibility of these techniques for quantitative analysis

of policies with regards to their sensitivity to state transition dynamics. A promising venue

of further exploration is to study and extend the proposed methodologies for evaluation of

generalization in DRL policies.
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Chapter 6

Characterizing the Training-Time

Resilience of DQN

This chapter investigates the effect of design parameters (i.e., hyperparameters) of DQN

agents on the resilience of their training process to state-space perturbations. The goal of

this investigation is to establish general guidelines on the selection of various mechanisms

and parameters at the design stages of the training process for improved resilience against

training-time perturbations. To this end, we first formulate the problem of training-time

resilience in Section 6.1, and analytically reduce the problem space to facilitate experimen-

tal investigations. In the proceeding sections, we study the effect of design choices on the

training-time resilience of a DQN agent training in the CartPole environment. The investi-

gated hyperparameters are: the capacity of the experience memory (Section 6.2), experience

selection mechanism (Section 6.3), exploration mechanism (Section 6.4), and discount factor

(Section 6.5).

6.1 Problem Formulation and Analysis

We define the training-time resilience of an agent undergoing a training process L to maximize

the agent’s return in an environment with transition dynamics T, as the minimum number
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of training-time state perturbations required to reduce the total return of an agent by at least

ε. This problem is equivalent to finding the minimum number of experience tuples et =

〈st, at, st+1, rt+1〉 that must be perturbed in order to induce an adversarial regret R̂adv ≥ ε at

the final training step IL. The objective of training-time perturbations is to manipulate the

target’s estimate of transition dynamics P (st, at, st+1), which leads to incorrect estimation

of state-action values Q(st, at) in the target’s training process. Consider the deterministic

environment env =< S,P > where V (sg) > V (sb) for two states sg, sb ∈ S, and nominal

(i.e., unperturbed) state-action transitions (s, ag)→ sg and (s, ab)→ sb (i.e., π(s) = ag). An

adversary with the objective of inducing the policy π′(s) = ab will need to manipulate the

target’s estimation of state-action for all actions ∀ai ∈ A\ab which satisfy Q(s, ai) ≥ Q(s, ab).

This perturbation will be as follows: In observations of the transition (s, ai) → si, perturb

si into s′i such that V (s′i) < V (sb).
1

The estimate of Q-values can be represented by expectation over a batch of nb experiences

sampled from the experience memory of size ne. Therefore, the expectation of Q-values for

state s and any action ai ∈ A \ ab is given by:

E(Q(s, ai)) = P(si|(s, ai)).(r(s, ai, si) + γmax
a′

Q(si, a
′)) + (6.1)

P(s′i|(s, ai)).(r(s, ai, si) + γmax
a′

Q(s′i, a
′))

Where P(si|(s, ai)) = 1 − P(s′i|(s, ai)) is the probability of taking action ai at state s and

reaching state si instead of the perturbed state s′i. Hence, to satisfy E(Q(s, ab)) > E(Q(s, ai))

1An alternative approach is to perturb an state snominal such that s ← snominal + δ would induce an
action ai = π(s), while the resulting state is given by argmaxsi∈S P (snominal, ai, si).
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for all ai ∈ A \ ab,

E(Q(s, ai)) < E(Q(s, ab))

=⇒ P(si|(s, ai)).(r(s, ai, si) + γV (si)) + P(s′i|(s, ai)).(r(s, ai, s′i) + γV (s′i))

< r(s, ab, sb) + γV (sb)

=⇒ P(si|(s, ai)) < [
r(s, ab, sb)− r(s, ai, si)

γ
+ V (sb)− V (s′i)]/(V (si)− V (s′i)) (6.2)

This analysis provides a lower bound on the ratio of perturbations required for each transition

〈s, ai, si, ri〉 in the experience memory for all ai ∈ A \ ab which satisfy Q(s, ai) ≥ Q(s, ab).

The probabilities P(si|(s, ai)) and P(s′i|(s, ai)) depend on a number of design parameters,

including the exploration mechanism, the capacity of the experience memory, and the mecha-

nism of experience selection from this memory. Furthermore, eq.6.2 presents another design

parameter that affect the training-time resilience of a DRL agent, namely: the discount

factor. Accordingly, we investigate each of these factors in terms of their impact on the

resilience of the DRL training process against worst-case adversarial perturbations.

6.2 Capacity of the Experience Memory

We hypothesize that larger capacity values of the experience memory (denoted by NM) will

necessitate more experiences to be perturbed to satisfy the condition of eq.6.2. This is

based on the fact that the larger the experience memory is, the denominator of the ratio

that determines the probabilities P(si|(s, ai)) and P(s′i|(s, ai)) is larger, and hence more

perturbations will be required to achieve the same effect.

To verify this hypothesis, we compare the training performance of two DQN policies in the

CartPole environment, one configured with the same hyperparameters as presented in Chap-

ter 5 with NM = 50000, and another with the same configurations, except with a reduced

experience memory capacity of NM = 10000. At convergence, both models are attacked

with a targeted adversary with probabilistic budgets p(attack) = 0.2 and p(attack) = 0.4.
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The results, presented in Figures 6.1 and 6.2, demonstrate that smaller capacities increase

the sensitivity of the policy to training-time perturbations, which is in agreement with our

hypothesis.

75000 100000 125000 150000 175000 200000 225000 250000
Step

50

100

150

200

250

300

350

400

Re
wa

rd

Size=50000
Size=10000

Figure 6.1: Effect of Experience Memory Capacity on Resilience - p(attack)= 0.2
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Figure 6.2: Effect of Experience Memory Capacity on Resilience - p(attack)= 0.4

6.3 Experience Selection Mechanism

Two major schemes of experience selection are adopted in the training of DRL agents: uni-

form sampling and importance sampling. The latter approach, also known as prioritized

replay, proposes the selection of experiences based on some importance metric that deter-

mines the utility of each experience, a major instance of which is surprise (i.e., TD-Error).

We investigate the effect of each scheme on the training-time robustness of DRL agents.
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Prioritized Selection: Throughout the training-time attack, the TD-Error of correcting

experiences increases with respect to policies that are tuned to the adversarial objective.

Consequently, the number of required perturbations increases with the progression of the

training process.

Uniform Sampling: In this scheme, all experiences have an equal chance of selection,

and hence this scheme does not affect the number of required perturbations.

To test these hypothesis, we compare the performance of two DQN policies in the same

settings as described in Chapter 5, with the exception of the experience selection mechanism.

It is observed that as training progresses, the agent with prioritized selection becomes more

stable than the agent with uniform selection, which is in agreement with our hypothesis.
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Figure 6.3: Effect of Experience Selection Mechanism on Resilience - p(attack)= 0.2
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Figure 6.4: Effect of Experience Selection Mechanism on Resilience - p(attack)= 0.4
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6.4 Exploration Mechanism

Considering our base assumption of a deterministic environment, it is evident that the

adversarially-desired transitions 〈s, ai, s′i〉 is not naturally realizable. Hence, the control-

ling factor in the impact of exploration mechanism on adversarial robustness is the number

of “correcting” transitions 〈s, ai, si〉 in the experience memory. To facilitate further analysis,

we consider two types of exploration mechanisms:

1. Those that assign smaller chance of exploration to states in which the current policy

performs well (e.g., Boltzmann Exploration): In this case, the number of correcting

transitions 〈s, ai, si〉 increases as the training progresses, and hence the number of

required perturbations increases over time.

2. Those that determine the probability of exploration regardless of the performance of the

policy (e.g., Parameter-Space Noise Exploration). For such mechanisms, the recurrence

frequency of correcting transitions decreases as the training progresses. Therefore, the

number of required perturbations is decreased over time.

Experimental verification of these hypotheses is presented in Section 7.1.1, along with

a more detailed discussion on the advantages of Boltzmann Exploration under adversarial

settings.

6.5 Discount Factor

Eq.6.2 indicates an inverse relationship between the training-time resilience of an agent and

the discount factor γ. That is, larger values of γ will increase the probability of requiring

more adversarial perturbations. In other words, assigning more importance to events that

occur sooner results in more resilience against training-time attacks.

To verify the practical realization of this effect, we adopt the same experimental settings

of previous sections to compare the training-time resilience of two DQN policies with config-

urations that differ only in their discount factor, one set to 0.99, and another to 0.985. As
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Figures 6.5 and 6.6 illustrate, smaller values of γ results in higher sensitivity to training-time

perturbations. Thus, the results are in agreement with our hypothesis.
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Figure 6.5: Effect of Discount Factor on Resilience - p(attack)= 0.2
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Figure 6.6: Effect of Discount Factor on Resilience - p(attack)= 0.4
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Chapter 7

Analysis and Improvement of

Adversarial Training in DQN

Recent studies have established the brittleness of Deep Reinforcement Learning (DRL) poli-

cies to variations in the state space [90]. This can be attributed to failure in the generaliza-

tion of the policy with respect to input features [91]. Consequently, many of the proposed

techniques for enhancement of such brittleness are based on the idea of regularization. As

demonstrated in the list of defensive techniques in Table 4.2, a major emphasis in such tech-

niques is on adversarial training [75], which is in effect a regularization technique based on

data augmentation.

This chapter aims to investigate and enhance the practical limits of adversarial training

in improving the robustness of Deep Q-Network (DQN) policies [6]. Accordingly, Section 7.1

presents a formal analysis of adversarial training in DQN agents and its efficiency with re-

spect to the proportion of adversarial perturbations to nominal observations used for training.

Next, Section 7.2 considers the sample-inefficiency of current adversarial training techniques,

and proposes a novel Adversarially-Guided Exploration (AGE) mechanism based on a mod-

ified hybrid of the ε-greedy algorithm and Boltzmann exploration. This section also verifies

the feasibility of this exploration mechanism through experimental evaluation of its perfor-

mance in comparison with the NoisyNet exploration algorithm [24]. The chapter concludes
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with a summary of findings in Section 7.3.

7.1 Limits of Adversarial Training

In this section, we analyze the effectiveness of training a DRL agent with experiences gen-

erated through an adversarial interaction. We consider an adversary constrained to a prob-

abilistic budget P (attack), which is the probability of perturbing any state s′t ← st + δ

such that the approximated policy at the ith iteration of training (πi) produces an incorrect

action, i.e., πi(s
′
t) 6= πi(st). We also consider two types of adversarial objectives, one is

the state-neutral adversary, which imposes the perturbation so that the resulting s′t induces

any action other than πi(st). The second type type of adversary we consider is the targeted

adversary, which crafts s′t such that the induced action is the worst possible choice, i.e.,

πi(s
′
t) = arg minaQi(s, a). We assume that the adversary is always successful in crafting the

desired perturbations.

We begin the analysis by noting the effect of such perturbations on the composition of

the experience replay memory. For any state st, two types of experiences may be recorded.

One represents the nominal (i.e., unperturbed) experiences, denoted by:

〈st, at = πi(st), st+1, r(st, at, st+1)〉 (7.1)

The second type are experiences in which st is the result of perturbing another state, i.e.,

st ← s′t + δ. Such adversarial experiences are denoted by:

〈st, at = πi(st), s
′
t+1, r(st, at, s

′
t+1)〉 (7.2)

Hence, the expected TD-error of state value V (st) in each iteration i+ 1 of training is given
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by:

E[τi+1(st)] = pi+1(attack|st).[r(st, at, s′t+1) + γV πi(s′t+1)]

+ [pi+1(st)− pi+1(attack|st)].[r(st, at, st+1)) + γV πi(st+1)]

− V πi(st)

(7.3)

where pi+1(st) is the probability of choosing an experience beginning with either nominal or

crafted state st from the experience memory in the i + 1th iteration, and pi+1(attack|st) =

pi+1(st)− pnominali+1 (st) is the probability of choosing an experience sample beginning with an

adversarially-crafted state st. It is noteworthy that adversarial perturbations add bias to

the expected TD-error. For the effect of this bias to be decreasing as i increases (i.e., for

convergence to optimality), the following condition must hold true:

pi+1(st)− pi+1(attack|st) > pi(st)− pi(attack|st) (7.4)

That is, the probability of sampling nominal experiences starting with st from the ex-

perience memory must be increasing with i. In the case of a state-neutral adversary, and

assuming the uniform sampling from experiences, this condition reduces to:

∀st ∈ S : pnominali+1 (st) > p(attack) (7.5)

Which can be interpreted as p(attack) < 0.5. This is in agreement with the results reported

in [65] for non-contiguous, non-targeted adversarial example attacks against DQN agents.

7.1.1 Experimental Setup and Results

To evaluate the practical implications of the theoretical analyses of this section, we study

the training performance of a CartPole DQN policy under non-targeted attacks with pertur-

bation probabilities of 0.2, 0.4, 0.8, and 1.0. In these experiments, we consider an adversary

with the ability to perfectly perturb every observation to induce an incorrect action. Also,

the perturbation is applied to the choice of actions, the attacks begin after the convergence
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of the policy to optimal performance.

The results are presented in figures 7.1 and 7.2. It can be seen that for p(attack) = 0.2 and

p(attack) = 0.4, the training process recovers rather quickly. However, for p(attack) = 0.8

and p(attack) = 1.0, the recovery fails to realize within the observed training horizon. It is

noteworthy that the early peaking observed in Figure 7.2 are due to residual unperturbed

experiences still remaining in the replay memory, the impact of which immediately fades at

around 50000 steps after the attack begins, which is equivalent to the number of experiences

required to completely overwrite the memory.
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Figure 7.1: Training Performance Under Non-Targeted Attack with p(attack)= 0.2 and

p(attack) = 0.4
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Figure 7.2: Training Performance Under Non-Targeted Attack with p(attack)= 0.8 and

p(attack) = 1.0

7.2 Adversarially-Guided Exploration Mechanism for

Sample-Efficient Adversarial Training

There exists a noteworthy difference between the theoretical adversaries considered so far

and one that crafts perturbations through adversarial examples. As reported in [75] and [65],

training on adversarial examples enhances the resilience of the policy to perturbations crafted

using the same technique. Similar to the case of adversarial training for deep learning clas-

sifiers [92], this phenomenon can be explained from the perspective of regularization: adver-

sarial example perturbations of states provide the means for regularization of the policy (or

value function) through data augmentation. Therefore, training the policy over adversarial

examples of states generated with a certain attack mechanism results in the enhancement of

resilience and robustness of the policy to perturbations crafted via that mechanism.

However, current procedures for training over adversarial examples (e.g., [75] [55]) are

based on “blanket perturbation”, in which all states have an equal probability of being

perturbed during training, thus leading to the deterioration of sample efficiency in DRL

training. To alleviate this adverse effect, we propose the Adversarially-Guided Exploration
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(AGE) mechanism, which efficiently reduces the number of perturbed observations required

to produce similar or better improvements in robustness compared to the results achieved

by previous techniques. The proposed mechanism is based on the fact that not all states are

equal with respect to the total regret produced by their perturbation. To account for this

fact, the proposed AGE mechanism extends the classical ε-greedy exploration mechanism

by adjusting the probability of sampling actions for each state according to the adversarial

state-action significance, defined as follows: In the (i + 1)th training iteration, the adver-

sarial significance of any action a in state s, denoted by ζπiadv(s, a), measures the maximum

achievable adversarial gain, determined by the difference between maximum Q-value at state

s and Qπi(s, a) with respect to actions. We define ζadv as the ratio of this difference to the

sum of this difference for all actions a ∈ A. Furthermore, to retain the GLIE (Greedy in the

Limit with Infinite Exploration) criteria of the ε-greedy mechanism [3], we formulate ζadv

in the form of the Boltzmann probability [93], with ε as the decaying temperature factor.

Consequently, the formal definition of ζadv is as follows:

ζπiadv(s, a) =
exp (maxa′ Q

πi(s, a′)−Qπi(s, a)/ε)∑
α∈A exp (maxa′ Qπi(s, a′)−Qπi(s, α)/ε)

(7.6)

Algorithm 7 presents the details of our proposed exploration mechanism:
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Algorithm 7 Adversarially-Guided Exploration (AGE) for Adversarial Training

Require: Qπi , action space A

function Adversarial Exploration(Current state s, exploration probability ε)

for all a ∈ A do

ζπiadv(s, a) =
exp (maxa′ Q

πi (s,a′)−Qπi (s,a)/ε)∑
α∈A exp (maxa′ Q

πi (s,a′)−Qπi (s,α)/ε)

end for

if rand() ≤ ε then

Sample action according to ζπiadv to perform

else

Perform action arg maxaQ
πi(s, a)

end if

7.2.1 Experiment Setup

Environment and Target Policies: To evaluate the performance of AGE in adversarial

training, we study the training efficiency and adversarial resilience of a DQN policy in the

CartPole environment in OpenAI Gym [80]. Table 7.2.1 presents the specifications of the

CartPole environment, and Table 7.2.1 provides the parameter settings of each target policy.
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Table 7.1: Numerical Ranges of Parameters in CartPole

Observation Space

Cart Position [-4.8, +4.8]

Cart Velocity [-inf, +inf]

Pole Angle [-24 deg, +24 deg]

Pole Velocity at Tip [-inf, +inf]

Action Space
0 : Push cart to the left

1 : Push cart to the right

Reward +1 for every step taken

Termination

Pole Angle is more than 12 degrees

Cart Position is more than 2.4

Episode length is greater than 500

Table 7.2: AGE Experiment - Parameters of the Target DQN

No. Timesteps 105

γ 0.99

Learning Rate 10−3

Replay Buffer Size 50000

First Learning Step 1000

Target Network Update Freq. 500

Prioritized Replay True

Exploration Parameter-Space Noise

Exploration Fraction 0.1

Final Exploration Prob. 0.02

Max. Total Reward 500

Adversarial Agent: In these experiments, the adversarial agent is a DQN agent with

the hyperparameters provided in Table 7.2.1. We consider a homogeneous perturbation cost
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function for all state perturbations, that is ∀s, a′ : cadv(s, a
′) = cadv. For both the resilience

and robustness measurements, we set cadv = 1 (i.e., each perturbation incurs a cost of 1 to

the adversary). The training process is terminated when the adversarial regret is maximized

and the 100-episode average of the number of adversarial perturbations is quasi-stable for

200 episodes.

Table 7.3: AGE Experiment - Parameters of Adversarial DQN Agent

Max. Timesteps 105

γ 0.99

Learning Rate 10−3

Replay Buffer Size 50000

First Learning Step 1000

Target Network Update Freq. 500

Experience Selection Prioritized Replay

Exploration Parameter-Space Noise

Exploration Fraction 0.1

Final Exploration Prob. 0.02

7.2.2 Results

Figure 7.3 illustrates the training performance of the DQN policy utilizing AGE for ex-

ploration. It can be seen that the training has successfully converged, and the progress is

noticeably more stable than that of a DQN policy with NoisyNet exploration. Furthermore,

Figure 7.5 depicts the training performance of a DQN-based adversarial resilience agent with

the same configuration as presented in Chapter 5. In comparison with the performance of

the same agent against the same policy trained using NoisyNet exploration (Figure 7.4 ), two

significant differences are observed: first, the adversarial agent targeting the AGE-trained

policy achieves a lower regret and higher perturbation count in the same number of training

iterations as its counter-part. Second, the training process targeting the AGE-trained policy
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fails to converge in 100000 iterations, whereas its counter-part converged at around 90000

iterations. These results indicate the superior resiliency of the AGE-trained policy over

the nominal policy, thereby verifying the effectiveness of AGE in improving the adversarial

resilience of policies.

Furthermore, in comparison with to the best-case scenario of adversarial training of the

nominal DQN policy (as presented in Figure 7.1), it can be seen that the AGE-based training

process requires significantly fewer samples for convergence. This comparison further verifies

the efficiency of our proposed scheme with respect to sample complexity.
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Figure 7.3: Training Performance of a CartPole DQN policy with AGE exploration
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Figure 7.4: Adversarial Training Progress for Resilience Benchmarking of the DQN Policy

with NoisyNet exploration
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Figure 7.5: Training Performance of an Adversarial Agent Targeting the AGE-Trained

Policy

7.3 Conclusion

This chapter presented an analysis of the limits of adversarial training in DQN agents with

respect to the ratio of perturbed training experience to the nominal (i.e., unperturbed) expe-

riences. We then address the sample-inefficiency of current adversarial training techniques,
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and present the Adversarially-Guided Exploration (AGE) mechanism to improve upon this

shortcoming. The experimental results demonstrate the feasibility of this exploration mech-

anism in comparison with NoisyNet exploration.
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Part III

Attacks on the Confidentiality of DRL
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Chapter 8

Adversarial Exploitation of Policy

Imitation

In this chapter, we address a class of attacks which target the confidentiality aspect of DRL

security. As discussed in Section 2.2, recent research have established the vulnerability of

supervised machine learning models (e.g., classifiers) to model extraction attacks [42]. Such

attacks leverage the loosely-restricted ability of the attacker to iteratively query the model

for labels, thereby allowing for the forging of a labeled dataset which can be used to train

a replica of the original model. Model extraction is not only a serious risk to the protection

of intellectual property, but also a critical threat to the integrity of the model. Recent

literature [19] report that the replicated model may facilitate the discovery and crafting of

adversarial examples which are transferable to the original model.

Inspired by this area of research, this work investigates the feasibility and impact of

model extraction attacks on DRL agents. The adversarial problem of model extraction can

be formally stated as the replication of a DRL policy based on observations of its behavior

(i.e., actions) in response to changes in the environment (i.e., state). This problem closely

resembles that of imitation learning [94], which refers to the acquisition of skills or behaviors

by observing demonstrations of an expert performing those skills. Typically, the settings

of imitation learning are concerned with learning from human demonstrations. However, it
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is straightforward to deduce that the techniques developed for those settings may also be

applied to learning from artificial experts, such as DRL agents. Of particular relevance to

this research is the emerging area of Reinforcement Learning with Expert Demonstrations

(RLED) [95]. The techniques of RLED aim to minimize the effect of modeling imperfections

on the efficacy of the final RL policy, while minimizing the cost of training by leveraging the

information available demonstrations to reduce the search space of the policy.

Accordingly, we hypothesize that the techniques developed for RLED may be maliciously

exploited to replicate and manipulate DRL policies. To establish the validity of this hy-

pothesis, we investigate the feasibility of RLED techniques in utilizing limited passive (i.e.,

non-interfering) observations of a DRL agent to replicate its policy with sufficient accuracy

to facilitate attacks on their integrity. We study the adversarial utility of adopting a recently

proposed RLED technique, known as Deep Q-Learning from Demonstrations (DQfD) [96]

for black-box state-space manipulation attacks, and develop two attack mechanisms based

on this technique. Furthermore, we present a discussion on potential mitigation techniques,

and present a solution concept for defending against policy imitation attacks.

The remainder of this chapter is organized as follows: Section 8.1 presents an overview

of the DQfD algorithm used in this study for adversarial imitation. Section 8.2 proposes

the first proof-of-concept black-box attack based on imitated policies, and presents experi-

mental evaluation of its feasibility and performance. Section 8.3 studies the transferability

of adversarial examples between replicated and the original policies as a second proof-of-

concept attack technique. This chapter concludes with a discussion on potential mitigation

techniques and a solution concept in Section 8.4.

8.1 Deep Q-Learning from Demonstrations (DQfD)

The DQfD technique [96] aims to overcome the inaccuracies of simulation environments and

models of complex phenomenon by enabling DRL agents to learn as much as possible from

expert demonstrations before training on the real system. More formally, the objective of this

“pre-training” phase is to learn an imitation of the expert’s behavior with a value function
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that is compatible with the Bellman equation, thereby enabling the agent to update this

value function via TD updates through direct interaction with the environment after the

pre-training stage. To achieve such an imitation from limited demonstration data during

pre-training, the agent trains on sampled mini-batches of demonstrations to train a deep

neural network model in a supervised manner. However, the training objective of this model

in DQfD is the minimization of a hybrid loss, comprised of the following components:

1. 1-step double Q-learning loss JDQ(Q),

2. Supervised large margin classification loss JE(Q) = maxa∈A[Q(s, a)+l(aE, a)]−Q(s, aE),

where aE is the expert’s action in state s and l(aE, a) is a margin function that is pos-

itive if a 6= aE, and is 0 when a = aE.

3. (n = 10)-step Return: rt + γrt+1 + ...+ γn−1rt+n−1 + maxa γ
nQ(st+n, a).

4. L2 regularization loss: JL2(Q)

The total loss is given by:

J(Q) = JDQ(Q) + λ1Jn(Q) + λ2JE(Q) + λ3JL2(Q) (8.1)

where λ factors provide the weighting between the losses.

After the pre-training phase, the agent begins interacting with the system and collecting

self-generated data, which is added to the replay buffer Dreplay. Once the buffer is full, the

agent only overwrites the self-generated data and leaves the demonstration data untouched

for use in the coming updates of the model. The complete training procedure for DQfD is

presented in Algorithm 8.

8.2 Adversarial Policy Imitation for Black-Box Attacks

Consider an adversary who aims to maximally reduce the cumulative discounted return

(R(T )) of a target DRL agent by manipulating the behavior of the target’s policy π(s) via
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Algorithm 8 Deep Q-learning from Demonstrations (DQfD) [97]

Inputs: Dreplay initialized with demonstration data, randomly initialized weights for the
behavior network θ, randomly initialized weights for the target network θ′, updating fre-
quency of the target network τ , number of pre-training gradient updates k
for steps t ∈ {1, 2, ..., k} do

Sample a mini-batch of n transitions from Dreplay with prioritization
Calculate loss J(Q) based on target network
Perform a gradient descent step to update θ
if t mod τ = 0 then
θ′ ← θ

end if
end for
for steps t ∈ {1, 2, ...} do

Sample action from behavior policy a πεQθ

Apply action a and observe (s′, r)
Store (s, a, r, s′) into Dreplay, overwriting oldest self-generated transition if over capacity

Sample a mini-batch of n transitions from Dreplay with prioritization
Calculate loss J(Q) using target network
Perform a gradient descent step to update θ
if t mod τ = 0 then
θ′ ← θ

end if
s← s′

end for

perturbing its observations. The adversary is also constrained to minimizing the total cost of

perturbations given by Cadv(T ) =
∑T

t=t0 cadv(t), where cadv(t) = 1 if the adversary perturbs

the state at time t, and cadv(t) = 0 otherwise.

The adversary is unaware of π(s) and its parameters. However, it has access to a replica

of the target’s environment (e.g., the simulation environment). Also, for any state transition

(s, a) → s′, the adversary can perfectly observe the target’s reward signal r(s, a, s′), and is

able to observe the behavior of π(s) in response to each state s. Furthermore, the adversary

is able to manipulate its target’s state observations, but not its reward signal. Also, it is

assumed that all targeted perturbations of the adversary are successful.

To study the feasibility of imitation learning as an approach to this adversarial prob-

lem, we consider the first step of the adversary to be the imitation of π(s) via DQfD to

learn an imitated policy π̃. With this imitation at hand, the attack problem can be refor-
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mulated to finding an optimal adversarial control policy πadv(s), where the control actions

are two-fold: whether to perturb the current state to induce the worst possible action (i.e.,

arg minaQ(s, a)) or to leave the state unperturbed. This setting allows for the direct adop-

tion of the DRL-based technique proposed in Chapter 5 for resilience benchmarking of DRL

policies.

While the original technique is dependent on the availability of target’s optimal state-

action value function, we propose to replace this function with the Q-function obtained from

DQfD imitation of the target policy, denoted by Q̃.

With the imitated state-action value function Q̃ at hand, the adversarial policy can be

trained as a DRL agent with the procedure outlined in Algorithm 5. The proposed attack

procedure is summarized as follows:

1. Observe and record N interactions (st, at, st+1, rt+1) of the target agent with the envi-

ronment.

2. Apply DQFD to learn an imitation of the target policy π(s) and Q∗, denoted by π̃ and

Q̃, respectively.

3. Train adversarial policy πadv(s) with Algorithm 5, using Q̃ as an approximation of

target’s Q∗.

4. Apply adversarial policy to the target environment.

8.2.1 Experiment Setup

We consider a DQN-based adversarial agent, aiming to learn an optimal adversarial state-

perturbation policy to minimize the return of its targets, consisting of DQN, A2C, and

PPO2 policies trained in the CartPole environment. The architecture and hyperparameters

of the adversary and its targets are the same as those detailed in Chapter 5. The adversary

employs a DQfD agent to learn an imitation of each target, the hyperparameters of which

are provided in Table 8.1.

90



Pretraining Steps 5000
Large Margin 0.8

Imitation Loss Coefficient 1
Target Update Freq. 1000

n-steps 10
γ 0.99

Table 8.1: Parameters of DQfD Agent

8.2.2 Results

Figures 8.1 – 8.3 illustrate the first 100000 training steps of DQfD from 5000 observations

obtained from DQN, A2C, and PPO2 policies in CartPole. While this limited window of

training is not long enough for convergence to an optimal policy in CartPole, the following

results demonstrate its sufficiency for deriving adversarial perturbation policies for all three

targets.

With the imitated policies at hand, the next step is to train an adversarial policy for

efficient perturbation of these targets. Figures 8.4 – 8.11 present the results obtained from

adopting the procedure presented in Algorithm 5 for this purposes. These results demon-

strate that not only the limited training period is sufficient for obtaining an efficient ad-

versarial policy, but also that launching efficient attacks remain feasible with relatively few

observations (i.e., 2500 and 1000). However, the comparison of test-time performance of

these policies (presented in table 8.2) indicates that the efficiency of attacks decreases with

lower numbers of observations.
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Figure 8.1: DQfD Training Progress on DQN Policy with 5k demonstrations
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Figure 8.2: DQfD Training Progress on A2C Policy with 5k demonstrations
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Figure 8.3: DQfD Training Progress on PPO2 Policy with 5k demonstrations
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Figure 8.4: Adversarial Training Progress on DQN Policy with 5k demonstrations
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Figure 8.5: Adversarial Training Progress on DQN Policy with 2.5k demonstrations
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Figure 8.6: Adversarial Training Progress on DQN Policy with 1k demonstrations

A2C:
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Figure 8.7: Adversarial Training Progress on A2C Policy with 5k demonstrations
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Figure 8.8: Adversarial Training Progress on A2C Policy with 2.5k demonstrations
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Figure 8.9: Adversarial Training Progress on A2C Policy with 1k demonstrations

PPO2
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Figure 8.10: Adversarial Training Progress on PPO2 Policy with 5k demonstrations
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Target Policy Avg. Regret Avg. No. Perturbations
DQN-5k 490.73 7.12

DQN-2.5k 488.12 8.09
DQN-1k 486.37 10.55
A2C-5k 490.88 8.48

A2C-2.5k 487.64 8.73
A2C-1k 487.21 6.23

PPO2-5k 490.23 8.73
PPO2-2.5k 487.23 7.76
PPO2-1k 477.61 7.31

Table 8.2: Comparison of Test-Time Performances of Adversarial Policies
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Figure 8.11: Adversarial Training Progress on PPO2 Policy with 2.5k demonstrations
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Figure 8.12: Adversarial Training Progress on PPO2 Policy with 1k demonstrations
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8.3 Transferability of Adversarial Example Attacks on

Imitated Policies

It is well-established that adversarial examples crafted for a supervised model can be used

to attack another model trained on a similar dataset as that of the original model [98].

Furthermore, Behzadan et al. [1] demonstrate that adversarial examples crafted for one

DRL policy can transfer to another policy trained in the same environment. Inspired by

these findings, we hypothesize that adversarial examples generated for an imitated policy

can also transfer to the original policy. To evaluate this claim, we propose the following

procedure for black-box adversarial example attacks on DRL policies based on DQfD-based

policy imitation:

1. Learn an imitation of the target policy π, denoted as π̃.

2. Craft adversarial examples for π̃.

3. Apply the same adversarial examples to the target’s π(s).

8.3.1 Experiment Setup

We consider a set of targets consisting of the 9 imitated policies obtained in the previous

section (i.e., DQN, A2C, PPO2, trained on each case of beginning with 5k, 2.5k, and 1k

expert demonstrations). In test-time runs of each policy, we construct adversarial examples

of each state against the imitated policy, using FGSM with perturbation step size eps = 0.01

and perturbation boundaries [−5.0, 5.0]. If such a perturbation is found, we then present it

to the original policy. If the action selected by the original policy changes as a result of the

perturbed input, then the adversarial example is successfully transferred from the imitated

policy to the original policy.
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Target Policy Avg. No. Successful Transfers Per Episode
DQN-5k 175.11

DQN-2.5k 78.19
DQN-1k 3.30
A2C-5k 156.44

A2C-2.5k 151.47
A2C-1k 21.58

PPO2-5k 173.94
PPO2-2.5k 112.96
PPO2-1k 74.71

Table 8.3: No. of Successful Transfers Per Episode of Length 500 (100 Episode Mean)

8.3.2 Results

Table 8.3 presents the number of successful transfers averaged over 100 consecutive episodes.

These results verify the hypothesis that adversarial examples can transfer from an imitated

policy to the original, thereby enabling a new approach to the adversarial problem of black-

box attacks. Furthermore, the results indicate that the transferability improves with more

demonstrations. This observation is in agreement with the general explanation of transfer-

ability: higher numbers of expert demonstrations decrease the gap between the distribution

of training data used by the original policy and that of the imitated policy. Hence, the

likelihood of transferability increases with more demonstrations.

8.4 Discussion on Potential Defenses

Mitigation of adversarial policy imitation is achieved by increasing the cost of such attacks

to the adversary. A promising venue of research in this area is that of policy randomization.

However, such randomization may lead to unacceptable degradation of the agent’s perfor-

mance. To address this issue, we envision a class of solutions based on the Constrained

Randomization of Policy (CRoP). Such techniques will intrinsically account for the trade-off

between the mitigation of policy imitation and the inevitable loss of returns. The corre-

sponding research challenge in developing CRoP techniques is to find efficient and feasible

constraints, which restrict the set of possible random actions at each state s to those whose
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selection is guaranteed (or are likely within defined certainty) to incur a total regret that is

less than a maximum tolerable amount Ωmax. One potential choice of constraint is those ap-

plied to the Q-values of actions, leading to the technique detailed in Algorithm 9. However,

analyzing the feasibility of this approach will require the development of models that explain

and predict the quantitative relationship between number of observations and accuracy of

estimation. With this model at hand, the next step is to determine the saddle-point (or re-

gion) in the minimax settings of keeping the threshold Ωmax low, while providing maximum

protection against adversarial imitation learning. This extensive line of research is beyond

the scope of this dissertation, and is only introduced as a potential venue of future work to

interested readers.
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Algorithm 9 Solution Concept for Constrained Randomization of Policy (CRoP)

Require: state-action value function Q(., .), maximum tolerable loss Ωmax, set of actions A

while Running do

s = env(t = 0)

for each step of the episode do

FeasibleActions = {}

a = arg maxaQ(s, a)

Append a to FeasibleActions

for a′ ∈ A do

if Q(s, a)−Q(s, a′) ≥ Ωmax then

Append a′ to FeasibleActions

end if

end for

if |FeasibleActions| > 1 then

a← random(FeasibleActions)

end if

s′ = env(s, a)

s← s′

end for

end while
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Chapter 9

Sequential Watermarks for DRL

Policies

The rapid advancements of the DRL technologies provide ample motivation for exploring the

commercial applications of DRL policies in various domains. However, as this dissertation

attempts to report, the current state of the art in DRL fails to satisfy many of the security

requirements of enduring commercial products. One such requirement is the protection

of proprietary DRL policies from theft and unlicensed distribution. While previous sections

focused on indirect replication of policies through imitation learning, this section investigates

the problem of direct policy extraction. Considering that DRL policies are often composed

solely of the weights and biases of a neural network, protecting against an adversary with

physical access to the host device of the policy is often impractical or disproportionately

costly [42]. With roots in digital media and the entertainment industry [99], an alternative

solution is watermarking. That is, embedding distinctly recognizable signs of ownership in

the content and functions of the policy, which provide the means for detecting unauthorized

or stolen copies of the policy. To this end, a necessary requirement of watermarks is to be

sufficiently resistant to removal or tampering. Furthermore, the embedding and testing of

watermarks shall result in minimal or zero impact on the original functions of the policy.

While the idea of watermarking has been explored for supervised machine learning mod-
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els [100], to the extent of our knowledge, this work is the first to develop a watermarking

scheme for sequential decision making models and policies. The proposed scheme provides

the means for integrating a unique identifier within the policy as an unlikely sequence of

transitions, which may only be realized if the driving policy of these transitions is already

tuned to follow that exact sequence.

This chapter is organized as follows: Section 9.1 presents the formal description and

justification of the proposed scheme. Section 9.2 provides the procedure for implementing

the proposed scheme, followed by the experiment setup and results in Sections 9.3 and 9.4.

The chapter concludes in Section 9.5 with a discussion on the applications of this scheme

and remarks on future directions of research.

9.1 Solution Approach

The proposed scheme is as follows. Let π(s) be the desired policy for interacting with an MDP

< S,A,P,R, γ > for an episodic training environment EM . Assume that A is independent

of the state (i.e., all actions in A are permissible in any state s ∈ S. In tandem, consider a

second MDP for an alternate environment EW , denoted as < S′,A′,P′,R′, γ >, such that:

1. S′ ∩ S = ∅,

2. The state dimensions of S and S ′ are equal: ∀s ∈ S and ∀s′ ∈ S′ : |s| = |s′|

3. Action-space of both MDPs are equal: A = A′

4. The transition dynamics and reward distribution of the alternate environment, denoted

by P′ and R′, are deterministic.

5. EW is an episodic environment with the same number of steps before termination as

EM , denoted by Nmax.

Let s′terminal be a terminal state in EW , and define P′ be such that for any state s′t ∈ S′,

there exists only one action aw(s′t) that will result in the transition s′t → s′t+1. In this setting,
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we designate the ordered tuple of states < s′t, s
′
t+1 >∈ L as links, where L is the set of all

links in EW . Also, define R′ such that R′(s′t, aw(s′t), s
′
t+1) = c > 0 for all < s′t, s

′
t+1 >∈ L,

and R′(s′t, a 6= aw(s′t), s
′ 6= s′t+1) = −c. That is, link transitions receive the same positive

reward, and all other transitions produce the same negative reward.

These settings provide two interesting results: Since the state-spaces S and S′ are disjoint,

the two MDPs can be combined to form a joint MDP < S∪ S′,A,P∪P′,R∪R′, γ >, where:

P ∪ P′(s1, a1, s2) =


P if s1, s2 ∈ S

P′ if s1, s2 ∈ S′
(9.1)

Similarly,

R ∪ R′(s1, a1, s2) =


R if s1, s2 ∈ S

R′ if s1, s2 ∈ S′
(9.2)

Consequently, it is possible to train a single policy πj that is optimized for both EM and

EW through the joint MDP. In practice, the training of a policy for this joint MDP can be

achieved by alternating between the environments at every fEth episode.

Furthermore, the structure of P′ and R′ enable the creation of a looping sequence of

transitions, which constitutes the resulting trajectory of the optimal policy for EW . This

looping sequence can be realized by designating a single state s′l to belong to two link

transitions, comprised of a link transition < s′l, s
′
l+1 > where s′l is the source state, and

another link transition < s′l−1, s
′
l >, in which s′l is the destination state. It is noteworthy

that the creation of such looping sequences provides sufficient flexibility for crafting unlikely

and unique sequences. However, in designing the looping sequence as policy identifiers, two

important restrictions must be considered: first, the structure of identifier sequences need

to be such that the resulting probability of accidentally following the sequence is minimized.

Second, the complexity (i.e., degrees of freedom) of link and non-link transitions on the

ring must be balanced against the training cost of the joint policy: more complex sequences

will increase the training cost of the joint policy by expanding the search space of both

environments. Hence, efficient design of identifier sequences will necessitate the balancing of
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this trade-off between the secrecy of identifier and the training cost.

9.2 Watermarking Procedure

Building on the presented formalization, we propose the following procedure for the sequen-

tial watermarking of DRL policies:

1. Define the state-space of the watermarking environment EW such that it is disjoint

from that of the main environment EM , while preserving the state dimensionality of

the main state space. The latter condition is to enable the utilization of the same

neural network model for the agent through maintaining the same dimension across all

input data to the network.

2. Design P′ and R′ to craft the desired identifier looping sequence.

3. Modify the training procedure of EM to incorporate the mechanism of alternating

between the two environments every fE episodes. It may prove useful to implement

two different alternating frequencies, one frequency fMW to control the switching from

EM to EW , and another frequency fWM for switching back to the main environment.

For watermarking MDPs of much lower complexity than that of the main environment,

selecting these two frequencies such that fWM < fMW can enhance the efficiency of

the joint training process by allocating more exploration opportunities to the more

complex settings.

To examine the authenticity of policies, it is sufficient to run those policies in the wa-

termarking environment. If the resulting transitions match that of the identifier sequence

in consecutive episodes, it is highly likely that the policy under test is an exact replica of

the watermarked policy. However, modifications and retraining of a replicated policy may

result in imperfect matches. In such cases, the average of total rewards gained by the suspi-

cious policy over consecutive episodes of the watermark environment provides a quantitative

measure of the possibility that the model under test is based on an unauthorized replica.
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9.3 Experiment Setup

To evaluate the feasibility of the proposed scheme, the design and embedding of an identifier

sequence for a DQN policy in the CartPole environment is investigated. Hyperparameters of

the DQN policy are provided in Table 9.1. The watermarking environment is implemented

as a customized OpenAI Gym environment. The state space of this environment comprises

of 5 states with 4 dimensions each (Cart Position, Cart Velocity, Pole Angle, Pole Velocity At

Tip). As denoted in Table 9.2, the original CartPole environment restricts the values of Cart

Position to [−4.8, 4.8], and binds the Pole Angle to the range [−24deg, 24deg]. Consequently,

the corresponding parameters of the alternate state-space are selected from beyond these

ranges to ensure that the states remain disjoint from those of the original CartPole. The list

of crafted states is presented in Table 9.3.

Table 9.1: Watermark Experiment - Parameters of DQN Policy

No. Timesteps 105

γ 0.99

Learning Rate 10−3

Replay Buffer Size 50000

First Learning Step 1000

Target Network Update Freq. 500

Prioritized Replay True

Exploration Parameter-Space Noise

Exploration Fraction 0.1

Final Exploration Prob. 0.02

Max. Total Reward 500
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Table 9.4: Test-Time Performance Comparison of Watermarked and Nominal Policies

Policy
CartPole Performance
(mean 100 episodes)

Watermark Performance
(mean 100 episodes)

DQN-Watermarked 500 500
DQN 500 1.4
A2C 500 2.81

PPO2 500 2.43

Table 9.2: Watermark Experiment - CartPole Environment

Observation Space

Cart Position [-4.8, +4.8]

Cart Velocity [-inf, +inf]

Pole Angle [-24 deg, +24 deg]

Pole Velocity at Tip [-inf, +inf]

Action Space
0 : Push cart to the left

1 : Push cart to the right

Reward +1 for every step taken

Termination

Pole Angle is more than 12 degrees

Cart Position is more than 2.4

Episode length is greater than 500

Table 9.3: State Space of the Watermarking Environment

State (x, ẋ, θ, θ̇ )

State[1] (-5, 0, -25, 0)

State[2] (-5, 0, 25, 0)

State[3] (5, 0, -25, 0)

State[4] (5, 0, 25, 0)

Terminal (-6, 0, -26, 0)

Per the procedure of the proposed scheme, The action-space of this environment is set to

be the same as that of CartPole, defined as Actions := {0, 1}. The transition dynamics and
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reward values of this environment are designed as follows: At State[i], applying Actions[i%2]

results in a transition to State[i%4 + 1], and produces a reward of +1. Alternatively, if any

action other than Actions[i%2] is played, the environment transitions into the Terminal state,

which results in a reward of −1 and the termination of the episode. Hence, the identifier

sequence is as follows: ...→ State[1]→ State[2]→ State[3]→ State[4]→ State[1]→ ....

The training procedure of DQN is also modified to implement the switching of envi-

ronments. To account for the considerably lower complexity of the watermarking environ-

ment compared to CartPole, the main environment is set to switch to the watermarking

environment every 10 episodes. At this point, the agent interacts with the watermarking

environment for a single episode, and reverts back to the main environment afterwards.

9.4 Results

Figure 9.1 presents the training progress of the joint DQN policy in both the CartPole and

watermark environments. It can be seen that the joint policy converges in both cases. The

convergence of this joint policy is achieved with increased training cost in comparison to

the nominal CartPole DQN policy. This is due to the expansion of the state-space and

transition dynamics resulting from the integration of the watermark environment. It is also

observed that at convergence, the total episodic reward produced by the joint policy in

the watermark environment is less than the best-possible value of 500. This is due to the

exploration settings of the training algorithm, in which the minimum exploration rate is set

to 2%. Considering that a single incorrect action in the watermark environment results in

termination, this outcome is in line with expectations.

However, as established in Table 9.4, in the absence of exploration, the test-time perfor-

mance of this joint policy in the watermark environment is indeed optimal. This table also

verifies that the test-time performance of the joint policy in the main task is in par with

that of the nominal (i.e., un-watermarked) DQN policy. Therefore, it can be seen that the

watermarking process does not affect the agent’s ability to perform the main task. Further-

more, this table presents the results of running unwatermarked policies in the watermark
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environment. The results indicate that unwatermarked policies fail to follow the identi-

fier trajectory of the watermark. Hence, these results verify the feasibility of our proposed

scheme for sequential watermarking of DRL policy.

0 50000 100000 150000 200000 250000 300000
Steps

0

100

200

300

400

M
ea

n 
10

0 
Ep

iso
de

 R
ew

ar
d

CartPole Watermark

Figure 9.1: Training Performance for Joint CartPole-Watermark Policy

9.5 Discussion

The proposed watermarking scheme presents the potential for adoption in other applications.

From an adversarial perspective, this scheme may be used to embed malicious backdoors in

DRL policies. For instance, an adversary may apply this scheme to poison a self-driving

policy to perform harmful actions when a specific sequence of states are presented to the

policy. If the adversarial sequence is well-crafted, typical fuzzing-based testing techniques
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may fail to detect the presence of such backdoors. Therefore, there is a need for new ap-

proaches to the detection of such backdoors. A promising solution is the adoption of the

activation clustering technique [101] developed for the detection of data poisoning attacks

in supervised deep models.

Another potential application for this technique is in the area of AI safety. One of the

major concerns in this domain is the switch-off problem [102]: if the objective function of

an AI agent does not account for or prioritize user demands for the halting of its operation,

the resulting optimal policy may prevent any actions which would lead to halting of the

agent’s pursuit of its objective. An instance of such actions is any attempt to turn off the

agent before it satisfies its objective. A promising solution to this problem is to leverage

our proposed scheme to embed debug or halting modes in the policy, which are triggered

through a pre-defined sequence of state observations.
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Chapter 10

Conclusion

To conclude this dissertation, we summarize the main contributions of this work, and follow

with remarks on directions and avenues of future research and extensions of these contribu-

tions.

10.1 Summary of Contributions

This dissertation investigated the security of Deep Reinforcement Learning (DRL) policies.

Throughout this dissertation, the primary goal has been to develop techniques, frameworks,

and guidelines that enable the practitioners and engineers to enhance the security of DRL-

based systems. To this end, we studied three fundamental research problems, listed as

follows:

• Investigate and develop general methods and metrics for quantitative measurement and

benchmarking of the resilience and robustness of DRL policies to adversarial state-space

perturbations,

• Analysis and improvement of the DRL dynamics under training-time perturbations,

and:

• Investigating the vulnerability of DRL agents to unauthorized replication and theft of

policies.

109



We hereafter summarize the main contributions of this dissertation towards each of these

problems.

Chapter 5 presented formulations of adversarial resilience and robustness in DRL poli-

cies that disentangle the effects of limitations in representation learning from sensitivity of

policies to changes in state transition dynamics. Furthermore, this chapter proposed two

RL-based methods and corresponding metrics for the measurement and benchmarking of

these two quantities in DRL policies at test-time. To demonstrate the feasibility of these

proposals, this chapter also reported the experimental evaluation of their performance on

DQN, A2C, and PPO2 agents trained in the Cartpole environment.

Chapter 6 investigated the effect of design parameters (i.e., hyperparameters) of DQN

agents on the resilience of their training process to state-space perturbations. Accordingly,

this chapter presented the formulation of adversarial resilience to training-time perturbations,

and analytically reduced the problem space to facilitate experimental investigations. Accord-

ingly, this chapter studied the effect of various design choices on training-time resilience of

DQN, namely: capacity of the experience memory, experience selection mechanism, explo-

ration mechanism, and the discount factor. The findings of this chapter established general

guidelines on the selection of mechanisms and parameters at the design level for improving

the resilience of DQN agents against training-time perturbations.

Chapter 7 studied the practical limits of adversarial training in improving the robustness

of DQN policies. Accordingly, it presented a formal analysis of the efficiency of adversarial

training with respect to the proportion of adversarial perturbations to nominal observations

used for training. Furthermore, this chapter proposed a novel Adversarially-Guided Explo-

ration (AGE) mechanism to alleviate the sample-inefficiency of blanked adversarial training

in DQN agents. To verify the feasibility of this mechanism, experimental evaluations were

performed and demonstrated the superiority of AGE to NoisyNet exploration.

Chapter 8 addressed the class of attacks targeting the confidentiality aspect of DRL

security. Accordingly, proof-of-concept attacks were developed based on a recent imitation

learning technique known as Deep Q-Learning from Demonstrations (DQfD), and their fea-

sibility and security risk were established through experimental studies. Furthermore, this
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chapter presented a discussion on a mitigation concept based on the Constrained Random-

ization of Policy (CRoP), thus motivating further research in this area.

Chapter 9 proposed a novel scheme for the watermarking of DRL policies, which pro-

vides a mechanism for the embedding of a unique identifier within the policy in the form of its

response to a designated sequence of state transitions. This scheme was shown to have mini-

mal impact on the normal performance of the policy. The feasibility of this proposed scheme

was demonstrated via experimental evaluation of watermarking a DQN policy trained in

the Cartpole environment. Furthermore, this chapter presented a discussion on alternative

applications of the proposed scheme in adversarial settings (i.e., induction of backdoors in

policies), as well as in the settings of AI safety (i.e., as a solution to the switch-off problem).

10.2 Frontiers

Sequential decision making and RL are active fields of research with a vast horizon of unsolved

challenges. In particular, the study of security considerations and issues in classical and

deep RL is still a very young domain filled with research problems and opportunities for

foundational contributions. Below, we introduce a number of such problems that build on

the findings of the previous chapters.

• Training-Time Resilience in Policy Search and Actor-Critic Methods : This disserta-

tion focused on the problem of training-time perturbations in DQN as a baseline for

value-iteration methods. Therefore, there is much room to extend the analyses and

techniques of Chapters 6 and 7 to other classes of DRL algorithms, namely direct

policy search and actor-critic methods. The latter in particular presents the grounds

for adopting the techniques of evolutionary game theory to capture and study the dy-

namics of policy learning under training-time adversarial perturbations. Also, to the

extent of our knowledge, the effects of various hyperparameters of such algorithms on

training-time resilience of the agent are yet to be studied.

• Model-Based and Hybrid Methods : This dissertation focused only on model-free rein-
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forcement learning. However, the growing number of real-world applications based on

model-based or hybrids of model-free/model-based algorithms necessitates the study

of security problems in such systems. For instance, it would be of particular interest

to investigate the exploitable vulnerabilities that may arise from the inaccuracies of

user-defined models, or those that arise from the inherent shortcomings of online model

estimators.

• Mitigation of Policy Replication: In Chapter 8, we introduced and motivated the secu-

rity risks arising from adversarial policy imitation. However, to the extent of our knowl-

edge, there are still no proposals or studies on how to defend DRL policies against such

attacks. One promising venue of further research is the Constrained Randomization of

Policy (CRoP) idea introduced in Chapter 8. However, efficient randomization of DRL

policies in real-world settings will need to satisfy stringent constraints that guarantee

both the safety and the efficiency of agents’ behavior. Therefore, understanding the

limits of feasibility and efficacy of approaches based on CRoP may further enlighten

the limits and scopes of such solutions.

• Security Issues in Multi-Agent DRL: While the entirety of current security studies on

DRL security are focused on single DRL agents, the rapidly growing interest and re-

search in multi-agent deployments of DRL policies amplify the need for understanding

the unique security risks that emerge from the interactions of multiple DRL agents.

These interactions give rise to not only unique challenges in the security of DRL poli-

cies, but also encompass the problems of security engineering in complex adaptive

systems [103]. An interesting venue of research in such settings is the problem of

verifying, measuring, and engineering the security of mechanisms that govern the in-

teractions of such agents. This venue may benefit from the body of work on quantifying

and predicting cascading failures in complex networks and systems.

• Naturally-Inspired Models : As argued in [104], the growing complexity of DRL agents

and their deployment settings may soon surpass the limits of feasibility for low-level
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abstractions and atomic viewpoints. There is however still hope, as higher-level ab-

stractions have shown to be useful in understanding and controlling the highly complex

settings of natural phenomenon. Solutions inspired by high-level models such as neuro-

science (e.g., [105]) and social sciences (e.g., [106]) present multiple avenues of research

on the security of DRL. For instance, the model of reward-hacking as addictive behav-

ior in [105] can be extended to analyze the vulnerability of DRL policies to changes

in reward dynamics, while refraining from the computationally expensive techniques

of reachability and controllability analysis. Further work on naturally-inspired mod-

els may potentially provide many such approaches to solving the security problems of

highly-complex DRL systems and settings.
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