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Abstract 

 

TinyOS is an operating system designed for wireless embedded sensor network which supports 

the component based development language called Nesc. Wireless sensor network are becoming 

increasingly popular and are being used in various applications including surveillance 

applications related to object tracking. Wireless sensor devices called motes can generate an 

event in the network whenever there is some object moving in its vicinity. This project aims to 

develop an application which detects the path information of object moving in the sensor field by 

capturing the order of events occurs in the network. 

This application builds a logical topology called DAG (Directed acyclic graph) between the 

motes in the network which is similar to the tree topology where a child can have multiple 

parents which are in communication range and a level closer to the root. Using a DAG, motes 

can communicate efficiently to order the events occurring in the sensor field. The root of the 

DAG is the base station which receives all the events occurred in the network and orders them 

based on the information it has from previous events received. 

Every event occurring in the network is assigned a time stamp and is identified by a tuple 

(mote_id, timestamp) which describes that the mote with identity id has detected the object with 

the timestamp, and ordering all such events based on the timestamps we get the path information. 

There are two time stamping algorithms written in this project. In the first time stamping 

algorithm, whenever any event occurs, it updates the timestamp information of the entire 

neighboring mote in the field and when the object enters in the detection range of neighboring 

mote of previous detected mote, it assigns the new timestamp. The second time stamping 

algorithm just send the message to the parent and it passes on to its parent until the message is 

received at the base station, and base station itself assigns the timestamps based the event on first 

come first serve basis. The application is tested by displaying the path information received and 

ordered at the base station. 
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Chapter 1 - Introduction 

 

1.1 Wireless Sensor Network 
 

Wireless Sensor Network (WSN) is a distributed network of devices in which devices 

communicate using wireless transmission. WSN have a wide range of applications such 

as monitoring environmental changes, monitoring animal movements, traffic control, fire 

detection and surveillance. There are different types of sensors used in different 

applications. Wireless Sensor Networks consists of wireless devices called motes which 

can send and receive wireless messages, and read data from the sensors. To develop an 

application, we need to design a distributed algorithm and embed it into all the motes in 

the network. The TinyOS operating systems specifically designed for motes, is used in 

our implementation to execute the developed applications and algorithms. Sensor 

network usually consists of a multi hop algorithm which passes the messages between 

motes.  

 

1.2 TinyOS 
 

TinyOS is the operating system designed for embedded sensor networks. TinyOS 

supports Nesc language which is a structured component based language. Supporting 

libraries and applications of TinyOS are written in Nesc. Nesc follows the C syntax, and 

it is easy to build the components for the applications, debug using the simulators and 

allows different concurrency models. Components in Nesc can provide and use the 

multiple interfaces which are bidirectional. If an interface has commands and the 

component provides that interface then the component should implement commands of 

the provided interface in the implementation section, and if it uses any interface, then the 

component can call the commands and receive events if any declared in the interface. For 

example, if a component provides the Stdcontrol interface then it must implement init(), 

start(), and stop() commands. Similarly if component uses the ADC control then it can 
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call ADC.getData() command and in return it gets the event ADC.dataReady() which is 

implemented in the component. 

 

1.3 Applications 
 

Wireless sensor networks can be used for various applications. For example, temperature 

sensor can be used to detect fire, proximity sensors for animal monitoring and object 

tracking, light sensor to monitor environmental changes, and accelerometer sensor to find 

the speed at which a vehicle is moving. While developing an application many aspects 

needs to be considered such as message loss, mobility of motes, crashing of motes, and 

dynamic topology changes. In most of the applications, a logical topology is needed to 

build a robust application as the physical positions and number of motes in unknown 

since motes can be moved or can crash. We can form different types of logical topologies 

such as star, mesh, ring, or a tree topology. As the communication range may be limited, 

an application might need a multi hopping algorithm. For example, consider a situation 

where there are several producers and one consumer in the network and all of producers 

are not in the communication range of the consumer. If producers want to send any 

information which the consumer is interested in, then a producer can send the information 

another mote closer to the consumer in network which pass on to the message to the 

consumer. To do this, we need to form a logical topology set up in the network. That is if 

tree topology is built between the motes and consumer is a root of the tree then 

information can be propagated to the consumer by sending it via parents in the tree. In the 

object tracking application studies in this report, we setup a logical topology which is a 

DAG (Direct Acyclic Graph). This is similar to a tree where a child can communicate to 

all the parents which are in communication range.  Chapter 3 describes why the Directed 

Acyclic Graph is necessary and how it solves the problem. 

 

1.4 Limitations 
 

There are various sensor networks applications developed which can be deployed in the 
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places such as forests, battle field and remote places where monitoring of the motes is 

difficult. This section discusses the limitations which need to be considered while 

developing application for the sensor networks. 

1.4.1 Limited battery power: 
Motes run on the batteries and every message received, sent and processed 

consumes battery power. Sending and receiving consumes more power 

than processing. When the battery of a mote gets drained, it will stop 

responding to the other motes in the network. For example, if there is a 

root in the tree topology which receives the temperature reading of all 

motes in the network deployed in forest and sends it to some other devices, 

then the root will be doing more work than anyone else in the network. So, 

root consumes more power and may exhaust its battery power before 

others. Due to remote deployment, replacing batteries in these devices may 

be difficult. Hence, we must reduce the amount of battery consumption by 

careful design of the algorithms. 

1.4.2 Message loss due to interference:  
Messages may get lost due to collisions when there is more than one 

message transmitted at the same time in a neighborhood. . So, the 

application developer needs to address this issue when designing an 

algorithm. If there is a message sent, the sender cannot assume that the 

messages will be received at the other end. 

1.4.3 Mote failure: 
In application deployed in places such as forests or remote places, 

preventing physical loss of motes in such places is a difficult task. For 

example, some animal can step on a mote which will damage the mote. So, 

applications must be designed to continue working even if some motes in 

the network stop working. 

1.4.4 Security: 
When any sensitive information is passed between the motes, the security 
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of this information needs to be considered in the network. To ensure   

security, a message needs to be encrypted before it is sent and should be 

decrypted after it is received.  Encrypting the message will increase its size 

and the amount of computation which will consume more battery power. 

1.4.5 Storage restrictions: 
The motes do not have much storage space in it. So, it is not preferable to 

send large messages, and store large amount of data in the motes of 

network. 

1.4.6 No fixed topology: 
As the motes can crash because of power consumption or physical loss, the 

topology between motes cannot be fixed. So, an application should work 

even when there are mote failures. This can be address by having the 

logical topology created between motes periodically, but it increases in the 

number of messages sent in network. 

1.4.7 Loss because of Obstructions: 
If there are any objects in between the two motes which are trying to 

communicate, then the signal strength can be reduced or the signal can 

become weak so that the motes will not receive the messages. Depending 

upon the obstruction, messages may also get lost. 

. 
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Chapter 2 - Problem Statement 
 

This project aims to develop the application to track the object moving in the sensor field. The 

project is divided into two parts, first is the setting up of logical topology, and second is the 

algorithm which runs in the motes to get the path information of the object moving in the sensor 

field. Each event detected is assigned the timestamp, and all the timestamp information is 

gathered at the base station where path information can be read. This project can also be used to 

order events that occurred in the sensor field.  

 

2.1 Logical topology: 
In order for the motes to communicate in the sensor field there needs to be some logical 

topology set up. As motes can be crashed or moved, the logical topology needs to be 

updated periodically. The algorithm which sets up the logical topology is initiated 

periodically to setup and update the topology between the motes in the sensor field. The 

factor of message loss is considered in the algorithm and reliability is maintained by 

waiting for the acknowledgment from the receiver at the sender. 

 

2.1.1 Assumptions for logical topology: 
• There is dense enough network to set up the logical topology. 

• There will be only one base station which instantiate algorithm. 

 

The logical topology which will be setup is called DAG (Directed Acyclic Graph). DAG is 

similar to the Tree structure where child can communicate to the parents which are in the 

communication range. It is needed for object tracking algorithm developed. The reason is 

described in the following section. 

 

2.2 Object Tracking Algorithms: 
Two object tracking algorithms are developed. 

5 
 



2.2.1 Algorithm to maintain the local clocks: 
This algorithm is developed to track an object in the sensor field. In this algorithm 

the logical clock are maintained at all the motes in the sensor networks. 

 

2.2.2 Algorithm to maintain the clocks at the base station: 
This algorithm is also developed to track the object movement, but the time stamping 

is done at base station only. That is, all the events occurring in the network are 

ordered on first come first serve bases at base station. 

 

2.2.3 Assumptions for object tracking algorithm: 
 

• DAG is already formed in between the motes in the network. 

• Message move faster than the object move in between the motes which are in 

the communication range. 

  
Performance analysis is done for the DAG formation algorithm and object tracking 

algorithms. Comparison between the two object tracking algorithms in the different scenarios 

is presented. 

 

2.3 TOSSIM 
This section describes how the TinyOS simulator is used to write and test an application. 

We have written two Nesc files for the DAG formation and for ordering the events in the 

object tracking algorithm. One file is used for specifying the component interconnections 

and the other for implementing the commands and events of interfaces used by each 

component in the application. Application can be debugged by including debug statements 

in the code. The application was developed and tested using Cygwin which is the UNIX 

simulator for the Windows Operating system. 
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2.3.1 TinyViz: 
TinyOS provides the graphical user interface called TinyViz. TinyViz provides 

features such as setting the communication range between two motes, debugging 

the application by using the debug messages used in the code and aligning the 

motes in the network as needed to test the application. 

 

To test the application, we need to compile the application which can be done 

using the “make pc” command. Before running the application, we need to set the 

DBG variable using the command “export DBG=usr1” to print the debugging 

statements written in the code. Using “tinyviz -run build/pc/main.exe 16” 

command, the application can be launched in TinyViz (the parameter 16 specifies 

the number of motes). 

 

Figure 2.1 - TinyViz 

 

2.3.1.1 Setting the communication range: 
The application was tested by setting the communication range between 

motes in network and creating the multi hop network in TinyViz. By 
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clicking on the Plugins and selecting the Radio model checkbox, the tab 

for the radio model appears. Here, by selecting the fixed radius (10.0) in 

drop down list and clicking the Auto Update check box, TinyViz sets the 

communication distance between any two motes to 10 units. Now, we can 

make two motes communicate by placing them within a distance of 10 

units in the user interface. .  

 

2.3.2 Tython: 
Tython (Tinython) adds a scripting interface to TOSSIM. User can interact with 

the TinyViz application using Tython scripting. Our application uses Tython to 

simulate object movement in TinyViz and setting the ADC values of the motes 

which are at the 5 units of distance from the object. When the application is 

loaded in TinyViz, it shows up the scripting prompt “>>>” where Tython 

commands can be given to the simulator. 

 

2.3.2.1 Object movement in TinyViz: 
A new instance of an object can be created and moved in the simulator 

using the Tython script. First we need to run the following command in the 

Tython prompt to start the simdriver. 
>>> from simcore import * 

Now the motes instances can be accessed using the Motes[] array. 

Motes[0] give the instance of the mote with id 0. And the command 

Motes[0].moveTo(x,y) moves  mote 0 to the coordinates (x,y) in the sensor 

area of TinyViz. Using this feature, we can set the exact topology needed 

by arranging all the motes. We can have a new object created in the sensor 

area of TinyViz by running the script below 

>>> obj=sim.newSimObject(1,10,20) 

Where 1 is the size and, 10 and 20 are the x and y coordinates respectively 

of the new object created. Similar to the moving of existing mote, the new 

object created can also be moved in the TinyViz interface. 
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2.3.2.2 Setting the ADC values: 
Similar to the object movement, setting the ADC values of the mote can 

also be done using the Tython script. It can done by running the script 

below 

>>> comm.setADCValue(10,0,1,5); 

Where 10 is the mote id, 0 is the time, 1 is the port and 5 is the ADC 

values. This will set the ADC values of mote 10 to 5. We tested the 

application by setting the ADC values of a mote to 5 if the distance 

between object and mote is less than or equal to 5 and setting it to 0 when 

the distance is greater than 5 units. Objects are moved by the distance of 3 

units every second using the obj.moveTo(x,y) command. 

 

2.3.3 Testing on Motes: 
The testing is done on the test-bed, consisting of a set of boards, where each is of 

height three feet, and one feet width. Each board has eight motes on it in a grid of 

2X4, two row and four columns. The effective range of a Telosb mote in an 

outdoor environment is 75 to 100m and indoor is 20 to 30m. With this 

communication ranges, it is difficult to test in a small area. So, the experiments 

are performed by decreasing the transmission power to reduce the communication 

range between motes. 

 

2.3.3.1 Reducing the communication range: 
While working with the motes in a small area, we can reduce effective 

communication range of motes using the CC2420Control interface. 

CC2420Control interface has the command SetRFPower(uint8_t power), 

where power takes the values 1 to 31. If power is set to 31, it uses the full 

transmission power to send the message and messages reaches the 

maximum distance it can. This project is tested by setting the transmission 
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power to 2 as below in the start command of StdControl interface. 

call CC2420Control.SetRFPower(2); 

 

2.3.3.2 Receive Signal Strength Intensity: 
When forming a DAG, sometimes a mote may receive a weak signal and 

get an an incorrect level. If a mote gets a level number by receiving a weak 

signal, it cannot effectively communicate later. This affects the event 

ordering in the Object Tracking algorithm. For example, mote X may get 

level 2 by receiving a weak signal from one of the motes which is at level 

1, but the mote X is supposed to be in the level 3 as the distance between 

mote X and the root node is 3. So, when mote X detects the object, it send 

the detected message to  level 1 motes, but as the distance to level 1 motes 

is more than expected, the signal might not reach it parents and hence the 

detected message might not reach the base station.  

To solve such problems, Receive Signal Strength Intensity (RSSI) is used 

while forming the DAG. We can calculate the RSSI of Telosb using the 

formula below. 

(int8_t)recv_packet->strength-45 

Where recv_packet is TOS_MsgPtr (TinyOS message pointer). The 

strength field is in the TOS_Msg structure. The structure of the TOS_Msg 

for the Telosb is  

 

typedef struct TOS_Msg 

{ 

  /* The following fields are transmitted/received on the radio. */ 

  uint8_t length; 

  uint8_t fcfhi; 

  uint8_t fcflo; 

  uint8_t dsn; 

  uint16_t destpan; 

  uint16_t addr; 
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  uint8_t type; 

  uint8_t group; 

  int8_t data[TOSH_DATA_LENGTH]; 

 

  /* The following fields are not actually transmitted or received  

   * on the radio! They are used for internal accounting only. 

   * The reason they are in this structure is that the AM interface 

   * requires them to be part of the TOS_Msg that is passed to 

   * send/receive operations. 

   */ 

  uint8_t strength; 

  uint8_t lqi; 

  bool crc; 

  bool ack; 

  uint16_t time; 

} __attribute((packed)) TOS_Msg; 

 

In this structure the first 10 bytes are reserved for the header information 

and last 5 values are not set or transmitted, but are used for internal 

accounting. In the last 5 fields we have the signal strength which gives the 

intensity of the signal strength when received at a mote. The range of 

signal strength is from -1 to -100dBm. In this project, messages received 

with the signals strength of -85dBm or below is considered as weak and 

messages are processed only when the message received has the strength 

of more than -85dBm while forming the DAG. 
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Chapter 3 - Logical Topology 
 

3.1 Introduction to DAG: 
As mentioned in the previous chapters, we form a DAG (Directed acyclic graph) 

between the motes in the network. A DAG is similar to the Tree structure where a 

child can have more than one parent. In this topology, all motes enrolled in the 

DAG have the level number assigned to them and motes which are in 

communication range and level one less than it own are the parents and the motes 

with the level one greater are the children. Below figure describes the DAG 

structure. 

 

Figure 3.1 - Motes in DAG structure with Mote 0 as base station. 

3.1.1 Why a DAG is necessary: 
The Object tracking algorithm needs a DAG for ordering the detection 

events and updating the local clocks. For example consider the scenario 

below 

 

Figure 3.2 - Object moving adjacent to leaf mote. 

As show in the figure above, if the object moves adjacent to the leaf motes, 

12 
 



then mote 3 detects the object first and assigns the timestamp 0 to the 

detection event, and if mote 4 is not in the communication range then it is 

not possible for mote 3 to update the local timestamp of mote 4. So, mote 

1, which is the parent of mote 3 and mote 4, updates the timestamp of mote 

4. Similarly, before mote 5 detects the object, its local timestamp should 

also be updated which has to be done by the common parent of mote 4 and 

mote 5. Since, mote 4 needs a common parent for both the siblings; it 

needs at least two parents, one for each sibling, which is possible by using 

a DAG structure. Hence, this project uses logical topology of DAG 

between the motes in the network for ordering the detection events fired in 

the sensor field. 

 

3.2 Formation of the DAG: 
An algorithm is written to form a DAG between the motes in the sensor field. The 

base station initiates the algorithm which forms the DAG with the base station as 

the root of the DAG. There is only one base station which initiates the algorithm. 

Motes do not know the neighboring motes information initially. The algorithm is 

designed to know the information of neighboring motes by sending the messages 

and getting the acknowledgment from them.  

 

3.2.1 Assumptions: 

• We assume that we have a dense enough network to form the DAG. 

• There will be only one base station which initiates the algorithm. 

  

 Basic idea to form DAG: 

 When the base station starts the algorithm, it broadcasts the needChild message. 

Whoever receives the needChild message will acknowledge it by sending the message 

ackToParent and adds that motes which sent the needChild message as a parent. When the 

ackToParent message is received at the base station, it will add the mote which sent the 
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ackToParent message as its child and acknowledges it by sending an ackToChild 

message. When ackToParent is received by a child, it waits for the sometime to allow 

messages from other potential parent to arrive, and then sends a needChild message and 

starts searching for more levels by sending the needChild message. 

 

But there can be a situation where we can form an incorrect DAG .For example, if the 

ackToParent message is lost due to interference, and then the parent does not get to know 

the child’s information. For this reason, we ensure reliability by sending the 

acknowledgments to all the parents which sent the needChild message every one second 

unless they get the ackToChild message back from all the parents. But, if the needChild 

message itself is lost then there is no information to track the children of that mote. 

 

Mobility of motes and changing topology: 

 Mobility is also considered when developing the DAG formation algorithm. When a 

mote receives the needChild message from a mote which is at a level closer to the base 

station than its parents, then it changes its level to a lower value and makes the mote 

which sent the needChild message as parent. Similarly, if the object moves farther from 

the base station then it gets the needChild message from the siblings or the children but 

not from the parents, when algorithm is initiated again. If this situation occurs the 

algorithm resets the level to the default which is -1. When base station initiates the 

algorithm again, it gets the right level, parents and children in the DAG. Like this when 

the object moves in the sensor field then the level is updated accordingly using this 

algorithm. Since the topology might change as the mote may crash or move, this 

algorithm has to be run at periodic intervals. Hence, we make it a heartbeat-based 

algorithm. 

 

Consider the network below where base station is mote 0 
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Figure 3.3 - Motes in network where base station is mote 0. 

 

When the base station initiates the algorithm, mote 1 and mote 2 gets into level 1. 

Algorithm needs to make all the motes which are in the communication range other than 

the parents of the node as the children. For example, in the network below, if mote 1 and 

mote 2 send the 'needChild' message at the same time then due to interference, messages 

may be lost and all other motes does not gets enrolled into the DAG.  

 

Figure 3.4 - If needChild message from Mote 1 and Mote 2 is lost due to interference. 

 

Another situation may be if mote 3 and 4 get the needChild message correctly and are 

enrolled in the tree with level 2. Level 2 motes will now send ‘needChild’ message to 

form the DAG with the motes which are away from the base station. If the mote 3 and 

mote 4 send messages at the same time then because of interference in the medium, the 

messages sent from mote 3 and mote 4 will be lost. But, messages sent from mote 5 are 

received at mote 8 and 9, and the mote 8 and 9 go into the level 3. Similarly, mote 7 goes 
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to level 4 and mote 6 goes to level 5 if the mote 7 is in communication range of the mote 

8 and mote 6 is in the communication range of mote 7. Like this we get a wrong level for 

the motes. 

 

Figure 3.5 - needChild message from mote 3 and mote 4 is lost due to collision. 

To solve such problems we make it a heartbeat algorithm. Base station initiates the 

algorithm periodically. Mote 6 and Mote 7 might get the needChild message from mote 3 

and mote 4, and changes the level of mote 6 and mote 7 to 3. The resultant DAG would 

be as below 

 

Figure 3.6 - the resultant DAG. 

3.3 Pseudo Code of DAG formation 
Pseudo code for DAG formation is written to explain the algorithm in detail. 

Promela style is used in Pseudo Code. 
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int baseStation = 0; 

int ackFrmParent[10], noOfAck_pnt = 0; 

int parents[10], childs[10]; 

bool notInitiated, inRightLevel = FALSE; 

Timer timer1, timer2, timer3, timer4, timer5, timer6; 

do 

Local_ID = baseStation && notInitiatied -> notInitiated = false; (bcast)! 

msgStruct(msgStruct->message="needChild"); timer1_start; timer5_start; 

levelno = 0; 

?msgStruct -> 

if  

msgStruct->message == "needChild" -> 

if 

levelno == -1 || levelno == msgStruct->level + 1 → 

inRightLevel = TRUE; 

if 

( (msgStruct-ID not in ackFrmParent[]) && timer2_called 

== 0 ) -> 

ackFrmParent[noOfAck_pnt] = msgStruct->ID; 

timer2_start; noOfAck_pnt++; levelno = 

msgStruct->levelno+1; ( msgStruct->ID include in 

parents[] ); 

( (msgStruct_ID not in ackFrmParent[]) && timer2_called 

== 1 ) -> 

ackFrmParent[noOfAck_pnt] = msgStruct->ID; 

noOfAck_pnt++; levelno = msgStruct- 

>levelno+1; ( msgStruct->ID include in parents[] ); 

fi 

levelno > msgStruct->levelno + 1 → inRightLevel = TRUE; 

if 

( (msgStruct-ID not in ackFrmParent[]) && 
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timer2_called == 0 ) -> 

ackFrmParent[noOfAck_pnt] = msgStruct-

>ID; timer2_start; noOfAck_pnt++; levelno 

= msgStruct->levelno+1; ( msgStruct->ID 

include in parents[] ); 

( (msgStruct_ID not in ackFrmParent[]) && 

timer2_called == 1 ) -> 

ackFrmParent[noOfAck_pnt] = msgStruct -> 

ID; noOfAck_pnt++; levelno =  msgStruct -> 

levelno+1; ( msgStruct->ID include in 

parents[] ); 

fi 

if 

levelno < msgStruct->levelno + 1 → timer6_start; 

fi 

fi 

msgStruct->message == "ackToParent" -> 

 ( msgStruct->ID include in childs[]); !msgStruct 

(msgStruct->message = "ackToChild" ); 

msgStruct->message == "ackToChild" && notInitiatied ->  

(msgStruct->ID remove from ackFrmParent[] ); 

timer3_start; 

msgStruct->message == "ackToChild" && !notInitiatied ->  

( msgStruct->ID remove from ackFrmParent[] ); 

fi 

!notInitiated -> timer4_start; 

timer1_fired -> notInitiated = true, inRightLevel = FALSE; 

timer2_fired -> 

if 

(ackFrmParent[] is notEmpty) ->  

(get nodeX from ackFrmParent[]); (!msgStruct( 
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msgStruct->message = "ackToParent") to nodeX); 

(ackFrmParent[] is Empty) -> timer2_stop; 

fi 

timer3_fired ->  

notInitiated = false; (bcast)!msgStruct(msgStruct -> 

message="needChild"); timer1_start; 

timer4_fired-> clear all the variable; 

timer5_fired-> 

if 

notInitiated->  

(bcast)!msgStruct(msgStruct->message="needChild"); 

timer1_start; 

fi 

timer6_fired->  

if 

 !inRightLevel && !baseStation -> level = -1; 

fi 

od 

 

A reason for placing timeout is described below: 

 

Timer1: 

Timer1 is REPEAT timer placed for the base station and this just changes 

notInitiated to true so that it can initiate the formation of DAG again. It is the 

repeat timer but in the implementation the timeout time has to change every time 

by adding more 60 seconds. That is, if first time it timeouts after 60 seconds then 

second time it timeouts after 120 seconds and 180 seconds for the third time, and 

so on. 

 

Timer2:  

Timer2 is the REPEAT timer which ticks every second. The purpose of placing 
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this is to ensure reliability of communication between parent and child after 

receiving the message from the parent mote. The algorithm remembers the motes 

which sends the needChild messages and which are not the child's of the nodes by 

placing the ID's in the ackFrmParent array. When timer2 fires it check if there are 

any ID's of nodes in the ackFrmParent array, if there are any then send the 

"ackToParent" to nodes with ID's in ackFrmParent array until it becomes empty. 

When the array is empty then stop the timer2. Array removes its values when it 

gets the "ackToChild" from the parent. Therefore it makes sure that the parent has 

accepted it as child and messages are successfully passed between parents and 

children. 

 

Timer3: 

Timer3 is the ONE_SHOT timer when a mote is accepted as a child. When this 

timer is fired it sends the needChild message to motes which are away from the 

base station than the present level motes. The purpose of keeping this timer and 

sending the message when timer is fired is to wait for some time so that the nodes 

can accept more parents and send needChild message only once. Doing this will 

save some message been sent in the medium. 

 

Timer4: 

Timer4 is used to clean all the variables used while forming DAG like 

notInitiated, ackFrmParents and any variables used in the implementation. 

Assuming formation of DAG process does not take more than 60 seconds, in 

implementation this timer fires after 60 seconds so that it can treat the next 

received needChild message as a new message. 

 

Timer5: 

Timer5 is a REPEAT timer initiated at the base station which will start the 

algorithm again. This repeat timer will fire with the increased interval of time if 

the number of child does not increase. That is, if the number of children of base 

station is same and previously it fired after 60 seconds then it fires after 120 
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seconds next time. Similarly, if the number of children increases then timer fires 

by decreasing the time by 60 seconds next time, as the topology is changed.  

 

Timer6: 

Timer6 is the ONE_SHOT timer and is initiated when there is any message 

received from the mote at the level higher (That is, mote farther to the base 

station). This is used to find whether mote is gone to the wrong level by catching 

the weak signal or by moving farther from base station. 

3.4 Performance Analysis 
Various tests were performed on this algorithm to analyze the performance of the 

algorithm with varying topology sizes in the simulation using TinyViz and also on 

the motes.  

 

3.4.1 Analysis using the Simulator 
Using the simulator it is easy to find the number of messages sent and 

arrange the desired topology. In simulator there will be no loss of messages 

due to the signal strength. So, the desired topology is formed first time 

itself.  
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Figure 3.7 - Motes arranged in grid of 8X8, Mote 0 is base station which 
initiates the algorithm. 

The DAG formation algorithm is tested with different topologies and 

network sizes. The average number of messages sent is 71 in the network 

with eight motes arranged in the grid of 4X2, that is with 4 rows and 2 

motes in each row. Similarly, the average number of messages sent is 156 

in network of 16 motes arranged in 4X4 grid, 154 in network of 16 motes 

arranged in 8X2 grid, 253 in network of 24 motes arranged in 4X6 grid, 

and 965 in network of 64 motes arranged in 8X8 grid. Above figure is the 

snapshot when the DAG is tested with sixty four motes with base station as 

mote 0. 

 

If we are trying to form a DAG (Directed acyclic graph) topology with 8 

motes then there is a less probability of the message loss due to the 

interference. The probability of getting interference increases as the 

number of motes in the network increases as there will be more messages 

moving in network at same time. As we ensure reliability while formation 

of tree in algorithm, if messages are lost due to collisions, the messages 
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will be resent. This, results in increasing the number of messages sent in 

the network. 

 

Tests are also performed by moving the objects in TinyViz and results 

observed are described here. Starting with the topology with 16 motes in a 

grid of 4X4, the application is tested by moving the motes to observe the 

algorithm behavior. 

 

Figure 3.8 - When Mote 12 is moved away from the base station. 

 

When the algorithm runs for the first time, mote 13 and mote 12 are the 

parents of the mote 15 and mote 14. As shown in the above figure, mote 12 

moves away from base station. When the algorithm is initiated next time, 

the mote 12 went to the level 4 and, mote 15 and mote 14 became the 

parent of the mote 12. The parent, child and level information of mote 15 

and mote 14 are not changed as there is still one parent (mote 13) in 

communication range with mote 15 and mote 14. It simulates the behavior 

where one parent of the mote 14 and mote 15 (I.e., mote 12) is failed, and 

new mote comes in to network below the mote 15 and mote 14. 

23 
 



 

Figure 3.9 - Mote 13 also moves away from base station 

 

As shown in the above figure, if mote 13 moves away from the base 

station. When algorithm runs next time the mote 14 went to the level 4 as 

all the motes in the level 3 are not in communication range now, and mote 

15 became its parent. Mote 13 also went to the level 4 and mote 6 and 

mote 15 became its parent. 
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Figure 3.10 - Mote 13 moves back to its previous position. 

 

As shown in the above figure, mote 13 moves back to initial place. The 

level of mote 13 is changed to 2 as the mote 2 and mote 11 which are at the 

level 1 can now communicate, and after receiving the needchild message 

from mote 2 and mote 11 it changes level to 2 and accepts the mote 2 and 

mote 11 as the parents. Now, mote 14 can communicate to the mote 13 

which is at level 2. So, mote 14 changes the level to next level of the mote 

13, which is level 3. And the level on mote 12 remains the same. 

 

 Figure 3.11 - Mote 12 moves back to its initial position. 

When mote 12 is moved back to the same place where it was previously as 

shown in the figure above. All the motes have the levels, parents and child 
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as it was initially. 

 

3.4.2 Analysis when implemented on testbed 
We tested the algorithm on the testbed which has 8 telosb motes on it. 

DAG formation algorithm is tested with the 16 motes by joining two 

testbeds. Sometime, the expected DAG is form for the first time itself, 

even if it is not formed first time, correct DAG is formed when the 

algorithm is ran for two or three times. 
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Chapter 4 - Algorithm to Maintain Local Clocks 
 

This project developed two algorithms to order the events detecting movement of object moving 

in the sensor field. The first algorithm maintains the local clocks and second algorithm maintains 

the clocks at the base stations only. This chapter discusses the algorithm which maintains the 

local clocks. 

 

4.1 Introduction 

This algorithm gives the path information of the object moving in the sensor field 

with a DAG logical topology set up between the motes in the network. The path 

information is collected at the base station. In this algorithm, whenever any mote 

in the network detects the object moving in its vicinity, it fires an event and 

assigns the timestamp for that event. Initially, all the motes will have the 

timestamp set to 0 and they update it based on the messages they receive. When 

any mote detects the object, it updates the timestamps of the motes in its 

communication range. The next section describes in detail how the algorithm 

orders the event with the following assumptions. 

 

4.2 Assumptions 

• The DAG logical topology is already set up between the motes in the 

network. 

• Messages moves faster than the object.  

 

In real time, the communication range will be around 70m to 100m and detection 

range is around 10 feet. As, motes take only millisecond to send or receive 

messages the second assumption is a valid assumption. 
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4.3 Ordering detected events 

 Algorithm follows the below steps to order the detected events. 

• Initially all motes will have the timestamps set to zero. 

• Path information is maintained at all the motes in the form of tuples (mote_id, 

timestamp). For example, {{1, 0}, {2, 1}, {3, 2}) means that mote 1 detected the 

object with timestamp 0, 2 with timestamp 1, and 3 with timestamp 2. 

• Whenever any mote detects the object in the proximity, it will broadcast the 

detected message with local address, level of the mote detected object and 

timestamp information to all the neighboring nodes which are in communication 

range. It updates the path information using the data it has and increment its local 

timestamp by 1.  

• When any mote receives the detected message from its child, it will check 

whether it already has the path and timestamp information.  If it has then it just 

ignores else it updates the path and timestamp information and passes on to its 

neighbors and updates the path and timestamp information of its parents, siblings 

in communication range and child's.  

• When a detected message is received from the parent, it will check whether it 

already has that path and timestamp information. If it has then it just ignores else 

it updates the (path, timestamp) information. 

• When a mote receives the message, it will update its timestamp to the maximum 

of its timestamp and timestamp in the received message incremented by one. 

 

Using these steps we can order the detected events. Consider a scenario where 

object moves adjacent to the leaf motes as shown in below figure. 
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 Figure 4.1 - When object moves adjacent to leaf motes 

 

When mote 6 detects the object it updates the local path information and 

broadcasts the detected message. Mote 3 which is the parent of mote 6 receives 

the message and updates the local path and timestamp information, and broadcasts 

the detected messages. The detected message forwarded by mote 3 is received by 

mote 7 which is the sibling of mote 6 and mote 1 which is the parent of mote 3, 

and updates the timestamp and path information. Similarly, the message is passed 

on till it reaches the base station.  

 If mote 6 and mote 7 are in communication range then the timestamp of 

mote 7 is updated when the mote 6 broadcasts the detected message (mote 6, 

timestamp 0) and if object come in the detection range of mote 7 then it injects the 

(mote 1, timestamp 1) detected message into the network. If mote 6 and mote 7 

are not in the communication range, then before the object come in the detection 

range of the mote 7, mote 3 which is the common parent receives and broadcasts 

the detected message of mote 6 to mote 7, and mote 7 updates its timestamp to 

one. This happens because the object moves slower than the messages. Similarly, 

before the mote 8 detects the object, it gets the detected message and updates its 

timestamp, and mote 8 injects the detected message with the information (mote 8, 

timestamp 2). Similarly, mote 9 will detect the object and send the message (mote 

9, timestamp 3). All this information is merged at the base station and displayed. 
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4.4 Pseudo Code 
In this section Pseudo Code of this algorithm is explained. 

 

Description of variables used is  

• timestamp is to maintain the local timestamp of mote. 

• Level is to maintain the level number of the mote in the tree.  

• Path it 2D array which has the path information along with the timestamp. 

For example: {{1, 0}, {2, 1}, {3, 2}); means mote 1 detected the object 

with the timestamp 0, 2 with the timestamp 1, and 3 with the timestamp 2. 

• n is to maintain the number of the motes detected the object (that is the 

size of the Path array). 

• detected is the boolean variable which will be set to true when motes 

detects any object. 

• detectMsg, and recvdMsg are the Structures which has the information 

about the timestamp, level, and mote id which sent the message. 

• timer_detect is the timer which fires every second. It detects the object in 

the proximity and sends the detected information to the neighbors. 

 

 

Pseudo Code described in promela style is 

int timestamp = 0; 

int level; 

int Path[][]; 

int n = 0; 

boolean detected = false; 

Timer timer_detect; 

Struct detectMsg 

{ 

int timestamp; 

int level; 

int msg_src; 
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}detectMsg; 

Struct recvdMsg 

{ 

int timestamp; 

int level; 

int msg_src; 

}recvdMsg; 

do 

timer_detect(fires every 500ms) → 

if 

Object in proximity → detect = TRUE; 

Object not in proximity → detect = FALSE; 

fi 

detected →  

(detectMsg → timestamp) = timestamp; 

(detectMsg → level) = level; 

(detectMsg → msg_src) = TOS_LOCAL_ADDR; 

(bcast)!detectMsg; 

UpdatePathInfo(TOS_LOCAL_ADDR, timestamp); 

timestamp++; 

?(recvdMsg) → 

UpdatePathInfo(recvdMsg → msg_src, recvdMsg → timestamp); 

UpdateTimeStamp(recvdMsg → timestamp); 

if 

 ((recvdMsg → level) > level) → 

(recvdMsg → level) = level; 

(bcast)!recvdMsg; 

((recvdMsg → level) <= level) → Skip; 

fi 

od 

UpdateTimeStamp(int ts) 
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{ 

// Comments: If ts is the received timestamp in the message, then timestamp of 

present mote will be ts + 1 when received timestamp is greater or equal to its local 

timestamp. And, ignore if timestamp received in the message is lesser than ts. 

if 

ts >= timestamp → timestamp = ts + 1; 

ts < timestamp → skip; 

fi 

} 

UpdatePathInfo(int mote_addr, int timestamp) 

{ 

// Comments: This accepts mote_addr and timestamp as parameters and merges 

with the path information it already has and stores in the path[][] local variable. 

} 
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Chapter 5 - Algorithm to Maintain Clocks at the Base 
Station 
 

Similar to the algorithm discussed in chapter 4, one more algorithm was developed, where the 

sensor field is divided into sensor areas, each of which has its own DAG topology set up, and 

timestamps are maintained and updated at base stations only. This chapter describes the 

algorithm which maintains clocks at base station in detail. 

 

5.1 Introduction 
This algorithm give the path information of the object moving in the sensor fields 

with the DAG logical topology set up between the motes in all the sensor areas. In 

this algorithm whenever any mote in the network detects the object moving in its 

vicinity, it fires an event. The path information is generated at the base station 

when it gets the detected message from the motes in the DAG. The next sections 

describe in detail how the algorithm orders the event with the following 

assumptions. 

 

5.2 Assumptions 
• Sensor field is divided into sensor areas. Each sensor area has logical topology 

of DAG set up with root as the base station. 

• There is a TCP connection between the base stations of each Sensor Area. 

• The ring topology is setup between the base stations of Sensor Areas. 

• Base station knows the edge information of all the motes in its Sensor Area. 

• Messages move faster than the object. 

 

5.3 Ordering detected events 
In this algorithm, when object moves in the proximity of a mote, it sends the 

detected event to a randomly chosen parent and the parent which received the 

messages will pass on to its parent. Similarly, messages are passed on until it 
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reaches the base station and base station assigns the timestamp on the first come 

first serve basis. Based on the information base station has, it updates the 

timestamp information of the neighboring Sensor Area using the TCP connections 

already established. The figures below describe the topology information and the 

how the sensor areas are formed in the network. 

 

Figure 5.1- Logical topology used in the algorithm. 

 

The algorithm follows the step given below to order the events. 

• Timestamps are maintained at the base stations only. 

• Path information is maintained at the base stations only. 

• Whenever any mote detects any object in its proximity, it will send the 

detected message with its address to the randomly chosen parent. Upon 

receiving the detected message from the child it will forward to its parent. 

• When base station receives the detected message, it updates the path and 

timestamp information, and based on the edge information of mote which 
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sent the detected message, it will send the information to the next base 

station. For example, if base station in the SA1 got the message from the 

LEN (Left Edge Node), then it will update the timestamp information of 

the SA2 base station. 

• Updating timestamp logic at Base station: Ignore if base station already 

received the detect message from the mote which sent the message, or else 

increment the timestamp by 1. 

• Updating the Path Information at Base station: Ignore if base station 

already received the detect message from the mote which sent the 

message, or else update the Path information by adding the received 

message source to the Path information it has. 

 

Consider the example used to describe the algorithm which maintains local clocks. 

 

 Figure 5.2 - When object moves adjacent to leaf motes. 

 

When the object moves the adjacent to the leaf motes as shown in the figure 

above, mote 6 detects the object first and detected message is sent to mote 3 

which passes on to its parent. The same procedure is followed until messages 

reach the base station. When the base station receives the detected message from 

mote 6, it updates the path information by adding the tuple (mote 6, timestamp 0) 

and increases its timestamp to 1. When mote 7 detects the object, it sends a detect 

message to mote 3 or mote 4 which passes to their parents. When message reaches 

the base station, the path information and timestamp is updated. Similarly, mote 8 
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and mote 9 detect messages also reach at the base station. Unlike the algorithm 

discussed in Chapter 4, here neighboring motes timestamp is not updated when 

any mote detects the object. So, if the object moves fast in the network then mote 

7 message can reach the base station earlier than the mote 6 message and base 

station would give the path information as (mote 7, timestamp 0), and (mote 6, 

timestamp 1). As object moves slower than the messages in the network, there is a 

very rare possibility of such scenarios. 

 

5.4 Pseudo Code 
In this section Pseudo Code of this algorithm is explained. 

 

  Description of variables used is  

• timestamp variable is to maintain the local timestamp of mote (this is needed 

at the base station only). 

• level variable is to maintain the level number of the mote in the tree. 

• Path is an array which has the path information along with the timestamp (this 

is needed at the base station only). For example:      {{1, 0}, {2, 1}, {3, 2}); 

means mote 1 detected the object with the timestamp 0, 2 with the timestamp 

1, and 3 with the timestamp 2. 

• n is to maintain the number of motes detected the object (that is, the size of the 

Path array). 

• detected is the boolean variable which will be set to true when motes detects 

any object. 

• detectMsg, and recvdMsg are the Structures which has the information about 

the level, and mote id which sent the message. 

• timer_detect is the timer which fires every second. It detects the object in the 

proximity and sends the detected information to the neighbors. 

 

Pseudo Code described in Promela style is 

int timestamp = 0; 
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int level; 

int Path[][]; 

int n = 0; 

boolean detected = false; 

Timer timer_detect; 

Struct detectMsg 

{ 

int level; 

int msg_src; 

}detectMsg; 

Struct recvdMsg 

{ 

int level; 

int msg_src; 

}recvdMsg; 

do 

timer_detect(fires every second) → 

if 

object in proximity → detected = TRUE; 

object not in proximity → detected = FALSE; 

fi 

detected →  

(detectMsg → level) = level; (detectMsg → msg_src) = 

TOS_LOCAL_ADDR; (bcast)!detectMsg; 

if 

(TOS_LOCAL_ADDRESS in BaseStation) → 

UpdateTimeStamp(TOS_LOCAL_ADDRESS, 

timestamp); SendToAppropriateBaseStation( 

TOS_LOCAL_ADDRESS); 

TOS_LOCAL_ADDRESS not in BaseStation → Skip; 

fi 
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?(recvdMsg) → 

if 

((recvdMsg → level) > level) → 

(recvdMsg → level) = level; 

(bcast)!recvdMsg; 

((recvdMsg → level) <= level) → skip; 

fi 

if 

TOS_LOCAL_ADDRESS in BaseStation → 

UpdateTimeStamp(recvdMsg → msg_src 

timestamp);SendToAppropriateBaseStation( 

recvdMsg → msg_src); 

TOS_LOCAL_ADDRESS not in BaseStation → Skip; 

fi 

od 

UpdateTimeStamp(int msg_src, int ts) 

{ 

if 

msg_src not in path[][] → path.add(msg_src, ts); timestamp++; 

msg_src in path[][] → Skip; 

fi 

} 

SendToAppropriateBaseStation(int msg_src) 

{ 

if 

msg_src in LEN → Establish TCP connection and send timestamps 

to left Basestation; 

msg_src in REN → Establish TCP connection and send timestamps 

to right Basestation; 

fi 

} 
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Chapter 6 - Performance Analysis of Object Tracking 
Algorithms 

 

Object tracking algorithms which maintains local clocks and other maintaining clocks at the base 

station is tested in various scenarios. This chapter describes the interesting scenarios observed 

while testing the algorithms. 

6.1   Algorithm to maintain local clocks 

Algorithm maintaining the local clocks in explained in the chapter 4. In simulation 

it is tested with various topologies and moving object in different directions. 

Algorithm it tested on 2 testbed with 8 telosb motes on each. 

 

6.1.1 In simulator 

Different topologies are setup and algorithm is tested by moving the object 

in various directions. Number of messages sent in the network is more if 

object moves adjacent to leaf motes than compared to the object moving 

adjacent to the motes which are closer to the base station. For example, in 

a network of with 16 motes when object moves adjacent to leaf motes 

number of messages sent are 23, and when object moves closer to the base 

station, the number of messages sent is only 6. The number of messages 

taken is approximately same if object moved towards base station or away 

from the base station. For example, number of messages sent in a network 

of 16 motes when object moves towards and away from the base station 

are 10. There are some more interesting cases observed when multiple 

objects are moved in the network. That is, if detect events are fired at 

different places in network then there will are some concurrent detection 

been reported at the base station. 

 

If two objects are moving in the network at the same time which are far 
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enough that the detected message can be sent to the motes which have 

detected the other object, then based on which mote has detected object we 

can order the detected events although there are chances of getting some 

concurrent events. But, if the objects are far as shown in the right figure 

below then there can be more concurrent events happening in the network. 

 

Figure 6.1 - When two objects are moving in the sensor field at same time. 

 

Since, in the DAG each child can have any number of parents, and for this 

application we assume that there are at least 2 parents for each mote to 

order the event apart from the motes on edges. If detected message is sent 

from the child to 2 parent, and those 2 parent in turn sends to 4 motes 

which are parents of parents (Even if there is one common parent, there 

can be 3 parents of parents) forwarding the message to base station. So, 

even if there is any message loss due to collision, some messages will 

carry information to the base station. But if the detected message itself is 

lost due to interference, then there is no way to regenerate the information. 

We could set up the reliability by waiting for acknowledgment from at 

least one parent, but it increase the messages sent in network which can 

effect detections of other events as it results in more collisions. 

 

If there is large network, then there will be more number of messages sent 
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while detecting the motion of the object. Since, if detected message is sent 

from the child to 2 parents, those 2 parents in turn sends to 3 or 4 motes 

which are parents of parents forwarding the message to base station. If 

there is a large network we can expect more levels, parents, and parents of 

parents which results in sending more messages in network. This scenario 

is expected if there is a large network. For example, in network with 16 

mote when object is moved adjacent to leaf nodes then 23 messages are 

sent in network, and in network is with 24 motes, 36 messages are sent in 

network. 

 

Figure 6.2 - When object moves adjacent to leaf motes in a network with 
24 motes. 

 

 

Figure 6.3 - When object moves adjacent to leaf motes in a network with 
24 motes. 

   

If object move horizontally adjacent to the leaf motes then the messages 

sent in the network are more compared to the object moving adjacent to 

the motes closer to the base station. And, If object move vertically towards 

the base station, it takes less number of messages been sent in the network 
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than the number of messages been sent when the object moves adjacent to 

the leaf motes. 

 

Stress testing of Application: 

 

With the network of 16 or below mote, by getting adc value at all the 

motes every second and moving object 2 units every second where 

distance between the objects is minimum 6 units, we can track the 

movement of the object with this algorithm correctly. But if we increase 

the network to 24 motes, then there are more chances of message loss as 

there will be more object detection events happening and passing in the 

network. Some times tython is not able to set the adc values of all the 

motes that much fast. Message loss is relatively more than network with 16 

or less motes. 

 

6.1.2 On testbed 

On testbed, the algorithm is tested with 8 and 16 motes which have DAG 

topology setup already and moving the object in different directions. As 

mentioned in chapter 2, testing on motes is done by reducing the 

communication range and considering only strong signals using the RSSI 

values. Base station is connected to computer, and it sends the message to 

computer whenever it updates the timestamp and path information. A Java 

application is written to read the data sent from the base station and display 

on computer. 

 

Results observed when tested on testbed are similar to the simulation 

results. Number of messages sent in the network is more if object moves 

the adjacent to leaf motes compared to object moving closer to base 

station. The number of messages sent in network when object moved 

adjacent to leaf motes is 29 when tested on one testbed and 48 when tested 
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on two tesbeds. And, when object moved closer to the base station the 

number of messages sent is 4 when tested on one testbed and 20 when 

tested on two tesbeds. The results also show that the number of messages 

sent will increase with the network size. Similar the results are taken when 

object moves towards base station and away from base station. The 

number of messages sent in the network will be approximately same when 

object moves towards base station or away from base station. The number 

of messages sent in network when object moved towards base station is 22 

with one testbed and 23 when tested on two testbeds.  

 

6.2   Algorithm to Maintain Clocks at the Base Station 

Algorithm to maintain the clocks at base station in explained in the chapter 5. 

Similar to the algorithm maintaining local clocks this algorithm is also tested in 

simulation and on testbed. 

 

6.2.1 In Simulator 

Similar to the first algorithm, this algorithm is also tested with different 

topologies and moving the object in various directions. Number of 

messages sent in the network is more if object moves adjacent to leaf 

motes than compared to the object moving adjacent to the motes which are 

closer to the base station. For example, in a network of with sixteen motes 

when object moves adjacent to leaf motes number of messages sent are 30, 

and if object moves closer to the base station only 10 messages are sent. 

The number of messages taken is same if object moved towards base 

station or away from the base station. There are some more interesting 

cases observed when there are multiple objects moving in the network.  

 

If two objects are moving in the network at the same time and speed which 

are far enough that the detected information can be sent to the mote which 
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has detected the other object, then events are ordered based on which mote 

detected messages reached the base station. There will be no concurrent 

events reported by this algorithm as the events are ordered at the base 

station on first come first serve basis. If two objects are moving, one 

adjacent to the level 1 motes and other adjacent to the level 4 motes then 

the ordering done at base station may not be the expected result. Since, 

before the event which is fired at the level 4 reaches the base station 

another event may fire at level 1 motes and reach the base station as it 

needs only one hop. So, level 1 event is ordered first and the level 4 will be 

second. But the event at the level 4 is fired first than the event fired at the 

level 1. 

 

In this algorithm, network size does not affect the number of messages sent 

in the network. Since, the detected message will be sent to any one 

randomly chosen parent which in turn passes on to any randomly chosen 

parent.  

 

6.2.2 On testbed 

This algorithm is tested on the 3 testbeds with 8 motes on each testbed 

connected in the ring topology. Whenever any detected message reaches 

the base station it needs to update the timestamp information of the 

neighboring base station based on edge information it has. C based 

application is written which sets up the ring topology between the base 

stations and receives the messages sent from base stations by establishing 

the TCP connection and passes it on to the neighboring base station by 

reading the messages. Each testbed is has unique group id in which they 

communicate. Motes in one testbed will not communicate with the motes 

in other testbed as they have different group ids. 

 

The results on the testbed might not be exactly same as what we got in 
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simulation since when object moves slowly the mote can fire the detected 

event more than once. This scenario is removed while testing in simulation 

to get the exact number of messages sent in network when object is 

detected only once. The results observed when application is tested on 

testbed are similar to the results in simulation. When object moves 

adjacent to leaf motes the number of messages sent in the network is more 

compared to object moving adjacent to motes which are closer to the base 

station. With one testbed the number of messages sent when object moves 

adjacent to the leaf motes is 11 and when object moves adjacent to motes 

which are closer, that is motes at level 1 is 5. The number of messages sent 

in network when object moves towards base station and away from the 

base station will be approximately same. On testbed, the number of 

messages sent when object moves away from the base station is 11 and the 

number of messages sent in network when object moves towards base 

station is 13 which is approximately same.  This algorithm is also tested 

with 3 testbed connected in the ring. The number of messages sent in 

network when the object moves adjacent to the leaf nodes is 31. And the 

number of messages sent in network when an object move closer to the 

base station is 14.  The number of messages sent in network when object 

moves towards or away from the base station is approximately same.  

 

6.3   Compare the Object Tracking Algorithm 

This section discusses the different scenarios, and describes which algorithm is 

good for which situation. 

• Clocks: 

In first algorithm clocks and path information are maintained at all the 

motes. Whenever any detected message is received the message is 

processed. In second algorithm there is no overhead of maintaining the 

clocks at the all the motes. The timestamps are assigned at base stations 

only. 
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• Reporting the detected events: 

In Algorithm which maintains the local clocks, the detected event needs to 

be reported to all the neighbors. But in an algorithm which maintains 

clocks at base station needs to report the detected event only to one parent. 

• Network Size: 

In algorithm maintaining the local clocks, the number of messages sent in 

the network increase as the network size increases. In algorithm 

maintaining the clocks at base station it reports the detected event only to 

one parent. So, network size does not affect much in ordering the events. 

For example, in a network with 16 motes, the number of messages sent 

when object moves adjacent to the leaf motes is 23. With the algorithm to 

maintaining clocks at the base station it took 16 motes. 

• Interference: 

In algorithm to maintain local clocks, the detected event is sent to all the 

parents in the communication range and all the parents which received 

detected message will be sent their parents. And, in algorithm maintaining 

the clocks at base station detected event will be sent to only one parent and 

the motes in different sensor area do not interfere as they have different 

group id's. Hence interference will be more in the algorithm which has 

local clocks. 

 

6.4 Wiring of Components used in Object Tracking Application 

Below diagram describes the wiring of the components used in Object Tracking 
Application. This Component modeling is done in Cadena. 
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Figure 6.4 – Wiring of components used in Object Tracking Application. 
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