STUDIES OF HUMAN ARMET AND OF PEA APHID TRANSCRIPTS OF SALIVA PROTEINS AND THE UNFOLDED PROTEIN RESPONSE

by

JAMES ROBERT BALTHAZOR

B.A., Fort Hays State University. 2011 B.S., Fort Hays State University. 2011

AN ABSTRACT OF A DISSERTATION

submitted in partial fulfillment of the requirements for the degree

DOCTOR OF PHILOSOPHY

Biochemistry and Molecular Biophysics Graduate Group College of Arts and Sciences

> KANSAS STATE UNIVERSITY Manhattan, Kansas

Abstract

Armet is a bifunctional protein that is apparently universally distributed among multicellular animal species, vertebrate and invertebrate alike. A member of the Unfolded Protein Response, (UPR) Armet promotes survival in cells that are under endoplasmic-reticulum (ER) stress. I have carried out biophysical studies on human Armet looking for compounds that bind to Armet and hence could reduce its anti-apoptotic function, thus potentially joining the growing class of pro-apoptotic drugs. Performed primarily with ¹H-¹⁵N HSQC NMR, ligand studies showed that approximately 60 of the 158 residues are potentially involved with binding. The 60 residues are distributed throughout both domains and the linker suggesting multi-domain interaction with the ligand. Circular dichroism studies showed heat denaturation in a two-step unfolding process with independent unfolding of both domains of Armet with Tm values near 68°C and 83°C with the C-terminal domain unfolding first, as verified by ¹H-¹⁵N HSQC NMR measurements.

I also provide the first identification of UPR transcripts in pea aphids, *Acyrthosiphon pisum*, the genetic model among aphids. I measured transcript abundance with hope of finding future transcriptional targets for pest mitigation. I identified 74 putative pea aphid UPR components, and all but three of the components have higher transcript levels in aphids feeding on plants than those that fed on diets. This activated UPR state is attributed to the need for saliva proteins for plant feeding.

Because aphids are agriculturally significant pests, and saliva is pivotal to their feeding on host plants, genes that encode saliva proteins may be targets for pest mitigation. Here I have sought the aphid's saliva proteome by combining results obtained in several laboratories by proteomic and transcriptomic approaches on several aphid species. With these data I constructed a tentative saliva proteome for the pea aphid by compiling, collating, and annotating the data from several laboratories. I used RNA-seq to verify the transcripts in pea aphid salivary glands, thus expanding the proposed saliva proteome from approximately 50 components to around 130 components, I found that transcripts of saliva proteins are upregulated during plant feeding compared to diet feeding.

STUDIES OF HUMAN ARMET AND OF PEA APHID TRANSCRIPTS OF SALIVA PROTEINS AND THE UNFOLDED PROTEIN RESPONSE

by

JAMES ROBERT BALTHAZOR

B.A., Fort Hays State University. 2011 B.S., Fort Hays State University. 2011

A DISSERTATION

submitted in partial fulfillment of the requirements for the degree

DOCTOR OF PHILOSOPHY

Biochemistry and Molecular Biophysics Graduate Group College of Arts and Sciences

KANSAS STATE UNIVERSITY Manhattan, Kansas

2015

Approved by:

Major Professor Gerald R. Reeck

Copyright

JAMES ROBERT BALTHAZOR

© 2015

Abstract

Armet is a bifunctional protein that is apparently universally distributed among multicellular animal species, vertebrate and invertebrate alike. A member of the Unfolded Protein Response, (UPR) Armet promotes survival in cells that are under endoplasmic-reticulum (ER) stress. I have carried out biophysical studies on human Armet looking for compounds that bind to Armet and hence could reduce its anti-apoptotic function, thus potentially joining the growing class of pro-apoptotic drugs. Performed primarily with ¹H-¹⁵N HSQC NMR, ligand studies showed that approximately 60 of the 158 residues are potentially involved with binding. The 60 residues are distributed throughout both domains and the linker suggesting multi-domain interaction with the ligand. Circular dichroism studies showed heat denaturation in a two-step unfolding process with independent unfolding of both domains of Armet with Tm values near 68°C and 83°C with the C-terminal domain unfolding first, as verified by ¹H-¹⁵N HSQC NMR measurements.

I also provide the first identification of UPR transcripts in pea aphids, Acyrthosiphon pisum, the genetic model among aphids. I measured transcript abundance with hope of finding future transcriptional targets for pest mitigation. I identified 74 putative pea aphid UPR components, and all but three of the components have higher transcript levels in aphids feeding on plants than those that fed on diets. This activated UPR state is attributed to the need for saliva proteins for plant feeding.

Because aphids are agriculturally significant pests, and saliva is pivotal to their feeding on host plants, genes that encode saliva proteins may be targets for pest mitigation. Here I have sought the aphid's saliva proteome by combining results obtained in several laboratories by proteomic and transcriptomic approaches on several aphid species. With these data I constructed a tentative saliva proteome for the pea aphid by compiling, collating, and annotating the data from several laboratories. I used RNA-seq to verify the transcripts in pea aphid salivary glands, thus expanding the proposed saliva proteome from approximately 50 components to around 130 components, I found that transcripts of saliva proteins are upregulated during plant feeding compared to diet feeding.

Table of Contents

List of Figures x
List of Tablesxii
List of Abbreviationsxiii
Acknowledgementsxiv
Dedication xv
Prefacexvi
Chapter 1 - Studies of Human Armet 1
Literature Review
Nomenclature 1
Structure
Armet Tissue Expression
Intracellular Functions of Armet
Extracellular Functions of Armet (MANF)
Role of RTDL in Retention or Secretion
High Throughput Screening
1H-15N HSQC NMR Ligand Binding5
Therapies Targeted at Other UPR Components: GRP785
My Research Direction
Materials and Methods
Standard Recombinant Human Armet Expression and Purification
Recombinant Human Armet Expression and Purification for NMR7
Identification and Use of Ligands7
Nuclear Magnetic Resonance (NMR) Spectroscopy
Circular Dichroism Spectroscopy9
Results9
Ligand Binding Studies
Circular Dichroism Spectroscopy Studies 11
Discussion

1H-15N HSQC NMR Buffer Optimization	12
Ligand Binding Studies and Proposed Binding Site	12
Changes in Positions of the N- and C-terminal Domains in Armet	13
The Role of Armet's Linker	14
Lower Thermal Stability of Armet's C-terminal Domain & Roles of Disulfide Bonds	14
Relevance for Proposed Functions of N- and C-terminal Domains of Armet	15
Variation in Amino Acid Sequence in Mammalian Armet	15
Possible Drug Development Strategies	16
Chapter 2 - Transcripts of the Unfolded Protein Response in the Pea Aphid	47
Literature Review:	47
Aphids	47
Pea aphid: Acyrthosiphon pisum	48
Agricultural Threat and Current Pest Management Strategy	49
The Unfolded Protein Response (UPR)	49
Unfolded Protein Response Subsystems	51
Transducers of the UPR	51
Protein Folding & Chaperones of the UPR	52
Pro-apoptotic and Anti-apoptotic Signal Induction from the UPR	54
ERAD Mediated by Ubiquitination	54
Transcription & Translation Factors	55
Insect UPR Components, Including Armet	56
UPR in C. elegans	57
Cholesterol Regulation	57
Materials and Methods:	58
Search for Pea Aphid Putative Orthologs of Human UPR Proteins	58
Dissections	58
Diet Feeding	58
RNA Isolation for RNA-seq	59
RNA Isolation from Heads for RNA-seq	60
Thermal Cycler Programs for cDNA Library Preparation	60
Purification and Fragmentation of mRNA	61

Synthesis of First Strand cDNA	61
Synthesis of Second Strand cDNA	62
Purification of Double Stranded cDNA	62
End Repair and Reaction Clean-up	62
Adenylation of 3' Ends, Adapter Ligation, and Reaction Clean-up	63
DNA Fragment Enrichment	64
PCR Product Clean-Up	64
RNA-seq Library Validation and Sequencing	64
RNA-seq Read Mapping	65
RPKM Calculations	65
Results:	65
Discussion:	67
UPR Activation and "Triggering"	67
Statistical Comparison of UPR Components versus the Entire Gene Set	67
The Presence and Lack of ER Retention Signals	68
Analysis of RPKM Ratios	68
Upregulation of the UPR in Plant Feeding	69
A New Method for Measuring UPR Upregulation	69
Comparison of UPR Components versus C. elegans	70
Silencing UPR Components and Pesticide Free Pest Mitigation	70
Chapter 3 - Saliva Protein Transcripts in the Pea Aphid	94
Literature Review:	94
Proteomics	94
Carolan et al. 2009 - Acyrthosiphon pisum (Pea Aphid)	94
Carolan et al. 2011 - Acyrthosiphon pisum (Pea Aphid)	94
Harmel et al. 2008 - Myzus persicae (Green Peach Aphid)	95
Cooper et al. 2010 - Diuraphis noxia (Russian Wheat Aphid)	95
Rao et al. 2013 - Sitobion avenae & Metopolophium dirhodum (Grain Aphids)	96
Transcriptomics	96
Reeck et al. in Carolan et al. 2011 - Acyrthosiphon pisum (Pea Aphid)	96
Ramsey et al. 2007 - Myzus persicae (Green Peach Aphid)	97

Bos et al. 2010 - Myzus persicae (Green Peach Aphid)
Atamian et al. 2012 - Macrosiphum euphorbiae (Potato Aphid)
Materials and Methods:
Dissections
RNA Isolation and Sequencing of Heads on Plant & Diet-fed States:
Results:
Discussion:
Multifaceted Approach to Identify Salivary gland Secretome Proteins 101
Analysis of Saliva Proteins 101
Armet a Saliva Protein
Statistical Comparison of Salivary Secretome Components versus the Entire Gene Set 103
Diet-fed Upregulation of Some Saliva Proteins
Protein Disulfide Isomerases 104
Expectations of Results and Generation of the Largest Saliva Proteome
References:
Chapter 1: 117
Chapter 2: 120
Chapter 3: 125
Appendix A - CD Reference Spectrum plus Ligand & Difference NMR Spectra of Armet with
Select Ligands
Appendix B - Human UPR List

List of Figures

Figure 1.1 Lowest energy NMR structure of human Armet
Figure 1.2 Determination of binding constant for demeclocycline and Armet
Figure 1.3 Structures of tetracycline and derivatives utilized in ¹ H- ¹⁵ N HSQC experiments 20
Figure 1.4 Structures of two non-tetracycline compounds utilized in ¹ H- ¹⁵ N HSQC experiments
Figure 1.5 Reference ¹ H- ¹⁵ N HSQC spectrum of Armet
Figure 1.6 Overlay of ¹ H- ¹⁵ N HSQC spectra of Armet with and without 5 mM tetracycline 24
Figure 1.7 ¹ H- ¹⁵ N HSQC difference spectrum of Armet with and without 5 mM tetracycline 25
Figure 1.8 Residues with altered ¹ H- ¹⁵ N HSQC signals in the presence of tetracycline and
tetracycline derivatives
Figure 1.9 Residues with altered ¹ H- ¹⁵ N HSQC signals in the presence of mitoxanthrone and
cefoperazone
Figure 1.10 Residues with altered ¹ H- ¹⁵ N HSQC signals in the presence of tetracycline and non-
tetracycline ligands
Figure 1.11 Circular dichroism spectrum of human Armet at 25°C
Figure 1.12 Thermal denaturation circular dichroism spectra of human Armet from 50 °C to 95°C
Figure 1.13 Thermal denaturation of human Armet monitored by circular dichroism
Figure 1.14 Percent helix versus temperature in thermal denaturation of Armet
Figure 1.15 Thermal denaturation circular dichroism spectra of human Armet from 50°C to 95°C
at varying pH
Figure 1.16 Thermal denaturation of Armet in guanidinium hydrochloride
Figure 1.17 Thermal denaturation of Armet in guanidinium hydrochloride with altered pH 37
Figure 1.18 Thermal denaturation of Armet in the presence of TCEP
Figure 1.19 Possible mode of binding of tetracycline to Armet
Figure 1.20 Superimposition of crystal and solution NMR structures of human Armet with
clipped linker
Figure 1.21 Superimposition of crystal and solution NMR structure of human Armet
Figure 1.22 Sequence alignment of Armet from vertebrates and <i>C. elegans</i>

Figure 1.23 Armet C-terminal solvent accessible disulfide
Figure 1.24 Consensus tree
Figure 1.25 Conserved and non-conserved residues mapped onto the structure of human Armet
Figure 1.26 Conserved/non-conserved residues with potential ligand binding residues
Figure 2.1 Cross section of pea aphid feeding on phloem element
Figure 2.2 Schematic of the UPR pathway activated by the accumulation of unfolded or
incorrectly folded proteins, by sequestering BiP74
Figure 2.3 Bioanalyzer electropherogram of plant-fed aphid RNA
Figure 2.4 Bioanalyzer electropherogram of diet-fed aphid RNA
Figure 2.5 Human and pea aphid protein alignments of the proteins Armet and GRP78
Figure 2.6 Bioanalyzer electropherogram of plant-fed aphid cDNA library
Figure 2.7 Bioanalyzer electropherogram of diet-fed aphid cDNA library
Figure 2.8 RPKM fold change ratio, plant versus diet feeding in the entire gene set and UPR
components
Figure 2.9 Human and pea aphid nucleotide alignments of the proteins Armet and GRP7891
Figure 3.1 RPKM fold change ratio, plant versus diet feeding in the entire gene set and predicted
transcripts of saliva

List of Tables

Table 1 Residues not identified in the reference ¹ H- ¹⁵ N HSQC spectrum
Table 2 NMR Spectral changes in tetracycline derivatives 26
Table 3 NMR Signal changes with all ligands by residue and domain
Table 4 List of 91 human UPR components with descriptions75
Table 5 Artificial diet (Akey and Beck 1971, 1972)
Table 6 Verification of reads with salivary gland dissections 82
Table 7 Comparative analysis of 74 UPR in diet and plant-fed libraries by RNA-seq
Table 8 List of salivary proteins identified by proteomics 106
Table 9 List of salivary proteins identified by transcriptomics 107
Table 10 List of salivary proteins identified by proteomics and transcriptomics
Table 11 Verification of transcripts by salivary gland dissection
Table 12 Comparative analysis of 121 saliva proteins in diet and plant-fed libraries by RNA-seq
Table 13 Saliva proteome components secretion and anchor probability with ER retention signals

List of Abbreviations

- ATF6 Activating Transcription Factor 6
- BiP Binding Immunoglobulin Protein
- CD Circular Dichroism
- CDNF Cerebral Dopamine Neurotrophic Factor
- CDNN Secondary Structure Deconvolution Software
- c-UPR Constitutive Unfolded Protein response
- DEPC Diethylpyrocarbonate
- DTT Dithiothreitol
- ER Endoplasmic Reticulum
- ERAD Endoplasmic Reticulum Associated Degradation
- ERSE I Endoplasmic Reticulum Stress Response Element I
- ERSE II Endoplasmic Reticulum Stress Response Element II
- GMO Genetically Modified Organism
- GRP78 Glucose Regulating Protein 78
- HSQC Heteronuclear Single Quantum Coherence spectroscopy
- IPTG Isopropyl β-D-1-Thiogalactopyranoside
- IRE1 Inositol Requiring Enzyme 1
- i-UPR Inducible Unfolded Protein Response
- KSU Kansas State University
- MANF Mesencephalic Astrocyte Derived Neurotrophic Factor
- MS Mass Spectroscopy
- NMR Nuclear Magnetic Resonance
- NOE Nuclear Overhauser Effect
- PDB Protein Data Bank
- PERK Protein Endoplasmic Reticulum Kinase
- RNA-seq Ribonucleic Acid Sequencing
- RPKM Reads Per Kilobase Per Million
- TCEP Tris-2-Carboxyethyl Phosphine
- UPR Unfolded Protein Response
- XBP1 Xbox Binding Protein 1

Acknowledgements

I would like to express my gratitude to my advisor Jerry Reeck, for his support, patience, and encouragement throughout my graduate studies. It is not often that one finds an advisor and colleague that always finds the time for listening to the little problems and roadblocks that unavoidably appear in the course of performing research. His humor was needed and appreciated and his advice was essential to the completion of this dissertation. Through Jerry, and my academic committee I was taught innumerable lessons and insights on the workings of academic research. To my lab mates, Matt Aksamit, Jarrod Bechard, and Dr. Pinakin Sukthankar, I will remember and cherish the great times we had forever. I would also like to thank Dr. Raman Chandrasekar for the countless hours he spent dissecting insects for this project, this work was monumental in itself.

Last, but not certainly not least, I would like to thank my parents, my wife's parents, and especially my wife Heather for her understanding and love during the past few years. We are each other's greatest advocates and without her and my children being patient with daddy's work schedule I could not have completed this monumental achievement. Their support, encouragement, and love, was in the end what made this dissertation possible.

Dedication

This work is dedicated to my wife Heather and our children, without their love and support throughout the years I am sure this task would have been insurmountable.

For my Parker Joelle; Daddy loves you and will miss you all the days of my life.

Preface

This dissertation represents a culmination of work and learning that has taken place over a period of four years (2011 - 2015). The Reeck lab group consisted of a small group of people, driven in different directions, but with a collective goal of learning. The lab was a good place to develop ideas, but its members were paramount in forming friendships that will last throughout my life.

The first chapter describes the biophysical interaction of the human protein Armet and a multitude of ligands analyzed by nuclear magnetic resonance and circular dichroism spectroscopic techniques.

Chapter two presents a look into proteins of the unfolded protein response (UPR) within the pea aphid. This chapter aims to identify putative orthologs of human UPR members in the pea aphid and evaluate their expression levels by RNA-seq analysis whereas it is thought that the UPR is primarily upregulated in the salivary gland due to feeding.

As a continuation to chapter two but with a more direct focus, chapter three focuses on the proteins that are found within the salivary gland itself and more specifically the proteins of pea aphid saliva. RNA-seq validation of putative orthologs from many aphid species aid in the determination of a proposed saliva protein proteome in the pea aphid, the model insect for aphids and validate this method of bio-statistical research.

Chapter 1 - Studies of Human Armet

Literature Review

Nomenclature

The protein under investigation in this chapter was originally called ARMET, which stood for <u>arginine rich mutated in early stage tumors</u> (Shridhar et al., 1996). But I will use the name Armet, which is intended to be simply a tag. The term ARMET was coined due to polymorphisms found in the N-terminal arginine-rich region and a sequencing error that changed the ATG start codon to AGG. At the time of discovery, this polymorphism had been reported in a variety of solid tumors; however, these polymorphisms were later shown to exist in normal tissues and therefore being no longer tumor-related, rendering the term ARMET incorrect (Evron et al., 1997).

Armet is also known as MANF or <u>m</u>esencephalic <u>a</u>strocyte derived <u>n</u>eurotrophic <u>f</u>actor for its secretory neurotrophic effects and extracellular function (Lindholm et al., 2008). For its intracellular function, the term Armet has been more widely used, such as in the unfolded protein response (UPR) to endoplasmic reticulum (ER) stress.

Structure

The crystal and Nuclear Magnetic Resonance (NMR) solution structures of human Armet and the mouse Armet NMR solution structure have been solved and show a helix-rich protein composed of two domains as shown in Figure 1.1. I will refer to the domains as the N-terminal (residues 1-94) and C-terminal domains (residues 103-158) joined by a linker (residues 95-102) as defined by the NMR and crystallography structure determinations (Hellman et al., 2010, Hoseki et al., 2010). For the duration of this dissertation, structures of Armet will maintain an orientation of the N-terminal domain above the C-terminal domain, as shown in Figure 1.1.

The Nuclear Overhauser Effect (NOE) is a common phenomenon observed by NMR where the transfer of nuclear spin polarization from one nuclear spin population to another occurs via cross-relaxation (Anet et al., 1965). Thus, atoms that are in close proximity to each other (5 angstroms) can give a NOE signal, whereas spin coupling is observed only when the atoms are connected by 2–3 chemical bonds. This effect essentially shows atoms in respect to one another which makes the determination of the relative orientations of atoms in a molecule

possible, producing a three-dimensional structure. No Nuclear Overhauser Effect (NOE) signal was observed between residues in the two domains, showing relatively high fluctuation in the orientations of the two domains (Hellman et al., 2010). This lack of NOE-mediated inter-domain restraints, including missing long and medium range constraints, led the authors to conclude that "the domains are not tightly packed to each other, but instead tumble as independent structural modules separated by the flexible linker" (Hellman et al., 2010).

The N-terminal domain contains five α-helices and one 3-10 helix, and the C-terminal domain contains three α -helices. Within the C-terminal domain, the first helix (α 6) is loosely formed and the two consecutive helices (α 7 and α 8) run in parallel in a helix-loop-helix arrangement. Two of eight cysteine residues found in Armet are located in the C-terminal domain (Cys127 and Cys130) and form a CXXC motif residing in the loop which connects helices α 7 & α 8. The other cysteine residues are found in the N-terminal domain and form these disulfides: Cys6-Cys93, Cys9-Cys82, and Cys40-Cys51 (Hellman et al., 2010). Alternate disulfide arrangements have been reported however in pea aphid and mouse Armet. In a mass spectroscopy (MS) based approach on mouse Armet, two differences from the pairings listed above, namely the existence of Cys6-Cys9 and Cys82-Cys93 were reported (Mizobuchi et al., 2007). In the pea aphid, the same two pairs were also found using a MS approach (Wang et al., 2015). Wang et al. report that "Both approaches, the elucidation of Armet's 3-dimensional structure and MS of Armet peptides are valid; neither supplants or invalidates the other as regards the disulfide bonding pattern" (Wang et al., 2015). They present the following hypothesis; "that Armet, whether mammalian or insect in origin, has alternative disulfide arrangements in a portion of the N-terminal domain" (Wang et al., 2015). The authors further suggest that the possibility of alternative disulfide pairings in the N-terminal domain could be important functionally in understanding Armet's intracellular and extracellular roles.

Armet Tissue Expression

The Human Protein Atlas portal is a publicly available database which can be accessed online at http://www.proteinatlas.org/ where millions of images show the spatial distribution of human proteins and transcripts in tissues. As one of the proteins that have been studied, Armet has been identified in the following tissue types including 44 different normal human tissues, 20 different cancer types, as well as 46 different human cell lines. Western blots and antibody

validation show that Armet is produced in all tissues and show high expression levels in tissues such as the liver, pancreas, stomach, intestines, central nervous tissues, and endocrine glands (Uhlen et al., 2015).

Intracellular Functions of Armet

Human Armet contains a signal peptide (MRRMRRMWATQGLAVALALS) for secretion through the ER-Golgi pathway (Oh-hashi et al. 2012). Armet's gene has been identified as up-regulated by ER stress where it promotes survival in different cell lines (Airavaara et al., 2009). In other words, it has been shown to be a member of the unfolded protein response. ER stress can also cause upregulation of Armet in pancreatic and fibroblast cells (Lee et al., 2003, Mizobuchi et al., 2007, Apostolou et al., 2008, Airavaara et al., 2009). The accumulation of misfolded proteins in the ER causes ER stress that initiates the UPR, a cellular response to evaluate and respond to ER stress, and the UPR can function either adaptively or apoptotically (Oslowski et al., 2011).

Expression of Armet is analogous to that of the molecular chaperone BiP/GRP78 which is also a UPR member, but GRP78 was shown to be mediated by the endoplasmic reticulum stress response element 1 (ERSE-I) which is frequently found in the promoters of ER chaperone genes, whereas the upregulation of Armet was shown to be mediated by an endoplasmic reticulum stress response element 2 (ERSE-II) (Mizobuchi et al., 2007), the second UPR gene discovered to be regulated by an ERSE-II element after ATF6 (Kokame et al., 2000). ERSE-II likely contributes to quality control of proteins within the ER (Kokame et al., 2000, Mizobuchi et al., 2007). Armet, when over-expressed in HeLa cells, inhibited cell proliferation and ER stressinduced cell death (Apostolou et al., 2008). Armet also counteracts tunicamycin-induced ER stress and apoptosis in primary neurons (Yu et al., 2010) and serum starvation-induced apoptosis in cardiomyocytes (Tadimalla et al., 2008).

Extracellular Functions of Armet (MANF)

Armet also has an extracellular function, namely neurotrophic activity (Lindholm, 2010). In neural cells apoptosis is important to maintain the neuronal population and apoptosis is neutralized by the intervention of neurotrophic factors targeted to rescue apoptotic neurons from death (Hellman et al., 2010). "Parkinson's disease is a chronic, progressive neurodegenerative disease where dopaminergic cells die most prominently in the area of substantia nigra" (Hellman

et al., 2010). Armet has been found to be one of the most potent exogenous factors protecting and repairing the dopaminergic neurons in a rat 6-hydroxydopamine model of Parkinson's disease (Hellman et al., 2010). Armet also rescues cortical neurons in a rat stroke model, and aided in slowed neuronal apoptosis (Hellman et al., 2010).

Armet (MANF) has sequence similarity to one other neurotrophic factor, cerebral dopamine neurotrophic factor (CDNF), originally found in neural tissues, but also found in nonneural tissues similarly to Armet (Lindholm, 2010). While the details of both Armet & CDNF's function are still unclear, Armet has been shown to protect against cerebral ischemia in vivo interfering with apoptosis, improving the survival of dopaminergic neurons in vitro (Airavaara et al., 2009, Petrova et al, 2003)

Role of RTDL in Retention or Secretion

Armet has a C-terminal ER retention motif, RTDL. This motif targets Armet for retention in the ER lumen. The motif has been shown to bind to the KDEL receptor, but with weaker affinity than KDEL (Raykhel et al., 2007). Thus it is possible that under basal, unstressed conditions, low expression of MANF and other proteins with non-classical KDEL ER retention signals could allow for their complete retention (Glembotski et al., 2012). Then upon ER stress, levels of ER stress response gene products with ER retention motifs would increase, while KDEL receptor levels would not change (Llewellyn et al., 1997). Due to different affinities to the KDEL receptor between KDEL and RTDL, it might be that the RTDL ER retention motif allows for the partial secretion of Armet under ER stress. In other words, Armet and other non-KDEL ER retention signal containing proteins, may be secreted due to the inefficient retention in the ER during ER stress (Glembotski et al., 2012).

This idea was strengthened when a engineered mutant that lacked the an ER retention motif was found to be secreted while the wild type and an engineered mutant form carrying the KDEL sequence at the C-terminus was retained in the cell (Glembotski et al. 2012). Over expression of GRP78 resulted in retaining essentially all of these three variants of MANF showing that under some conditions the ER retention signal was not necessary to retain the mutant lacking an ER retention motif (Glembotski et al., 2012). An interaction between Armet and GRP78 was shown to be not directly dependent on the RTDL / KDEL sequence to retain Armet within the ER, and that it also interacts in a non-calcium dependent fashion (Glembotski et al., 2012, Oh-hashi et al. 2012, Henderson et al., 2012).

High Throughput Screening

Surface plasmon resonance (SPR) sensing has been used to study bio-molecular binding events and their kinetics in a label-free way (Campbell et al., 2007). This method uses an optical phenomenon that enables the detection of unlabeled interactions in real time between proteins and potential ligands. The utilization of label-free SPR systems gives the advantage over labeled methods, with increased sensitivity and reduced costs due to less interference of the signal, and cost associated with coupling of a label to the target (Kooyman et al., 1988). The high throughput screen mentioned in this dissertation was completed at the University of Kansas High Throughput Screening Laboratory.

1H-15N HSQC NMR Ligand Binding

The use of 1H-15N HSQC NMR to evaluate binding is well established. For example in Rauthu et al. (2014), "Defining the Potential of Aglycone Modifications for Affinity/Selectivity Enhancement against Medically Relevant Lectins: Synthesis, Activity Screening, and HSQC-Based NMR Analysis," of the use of mapping chemical shift changes upon addition of a ligand is used. In this case, the ligand utilized was p-nitrophenyl lactopyranoside and was screened against human galectins 1, 3, & 7, identifying a proposed contact site and evaluating affinity and selectivity to each galectin.

Therapies Targeted at Other UPR Components: GRP78

Research to target UPR components for drug discovery is not new by any means. For instance, a peptidomimetic targeting strategy that used a GRP78 binding peptide, discovered by "epitope-mapping," coupled to the peptide apoptotic moiety (KLAKLAK)₂ selectively killed breast cancer cells that expressed surface-localized GRP78 (Miao et al., 2013). The apoptotic moiety, originally discovered as an antimicrobial peptide was shown to have a cytotoxic function when coupled with other peptides (Ma et al., 2012). The use of "epitope-mapping" was achieved by circulating a pool of antibodies elicited against tumors in cancer patients in a flow cytometer in the presence of GRP78. "Hits" against GRP78 identified the protein as a target in prostate and breast cancer (Miao et al., 2013). The highest efficacy binding peptide identified from the

epitope-mapping process was WIFPWIQL. When coupled with the apoptotic moiety the final construct was WIFPWIQL-GG-_D(KLAKLAK)₂ (Miao et al., 2013).

My Research Direction

The research outlined in this chapter is intended to be early stages in targeting Armet for drug development. The identification of a compound which would limit the anti-apoptotic nature of Armet, thus acting in a pro-apoptotic fashion, could have potential to combat diseases associated with Armet, for instance, cancer. This basic research direction has yielded well over 100 pro-apoptotic drugs in various stages of development, including activation of the UPR molecular target XBP1 with the drug Xanthohumol, which targets chronic lymphocytic leukemia (Reed et al., 2004, Lust et al. 2009). Three mammalian eIF2 kinases including protein ER kinase (PERK), has been shown to be activated with flavonoid compounds, which inhibit the growth of human leukemia cells (Ito et al., 1999). Armet, as a drug itself could supplement current treatment methods where anti-apoptotic therapies are desired, i.e. Parkinson's disease (Hellman et al., 2010).

Materials and Methods

Standard Recombinant Human Armet Expression and Purification

In conjunction with Dr. Raman Chandrasekar I expressed N-terminal tagged Armet. To express and purify N-terminal 6X His-tagged human Armet, the transcript was amplified by PCR from a plasmid containing a N-terminal 6×His-tagged human Armet gene using the following primers;

5'-GGCCCTCGAGCTACAAATCGGTCCG-3'

5'-GCCCATGGGCCACCACCACCACCACCACctgcggcggcgac-3'.

After cloning, the product was inserted into pET-28a-c(+) vector using NcoI and XhoI sites and confirmation by sequencing was performed. The protein expression, using *E. coli* strain BL21 (DE3) transformed with the recombinant plasmid, was cultured at 37 °C using LB medium until OD 600 reached 0.6. The recombinant protein was induced with a 1 mM IPTG addition for 4 h at 30 °C. Cells were harvested by centrifugation and resuspended in 50 mM Na₂HPO₄, 300 mM NaCl, 10 mM imidazole, pH 8.5, known as Buffer 1.

This suspension of *E. coli* in Buffer 1 was subjected to sonication on ice, 10 times with a 50% duty cycle, for 1 min at a time with a 1 min rest between cycles with a Model CV17 sonicator probe and Vibra-Cell TM375 controller module. If large clumps remained, the sample was subjected to additional rounds of sonication. Lysates were centrifuged at 14,000 g for 20 min, and the supernatant was loaded on a Ni-NTA agarose column (Qiagen #30230).

The column was washed with 40 column volumes of 50 mM Na₂HPO₄, 300 mM NaCl, and 20 mM imidazole, known as Buffer 2. Then, elution containing the N-terminal 6X Histagged human Armet commenced with 5 column volumes of 50 mM Na₂HPO₄, 300 mM NaCl, 300 mM imidazole, known as Buffer 3.

Recombinant Human Armet Expression and Purification for NMR

Armet was harvested from cells grown with a ¹⁵N-labled ammonium nitrate obtained from Cambridge Isotopes as its nitrogen source. The ¹⁵N labeled protein was dialyzed overnight at 4 °C into 50 mM Tris-HCl, 100 mM NaCl, pH 7.0, which I will refer to as NMR Buffer.

To express ¹⁵N labeled protein, the method of expression as indicated in the standard recombinant human Armet expression and purification described above was used with appropriate changes to the growth medium. A starter culture of *E. coli* strain BL21 (DE3) transformed with the recombinant plasmid was cultured overnight at 37 °C, centrifuged and resuspended with M9 medium (12.8 g Na₂HPO₄•7H₂O, 3 g KH₂PO₄, 0.25 g NaCl, 1 g 15NH₄Cl in 1 L distilled H₂O) in filter sterilized 2 mL of 1 M MgSO₄, 20 mL of 20 % glucose, 100 uL of 1 M CaCl₂ in a larger growth chamber until OD 600 reached 0.6.

The induction time of the labeled recombinant protein was 24 h due to the lack of LB nutrients with 1 mM IPTG at 30 °C.

Identification and Use of Ligands

Ligand discovery came from collaboration between Reeck's lab and the High Throughput Screening Laboratory on Kansas University's Lawrence campus. The library, consisting of approximately 5,000 compounds was used by both a Fuji and Enspire Biacore system, where surface plasmon resonance high throughput screening yielded several hits as potential ligands for Armet, including tetracycline, several tetracycline derivatives and other compounds. The tetracycline derivatives were chosen for my work due to a μ M dissociation constant from demeclocycline as determined by KU HTS and shown in Figure 1.2. At the time of this

dissertation, the Reeck group was in negotiations to perform the remaining dissociation studies in collaboration with the KU HTS laboratory.

The tetracyclines and derivatives and non-tetracycline compounds were chosen on multiple criterions, namely the dissociation constant for the tetracyclines and the fact that all compounds were readily available and relatively inexpensive. Mitoxanthrone, although it lacks one cyclic ring in comparison to tetracycline derivatives, was chosen for study due to its similar ring structure. Cefoperazone was chosen due to its crude similarity to that of an unfolded peptide.

Tetracycline and its derivatives, Figure 1.3 are a group of broad-spectrum antibiotics whose general usefulness has been reduced with the onset of antibiotic resistance, but which remain the treatment of choice for some specific indications. Two non-tetracycline ligands seen in Figure 1.4 were also utilized in NMR experiments, also identified as possible ligands by the KU HTS laboratory and may also be possible lead compounds.

Other possible ligands (luteolin and fisetin) were used in circular dichroism studies and are a subclass of flavonoids and are widely distributed in a variety of fruits and vegetables. Structurally, the flavonol contains three cyclic rings and is a ketone containing compound.

Nuclear Magnetic Resonance (NMR) Spectroscopy

¹H-¹⁵N HSQC NMR experiments were performed at 25°C on a 500 MHz Varian NMR Superconducting Spectrometer System equipped with pulsed field gradient accessory, four channel detection system, two waveform generators, and a 5 mm latest generation carbon enhanced Cold Probe. NMR tubes were purchased from Wilmad Lab Glass (535-PP-7). The tubes were 5 mm thin wall, 7" long, and intended for use in 500 MHz and higher field strength magnets.

For all ligand NMR experimentation, a 5 mM ligand concentration was used. The ligands were dissolved at a 1M stock concentration in DMSO and added to the protein solution prior to being placed in the NMR tube. ¹H-¹⁵N HSQC spectra were acquired after addition of each ligand at 5 mM concentration at 3 mg/mL (approximately 150 μ M) ¹⁵N labeled N-terminal 6X Histagged human Armet in 50 mM Tris-HCl, 100 mM NaCl, pH 7.0, supplemented with 5% (v/v) D₂O for 4 h. NMR data were analyzed by using MestReNova software.

Circular Dichroism Spectroscopy

Circular dichroism spectroscopy was performed with a Jasco 815 spectropolarimeter using either a jacketed 1.0 cm path length cell or an unjacketed 0.1 cm path length cell. Spectra from 190 to 260 nm were acquired at room temperature every 1 nm at 2 sec per data point and a 1 nm band pass. Thermal denaturation experiments were done in the same fashion over a temperature scale of 25°C to 95°C. N-terminal 6X His-tagged human Armet in 50 mM Tris-HCl, 100 mM NaCl, pH 7.0, was used for all circular dichroism experiments. For experiments including a potential ligand, the concentration of ligand was up to 10 mM.

Results

Ligand Binding Studies

The NMR tool used was two-dimensional ¹H-¹⁵N HSQC spectroscopy on ¹⁵N labeled Armet. This allowed mapping of signal changes when ligands were added to the protein. Residue assignments in my spectra were made using literature NMR assignments (Hellman et al., 2010). The ¹H-¹⁵N HSQC reference spectrum (Armet without any ligand) from my work is shown in Figure 1.5. This showed somewhat better separation of signals than the literature NMR spectrum (Hellman et al., 2010). Residues unassigned in the literature, which remained unassigned by me, are shown in Table 1.

Tryptophan residue 123 (W123), seen with both backbone and sidechain signals, is important to note because W123 may be vital for binding where the possibility of π - π bonding between the W123 sidechain and cyclic structure of the ligands can occur. Other noteworthy signals include lysine 114 (K114), which shows altered signals in the presence of all ligands tested. These signals and numerous others are changed upon ligand binding.

I identified residues that are likely involved with ligand binding by their shifts in the ¹H-¹⁵N HSQC spectrum in the presence of ligands. For example, see Figure 1.6 for a spectrum acquired in the presence of tetracycline. After spectra in the presence of ligands were acquired, a difference spectrum, Figure 1.7 (tetracycline ligand) was produced by subtraction of the reference spectrum from that of a spectrum acquired in the presence of a ligand. Changes are listed in Table 2 created by addition of each tetracycline ligand. These changes are reported as an increase, decrease, or shift in the signal. Changes in signal intensity are indicative of changes in the protein's mobility and may identify those residues that are altered in the presence of ligand

but do not directly interact with the ligand. Shifts in the signal, whether they be in the nitrogen or hydrogen environment, or most commonly both may indicate residues that bind and are in direct contact with the ligand.

Additional spectra used to create Table 2 are found in Appendix A. Residues with changed ¹H-¹⁵N HSQC signals for tetracycline and derivatives are mapped in Figure 1.8 onto the three dimensional structure of Armet. Seen in Figure 1.8, the majority of residues involved with binding occur within the C-terminal domain and those residues with altered signals in the N-terminal domain and linker appear to form a "face" of binding on an interior portion where a "clamshell" binding mode of action is proposed.

Table 3 is an expansion of Table 2 and summarizes the changes in ¹H-¹⁵N HSQC signals including two non-tetracycline ligands. Non-tetracycline ¹H-¹⁵N HSQC ligand studies are mapped in Figure 1.9 onto the three dimensional structure of Armet. Figure 1.9 shows similarly to Figure 1.8 where the majority of residues involved with binding occur within the C-terminal domain and those residues with altered signals in the N-terminal domain and linker again appear to form a "face" of binding on an interior portion where a "clamshell" binding mode of action is proposed.

Residues that have altered ¹H-¹⁵N HSQC signals in common between tetracycline and non-tetracyclines are mapped onto the three dimensional structure of Armet in Figure 1.10. Shown in Figure 1.10, the altered signals in residues in both the N-terminal and C-terminal domains form a "face" on the interior portions where a "clamshell" interaction would be likely to occur. It is important to note that with different ligands, the residues with altered signals are also different. This is best seen by the color coding in Figure 1.10 where red residues are associated with tetracycline and derivatives, green signals associated with non-tetracyclines, and blue indicates shared or common altered residues. All of these alterations in signal point to two recurrent observations, where the majority of altered signals are seen within the C-terminal domain and both domains form two "faces" where a proposed "clamshell" mode of binding would take place.

Only two residues which yield altered signals in every ligand tested, namely K114 and W123. Both of these residues are also identical in all vertebrates aligned in this study which may point to their importance for ligand binding due to their conservation. While W123 may directly interact with possible π - π binding to the cyclic portions of the tested ligands, K114 is not directly

identified in the proposed binding pocket. K114 may show altered signals due to accommodation of the ligand and not direct binding.

Circular Dichroism Spectroscopy Studies

From Armet's room temperature circular dichroism spectrum, seen in Figure 1.11, a helix content of 46.2% was estimated by the circular dichroism deconvolution software CDNN downloaded from http://www.photophysics.com/tutorials/cdnn-secondary-structure-analysis. From the NMR and crystallographic structural determinations I calculated 68% helix content. This indicates that the CDNN software reports lower than true observed values however it can still be utilized to gain insight into thermal denaturation process.

Figure 1.12 shows CD spectra of Armet at temperatures from 50-95°C. The change from α helix to random coil occurs where intermediates of both forms evidently occur. These intermediates could include uniform unfolding across both domains or, more likely, it is possible that the unfolding from helix to random coil could be occurring independently in each domain. An idealized representation of α helix and random coil CD signals are shown in Appendix A. Thermal denaturation monitored at 222 nm is shown in Figure 1.13. The two-step decline in the signal is centered at two Tm values of 65°C and 83°C. Not shown, a β -turn content of approximately 20% for each temperature is predicted by CDNN. Figure 1.14 shows percent helix versus temperature as determined by CDNN analysis.

I hypothesized that ¹H-¹⁵N HSQC NMR could evaluate if the either domain was unfolding first or in concert. But evaluating the two step unfolding by NMR at high temperatures was outside the instrument's normal operating limits therefore manipulation of transition temperatures of the two-step unfolding of Armet was achieved by modification of buffer conditions. Lowering the pH, as seen in Figure 1.15, shows that lowering pH affects both transition temperatures. Thermal denaturation of Armet in the presence of guanidinium chloride, shown in Figure 1.16, mirrors the results of the pH studies. A combination of guanidinium chloride and pH was also utilized and is shown in Figure 1.17 in the presence and absence of TCEP (tris-2-carboxyethyl-phosphine), a water soluble reducing agent utilized to break disulfide bonds.

In the presence of TCEP alone, shown in Figure 1.18, no significant change was noted in Tm values. None of these studies however could reduce the transition temperature to a level that was suitable for the NMR experiment I had in mind.

Discussion

1H-15N HSQC NMR Buffer Optimization

In Hellman et al. (2010), NMR spectra were recorded on a Varian Unity INOVA 800 NMR spectrometer, operating at 800 MHz. That instrument, while similar to Kansas State University's Varian spectrometer, possesses a higher field strength magnet, and like KSU's instrument it also utilized cryo-probe technology. Therefore, the increased signal resolution in spectra acquired at KSU may stem from the buffer conditions. Their buffer conditions were: 10 mM bis-Tris, 50 mM NaCl, pH 6.8, supplemented with 7% (v/v) D₂O, whereas my buffer condition was 50 mM Tris-HCl, 100 mM NaCl, pH 7.0, 5% (v/v) D₂O. This difference in buffers may account for our increased resolution due to added protein stability with increased salt concentration.

Ligand Binding Studies and Proposed Binding Site

Ligands that alter the ¹H-¹⁵N HSQC signals may lay the ground work for future drug based ligand studies. Table 3 identifies commonalities between ligands I have studied. A heat map analysis to observe the commonalities between tetracycline derivatives and nontetracyclines is shown. The heat map identified two residues, K118 and W123 that have altered ¹H-¹⁵N HSQC signals with all ligands tested. These observations may indicate that both residues are vital to binding and site directed mutagenesis could better evaluate that observation.

Although more residues are affected in the C-terminal domain, my data indicates both domains interact with the ligands I have studied. Because both domains have altered ¹H-¹⁵N HSQC signals upon addition of ligands, I propose that the domains could come together in a "clamshell" fashion around the ligand. This thought is further solidified Figure 1.10 which shows that residues in the N-terminal domain involved with binding are on an inner portion of where a "clamshell" interaction might take place. In Figure 1.19, I propose a "clamshell" binding model in Armet with the ligand tetracycline.

Tetracycline as a ligand has been evaluated in multiple crystallographic studies with the Tet Repressor protein (Aleksandrov et al., 2007). Using PyMOL, I looked at the Tet Repressor protein, PDB file 2TRT, and evaluated residues that appear to bind or interact with tetracycline. This evaluation looked at the possible interactions between the amino acid residues of the protein and tetracycline which include hydrophobic interaction with residues such as alanine, isoleucine, and leucine. Hydrogen bonding with tetracycline is evident with the residues tyrosine and histidine, and a possible stacking interaction between phenylalanine and one of the rings of tetracycline appears to be possible.

In contrast to claims that the linker was flexible based on NOE constraints (Hellman et al., 2010), I believe that the linker acts as a rather stiff section between the domains, with rotation about both ends. NMR studies aid this idea stems from the 15 lowest energy minima generated by Hellman et al. 2010, in which the linker maintains a fairly linear orientation with rotation about its ends. In my attempt to mirror this observation, seen in the "clamshell" representation in Figure 1.19, the linker maintains a linear orientation; however it allows rotation of the two domains to encompass the ligand.

Changes in Positions of the N- and C-terminal Domains in Armet

The X-ray crystallography of human Armet and solution NMR of human Armet with Protein Data Bank (PDB) identification numbers of 2W51 and 2KVD respectively are shown in Figure 1.20 in an overlay (Parkash et al., 2009, Hellman et al., 2010). The human Armet crystal structure is not complete in the C-terminus due flexible portions of protein which do not contribute to electron density. When the human Armet crystal structure is shown versus human NMR solution structure, they show good superimposition within the N-terminal domain. Variation in the flexible loops within the N-terminal domain is expected due to flexibility of the loop segments but the C-terminal domain did not superimpose well at all.

To achieve improved superimposition the linker region within the X-ray structure was clipped in PyMOL. This is shown with the human Armet X-ray crystallography and solution NMR Armet with PDB identification numbers of 2W51 and 2KVD, respectively, in Figure 1.21 (Parkash et al., 2009, Hellman et al., 2010). Now the crystal structure of Parkash et al. (2009), superimposes well with that of the NMR solution structure in both domains.

The online 3D structure prediction software I-TASSER was utilized to study commonalities between human, mouse, nematode, and pea aphid Armet. When these amino acid sequences were submitted, all of their sequence similarity and three dimensional structures linked back to the mouse and human X-ray and solution NMR determinations. In other words, proteins from *C. elegans* and *A. pisum* showed no similarity to proteins of known structure other than mouse and human Armet.

The Role of Armet's Linker

Shown in Figure 1.22 is the conserved nature of the linker residues across multiple vertebrate species. Low energy minima calculations in NMR structural determinations show a rather rigid linker which appears to have a motion similar to a rotor (Hellman et al., 2010). The rotor like movement gives traction to my hypothesis that movement at ends of the linker allows for the "clamshell" like action of the two domains coming together in concert gripping a potential ligand. Interestingly, the conservation of the linker region of Armet and its rotation may be paramount to the binding of ligands such as tetracyclines and natural binding partners of Armet. This idea somewhat contrasts the description by Hellman et al. (2010) where they state the linker is "flexible."

Analysis to confirm the structure of the linker was further tested by evaluation of phi/psi angles for the linker residues determined by NMR. Plotted in a Ramachandran plot, two residues Q100 & I101 were identified to contain possible β strand structure. The residues L95 & Y97 show left handed α helix characteristic while K96, K99, & D102 indicate right handed α helix. The residue D98 was identified in a disallowed location in the Ramachandran plot indicating an error in structure at that position.

Lower Thermal Stability of Armet's C-terminal Domain & Roles of Disulfide Bonds

My thought that the C-terminal domain of Armet has a lower thermal stability stems from its less packed structure and possibly the disulfide arrangement. Armet contains 8 conserved cysteine residues through many species shown in Figure 1.22. In thermal denaturation studies in the presence of TCEP, a disulfide reducing agent, interesting results occur. Under conditions that the literature points toward complete reducing conditions, the Tm of Armet's two step denaturation is unchanged. Of numerous possibilities, I outline three options. One is the complete reduction of disulfide bonds which have no effect on thermal stability. The second is the partial reduction of disulfide bonds limited to the C-terminal domain with no effect on Tm for either domain. The third option could be the partial reduction of disulfides in both domains. I believe option two to be correct. As shown in Figure 1.23, the disulfide bond in the C-terminus is clearly solvent exposed and should be available to reduction. However, due to the size of TCEP, I feel that the compound would not be capable of accessing the three N-terminal disulfide bonds. These insights point toward the conclusion that the C-terminal domain's disulfide, does not aid in thermal stability.

Shown in Figure 1.14, a plotted analysis with the CDNN prediction tool developed by Dr. Gerald Bohm shows a shift from a α helix beginning around 65 °C to a random coil in a two-step fashion with the last transition at approximately 78 °C. I had hoped for a stabilization to occur with the addition of ligand, especially in the C-terminal domain; thermal unfolding did not show any change in the presence of the possible ligands fisetin and luteolin.

Relevance for Proposed Functions of N- and C-terminal Domains of Armet

Crystallographic studies of Armet led Parkash et al. (2009) to suggest the C-terminal domain has a disulfide isomerase activity, and the N-terminal structure was shown to be similar to saposins. The researchers make a marked jump to conclude that because the structure of the N-terminal domain resembles that of the human saposins the N-terminal domain may interact with lipids or membranes. This suggestion in 2009, while interesting, was based solely on structural similarity has still not been shown experimentally to date. The data presented in this chapter I think revokes the thought process as suggested by Parkash et al. (2009) that the two domains of Armet have marked separate functions. Here I show that the binding of ligands encompass the use of both domains, and that the domains work in concert. Although the statements of Parkash et al. (2009) were interesting, they lacked the evidence to show that the N-terminal domain of Armet was more than just saposin-like based in structure. As no binding studies to lipids or membranes have been published to corroborate their claims, I believe my model whereas the N-terminal & C-terminal domains both participate in binding of a ligand holds more substance.

Variation in Amino Acid Sequence in Mammalian Armet

In Figure 1.24, a phylogenetic tree shows the inferred evolutionary relationships among sequences aligned in Figure 1.22. As shown, a clear evolutionary tree beginning with *C. elegans*

as an "outgroup" to humans occurs with subtle divergences of the orthologs of Armet showing a branching pattern in agreement with views of vertebrate evolution (Hotton 1968).

Figure 1.25 shows the conserved residues from Figure 1.22's alignment in green and those residues that differ from human Armet's sequence in yellow. Figure 1.26 identifies residues that are involved with binding and conserved. There are 32 residues that are conserved and 29 that are not conserved within the set of aligned sequences. Of those binding to tetracycline and its derivatives versus non-tetracycline ligands, no discernible pattern can be found, indicating that neither type of ligand is more likely to be bound at a conserved or non-conserved residue with respect to the human sequence.

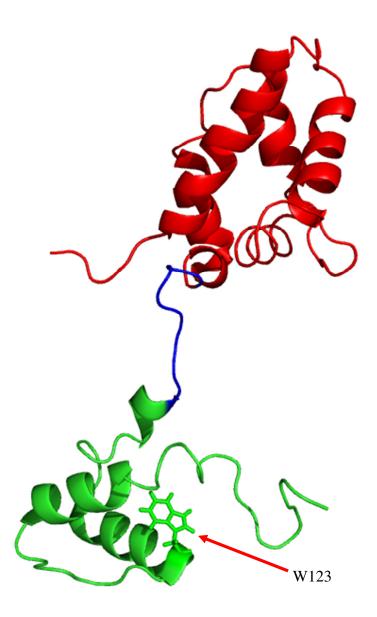
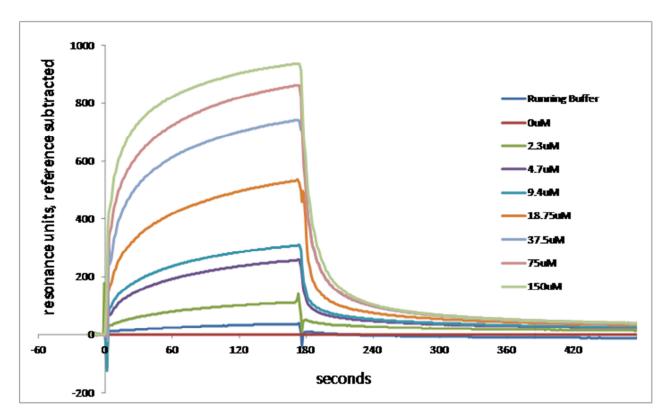
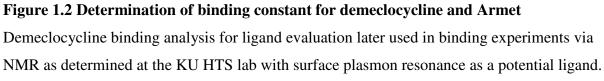
In any case, while not every identified binding residue interacts in the presence of each ligand, conservation of residues involved with binding is seen in Figure 1.22.

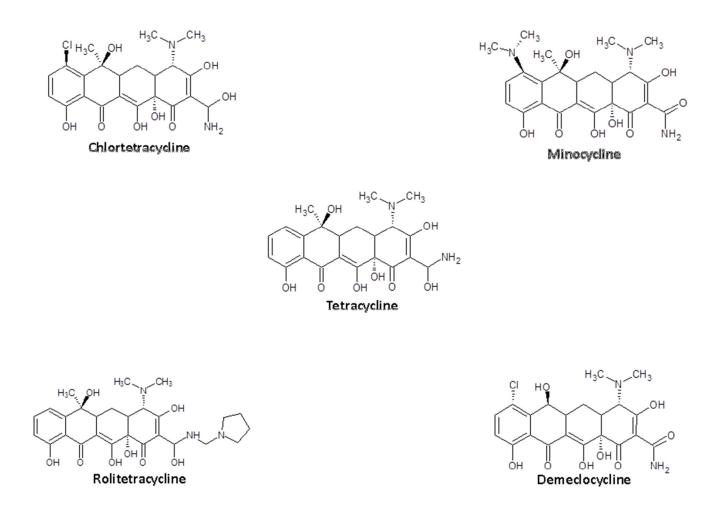
Possible Drug Development Strategies

Previously mentioned, Armet expression has been shown to be upregulated in many cancer cells (Miao et al., 2013). GRP78 has also been shown to be upregulated in many cancer cells and the mode of treatment outlined in Miao et al. (2013) could possibly be approached with Armet as the target for peptidomimetic studies for cancer therapy.

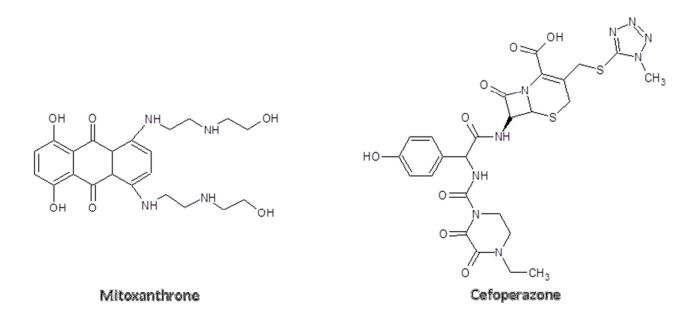
While it's not understood yet which elements of tetracycline derivatives induce NMR spectral changes, the fact that all derivatives have the similar planar shape leads me to believe that the planar rings of the ligands are important for binding. As shown in Figure 1.3, the structures of the tetracycline derivatives differ slightly and with modification by synthetic chemists, they may be exploited to create a better ligand.

I also propose an interaction between residue W123 by π bonding to the ligands including Armet's normal binding partners, namely unfolded proteins. Figure 1.1 indicates the location of the W123 sidechain and for the proposed interaction to take place, the C-terminal domain folding in the "clamshell" fashion would allow the W123 sidechain, which has been indicated in ¹H-¹⁵N HSQC studies to have altered signals in every ligand tested to facilitate π bonding. This suggests an importance of the interaction I have proposed. As seen in the cartoon representation of a proposed "clamshell" binding in Figure 1.19, the possibility of a π - π interaction exists. The π - π interaction between the tryptophan and the cyclic rings of the derivatives tested might contribute to binding ligands containing cyclic rings.


Figure 1.1 Lowest energy NMR structure of human Armet

Human Armet structure: N-terminal domain (red) linker region (blue) and C-terminal domain (green) PDB: 2KVD (Hellman et al., 2010) W123 sidechain is shown.



The data correspond to a dissociation constant of $18 \,\mu\text{M}$ measured at one half Vmax.

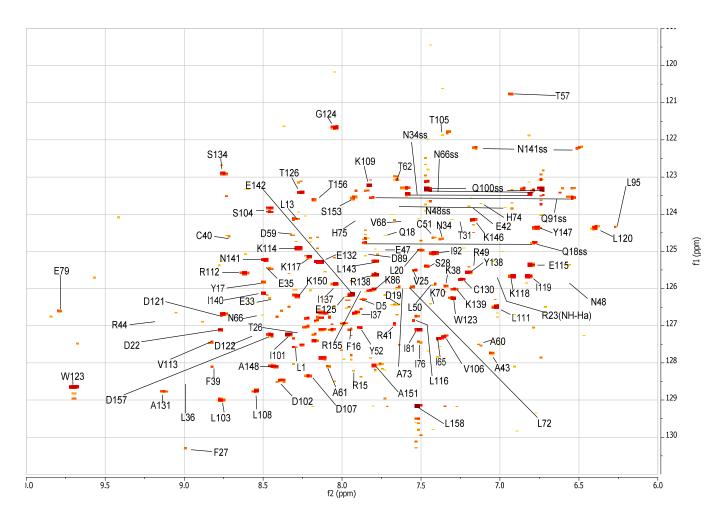
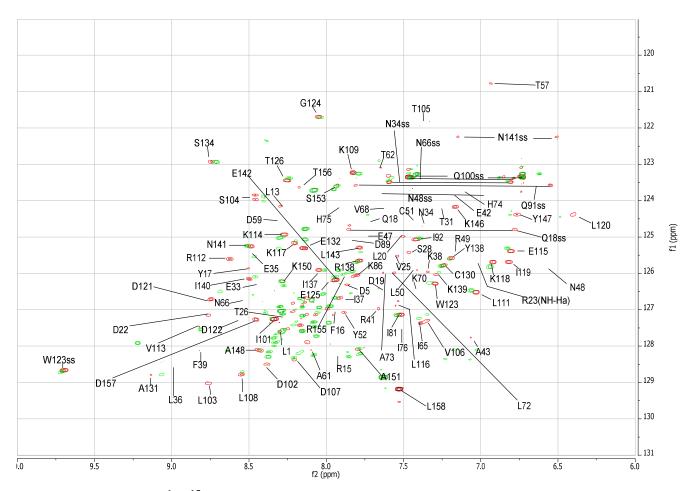

Figure 1.3 Structures of tetracycline and derivatives utilized in ¹H-¹⁵N HSQC experiments Images created using ChemDraw.

Figure 1.4 Structures of two non-tetracycline compounds utilized in ¹H-¹⁵N HSQC

experiments

Images created using ChemDraw.


Figure 1.5 Reference ¹H-¹⁵N HSQC spectrum of Armet

Acquired at 25 °C and annotated using the M-nova NMR suite (MestReNova Labs). Identification of signals achieved using assignments of Hellman et al. (2010). Unassigned residues are indicated in Table 1.

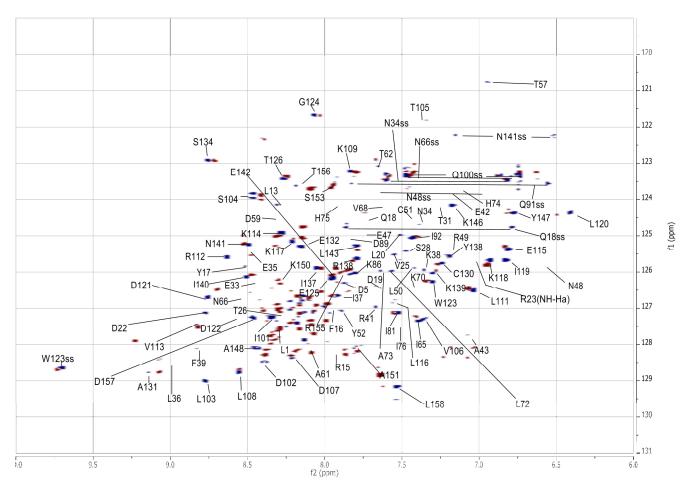

		U	nass	signe	ed R	esid	ues			
	Gly	Cys	Glu	Val	lle	Ser	Tyr	Phe	Lys	Asp
e r	4	6	7	8	10	11	12	16	21	59
Residue Number	45	9	83				136		46	
lun	124	93	94						63	
μZ	129	127							128	

Table 1 Residues not identified in the reference ¹H-¹⁵N HSQC spectrum

Not all residues were assigned in the reference HSQC spectrum of Hellman et al. (2010). In addition to the unassigned residues, 6 proline residues did not generate signals.

Figure 1.6 Overlay of ¹H-¹⁵N HSQC spectra of Armet with and without 5 mM tetracycline The protein without ligand is indicated in red while the spectrum containing the 5 mM tetracycline is shown in green. Changes in residues are determined by their movement in either the hydrogen or nitrogen ppm, F2 and F1 respectively or in intensity. Residues not identified (Table 1) and proline residues are not seen in this overlay. Residues that are altered are identified in Table 2.

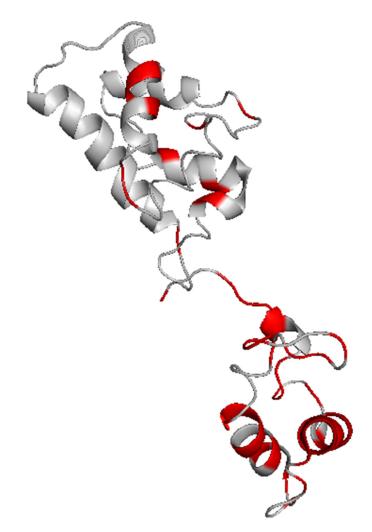
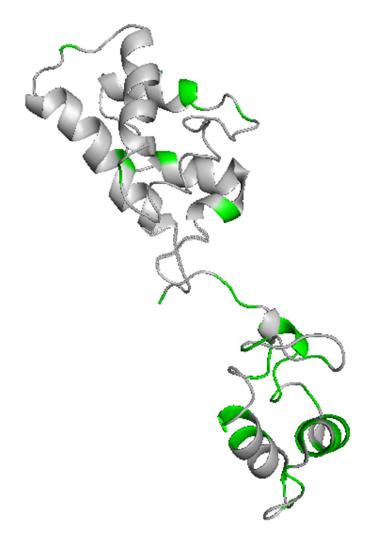


Figure 1.7 ¹**H**-¹⁵**N HSQC difference spectrum of Armet with and without 5 mM tetracycline** Difference spectrum is obtained from Figure 1.6. The signals indicated in red indicate a stronger signal without ligand present and a blue signal indicates an increased signal with the ligand present. These changes are identified in Tables 2 and 3. Changes in residues are determined by their movement in either the hydrogen or nitrogen ppm, F2 and F1 respectively or in their intensity.

Tetracycline	ne	Ch	Chlortetracycline	line		Minocycline		Ro	Rolitetracycline	ne	De	Demeclocycline	ne
Signal with Ligand	igand	Sig	Signal with Ligand	rand	Sig	Signal with Ligand	and	Sig	Signal with Ligand	and	Sig	Signal with Ligand	and
Increased Decreased Shifted	d Shifted	Increased	Increased Decreased Shifted	Shifted									
L1 R44	T62	D122	181	N34	Q100	181	D5	N34	181	K86	K86	T57	T62
E35 181	192	S153	192	T62	D107	K139	137	L158	K109	Q100	1101	S104	Q100
D107 1101	Q100		L111	S104	V113	1140	A43		L111	D107	E142	K109	D102
V113 D102	S104		K117	D107	S134	A151	K86		K114	K150		K114	D107
K118 L103	L108		Y136	K109	T156		D102		E115	T156		E115	1119
C130 K117	K109			K114			L103		K118			K118	W123
A151 119	K114			E115			L111		1119			D157	T156
S153 A148	E115			K118			K114		W123				L158
	W123			W123			1119		G124				
	G124			G124			L120		T126				
	T126			T126			D121		C130				
	S134			C130			W123		S134				
	Y136			S134			E132		Y136				
	1140			N141			N141		N141				
	N141			A148			E142		D157				
	E142			L158			K150						
							L158						

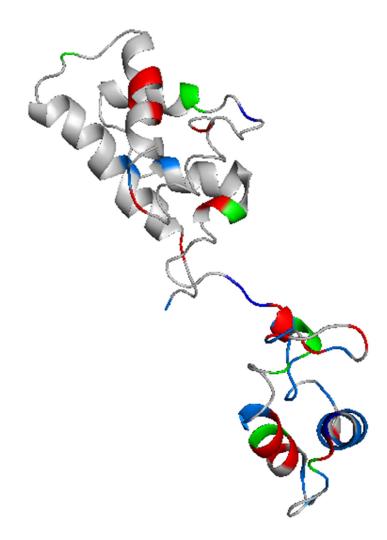
Table 2 NMR Spectral changes in tetracycline derivatives

Signal changes in select in NMR studies. Changes in chemical shift as well as intensity with indicated ligand are indicated.


Figure 1.8 Residues with altered ¹H-¹⁵N HSQC signals in the presence of tetracycline and tetracycline derivatives

Residues identified in Table 2 are indicated in red.

Domain	Residue	Tetracycline	Chlortetracycline	Minocycline	Rolitetracycline	Demeclocycline	Tetracycline Commonalities	Mitoxanthrone	Cefoparazone	All Commonalities
N-terminal	L1	Increase					1	Increase	Decrease	3
N-terminal	D5			Shift			1			1
N-terminal	L13						0	Shift		1
N-terminal	T26						0		Shift	1
N-terminal	N34		Shift		Increase		2			2
N-terminal	E35	Increase					1			1
N-terminal	137			Shift			1			1
N-terminal	A43			Shift			1	Increase		2
N-terminal		Decrease					1			1
N-terminal						Decrease	1			1
N-terminal		Shift	Shift			Shift	3	Increase		4
N-terminal		Sint	5			Shirt	0	Shift		1
N-terminal							0	Increase	Increase	2
N-terminal							0	Increase	mercase	1
N-terminal		Decreace	Decrease	Degraace	Decreace			Increase	Decrease	5
		Decrease	Decrease	Decrease	Decrease	1	4		Decrease	3
N-terminal				Shift	Shift	Increase	<u> </u>		Deserves	-
N-terminal		01.16					-		Decrease	1
N-terminal		Shift	Decrease			0110	2			2
Linker	Q100	Shift		Increase		Shift	3		Increase	4
Linker	1101	Decrease			Shift	Increase	3	Increase		4
Linker	D102	Decrease		Shift		Shift	3			3
C-terminal	L103	Decrease		Shift			2			2
C-terminal	S104	Shift	Shift			Decrease	3	Shift		4
C-terminal	T105						0	Shift		1
C-terminal	V106						0	Shift	Decrease	2
C-terminal	D107	Increase	Shift	Increase	Shift	Shift	5	Increase		6
C-terminal	L108	Shift					1	Increase		2
C-terminal		Shift	Shift		Decrease	Decrease	4	Increase	Decrease	6
C-terminal	L111		Decrease	Shift	Decrease		3	Increase		4
C-terminal		Increase		Increase			2			2
C-terminal		Shift	Shift	Shift	Decrease	Decrease	5	Shift	Decrease	7
	E115	Shift	Shift		Decrease	Decrease	4		Decrease	5
C-terminal		Decrease	Decrease		Decieuse	Decrease	2	Shift	Decrease	4
C-terminal		Increase	Shift		Decrease	Decrease	4	Jint	Decrease	5
	1119	Decrease	Sinit	Shift	Decrease	Shift	4		Decrease	5
		Decrease		Shift	Decrease	51111	4	D	Decrease	2
C-terminal								Decrease	Deserves	
C-terminal				Shift			1		Decrease	2
	D122		Increase				1			1
C-terminal	W123	Shift	Shift	Shift	Decrease	Shift	5	Increase	Shift	7
C-terminal		Shift	Shift		Decrease		3			3
C-terminal							0		Increase	1
C-terminal	T126	Shift	Shift		Decrease		3	Increase	Decrease	5
C-terminal		Increase	Shift		Decrease		3	Increase		4
C-terminal	E132			Shift			1	Increase	Increase	3
C-terminal	S134	Shift	Shift	Increase	Decrease		4			4
C-terminal	Y136	Shift	Decrease		Decrease		3			3
C-terminal	1137						0		Decrease	1
	R138						0	Increase		1
C-terminal				Decrease			1			1
C-terminal		Shift		Decrease			2			2
	N141	Shift	Shift	Shift	Decrease		4	Decrease	Decrease	6
C-terminal		Shift	Sint	Shift	Decrease	Increase	3	Decrease	Decrease	4
C-terminal		Shire		Shire		mercase	0	Decrease	Decrease	1
	A148	Docrosso	Shift				2	Shift	Docrosco	4
		Decrease	Shirt	Ch:ft	Ch:ft			Shirt	Decrease	
	K150			Shift	Shift		2	a) (f)		2
C-terminal		Increase		Decrease			2	Shift		3
C-terminal	S153	Increase	Increase				2			2
C-terminal	T156			Increase	Shift	Shift	3			3
C-terminal					Decrease	Decrease	2		Decrease	3
C-terminal	1159		Shift	Shift	Increase	Shift	4	Increase	Increase	6


Table 3 NMR Signal changes with all ligands by residue and domain

Signal changes identified by residue and ligand. The column titled tetracycline commonalities show a heat map style analysis of residues in common between tetracycline and derivatives. The column titled All commonalities is another heat map style analysis between all tested HSQC ligands.

Figure 1.9 Residues with altered ¹H-¹⁵N HSQC signals in the presence of mitoxanthrone and cefoperazone

Residues identified in Table 3 are indicated in green.

Figure 1.10 Residues with altered ¹H-¹⁵N HSQC signals in the presence of tetracycline and non-tetracycline ligands

The coloring scheme is:

Tetracyclines altered residues (red)

Non-tetracyclines altered residues (green)

Shared or common altered residues (blue)

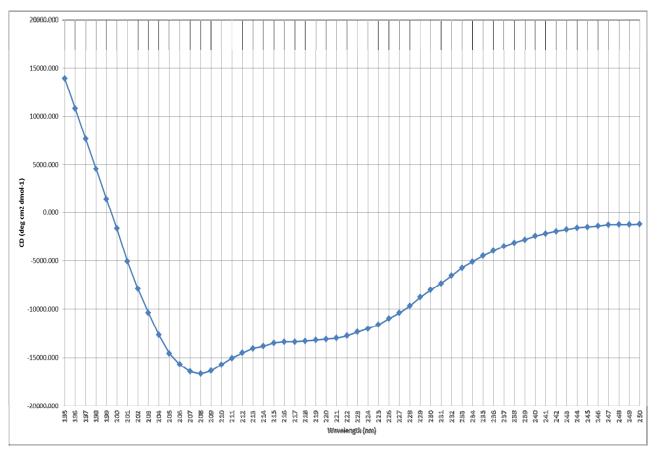
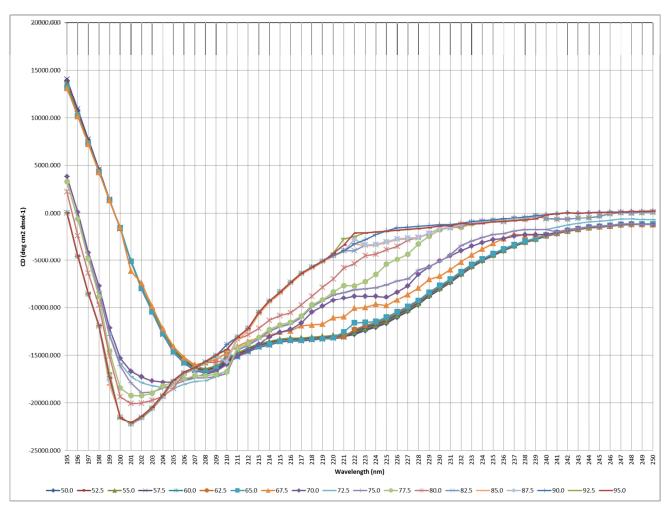
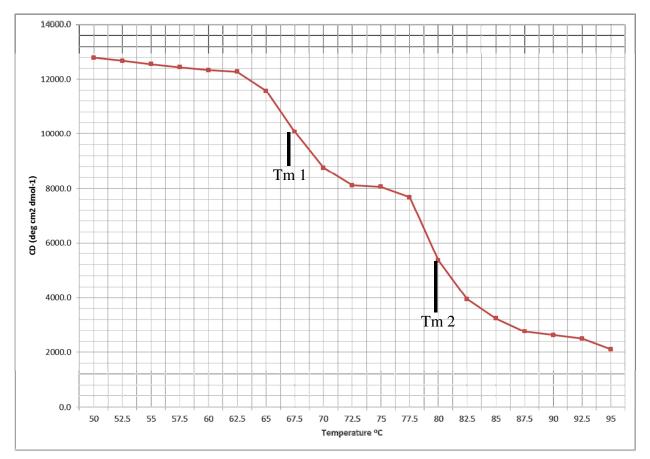
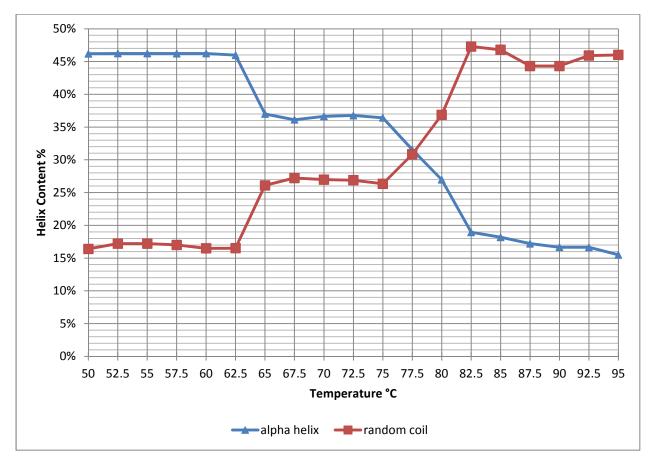


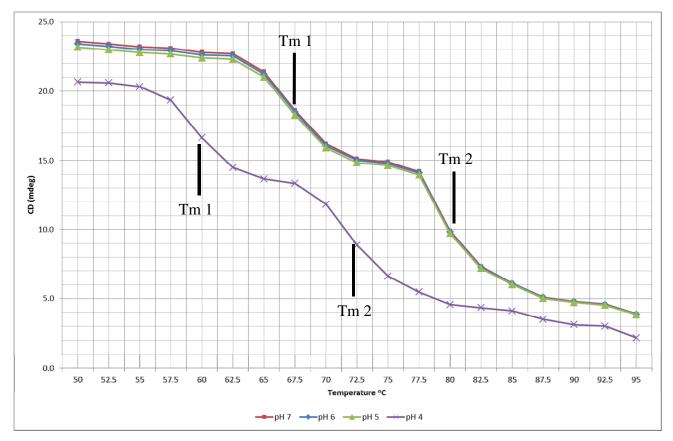
Figure 1.11 Circular dichroism spectrum of human Armet at 25°C

Spectrum showing characteristic α helix signal acquired at 25°C in 50 mM Tris-HCl 100 mM NaCl pH 7.0.

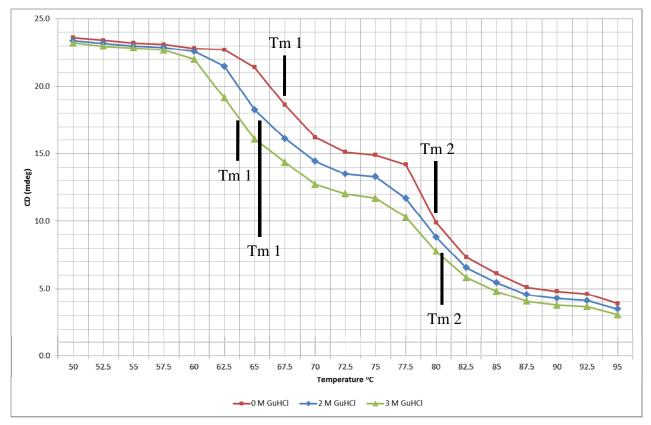




Figure 1.12 Thermal denaturation circular dichroism spectra of human Armet from 50 °C to 95°C

Spectra showing a change from the characteristic α helix content to that of a random coil.

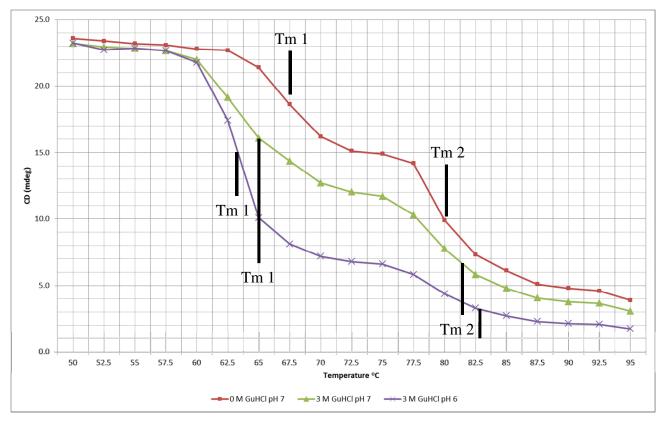


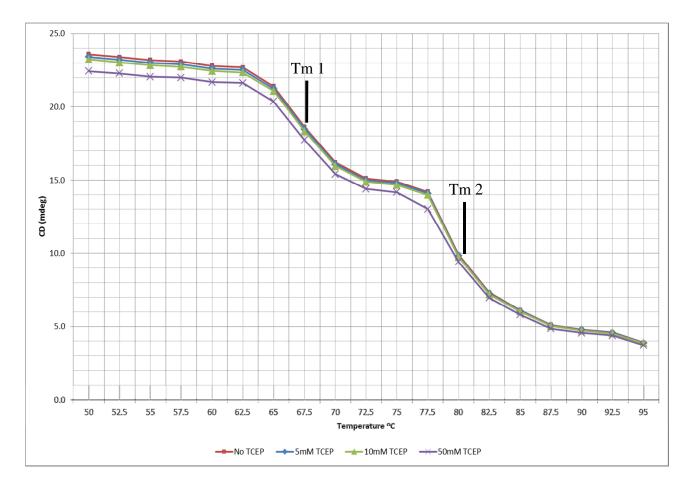
These spectra were acquired at 222 nm from 50 °C to 95°C



Data from CDNN software analysis showing percent helix and random coil versus temperature. Not shown, a β turn characteristic that maintains a steady value at approximately 20%.

Figure 1.15 Thermal denaturation circular dichroism spectra of human Armet from 50°C to 95°C at varying pH


Thermal denaturation studies with altered pH in 50 mM Tris-HCl 100 mM NaCl.


Figure 1.16 Thermal denaturation of Armet in guanidinium hydrochloride

Results obtained in the presence of guanidinium hydrochloride in 50 mM Tris-HCl 100 mM NaCl

at pH 7.0

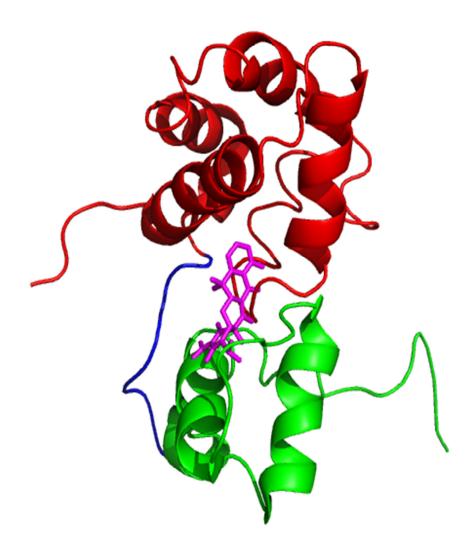


Figure 1.17 Thermal denaturation of Armet in guanidinium hydrochloride with altered pH Thermal denaturation studies in the presence of guanidinium hydrochloride with altered pH conditions in 50 mM Tris-HCl 100 mM NaCl.

Figure 1.18 Thermal denaturation of Armet in the presence of TCEP

Thermal denaturation of Armet, measured at 222 nm from 50 °C to 95 °C in the presence of TCEP at several concentrations. No significant Tm shift is noted in the presence of the disulfide reducing agent.

Figure 1.19 Possible mode of binding of tetracycline to Armet

Graphical concept of the N-terminal domain (red), linker (blue), and C-terminal domain (green) coming together in a "clamshell" type fashion around the ligand tetracycline (magenta). Note: based loosely on experimental data, just a theoretical representation

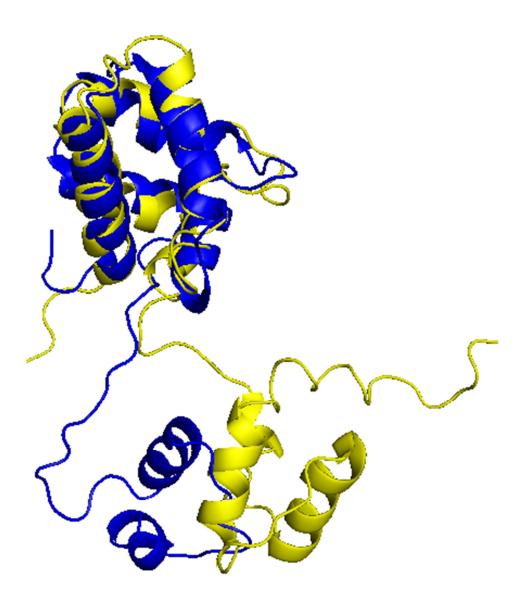


Figure 1.20 Superimposition of crystal and solution NMR structures of human Armet with clipped linker

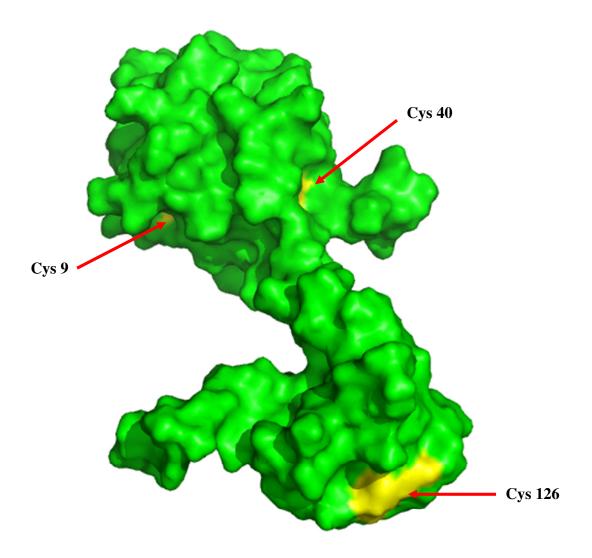
Human Armet X-ray structure shown in blue, PDB: 2W51 (Parkash et al., 2009)

Human Armet NMR structure shown in yellow, PDB: 2KVD (Hellman et al., 2010)

Figure 1.21 Superimposition of crystal and solution NMR structure of human Armet Human Armet X-ray structure shown in blue, PDB: 2W51 (Parkash et al., 2009) Human Armet NMR structure shown in yellow, PDB: 2KVD (Hellman et al., 2010)

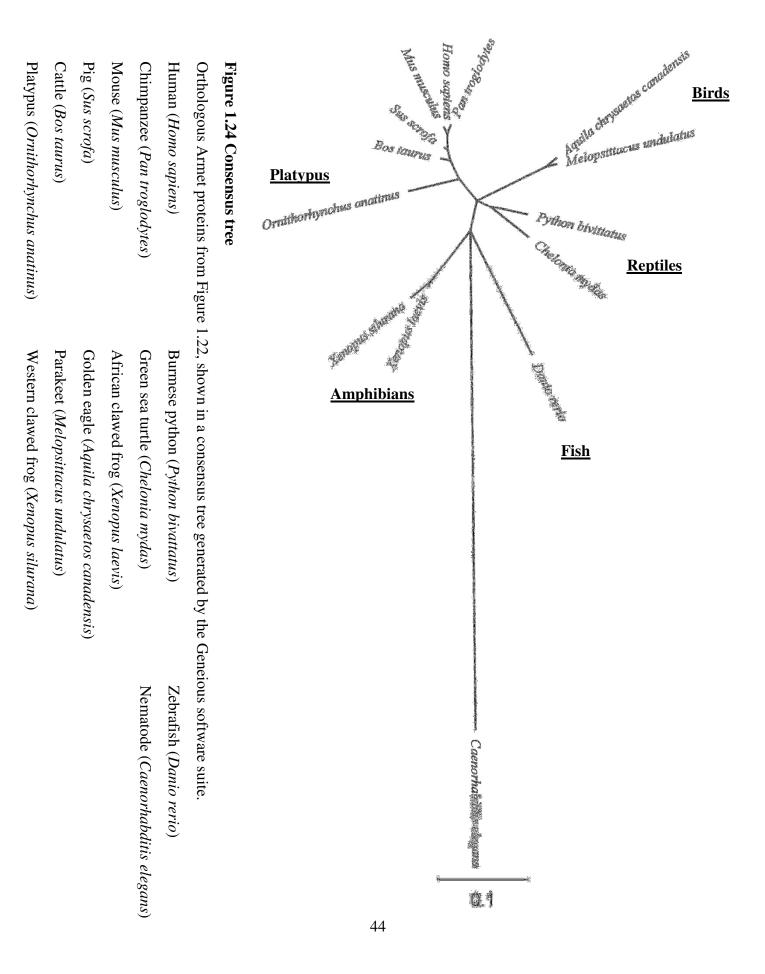
 Xenopus silurana Danio rerio Caenorhabditis elegans 	11. Melopsittacus undulatus	10. Aquila chrysaetos canaden	8. Chelonia mydas 9. Xenonus laevis	Python bivittatus	Ornithorhynchus anatinus	5. Bos taurus	Sus scrofa	Mus musculus	2. Pan troglodytes		1. Homo sapiens		
.KAV .KD.EV AAPQK	D.EV	. D.E V	KAV		RE.QE.A						LRPGDCEVCI		1 10
.KA	VFS.	: :		.F. TA.							SYLGRFYQDL		00
.E.K.E.K.D VV.KL.T. QENN.K.DSD SKA.L.S. PAG.KS-K.D A.GKVIREH.	NE.T			QENN.E.T.N							LRPGDCEVCI SYLGRFYODL KDRDVTFSPA TIENELIKFC REARGKENRL		06
VV.K.L.T. S.KA.L.S. A.GKVIREH.	SKL.S.	S. K. L.S.	TV K L.S.	.ĸ	: .,	SK	SKT	·	V	N-te	TIENEL IK FC		40
ND	K	K K	KK	K	ND					N-terminal	REARGKENRL	-5	07
S .FLPES													60
R FLPESS.MT.	s.	S V	S MV	S	S	E					CYYIGATDDA ATKIINEVSK PLAHHIPVEK		70
SNP MSY.V SWSM.T		MS	SN		s						PLAHHIPVEK	-8	08

13. Danio rerio 14. Caenorhabditis elegans	12. Xenopus silurana	11. Melopsittacus undulatus	10. Aquila chrysaetos canaden	9. Xenopus laevis	Chelonia mydas	Python bivittatus	Ornithorhynchus anatinus	5. Bos taurus	4. Sus scrofa	Mus musculus	2. Pan troglodytes		1. Homo sapiens	
V.LG	•••	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	$V \dots$	••••••	••••••		· · · · · · · · · · · · · · · · · · ·	•••	••••••••	N-terminal	IC-EKLKKKD	06
V.LG.: A	··-··· G. ·····		· · · · · · · · · · · · · · · · · · ·	· · - · · · · · · · · · · · · · · · · ·							··	l Linker	IC-EKLKKKD SQICELKYDK QIDLSTVDLK KLRVKELKKI LDDWGETCKG	100
.VS PL.WK.I		AR	AR	•••••		••••••							QIDLSTVDLK	110
K D	K	••••••RR •	••••• RR .	K		• • • • • • • •	· · · · · · · · · · · · · · · · · · ·				••••••		KLRVKELKK I	120
.EES	· · · · · · · ·	.EA	A	· · · · · · · · ·	D	•••••	· · · · · · N · · ·			M	••••••	<u>_</u>	LDDWGETCKG	130
.VF .TAEL.KR	 	R	R	· · · · · · · · · · · ·								C-terminal	CAEKSDYIRK	140
.E.KV-		.H	.H										INELMPK YAP	150
	NN	RGA	RGA	N		· · · · · ·	· · · TS · · · ·	s					KAASARTDL	0 159


42

(green) as

ues are


rs of

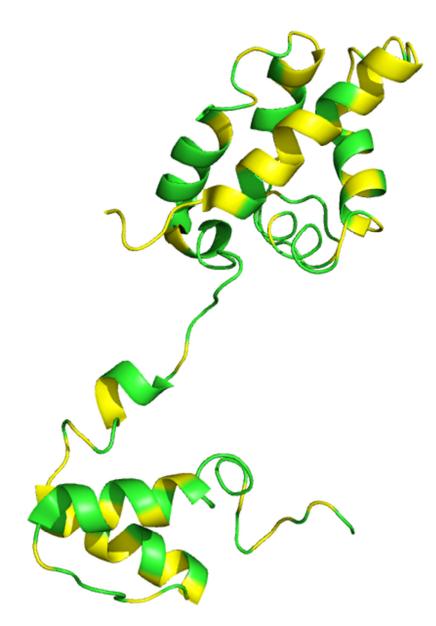

binding are

Figure 1.23 Armet C-terminal solvent accessible disulfide

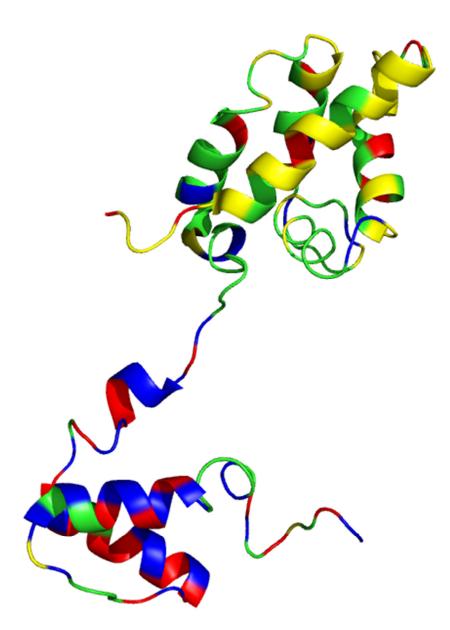

Cysteine residues shown in yellow and identified with red arrows, indicate that the three disulfides within the N-terminal are not solvent accessible whereas the C-terminal disulfide is accessible. Note: one disulfide in the N-terminal domain is completely buried in the structure.

Figure 1.25 Conserved and non-conserved residues mapped onto the structure of human Armet

Graphical representation of conserved residues (green) and non-conserved residues (yellow) in vertebrate Armets.

Figure 1.26 Conserved/non-conserved residues with potential ligand binding residues

- 59 conserved residues that do not appear to bind: green
- 32 conserved residues that do potentially bind: blue
- 38 non-conserved residues that do not appear to bind: yellow
- 29 non-conserved residues that do potentially bind: red

Chapter 2 - Transcripts of the Unfolded Protein Response in the Pea Aphid

Literature Review:

Aphids

Aphids are insects of the superfamily Aphidoidea within the order Hemiptera. Within the order Hemiptera, commonly known as true bugs, there are estimates of 50,000-80,000 species, all with a common arrangement of sucking mouthparts. These include, for example, insects such as cicadas, planthoppers, and shield bugs besides aphids (Polhemus et al., 2008). Aphids rely on their saliva to feed from a host plant's phloem sap utilizing a piercing and sucking action. There are over 4,000 species of aphids, and many of them feed on multiple host plants (Jaouannet et al., 2014). In terrestrial plants, there is essentially no part of the plant that is not attacked by an aphid, either above or below ground. Feeding on leaves, roots, and even bark, aphids, such as *Rhopalosiphum maidis* (corn aphid) and *Aphis glycines* (soybean aphid), have evolved into significant agricultural pests (Minks et al., 1989). Aphids commonly studied in laboratory settings include *Myzus persicae* (green peach aphid), *Diuraphis noxia* (Russian wheat aphid) and *Acyrthosiphon pisum* (pea aphid) due to their sequenced genomes.

Aphid species have host specificity ranging from strict monophagy, i.e., the grape phylloxera (*Daktulosphaira vitifoliae*), to polyphagy, i.e., the green peach aphid (*Myzus persicae*), whose summer generations can develop on an exceedingly wide range of host plant species (Dixon 1987). Host plants for pea aphids include some legumes such as alfalfa, pea, clover, and broad bean plants (Blackman et al., 2000). There are more than 20 legume genera known to host pea aphids, however the entire host plant range is undetermined. The fava bean, *Vicia faba*, is commonly used to maintain laboratory insects.

Phloem sap is fed on by means of high pressure from within the sieve elements using an elongated stylet that pierces the plant tissues, probing to find the phloem sap while injecting saliva (Dinant et al., 2010). When the stylets have reached the phloem flow, the antennae fold back as an indication of feeding (Darcy et al., 2000). A cartoon diagram of a pea aphid feeding on a sieve element with its stylet is seen in Figure 2.1.

47

Pea aphid: Acyrthosiphon pisum

The pea aphid is significant scientifically because the genome is known (International Aphid Genomics Consortium, 2010) and due to its size. As the largest aphid commonly maintained in laboratories, it is able to be dissected more easily than other aphid species (Polhemus et al., 2008). It can be maintained easily in a laboratory setting. Although proteins that interact with plant defenses are well-characterized for pathogens such as bacteria, oomycetes, and nematodes, the equivalent molecules in aphids and other phloem-feeders are not well characterized but are being studied. For example in "Immunity and other defenses in pea aphids, Acyrthosiphon pisum," Gerardo et al. (2010) researchers have initiated studies on heat shock proteins and proteins of immunity; however no lab has identified members of the UPR.

Female pea aphids lay fertilized eggs in autumn that hatch the following spring. Of the hatched nymphs, they are all females, which undergo four molts before they reach sexual maturity (Simon et al., 2010). At sexual maturity, they begin to reproduce by viviparous parthenogenesis, like most aphids (Simon et al., 2010). Each adult female will give birth to 4-12 female nymphs per day, totaling around a hundred in her life cycle (Simon et al., 2010). These develop into mature females in approximately 7-10 days. The life span of an adult is about 30 days.

Through predation and parasitism, the highest population density of aphids during early summer begins to decrease where the lengthening of night triggers the production of one generation of sexual males and oviparous females. Once inseminated, the females lay eggs in the autumn to restart the aphid life cycle (Simon et al., 2010).

In pea aphids two morphs exist, winged and wingless. The winged morphs may be triggered by overcrowding and poor food quality and it is then that the winged aphids can colonize other host plants (Braendle et al., 2006). When pea aphids feed on crops such as alfalfa, they can act as vectors for plant viruses that may retard growth, reduce yield, and cause death in the host plant. Aphid feeding on crops such as alfalfa can significantly reduce feed value, where black fungus and sooty mold grows on the honeydew excreted by the aphid, which reduces palatability to livestock (Mulder et al., 2013). The pea aphid is considered the most agronomical detrimental aphid on pea and alfalfa crops (van Emden et al., 2007).

48

Agricultural Threat and Current Pest Management Strategy

According to the Division of Agricultural Sciences and Natural Resources at Oklahoma State University, pea aphids are a significant threat to alfalfa crops, causing toxic effects in the plant and monetary losses estimated at 100 million dollars a year worldwide (Blackman et al., 2000, Mulder et al., 2013). A loss estimate for aphid species throughout the world is approximately 1 billion dollars a year (Blackman et al., 2000). For pea aphids, infestations begin in early March and last through late May in areas that grow alfalfa. States such as Oklahoma, Kansas, Texas, Nebraska, and Iowa are affected by the pea aphid and damage to alfalfa crops range from stunted growth to death when insects are present for several weeks (Mulder et al., 2013).

A genetically modified organism (GMO), namely a wheat crop, to repel aphids has been attempted with failed result (Bruce et al., 2015). The GMO crop failed to repel aphids any more effectively than ordinary crops in a 3 million dollar trial. A wheat crop engineered to emit an odor that deters aphids in the hope of reducing the amount of pesticides required by plants, nicknamed "whiffy wheat," were successful in lab tests, but succumbed to aphids when trialed in the field (Bruce et al., 2015). At a significant cost, the experiment was conducted in the United Kingdom at the Rothamsted Agricultural Institution from 2012 to 2013. Although researchers had hoped to create a strain of wheat capable of deterring aphids from eating the crops and spreading plant viruses and infections, it failed (Bruce et al., 2015).

Current strategies for mitigating pea aphid infestations, according to the 2015 Kansas State University Online Research and Extension Guide, include 12 insecticides and identifies the two most widely used, Chlorpyrifos and Dimate. Harmful pesticides may persist on harvested crops and in the environment, to the detriment of human health and environment. Because current aphid pest strategy is limited to early cutting of crops and population control by pesticides, any new potential pest mitigation solution would be desired.

The Unfolded Protein Response (UPR)

Discovered by Peter Walter in 1994 in yeast, the UPR is an ER response to aggregation of proteins in the secretory pathway (Walter et al., 2011). In eukaryotic cells, secretory and transmembrane proteins are folded and modified in the lumen of the ER (Alberts et al., 2002). Although it is unknown if the UPR is activated during normal protein synthesis, estimates suggest approximately 30% of newly synthesized proteins are rapidly degraded when cells are not under ER stress, possibly as a result of improper protein folding (Schubert et al., 2000). Thus, an increase in the translation of secretory proteins would inflict a major problem for the cell in the absence of the UPR due to an increased aggregation of misfolded proteins.

Contingent on proper folding, proteins are transported to the Golgi apparatus for secretion. Impairment of proper folding can be caused by various factors, such as chemical compounds, mutations in genes involved in ER quality control and increased secretion of proteins, resulting in the accumulation of unfolded or misfolded proteins in the ER, collectively called ER stress (Balch et al., 2008, Schroder et al. 2005). An estimate of the concentration threshold for apoptosis from ER stress due to unfolded proteins is approximately 100 mg/mL (Naidoo et al., 1999, Stevens et al., 1999). Prior to UPR mediated apoptosis at the estimated 100 mg/mL threshold, an unknown concentration of protein aggregation "triggers" the UPR and activates a complex signal transduction pathway that conveys information about the protein folding status in the ER lumen and then deals with the situation.

The UPR's major function is to increase protein folding capacity, therefore decreasing unfolded protein load. However, if this major function cannot be achieved, and the cell is unable to re-establish ER homeostasis, the cells undergo death by UPR mediated apoptosis (Kimura et al., 2010). The activation threshold is unknown but if the claims of Schubert et al. (2000) are correct, and 30% of newly synthesized proteins in the ER are degraded due to improper folding, the value must be higher than 30%. The UPR is likely to be functioning constantly, adjusting in response to physiological conditions as suggested in the paper from Matus et al. (2008), "The Stress Rheostat: An interplay Between the Unfolded Protein Response (UPR) and Autophagy in Neurodegeneration." The authors suggest that the unfolded protein response is not activated in an on/off function but continually changes in regards to stress.

I show a schematic of activation of the UPR in Figure 2.2 when the accumulation of unfolded or misfolded proteins in ER have stimulated the UPR pathway. Glucose-regulated protein 78 (GRP78) binds to the exposed hydrophobic surface area of unfolded or misfolded proteins and because it is no longer binding to its ER membrane-binding partners inositol requiring enzyme 1 (IRE1), activating transcription factor 6 (ATF6), and protein kinase RNA-like ER kinase (PERK), it triggers the downstream events (Schroder et al., 2005). The PERK pathway mediates cell cycle arrest and protein translation attenuation slowing the expression of

50

new non-UPR proteins (Schroder et al., 2005). When IRE1 is activated, it alternative splices xbox binding protein 1 (XBP1) and the spliced form translocates into the nucleus where it activates a set of target genes which increase production of protein disulfide isomerases (PDIs) and chaperones such as heat shock proteins (HSP) (Yoshida et al., 2001, Tigges et al., 2006). An active, Golgi translocated ATF6 is cleaved by proteases into a smaller fragment, called ATF6 p50 (50kDa) (Haze et al., 1999, Ye et al., 2000, Bommiasamy et al., 2009). ATF6 p50, a transcription factor, is translocated to the nucleus, binds to an ERSE element and activates another set of genes such as itself (ATF6) that may or may not overlap with XBP1 target genes (Haze et al., 1999, Ye et al., 2000, Bommiasamy et al., 2009). Acting in a positive feedback loop, the UPR activated gene products include the UPR key regulators themselves such as glucose regulating protein 78 (GRP78), IRE1, ATF6, XBP1 and PERK in addition to proteins that are involved in protein folding, glycosylation, degradation and lipid synthesis, where examples of protein folding components are identified in Table 4 (Schroder et al., 2005). As previously stated, the activated UPR-specific target genes increase protein-folding capacity, however if the UPR cannot rescue the cell from the protein folding mediated ER stress, the cell will undergo apoptosis (Schroder et al., 2005). Of the three pathways, IRE1/XBP1 and ATF6 pathways are UPR-specific, while the PERK pathway is shared with other cellular stress pathways including those involved in amino acid deprivation, infection with double-stranded RNA viruses, and mechanical stress. According to Schroder et al. (2005), the UPR pathway is centralized by the UPR-specific transcriptional events, where detection of the overall UPRspecific transcriptional activation should provide a means to monitor or even quantify levels of UPR activation in cells under ER stress.

Several subsystem processes such as transducers, chaperones, endoplasmic reticulum associated degradation (ERAD), and pro/anti apoptotic functions (Hetz et al., 2013) have been identified in the UPR, where the primary function of ER stress is to induce the expression of ER chaperones, decrease new protein synthesis, and enhance the degradation of proteins accumulated in the ER by way of ERAD within the cytosol.

Unfolded Protein Response Subsystems

Transducers of the UPR

The UPR in mammals and invertebrates is initiated by three ER transmembrane sensors, IRE1, ATF6, and PERK (Sidrauski et al., 1997, Bertolotti et al., 2000, Ron et al., 2007). As seen in Figure 2.2, the three transducers of the UPR modulate downstream responses in an attempt to adapt to and avoid chronic ER stress and ultimately apoptosis. In yeast, IRE1 is the only transducer (Sidrauski et al., 1997, Ron et al., 2007).

Protein Folding & Chaperones of the UPR

The most widely studied components of the UPR are chaperones including glucose regulating proteins, protein disulfide isomerases, calnexin, and calreticulin.

Glucose regulating proteins (GRPs), namely GRP78 (also known as BiP and a HSP70), GRP94 (also known as HSP90B1), GRP170, and GRP75 are stress-inducible molecular chaperones that belong to heat shock protein (HSP) families (Lee 2014). GRPs are found in the ER and regulate protein quality control and metabolic balance (Lee 2014). As chaperones, these GRPs facilitate protein folding and assembly, as well as the export of misfolded proteins for degradation. A well-studied component with chaperone activity, known by multiple names including GRP78 (glucose regulated protein 78), BiP (binding immunoglobulin protein), and HSPA5 (heat shock 70 kDa protein 5) is located in the lumen of the ER (Ting et al., 1988, Hendershot et al., 1994). GRP78 has been shown to bind to newly synthesized proteins as they are translocated into the ER and assists them in subsequent folding. GRP78 is an essential component in translocation across the ER membrane of proteins destined for degradation by the proteasome (Delom et al., 2001). GRP78 is an abundant protein under all growth conditions but it is upregulated under ER stress (Delom et al., 2001). GRP78 can interact with another protein of the UPR, Armet, and can retain Armet in the ER lumen. It can also interact with the transducer IRE1 when the UPR is not yet initiated (Ryoo et al., 2007). Other chaperones that can bind unfolded proteins include GRP94 and GRP170, with the numbers associated corresponding to their molecular masses (Lee 2001).

Both calnexin and calreticulin are ER associated modulators of calcium transport (Camacho et al., 2003), and they aid in maintaining the integrity and homeostasis of the ER under ER stress. Although the molecular mechanisms underlying ER stress-induced apoptosis are not completely understood, evidence suggests that ER and mitochondria cooperate to signal cell death. Calnexin and calreticulin aid in regulation of calcium transfer from the ER to the mitochondria. This regulation is key in maintaining control of pro-survival or pro-death pathways (Malhotra et al., 2013).

Calnexin, a molecular chaperone, aids in the translocation of nascent polypeptides and in the folding and quality control of newly synthesized proteins (Bukau et al., 2000, Fewell et al., 2001, Williams, 2006). Structurally, calnexin is an ER transmembrane protein, with a large luminal domain, and a short cytosolic tail.

Calreticulin is also a molecular chaperone located in the lumen of the ER and plays an important role in the folding of newly synthesized proteins in the ER lumen (Saito et al., 1999). Shown to be an important component in development, calreticulin deficient mice have embryonic lethality, and if the mice survive, possess heart defects (Mesaeli et al., 1999). Calreticulin is also associated with several cancer disease states; its expression is either up or down regulated in particular cancers such as metastatic melanoma, squamous cell carcinoma, and colon cancer (Dissemond et al., 2004, Ogino et al., 2003, Brunagel et al., 2003).

The recognition of misfolded or mutated proteins depends on the detection of substructures within proteins such as exposed hydrophobic regions or free cysteines (unpaired disulfide bonds) in the form of cysteine residues and immature glycans (Williams et al., 2006). In glycan processing, for example, the lectin-type chaperones calnexin/calreticulin provide immature glycoproteins the ability to reach their native conformation (Williams et al., 2006). The UPR has 21 mammalian protein disulfide isomerases, encoded by different genes, including components such as protein disulfide isomerase family member A3 (PDIA3) and CCAATenhancer-binding protein homologous protein (CHOP also known as CEBP) which attempt to allow recovery of disulfide bonds to achieve the correct tertiary structure. The family of protein disulfide isomerases are important in maintaining function and structure in secreted proteins (Wilkinson et al., 2004). The UPR strives to return unfolded proteins back to their native state, and to eliminate the aggregation of misfolded proteins. The family of protein disulfide isomerases, as ER enzymes, catalyzes the formation and breakage of disulfide bonds between cysteine residues within proteins as they fold (Gruber et al., 2006). This allows proteins to refold until the correct arrangement of disulfide bonds occurs, forming the lowest energy minima in their fully folded state. Thus by catalyzing disulfides, protein disulfide isomerases (PDIs) can be considered to be chaperones. PDI functions together with ER oxidoreductase (Ero1) by using the oxidizing power of molecular oxygen to create de novo

53

disulfide bonds in a folding protein (Hatahet et al., 2007). An exchange of disulfide bonds takes place from Ero1 to PDI to the target folding protein, in conjunction with an electron flow in a reverse direction, from target protein to PDI to Ero1.

This process of protein folding is vital to mitigating ER stress returning to homeostasis within the ER. The return of a target protein's functional shape or conformation alleviates stress. Failure to fold back into native structure generally produces inactive proteins, and an over accumulation of these proteins trigger UPR mediated apoptosis (Schroder et al., 2005).

Pro-apoptotic and Anti-apoptotic Signal Induction from the UPR

In contrast to necrosis, which is a form of traumatic cell death that results from acute cellular injury, apoptosis generally confers advantages during an organism's life cycle except in UPR mediated cellular death (Alberts et al., 2008). For example, the differentiation of fingers and toes in a developing human embryo occurs because cells between the fingers apoptose; resulting in digit separation. Unlike necrosis, apoptosis produces cell fragments called apoptotic bodies that phagocytic cells are able to engulf, and quickly remove before the contents of the cell can spill out onto surrounding cells and cause damage (Alberts et al., 2008). While many components are anti-apoptotic, some of the UPR components such as ER nucleus signaling 2 (Ern2), mitogen activated protein kinase 8 (MAPK8), and mitogen activated protein kinase 9 (MAPK9) are involved in inducing apoptosis when the UPR is overwhelmed (Szegezdi et al., 2006, Oslowski et al., 2015).

The UPR is a double edged sword when it comes to apoptosis. When the estimated 100 mg/mL protein aggregation threshold is reached, the UPR can no longer maintain homeostasis, and the fate of the cell shifts towards apoptosis (Tsang et al., 2010). In other words, the UPR is a measurement and response tool for the homeostasis of protein aggregation.

Between 50 and 70 billion cells die each day due to apoptosis in the average human adult although it is unknown how many die due to overwhelming the UPR (Karam et al., 2010). It has also been shown that defective apoptotic processes have been implicated in an extensive variety of diseases. Hyperactive apoptosis can cause atrophy, whereas decreased rates result in uncontrolled cell proliferation, such as cancer (Karam et al., 2010).

ERAD Mediated by Ubiquitination

By biochemically studying fractionated yeast cells, Brodsky and McCracken coined the now widely used term ERAD, while establishing the first *in vitro* system to study ERAD, (McCracken et al., 1996, Werner et al., 1996, Brodsky et al., 1999).

Ubiquitin is a small regulatory protein that has been found in almost all tissues of eukaryotic organisms, not a UPR member itself; however it is utilized by components of the UPR. Ubiquitin directs proteins to cellular compartments, including the proteasome used in ERAD where proteins are recycled and destroyed within the cytosol. Seen in Figure 2.2, the downstream activation of ERAD with IRE1/XBP1 pathway is in concert with the activation of chaperones. Ubiquitin consists of 76 amino acid residues with a C-terminal tail containing seven lysine residues. It is highly conserved among eukaryotic species, from human to yeast, with 96% sequence identity (Kimura et al., 2010). Ubiquination is an enzymatic, protein posttranslational modification process in which the carboxylic acid of the terminal glycine from the di-glycine motif in the activated ubiquitin forms an amide bond to the epsilon amine of the lysine in the modified protein (Amerik et al., 2000). The ubiquination of terminally misfolded proteins, caused by a cascade of enzymatic reactions, marks the protein for ERAD. Following successive addition of ubiquitin molecules to lysine residues of the previously attached ubiquitin, a polyubiquitin chain is formed. After the polyubiquinated protein is produced it is recognized by specific subunits in the 19S capping complexes of the 26S proteasome (Aravind et al., 1998). The protein and attached chain are fed into the central chamber of the 20S core region at the proteolytically active site. Ubiquitin is released for reuse by deubiquinating enzymes before degradation of the protein. However, the proteasomal degradation takes place in the cytoplasm. The ER membrane anchored RING finger containing ubiquitin ligases Hrd1, a UPR component, and non-component Doa10 are the major mediators of substrate ubiquination during ERAD (Vembar et al., 2008). The tail anchored membrane protein Ubc6 as well as Ubc1 and the Cue1 dependent membrane bound Ubc7 are the ubiquitin conjugating enzymes involved in ERAD (Vembar et al., 2008).

Transcription & Translation Factors

To increase the protein folding capacity of the ER, UPR transcription factors such as XBP1, cAMP responsive element binding protein 3 (CREB3), and others, enhance the expression of genes encoding ER-resident chaperones and foldases and promote ER expansion (Bommiasamy et al. 2009, Sriburi et al., 2004).

Translation factors such as eukaryotic translation initiation factor (EIF2A) also play a role in reduction of protein synthesis under ER stress. Protein synthesis is inhibited through PERK-induced phosphorylation of eIF2, a translation factor that when modified, leads to a loss of translation initiation complexes (DuRose et al., 2009, Harding et al., 2000).

Insect UPR Components, Including Armet

Aphids deliver proteins in their saliva to host plants during feeding, and Armet is one of the components in Aphid salivary gland containing a signal secretion peptide (Carolan et al., 2009). Aphid Armet is reported as having intracellular and extracellular roles as in its mammalian counterpart although not specifically in saliva. Wang et al. (2015) characterized the aphid protein, demonstrated that its promoter is responsive to ER stress, and that its extracellular role is as a secreted effector protein that facilitates successful aphid feeding on host plants. By interfering with the expression of Armet, Wang et al. (2015) undermined the compatible interaction between aphids and their host plants.

Although Wang et al. (2015) identified the secretive function of Armet during feeding, they stress that the neurotrophic role of Armet is presumed present as well. In gene knockouts in another insect, namely *D. melanogaster*, it was shown that Armet was essential for development and was lethal to larvae, which may be attributed to the neurotrophic role of Armet (Palgi et al., 2009).

It has been shown that dsRNA injection into the hemolymph of the pea aphid is effective in transcript knockdown of protein C002 (Mutti et al., 2006). The knockdown studies in protein C002 and Armet indicate that the RNAi effect is present in aphids and give traction to possible studies involving dsRNA injections targeted at a UPR component's mRNA.

Working on *D. melanogaster*, UPR has centered on the three transducers. Investigations have shown that one transducer and its cofactor, IRE1 and XBP1, respectively, are essential genes during development of fly cell lines and *in vivo* (Ryoo et al., 2007). These studies while relevant used the ER stress inducer tunicamycin. Other studies have measured survival time also in the presence of the inducer tunicamycin, identifying natural variation among 114 drosophila lines that lend insights into the polymorphisms attributed to have putative roles in ER stress (Chow et al., 2013). One point to be made is that these studies use a compound to measure ER stress.

56

UPR in C. elegans

Transcriptional profiling in *C. elegans* revealed two aspects of the UPR (Shen et al., 2005). The inducible UPR pathway (i-UPR), directs cells to respond to acute environmental stress, whereas the constitutive UPR pathway (c-UPR) is an essential component for normal development (Shen et al., 2005). Components such as PDI and PDI-2 are members of the i-UPR, where IRE-1 and PERK, are members of the c-UPR (Shen et al., 2005). Researchers concluded that in the i-UPR pathway, IRE-1 and its cofactor XBP1 "act in a linear process that dominates transcriptional regulation to reshape the secretory pathway and adjust cellular functions involved in calcium and phospholipid homeostasis, cell proliferation and death, anti-oxidative stress, metabolism, energy generation, cytoskeletal structure, and mitochondrial function" (Shen et al., 2005). The researchers suggest that work in *C. elegans* might provide a missing link between the yeast and the mammalian UPRs.

A strain of mutant *C. elegans*, SJ17, has been identified as having a flaw in the UPR, characterized by expression of hsp-4 gene. Researchers show that the mutants are incapable of inducing hsp-4 when stressed with tunicamycin, a common UPR inducer (Glover-Cutter et al., 2013). The mutants, when treated with DTT and tunicamycin, exhibit slow growth and do not progress beyond the L2 larval stage. The observed deficiency was attributed to the xbp-1, a transcription factor and UPR member (Glover-Cutter et al., 2013).

Cholesterol Regulation

Cholesterol regulation is important in the UPR in mammals. It has been shown that the change of cholesterol and lipid perturbation in biological membranes can influence and indeed activate the UPR (Xie et al., 2006, Volmer et al., 2013). Insects do not synthesize cholesterol and instead obtain it from their diet, where they may modify it, possibly with the components MBTPS1, INSIG1, and SREBF1. In humans, MBTPS1 is a serine protease that activates SREBF1 function. INSIG1 functions in humans by mediating feedback control of cholesterol synthesis and has been shown to block SREBF1 function. SREBF1 functions in humans as a transcriptional activator required for lipid homeostasis where it binds to the sterol regulatory element and effects cholesterol synthesis. Descriptions of these components were found at www.uniprot.org and are based solely on human function. In aphids, these components are may be involved with the modification of cholesterol obtained from diet.

Materials and Methods:

Search for Pea Aphid Putative Orthologs of Human UPR Proteins

The human UPR components studied in this chapter were found by literature review of the following papers: Bertolotti et al. (2000), Ron et al. (2007), Chakrabarti et al. (2011), Hetz et al. (2011), Oslowski et al. (2011), Kuny et al. (2012).

Utilizing BLASTn, human UPR transcripts were used as query sequences to find the putative orthologous transcripts in the pea aphid. This search encompassed the 91 human UPR genes in Table 4 which are color coordinated by function. "Hits" from this search made up my pea aphid UPR list. Several gene duplications in human UPR components corresponded to single genes in the pea aphid. With duplications removed, the final component list for my studies totaled 74 components.

Dissections

120 diet-fed insects and 120 plant-fed insects were dissected as follows by Dr. Chandrasekar Raman in the Reeck lab. Heads dissected were from wingless, asexual pea aphids from the clone LSR1 line. The location of the salivary glands in an aphid head is represented in the cartoon in Figure 2.1. Prior to dissection, the lab bench, dissection slides, and gloved hands of the researcher were cleaned with a solution of 0.1% DEPC treated water, followed by application of RNaseZap (Sigma-Aldrich #R2020). After all surfaces were allowed to dry, 5-10 uL of RNALater was placed on top of a dissection slide. The dissections then followed the method of removing an aphid from its feeding state, placing it into the small amount of RNAlater on the surface of a microscope slide and immediately starting the dissection. Each subsequent aphid was dissected each time in a fresh droplet of RNAlater. The dissection was achieved by using a bent 22 ga needle. After grasping the aphid in forceps, antennae and eyes were removed followed by the decapitation from the exoskeleton and placement of the head into an RNase/DNase-free collection micro centrifuge tube containing 50 μ L of RNAlater. Dissection with the head removal method averaged 1 h for 120 insects.

Diet Feeding

Pea aphids were collected in sterile Petri dishes directly from faba bean plants, *Vicia faba*. These aphids were reared on Akey-Beck diet Table 5 (Akey and Beck, 1971, 1972) for 48

h. The feeding apparatus consisted of a 1 oz container (Dart#100PC) with a thinly stretched piece of Parafilm over the opening. Diet was spread on top of the Parafilm and another Parafilm piece was stretched over the top of the diet enclosing it. After approximately 70 aphids were inside the container was inverted over a yellow piece of paper to attract the aphids to the diet to feed. The feeding ensued by piercing the first layer of Parafilm with their stylets and sucking the diet from between the two layers of Parafilm. A 48 h feeding was conducted, aphids were removed and dissections ensued as detailed above.

RNA Isolation for RNA-seq

Following dissection, immediate RNA isolation was conducted. Prior to any RNA isolation, surface sterilization of all instruments and lab bench tops was performed with RNaseZap.

To the dissected heads, 100 μ L of QIAzol reagent (Qiagen #79306) was added to 120 aphid salivary glands in 50 μ L of RNAlater in a DNase/RNase free 1.5 mL Eppendorf microcentrifuge tube. A rotating pestle (USA Scientific, 1.5 mL microcentrifuge tube pestle) was used to homogenize the glands with a battery powered rotating tissue homogenizer (Argos Technology, Pestle Motor Mixer) for 2-3 min until no tissue remained intact. Following an addition of 900 μ L of QIAzol, and the samples were allowed to stand for 3 min at room temperature. After 3 min, 1 μ L of gDNA Eliminator from an RNeasy Kit (Qiagen #74104) was added to reduce genomic DNA contamination from the aqueous phase during phase separation. The sample was then subjected to vortexing several times with 200 μ L chloroform to ensure even distribution of reagents in the sample. The sample was stored at room temperature for 10 min, followed by centrifugation at 12000 x g for 15 min at 4°C.

Two distinct layers within the sample formed after centrifugation; the top layer was a clear, aqueous layer, with a pink, organic layer on the bottom. The clear layer was transferred into a new, RNase/DNase free 1.5 mL Eppendorf micro-centrifuge tube, and the organic layer was discarded.

Following the sample transfer into the new centrifuge tube, $500 \ \mu L$ of chilled isopropanol was added and was allowed to stand for 10 min at room temperature facilitating the precipitation of RNA. Centrifugation was then performed at 12000 x g for 15 min at 4°C, which formed a pellet of RNA. After removal of the liquid, the RNA pellet was washed twice with 500 μL of

chilled ethanol. After washing, a 15 min air drying at room temperature was utilized to evaporate excess ethanol in the sample.

The dried RNA pellet was subsequently dissolved in 30 μ L of RNase-Free water. (Qiagen #129112) Of that sample, 3 μ L was removed for Bioanalyzer analysis to determine if the RNA quality was suitable for RNA-seq by the Illumina Mi-Seq platform. The reported RNA integrity number for the head RNA isolation for plant-fed and diet-fed states respectively were 5.5 and 5.9. Although a good typical RNA integrity number is higher than 7 on a scale of 1 to 10 with other eukaryotes, insect preparations do not follow that standard and are more closely evaluated by 18s rRNA and 28s rRNA peaks. For insects, the electropherogram as shown in Figures 2.3 and 2.4, the area under the 28s rRNA peak is about two times smaller than 18srRNA indicating good quality. The entire remaining sample was utilized in the generation of the cDNA library.

RNA Isolation from Heads for RNA-seq

As with the salivary gland isolation, RNA was isolated in a similar fashion. After aphids were dissected by removing the antennae and eyes prior to decapitation and placement into RNAlater an additional homogenizing step was used increasing the time to 5 min prior to adding the final volume of QIAzol.

Thermal Cycler Programs for cDNA Library Preparation

The synthesis of the cDNA library conducted at The Integrated Genomics Facility at Kansas State University followed the programs listed below in a thermal cycler:

mRNA denaturation: 65°C for 5 min; hold at 4°C
mRNA elution 1: 80°C for 2 min; hold at 25°C
Elution 2-Frag-Prime: 94°C for 8 min; hold at 4°C
1st strand: 25°C for 10 min; 42°C for 50 min; 70°C for 15 min; hold at 4°C
2nd strand: 16°C for 1h; hold at 16°C
End repair: 30°C for 30 min; hold at 4°C
ATAIL70: 37°C for 30 min; 70°C for 5 min; hold at 4°C
Ligation: 30°C for 10 min
PCR: 98°C for 30 s; (15 cycles of) 98°C for 10 s, 60°C for 30 s, 72°C for 30 s, 72°C for 5

Purification and Fragmentation of mRNA

The Kansas State University Integrated Genomics Facility generated cDNA libraries for RNA-seq analysis. To synthesize the cDNA library, a TruSeq RNA Sample Preparation Kit (Illumina #RS-122-2001) was used. For each feeding type, plant-fed and diet-fed, the total RNA isolated respectively was added to 50 μ L of magnetic RNA Purification Beads that were intended to bind poly-A tails of the mRNA followed by mixing. Following incubation in the thermal cycler under the program *mRNA denaturation*, the sample was allowed to reach 4°C and then incubated at room temperature for 5 min.

To discard the supernant, the tube was then placed on a magnetic stand for 5 min to isolate the RNA-bound magnetic beads. Following a wash with 200 μ L of bead washing buffer, the sample tube containing the beads was placed back on the magnetic tube rack for 5 min. Again with another wash, the supernatant was removed from the sample and discarded in the same fashion.

To the sample tube containing the beads, 50 μ L of elution buffer was added and mixed, followed by an incubation in the thermal cycler with the program *mRNA elution 1*. Once the sample reached 25°C, 50 μ L of bead binding buffer was added and mixed, incubation followed at room temperature for 5 min. Following the same method as before, the tube containing the sample and beads were placed in the magnetic tube stand for 5 min to allow the supernatant to be discarded. Another subsequent was with 200 μ L of bead washing buffer, followed by another 5 min on the magnetic stand again allowed for the removal and discarding of the supernatant. To the beads containing the sample, 19.5 μ L of Elute, Prime, Fragment mix was added and mixed. Incubation with the program *Elution-2-Frag-Prime* in the thermal cycler was utilized to elute RNA from the beads, and after the sample had reached 4°C, it was briefly centrifuged and placed back on the magnetic stand for 5 min. In similar fashion as previously discussed the supernant was removed but then placed into a fresh PCR tube.

Synthesis of First Strand cDNA

To synthesize the first strand cDNA, 17 μ L of the supernatant that contained the fragmented and primed mRNA was removed and placed in a new PCR tube. To this tube 1st Strand Master Mix (+SuperScriptII) was added and mixed and the thermal cycler incubation was

performed under the program *1st Strand*. After the program had completed, the sample tube then contained single stranded cDNA.

Synthesis of Second Strand cDNA

To achieve double stranded cDNA, the above sample was allowed to reach 4°C. To the sample, 25 μ L of 2nd Strand Master Mix was added and mixed. Thermal cycler incubation under the program *2nd Strand* was utilized and following incubation, the tube then contained double stranded cDNA.

Purification of Double Stranded cDNA

To purify the double stranded cDNA, it was allowed to reach room temperature, and it was transferred to a 1.7 mL tube containing 90 μ L of AmpureXP beads with mixing. Thermal incubation for 15 min at room temperature was allowed prior to being placed on a magnetic stand for 5 min. The double strand cDNA was attached to the beads which allowed the supernatant to be removed and discarded. To the beads, 200 μ L of 80% ethanol was added and care was taken to not disturb the beads in the tube during a 30 s incubation. The supernant was discarded in the same fashion previously described. A subsequent washing step was completed as previously described and following the wash the tube was dried for 15 min. After drying an addition of 62.5 μ L of Resuspension buffer was added and the sample was mixed when removed from the magnet. A 2 min incubation at room temperature was performed followed by replacement of the tube on the magnet for 5 min. The tube containing the sample was removed from the magnet and a 60 μ L fraction of purified ds cDNA supernatant was transferred to a new tube.

End Repair and Reaction Clean-up

Once purified double stranded cDNA was isolated, it was necessary to perform an end repair step as well as an overall reaction clean-up. To the purified double stranded cDNA, 40 μ L of end repair mix was added and mixed. The thermal cycler program *End Repair* was utilized and the sample was transferred to a new tube. To this new tube, 160 μ L of AmpureXP beads were added and mixed, followed by 15 min incubation at room temperature. Again the sample was placed on the magnetic stand for 5 min to allow the supernant to be removed and discarded. To the sample tube, 200 μ L of 80% ethanol was again added without disturbing the beads with a

30 s incubation. Once the supernant was removed an ethanol was repeated again followed by air drying for 15 min. Again 20 μ L of Resuspension buffer was added and mixed with room temperature incubation for 2 min. Once incubation was complete, the sample was placed in the magnetic stand for 5 min allowing for a 17.5 μ L fraction of the supernatant to be removed and placed in a fresh PCR tube.

Adenylation of 3' Ends, Adapter Ligation, and Reaction Clean-up

Following the end repair steps and reaction clean up, adenylation of 3' ends and ligation and more clean-up steps were needed post ligation. To begin the adenylation of the 3' end of the cDNA library, 12.5 μ L of A-Tailing Mix was added to the sample and mixed. Thermal cycling program *ATAIL70* was utilized and when the sample had reached 4°C, it was removed. For the Illumina Mi-Seq platform, adapters must be ligated onto the cDNA library so that sequencing can be performed. This ligation was achieved by adding 2.5 μ L of Resuspension buffer and 2.5 μ L of ligation mix to the sample tube with mixing. Following the thermal cycler program Ligation, it was removed, and a 5 μ L aliquot of Stop ligation buffer was added and mixed to the sample tube.

For clean-up of the reaction mixture, another use of 42 μ L of AmpureXP beads was added to the sample followed by mixing and a15 min incubation at room temperature. Following the established procedure the tube was placed on a magnetic stand and the supernatant was removed and discarded. Again without disturbing the beads, 200 μ L of 80% ethanol was added, incubated for 30 s prior to discarding of the supernatant. In the same previously describe fashion, the ethanol wash was repeated followed by a 15 min sample drying time. Post drying, 62.5 μ L of Resuspension buffer was added, mixed, incubated at room temperature for 2 min prior to being placed on a magnetic stand for 5 min. Removal of the 50 μ L supernatant into a new 1.7 mL centrifuge tube followed with the addition of 50 μ L of AmpureXP beads. A second clean-up was performed in the same fashion and the sample was then incubated for 15 min at room temperature prior to being placed back on the magnetic stand for 5 min. Samples were again washed twice with 200 μ L of ethanol and incubated for 30 s prior to drying at room temperature for 15 min. To the sample tube, 22.5 μ L of Resuspension Buffer was added and incubated for 2 min and removing a 20 μ L sample of the supernatant for transfer to a new fresh PCR tube.

DNA Fragment Enrichment

Now that the purified cDNA was 3' polyadenylated and ligand adapted, the cDNA library was enriched by PCR. To the newly formed library, 5 μ L of PCR primer cocktail and 25 μ L of PCR master mix were added with mixing. The subsequent thermal cycling program *PCR* allowed for amplification of the cDNA library.

PCR Product Clean-Up

Post enrichment, the tube was removed from the thermal cycler and clean-up steps were again performed to purify the PCR product. To the tube, 50 μ L of AmpureXP beads were added and mixed, followed by 15 min incubation at room temperature prior to being placed on a magnetic stand. Removal of the supernant allowed the beads to be washed with 200 μ L of 80% ethanol, and incubated for 30 s. Again the supernatant was removed, and the ethanol wash was repeated. A 15 min air drying at room temperature preceded the addition of 32.5 μ L of Resuspension Buffer with mixing and 2 min incubation at room temperature. Following incubation the sample was placed on a magnetic stand for 5 min and 30 μ L of the supernatant was transferred to a new 1.7 mL centrifuge tube. This final volume of the supernatant would be the final cDNA library that was to be sequenced by RNA-seq on the Illumina Mi-Seq platform.

RNA-seq Library Validation and Sequencing

Prior to sequencing, the cDNA libraries were verified by an Agilent Bioanalyzer 2100. Equilibrated at room temperature for 30 min, 25 μ L of DNA dye was added to DNA gel matrix. This solution was centrifuged at 1500 x g for 10 min post mixing of the two components. The 9 μ L sample of Gel-Dye Mix was loaded into a specific well denoted as "G" on a DNA 7500 chip on the priming station.

Subsequent sequencing of the cDNA libraries at IGF-KSU on the Illumina Mi-Seq platform generated the following results:

RNA isolation: dissected head tissues

19,998,120 paired-end reads for the plant-fed cDNA library

10,516,022 paired-end reads for the diet-fed cDNA library.

All reads were 250 bases in length.

RNA-seq Read Mapping

To map the RNA-Seq reads the Assemble program in the software package Geneious was utilized. A full list of the mRNA transcripts used as a "reference genome" has been listed in Table 6. The assemblies of reads were mapped to the reference genome under the Medium-Low Sensitivity setting, which allows 10 gaps per read, and requires 18 consecutive bases to be identical to match a read to the genome. The allowed mismatch percentages for single bases are up to 20%.

RPKM Calculations

For the following calculations of reads per kilobase of exon per million reads mapped (RPKM) are listed below. R_M is the number of reads mapped to a reference sequence, L_T is the length of the reference transcript, and R_T is the total number of RNA-seq reads. Multiplying by 10^9 is a normalization factor. This factor is the mean length of a transcript in the transcriptome (1,000 base pairs) times one million.

$$RPKM = \left(\frac{R_M}{\left(\frac{L_T}{1,000}\right)\left(\frac{R_T}{1,000,000}\right)}\right)$$

$$RPKM = 10^9 * \left(\frac{R_M}{L_T * R_T}\right)$$

An RPKM calculation from a diet fed aphid by head dissection is outlined below for the UPR component Armet.

Armet diet fed RPKM =
$$14.53 = 10^9 * \left(\frac{233}{1,525 * 10,516,022}\right)$$

Results:

In Figure 2.5 alignments of the amino acid sequence of GRP78 and Armet with their respective human orthologs show the level of amino acid residue conservation in two pairs of orthologs. The protein alignment of GRP78/BiP has a pairwise identity of 80.3% and the Armet

alignment has an identity of 46.5%. The e-value from the ortholog BLASTp pea aphid putative ortholog searches for GRP78 and Armet are 0.0 and 5e-42 respectively.

RNA isolated from heads of plant-fed and diet-fed pea aphids was isolated and submitted to the Integrated Genomics Facility at Kansas State University (IGF-KSU) for quality analysis by Agilent 2100 Bioanalyzer.

Bioanalyzer electropherograms of plant and diet-fed aphid RNA, Figure 2.3 & Figure 2.4, respectively, showed RNA isolations with good quality, suitable for RNA-seq cDNA library synthesis. The genomics facility then generated cDNA libraries, analysis of which is shown in Figures 2.6 and 2.7.

Table 4 indicates gene names and descriptions of the 91 human UPR components included in this research. In later tables, the pea aphid putative orthologs maintain the human gene names and descriptions. Some components have been identified by multiple gene names and for this dissertation, only one gene name is provided. An exception to this naming scheme is the identification of 4 canonical component names, which include GRP78, GRP94, PERK, and IRE1 where these identifications are located within the description in later tables.

RNA-Seq validation of transcripts from salivary gland dissections are shown in Table 6 from the combined plant and diet fed libraries. The validation of transcripts showed identification of UPR putative orthologs in pea aphids were present.

Head dissections validated with RNA-Seq reads from plant-fed and diet-fed salivary gland libraries were assembled for each of the 74 pea aphid UPR mRNA transcripts, using each transcript as a "reference genome." Table 7 shows the 74 mRNA transcripts that were utilized. Table 7 also reports the number of reads for each feeding state, transcript length, RPKM, and RPKM fold change as calculated by division of the plant-fed RPKM by the diet-fed RPKM. Transcripts reported by mRNA reference number in Table 7 are organized by the RPKM fold change ratio. The fold changes range from 4.92 to 0.52, with an average of 1.98 and standard deviation of 0.85, with only three ratios being less than 1. The C-terminal 4 residues are shown in Table 7 for each encoded pea aphid protein and those that are known to be ER retention motifs are indicated in yellow.

In Figure 2.8, the RPKM fold change for plant versus diet feeding for the entire pea aphid gene set is shown, as well as the RPKM fold change for UPR components. The mean RPKM fold change value for the entire gene set was 1.61 while the UPR components mean was 1.98. A

student's unpaired T test was utilized to compare the two means and at a 95% confidence interval and the difference was significant using the following data.

	Gene Set	UPR Components
Mean	1.6100	1.9800
SD	0.9085	0.8520
SEM	0.0062	0.1026
Ν	21501	74

Unpaired t test results

P value and statistical significance:

The two-tailed P value equals 0.0007

By conventional criteria, this difference is considered to be extremely statistically significant indicating that there is a difference between the means.

Confidence interval:

The mean of Gene Set minus UPR Components equals -0.37

95% confidence interval of this difference: From -0.6 to -0.2

Figure 2.9 aligns the nucleotide sequences of GRP78 and Armet and the nucleotide evalues after BLASTn pea aphid putative ortholog searches for GRP78 and Armet are 1e-156 and 4e-91 respectively and are used to show examples of putative orthology and locations for possible dsRNA generation.

Discussion:

UPR Activation and "Triggering"

Many literature sources indicate that the UPR is "triggered" when a certain threshold is reached, but my view of the UPR mirrors that of Matus et al. (2008) that the UPR is always on and is not "triggered," although not always functioning at 100% capacity. In other words, there is never a time when the UPR is simply on or off like a light switch but it functions like a rheostat always changing in regards to need.

Statistical Comparison of UPR Components versus the Entire Gene Set

Utilizing a t-test, the comparison of RPKM fold change means from the gene set (1.61) and UPR components (1.98) show that the difference is statistically significant at a 95%

confidence. At 1.61, the gene set's RPKM mean indicates that the entire gene set is upregulated as previously defined in all transcripts in plant feeding versus diet feeding. Until further replication is pursued, this phenomenon may be attributed to the mediation of plant defenses. The importance of this comparison of means is that the UPR components' expression is different from the overall population of the gene set. The increased mean value of RPKM fold change in UPR components confirms the hypothesis that the UPR is upregulated during plant feeding in aphids.

The Presence and Lack of ER Retention Signals

As seen in Table 7, a number of UPR components contain ER retention motifs targeting the encoded protein for the ER lumen. Because the UPR has a wide reach within the cell, not all UPR components must contain an ER retention motif. Components of the UPR occur not only in the ER, some are translocated to the nucleus for signaling and the cytosol for ERAD. It makes sense that many of the components do not possess an ER retention motif when addressing the entirety of the UPR, in comparison to just protein folding which does occur within the ER. This is seen in Table 7 where the chaperone proteins that are found within the lumen of the ER indeed possess a ER retention signal in the pea aphid. It is also apparent that transducers IRE1, PERK, and ATF6 do not contain an ER retention signal, which is logical because they are anchored to the ER membrane.

Analysis of RPKM Ratios

The head is comprised of roughly 50% neural tissue and 50% salivary gland. Because the UPR is present in all tissues, the data derived from head dissections presumably lowers the RPKM ratios from the values that would occur in salivary glands alone. While it is assumed that the salivary gland UPR components are upregulated, the neural tissues should not be affected since there are relatively few signaling components in comparison to saliva components. In other words, I assume that all changes in RPKM values in head RNA stem from salivary gland RNA in plant feeding versus diet feeding.

For an example, if a component of the UPR had a RPKM ratio of 2 in salivary glands, in the presence of 50% neural tissue from a head dissection, the value would be 1.5 for head RNA assuming that neural tissue UPR transcript levels remain unchanged. Therefore, the ratio of

plant-fed to diet-fed RPKM in salivary gland RNA is presumably higher than reported in this work, that is, for RPKM ratios different from 1.0.

Upregulation of the UPR in Plant Feeding

I hypothesized transcripts of the UPR are upregulated in the salivary gland. The use of heads versus salivary glands for this work was performed to lessen RNA degradation. During plant feeding, the increase of UPR RPKM values is attributed to the increased secretion of saliva proteins that activate the UPR. With insights from chapter 3 of this dissertation, upregulation of the UPR and saliva proteins go hand in hand.

All but 3 of the pea aphid transcripts studied had higher expression in plant-fed than in diet-fed heads. The range of the fold change was 4.92 to 0.52 in head RNA isolations. The five highest fold changes were for TOR1A, PPIA, BAX, CALR, and PFDN5 proteins. The components TOR1A, PPIA, CALR, & PFDN5 are chaperones that solidify the hypothesis that the increased secretion of saliva proteins requires further activation of UPR components, namely chaperones. The component BAX is associated with apoptosis and may be increased due to cells activating UPR mediated apoptosis. Because feeding on plants is much more complex than feeding on artificial diets and hence may require more saliva proteins requiring more UPR induction. Plants have defense mechanisms that protect them from invading pathogens or insect pests (Fürstenberg-Hägg et al., 2013), and some pea aphid saliva proteins may help circumvent these systems. In addition to mitigating plant defenses, the proteins of saliva themselves may aid in digestion of host plant proteins, facilitating absorption of nutrients (Fürstenberg-Hägg et al., 2013).

Of the 4 PDI transcripts found, each had a higher RPKM in RNA from plant feeding versus diet feeding giving support to the idea that the UPR is upregulated during plant feeding. It makes sense that the upregulation of PDI transcripts occurs to promote proper disulfide formation in proteins within the ER. As seen in all but three transcripts, the data presented here also coincides with the idea of the UPR being upregulated during plant feeding.

A New Method for Measuring UPR Upregulation

In contrast to studies outlined previously in *C. elegans* (Shen et al., 2005) and *D. melanogaster* (Palgi et al., 2009) using the compound tunicamycin as a method for inducing ER stress, here I have used a natural method of measuring upregulation in UPR components, namely

plant feeding versus diet feeding. This upregulation indicates the presence of ER stress and therefore upregulation of the UPR.

While many studies have been completed with mutant nematodes and variant lines of flies with altered UPR components, I have not found a similar natural induction and measurement of the UPR by feeding. This coupled without the use of tunicamycin induced ER stress may lead to new avenues UPR research in other Hemiptera insects which use saliva to feed on plants with this experimental method.

Comparison of UPR Components versus C. elegans

A comparison to *C. elegans* indicates that feeding of aphids on plants versus diets can mimic the induction of the UPR in nematodes induced with tunicamycin. Fold changes seen for my natural method of UPR induction *via* plant feeding range from 4.92 to 0.52 with an average fold change of 1.98. The non-natural tunicamycin UPR induction measured in Shen et al. (2005) possesses a range of fold changes from 4.94 to 0.98 with an average of 1.67. When comparing these means by T-test, the difference of means is statistically significant, however the ranges of upregulation are extremely close indicating that this method of natural induction of the UPR by feeding is valid and comparable to established ER stress induction methods.

Although the list from Shen et al. (2005) contained different components from my list, their measurement of induction was similar to my studies. There was a small overlap of components in both of our lists including 12 inducible UPR components and 2 constitutive components identified as putative orthologs in the pea aphid.

Silencing UPR Components and Pesticide Free Pest Mitigation

The long term goal of this research is to gain insight into reducing pea aphid fecundity or causing pea aphid death without the use of pesticides. Documentaring UPR components in the pea aphid may be an important aspect for future dsRNA silencing studies, reducing the viability of the pea aphid.

Obviously the most promising goal is using genetically modified crops to combat the pest without the use of pesticides. Transforming a plant to produce dsRNA against an insect component for transcript knockdown is something that has been achieved (Todd et al., 2008, Liu et al., 2015).

Using genetically modified crops targeting insects is not a new idea. For example, Bt corn does not use dsRNA, but combat pests without the use of pesticides. In Bt corn, a *Bacillus thuringiensis* toxin was inserted which encodes a protein targeting coleopteran or lepidopteran insect pests (Gordon et al., 2007).

Allowing a plant to combat insects with dsRNA is promising, but there might be challenges to be addressed such as the identification of the sequence similarity of targeted UPR components in pea aphids versus humans. Reported on Monsanto's research and development products page (http://www.monsanto.com/products/pages/corn-pipeline.aspx) an example of a dsRNA producing corn crop, knockdowns a target in a rootworm. This corn has been engineered specifically to produce a double-stranded RNA, in this case to inactivate a gene called Snf7 that is essential for moving proteins around in the rootworm (Bolognesi et al., 2012).

A nucleotide alignment shown in Figure 2.9A of the human and pea aphid putative orthologs of the canonical component GRP78/BiP showed a 65.8% pairwise identity between the two sequences. But choosing a region of sequence targeted toward pea aphids without targeting humans can be achieved as indicated in the figure in red boxes. The typical length of dsRNA is 19-22 nucleotides long. In off target mRNA transcripts, if 2 or more nucleotides are mismatched with the dsRNA, no off target effects will be seen. This alignment and evaluation of nucleotide sequences is crucial in ensuring that researchers do not target human or non-target insect transcripts with transgenic crops. While a transgenic crop could theoretically naturally evolve to target a human or another insect over thousands or hundreds of thousands of years, it is not likely.

A non-canonical component, Armet in a similar nucleotide alignment shown in Figure 2.9B shows a pairwise identity of 48.8% It too could be utilized as a good target for pest mitigation with a sequences identified in the figure that could be used for pea aphid silencing.

Both examples above for knockdown studies do not account for any other off target silencing effects, and further nucleotide (BLASTn) searches of the final dsRNA would need to be completed. This search ensures that the nucleotides that are chosen for the dsRNA do not share sequence similarity to other human mRNA sequences.

Another challenge to address is the uptake of the dsRNA itself. It is unclear if a dsRNA in a crop would have uptake into the hemolymph by way of the gut. A major hurdle to first address is the delivery of dsRNA by feeding measuring its efficacy. Without uptake into the

hemolymph dsRNA will not have any effect on tissues other than the gut which may not kill or reduce aphid fecundity.

To choose a component for knockdown studies, multiple approaches may be used. The least economical method is to test all 91 components with dsRNA feeding studies, where each dsRNA is contained within a diet evaluating fecundity and longevity. A better method may be to knockdown chaperones, evaluating aphid fecundity and lifespan for the components of the UPR that have been the most widely researched in other organisms. Lastly, I would propose a method that encompasses some of the earlier two methods. Knockdown of chaperones and at least one component from each subsystem individually or in concert with other targets, may give the best insights into future targets for silencing experiments and transgenic plant production. In any case, my work presented here in conjunction with any of the above methods could give good insight into the importance of the UPR on plant feeding insects.

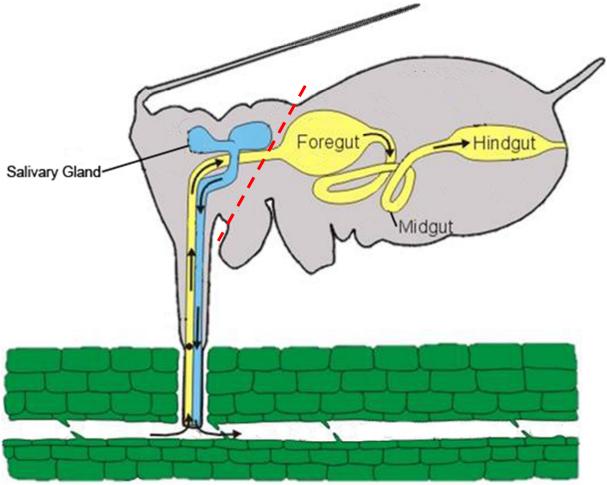
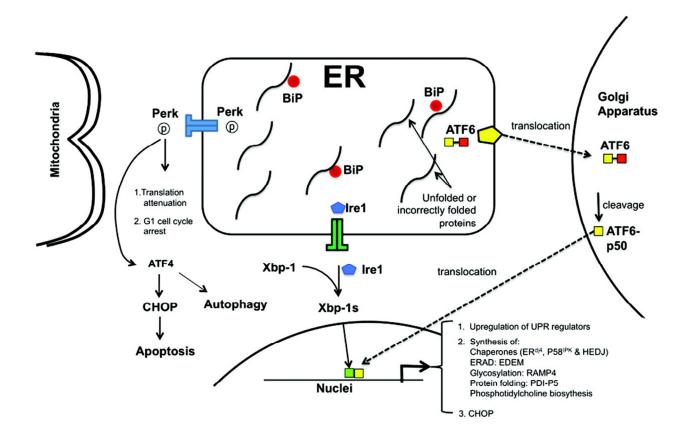



Figure 2.1 Cross section of pea aphid feeding on phloem element

Image obtained from D'Arcy et al. (2000) from a Google image search, originally originating from The American Phytopathological Society retrieved at: www.apsnet.org, modified for this dissertation. The location of dissection for head removal in RNA isolations is indicated by the red dotted line.

Figure 2.2 Schematic of the UPR pathway activated by the accumulation of unfolded or incorrectly folded proteins, by sequestering BiP

Reprinted with permission from Du, Z., Treiber, D., McCoy, R.E. Unfolded Protein Response (UPR) During CHO Cell Production Culture. Developments in Biotechnology and Bioprocessing. American Chemical Society. Copyright (2013) American Chemical Society.

Table 4 List of 91 human UPR components with descriptions

List of 91 Human UPR gene names & descriptions. Color coordinated by function.

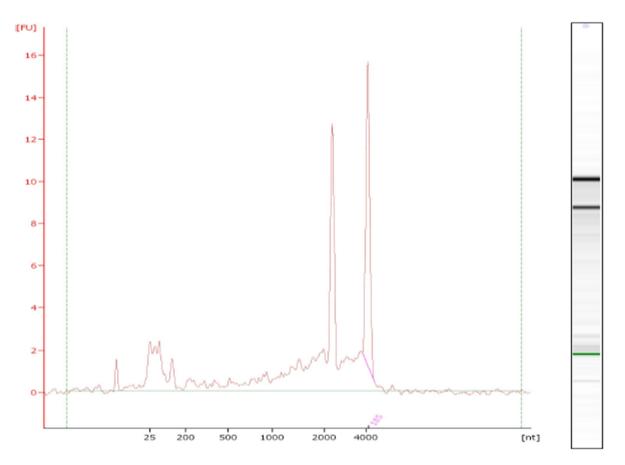
ERAD	Brown	
Ubiquination	Purple	
Cholesterol	Gray	
Transducers	Green	
Apoptosis	Red	
Transcription	Blue	
Translation	Orange	
Protein Folding	Yellow	

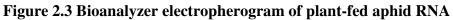
Gene Name	Description
AMFR	Autocrine motility factor receptor, E3 ubiquitin protein ligase
ARMET	Mesencephalic astrocyte derived neurotrophic factor
ATF4	Activating transcription factor 4
ATF6A	Activating transcription factor 6 alpha
ATF6B	Activating transcription factor 6 beta
BAX	BCL2-associated X protein
CALR	Calreticulin
CANX	Calnexin
CCT4	Chaperonin containing TCP1 subunint 4
CCT7	Chaperonin containing TCP1 subunint 7
CEBPD	CCAAT/enhancer binding protein
CREB3	cAMP responsive element binding protein 3
CREB3L3	cAMP responsive element binding protein 3-like 3
DDIT3	DNA damage inducible transcript 3
DERL1	Derlin 1
DERL2	Derlin 2
DNAJB2	DnaJ (Hsp40) homolog subfamily B member 2
DNAJB9	DnaJ (Hsp40) homolog subfamily B member 9
DNAJC10	DnaJ (Hsp40) homolog subfamily C member 10
DNAJC3	DnaJ (Hsp40) homolog subfamily C member 3
DNAJC4	DnaJ (Hsp40) homolog subfamily C member 4
EDEM1	ER degradation enhancer, mannosidase alpha-like 1
EDEM3	ER degradation enhancer, mannosidase alpha-like 3
EIF2A	Eukaryotic intiation factor 2 alpha
EIF2AK3	Eukaryotic intiation factor 2 alpha kinase 3 (PERK)
EIF2B	Eukaryotic intiation factor 2 beta
ERN1	Inositol-requiring enzyme 1 (IRE1)
ERN2	Endoplasmic reticulum to nucleus signaling 2 (IRE1B)
ERO1	Endoplasmic oxidoreductin 1
ERO1L	Endoplasmic oxidoreductin 1 like
ERO1LB	Endoplasmic oxidoreductin 1 like beta

ERAD	Brown	
Ubiquination	Purple	
Cholesterol	Gray	
Transducers	Green	
Apoptosis	Red	
Transcription	Blue	
Translation	Orange	
Protein Folding	Yellow	

Gene Name	Description
ERP44	Endoplasmic reticulum protein 44
FBXO6	F-box protein 6
GANAB	Glucosidase alpha neutral AB
GANC	Gulcosidase alpha neutral C
GRP78	Glucose regulating protein 78kDa
GRP75	Glucose regulating protein 75kDa
GRP170	Glucose regulating protein 170kDa
HERPUD1	Homocysteine-inducible ER stress-inducible, ubiquitin-like domain member 1
HSP90B1	Heat shock protein 90kDa beta (GRP94) member 1
HSPA1B	Heat shock protein 1B
HSPA1L	Heat shock 70kDa protein 1-like
HSPA2	Heat shock 70kDa protein 2
HSPA4	Heat shock 70kDa protein 4
HSPA4L	Heat shock protein 4-like
HSPH1	Heat shock 105kDa/110kDa protein 1
HTRA2	HtrA serine peptidase 2
HTRA4	HtrA serine peptidase 4
INSIG1	Insulin induced gene 1
INSIG2	Insulin induced gene 2
MAPK10	Mitogen activated protein kinase 10
MAPK8	Mitogen activated protein kinase 8
MAPK9	Mitogen activated protein kinase 9
MBTPS1	Membrane-bound transcription factor peptidase, site 1
MBTPS2	Membrane-bound transcription factor peptidase, site 2
NPLOC4	Nuclear protein localization 4 homolog
NUCB1	Nucleobindin 1
OS9	Osteosarcoma amplified 9
PDIA	Protein disulfide isomerase
PDIA3	Protein disulfide isomerase A, member 3
PDIA5	Protein disulfide isomerase A, member 5
PDIA6	Protein disulfide isomerase A, member 6

ERAD	Brown
Ubiquination	Purple
Cholesterol	Gray
Transducers	Green
Apoptosis	Red
Transcription	Blue
Translation	Orange
Protein Folding	Yellow


Gene Name	Description
PFDN2	Prefoldin subunit 2
PFDN5	Prefoldin subunit 5
PPIA	Peptidylprolyl isomerase A
PPP1R15A	Protein phosphatase 1, regulatory subunit 15A
PRKCSH	Protein kinase C substrate 80K-H
RNF139	Ring finger protein 139
RNF5	Ring finger protein 5, E3 ubiquitin protein ligase
RPN1	Ribophorin 1
SCAP	SREBF chaperone
SEC62	SEC62 homolog (S. cerevisiae)
SEC63	SEC63 homolog (S. cerevisiae)
SEL1L	Sel-1 suppressor of lin-12-like
SELS	VIMP VCP-interacting membrane protein
SERP1	Stress-associated endoplasmic reticulum protein 1
SIL1	SIL1 homolog, ER chaperone (S. cerevisiae)
SREBF1	Sterol regulatory element binding transcription factor 1
SREBF2	Sterol regulatory element binding transcription factor 2
SYVN1	Synovial apoptosis inhibitor 1
TCP1	T-complex 1
TOR1A	Torsin family 1, member A
TRAF2	TNF receptor-associated factor 2
UBE2G2	Ubiquitin-conjugating enzyme E2G 2
UBXN4	UBX domain protein 4
UFD1L	Ubiquitin fusion degradation 1 like
UGGT1	UDP-glucose glycoprotein glucosyltransferase 1
UGGT2	UDP-glucose glycoprotein glucosyltransferase 2
USP14	Ubiquitin specific peptidase 14
VCP	Valosin containing protein
XBP1	X-box binding protein 1


ERAD	Brown
Ubiquination	Purple
Cholesterol	Gray
Transducers	Green
Apoptosis	Red
Transcription	Blue
Translation	Orange
Protein Folding	Yellow

Essential Amino acids:		
L-Arginine HCl	12.5 mM	
L-Histidine	7.5 mM	
L-Isolucine	7.5 mM	
L-Leucine	7.5 mM	
L-Lysine HCl	7.5 mM	
L-Methionine	2.5 mM	
L-Phenylalanine	2.5 mM	
L-Threonine	7.5 mM	
L-Tryptophan	2.5 mM	
L-Valine	7.5 mM	
Nonessential amino a	<u>cids:</u>	
L-Alanine	5 mM	
L-Asparagine	12.5 mM	
L-Aspartic acid	12.5 mM	
L-Cysteine HCl	2.5 mM	
L-Cysteine	0.2 mM	
L-Glutamic acid	7.5 mM	
L-Glutamine	15 mM	
Glycine	1 mM	
L-Proline	5 mM	
L-Serine	5 mM	
L-Tyrosine	0.5 mM	
Gamma amino butyric acid	2 mM	

Table 5 Artificial diet (Akey and Beck 1971, 1972)

Pea aphids were fed for 48 h on this artificial diet, which is referred as the Akey/Beck diet throughout this dissertation.

RNA isolated from plant-fed reared pea aphids were analyzed on an Agilent 2100 Bioanalyzer for determination of RNA quality.

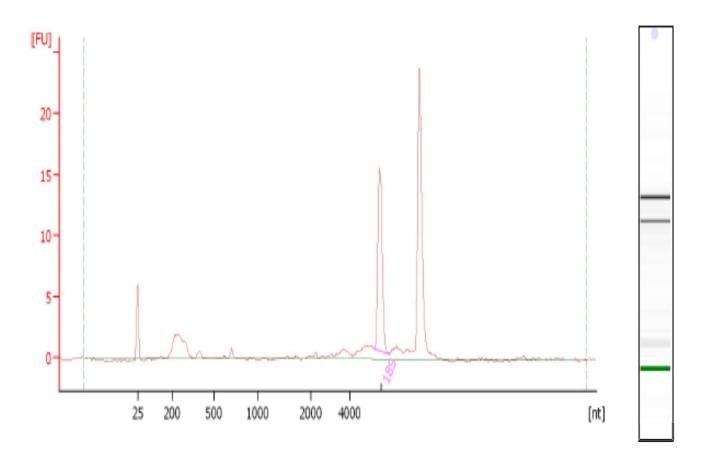


Figure 2.4 Bioanalyzer electropherogram of diet-fed aphid RNA

RNA isolated from diet-fed reared pea aphids were analyzed on an Agilent 2100 Bioanalyzer for determination of RNA quality.

Table 6 Verification of reads with salivary gland dissections

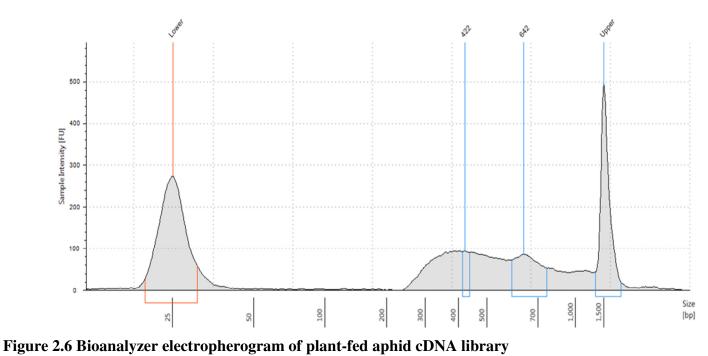
Reads generated by RNA-seq were mapped to each individual transcript open reading frame as a "reference genome." The number of salivary gland reads and RPKM values, calculated as described in the text are given for each transcript. Color coding of each transcript is continued.

NCBI mRNA	Gene		Salivary Gland	
Identification	Name Tra	Transcript	Isolation	
		Length	Reads	00/04
(aphid)	(human)		Mapped	RPKM
XM_003242736.1	AMFR	4407	3893	5.93
XM_003247466.1	ATF4	2337	13714	33.75
XM_003245077.1	ATF6A	1935	1238	3.66
XM_001948762.2	BAX	1626	1105	4.18
XM_003240040.1	BiP	2911	104431	203.28
XM_001945770.2	CALR	2299	104161	231.58
XM_001948045.2	CANX	5205	21792	27.53
XM_001948927.2	CCT4	2594	9451	22.81
XM_003246689.1	CCT7	2500	11122	27.01
XM_001949174.2	Cebpd	4415	2822	4.50
XM_001951715.2	CREB3	2970	18938	42.35
XM_003246689.2	DDIT3	1954	21	0.10
XM_001951549.2	DERL1	1625	10438	35.45
NM_001162746.2	DERL2	3033	8328	17.57
XM_003247556.1	DNAJB2	1226	6176	28.04
XM_001949024.1	DNAJB9	1954	5960	17.26
NM_001162097.2	DNAJC3	3137	19279	38.80
XM_001946233.1	DNAJC4	1010	1199	6.56
XM_001945860.2	EDEM1	3269	7187	14.61
XM_003245436.1	EIF2A	1947	2831	8.38
XM_001942883.2	EIF2B	1267	8658	38.06
XM_001951459.2	ERO1	1425	2224	9.99
XM_001950428.2	ERP44	3318	26043	50.78
XM_001943249.2	FBXO6	2466	2178	5.29
XM_003244000.1	GANAB	4148	8493	13.93
XM_001946431	GRP170	4478	16031	25.70
XM_001948031	GRP75	3605	68637	1810.51
XM_001950766.2	HERPUD1	2335	8970	25.16
XM_001948902.2	HSP90B1	3358	65238	126.68
XM_001951172.2	HSPA1L	3316	206274	333.89
XM_001951757.2	HSPA4	3376	14161	26.41
XM_001945735.2	HTRA2	1706	4923	17.77
XM_003242717.1	HTRA4	1438	157	0.67
XM_001944194.2	INSIG1	1797	459	1.54
XM_001943638.2	IRE1	3782	21515	35.27
XM_001949506.2	MANF	1525	9752	44.09
XM_003242827.1	MAPK8	2740	6248	14.26


NCBI mRNA	Gene		Salivary Gland		
Identification	Name	Transcript	Isola	Isolation	
(aphid)	(human)	Length	Reads	RPKM	
(aprila)	(numan)		Mapped		
XM_001952362.2	MBTPS1	4002	3988	6.61	
XM_001950402.2	MBTPS2	2577	1553	4.15	
XM_001951793.2	NPLOC4	2487	3671	9.46	
XM_001946280.2	NUCB1	2921	6620	14.23	
XM_001944320.2	OS9	1374	13251	59.09	
XM_008184943.1	PDIA	2931	27463	67.27	
XM_001950371.2	PDIA3	2212	28283	76.73	
XM_008188836.1	PDIA5	824	21005	2424.06	
XM_001948267.2	PDIA6	2357	21648	873.39	
XM_003245614.1	PERK	3862	2503	4.29	
XM_003240262.1	PFDN2	1478	21	0.10	
XM_001162260.2	PFDN5	1236	3137	14.01	
XM_001945068.2	PPIA	1029	22085	104.79	
XM_001945556.3	PPP1R15A	1291	21	0.10	
XM_001948968.2	PRKCSH	2174	9543	29.80	
XM_001943758.2	RNF139	4454	2757	4.30	
XM_001950468	RNF5	1352	21	0.10	
XM_003243279.1	RPN1	3911	10474	17.25	
XM_003242865.1	SCAP	4722	4680	6.75	
XM_001949921.2	SEC62	2131	10387	30.93	
XM_003242649.1	SEC63	3199	13884	27.25	
XM_003240171.1	SEL1L	3841	15650	28.40	
XM_003248234.1	SELS	3849	1017	1.79	
XM_001946233.1	SERP1	3269	7775	15.58	
XM_001943931.2	SIL1	2255	10602	32.68	
XM_001947517.2	SREBF1	4166	2920	4.75	
XM_001943033.2	TCP1	2077	7795	24.61	
XM 001946078.2	TOR1A	3134	927	2.03	
XM 001948320.2	TRAF2	2299	2308	6.41	
NM_001162605.1	UBE2G2	985	12436	46.50	
XM 003241322.1	UBXN4	3255	4478	8.55	
 XM_001945406.2	UFD1L	1616	1981	8.23	
 XM_001948648.2	UGGT1	21726	20929	6.74	
 XM_001944664.2	UGGT2	5251	11437	14.69	
 XM 003244618.1	USP14	2362	5532	13.97	
XM 001948341.2	VCP	2787	1844	4.32	
XM 003248521.1	XBP1	4027	16392	28.47	

ERAD	Brown
Ubiquination	Purple
Cholesterol	Gray
Transducers	Green
Apoptosis	Red
Transcription	Blue
Translation	Orange
Protein Folding	Yellow

Table 7 Comparative analysis of 74 UPR in diet and plant-fed libraries by RNA-seq


Reads generated by RNA-seq were mapped to each individual transcript open reading frame as a "reference genome". Salivary gland RPKM values as well as head RPKM and fold changes values, calculated as described in the text. ER retention motifs are indicated in yellow if possessed by the pea aphid proteins encoded by the represented mRNAs.

		UPR C	omponer	its							
NCBI mRNA				Salivary Gland				Head Isolation			Aphid C-
Identification	Gene Name	Description (human)	Transcript	Isola	tion	Diet I	Fed	Plant	Fed	RPKM Fold	terminal
(aphid)	(human)		Length	Reads Mapped	RPKM	Reads Mapped	RPKM	Reads Mapped	RPKM	Change	Tetra Peptide
XM_003248234.1	SELS	sel-1 suppressor of lin-12-like	3849	1017	1.79	0	0.00	483	6.27	~	MRER
XM_001946078.2	TOR1A	torsin family 1, member A (torsin A)	3134	927	2.03	14	0.42	131	2.09	4.920	SNLI
XM_001945068.2	PPIA	peptidylprolyl isomerase A (cyclophilin A)	1029	22085	104.79	1091	100.82	9901	481.14	4.772	GQLS
XM_001948762.2	BAX	BCL2-associated X protein	1626	1105	4.18	25	1.46	172	5.29	3.618	SVFR
XM_001945770.2	CALR	Calreticulin	2299	104161	231.58	2067	85.50	13497	293.57	3.434	HDEL
XM_001162260.2 XM_001951793.2	PFDN5 NPLOC4	prefoldin subunit 5 nuclear protein localization 4 homolog	1236 2487	3137 3671	14.01 9.46	118 98	9.08 3.75	755 627	30.54 12.61	3.365 3.364	TENK RDIN
XM_001949024.1	DNAJB9	DnaJ (Hsp40) homolog, subfamily B, member 9	1954	5960	17.26	251	12.22	1536	39.31	3.218	DTLP
XM 003246689.1	CCT7	chaperonin containing TCP1 subunit 7	2500	11122	27.01	398	15.14	2341	46.82	3.093	GRPM
XM_001948267.2	PDIA6	protein disulfide isomerase family A, member 6	2357	21648	65.93	517	20.86	3010	63.86	3.062	KEEL
XM_001950371.2	PDIA3	protein disulfide isomerase family A, member 3	2212	28283	76.73	920	39.55	4876	110.23	2.787	KHEL
	PDIA5	protein disulfide isomerase family A, member 5	824	21005	183.00	599	69.13	3105	188.43	2.726	KHEL
XM_001943033.2	TCP1	t-complex 1	2077	7795	24.61	384	17.58	1981	47.69	2.713	AGEL
XM_001949506.2 XM_003245077.1	MANF ATF6A	Armet Activating transcription factor 6A	1525 1935	9752 1238	44.09 3.66	233 34	14.53 1.67	1190 171	39.02 4.42	2.686 2.645	KEEL LPSY
XM_001948341.2	VCP	valosin containing protein	2787	1238	4.32	61	2.08	304	5.45	2.643	APRS
XM_001948927.2	CCT4	Chaperonin containing TCP1 subunit 4	2594	9451	22.81	402	14.74	1989	38.34	2.602	TRGY
XM 001951757.2	HSPA4	heat shock 70kDa protein 4	3376	14161	26.41	553	15.58	2728	40.41	2.594	GNDA
XM_001948031	GRP75	glucose regulating protein 75	3605	68637	136.68	2924	77.13	12801	177.56	2.302	KDEL
	DERL2	degradation in endoplasmic reticulum protein 2	3033	8328	17.57	252	7.90	1074	17.71	2.241	RQND
	HSP90B1	heat shock protein 90kDa beta (Grp94), member 1	3358	65238	126.68	1326	37.55	5646	84.08	2.239	HDEL
XM_001942883.2	EIF2B	eukaryotic translation initiation factor 2 beta	1267	8658	38.06	464	34.82	1919	75.74	2.175	QLQL
XM_001948045.2	CANX NUCB1	Calnexin	5205	21792	27.53	962	17.58	3939 1236	37.84	2.153 2.083	TRKD
XM_001946280.2 NM 001162097.2	DNAJC3	nucleobindin 1 DnaJ (Hsp40) homolog, subfamily C, member 3	2921 3137	6620 19279	14.23 38.80	312 413	10.16 12.52	1236	21.16 25.68	2.083	NKNQ FNFN
XM 003241322.1	UBXN4	UBX domain protein 4	3255	4478	8.55	149	4.35	581	8.93	2.051	TQQL
XM_003244000.1	GANAB	Glucosidase, Alpha; Neutral AB	4148	8493	13.93	331	7.59	1289	15.54	2.048	ITLL
	MBTPS1	membrane-bound transcription factor peptidase, site 1	4002	3988	6.61	160	3.80	619	7.73	2.034	GYNL
XM_003247466.1	ATF4	Activating transcription factor 4	2337	13714	33.75	804	32.71	3028	64.79	1.980	GLLN
XM_003240040.1	BiP	glucose regulating protein 78	2911	104431	203.28	2058	67.23	7726	132.72	1.974	KDEL
	HERPUD1	homocysteine-inducible, endoplasmic reticulum stress-inducible	2335	8970	25.16	193	7.86	714	15.29	1.945	PDII
XM_003243279.1	RPN1	ribophorin I	3911	10474	17.25	352	8.56	1287	16.46	1.923	TQKN
XM_001950468 XM_001945406.2	RNF5 UFD1L	ring finger protein 5, E3 ubiquitin protein ligase	1352 1616	21 1981	0.10	190 117	13.36 6.88	681 409	25.19 12.66	1.885 1.838	TKKN
XM_003242827.1	MAPK8	ubiquitin fusion degradation 1 like mitogen-activated protein kinase 8	2740	6248	14.26	296	10.27	409 999	12.00	1.838	QPIR
XM 001946233.1	DNAJC4	DnaJ (Hsp40) homolog, subfamily C, member 4	1010	1199	6.56	96	9.04	322	15.94	1.764	IVKK
XM_001946431	GRP170	glucose regulating protein 170	4478	16031	#REF!	330	7.01	1104	12.33	1.759	HTEL
XM_003247556.1	DNAJB2	DnaJ (Hsp40) homolog, subfamily B, member 2	1226	6176	28.04	337	26.14	1116	45.52	1.741	AYGH
XM_003240171.1	SEL1L	Sel-1 suppressor	3841	15650	28.40	417	10.32	1359	17.69	1.714	PQNV
	SEC63	Translocation protein SEC63	3199	13884	27.25	573	17.03	1866	29.17	1.712	DVED
XM_001944320.2	OS9	osteosarcoma amplified 9, endoplasmic reticulum lectin	1374	13251	59.09	202	13.98	657	23.91	1.710	NKYY
XM_001950428.2 XM_001945556.3	ERP44 PPP1R15A	Thioredoxin domain containing protein 4	3318 1291	26043 21	50.78 0.10	592 9163	16.97 674.93	1921 29578	28.95 1145.65	1.706 1.697	KEEL
XM_001949174.2	Cebpd	protein phosphatase 1, regulatory subunit 15A CCAAT/enhancer binding protein delta	4415	21	4.50	317	6.83	1016	1145.65	1.697	PHLQ
	MBTPS2	membrane-bound transcription factor peptidase, site 2	2577	1553	4.15	50	1.85	1610	3.10	1.683	KIIN
	SREBF1	sterol regulatory element binding transcription factor 1	4166	2920	4.75	91	2.08	291	3.49	1.682	SVTD
XM_001951172.2	HSPA1L	heat shock 70kDa protein 1-like	3316	206274	333.89	11929	342.09	37005	558.03	1.631	EEVD
XM_003242865.1	SCAP	sterol regulatory element binding transcription factor chaperone	4722	4680	6.75	152	3.06	466	4.93	1.612	TKED
XM_001943249.2	FBXO6	F-box only protein 6	2466	2178	5.29	117	4.51	358	7.26	1.609	AAEA
_	PRKCSH	protein kinase C substrate 80K-H	2174	9543	29.80	297	12.99	884	20.33	1.565	HDEL
	SEC62	Translocation protein SEC62	2131	10387	30.93	669	29.85	1957	45.92	1.538	AQDT
XM_003245436.1 XM_003248521.1	EIF2A	Eukaryotic translation initiation factor 2 alpha X-box binding protein 1	1947 4027	2831 16392	8.38 28.47	145 584	7.08	419 1677	10.76 20.82	1.520 1.510	NEEE PMQT
	RNF139	ring finger protein 139	4027 4454	2757	4.30	144	3.07	408	4.58	1.510	ADNS
	CREB3	cAMP responsive element binding protein 3	2970	18938	4.30	883	28.27	2484	41.82	1.479	SESY
	USP14	ubiquitin specific peptidase 14 (tRNA-guanine transglycosylase)	2362	5532	13.97	374	15.06	1041	22.04		SVSS
XM_001943931.2	SIL1	SIL1 nucleotide exchange factor	2255	10602	32.68	111	4.68	302	6.70	1.431	PVLE
	AMFR	autocrine motility factor receptor	4407	3893	5.93	289	6.24	764	8.67	1.390	SKTD
XM_003246689.2	DDIT3	DNA-damage-inducible transcript 3 (CHOP)	1954	21	0.10	343	16.69	903	23.11	1.384	
	HTRA2	HtrA serine peptidase 2	1706	4923	17.77	285	15.89	750	21.98	1.384	HSTI
XM_001951459.2	ERO1	ER oxidoreductin protein disulfide isomerase family A, member	1425	2224	9.99 #PEEI	130	8.68	332	11.65	1.343	QLFA
XM_008184943.1 XM 001946233.1	PDIA SERP1	protein disulfide isomerase family A, member Stress-associated endoplasmic reticulum protein 1	2931 3269	27463 7775	#REF! 15.58	2778 185	90.13 5.38	7050 444	120.28 6.79	1.335 1.262	KEEL IRSA
	UBE2G2	ubiquitin-conjugating enzyme E2G 2	985	12436	46.50	1400	135.16	3228	163.87	1.262	PTSK
XM_001948648.2	UGGT1	UDP-glucose glycoprotein glucosyltransferase 1	21726	20929	6.74	3580	15.67	8233	18.95	1.209	FWKQ
XM_001945860.2	EDEM1	ER degradation enhancer, mannosidase alpha-like 1	3269	7187	14.61	193	5.61	443	6.78	1.207	LGAI
XM_001943638.2	IRE1	Inositol requiring enzyme 1	3782	21515	35.27	1611	40.51	3379	44.68	1.103	TSEQ
XM_001944664.2	UGGT2	UdP-glucose glycoprotein glucosyltransferase 2	5251	11437	14.69	450	8.15	938	8.93	1.096	HTEL
XM_003242717.1	HTRA4	HtrA serine peptidase 4	1438	157	0.67	17	1.12	35	1.22	1.083	RKMV
-	TRAF2	TNF receptor-associated factor 2	2299	2308	6.41	117	4.84	232	5.05	1.043	IVAV
	DERL1	degradation in endoplasmic reticulum protein 1	1625	10438	35.45	642	37.57	1245	38.31	1.020	GQQQ
XM_003245614.1 XM 001944194.2	PERK INSIG1	Eukaryotic translation initiation factor 2 alpha kinase 3 insulin induced gene 1	3862	2503	4.29	196	4.83	297	3.85	0.797	KLQK
	UNSIG	Inisann maacea gene t	1797	459	1.54	18	0.95	22	0.61	0.643	GRKS

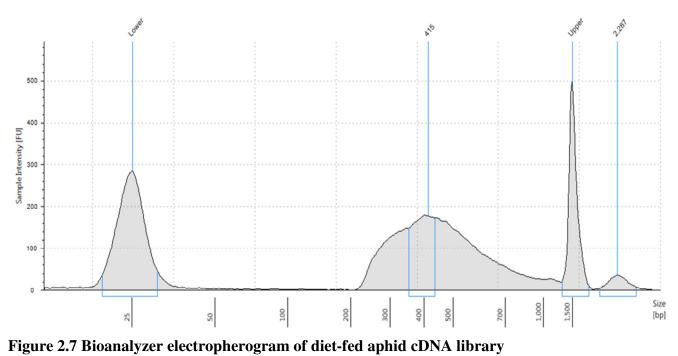
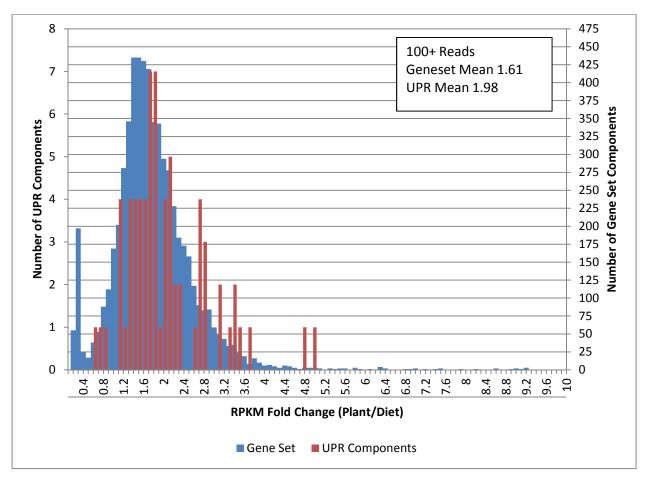
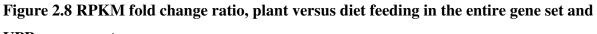


Figure 2.5 Human and pea aphid protein alignments of the proteins Armet and GRP78.


- A. Protein alignment of human and pea aphid GRP78/BiP
- B. Protein alignment of human and pea aphid Armet



Generated cDNA library from isolated RNA from faba bean reared pea aphids analyzed on an Agilent 2100 Bioanalyzer.

Generated cDNA library from isolated RNA from diet reared pea aphids analyzed on an Agilent 2100 Bioanalyzer.

UPR components

RPKM fold change in both UPR components and the entire gene set with a minimum 100 read threshold for UPR components measured by RNA-seq.

Figure 2.9 Human and pea aphid nucleotide alignments of the proteins Armet and GRP78.

- A. Nucleotide alignment of human and pea aphid GRP78/BiP with red boxes indicating location for RNAi effect by generation of dsRNA.
 - The first box identifies a segment of RNA with 5 identities and 14 non-identities out of 19
 - The second box identifies a segment of RNA with 8 identities and 11 nonidentities out of 19
- B. Nucleotide alignment of human and pea aphid Armet with red boxes indicating location for RNAi effect by generation of dsRNA
 - The first box identifies a segment of RNA with 3 similarities out of 19
 - The second box identifies a segment of RNA with 1 similarities out of 19

А.

 Acyrthosiphon pisum Homo sapiens 	/ ¹ ¹⁰ ²⁰ TTTTCC GG TG TTTCC TG A TTC T TTTTC T TTTC GG TG TTTCC TC A TTCC TC TTTTTC TTTG A TTCC TC A TTCC TC TTTG A TTCC TC A TTC	GT GT
1. Acyrthosiphon pisum 2. Homo sapiens	70 80 90 130 130 130 130 130 130 130 130 130 13	A A C T
1. Acyrthosiphon pisum 2. Homo sapiens	140 140 140 140 140 140 140 140 140 140	TC
1. Acyrthosiphon pisum 2. Homo sapiens	200 210 220 230 240 250 250 250 250 250 250 250 250 250 25	G
1. Acyrthosiphon pisum 2. Homo sapiens	270 270 270 370 370 370 370 370 370 CT TA GO A GO A TO CA A A A A TO CA A A A A TO CA A A A A TO CA A A A A A TO CA A A A A A A A A A A A A A A A A A A	330 G A
1. Acyrthosiphon pisum 2. Homo sapiens	30 TGA A C IC GG TAC TST TA ITGG A MITGA THA GC C AC AA GC TA TTCA HC TST TGG A STA IA A G GA C GT G GG C AC GG TGG TC GG C ATC C A C TT G G G G A C AA GC TA C TC C TTC C TC GC TC G T C AA G	AA
1. Acyrthosiphon pisum 2. Homo sapiens	400 410 420 420 420 420 420 420 420 420 420 42	AC
1. Acyrthosiphon pisum 2. Homo sapiens	470 440 440 500 500 510 520 CAAAAA TO COTTA AAAA TO COTTA AAAAA TO COTTA AAAAAAAAAA	AC
1. Acyrthosiphon pisum 2. Homo sapiens	500 500 500 500 500 500 500 500 500 500	ТС
1. Acyrthosiphon pisum 2. Homo sapiens	600 650 650 650 650 650 650 650 650 650	660 A A G A
1. Acyrthosiphon pisum 2. Homo sapiens	GGTA - CA TC CA A A A G TG - TT TGCA CC TG A A G A A A TT TC TGC TA TGGT A TG C A G C (A A G A A A G A A A TT TC TGC C A TGGT A TG A A G C (A A G A TG A A G A A A TT TC TGC C C A TG A TG	AA
1. Acyrthosiphon pisum 2. Homo sapiens	7 ²⁰ AC IGC IGA GC CIAC IGA GC CIAC IGA CA CIAC CIAC	A T A T
1. Acyrthosiphon pisum 2. Homo sapiens	800 BATEG C TC A C G T C A A C A TA C A TA C A TC C A G C A C TA TT G C T C G T C A G C A TC A T	A C
1. Acyrthosiphon pisum 2. Homo sapiens	600 670 800 900 900 920 A A TGA A CCA A CA GO T GO A GO A CA TA A CA GA TA A A GA GA A A A A A A A A A A A	T G
1. Acyrthosiphon pisum 2. Homo sapiens	930 940 950 950 950 950 950 950 950 950 950 95	990 AA AA
 Acyrthosiphon pisum Homo sapiens 		A T A C
 Acyrthosiphon pisum Homo sapiens 	1,000 1,070	A A A A
1. Acyrthosiphon pisum 2. Homo sapiens	1,100 1,100	A T A T
1. Acyrthosiphon pisum 2. Homo sapiens	1,100 1,200 1,210 1,220 1,230 1,240 1,220 1,240 1,240 1,250 1,240 1,250 1,240 1,250 1,240 1,250 1,240 1,250	A A A A 1.320
1. Acyrthosiphon pisum 2. Homo sapiens	CA TGGĂ I TIGTI TA GĂIC TACCA TGĂA GCCITĂ TĂĂĂĂĂĂ GI TĂ LĜGĂĂGĂ I GCIĜĂ TĂ TGĂĂCĂ CA TGGĂ I CIGTI COGICITĂCIA TGĂĂ GOCICIC CAGĂĂĂ GIGI TIGGĂĂGĂ I TO TGĂ Î TIGĂĂ	AA
1. Acyrthosiphon pisum 2. Homo sapiens	1,300 1,370 1,370 1,370 1,370 1,370 1,370 1,370 1,370 1,370 1,370 1,370 1,370 1,370 1,370 A A A A A A A A A A A A A A A A A A A	G T G T
	1300 1400 1410 1420 1430 1440 1450	
1. Acyrthosiphon pisum 2. Homo sapiens	1,300 1,400 1,410 1,420) G G G G
 Acyrthosiphon pisum Homo sapiens Acyrthosiphon pisum Homo sapiens 	TA A Á GA A TA TTITA A TEGA A A GA A C CA TO A C CÍTGO TA TTA A TÓC A GA TO A A GÓTG TA GOTTA A TA A A COLO A GA TO A A GÓTG TA GOTTA COLO A GA TO A A GÓTG TA GOTTA COLO A GA TO A A GÓTG TA GOTTA COLO A A GA TO A A GÓTG TA COLO A A GA TO A A GÓTG TA COLO A A GA TO A A GOTTA COLO A TA C) G G G G G T G T
 Homo sapiens Acyrthosiphon pisum 	TAAAGAATAATTITTAATGGAAAGGAACCATCACCATCACCTATTAATGAGCAGATTAAAGCTTAATTAA	G G G G G T G T A C A C 1,650
 Homo sapiens Acyrthosiphon pisum Homo sapiens Acyrthosiphon pisum 	TAAÁGAATATTTTĂATGGAAAGGAACCATACACTGTATTAATĆA GATACAAGĂTTGAAĞŬTTĂ	AC AC AC AC AC AC AC AC
2. Homo sapiens Acyrthosiphon pisum 2. Homo sapiens Acyrthosiphon pisum 2. Homo sapiens Acyrthosiphon pisum Acyrthosiphon pisum	TA A Á GA A TA TITITA A TIGGA A A GA A C CA TO A C CTÍGGTA ITA A TÓC A GA TO A A GÓ TIGTA A GÓ TIGTA GO TITA Ó TA A A GA Ó ITÓ A A TIGIC A A TIGGCA A GA A GO CA TO C A C CIGTGG CA TA A A C CO A GA TO A A GÓ TIGTA GO 1460 1470 1470 1470 1470 1470 1470 1470 147	SG SG ST AC 1,650 AT AT
2. Homo sapiens 1. Acyrthosiphon pisum 1. Acyrthosiphon pisum	TA A Á GA A TA TITITA A TIGGA A A GA A C CA TO A C CTÍGGTA ITA A TÓC A GA TO A A GÓ TIGTA A GÓ TIGTA GO TITA Ó TA A A GA Ó ITÓ A A TIGIC A A TIGGCA A GA A GO CA TO C A C CIGTGG CA TA A A C CO A GA TO A A GÓ TIGTA GO 1460 1470 1470 1470 1470 1470 1470 1470 147	SG SG ST AC 1,650 AT AT
2. Homo sapiens 1. Acyrthosiphon pisum 2. Homo sapiens	TAAÁGRANATTUTTA TAGGAAGGAACCATCACACTACACACTAGTATTA ATCOAGATACAGÓTGUTAGCUTTATI TAAAGGANTACAAGÓTGUTAGTGUTAGCAAGGAACCATCACCATTCACAGATACAAGÓTGUTAGAGÓTGUTAGCUTTAGAGACTAGAGÓTGUTAGCU 1400 1,500 1,400 1,500 1,400 1,500 1,400 1,500 1,400 1,400 1,400 1,400 1,400 1,400 1,400 1,400 1,400 1,400 1,400 1,400 1,400 1,400 1,400 1,400	SG SG ST AC 1,650 AT AT
2: Homo sapiens 4: Acyrthosiphon pisum 2: Homo sapiens 1: Acyrthosiphon pisum 2: Homo sapiens	TA A Á GA A TA TITI TA A TIGG A A A GA A C CA TA A C A C C TA U TA A TÓC A GA TO A A GÓ TIG TA GO TTA A TITA A TÓC A GA TO A A GÓ TIG TA GO TTA A TITA A TÓC A GA TO A A GÓ TIG TA GO TTA A GO TITA A TITA A TÓC A GA TO A A GÓ TIG TA GO TITA GO TITA A TITA A TÓC A GA TO A A GÓ TIG TA GO GUTA TU 1400 1470 1400 1470 1400 1470 1400 1470 1400 1470 1400 1470 TITA A TÓC C A GA TO A GO TITA A TITA A TÓC A A GO A TO A GO TITA A GO T	SG SG ST AC 1,650 AT AT
 Homo sapiens Acyrthosiphon pisum Homo sapiens 	TAAAGAATATTTTAATGGAAAGGAACCAT A C G TG GTATTAAGGACGTGGTATTAAGACAGAAGGAAGGAAGCATGAAGAAGCATGGCATAAAAACCAGAAGCATGATAAAAAACCAGAACCATGGCATAAAAACCAGAACCATGGCATAAAAACCAGAACCAGAACCAGAACCAAGAACCAAGAAACCAAGAACCAAGAACCAAGAACCAACAAACAACAACAACAACAACCATGATDTTTCCATCTTTTCTCAACAACAACAACAACAACCAACCAACCAACCAACCAACCAACCAACCAACCAACCAACCAACCAACCAACCCCCCCCCCCCC	3 G 3 T 3 T 4 C 4 C 4 C 4 C 4 C 4 C 4 C 5 G 3 G
 Homo sapiens Acyrthosiphon pisum Homo sapiens 	TAAAGGA ATA TITI TAATGGA AAGGA ACCA TA CAC COTGG TAI TAATCA GATA AGA CTGA AGCTTGA TA TAAAGGA ATA TITI TAATGGA AAGGA AAGAAC CATCA CACTGG CATAIA AACCAGA TAAAGA TAAAGA CTTAAAGCTTAAGGA CTTAATA 1400 1470 1400 1470 1400 1470 1470 1470	GG GG GT GG GT GG AC GG AAC AAC AAC GG GG GG GG
 Homo sapiens Acyrthosiphon pisum Homo sapiens 	TAAAGGA ATAA TTUT TAATGGA AAGGA ACCA TA CAC TG TATTAA TCA GATA AGA TTAAAGCT TAATTAATGA TAAAGCT TAATGA TAAAGTAAGA TAAAGA TAAGA	GG GG STI A.C A.C A.C A.C A.C A.C A.C A.C A.C A.C
 Homo sapiens Acyrthosiphon pisum Homo sapiens 	TAA AGA ATA TITI TAA TGG A A GGA AC CA TCA CA TG A CT G TA II TA A TCA AGA TCA AGC TG TAG CG TTA II TA A AGA ATA AGA TCA AGC TGA GGA CGA TGA TCA AGC TGA GGA TCA AGC TTA GA GA TCA AGC TTA AGC	GG GG GT GG ACI GG ACI GG ACI GG ACI GG ACI GG GG GG GG
 Homo sapiens Acyrthosiphon pisum Homo sapiens 	TAA AGA ATA TUT TAATGG A AGG AC CATCA CATCA CATC G TA UTAA TCA AGA TCAA GC TG TAG CATTA TAA AGA ATA TUT TAATGG A AGG AC CATCA CATCA CCTG CATA TAA AC CCAAGA TCAA GC TG TG TG G C GTAT 1,400 1,400 1,400 1,400 1,400 1,400 1,400 1,500 1	
 Homo sapiens Acyrthosiphon pisum Homo sapiens 	TAA AGA ATA TITI TAA TGG A A GG A C CA TC A C C TG C TA IT TA A TC A GG TG A TC A A GC TG TA GG TA GC TT A T TAA AGA ATA TITI TAA TGG A A GG A A C CA TC A C C G G C TA IT TA A TC A GA TC A A GC TG TA GG G TA T 1,400 1,400 1,400 1,400 1,400 1,400 1,5	
 Homo sapiens Acyrthosiphon pisum Homo sapiens 	TAA AGA A TA TUT TAATGG A AGG AC CATC A C A C TG C TA UT TA T CA G C TG AG T CA AG C TG TA G C TTA G TA AG C TG AG C TTA G AG C TG AG C TA AG C TG AG C	GG GG GG GG GG GG GG GG A C A C C GG GG GG GG GG GG GG GG GG GG GG GG
 Homo sapiens Acyrthosiphon pisum Homo sapiens 	TAA AGA A TA TUT TAATGG A A GGA A C A TGA A C A TGA A C TA U TA A TGA A GC TGA GA TGA A GC TGA TU TAA AGA ATA TUT TAATGG A A AGA A C C A TGA C C C G G C TU TA A A C C C A GG TT C A A GC TUG TA G C G TT A 1,400 1,40 1,40 1,40 1,40 1,40 1,40 1,4	
 Homo sapiens Acyrthosiphon pisum Homo sapiens 	$ \begin{array}{c} \mathbf{T} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{C} \mathbf{A} \mathbf{A} \mathbf{C} \mathbf{C} \mathbf{A} \mathbf{T} \mathbf{C} \mathbf{C} \mathbf{A} \mathbf{T} \mathbf{C} \mathbf{C} \mathbf{A} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{T} \mathbf{A} \mathbf{A} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{A} \mathbf{A} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{A} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} C$	
 Homo sapiens Acyrthosiphon pisum Homo sapiens 	TA A A G A A A T LT T T A A G G A A A G A A C C A T A A C G G T G T T A A T C A G A C C T G T A G G T A C T T A T T A T T A A C C C A G A T G A A C C T G A G C G G A C T G G T A G G T A C T A C C C A G A T G A A C C C A G A G C A C C G G A C T G G T T T G G G T T T G G G G G C T A A C A A C A A C A A C A A C C A A C C C A G A G	GG GG GG GG GG GG GG GG GG GG GG GG GG

B.

- 1. Acyrthosiphon pisum 2. Homo sapiens
- Acyrthosiphon pisum
 Homo sapiens
- Acyrthosiphon pisum
 Homo sapiens
- Acyrthosiphon pisum
 Homo sapiens
- 1. Acyrthosiphon pisum 2. Homo sapiens
- 1. Acentration of all and 2. Homo sapiens

Chapter 3 - Saliva Protein Transcripts in the Pea Aphid

Literature Review:

Aphid saliva is pivotal to the feeding of aphids on host plants (Miles 1999; Tjallingii 2006). The aphid's salivary gland secretome and saliva proteome has been sought after by several laboratories (references given below under Proteomics and Transcriptomics sections). The salivary gland secretome is all proteins that are secreted from the salivary gland, whereas the saliva proteome is proteins that are found within saliva. The saliva proteome is a subset of the salivary gland secretome. Researchers have used two primary modes of research, proteomics and transcriptomics, to identify the salivary gland secretome and saliva proteome. Therefore this literature review is divided into these two approaches. Within each, papers are organized by date, but researchers who worked in the pea aphid are listed first.

Proteomics

Carolan et al. 2009 - Acyrthosiphon pisum (Pea Aphid)

In "The Secreted Salivary Proteome of the Pea Aphid *Acyrthosiphon pisum* Characterized by Mass Spectrometry," Carolan et al. (2009) identified a total of 9 proteins in pea aphid saliva using a proteomic GE-LC-MS/MS and LC-MS/MS approach. 40,000 aphids were allowed to feed on diet contained in Parafilm sachets. The 200 mL of diet was diluted to 250 mL with PBS. The diluted diet was concentrated and treated with a clean-up kit to prepare for gel electrophoresis. Using two analytical replicates of 6 pooled collections for SDS-PAGE, the proteins were visualized *via* silver nitrate based stains in semi-reducing conditions. Bands were excised from the gel and subjected to digestion with trypsin. The separated tryptic peptides were subjected to LC-MS/MS and utilizing a TurboSEQUEST algorithm in BioWorks v3.2 identifying transcripts in NCBI's non-redundant database of the pea aphid genome.

Carolan et al. 2011 - Acyrthosiphon pisum (Pea Aphid)

In Carolan et al. (2011), (Predicted Effector Molecules in the Salivary Secretome of the Pea Aphid (*Acyrthosiphon pisum*): a Dual Transcriptomic/Proteomic Approach), the authors utilized a parallel analysis of proteins and transcripts to identify a large list of salivary secretome members. For the proteomic analysis identifying 20 proteins, Carolan utilized aphid salivary

gland dissection and mirrored his previous publication in 2009 with one dimensional analysis, and added the use of two dimensional SDS-PAGE gels with MALDI-TOF mass spectroscopy coupled with MASCOT searches on salivary gland homogenates. Although the proteins identified were from salivary gland homogenates, the proteins reported were previously observed in saliva or to an effector that was secreted by other phytopathogenic organisms such as nematodes and fungi.

The transcriptomic approach was by Reeck's group and will be discussed in the transcriptomic section under Reeck 2011.

Harmel et al. 2008 - Myzus persicae (Green Peach Aphid)

In Harmel et al. (2008), "Identification of Aphid Salivary Proteins: a Proteomic Investigation of *Myzus persicae*," the authors identified 9 proteins and reported the putative orthologs in the pea aphid by accession number, two of which, maltase 2-like (ACYPI009042) and 3-hydroxyacyl-CoA dehydrogenase type-2 (ACYPI56654) were newly identified saliva components. Researchers' primary use of proteomics to identify these components came by either directly in-solution digesting or utilizing a two dimensional SDS-PAGE before trypsin digestion coupled with mass spectroscopy. The use of silver staining allowed visualization of the bands to be digested and analyzed by first excision, destaining, and digestion. After digestion and subsequent LC MS/MS analysis, the Mascot search engine was used to obtain peptide sequences. BLAST searches through pea aphid ESTs allowed the identification of the aforementioned saliva proteins.

Cooper et al. 2010 - Diuraphis noxia (Russian Wheat Aphid)

In Cooper et al. (2010), "Salivary Protein of Russian Wheat Aphid (Hemiptera: Aphididae,)" the authors identified four saliva proteins which were identified as the putative orthologs of pea aphid RNA Helicase (ACYPI007670), pathogen-associated molecular pattern (PAMP) (ACYPI005439), Zinc binding dehydrogenase (ACYPI009182), and Unknown Protein 23 (ACYPI005882). They used three different diets consisting of a pure water diet, amino acid diet, and a sucrose diet. Approximately 450 aphids were placed in each plate to collect saliva. Stylet sheaths remained in the parafilm after rinsing. 25 Plates were pooled which total 11000-11500 aphids and the pooled collections were concentrated. For analysis, both one dimensional SDS-mass spectrometry analysis and two dimensional SDS-mass spectrometry analysis were used in conjunction with Bradford Assays.

Using three diet compositions, including a pure water diet, a 15% sucrose diet, and an amino acid diet (100 mM serine, 100 mM methionine, 100 mM aspartic acid) in 15% sucrose. There was a significant difference in protein amount produced on each diet as indicated below.

<u>Pure water diet</u>: 0.052 +/- 0.02 ng/aphid Sucrose diet: 0.66 +/- 0.09 ng/aphid

Amino acid diet: 0.14 +/- 0.01 ng/aphid

Alkaline phosphatase activity was only detectable in aphid probed sucrose diets but not water, amino acid, or control diets. In gel digests followed by mass spectroscopy and subsequent analysis using MASCOT software led to the determination from fragments of proteins of the four protein's amino acid sequences in the Russian wheat aphid which led to BLAST analysis against the pea aphid EST database, in turn identifying the pea aphid putative orthologs.

Rao et al. 2013 - Sitobion avenae & Metopolophium dirhodum (Grain Aphids)

In Rao et al. (2013), "Proteomic Profiling of Cereal Aphid Saliva Reveals Both Ubiquitous and Adaptive Secreted Proteins," the saliva identified proteins β-galactosidase precursor (ACYPI007650), actin-related protein 3-like (ACYPI000064), unannotated protein (ACYPI000113), and glucose dehydrogenase (ACYPI005582) were identified in saliva from *S. avenae* and *M. dirhodum*. 40,000 aphids' saliva was collected by pooling protein concentrates from 50 diet preparations. Non protein contaminants were removed from the final concentrate using a two dimensional clean-up kit followed by one dimensional SDS-PAGE and visualized with silver staining. Visible protein bands were excised and digested overnight with trypsin, and processed with LC MS/MS. Using the TurboSEQUEST algorithm in BioWorks v3.2 protein sequences were derived which allowed BLAST searches to correlate with pea aphid proteins and subsequent identification of the accession numbers. Of the proteins identified, the four listed above were the only proteins that had not been previously identified in other studies.

Transcriptomics

Reeck et al. in Carolan et al. 2011 - Acyrthosiphon pisum (Pea Aphid)

Utilizing Sanger sequencing, BLAST2GO, and an R-statistic for salivary gland enrichment, transcripts were identified that were enriched in salivary glands and encoded proteins with a signal secretion sequence. The R-statistic is a method developed by Stekel et al. (2000) to identify EST contigs that are abundant in individual tissues, in this case the salivary gland. Transcripts which contain an R-statistic value greater than 7 identify the transcript as enriched in salivary glands. Following BLASTx searches, ACYPI accession numbers were identified for each transcript. In total, 42 components were reported in Carolan et al. (2011) and were considered to be saliva proteome.

Ramsey et al. 2007 - Myzus persicae (Green Peach Aphid)

In Ramsey et al. (2007), "Genomic Resources for *Myzus persicae*: EST sequencing, SNP Identification, and Microarray Design," the authors sequenced from 16 *M. persicae* cDNA libraries to generate 26,669 expressed sequence tags (ESTs). Of those ESTs 3233 were from the salivary gland library, encoding 2242 unigenes of the green peach aphid salivary gland.

To identify proteins of saliva, sequences expressed in the salivary glands that were predicted to have signal peptides were more closely examined. Of the 45 such proteins derived from salivary glands, 15 proteins were predicted to contain an anchor sequence, and therefore excluded from the list of possible saliva proteins. The authors thus proposed 30 proteins of the saliva proteome.

Bos et al. 2010 - Myzus persicae (Green Peach Aphid)

In Bos et al. (2010), "A Functional Genomics Approach Identifies Candidate Effectors from the Aphid Species *Myzus persicae* (Green Peach Aphid)," a pipeline to identify candidate effectors is approached. One such protein, newly identified, was Mp42 (ACYPI010222) using the following methodology. A 5919 EST library from *M. persicae* salivary glands was processed through gene annotation software yielding 3233 protein coding sequences. These sequences were subjected to signal peptide prediction (SignalP3.0) reducing the proteins to 304 which contained a signal peptide. Of those containing signal peptides, a blastp analysis was performed and it removed redundant sequences bringing the total proteins containing a signal peptide to 134. Those peptides were checked for the presence of transmembrane domains (TMHMM v2.0) reducing the results down to 115 predicted secreted proteins. After full length sequences were identified and the presence of polymorphisms within *M. persicae* and other species were

analyzed, the similarities of predicted secreted *A. pisum* salivary gland proteins were compared identifying homologs yielding a pool of 46 candidate effectors. Of those 46 candidates, two were not found in the *A. pisum* indicating that they are unique to *M. persicae*. Multiple candidates were removed because they were exclusive to head dissections, leaving the remaining candidates *Mp1*, *Mp2*, *Mp10*, *Mp30*, *Mp42*, *Mp47*, *Mp50*, and *MpC002*. Of those candidates, *Mp42* was the only orthologous component that had not already been discovered in other laboratories.

Atamian et al. 2012 - Macrosiphum euphorbiae (Potato Aphid)

In Atamian et al. (2012), "In Planta Expression or Delivery of Potato Aphid Macrosiphum euphorbiae Effectors Me10 and Me23 Enhances Aphid Fecundity," interactions between two candidate effectors were found to affect aphid fecundity when overexpressed in the host plant. The authors identify 5 pea aphid putative orthologs from saliva. This line of research establishes another important aspect that could be useful when targeting UPR components in the pea aphid by dsRNA. Both effectors Me10 and Me23 were shown to increase fecundity suggesting that they possess the ability to suppress the host plant defenses on the feeding aphid and both were identified as glutathione peroxidases. While the research focused on Me10 and Me23 due to their ability to elucidate changes in aphid fecundity, Me13, Me17, Me14, Me20, and Me25 had not been previously identified as salivary gland proteins. To achieve these putative orthologs, 200 M. euphorbiae salivary glands were dissected and evaluated with RNAseq. With reciprocal TBLASTX analysis, 551 M. euphorbiae contigs were identified with sequences orthologous to 460 A. pisum transcripts. Of those, signal peptide prediction (SignalP4.0) reduced the number to 125 and of which they were further reduced due to being previously identified by Carolan et al. (2011). There were components that were unable to be identified and Atamian et al. attribute that to gaps in the sequencing of the salivary gland.

Materials and Methods:

Dissections

Aphids head dissections were from wingless, asexual pea aphids from the clone LSR1 line. Previously indicated in Chapter 2, aphids were allowed to feed in the diet-fed and plant-fed states. To test whether transcripts were found in salivary glands of the pea aphid, dissections of salivary glands were also performed. Salivary gland dissections were completed in the following manner by Dr. Raman Chandrasekar. Prior to dissection, the bench, dissection slides, and gloved hands of the researcher were cleaned with a solution of 0.1% DEPC treated water, followed by application of RNaseZap (Sigma-Aldrich #R2020). After all surfaces were allowed to dry, 100-200 uL of RNALater was placed on top of dissection slide. The insect was again placed in the RNAlater on the surface of the slide; grasping the aphid with forceps at the abdomen, the antennae were removed with a small 22ga needle. To remove the exoskeleton from the head of the aphid, a bent 22ga needle was used. With the exoskeleton removed, both pairs of primary and accessory salivary glands were exposed. The isolated pairs of primary and accessory salivary glands were removed and placed in RNase/DNase-free centrifuge tubes containing 50 μ L of RNAlater. Approximately 30 aphids were dissected in the solution of RNAlater before switching to another new slide. Collection of salivary glands took place over 3 or more hours and aphids were placed into sterile petri dishes beside the microscope and not removed directly from their respective feeding state.

RNA Isolation and Sequencing of Heads on Plant & Diet-fed States:

After feeding and dissection, RNA isolations described in chapter two were used to purify RNA. RNA-seq using the same platform as previously indicated through the Integrated Genomics Facility was then utilized to measure and quantify the transcriptional levels of UPR components in both fed states.

Results:

Overall the goal of this study was to identify components predicted to be in pea aphid saliva utilizing all available proteomic and transcriptomic data from other aphid species. It is important to note that annotations from previous researchers were carried over in this study. The term "unannotated protein1" is ambiguous and would be better stated as "unknown protein." However, at this point any manipulation of the annotations would remove the ties to the originating research for each component. This study identifies those putative orthologs by AphidBase identification number, and a compiled list from the proteomic approaches is outlined in Table 8 and transcriptomic approaches in Table 9. With duplications removed, Table 10 shows the entire list from both approaches. RNA isolated from isolated heads or salivary glands of plant-fed and diet-fed insects was isolated and submitted to the Integrated Genomics Facility at Kansas State University (IGF-KSU) for quality analysis by Agilent 2100 Bioanalyzer. The bioanalyzer profiles for plant-fed and Akey-Beck diet-fed states are shown in Figure 2.3 and Figure 2.4, and showed good quality RNA, suitable for RNA-seq cDNA library synthesis. The cDNA library synthesis bioanalyzer profiles are shown in Figure 2.6.

RPKM values on RNA from salivary gland dissections establishing that the transcripts were indeed found within the salivary gland are reported in Table 11. Reported in Table 12 are the RPKM values and RPKM plant-fed to diet-fed ratios from head dissections.

Signal secretion peptides are short N-terminal peptides present in the majority of newly synthesized proteins that are destined towards the secretory pathway. According to statistics available at the SignalP 3.0 website, the average eukaryotic signal peptide is 22 amino acids in length. Anchor peptides function as one would assume, anchoring the newly produced protein to a membrane. The encoded proteins for all studied transcripts were analyzed to predict the presence of a signal secretion peptide, anchor, and ER retention signal. All sequences were processed through the SignalP 3.0 server (http://www.cbs.dtu.dk/services/SignalP-3.0/), and the probabilities that a signal peptide or anchor existed were calculated through the Hidden Markov model within the program. These results indicated in Table 13, show the accession number, description, SignalP3.0 result with cleavage site, and predicted anchor probability, as well as ER retention signals for the encoded proteins. All transcripts are shown to encode a signal peptide which would indicate probable secretion into saliva or other extracellular fluids such as hemolymph.

Analysis of means of RPKM fold change for plant versus diet feeding for the entire pea aphid gene set and salivary components was completed with a T-test. The mean RPKM fold change value for the entire gene set was 1.61 while the salivary components mean was 1.95. A student's unpaired T test was utilized to compare the two means and at a 95% confidence interval and the difference was significant using the following data. A plot representing the gene set and salivary component data is shown in Figure 3.1.

	Gene Set	Salivary Components
Mean	1.6100	1.9500
SD	0.9085	0.8824

SEM	0.0062	0.0802
Ν	21501	121

Unpaired t test results

P value and statistical significance:

The two-tailed P value equals 0.0001

By conventional criteria, this difference is considered to be extremely statistically significant indicating that there is a difference between the means.

Confidence interval:

The mean of Gene Set minus UPR Components equals -0.34

95% confidence interval of this difference: From -0.5 to -0.2

Discussion:

Multifaceted Approach to Identify Salivary gland Secretome Proteins

Work from enzyme assays to the more recent proteomic and transcriptomic approaches have been used to identify secretome components, although no one lab has used all methods and available data coupled with RNA-seq data to attempt to define the full saliva proteome of an aphid. Here I attempt to complete the saliva proteome for the pea aphid. It is important to note that although the proteins represented here are assumed to be in saliva that may not be the case. The only components that can be definitively shown as saliva proteins are those that were studied by analysis of saliva or as in the case of protein C002 and Armet, have been found in plants after aphid feeding. In other words, this work does identify some proteins of saliva, but may be better portrayed as a secretome of the salivary gland, where most of the studied transcripts are likely to be in saliva.

Throughout this chapter one important realization is that this work is a compilation of many researchers that work in different species. By utilizing the sequence data that each researcher has procured whether by proteomic or transcriptomic means, I have been able to build a comprehensive saliva proteome in the pea aphid.

Analysis of Saliva Proteins

After reads were mapped, with the Geneious software suite, RPKM values for each transcript were calculated. These RPKM values were used to generate ratios of plant-fed to diet-

fed RPKM which indicate trends in up and down regulated transcripts. The results of these analyses are found in Table 12. As in Chapter 2, the majority of the transcripts studied had higher expression in plant-fed salivary gland libraries. The range of the fold change was 5.970 to 0.209 in head isolations. The five highest fold changes were for ACYPI54712 (unknown protein), ACYPI009182 (Zinc binding dehydrogenase), ACYPI009625 (EMP24), ACYPI56654 (3-hydroxyacyl-CoA dehydrogenase type-2), and ACYPI007677 (Calreticulin) proteins in head isolations.

In Feng et al. (2014), "Characterization of an Aphid-specific, Cysteine-rich Protein Enriched in Salivary Glands," a pea aphid transcript was studied which was first identified by Carolan et al. (2011). Reported as enriched in salivary glands, the protein was not included in the Carolan et al. (2011) studies as a saliva protein but as a possible member of the salivary gland secretome. This component, identified as the aphid specific cysteine rich protein (ACYPI39568) was analyzed using both a proteomic and transcriptomic approach. The transcript's message was expressed, the protein was purified, and antibodies were also synthesized. The protein sequence was analyzed *via* SignalP3.0 and was found to contain a signal peptide. Immunohistochemistry *via* the antibodies produced were able to locate the high expression of the transcript/protein in the salivary glands. Double stranded RNA for ACYPI39568 was produced for feeding and injection studies in live aphids. It was discovered that aphids had increased transcript levels when feeding on plants than when feeding on an artificial diet. Interestingly the interference of ACYPI39568 expression did not affect the survival rate of aphids on plants.

In Feng et al. (2012), "Polymorphisms in Salivary-gland Transcripts of Russian Wheat Aphid Biotypes 1 and 2," saliva secretome components were analyzed. Although those components were first identified by Carolan et al. (2011), further analyses including nonsynonymous and synonymous mutations were analyzed. Of the 17 sequences, 2 were not able to be annotated. For four transcripts (those encoding a coated-vesicle membrane protein, a peroxidase and the two non-annotatable proteins) there was no polymorphism detected. The other 13 transcripts all had observable polymorphisms between the biotypes at the nucleotide and predicted protein level.

Armet as a Saliva Protein

One of the transcripts that has been studied as a saliva component is Armet, an aphid ortholog addressed in Chapter 1, represented at 2.54 fold higher in plant-fed head libraries in comparison to diet-fed libraries. Armet is secreted into plants during pea aphid feeding (Wang et al., 2015).

Statistical Comparison of Salivary Secretome Components versus the Entire Gene Set

Utilizing a t-test, the comparison of RPKM fold change means from the gene set (1.61) and UPR components (1.95) show that the difference is statistically significant at a 95% confidence. The importance of this comparison of means indicates that the salivary secretome component's expression is different from the overall population of the gene set. The increased mean value of RPKM fold change in salivary components confirms the hypothesis that proteins of saliva are upregulated during plant feeding in aphids.

After close inspection of the top 20 RPKM fold change values in the gene set, an interesting component which appears to be an alternative gene to a component in the saliva component list was discovered. This component, β -galactosidase, putatively identified to a human ortholog of β -galactosidase, was identified by AphidBase ID ACYPI001373. In comparison to the component identified as β -galactosidase (ACYPI007650) in this dissertation as a saliva protein, ACYPI007650 and ACYPI001373 showed a 54.49% identity at the protein level.

Diet-fed Upregulation of Some Saliva Proteins

A total of 15 transcripts were found to have a RPKM fold change ratio under one indicating higher expression in diet-fed aphid heads than in plant-fed heads. The values of RPKM ratio for those 15 components range from 0.209 to 0.985. Those transcripts which expressed RPKM ratios less than one are Unannotated Protein 2, Unannotated Protein 3, M1 zinc metalloprotease, Dipeptidyl carboxypeptidase, Peptidase M1, MCO1, Unknown protein 11, Glucose Dehydrogenase, CLIP-domain serine protease, Zinc-dependent Phospholipase C, Unknown protein 34, Me25, Cadherin, Maltase 2-like, and AHNAK nucleoprotein (desmoyokin).

Protein Disulfide Isomerases

Another interesting point is the presence of protein disulfide isomerases. As reported in Chapter 2, each PDI transcript found, had a higher RPKM in RNA from plant feeding versus diet feeding giving support to the idea that the UPR is upregulated during plant feeding due to increased secretion of salivary proteins. While it doesn't give insight as to the importance or presence of PDIs in saliva, it does show that they are found in salivary gland tissues.

Expectations of Results and Generation of the Largest Saliva Proteome

Data corroborates the expectation that nearly all transcripts would upregulate in plant-fed states due to the fact that aphid feeding on plants is a much more complex method than their feeding on artificial diets. Whereas plants have numerous defense mechanisms that protect them from invading pathogens or insect pests, many pea aphid saliva proteins may help circumvent these systems. As for feeding, it is logical that the fold change is higher in plant-fed states versus diet feeding on many levels. Initially one can assume that the complexity of feeding on another living organism with defense mechanisms versus a petri dish is paramount. Although some components have been found to be inducible under the plant-fed state, it isn't difficult to attribute that increase to mitigation of plant defenses or the digestion of complex nutrients.

One question that may not be answered is why 15 components are not upregulated during plant feeding. While one may assume that all transcripts should be upregulated in plant feeding due to mitigation of plant defenses or the digestion of complex nutrients, there may be instances where some components are not needed for plant feeding versus diet feeding. An example of this may be seen in the component glucose dehydrogenase (ACYPI000986). It is possible that the sugar concentration, 0.5 mM, in the Akey & Beck diet is higher than the physiological sugar levels in the host plant accounting for the increased transcript level in diet fed aphids. This one example is an idea that does not entirely answer the above question, but it may give way for other lines of thought on the diet fed upregulation of the 15 components.

Identification of this "master list" of pea aphid saliva proteins will no doubt continue. My list is by no means a final list of the proteins that encompass saliva. It is also a good starting point for other aphid species. For instance the Russian wheat aphid would be another aphid which is easy to maintain in laboratory settings and although the size of the insect is much smaller than the pea aphid, it would be a good target species for pest mitigation due to its agricultural impact worldwide.

Obviously the goal outlined in Chapter 2 to produce genetically modified crops is also viable with this set of saliva transcripts. As previously indicated in Chapter 2, the most informative yet the least economical approach would be to test fecundity and lifespan knockdown studies with each identified component of this saliva proteome.

The production of a crop targeted at either UPR or saliva components that reduces aphid fecundity or increases mortality would be an agricultural benefit. It is unclear which system, the UPR or saliva proteins will provide the best set of targets for knockdown studies. It may be a combination of both because the UPR is upregulated during the production of the salivary proteins in plant feeding. Ultimately this chapter has laid the groundwork for a comprehensive saliva proteome in a model aphid species which may allow identification of these components and other species.

Carolan 2009 (pea aphid)

- ACYPI000733 Dipeptidylcarboxy peptidase
- ACYPI008911 Dipeptidylcarboxy peptidase
- ACYPI009427 M1 Zinc metalloprotease
- ACYPI010198 Unknown protein
- ACYPI007868 Unknown protein
- ACYPI000113 Glucose dehydrogenase [FAD quinone]-like
- ACYPI003308 Regucalcin-like
- ACYPI009881 Unknown protein
- ACYPI005582 Centrosomal protein of 104kDa

Harmel 2008 (green peach aphid)

ACYPI000986 – Glucose dehydrogenase ACYPI56654 – 3-Hydroxyacyl-CoA dehydrogenase type-2 ACYPI009042 – Alpha-amylase

Cooper 2010 (Russian wheat aphid)

ACYPI005766 – unknown protein ACYPI009182 – Zinc binding dehydrogenase ACYPI005439 – Phosphatase activator protein phosphatase 2A activator ACYPI007670 – RNA helicase

Rao 2013 (grain aphid)

ACYPI000113 – Glucose dehydrogenase ACYPI000288 – Glucose dehydrogenase ACYPI000817 – Peroxidase ACYPI002298 – Trehalase ACYPI02298 – Carbonic anhydrase ACYPI007650 – Beta-galactosidase precursor ACYPI001857 – Yellow e-3 like protein ACYPI000064 – Actin

Table 8 List of salivary proteins identified by proteomics

Organized by source and identified by AphidBase accession number, transcripts found by ortholog search in the pea aphid with confirmed in the salivary gland tissue. Duplications removed between multiple researchers with the component that was duplicated placed with the researcher who first identified the component.

putative ortholog search in the pea aphid chers with the component that was	Organized by source and identified by AphidBase accession number, transcripts found by putal and confirmed in the salivary gland tissue. Duplications removed between multiple researchers	Organized by source and identified by Aphic and confirmed in the salivary gland tissue. D
	by transcriptomics	Table 9 List of salivary proteins identified by transcriptomics
	ACYP148035 — unktionent ACYP145369 — yellow-92 ACYP145597 — unktionen problen	ACYPHORARIZ – SKRZESE ACYPHO7065 – Contég_37 ACYPHO71951 – Peptidésee 1M1
ACYP139568—Agithid specific cysteine rich protein	ACYPI48356 – unknown protein	ACVPN0732D - Endorthonnedesase
ACVPRIDEXXI – Armet ACVPRIDEXXII – Armet	ACYPISIO13—unknown protein	ACYPROS122-Justenile Horntone Binding Protein Homolog
ACYPRO7677 - Calredcullin	ACYPI54712 – unknown protein	ACYPRO6574-Cathegodan L
ACYPRO02622 - Ositeetkullin ACYRWY33017 - STYR SAUR.1	ACVPROCESS Rab GTPase domain containing protein	ACVDRT77777777777
ACYPROZZEN – MII ZIPC Metakoprozesse ACYPROZZEN – Trebalase	ACYPRI2002. – Unknown protein ACYPRI20929 – dromatin STP2	ACTHRAA225 — umerioven protoin
ACYPHXXX288 – Glucose dehydrogenase	ACYPHOD 719 - unknown protein	ACYPH49603 – usikurowa protein
<u>Leronant stan, 2014</u> ACYPERRUITS- Disulfide isonnerase	<u>ACYPI551A7 — unknown protein</u>	ACYPIONISISS – glacose deshydrogenase
manuface and shift of	Entropy Service and a service of the	ACYPIUU3917 - SCP GAPR-1 like
ACYPH009585 - unicroson protein	ACYP1006300-Me25	ACYPIO082224—unistroum protein
ACYPENNESAS - unitroven protein	ACYP121412-Ma20	ACYPIO007733Dipeptidyksrbowy peptidase
ACYPU71317-Zino-dependent phospholipase C	ACYP153825-Me17	ACYPROXIMIN_Annet
ACYPHINIZ - uniterest produin	ACVPIZING-MALA	ACYPINY2439—Giluzathione neroddass/Aux39x1)
acypess <i>iyy -</i> contringed protocon acypestitic_contringed a	Alaman of al. 2012	acypisystem – Aynna specific cysteire fran protein Acypistert – Cysy
ACYPROXA45-unitaryan protein		ACYPK0095852
ACYPRA13327 - unitinown protein	ACYPI23752—Mp50 (Carbonic antryticase III)	ACYPIOUZ 4005 - unikrativni protein
ACYPENI3602-untersent invester	ACYPHXX5812-Mp47	ACYPRIMI298-Upophorim precursor
ACYPKKI3783-unianown protein	ACYPHIA0222-Mp42	ACYPIO02476- Unusited monophysicalianase
ACPENIA399-uniteren protein	ACYPIXXI 610-Ma30	ACYPIOI2172—unknown protein
ACTPRINGLAP CITRIPONI PROTONI ACTPRINGSING CONFERENCE PROTONIC	ACTERESENCESSA ACTERESENCESSA	ACT FRAUDUUD – UBBUIDDON DI DECERT ACT DUM SET – BBUIDDON PERSENT
ACYPHNTUZZ – unitrixity protein	ACYPIZZE345-Mpl	ACYPRULIZI – unkrown protein
ACYPIO10151 - unknown protein	Bos et al. 2010 (green peach aphid)	ACYPI56502 - unknown protein
ACYPH080156 - unknown protein		ACYP145001-underson protein
ACYPI22505 - unknown protein	ACYPNIS1654-unknown prutein	ACYPI43360-unknown protein
ACYPI24281—unkrawn brotein	ACVPNS3417 unknown brotein	ACVP134795- underson meterin
actrikuu oor —: ingi ingist Hike loo	A WEIPERSAN - LINKERNWEER DE WEISER	ALTYNADATT_ BAY winn maatallaameedaaaa
ACYPRULTRD-LINET-line gomain	ACYPEREES 4	ACYPRUU 355 - Unknown protein A Cymru 355 - Unknown protein
ACYPHUU3247 - similar to Costaats	ACYP1XXX/765 - Markase-AX	ACYPRUsesson-unknown protein
ACYPIO10168stmillar to CG5861	ACYPISB2AD-AvGPX2	ACYPH022891-Cadherin
ACYPICOS775-stmillar to CS2A71	<u>Reeck et al. 2014 (pea aphiti 8 unique)</u>	ACYPIO01243 - unknown protein
ACYPIOD4865-stmillar to CG11699		ACYPI001541—wakazwa protein
ACYP126959-percentidase	ACYPRIZZZER-Trehalase	ACYPH01099 - unknown protein
ACYPHI80546 - Churachione Strate	ACIF ANSWAJ - ENW ATTIM	ACYPRO2132 – unitration protein
actricosofo-cizados Acventicados - Antonio	a controlitation — its anto a line.	AUTICANSSA - AND
ACYPRO73648-AHRAAK	ACVP/XX2497—Transmembrane 878-Uka	ACYPKN0972 – unknown protein
ACYPIA2782-similar to Cg9849	ACYPKX1522 - Chorin Perceldase HS	Reeck et al. 2011 (nea aphid)

duplicated placed with the researcher who first identified the component.

	lt.	component that was duplicated placed with the researcher who first identified the component.	component that was duplicated placed w
	id transcriptomic approaches with the	with confirmed in the salivary gland tissue. Duplications removed between proteomic and tr	with confirmed in the salivary gland tiss
	atative ortholog search in the pea aphid	Organized by source and identified by AphidBase accession number, transcripts found by putative ortholog search in the pea aphid	Organized by source and identified by A
		Table 10 List of salivary proteins identified by proteomics and transcriptomics	Table 10 List of salivary proteins iden
		ACYP熟题等对。一CG2839 ACYP熟题条题》,一chromatin STP2	ACYPI001606 – unknown protein ACYPI001887 – unknown protein
	Activization — Aphild specific cysteine rich protein	ACY阿爾阿爾加爾爾一AHNAK	ACYPI001271 – unknown protein
	Activity of the sector sector of the sector	ACYPM梁汉第2一 similar to Cg9849	ACYPI56502 – unknown protein
	A PRIME A A PRIME	ACY際編語第一 unknown protein	ACYPI45001 – unknown protein
	A CONTRACT AND A CONTRACT AND A CONTRACT AND AND A CONTRACT AND AND A CONTRACT AN		ACV0143360 - unknown protein
	ALTERNET AND ALTERNET - LEAR CONTRACT	ACYMAAAAAAA — Unknown protein ACYMAAAAAAA — Unknown protein	ACYP138795 – unknown protein ACYP138795 – unknown protein
		ACY ########## Unknown protein	ACYPI009427 – MIT ZINC METAIloproteas®
	ACTPENZZZA - WIL zinc unstallioprotease	ACYPES1013 – unknown protein	ACYPI008667 – unknown protein
	ACTPHON038 - Glucose deligidrogenase	ACYPEA712 — unknown protein	ACYPI007553 – unknown protein
	ACTPRIMULIS - Disulfide incommence	ACYP認知語》- cuticular protein	ACYPI005818 – unknown protein
	Carolan et al. 2011.	<u>Karriaagy @Laka</u>	ACYPI003695 – unknown protein
	ACTEMARKO - MEZS		ACYPI001843 – unknown protein
		ACYP親認過6% - unknown protein	ACYPI001541 – unknown protein
	ACTIV52025 - Me17	ACYP纲创建了一unknownprotein	ACYPI001099 – unknown protein
	ACTRI23623 AMELA	ACYP 编译编译 — unknown protein	ACYPI001152 – unknown protein
10	ACYPISO265 - Mella	ACYP#認識了一 unknown protein	ACYPI000852 – unknown protein
)8	Standard at	ACYPROSEERSE - unknown protein	ACTVD1000558 – unknown protein
	ALTYNDIAZZ - NIJAZ		ACYPI000472 – unknown protein
	A ANTARA ANA ANA ANA ANA ANA ANA ANA ANA ANA		Very very state of the second state of the sec
	Box et al. 2019 A/W3727272 - Corbon to an business II	Reecketal. 2014	
			ACYPI000064 – Actin
	ACTRINITISTIT - Zino-denomination bioscinolinesse ()	ACYP戦戦隊電話 - EMP24-like	ACYPI007650 – Beta-galactosidase prec蝴骝》
	ALTPERAVSCI – LEEKINGE PACHEEN ALTPERAVSCI – LEEKINGE PACHEEN	ACYP####################################	Rao 2013
			ACTFINATOR - NIA HEILASE
	A A A A A A A A A A A A A A A A A A A	ACYPRERIME - Peptidase M1	phosphatase 2A activator-调题的 A Cypinn7670 — RNA beliese
	ACTPONAZZ – unknowa prodeh	ACYP#0072055 - Contig_37	ACYPI005439 – Serine/threonine-protei
	ACTPHNAMIC — unkerowan profesien	ACYPN0000002 - Sucrase	ACYPI009182 - Zinc binding dehydrogen2008
	ACTIVITY THE CURRENT PARTICIPAL	ACYP輕額了調整 Endoribonuclease	ACYPI005882 – Glucose dehydrogenase
	ACTRICAREA — unknown protein	ACYP###2770 - MC01 (Laccase)	ACYPI005766 – Centrosomal protein of
	a and a substant bank that a substant bank	ACT######### - Cathepsin L ACYP新成績設定 Juvenile Hormone Binding Protein 時の語句協議	Cooper 2010
	Andrew of a state of the state		ACTP1009042 - Maltase 2-like
	ACTIVERED UNKNOWN prodein		ACYPI56654 – 3-HydroxyacyI-CoA dehydrogenesses type-2
	ALTENDEUISS — unknown produkt		ACYPI000986 – Glucose dehydrogenase
	ACTIVIZZOW - unixinonia produkn	ACYP\$\$\$\$2439 - Glutathione peroxidase(ApGPx%)	Harmel 2008
	ACYPERATEL - unknown profisin	ACYP#101#8217 - C002	,
		ACYP熟题通道 — unknown protein	ACYPI009881 – Putative Sheath Protein (Carolina 2011)
	an, y prenala, y vor "dreft "r-indone canarensen Bat "Monten y Tang" y fertar förtannar i Dänan 1915	ACY警察部第第一 Unknown protein ACY警察部第二 Aphid specific cysteine rich protein	ACTP1000113 — Glucose deflydrogenase]]???????????????????????????????????
	enter and a second of the seco	Actematics and antipotent	ACTRIO00113 Characterides in-like
	ACYPAUODAS - Similarto Cossain	ACYPEND 2000 - unknown protein	ACYPI010198 – Aminopeptidase N-like
	ACTPHINGTTS — similar to (IIIATI)	ACYP海滨流海影ーunknownprotein	ACYPI009427 – M1 Zinc metalloproteas
	ACYPHINANS5 - similar to COLLEGS	ACYP验验%32% - Lipophorin precursor	ACYPI008911 - Dipeptidylcarboxy pepti微認論
		ACYPMINA — Inositol monophosphatase	LOC100575164 — Dipeptidylcarboxy pep認識態態 (腸腔ck 2014)
	A THE REPORT OF THE PARTY AND THE	ACYPEの20173 ー Unknown protein	Carolan 2009

Table 11 Verification of transcripts by salivary gland dissection

Reads generated by RNA-seq were mapped to each individual transcript open reading frame as a "reference genome". The number of salivary gland reads and RPKM values, calculated as described in the text are given for each transcript.

A color key indicated below identify transcript names as follows: purple (with white text): pea aphid transcripts corresponding to transcripts studied in Russian wheat aphids (Cui et al., 2012), blue (with white text): transcripts of proteins identified in (Bos et al., 2010), red: pea aphid transcripts of proteins identified in green peach aphid (Harmel et al., 2008), dark green (with white text): pea aphid transcripts of proteins identified in Russian wheat aphids (Cooper et al., 2010), blue (with black text): pea aphid transcripts of proteins identified in English grain aphid, rose grain aphid, and pea aphid (Rao et al., 2013), light green: pea aphid salivary gland enriched transcripts (Carolan et al., 2011), yellow: pea aphid salivary gland enriched transcripts in the pea aphid (Ramsey et al., 2007), and peach: potato aphid transcripts corresponding to transcripts in the pea aphid (Atamian et al., 2012).

Color Key:

Atamian et al.
Balthazor et al.
Bos et al.
Carolan et al.
Cooper et al.
Feng et al.
Harmel et al.
Ramsey et al.
Rao et al.

Saliva Proteins						
		Transcript	Salivary Glar	d Isolation		
Accession	Identification	Length	Reads Mapped	RPKM		
ACYPI54712	unknown protein 13	728	7947	78.37		
ACYPI009182	Zinc binding dehydrogenase	2328	2369	7.31		
ACYPI009625	EMP24 like	1782	9189	37.02		
ACYPI56654	3-hydroxyacyl-CoA dehydrogenase type-2	1244	864	4.99		
ACYPI007677	Calreticulin	2299	50573	157.92		
ACYPI002622	Calreticulin	2014	105539	376.19		
ACYPI21412	Me 20	1966		89.14		
ACYPI52702	Cathepsin B	1020		5.38		
ACYPI009585	unknown protein 10	387	8322	154.37		
ACYPI000490	Unannotated Protein 5	1162	708258	4375.65		
ACYPI008926	Disulfide isomerase	2357	25591	77.94		
ACYPI005818	Unannotated Protein 24	832		536.28		
ACYPI008667	Unannotated Protein 17	933	122762	944.58		
ACYPI010222	Mp42	1130		230.11		
ACYPI005594	Disulfide isomerase	2013		101.79		
ACYPI53825	Me17	1017		138.89		
ACYPI002172	Unannotated Protein 18	1306	1 1	1304.84		
ACYPI45769 ACYPI56566	major royal jelly protein (yellow-g2) Me13	2257	4140	13.17		
ACYPI56566 ACYPI45001	Me13 Unannotated Protein 10	856		113.11		
ACYPI45001 ACYPI001887	Unannotated Protein 10	1330		3398.40		
ACYPI001887		976		250.75		
ACYPI24281	Unannotated Protein 9 unknown protein 19	1046		2975.92 44.33		
ACYPI010168	similar to CG5861-PA	884	3478	28.24		
ACYPI010108	Armet	1525		44.86		
ACYPI008001	Unannotated Protein 25	612	16635	195.13		
ACYPI000002	Sucrase	1293		142.11		
ACYPI001541	Unannotated Protein 13	887	99919	808.69		
ACYPI004866	similar to CG11699-PA	4277	3451	5.79		
ACYPI089376	CG2839	687	254246	2656.77		
ACYPI 38240	ApGPx2	1921	16006	59.82		
ACYPI45597	unknown protein 18	1754		161.76		
ACYPI001523	Chorin Peroxidase H6	2322	2537	7.84		
ACYPI001719	Unannotated Protein 15	1202	387130	2312.12		
ACYPI42782	similar to CG9849-PA	1520	1	38.02		
ACYPI56502	Unannotated Protein 20	1198	233257	1397.77		
ACYPI 39568	Aphid specific cysteine rich protein	1387	1018208	5270.08		
ACYPI55147	Unannotated Protein 12	1617	901	4.00		
ACYPI55148	Unannotated Protein 27	3484	256238	527.99		
ACYPI001271	Unannotated Protein 7	1018	169536	1195.56		
ACYPI081664	unknown protein 12	1941	8997	33.28		
ACYPI003247	similar to CG6583-PA	1027	1030	7.20		
ACYPI005439	РАМР	1605	2070	9.26		
ACYPI43360	Unannotated Protein 28	867	42955	355.67		
ACYPI007065	Contig_37	1787	12008	48.24		
	unknown protein 28	1181		634.39		
	similar to Der1-like domain family	1602		44.65		
ACYPI008617	C002	1020		3717.34		
ACYPI56620	cuticular protein	1207	1 1	241.97		
ACYPI21663	Me 14	1489		22.78		
ACYPI007387	similar to ring finger protein 185	1654		15.50		
ACYPI003327	unknown protein 31	5941	1	12.84		
ACYPI001606	Unannotated Protein 14	1030	1 1	1002.45		
ACYPI006124	unknown protein 26	3228	1	39.85		
ACYPI007650	Beta-galactosidase precursor	2140		0.83		
ACYPI007022	unknown protein 25	1161	1	18.24		
ACYPI005041	unknown protein 8	1782		4.78		
ACYPI002439	ApGPx1	2467	1	222.98		
ACYPI48356	unknown protein 16	3058	1	26.69		
ACYPI006346	Unannotated Protein 6	925	707062	5487.48		
ACYPI23752 ACYPI007670	Carbonic anhydrase II RNA Helicase	1125 3944		208.36 8.59		

	Saliva Proteins						
A		Transcript	Salivary Glar	nd Isolation			
Accession	Identification	Length	Reads Mapped	RPKM			
ACYPI005838	unknown protein 27	1901	21730	82.06			
ACYPI002976	Tetraspanin 29Fa	2624	8390	22.95			
ACYPI002497	Transmembrane 87B-like	2568	3146	8.79			
ACYPI000768	Maltase-A1	2164	3603	11.95			
ACYPI005882	Unknown protein 23	2064	4454	15.49			
ACYPI008224	Me 10	1047	644020	4415.81			
ACYPI009919	Unannotated Protein 22	1056	31803	216.20			
ACYPI000119	Disulfide isomerase	2637	25745	70.09			
ACYPI088277	unknown protein 7	2070	142	0.49			
ACYPI48849	unknown protein 15	3085	55	0.13			
ACYPI26959	Peroxidase	3947	19175	34.88			
ACYPI004198	Lipophorin precursor	8748	72165	59.22			
ACYPI002476	Inositol Monophosphatase	1667	1755	7.56			
ACYPI46095	unknown protein 17	1742	4023	16.58			
ACYPI003780	unknown protein 29	5947	20553	24.81			
LOC100575164		2410	307969	917.38			
ACYPI001152	Unannotated Protein 30	2941	167450	408.74			
ACYPI003602	unknown protein 30	3688	33264	64.75			
ACYPI010151	unknown protein 22	7345	9179	8.97			
ACYPI000852	Unannotated Protein 11	694	25929	268.22			
ACYPI004591	chromatin STP2	1979	242781	880.70			
ACYPI009881	Putative Sheath Protein	1348	1942185	10343.28			
ACYPI002258	M1 zinc metalloprotease	2966	30394	73.57			
ACYPI006974	Cathepsin L	2102	42488	145.11			
ACYPI003917	SCP GAPR-1	2172	154603	510.99			
ACYPI001445	unknown protein 32	7423	2103	2.03			
ACYPI51013	unknown protein 14	2382	476	1.43			
ACYPI007300	Endoribonuclease	5838	3438	4.23			
ACYPI008182 ACYPI001099	Juvenile Hormone Binding Protein Homolog	1349	20561	109.42			
ACYPI001099 ACYPI009755	Unannotated Protein 19 Disulfide isomerase	1350	124758	663.43			
ACYPI009755 ACYPI006775	similar to CG2471-PA	2931	100086	245.14			
ACYPI22506	unknown protein 20	4478	6186	9.92			
ACYPI002298	Trehalase	1057	445 25095	3.02			
ACYPI080156		2637 2086	10366	68.32 35.67			
ACYPI000797	unknown protein 21 unknown protein 33	3080	2025	4.72			
ACYPI38795	Unannotated Protein 31	1080	472	3.14			
ACYPI001843	Unannotated Protein 23	2647	472	117.82			
ACYPI080546	Glutathione S transferase D10	1055	9630	65.53			
ACYPI000422	unknown protein 35	9393	636939	486.80			
ACYPI000288	Glucose Dehydrogenase	2335	269427	828.35			
ACYPI007553	Unannotated Protein 29	1076	260383	1737.23			
ACYPI28317	unknown protein 9	2760	5600	14.57			
ACYPI003601	Unannotated Protein 16	3067	24380	57.07			
ACYPI000558	Unannotated Protein 21	2936		183.91			
	Unannotated Protein 3	1439		3132.73			
	M1 zinc metalloprotease	1548	48018	222.68			
ACYPI008911	Dipeptidyl carboxypeptidase	2722		531.94			
ACYPI071951	Peptidase M1	3458		300.64			
ACYPI082770	MCO1 (Laccase)	2154		4.30			
ACYPI063417	unknown protein 11	285		2427.42			
ACYPI000986	Glucose Dehydrogenase	3596		470.68			
ACYPI008370	CLIP-domain serine protease	2771	13495	34.96			
ACYPI071317	Zinc-dependent Phospholipase C	1151	8595	53.61			
ACYPI000707	unknown protein 34	2961		11.86			
ACYPI006300	Me 25	2744	6706	17.54			
ACYPI002891	Cadherin	2956		27.81			
ACYPI009042	Maltase 2-like	2574		158.72			
ACYPI073648	AHNAK nucleoprotein (desmoyokin)	12789		1.97			
			5555	1.57			

Table 12 Comparative analysis of 121 saliva proteins in diet and plant-fed libraries byRNA-seq

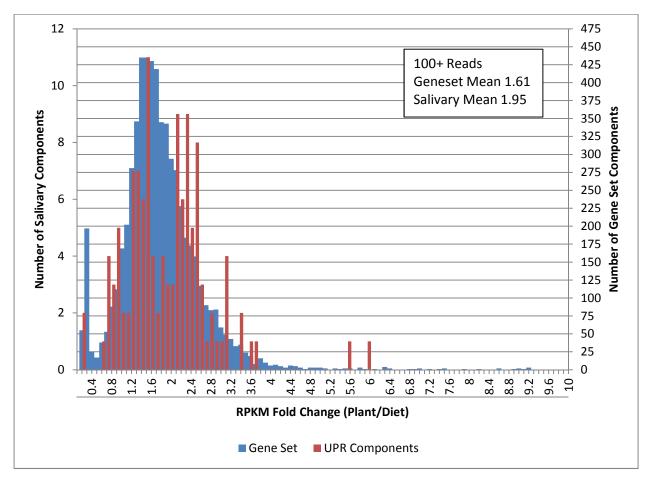
Reads generated by RNA-seq were mapped to each individual transcript open reading frame as a "reference genome". The number of head reads, RPKM, and head RPKM fold changes were calculated as described in the text. Each transcript encodes a protein that contains a signal peptide and determination was achieved using SignalP 3.0.

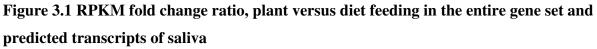
A color key indicated below identify transcript names as follows: purple (with white text): pea aphid transcripts corresponding to transcripts studied in Russian wheat aphids (Cui et al., 2012), blue (with white text): transcripts of proteins identified in (Bos et al., 2010), red: pea aphid transcripts of proteins identified in green peach aphid (Harmel et al., 2008), dark green (with white text): pea aphid transcripts of proteins identified in Russian wheat aphids (Cooper et al., 2010), blue (with black text): pea aphid transcripts of proteins identified in English grain aphid, rose grain aphid, and pea aphid (Rao et al., 2013), light green: pea aphid salivary gland enriched transcripts (Carolan et al., 2011), yellow: pea aphid salivary gland enriched transcripts in the pea aphid (Ramsey et al., 2007), and peach: potato aphid transcripts corresponding to transcripts in the pea aphid (Atamian et al., 2012).

Color Key:

Atamian et al.
Balthazor et al.
Bos et al.
Carolan et al.
Cooper et al.
Feng et al.
Harmel et al.
Ramsey et al.
Rao et al.

Saliva Proteins							
					Head Isolat	tion	
		Transcript	Diet Fed Plant Fed				
Accession	Identification	Length	Reads Mapped	RPKM	Reads Mapped	RPKM	RPKM Fold Change
ACYPI54712	unknown protein 13	728	17	2.22	193	13.26	5.970
ACYPI009182	Zinc binding dehydrogenase	2328	49	2.00	528	11.34	5.666
ACYPI009625	EMP24 like	1782	184	9.82	1309	36.73	3.741
ACYPI56654	3-hydroxyacyl-CoA dehydrogenase type-2	1782	28	2.14	196	7.88	3.681
ACYPI007677	Calreticulin	2299	2067	85.50	13497	293.57	3.434
ACYPI002622	Calreticulin	2014	2084	98.40	13582	337.22	3.427
ACYPI21412	Me 20	1966	257	12.43	1558	39.63	3.188
ACYPI52702	Cathepsin B	1020	1	0.09	6	0.29	3.155
ACYPI009585	unknown protein 10	387	76	18.67	455	58.79	3.148
ACYPI000490	Unannotated Protein 5	1162	5731	469.00	33954	1461.15	3.115
ACYPI008926	Disulfide isomerase	2357	518	20.90	3011	63.88	3.057
ACYPI005818	Unannotated Protein 24	832	949	108.47	5283	317.52	2.927
ACYPI008667	Unannotated Protein 17	933	1320	134.54	7152	383.32	2.849
ACYPI010222	Mp42	1130	172	14.47	920	40.71	2.813
ACYPI005594	Disulfide isomerase	2013	931	43.98	4899	121.70	2.767
ACYPI53825	Me17	1017	197	18.42	1007	49.51	2.688
ACYPI002172	Unannotated Protein 18	1306	1704	124.07	8636	330.66	2.665
ACYPI45769	major royal jelly protein (yellow-g2)	2257	55	2.32	272	6.03	2.601
ACYPI56566	Me13	856	155	17.22	763	44.57	2.589
ACYPI45001	Unannotated Protein 10	1330	4392	314.02	21587	811.62	2.585
ACYPI001887	Unannotated Protein 26	976	518	50.47	2543	130.29	2.582
ACYPI007406	Unannotated Protein 9	1046	3650	331.83	17724	847.31	2.553
ACYPI24281	unknown protein 19	1430	61	4.06	296	10.35	2.552
ACYPI010168	similar to CG5861-PA	884	129	13.88	623	35.24	2.540
ACYPI008001	Armet	1525	233	14.53	1124	36.86	2.537
ACYPI003695	Unannotated Protein 25	612	282	43.82	1343	109.73	2.504
ACYPI000002	Sucrase	1293	453	33.32	2139	82.72	2.483
ACYPI001541	Unannotated Protein 13	887	589	63.15	2773	156.33	2.476
ACYPI004866	similar to CG11699-PA	4277	105	2.33	489	5.72	2.449
ACYPI089376	CG2839	687	1258	174.13	5821	423.69	2.433
ACYPI38240	ApGPx2	1921	355	17.57	1634	42.53	2.420
ACYPI45597	unknown protein 18	1754	505	27.38	2297	65.49	2.392
ACYPI001523	Chorin Peroxidase H6	2322	170	6.96	773	16.65	2.391
ACYPI001719	Unannotated Protein 15	1202	5358	423.88	24358	1013.32	2.391
ACYPI42782	similar to CG9849-PA	1520	157	9.82	701	23.06	2.348
ACYPI56502	Unannotated Protein 20	1198	1076	85.41	4803	200.48	2.347
ACYPI 39568	Aphid specific cysteine rich protein	1387	12071	827.59	53699	1935.98	2.339
ACYPI55147	Unannotated Protein 12	1617	2149	126.38	9533	294.80	2.333
ACYPI55148	Unannotated Protein 27	3484	2149	58.66	9533	136.82	2.333
ACYPI001271	Unannotated Protein 7	1018	2052	191.68	9015	442.82	2.310
ACYPI081664	unknown protein 12	1941	29		126	3.25	2.285
ACYPI003247	similar to CG6583-PA	1027	66		285	13.88	2.271
ACYPI005439	PAMP	1605	86	5.10	371	11.56	2.268
ACYPI43360	Unannotated Protein 28	867	346	37.95	1478	85.24	2.246
ACYPI007065	Contig_37 unknown protein 28	1787	237	12.61	1010	28.26	2.241
ACYPI004394 ACYPI001706	unknown protein 28 similar to Der1-like domain family	1181	917	73.84	3838	162.50 26 EE	2.201
ACYPI001706 ACYPI008617		1602 1020	281 5129	16.68 478.17	1171 21300	36.55 1044.22	2.191 2.184
ACYPI008617 ACYPI56620	cuticular protein	1020	3774	297.33	15639	647.91	2.184
ACYPI56620 ACYPI21663	Me 14	1207	3774 64	4.09	265		2.179
ACYPI21663 ACYPI007387	similar to ring finger protein 185	1489	64 180	4.09	734	8.90 22.19	2.177
ACYPI007387 ACYPI003327	unknown protein 31	5941	521	8.34	2122	17.86	2.144
ACYPI003527	Unannotated Protein 14	1030	1557	143.75	6308	306.24	2.142
ACYPI006124	unknown protein 26	3228	382	143.75	1547	23.96	2.130
ACTP1000124 ACYPI007650	Beta-galactosidase precursor	2140	28	1.23	11347	23.90	2.130
ACYPI007030	unknown protein 25	1161	280	22.93	115	47.85	2.086
ACYPI007022 ACYPI005041	unknown protein 25 unknown protein 8	1782	280 46	22.95	1111	47.85	2.086
ACYPI003041 ACYPI002439	ApGPx1	2467	1198	46.18	4583	92.89	2.012
ACYPI48356	unknown protein 16	3058	299	9.30	1128	18.45	1.984
ACTP148550	Unannotated Protein 6	925	6959	9.30 715.41	25754	1392.24	1.984
ACYPI006346 ACYPI23752	Carbonic anhydrase II	925	407	34.40	25754 1493	1392.24 66.36	1.946
-011123/32	Carbonic annyarase ii RNA Helicase	3944	212	34.40 5.11	761	9.65	1.929


Saliva Proteins Cont.							
					Head Isola	lation	
Accession	Identification	Transcript	Diet		Plant		RPKM Fold
		Length	Reads	RPKM	Reads	RPKM	Change
ACYPI005838	unknown protein 27	1901	225	11.26	804	21.15	1.879
ACYPI002976	Tetraspanin 29Fa	2624	131	4.75	458	8.73	1.838
ACYPI002497	Transmembrane 87B-like	2568	109	4.04	381	7.42	1.838
ACYPI000768	Maltase-A1	2164	240	10.55	809	18.69	1.773
ACYPI005882	Unknown protein 23	2064	479	22.07	1552	37.60	1.704
ACYPI008224	Me 10	1047	8707	790.81	28095	1341.82	1.697
ACYPI009919	Unannotated Protein 22	1056	383	34.49	1234	58.43	1.694
ACYPI000119	Disulfide isomerase	2637	590	21.28	1894	35.92	1.688
ACYPI088277	unknown protein 7	2070	477	21.91	1485	35.87	1.637
ACYPI48849	unknown protein 15	3085	1	0.03	3	0.05	1.578
ACYPI26959	Peroxidase	3947	188	4.53	561	7.11	1.569
ACYPI004198	Lipophorin precursor	8748	804	8.74	2394	13.68	1.566
ACYPI002476	Inositol Monophosphatase	1667	124	7.07	369	11.07	1.565
ACYPI46095	unknown protein 17	1742	124	6.77	368	10.56	1.561
ACYPI003780	unknown protein 29	5947	171	2.73	505	4.25	1.553
LOC100575164	DPC	2410	4165	164.34	12281	254.82	1.551
ACYPI001152	Unannotated Protein 30	2941	6662	215.41	19617	333.54	1.548
ACYPI003602	unknown protein 30	3688	847	21.84	2493	33.80	1.548
ACYPI010151	unknown protein 22	7345	350	4.53	1026	6.98	1.541
ACYPI000852	Unannotated Protein 11	694	486	66.59	1412	101.74	1.528
ACYPI004591	chromatin STP2	1979	2802	134.64	7968	201.33	1.495
ACYPI009881	Putative Sheath Protein	1348	27662	1951.38	78099	2897.12	1.485
ACYPI002258	M1 zinc metalloprotease	2966	1317	42.22	3683	62.09	1.471
ACYPI006974	Cathepsin L	2102	2906	131.47	8052	191.55	1.457
ACYPI003917	SCP GAPR-1	2172	3921	171.67	10738	247.21	1.440
ACYPI001445	unknown protein 32	7423	118	1.51	319	2.15	1.422
ACYPI51013	unknown protein 14	2382	19	0.76	50	1.05	1.384
ACYPI007300	Endoribonuclease	5838	195	3.18	511	4.38	1.378
ACYPI008182	Juvenile Hormone Binding Protein Homolog	1349	2240	157.90	5802	215.07	1.362
ACYPI001099	Unannotated Protein 19	1350	1072	75.51	2766	102.45	1.357
ACYPI009755	Disulfide isomerase	2931	2779	90.16	7051	120.29	1.334
ACYPI006775	similar to CG2471-PA	4478	1166	24.76	2937	32.80	1.325
ACYPI22506	unknown protein 20	1057	71	6.39	176	8.33	1.304
ACYPI002298	Trehalase	2637	632	22.79	1522	28.86	1.266
ACYPI080156	unknown protein 21	2086	147	6.70	352	8.44	1.259
ACYPI000797	unknown protein 33	3080	141	4.35	329	5.34	1.227
ACYPI38795	Unannotated Protein 31	1080	58	5.11	135	6.25	1.224
ACYPI001843	Unannotated Protein 23	2647	398	14.30	921	17.40	1.217
ACYPI080546	Glutathione S transferase D10	1055	76	6.85	174	8.25	1.204
ACYPI000422	unknown protein 35	9393	9779	99.00	22339	118.92	1.201
ACYPI000288	Glucose Dehydrogenase	2335	4424	180.17	9454	202.46	1.124
ACYPI007553	Unannotated Protein 29	1076	1961	173.31	4127	191.79	1.107
ACYPI28317	unknown protein 9	2760	180	6.20	370	6.70	1.081
ACYPI003601	Unannotated Protein 16	3067	833	25.83	1710	27.88	1.079
ACYPI000558	Unannotated Protein 21	2936	932	30.19	1746	29.74	0.985
ACYPI000472	Unannotated Protein 3	1439	9779	646.22	17826	619.45	0.959
ACYPI009427	M1 zinc metalloprotease	1548	256	15.73	449	14.50	0.922
ACYPI008911	Dipeptidyl carboxypeptidase	2722	199	6.95	347	6.37	0.917
ACYPI071951	Peptidase M1	3458	2312	63.58	3998	57.81	0.909
ACYPI082770	MCO1 (Laccase)	2154	370	16.33	623	14.46	0.885
ACYPI063417	unknown protein 11	285	1368	456.45	2239	392.84	0.861
ACYPI000986	Glucose Dehydrogenase	3596	4629	122.41	7543	104.89	0.857
ACYPI008370	CLIP-domain serine protease	2771	3653	125.36	5545	100.06	0.798
ACYPI071317	Zinc-dependent Phospholipase C	1151	162	13.38	229	9.95	0.743
ACYPI000707	unknown protein 34	2961	1009	32.40	1418	23.95	0.739
ACYPI006300	Me 25	2744	332	11.51	461	8.40	0.730
ACYPI002891	Cadherin	2956	424	13.64	523	8.85	0.649
ACYPI009042	Maltase 2-like	2574	1496	55.27	756	14.69	0.266
ACYPI073648	AHNAK nucleoprotein (desmoyokin)	12789	813	6.05	323	1.26	0.209


Table 13 Saliva proteome components secretion and anchor probability with ER retention signals

Listed in ascending order by AphidBase accession number, signal peptide prediction with cleavage site is identified with membrane anchor probability. ER retention signals are indicated with a yes followed by the four C-terminal amino acid residues in each encoded protein.

Accession	Identification	SignalP 3.0 HMM Result	Cleavage site	Anchor Probability	ER Retention Signal
ACYPI000002	Sucrase	0.948	21-22	0.000	no
ACYPI000119	Disulfide isomerase	0.753	32-33	0.080	Yes (KEEL)
ACYPI000288	Glucose Dehydrogenase	0.938	24-25	0.043	no
ACYPI000422	unknown protein 35	0.999	19-20	0.000	no
ACYPI000472	Unannotated Protein 3	0.999	26-27	0.000	no
ACYP1000490	Unannotated Protein 5	0.970	22-23	0.003	no
ACYP1000558	Unannotated Protein 21	0.975	25-26	0.010	no
ACYPI000707	unknown protein 34	0.981	31-32	0.000	no
ACYPI000768	Maltase-A1	0.896	20-21	0.000	no
ACYPI000797	unknown protein 33	0.888	18-19	0.000	no
ACYPI000852	Unannotated Protein 11	1.000	25-26	0.000	no
ACYP1000986	Glucose Dehydrogenase	0.983	22-23	0.004	no
ACYPI001099	Unannotated Protein 19	0.981	22-23	0.010	no
ACYPI001152	Unannotated Protein 30	0.999	23-24	0.001	no
ACYPI001271	Unannotated Protein 7	0.999	23-24	0.001	Yes (KEDK)
ACYPI001445	unknown protein 32	0.890	18-19	0.000	no
ACYPI001523	Chorin Peroxidase H6	1.000	34-35	0.000	no
ACTP1001523	Unannotated Protein 13	0.798	27-28	0.161	no
ACYP1001541 ACYP1001606	Unannotated Protein 13 Unannotated Protein 14	0.798	27-28	0.000	
			-		no
ACYPI001706	similar to Der1-like domain family	0.718	32-33	0.040	no
ACYPI001719	Unannotated Protein 15	0.982	18-19	0.017	no
ACYPI001843	Unannotated Protein 23	0.924	25-26	0.012	no
ACYPI001887	Unannotated Protein 26	0.763	20-21	0.201	no
ACYPI002172	Unannotated Protein 18	0.536	25-26	0.245	no
ACYPI002258	M1 zinc metalloprotease	1.000	19-20	0.000	no
ACYPI002298	Trehalase	0.973	20-21	0.002	no
ACYPI002439	ApGPx1	0.905	28-29	0.016	no
ACYPI002476	Inositol Monophosphatase	0.944	19-20	0.000	no
ACYPI002497	Transmembrane 87B-like	0.966	21-22	0.008	no
ACYPI002622	Calreticulin	1.000	23-24	0.000	Yes (HDEL)
ACYPI002891	Cadherin	0.957	18-19	0.018	no
ACYPI002976	Tetraspanin 29Fa	0.899	61-62	0.880	no
ACYPI003247	similar to CG6583-PA	0.999	23-24	0.000	no
ACYPI003327	unknown protein 31	0.894	43-44	0.239	no
ACYPI003601	Unannotated Protein 16	0.994	19-20	0.005	no
ACYP1003602	unknown protein 30	0.919	18-19	0.000	no
ACYP1003695	Unannotated Protein 25	0.830	19-20	0.000	no
ACYP1003780	unknown protein 29	0.817	31-32	0.000	no
ACYPI003917	SCP GAPR-1	0.996	23-23	0.004	no
ACYPI004198	Lipophorin precursor	0.999	19-20	0.000	no
ACYPI004198	unknown protein 28	0.909	29-30	0.085	no
ACYPI004591	chromatin STP2	0.985	28-29	0.001	no
ACYP1004866	similar to CG11699-PA	0.918	50-51	0.483	no
ACYPI005041	unknown protein 8	0.902	18-19	0.009	no
ACYPI005439	PAMP	0.996	24-25	0.000	no
ACYP1005594	Disulfide isomerase	0.999	20-21	0.001	YES KHEL
ACYPI005818	Unannotated Protein 24	0.998	21-22	0.000	no
ACYPI005882	unknown protein 27	0.989	21-22	0.000	no
ACYP1006300	Unknown protein 23	0.998	23-24	0.000	no
ACYPI006346	unknown protein 26	0.999	19-20	0.000	no
ACYPI006300	Me 25	0.998	23-24	0.000	no
ACYPI006346	Unannotated Protein 6	0.999	19-20	0.000	no
ACYPI006775	similar to CG2471-PA	0.997	18-19	0.000	no
ACYPI006974	Cathepsin L	0.999	19-20	0.000	no
ACYPI007022	unknown protein 25	0.998	21-22	0.001	no
ACYPI007065	Contig_37	0.917	25-26	0.058	Yes (HTEL)
ACYP1007300	Endoribonuclease	1.000	21-22	0.000	no
ACYPI007387	similar to ring finger protein 185	0.799	18-19	0.000	no
ACYPI007387	Unannotated Protein 9	0.998	22-23	0.001	no
ACYPI007408	Unannotated Protein 9 Unannotated Protein 29	0.998	22-23	0.001	no
		0.957			
ACYPI007650	Beta-galactosidase precursor	0.996	23-24	0.003	no

Accession	Identification	SignalP 3.0 HMM Result	Cleavage site	Anchor Probability	ER Retention Signal
ACYPI007670	RNA Helicase	0.999	19-20	0.000	no
ACYPI007677	Calreticulin	0.995	23-24	0.005	no
ACYPI008001	Armet	0.993	20-21	0.005	no
ACYPI008182	Juvenile Hormone Binding Protein Homolog	0.989	20-21	0.001	no
ACYPI008224	Me 10	0.608	27-28	0.142	no
ACYPI008370	CLIP-domain serine protease	0.942	19-20	0.025	no
ACYPI008617	C002	0.909	23-24	0.046	no
ACYPI008667	Unannotated Protein 17	0.938	28-29	0.017	no
ACYPI008911	Dipeptidyl carboxypeptidase	0.994	25-26	0.006	no
ACYPI008926	Disulfide isomerase	0.997	18-19	0.000	Yes (KEEL)
ACYPI009042	Maltase 2-like	0.991	21-22	0.002	no
ACYPI009182	Zinc binding dehydrogenase	0.999	20-21	0.000	no
ACYPI009427	M1 zinc metalloprotease	0.992	19-20	0.000	no
ACYPI009585	unknown protein 10	0.963	20-21	0.001	no
ACYPI009625	EMP24 like	0.939	39-40	0.059	no
ACYPI009025	Disulfide isomerase	0.998	18-19	0.000	YES (KDEL)
ACYPI009/33	Putative Sheath Protein	0.998	25-26	0.000	no
ACYPI009881 ACYPI009919		0.992	25-26	0.000	no
ACYPI009919 ACYPI010151	Unannotated Protein 22 unknown protein 22	0.853	22-23	0.050	-
					no
ACYPI010168	similar to CG5861-PA	0.981	23-24	0.015	no
ACYPI010222	Mp42	0.508	22-23	0.448	no
ACYPI063417	unknown protein 11	0.895	24-25	0.054	no
ACYPI071317	Zinc-dependent Phospholipase C	0.901	15-16	0.000	no
ACYPI071951	Peptidase M1	0.826	28-29	0.160	no
ACYPI073648	AHNAK nucleoprotein (desmoyokin)	0.798	17-18	0.000	no
ACYPI080156	unknown protein 21	0.697	24-25	0.947	no
ACYPI080546	Glutathione S transferase D10	0.778	28-29	0.769	no
ACYPI081664	unknown protein 12	0.883	42-43	0.934	no
ACYPI082770	MCO1 (Laccase)	0.988	27-28	0.700	no
ACYPI088277	unknown protein 7	0.908	18-19	0.001	no
ACYPI089376	CG2839	0.912	25-26	0.069	no
ACYPI21412	Me 20	0.996	25-26	0.001	no
ACYPI21663	Me14	0.747	19-20	0.132	no
ACYPI22506	unknown protein 20	0.801	36-37	0.000	no
ACYPI23752	Carbonic anhydrase II	0.995	21-22	0.000	no
ACYPI24281	unknown protein 19	0.959	25-26	0.021	no
ACYPI26959	Peroxidase	0.999	19-20	0.000	no
ACYPI28317	unknown protein 9	0.959	26-27	0.018	no
ACYPI38240	ApGPx2	0.533	18-19	0.175	no
ACYPI38795	Unannotated Protein 31	0.992	16-17	0.000	no
ACYPI39568	Aphid specific cysteine rich protein	0.828	28-29	0.039	no
ACYPI42782	similar to CG9849-PA	0.547	29-30	0.432	no
ACYPI43360	Unannotated Protein 28	0.997	22-23	0.000	no
ACYPI45001	Unannotated Protein 10	0.585	28-29	0.291	no
ACYPI45597	unknown protein 18	0.999	20-21	0.000	no
ACYPI45769	major royal jelly protein (yellow-g2)	0.522	16-17	0.000	no
ACYPI46095	unknown protein 17	0.501	24-25	0.262	no
ACYPI48356	unknown protein 16	0.601	18-19	0.000	no
ACYPI48849	unknown protein 15	0.645	18-19	0.000	no
ACYPI51013	unknown protein 14	0.598	24-25	0.000	no
ACYPI52702	Cathepsin B	0.997	20-21	0.000	no
ACYPI53825	Me17	0.999	24-25	0.001	no
ACYPI54712	unknown protein 13	0.983	19-20	0.000	no
ACYPI55147	Unannotated Protein 12	1.000	18-19	0.000	no
ACYPI55148	Unannotated Protein 27	1.000	18-19	0.000	no
ACYPI56502	Unannotated Protein 20	0.730	28-29	0.147	no
ACYPI56566	Me13	0.996	22-23	0.004	no
	cuticular protein	0 007	18-10		
ACYPI56620 ACYPI56654	cuticular protein 3-hydroxyacyl-CoA dehydrogenase type-2	0.997 0.997	18-19 32-33	0.002	no no

RPKM fold change in both predicted saliva transcripts and the entire gene set with a minimum 100 read threshold for salivary components measured by RNA-seq.

References:

Chapter 1:

- Airavaara, M., Shen, H., Kuo, C.C., Peränen, J., Saarma, M., Hoffer, B., Wang, Y. (2009) Widespread cortical expression of MANF by AAV serotype 7: localization and protection against ischemic brain injury. J. Comp. Neurol. (225) 104-113.
- Anet, F.A.L., Bourn, A.J.R. (1965) Nuclear Magnetic Resonance Spectral Assignments from Nuclear Overhauser Effects. Journal of the American Chemical Society. (87) 5250-5251.
- Apostolou, A., Shen, Y., Liang, Y., Luo, J., Fang, S., (2008) Armet, a UPR-upregulated protein, inhibits cell proliferation and ER stress-induced death. Exp. Cell Res. (314) 13.
- Campbell, C.T., Kim, G. (2007) SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics. Biomaterials. (28) 2380–2392.
- Evron, E., Cairns, P., Halachmi, N., Ahrendt, S.A., Reed, A.L. (1997) Normal polymorphism in the incomplete trinucleotide repeat of the arginine-rich protein gene. Cancer Res. (57) 2888–2889.
- Gerardo, N.M., Altincicek, B., Anselme, C., Atamian, H., Barribeau, S.M., de Vos, M., Duncan, E.J., Evans, J.D., Gabaldón, T., Ghanim, M., Heddi, A., Kaloshian, I., Latorre, A., Moya, A., Nakabachi, A., Parker, B.J., Pérez-Brocal, V., Pignatelli, M., Rahbé, Y., Ramsey, J.S., Spragg, C.J., Tamames, J., Tamarit, D., Tamborindeguy, C., Vincent-Monegat, C., Vilcinskas, A. (2010) Immunity and other defenses in pea aphids, Acyrthosiphon pisum. Genome Biol. (11) r21.
- Glembotski, C., Thuerauf, D., Huang, C., Vekich, J., Gottlieb, R., Doroudgar, S. (2012)
 Mesencephalic astrocyte-derived neurotrophic factor protects the heart from ischemic damage and is selectively secreted upon sarco/endoplasmic reticulum calcium depletion.
 J Biol Chem. (287) 25893–25904.
- Hellman, M., Peränen, J., Saarma, M., Permi, P. (2010) 1H, 13C and 1N resonance assignments of the human mesencephalic astrocyte-derived neurotrophic factor. Biomolecular NMR assignments. (2) 215-217.
- Hellman, M., Arumae, U., Yu, L.Y., Lindholm, P., Peranen, J., Saarma, M., Permi, P. (2011) Mesencephalic astrocyte-derived neurotrophic factor (MANF) has a unique mechanism to rescue apoptotic neurons. J Biol Chem. (286) 2675–2680.
- Henderson, M.J., Richie, C.T., Airavaara, M., Wang. Y., Harvey, B.K. (2013) Mesencephalic astrocyte-derived neurotrophic factor (MANF) secretion and cell surface binding are modulated by KDEL receptors. J Biol Chem. (288) 4209-4225.

- Hoseki, J., Saskawa, H., Yamaguchi, Y., Maeda, M., Kubota, H., Kato, K., Nagata, K. (2010) Solution structure and dynamics of mouse ARMET. Febs Lett. (584) 1536-1542.
- Hotton III, N. (1968) The evidence of evolution. New York. American Heritage Publishing Company, INC.
- Ibañez, C.F. (1998) Emerging themes in structural biology of neurotrophic factors. Trends Neurosci. (21) 438–444.
- Ito, T., Warnken, S.P., May, W.S. (1999) Protein synthesis inhibition by flavonoids: roles of eukaryotic initiation factor 2 alpha kinases. Biochem Biophys Res Commun (265) 589-594.
- Kim, I., Xu, W., Reed, J.C. (2008) Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nature reviews Drug discovery. (7) 1013–1030.
- Kokame, K., Kato, H., Miyata, T. (2001) Identification of ERSE-II, a new cis-acting element responsible for the ATF6-dependent mammalian unfolded protein response. J Biol Chem (276) 9199–9205.
- Kooyman, R.P., Kolkman, H., Van Gent, J., Greve, J., (1998) Surface plasmon resonance immunosensors: sensitivity considerations, Anal. Chim. Acta. (213) 35-45.
- Lee, A.H., Iwakoshi, N.N., Glimcher, L.H. (2003) XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol. Cell. Biol. (23) 7448–7459.
- Llewellyn, D.H., Roderick, H.L., Rose, S. (1997) KDEL receptor expression is not coordinatedly up-regulated with ER stress-induced reticuloplasmin expression in HeLa cells. Biochem. Biophys. Res. Commun. (240) 36–40.
- Lindholm, P., Peraⁿnen, J., Andressoo, J.O., Kalkkinen, N., Kokaia, Z., Lindvall, O., Timmusk, T. Saarma, M. (2008) MANF is widely expressed in mammalian tissues and differently regulated after ischemic and epileptic insults in rodent brain. Mol. Cell. Neurosci., (39) 356–371.
- Lust, S., Vanhoecke, B., Vang, M., Boelens, J., Vanm, H., Kaileh, M. (2009) Xanthohumol activates the proapoptotic arm of the unfolded protein response in chronic lymphocytic leukemia. Anticancer research. (29) 3797–3805.
- Ma, X., Xi, L., Luo, D., Liu, R., Li, S., Liu, Y., (2012) Anti-Tumor Effects of the Peptide TMTP1-GG-D(KLAKLAK)2 on Highly Metastatic Cancers. PLoS ONE (7) e42685.
- Malhotra, J.D., Kaufman, R.J. (2011) ER stress and its functional link to mitochondria: role in cell survival and death. Cold Spring Harb Perspect Biol. 3:a004424.

- Miao, Y.R., Eckhardt, B.L., Cao, Y., (2013) Inhibition of established micrometastases by targeted drug delivery via cell surface-associated GRP78. Clin Cancer Res. (19) 2107–2116.
- Mizobuchi, N., Hoseki, J., Kubota, H., Toyokuni, S., Nozaki, J., Naitoh, M., Koizumi, A. Nagata, K. (2007) ARMET is a soluble ER protein induced by the unfolded protein response via ERSE-II element. Cell Struct. Funct. (32) 41–50.
- Oh-Hashi, K., Tanaka, K., Koga, H., Hirata, Y., Kiuchi, K. (2012) Intracellular trafficking and secretion of mouse mesencephalic astrocyte-derived neurotrophic factor. Mol Cell Biochem (363) 35–41.
- Parkash, V., Lindholm, P., Peränen, J., Kalkkinen, N., Oksanen, E., Saarma, M., Leppänen, V.M., Goldman, A. (2009) The structure of the conserved neurotrophic factors MANF and CDNF explains why they are bifunctional. Protein Engineering. (4) 233-241.
- Perez-Ramirez, B., Steckert, J.J. (2005). Therapeutic proteins: methods and protocols. Smales, C.M., James, D.C. Eds. Humana Press Inc, Totowa, NJ. Volume (308) 301-318.
- Petrova, P., Raibekas, A., Pevsner, J., Vigo, N., Anafi, M., Moore, M.K., Peaire, A.E., Shridhar, V., Smith, D.I., Kelly, J., Durocher, Y., Commissiong, J.W. (2003) MANF: a new mesencephalic, astrocyte-derived neurotrophic factor with selectivity for dopaminergic neurons. J. Mol. Neurosci. (20) 173–188.
- Rauthu, S. R., Shiao, T. C., André, S., Miller, M. C., Madej, É., Mayo, K. H., Gabius, H.-J. and Roy, R. (2015) Defining the Potential of Aglycone Modifications for Affinity/Selectivity Enhancement against Medically Relevant Lectins: Synthesis, Activity Screening, and HSQC-Based NMR Analysis. ChemBioChem, (16) 126–139.
- Raykhel, I., Alanen, H., Salo, K., Jurvansuu, J., Nguyen, V.D., Latva-Ranta, M., Ruddock, L. (2007) A molecular specificity code for the three mammalian KDEL receptors J. Cell Biol. (179) 1193–1204.
- Shridhar, V., Rivard, S., Shridhar, R., Mullins, C., Bostick, L., Sakr, W., Grignon, D., Miller, O.J., Smith, D.I. (1996) A gene from human chromosomal band 3p21.1 encodes a highly conserved arginine-rich protein and is mutated in renal cell carcinomas. Oncogene. (12) 1931–1939.
- Tadimalla, A., Belmont, P.J., Thuerauf, D.J., Glassy, M.S., Martindale, J.J., (2008) Mesencephalic astrocyte-derived neurotrophic factor is an ischemia-inducible secreted endoplasmic reticulum stress response protein in the heart. Circ Res. (103) 1249–1258.
- Uhlén, M., Fagerberg, L., Hallström, B.M., Lindskog, C., Oksvold, P., Mardinoglu, A.,
 Sivertsson, A., Kampf, C., Sjöstedt, E., Asplund, A., Olsson, I.M., Edlund, K., Lundberg,
 E., Navani, S., Szigyarto, C.A., Odeberg, J., Djureinovic, D., Takanen, J.O., Hober, S.,
 Alm, T., Edqvist, P.H., Berling, H., Tegel, H., Mulder, J., Rockberg, J., Nilsson, P.,
 Schwenk, J.M., Hamsten, M., Feilitzen, K., Forsberg, M., Persson, L., Johansson, F.,

Zwahlen, M., Heijne, G., Nielsen, J., Pontén, F. (2015) Tissue-based map of the human proteome. Science (6220) 1260419

- Wang, W., Dai, H., Zhang, Y., Chandrasekar, R., Luo, L., Hiromasa, Y., Sheng, C., Peng, G., Chen, S., Tomich, J.M., Reese, J., Edwards, O., Kang, L., Reeck, G., Cui, F. (2015)
 Armet is an effector protein mediating aphid-plant interactions. FASEB J. (5) 2032-2045.
- Yu, Y.Q., Liu, L.C., Wang, F.C., Liang, Y., Cha, D.Q., Zhang, J.J., Shen, Y.J., Wang, HP, Fang, S, Shen, YX (2010) Induction profile of MANF/ARMET by cerebral ischemia and its implication for neuron protection. J Cereb Blood Flow Metab. (30) 79-91.

Chapter 2:

- Akey, D.H., Beck, S.D. (1972) Nutrition of the pea aphid, *Acyrthosiphon pisum*: Requirements for trace metals, sulphur, and cholesterol. Journal of insect physiology, (18) 1901-1914.
- Aksamit, M.S. (2014) Bioinformatic Analysis of Pea Aphid Salivary Gland Transcripts. MSc Thesis. Kansas State University, USA.
- Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P., (2002) Molecular Biology of the Cell. 4th edition. New York: Garland Science;. The Endoplasmic Reticulum.
- Atamian, H.S., Chaudhary, R., Dal Cin, V., Bao, E., Girke, T., Kaloshian, I. (2013). In planta expression or delivery of potato Aphid Macrosiphum euphorbiae effectors Me10 and Me23 enhances aphid fecundity. Mol. Plant Microbe Interact. (26) 67–74.
- Blackman, R.L. Eastop, V.F. (2000) Aphids on the World's Crops, Second Edition. John Wiley & Sons with the Natural History Museum, London.
- Bolognesi, R., Ramaseshadri, P., Anderson, J., Bachman, P., Clinton, W., Flannagan, R., Ilagan, O., Lawrence, C., Levine, S., Moar, W., (2012) Characterizing the mechanism of action of double-stranded RNA activity against western corn rootworm (Diabrotica virgifera virgifera LeConte). PLoS One 7: e47534.
- Bommiasamy, H., Back, S. H., Fagone, P., Lee, K., Meshinchi, S., Vink, E., Sriburi, R., Frank, M., Jackowski, S., Kaufman, R. J., Brewer, J. W. (2009) ATF6alpha induces XBP1independent expansion of the endoplasmic reticulum. J. Cell Sci. (122) 1626–1636.
- Bos, J.I., Prince, D., Pitino, M., Maffei, M.E., Win, J., Hogenhout, S.A. (2010) A functional genomics approach identifies candidate effectors from the aphid species *Myzus persicae* (green peach aphid). PLoS genetics. (6) e1001216.
- Braendle, C., Davis, G. K., Brisson, J. A., Stern, D. L. (2006) Wing dimorphism in aphids. Heredity (97) 192–199.
- Bruce, T., Aradottir, G.I., Smart, L.E., Martin, J.L., Caulfield, J.C., Doherty, A., Sparks, C.A., Woodcock, C.M., Birkett, M.A., Napier, J.A., Jones, H.D., Pickett, J.A. (2015) The first

crop plant genetically engineered to release an insect pheromone for defense. Scientific Reports 5, Article number 11183.

- Brunagel, G., Shah, U., Schoen, R.E., Getzenberg, R.H. (2003) Identification of calreticulin as a nuclear matrix protein associated with human colon cancer. J. Cell Biochem. (89) 238– 243.
- Camacho, P., John, L., Li, Y., Paredes, R.M., Roderick, H.L. (2003). Calnexin and calreticulin, ER associated modulators of calcium transport in the ER. Molecular Biology Intelligence Unit. 126–132.
- Carolan, J.C., Fitzroy, C.I., Ashton, P.D., Douglas, A.E., Wilkinson, T.L. (2009) The secreted salivary proteome of the pea aphid Acyrthosiphon pisum characterized by mass spectrometry. Proteomics. (9) 2457-2467.
- Carolan, J.C., Caragea, D., Reardon, K.T., Mutti, N.S., Dittmer, N., Pappan, K., Cui, F., Castaneto, M., Poulain, J., Dossat, C., Tagu, D., Reese, J.C., Reeck, G.R., Wilkinson, T.L., Edwards, O.R. (2011) Predicted effector molecules in the salivary secretome of the pea aphid (*Acyrthosiphon pisum*): a dual transcriptomic/proteomic approach. Journal of Proteome Research. (10) 1505-1518.
- Chakrabarti, A., Chen, A.W., Varner, J.D. (2011). A review of the mammalian unfolded protein response. Biotechnology and Bioengineering, (108) 2777–2793.
- Chow, C.Y., Wolfner, M.F., Clark, A.G. (2013) Using natural variation in Drosophila to discover previously unknown endoplasmic reticulum stress genes. Proc Natl Acad Sci USA. (110) 9013–9018.
- Cooper, W.R., Dillwith, J.W., Puterka, G.J. (2010). Salivary proteins of Russian wheat aphid (Hemiptera: Aphididae). Environmental entomology. (39) 223-231.
- Cui, F., Smith, M., Reese, J., Edwards, O., Reeck G.R. (2012) Polymorphisms in salivary-gland transcripts of Russian wheat aphid biotypes 1 and 2. Insect Science, (19) 429-440.
- D'Arcy, C.J., Domier, L.L. (2000) Barley yellow dwarf. The plant health instructor. DOI: 10.1094/PHI-I-2000-1103-01 Updated 2005.
- Delom, F., Mallet, B., Carayon, P., Lejeune, P.J. (2001) Role of extracellular molecular chaperones in the folding of oxidized proteins. Refolding of colloidal thyroglobulin by protein disulfide isomerase and immunoglobulin heavy chain-binding protein. J. Biol. Chem. (276) 21337–21342.
- Dinant S, Bonnemain J-L, Girousse C, Kehr J. (2010) Phloem sap intricacy and interplay with aphid feeding. C R Biol. (333) 504–515
- Dissemond, J., Busch, M., Kothen, T., Mors, J., Weimann, T.K., Lindeke, A. (2004) Differential downregulation of endoplasmic reticulum-residing chaperones calnexin and calreticulin in human metastatic melanoma. Cancer Letters. (203) 225–231.

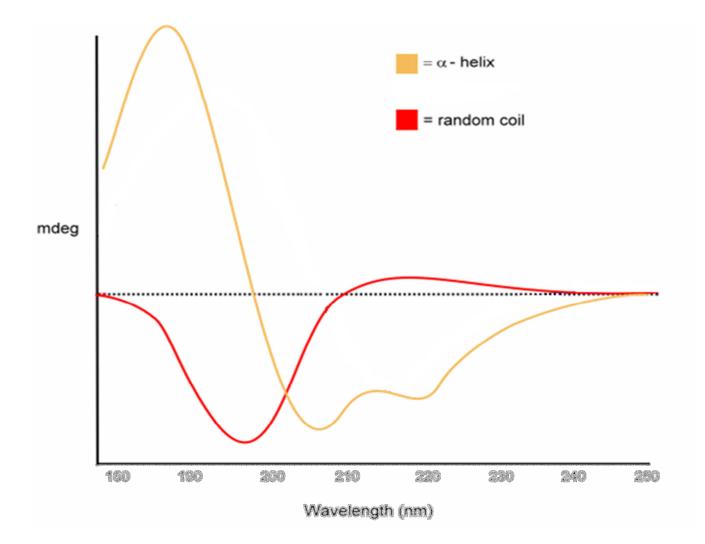
- Dixon, A.F.G. (1987) The way of life of aphids: host specificity, speciation and distribution. In: Minks AK, Harrewijn P, editors. Aphids. New York: Elsevier. 197-207.
- Du, Z., Treiber, D., McCoy, R.E. (2013) Unfolded Protein Response (UPR) During CHO Cell Production Culture. Developments in Biotechnology and Bioprocessing. American Chemical Society. (2) 19-32.
- Fürstenberg-Hägg, J., Zagrobelny, M., Bak, S. (2013) Plant defense against insect herbivores. Int. J. Mol. Sci. (14) 10242-10297.
- Gordon, K., Waterhouse, P. M. (2007). RNAi for insect-proof plants. Nat. Biotechnol. (25) 1231–1232.
- Guo, K, Wang, W., Luo, L., Chen, J., Guo, Y., Cui, F. (2014) Characterization of an aphidspecific, cysteine-rich protein enriched in salivary glands. Biophysical Chemistry, (189) 25-32.
- Harmel, N., Létocart, E., Cherqui, A., Giordanengo, P., Mazzucchelli, G., Guillonneau, F., De Pauw, E., Haubruge, E., Francis, F. (2008). Identification of aphid salivary proteins: a proteomic investigation of *Myzus persicae*. Insect molecular biology. (17) 165-174.
- Haze, K., Yoshida, H., Yanagi, H., Yura, T., Mori, K. (1999) Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol. Biol. Cell (10) 3787–3799.
- Hendershot, L.M., Valentine, V.A., Lee, A.S., Morris, S.W., Shapiro, D.N. (1994) Localization of the gene encoding human BiP/GRP78, the endoplasmic reticulum cognate of the HSP70 family, to chromosome 9q34. Genomics (20) 281–284.
- Hetz, C., Thielen, P., Matus, S., Nassif, M., Court, F., Kiffin, R., Martinez, G., Cuervo, A.M., Brown, R.H., Glimcher, L.H. (2009) XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy. Genes Dev. (23) 2294-2306.
- Hetz, C., Chevet, E., Harding, H. (2013). Targeting the unfolded protein response in disease. Nature Rev Drug Discovery (12) 703-719.
- Hetz, C., Martinon, F., Rodriguez, D., Glimcher, L.H. (2011) The unfolded protein response: integrating stress signals through the stress sensor IRE1α. Physiological Reviews (91) 1219-1243.
- The International Aphid Genomics Consortium (2010) Genome Sequence of the Pea Aphid Acyrthosiphon pisum. PLoS Biol (8) e1000313.
- Jaouannet, M., Rodriguez, P. A., Thorpe, P., Lenoir, C. A., Macleod, R., Escudero-Martinez, C., (2014) Plant immunity in plant-aphid interactions. Front Plant Sci. (5) 663.

- Kansas State University Online Research and Extension Guide (2015) Retrieved: 6/5/2015. http://www.ksre.ksu.edu/bookstore/pubs/mf809.pdf.
- Kuny, S., Gaillard, F., Sauve, Y. (2012) Differential gene expression in eyecup and retina of a mouse model of Stargardt-like macular dystrophy (STGD3). Invest Ophthalmol Vis Sci. (53) 664-675.
- Lee, A.S. (2001) The glucose-regulated proteins: stress induction and clinical applications. Trends in Biochemical Sciences (26) 504–510.
- Liu, F., Wang, X.D., Zhao, Y.Y., Li, Y.J., Liu, Y.C., Sun, J. (2015) Silencing the HaAK gene by transgenic plant-mediated RNAi impairs larval growth of Helicoverpa armigera. Int J Biol Sci. (11) 67-74.
- Mesaeli, N., Nakamura, K., Zvaritch, E., Dickie, P., Dziak, E., Krause, K.H. (1999) Calreticulin is essential for cardiac development. J. Cell Biol. (144) 857–868.
- Miles, P.W. (1968) Insect secretions in plants. Ann. Rev. Phytopathol. (6) 137-64.
- Miles, P.W. (1999) Aphid saliva. Biol Rev (74) 41-85.
- Minks, A.K., Harrewijn, P., editors. (1989) Aphids: their biology, natural enemies and control. New York: Elsevier.
- Ogino, T., Bandoh, N., Hayashi, T., Miyokawa, N., Harabuchi, Y., Ferrone S. (2003) Association of tapasin and HLA class I antigen down-regulation in primary maxillary sinus squamous cell carcinoma lesions with reduced survival of patients. Clin. Cancer Res. (9) 4043–4051.
- Oslowski, C.M., Urano, F. (2011) Measuring ER stress and the unfolded protein response using mammalian tissue culture system. Methods Enzymol. (490) 71–92.
- Palgi, M., Lindstrom, R., Peranen, J., Piepponen, T.P., Saarma, M., Heino, T.I. (2009) Evidence that DmMANF is an invertebrate neurotrophic factor supporting dopaminergic neurons. Proc. Natl. Acad. Sci. USA, (106) 2429–2434
- Pilcher, C., Rice, M. (2005) Economic impact of soybean aphid. Iowa State University Integrated Crop Management. Department of Entomology. Retrieved: 6/10/2015. http://www.ipm.iastate.edu/ipm/icm/node/53.
- Polhemus, J.T., Polhemus, D.A. (2008) Global diversity of true bugs (Heteroptera; Insecta) in freshwater animal diversity assessment. Developments in Hydrobiology (198) 379-391.
- Rai K. M., Singh, S.K., Bhardwaj, A., Kumar, V., Lakhwani, D., Srivastava, A., Jena, S.N., (2013) Large-scale resource development in Gossypium hirsutum L. by 454 sequencing of genic-enriched libraries from six diverse genotypes. Plant Biotechnology Journal (11) 953–963.

- Ramsey, J.S., Wilson, A.C.C., de Vos, M., Sun, Q., Tamborindeguy, C., Winfield, A., Malloch,
 G., Smith, D.M., Fenton, B., Gray, S.M., (2007) Genomic resources for *Myzus persicae*:
 EST sequencing, SNP identification, and microarray design. BMC Genomics. (8) 423.
- Rao, S.A., Carolan, J.C., Wilkinson, T.L. (2013) Proteomic profiling of cereal aphid saliva reveals both ubiquitous and adaptive secreted proteins. PloS one. (8) e57413.
- Ryoo, H.D., Steller, H. (2007) Unfolded protein response in Drosophila: why another model can make it fly. Cell Cycle. (6:7) 830-835.
- Saito, Y., Ihara, Y., Leach, M.R., Cohen-Doyle, M.F., Williams D.B. (1999) Calreticulin functions in vitro as a molecular chaperone for both glycosylated and non-glycosylated proteins. EMBO J. (18) 6718–6729.
- Schroder, M., Kaufman, R. J. (2005) The mammalian unfolded protein response. Annu. Rev. Biochem. (74) 739–789.
- Simon, J. C., Stoeckel, S., Tagu, D. (2010) Evolutionary and functional insights into reproductive strategies of aphids. Comptes Rendus Biologies (333) 488–496.
- Stekel, D.J., Git, Y., Falciani, F. (2000) The comparison of gene expression from multiple cDNA libraries. Genome Research. (10) 2055-2061.
- Tigges, M., Fussenegger, M. (2006) XBP1-based engineering of secretory capacity enhances the productivity of Chinese hamster ovary cells. Metab. Eng. (8) 264–272.
- Ting, J., Lee, A.S. (1988). Human gene encoding the 78,000-dalton glucose-regulated protein and its pseudogene: structure, conservation, and regulation. DNA (7) 275–286.
- Tjallingii, W.F. (2006) Salivary secretions by aphids interacting with proteins of phloem wound responses. J Exp Bot (57) 739–745.
- Tsang, K.Y., Chan, D., Bateman, J.F., Cheah, K.S. (2010) In vivo cellular adaptation to ER stress: survival strategies with double-edged consequences. J. Cell Sci., (123) 2145–2154.
- van Emden, H., Harrington, R., (2007) Life cycles and polymorphism, aphids as crop pests. CAB International, London, 69-87.
- Walter, P., Ron, D. (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science. (334) 1081-1086.
- Wilkinson, B., Gilbert, H.F. (2004). Protein disulfide isomerase. Biochim Biophys Acta (1699) 35–44.
- Ye, J., Rawson, R. B., Komuro, R., Chen, X., Dave, U. P., Prywes, R., Brown, M. S., Goldstein, J. L. (2000) ER stress induces cleavage of membranebound ATF6 by the same proteases that process SREBPs. Mol. Cell. (6) 1355–1364

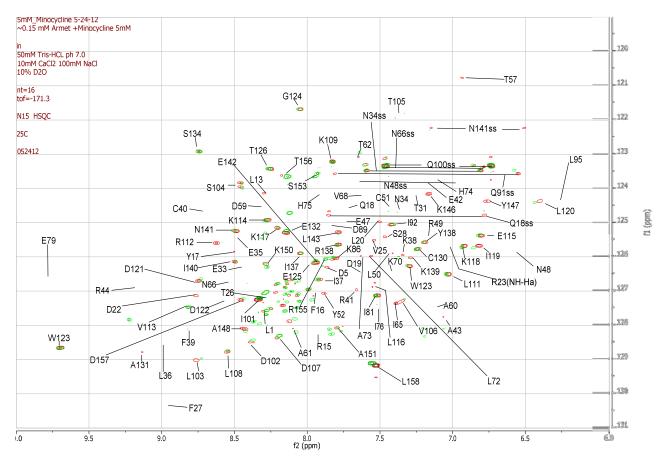
Yoshida, H., Matsui, T., Yamamoto, A., Okada, T., Mori, K. (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell (107) 881–891.

Chapter 3:


- Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P. (2008) Chapter 18 Apoptosis: Programmed cell death eliminates unwanted cells. Mol. Biol. Cell. 1115.
- Amerik, A.Y., Hochstrasser, M. (2000) Analysis of the deubiquitinating enzymes of the yeast S. cerevisiae. J. Biol. Chem. (10) 981-992.
- Apostolou, A., Shen, Y., Liang, Y., Luo, J., Fang, S. (2008) Armet, a UPR-upregulated protein, inhibits cell proliferation and ER stress-induced death. Exp. Cell Res. (314) 13.
- Aravind, L., Ponting, C.P. (1998) Homologues of 26S proteasome subunits are regulators of transcription and translation. Prot. Sci. (7) 1250-1254.
- Arkane, Y., Muthukrishnan, S., Kramer, K.J., Specht, C..A., Tomoyasu, Y., Lorenzen, M.D., Kanost, M., Beeman, R.W., (2005) The Tribolium chitin synthase genes TcCHS1 and TcCHS2 are specialized for synthesis of epidermal cuticle and mid gut peritrophic matrix. Insect Mol. Biol. (14) 453-463.
- Attardo, G.M., Higgs, S., Klingler, K.A., Vanlandingham, D.L., Raikhel, A.S., (2003) RNA interference-mediated knockdown of a GATA factor reveals a link to anautogeny in the mosquito Aedesae gypti. Proc. Natl. Acad. Sci. USA. (100) 13374–13379.
- Bettencourt, R., Terenius, O., Paye, I. (2002) Hemolin gene silencing by ds-RNA injected into Cecropia pupae is lethal to next generation embryos. Insect Mol. Biol. (11) 267-271.
- Balch, W.E., Morimoto, R.I., Dillin, A., Kelly, J.W. (2008) Adapting proteostasis for disease intervention. Science. (319) 916-919.
- Bertolotti, A., Zhang, Y., Hendershot, L.M., Harding, H.P., Ron, D. (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nature Cell Biol. (2) 326-332.
- Bommiasamy, H., Back, S., Fagone, P., Lee, K., Meshinchi, S., Vink, E., Sriburi, R., Frank, M., Jackowski, S., Kaufman, R.J., Brewer, J.W. (2009) ATF6α induces XBP1-independent expansion of the endoplasmic reticulum. J. Cell Sci. (122) 1626-1636.
- DuRose, J.B., Scheuner, D., Kaufman, R.J., Rothblum, L.I., Niwa, M. (2009) Phosphorylation of eukaryotic translation initiation factor 2α coordinates rRNA transcription and translation inhibition during endoplasmic reticulum stress. Mol. Cell Biol. (29) 4295-4307.
- Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., Mello, C.C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. (391) 806-811.

- Goto, A., Blandin, S., Royet, J., Reichhart, J.M., Levanshina, E.A. (2003) Silencing of Toll pathway components by direct injection of double-strated RNA into Drosophila adult flies. Nucleic Acids Res. (22) 6619-6623.
- Gruber, C.W., Cemazar, M., Heras, B., Martin, J.L., Craik, D.J. (2006) Protein disulfide isomerase: the structure of oxidative folding. Trends Biochem. Sci. (31) 455-64.
- Harding, H.P., Novoa, I., Zhang, Y., Zeng, H., Wek, R., Schapira, M., Ron, D. (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol. Cell (6) 1099-1108.
- Hatahet, F., Ruddock, L.W. (2007) Substrate recognition by the protein disulfide isomerases. FEBS J. (274) 5223-5234.
- Jaubert-Possamai, S. (2007) Gene knockdown by RNAi in the pea aphid Acyrthosiphon pisum. BMC Biotechnol. (7) 63.
- Karam, J.A., Hsieh, JT. (2009) Anti-Cancer strategy of transitional cell carcinoma of bladder based on induction of different types of programmed cell deaths: Apoptosis in carcinogenesis and chemotherapy. Springer. 25-50.
- Kimura, Y., Tanaka, K. (2010) Regulatory mechanisms involved in the control of ubiquitin homeostasis. J. Biol. Chem. (147) 793-8.
- Koumenis, C. (2006) ER stress, hypoxia tolerance and tumor progression. Curr. Mol. Med. (6) 55-69.
- Levin, D.M., Breuer, L.N., Zhuang, S., Anderson, S.A., Nardi, J.B., Kanost, M.R., (2005) A hemocyte-specific integrin required for hemocytic encapsulation in the tobacco hornworm, Manduca sexta. Insect Biochem. Mol. Biol. (35) 369-80.
- Lipson, K.L., Fonseca, S.G., Urano, F. (2006) Endoplasmic reticulum stress-induced apoptosis and auto-immunity in diabetes. Curr. Mol. Med. (6) 71-77.
- Moenner, M., Pluquet, O., Bouchecareilh, M., Chevet, E. (2007) Integrated endoplasmic reticulum stress responses in cancer. Cancer Res. (67) 10631-10634.
- Mulder, P., Seuhs, K. Oklahoma State University. Department of Entomology. Current report on alfalfa forage insect control. retrieved 7/13/2014. http://pods.dasnr.okstate.edu/docushare/dsweb/Get/Document-2364/EPP-7150web.pdf
- Mutti, M.S., Park, Y., Reese, J.C., Reeck, G.R. (2006) RNAi knockdown of a salivary transcript leading to lethality in the pea aphid, Acyrthosiphon pisum. J. Insect Sci. (6) 37-38.
- Naidoo, N. (2009) ER and aging: protein folding and the ER stress response. Ageing Res. Rev. (8) 150-159.

- Nassif, M. Matus, S. Castillo, K. Hetz, C. (2010) Amyotrophic lateral sclerosis pathogenesis: a journey through the secretory pathway. Antioxid. Redox Signal. (13) 1955-1989.
- Pitino, M., Coleman, A.D., Maffei, M.E., Ridout, C.J., Hogenhout, S.A. (2011) Silencing of aphid genes by dsRNA feeding from plants. PLoS Biol. (6) 25709.
- Rajagopal, R., Sivakumar, S., Agrawal, N., Malhotra, P., Bhatnagar, R.K. (2002) Silencing of midgutaminopeptidase N of Spodoptera litura by double-stranded RNA establishes its role as Bacillus thuringiensis toxin receptor. J. Biol. Chem. (277) 46849-46851.
- Ron, D., Walter, P., (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. (8) 519-529.
- Schell, J., Van Montagu, M. (1977) The Ti-plasmid of Agrobacterium tumefaciens, a natural vector for the introduction of nif genes in plants. Basic Life Sci. (9) 159-79.
- Schroder, M., Kaufman, R.J., (2005) The mammalian unfolded protein response. Ann. Rev. Biochem. (74) 739-789.
- Schubert, U., Anton, L.C., Gibbs, J., Norbury, C.C., Yewdell, J.W., Bennink, J.R. (2000) Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature. (404) 770-774.
- Shen, X., Ellis, R.E., Sakaki, K., Kaufman, R.J. (2005) Genetic interactions due to constitutive and inducible gene regulation mediated by the unfolded protein response in C. elegans. PLoS Genet. (3) e37
- Sidrauski, C., Walter, P. (1997) The transmembrane kinase IRE1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell. (90) 1031-1039.
- Sriburi, R., Jackowski, S., Mori, K., Brewer, J.W. (2004) XBP1: a link between the unfolded protein response, lipid biosynthesis, and biogenesis of the endoplasmic reticulum. J. Cell Biol. (167) 35-41.
- Stevens, F.J., Argon, Y., (1999) Protein folding in the ER. Semin. Cell. Dev. Biol. (10) 443-454.
- Todd, D.J., Lee, A.H., Glimcher, L.H. (2008) The endoplasmic reticulum stress response in immunity and autoimmunity. Nature Rev. Immunol. (8) 663-674.
- Uhlirova, M., Foy, B.D., Beaty, B.J., Olson, K.E., Riddiford, L.M., Jindra, M. (2003) Use of Sindbis virus-mediated RNA interference to demonstrate a conserved role of Broad-Complex in insect metamorphosis. Proc. Natl. Acad. Sci. USA. (100) 15607-15612.
- Vembar, S.S., Brodsky, J.L. (2008)One step at a time: endoplasmic reticulum-associated degradation. Nature Rev. Mol. Cell Biol. (12) 944-57.


- Volmer, R., van der Ploeg, K., Ron, D. (2013) Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains. Proc. Natl. Acad. Sci. USA. (110) 4628-33.
- Williams, D.B. (2006) Beyond lectins; the calnexin/calreticulin chaperone system of the endoplasmic reticulum. J. Cell Sci. (119) 615-23.
- Xie, Y., Tulenko, T.N. (2006) Activation of the unfolded protein response by cholesterol enrichment in human endothelium. FASEB J. (20) Meeting Abstracts.
- Zamore, P.D., Tuschl, T., Sharp, P.A., Bartel, D.P. (2000) RNAi: Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell (101) 25-33.
- Zhou, X., Oi, F.M., Scharf, M.E. (2006) Social exploitation of hexamerin: RNAi reveals a major caste-regulatory factor in termites. Proc. Natl. Acad. Sci. USA. (103) 4499-4504.

Appendix A - CD Reference Spectrum plus Ligand & Difference NMR Spectra of Armet with Select Ligands

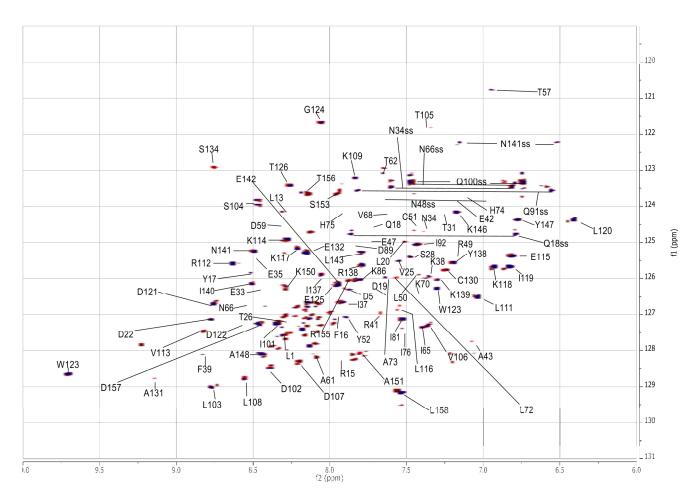
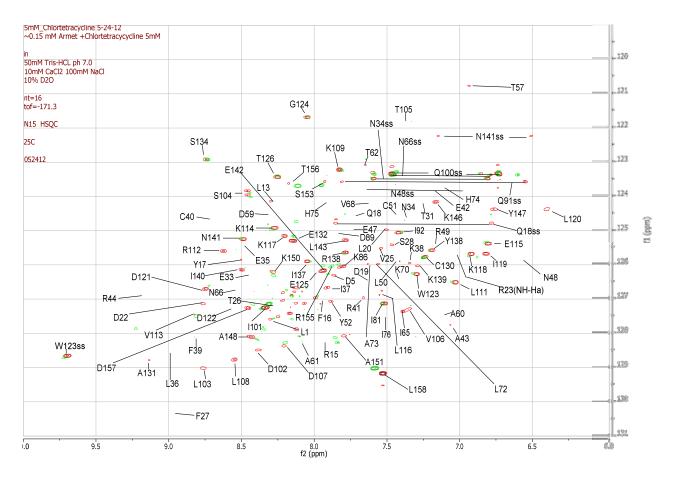
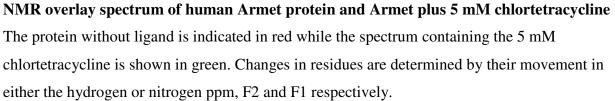
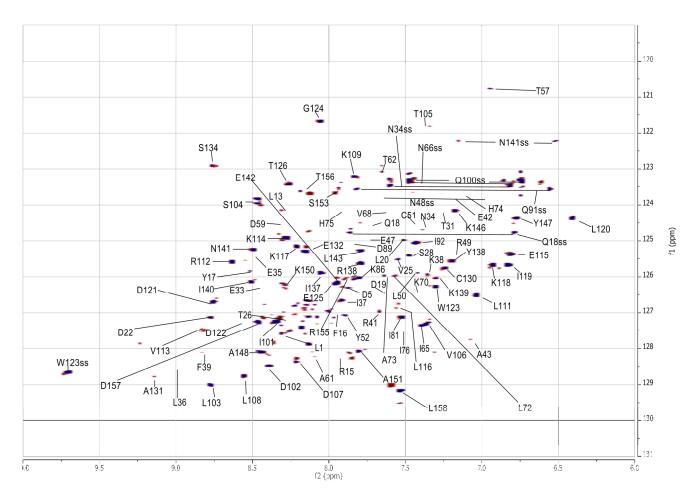
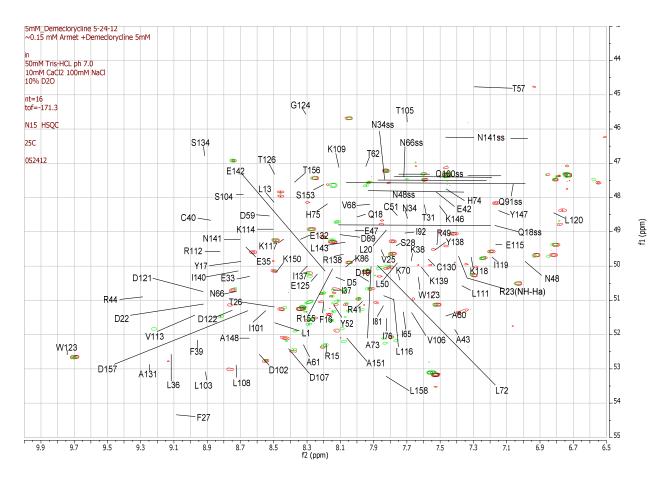

Idealized circular dichroism secondary structure

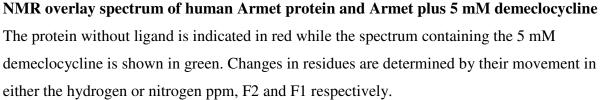
Image modified and obtained by Google image search from http://www.proteinchemist.com/cd/cdspec.html

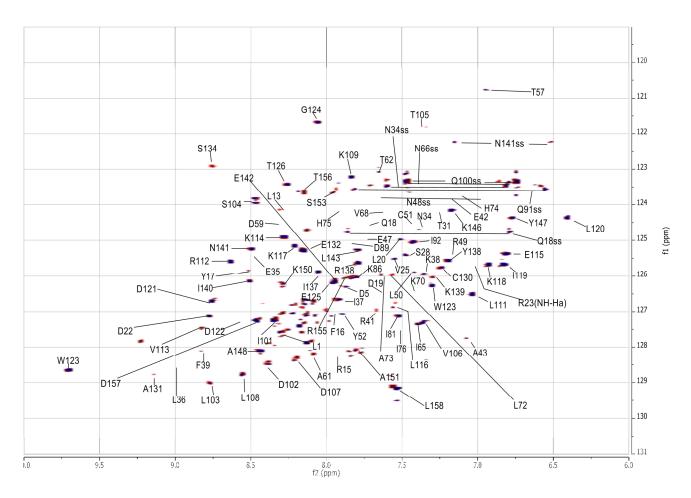


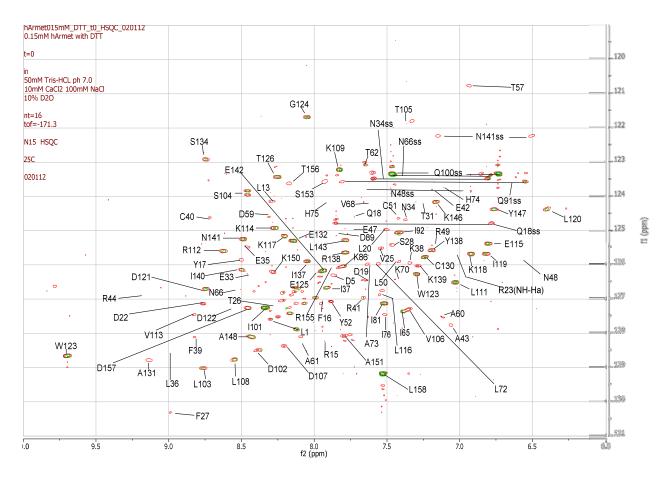

NMR overlay spectrum of human Armet protein and Armet plus 5 mM minocycline.

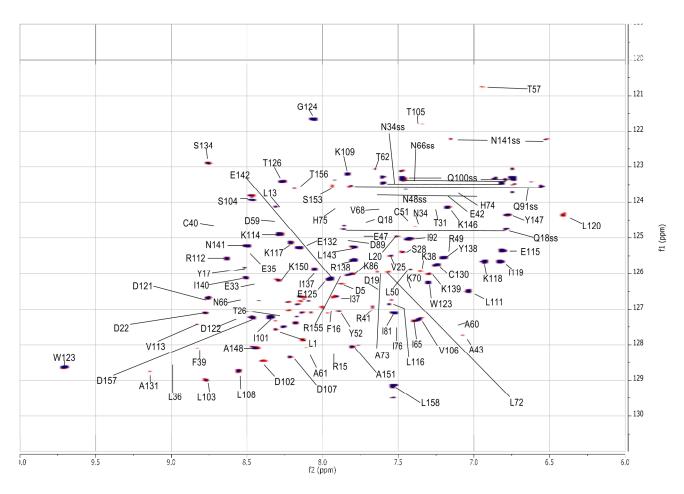

The protein without ligand is indicated in red while the spectrum containing the 5 mM minocycline is shown in green. Changes in residues are determined by their movement in either the hydrogen or nitrogen ppm, F2 and F1 respectively.



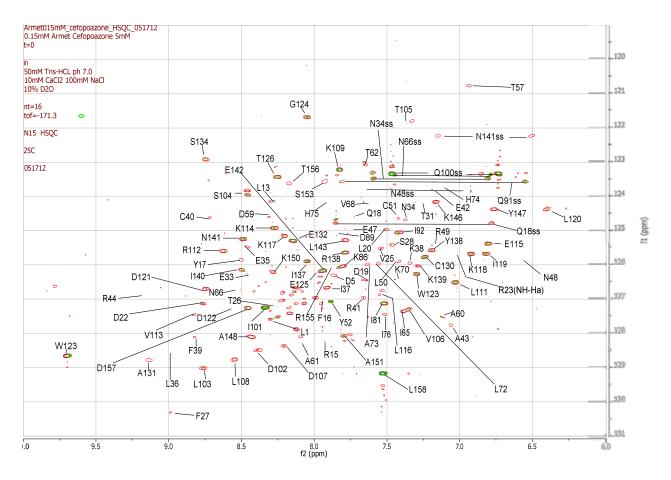


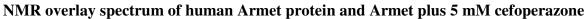



NMR difference spectrum of human Armet protein and Armet plus 5 mM chlortetracycline

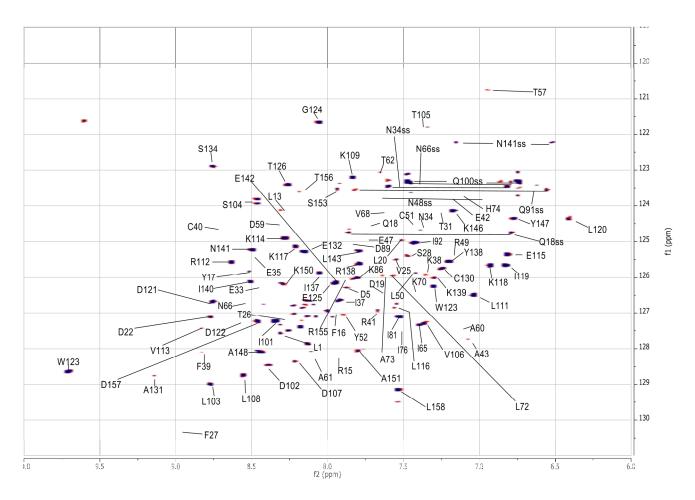


NMR difference spectrum of human Armet protein and Armet plus 5 mM demeclocycline The signal indicated in red is indicative of an increased signal without ligand present and a blue signal indicates an increased signal with the ligand present. These changes are identified and qualified in table 1. Changes in residues are determined by their movement in either the hydrogen or nitrogen ppm, F2 and F1 respectively.

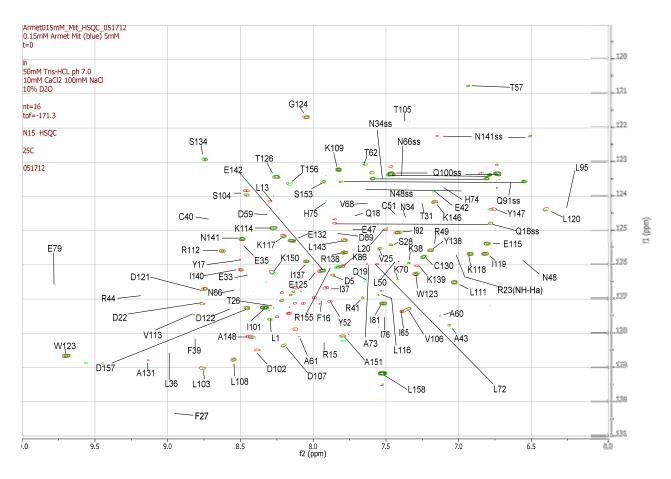


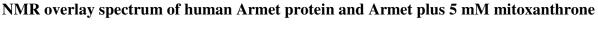

NMR overlay spectrum of human Armet protein and Armet plus 5 mM DTT

The protein without ligand is indicated in red while the spectrum containing the 5 mM DTT is shown in green. Changes in residues are determined by their movement in either the hydrogen or nitrogen ppm, F2 and F1 respectively.

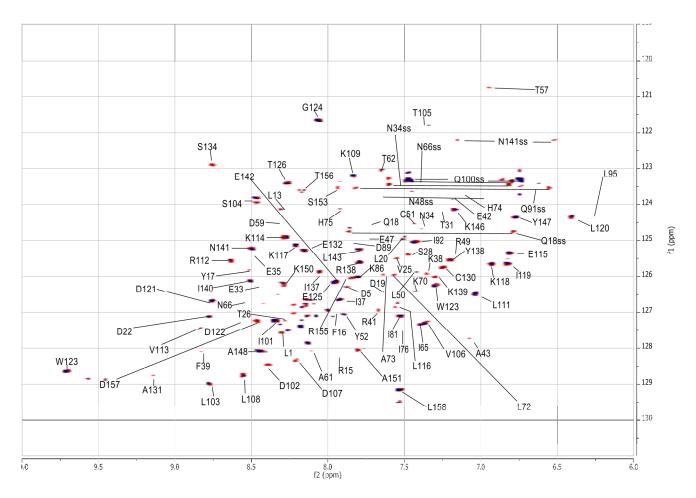


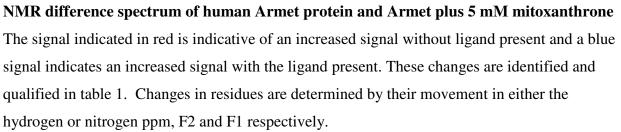
NMR difference spectrum of human Armet protein and Armet plus 5 mM DTT

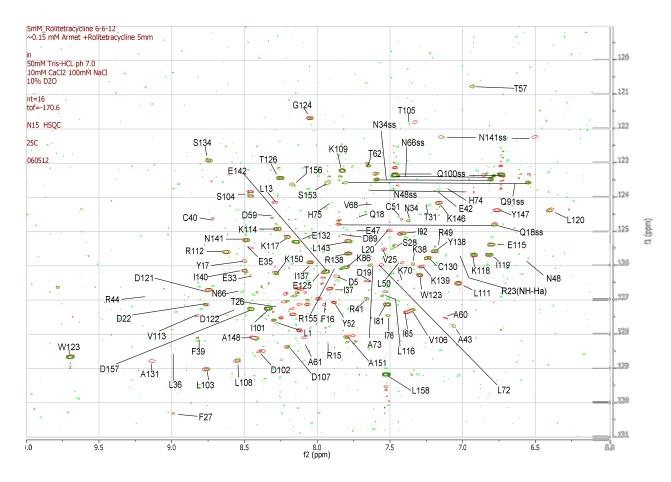


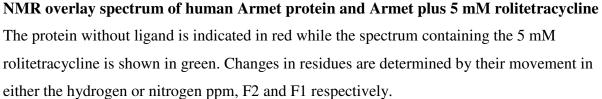


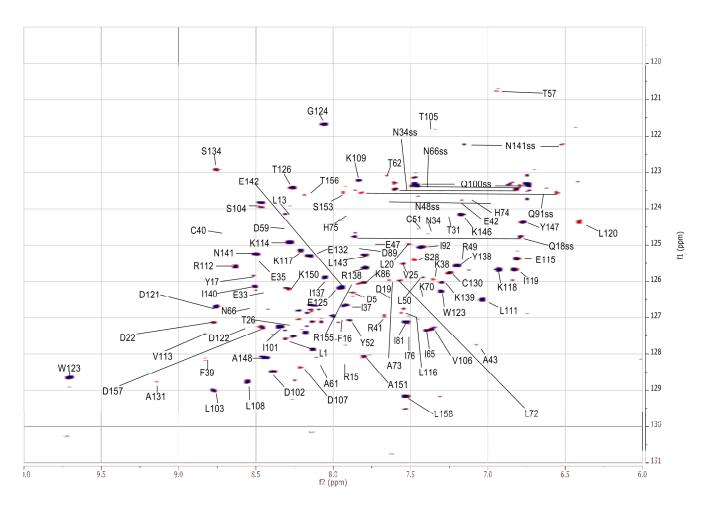
The protein without ligand is indicated in red while the spectrum containing the 5 mM cefoperazone is shown in green. Changes in residues are determined by their movement in either the hydrogen or nitrogen ppm, F2 and F1 respectively.

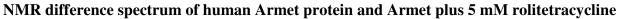



NMR difference spectrum of human Armet protein and Armet plus 5 mM cefoperazone The signal indicated in red is indicative of an increased signal without ligand present and a blue signal indicates an increased signal with the ligand present. These changes are identified and qualified in table 1. Changes in residues are determined by their movement in either the hydrogen or nitrogen ppm, F2 and F1 respectively.






The protein without ligand is indicated in red while the spectrum containing the 5 mM mitoxanthrone is shown in green. Changes in residues are determined by their movement in either the hydrogen or nitrogen ppm, F2 and F1 respectively.



Appendix B - Human UPR List

List of human UPR genes which indicate description, human and aphid gene ID, alternative names, and official gene name of the 91 components utilized in Chapter 2.

	Unfold	ed Protein	Response: Genes, Protein	s. & Fun	ctions	
Official Name	AKA	Additional Roles	Comments	Human Gene ID	Aphid Gene ID	Gene Name
			Primary UPR Role: ER Transducers			
Inceited-requiring enzyme-1	IRE1; IRE1P; IRE1a; hIRE1pCG4583; disc-1; dIRE1; DrachCG4583; ha; inc- 1; Inc-1; IRE-Ho; ire1; IRE1	Transcription factor	The protoin stocoid by this goes in the IR to nucleus signaling 1 protein, a human homologue of the yeard herd goes product. This protein possesses intrinsic kinase activity and as enderibonachases activity and it is important in adapting goes as pression as a response to endeplasmic reticulars-based stress signals.	2081	100164567	ERN1
Activating transcription factor 6	ATF6A		accumulation of mixfolded pro causes protoolytic chavage of ATF6 - sytemilic portion moves to nucleus to act as a transcription factor to increase transcription of ER Chaperones	229/26	100571138	ATF6
Eukaryotic translation initiation factor 2 alpha kinase 3	Pele; Perle; A1427929	Translation Regulation	Patients with mutations in this gone develop Wolcott Rallison syndrome	9451	100166491	EIF2AK3
			Primary UPR Role: Transcription Factor			
X-box binding protein	XBP2, TREB5, XBP-1		transcription factor that migalatin MHC class II (sense by binding to a promotor domain referred to as an X ber. This gene product is a bZP protein, which was also identified as a cultular transcription factor that binds to as enhancer in the promotor of fee T cull bindsmin view type I promote. It may increase expansion of viel proteins by acting as the DNA binding partner of a viral transactivator. It has here found that spon accumulation of mefoliad proteins in the endeplanetic reticulant (ER), the mRNA of this gene is proascasted to an active form by an unconvectional splicing mechanism that in multiated by the endemackase involves for generic and that is provided by the singulated by the endemackase involves frame-while and an isoform XBP1(S), which is the functionally active transcription factor. The isoform accessibly by the singulate mRNA, XIBP1(D), is constability expressed, and forcight of functions are magnitude of XIBP1(S) which that of it mancription of argst genes during the recovery phase of ER stress. A pseudogene of XIBP1 has been identified and localized to chorenees m. 5.	7494	100574802	XHP1
Activating transcription factor 4 (late-responsive enhancer element B67)	CREB2, TXREB; CREB-2; TAXREB67		indams CHOP gene - JNK inactivation downregulates expression	468	100161513	ATF4
cAMP responsive element binding protein 3	IZD; LUMAN		transcription factor that is a member of the loadine zipper family of DNA blocking proteins. binds to the cAMP response element and regulates out] proliferations interacts with board thif factor CL, which also associations with the harpen viruples wirner (HSV) protein VP16 that induces transcription of HSV immediate early genes. This protein and VP16 both bind to the same site on best call factor CL proposed interaction between this protein and best call factor CL plays a role in the autohibment of lationcy during HSV infaction. This protein also plays a role in haloccyle migration, samer suppression, and endoplasmic striculars above associated protein degradation.	10488	100166610	CREB3
cAMP responsive element binding protein 3-Ele 3	CREBH; CREB-I; HYST1481		This game encodes a member of the basic-knocken zipper family and the AMP- dependent transcription factor family. The encoded protein is localized to the modphanic relationar and acta as a transcription factor activated by cyclic AMP stimulation. The encoded protein binds the cyclic AMP mappenese element (CRI) and the bor. Belement and has been liked to acut influenzatory mappenese, hep-aircedular carcineme, triglyceride metabolism, and hep-faller expression.	84609	100166610	CREBN.3
activating transcription factor 6 bata	G17; CREBL1; CREB-RP		transcription factor in the (10%) pathway during ER struss. Either as a homodimer or as a hoterooffner with ATWs dupin, the protein binds to the ER struss mapsens skennet, interacting with mackar transcription factor Y to activate UPR target genus, normally found in the membrane of the IRs, however, andar ER struss, the N-terminal dypelapartic during is calcular them the mot of the protein and transformations to the mackan. Two transcript variants encoding different isoforms have been found for this zeros.	1388	100571138	ATF6B
TNF receptor- associated factor 2	TRAP, TRAPJ, MOC45012		The protein encoded by this gene is a member of the TNF receptor associated factor (TRAF) protein family. TRAF predein associate with, and mediate the signal neuclection forms members of the TNF receptor superfamily. This predein directly interacts with TNF receptors, and forms a hearondmeric complex with TRAF1. This interacts with TNF receptors, and forms a hearondmeric complex, with TRAF1. This heaped. The protein complex formed by this protein and TRAF1 interacts with the hibbits—of acquirate formed by this protein and TRAF1 interacts with the hibbits—of acquirate formed by this protein and TRAF1 interacts with the hibbits—of acquirate formed by this protein on the TRAF1. This protein form TNF receptors. The interaction of this protein with TRAF0.2, a TNF receptor associated apoptotic signal transduce, constant the recruitment of LAPs for the direct inhibition of caspase activation, IBRC20-6APs, an apoptotic signal barreciptor variability. For the form for the protein and induce the dependent of this protein, and thus potentiate TNF-induced apoptosis. Multiple alternatively splicad transcript variables have been formed for this genus, but the biological validity of only one transcript transmit have been formed for this genus, but the biological validity of only one transcript transmit.	7186	100159489	TRAF2
Catalyon Canada	CONTRACTOR AND INCOMENTS		Primary UPR Role: Translation Regulation	\$3939	100167878	EIF2A
initiation factor elli-	METTOOL METTOR		The state of the s	1965	100168717	eif2
2B alpha subunit			Primary UPR Role: Anti-Apoptosis			
Armut	ARP; MANF	Protein Binding	localised in the endeplasmic microlaum (FR) and polyl, and in also surveised. Rotacing a provision of this gone increases susceptibility to ER stress-induced death and promotes and proliferation	7873	100167188	MANF
heat shock 70kDa protein 5 (glacoar- regulated protein, 78kDa)	BiP; MIF2; GRI78		The protoin succoded by this gene is a member of the lacat shock protein 70 (HSP70) family. It is localized in the laman of the endeplanetic striculant (ER), and is involved in the folding and assembly of proteins in the IRA statis for protein instances with many IRA proteins, it may play a kay role in meniforing protein transport through the coll	3309	100167748	HSPA5
CCAAT/enhancer binding prokin (CFEBP), dolta	CELF; CRP3; C/EBP-dalta; NF-ILE-bota	Transcription factor	The protoin encoded by this introdeus gene is a bZP transcription factor which can bind as a hormodimer to article DNA regulatory argions. It can also form heterofiners with the related protoid CERP-adjace. The encoded protoin is important in the regulation of genes involved in immune and influenzatory responses, and may be involved in the regulation of genes associated with activation and/or differentiation of macrophage.	1052	100162848	Cabpd
BCL2-associated X Protein	BCL21.4		form hears or homodimers and act as anti- or pro-apoptotic regulators. This protein form a hearodimer with RU22, and functions as an apoptotic activator. This protein is reported to interact with, increase the opening of the michocheridi voltago- alponents anion channel (VDAC) - leads to the loss in membrane potential missions sylectrome c. The expansion of this gene is migalated by the turner suppressor P53 and has been shown to he increduced in P53-mediated apoptoxis.	581	100164650	вах

			Primary UPR Role: Apoptosis			
Endoplasmic roticulum to nucleus signaling 2	Em2; Im2; Im16	Transcription factor	The protein encoded by this gene is the IFR to nucleus signalling 2 protein, a harmon homologue of the yeast level gene product. This protein possources intrinvic kinese petivity and as exclutionexcases are wirely and it in integrate in takefung gene at procession as a response to endeplasmic reticulum-based stress signals.	26918	100164567	ERN2
mitogen activated protein kinase 8	JNK; JNK1; PRKM8; SAPK1; JNK46; JNK1A2; SAPK1c; JNK21B1/2		MAP kinase - serina/htravenine specific member of the MAP kinase family. MAP kinases act as an integration point for multiple biochemical signals, and are involved in a wide variety of collular processes such as proliferation, differentiation, insurcription regulation and development.	5599	100163276	MAPKS
mitogen activated protein kinase 9	JNK2; Prkm9; AI851083; p54aSAPK		MAP kinan - related to cytochrom c apoptosis p/w	5601	100163276	МАРК9
Calroticulin	RO; CRT; SSA; cC1qR	Transcription factor/Protein Folding / Unfolded Protein Binding	acts as a major Ca(2+)-binding (storage) protein in the larears of the endeplasmic miciculars. It is also found in the nucleus, suggesting that it may have a role in hemorypion regulation. Caluteticatin binds to the systemizine particle KUEVER, which is alreast identical to an amino acid suggestre in the DNA-binding domain of the superfamily of nuclear respiror. Systemic lapus ary thematowa is associated with increased autoantibody there against calotticulin but calotticulin is not a RoSS-A settigen.	811	100161399	CALR
Protein phosphatase 1, regulatory subunit 15A	GADD34	Translation Regulation	This gene is a member of a group of genus where transcript levels are increased following strending proveds arrout conditions and transment with DNA-descoping agents. The induction of this gene by lowin-ing radiation occurs in arrhen cell lines mygridions of p57 states, and its protein response is correlated with apoptoxis following inducing multicles.	23645	N/A	PPP1R15A
Heat shock protein 1B	Hap70; hap68; Hap70-1; Hap70 1	Unfolded Protein Binding	In conjunction with other heat shock proteins, this protein stabilizes existing proteins against aggregation and readiants the folding of see by translated proteins in the cytosel and in organized. It is also irreduced in the abiquity precisastrum pathway through interaction with the AU-rich element RNA- binding protein 1. The gene is located in the major biocompatibility company, class III segion, in a cluster with two closely maked genes which encode similar proteins.	15511	100163748	HSPA 1B
HirA series poptidase 2	OMI; PARK13; PRSS25	Unfoldad Protein Binding/ SRAD	wrine protocos localizad in the endoplanetic miticularm and interactive with an advantatively grinde form of mitigation activated protocis hissase 14. The protocis has also haven localized in the miticochemistics with miticase to the systemic following apoptotic alimitants: theoregist to induce apoptosis by binding the apoptosis inhibitory protocis haven/wrint IMP repeat-containing 4. Nuclear localization of this protocis has also been observed. Alternate splicing of this gene moults in two transcript variants encoding different isoformers.	27429	100169637	HTRA2
Valosin containing prokin	pØF; TERA; ALS14; IBMPFD	Unfoidad Protein Binding / ERAD	member of a family that inclusin putative ATP-binding proteins involved in vesicle transport and fastion, 265 protansome function, and assortibly of purch iterms. This proteins an a structural protein, is associated with the initiative, and that should protein Her/Qi to form a complex. It has base implicated in a number of calibate events that are regulated during mittoin, inclusing homotypic membrane fastion, spindle pole body function, and ubiquities dependent probein degradation.	7415	100164710	VCP
mitogere activ aled protein kinase 10	JNK3; JNK3& PRKM10; SAPK1b; p493F12; p54bSAPK		MAP kinan - interacts with facts-aroutin2, simulated by MAPK4. This protein is a marsenal specific form of -Jun N-terminal kinanon (JNK4). Through its physicphorylation and machacir localization, this kinane plays regulatory rokes in the elignaling pathways during marsenal apoptosis.	5602	100163276	MAPK10
			Primary UPR Role: Cholesterol Regulation			
membrans-bound transcription factor peptidaes, sile 2	S2P; IFAP; KFSDX; BRESEK	ERAD	This gene encodes a intramembrane zine metalloproteaue, which is excertial in development. This produces functions in the signal protein activation involved in stored control of transcription and the ER stream response. Matations in this gam have been annoclased with ichthyonic follicularie with artichia and photophobia (IFAP syndrome); IFAP syndrome has been quantitablevly linked to a reduction in chokestered homeoreach and ER stream response.	51360	100162197	MBTPS2
membrane-board transcription factor peptidase, sile 1	S1P; PCSK& SKI-1	ERAD / Transcription Factor	contrait rock in the regulation of lipid metabolism in cells, store's regulated subliking- like arrises protons, at ran that hiddans the 2 step protocytic process, transcriptionally active frequents of SREEPP are relaxed from the metricate for translocation to the nucleus, integrat membrane in ER, built located in the IR harmer, republicated lacetice preproposition that is self-activated by an intranslocator classing that generating matter proteins.	8720	100167456	MBTPS1
insulin induced gene 1	CL &; CL-6		Or year-ob-regulatic choice there is the intervation in the target structure of targe	3638	100169168	INSIG1
insulin induced gene 2	ubiquitin carboxyl-terminal hydrolase catypso-like		The protein encoded by this gene is highly similar to the protein product encoded by gene INSIGL Roth INSIG1 protein and this protein are endeplasmic trickulars proteins that block the proceeding of sterior singularity element blocking proteins (SREBPh) by binding to SREBP charages activating protein (SCAP), and that provent SCAP from executing SREBP, to the Golgi.	51141	100169168	INSIG2
storol regulatory element binding transcription factor 2	SREBP2; HILHa2		This gene encodes a ubiquitously expressed transcription factor that controls chokestered hemeostasis by stimulating transcription of skerel-regulated genes. The encoded protein contains a basic helfs-loop-helfs-kucine zipper (bHI.15 Zip) domain.	6721	100164413	SREBF2
autocrine motility factor receptor, E3 ubiquitin protein ligase	CI778; RNF45	Uniquitination	Primary UPR Role: ER Associated Degradation This loss a secolar a glycosylated transmatterum recepts: In ligand, autocrim- medily factor, is a tarener mellity simulating proteins neected by transver edits. The anexeded receptor is also a member of the E9 ubiquitin ligane family of proteins. It catalyzes ubiquitination and endeplasmic reticularm associated degradation of specific proteins.	267	100573944	AMFR
hernoxystaino- indachba, endoplaamie raticulaum stroso- indachba, ubiquilio- like domain member 1	SUP, HERP, Min	Ubiquitination	The accumulation of unfolded proteins in the endopharmic reticulars (ER) triggers the IR stress responses. This response inclusion the inshibition of translation to prevent further accumulation of unfolded proteins, the increased expression of proteins involved in polynepidde folding, known as the unfolded protein stoppation (RRAD) systems. This gene may play a role in both URPs and IRAD. Its expression induced by UPR and it has an IR stress supersee element in its promoter argin while the eRAD system. This protein may have been both the rest which many interact whit the ERAD system. This protein spatial-linible domains which may interact with the ERAD system. This protein may have been shown to interact with presenting regions and to increase the level of amyleid-bota predein following its overcomparation.	9709	100165580	HERPUDI
ad-1 suppressor of lin- 12-like (C. olegans)	SEL1L1; PRO1063; SEL1- LIKE	Usiquitination	The protein encoded by this gene is part of a protein complex required for the minimum location or dialocation of midridule proteins from the endoplasmic micro- lamen to the cylaxol, when they are dograded by the proteaseme in a ubiquitin- dependent many. Alternatively applied transcript variants encoding different isoforms have been found for this gene	6400	100162766	SHL1L

Image: set of the set									
Bit American protein UNDER USE USE CONCERNME UNDER American protein of the distribution multical models protein of the distribution multical models protein and multical models protein		HTP1; TP-1; Dep1; TLOC1	Ubiguitination	the endphancie raticulars (ER) membranes. The protoin encoded by this gives and SE(C6) protein and found to be associated with riboneme-fram SE(C6) complex. It is speculated that Sacch S	7095	100168581	SEC62		
AmininiDIRSUDIX -1Aminipation secure of introduces and aliable Tay and its matchingTYUN10000000DIRSUDIXAmininiRANG PLANG, CDI 10Aminipation Secure and	UBX domain protein 4	UBXD2; UBXDC1; erasin	Ubiquitination	UEX.D2 is an integral membrane protein of the endoplasmic reticulum (ER) that binds valonin-containing protein (VCP, MIM 601023) and promotes ER-associated protein	23190	100572415	UBXN4		
ability INDEX <	dariin 1	DER1; DER-1		slogeschation response and introtransilocate misfolded or unfolded proteins from the ER harms to the cylosol for proteasemal degradation. This protein recognizes substrate in the ER and works in a complex to netrotranslocate it across the ER membrane into the cylosol. This protein may solely optic fibrasis in transmitmane conductance signalar	79139	100166408	DERL1		
Ens genation IRCD, I	derlin 2			refolded or degraded to maintain the homeostaxis of the ER. DERL2 is involved in the	51009	100160760	DERL2		
Interim pretises Interim pretises <td>F-box protein 6</td> <td>FBC22, FBS2; FBX6; Fbx6b</td> <td></td> <td>appear invaluely 40 metrics acid metrific the F-box. The F-box providing constitute out of the four structure of the sub-primit provide impact cardial GSC (KSP1-cullin-F- box), which function in physophosylation dependent sub-primitesion. The F-box provides are divided into 3 channer: Flows containing WD-40 domains, Febb constaining baceline rich mpania, and Flow containing either different provide interaction modules or no recognizable medific. The protoin successful by this gene taking the LF Fox class, and its C summal argies in highly similar to find or 1 m NFH2 (cusate) F Fox 42 MeDi</td> <td>26270</td> <td>100161254</td> <td>FBX06</td>	F-box protein 6	FBC22, FBS2; FBX6; Fbx6b		appear invaluely 40 metrics acid metrific the F-box. The F-box providing constitute out of the four structure of the sub-primit provide impact cardial GSC (KSP1-cullin-F- box), which function in physophosylation dependent sub-primitesion. The F-box provides are divided into 3 channer: Flows containing WD-40 domains, Febb constaining baceline rich mpania, and Flow containing either different provide interaction modules or no recognizable medific. The protoin successful by this gene taking the LF Fox class, and its C summal argies in highly similar to find or 1 m NFH2 (cusate) F Fox 42 MeDi	26270	100161254	FBX06		
webser residence (C. encoder) (C. encoder) (C. encoder)NYLAInterface dependent of the stability of the stabil	HrA serine poptidase 4			nignal poptika, un intuilin growth factor binding domain, a Kawal proteau inhibitor domain a consort of typini domain and a PDZ domain. Housed on tatalise on other natured family members, this enzyme may function as a secreted edigemenic chaperone protease to degrade midificated accentory proteins. Other harman lite A proteins have been implicated in arthritis, target supproteins, artificial status responses, apoptanis.	203100	100570848	HTRA4		
NRX CANNE model practic in fouglit is buy is by its in Gdg (addem formation in Gdg). 4724 (10):6607 NRX11 metament methids. 06.5 (RELEC) Impact models of practic in the fully program in the Gdg (addem formation of Gdg). 4724 (10):6607 NRX11 metament methids. 06.5 (RELEC) Impact models of practic in the fully program in the gdg admetals of a or of is abuilt. Attends in model in the fully program in the gdg admetal of a or of is abuilt. Attends in model in the fully provide of the fully provide in the fully program in the gdg admetal of fully in the fully of the fully provide fully provide of the fully p	localization 4 homolog	NPL4		fusion degradation 1 like previous and valuesis containing protein, and this complex is necessary for the degradation of ubiquitinated proteins. In addition, this complex controls the discontroly of the multicite speklas and the formation of a closal macken envelope after mitosis. Matatiens in this gene have been associated with Catch 22 syndrome as well as cardiac and craniofacial defects. Atternative splicing results in multiple transcript variants encoding different beform. A related pseudogene has been identified on chromosome 18.	37666	100163186	NPLOC4		
amplified and instruction shybring at the set of the	nuckobirdin 1	NUC; CALNUC		encoded protein is thought to have a key role in Golgi calcium hornesstasis and Ca(2+)	4924	100164693	NUCB1		
synchial apprafult pathalare 1, yunovikal pathalare 1, yunovikal	amplified 9, andoptaonic exticutum	OS-9; ERLEC2		binds to the hypoxia-inducible factor 1 (HIF-1), a key migulator of the hypoxic maponae and angiojomosis, and promotes the degradation of one of its subunits. Altarnate transcriptional splice variants, encoding different isoforms, has e been	10956	100168261	059		
Primary UPR Role: Folding Quality Control Primary UPR Role: Folding Quality Control IE degradation obstact, tensionidate shybe ille EDIM IEAD 9695 100161566 IEDEM1 Ifference in the search and onclophene if clobant profile Translation Regulation 77230 100161196 SERP1 Ifference in the search and onclophene if clobant profile Clore722 Ubsignification Quality centrel in the endoptamic inficulant (SI) essants that only properly folded relation are mained in the all drongs recepting in and signatation of middaked or macemenda profiles to JRNO before the information of the SI search All Signature in the search and interaction of the SI search All Signature in the clock profiles to JRNO before the search and search and profiles to JRNO before the SIM Signature in the SIM search All Signature in the search and search and the search and the search and the search and profiles the search and the se	synovial apoptosis inhibitor 1, synoviolin	DERD; HRD1		degradation. The encoded protein networks unfolded proteins, accumulated during ER stocks, by netrojetade transport to the cytosol from the ER. This protein also uses the abiquities proteaseme system for additional degradation of unfolded proteins. Sequence	84447	100164346	SYVN1		
Induced, manucolated alpho (iii) 1ENDERADInduced (iii) 1Induced (iii) 1Induced (iiii) 1Induced (iiii) 1Induced (iiii) 1Induced (iiii) 1Induced (iiii) 1Induced (iiii) 1Induced (iiiii) 1Induced (iiiii) 1Induced (iiiii) 1Induced (iiiii) 1Induced (iiiii) 1Induced (iiiiii) 1Induced (iiiiii) 1Induced (iiiiii) 1Induced (iiiiiiii) 1Induced (iiiiiii) 1Induced (iiiiiiiiii) 1Induced (iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii									
indeplace prodetTranslation RegulationTranslation RegulationTranslation RegulationClassP1100161196SERP1IR degulation prodet shares the direct of shares shub-direct of shub-direct of shub-direct of meter of shub-direct of sh	enhancer, mannosidase	EDEM	ERAD		9695	100161586	EDEM1		
IN Regrathor IN Regrathor IN RegrathorClief22Ubiquitinationproduin produin answerhold profession. LUDICAD biologic to group of produin and degrathing of midfielded or missenebid profession. LUDICAD biologic to group of produin and degrathing of midfielded or missenebid profession. LUDICAD biologic to group of produin and degrathing of midfielded or missenebid profession. LUDICAD biologic to group of produin and degrathing of midfielded or missenebid profession. LUDICAD biologic to group of produin and degrathing of midfielded or missenebid profession. LUDICAD biologic to group of produin and degrathing of midfielded or missenebid profession. LUDICAD biologic to group of produin and degrathing of midfielded or missenebid profession. LUDICAD biologic to group of profession and the group of midfielde biol biol biol on the cost means missenebid profession and missen and missen and profession and missen and misse	endeplasmic articulum		Translation Regulation		27230	100161196	SERP1		
neutral ABCLAPR CLUIIICLAPR CLUIIICLAPR CLUIIICLAPR CLUIIIglacexidae, alplac meutral C.LClapcogl lydrate enzymes hydrolyses (and anco-carbolydrate moves hoor means) arabolydrate, an orbit an a carbodydrate and anco-carbolydrate moves hoor orbits and anco-carbolydrate moves how orbits and anco-carbolydrate moves	enhaneur, mannosidase alpha-like 3	C1orf22	Ubiquitination	proteins are estained in the cell through recognition and degradation of misfolded or anassembled proteins. EDEM3 belongs to a group of proteins that accelerate	80267	100161586	EDEM3		
glacoxidas, alpha soutral C Image: soutral C Clyconyl bydraka, enzyma bydroby the glycoxidic lond betwen two or more cardodydraka, or betwen a cardodydraka and a non-cardodydraka mais ano-cardodydraka mais yn achdolydraka, fang ano- cardodydraka, anger a cardodydraka and a non-cardodydraka mais ano-cardodydraka mais yn achdolydraka, fang ano- cardodydraka, fang ano-cardodydraka, and a non-cardodydraka mais ano-cardodydraka mais yn achdolydraka, fang ano- cardodydraka mais ano-cardodydraka mais ano-cardodydraka mais ano-cardodydraka mais ano-cardodydraka macroka a marther of glycoxyl bydrokase fang 31. This more for product his owne bydrokym terminal, an key caryme in glycogram makadoim and telesona alpha D-glacose. This is key caryme in glycogram makadoim and telesona alpha D-glacose. This is key caryme in glycogram makadoim and telesona alpha D-glacose. This is key caryme in glycogram makadoim and telesona alpha D-glacose. This is key caryme in glycogram makadoim and file gene localizes in a second polycopic fang may mi in the cardophami (R). This previn is an acidic phospho protein substrate 80K-H PCLD; PLD; Cli9P1; PRCSR; ACE: 82: PRKCSR H ribopkerin 1 OST; RIPH1 Clarket This gane encodes a type 1 integral membrase protein fang of an N-clipsaccharyly transforme careptake that linka high masser. W tatiannes that makane in the set whore of the regulatory wheel of the cognation is to account physical in the rough machagement regulatory wheel of the 205 protessorms and may mediate binding of shipation if de analme to this proteins part of an N-clipsaccharyly transforme careptake that linka high masser. Staff G184 100165805 RPN1 UDP glacone glycoprotein glaconyl practical UDP glacone glycoprotein glaconyl prandorase (UC		G2AN GLUII			23193	100168783	GANAB		
predicis kinase C substrate SOK-H PCLD; PLD; C1991; PKCSH ensymin in the endoplanent includant (IR). This predicis is an sciller decaptor predicis associated with the automate for protein kinase. C Matalianes in this gas neeres bases associated with the automate of protein instration. This predice how bases associated with the automate of protein instration. This predice how bases associated with the automate of protein instration. This predice how bases associated with the automate of protein instration. This predice how bases associated with the automate of protein instration. This predice how the set associated with the automate of the register methods. 5580 100161011 PRRCSH ribopherin 1 OST1; RIPH1 CoST1; RIPH1 This gase oncoke a type 1 integrate methods to superspice todant. The protein is put of a set of the registery subset of the registery subset of the 205 protestorm and may mediate binding of abiquities for the registery subset of the registery subset of the registery protein is gas of a set. 6184 100165805 RIPN1 UDP glaccose glaccory branching UDP glaccose glaccory properties associate glaccory protein is gas of a set. 55757 100162033 UDCr22	glacraidase, alpha;			carbobydraka, or betwinn a carbobydraka and a non-carbobydraka mokity. Tala gene encoska a member of glycosyl bydrolaser family 31. This enzyme bydrolyses krminal, non-roducing 1,4 linked alpha-D-glucose rosidom and rokason alpha-D-glucose. This is key enzyme in glycogen mutabolium and in gene locations to advensemal	2595	100168783	GANC		
ribophorin I OST1; RIPH1 andplanetic redicatum: The messade protein is prat of an N-oligomethanyl transforme corrupts: that links bight messace algomethanism to appropriate chains. This protein forms part of the regulatory unbuil of the JSS protessorm and may mediate binding of abiquities 6184 100165805 RPN1 UDDP glaccome glycoprotein glacomyltransformes 2 UCT2; HUCT2; UOCCE.2 UDDP glaccome glycoprotein for protein for prote	prokin kinase C substrate 80K-H			enzyme in the endopharmic reticulum (ER). This protein is an acidic phospho-protein known to be a substrate for protein kinase C. Mutations in this gene have been associated with the autosomal dominant polycystic liver disease (PCLD). Alternatively	5580	100161041	PRKCSH		
glycapestain UCT2; HUCT2; UCCCL2 andeplasmic reticulum (ER) that subcitivuly reglacosylation unfolded glycaperolation, 557 57 100162033 UCCT2 fluxs providing quality control for protein transport out of the ER	ribophorin 1	OST1; RBPH1		indeplasmic reticulars. The encoded protein is part of an N-oligonaccharyl transferase empire that links high marrose oligonacchariden is appraying novidum found in the Aux-X-SeeTDr comenum motif of macont polypepide chains. This protein forms part of the regulatory subunit of the 265 protessores and raw modilar binding of ubiquitis-	6184	100165805	RPN1		
Primary UPR Role: Heat Shock Protein	glycoprotein	UCT2; HUCT2; UCCCL2		endoplasmic reticulum (ER) that achectively reglacosylates unfolded glycoproteins,	557 57	100162033	UOGT2		
	Primary UPR Role: Heat Shock Protein								

DnaJ (Hup40) homolog, subfamily B, member 2	HSJ1; DSMA5; HSJ-1; HSPF3	Unfolded Protein Hinding / Protein Folding	This gene is advect exclusively or pressed in the brain, mainly in the neutronal layers. It secosits a protein that shows sequence similarity to bacterial Drad protein and the yeart hereology. In bacteria, this protein is integlicated in protein folding and protein complex dissociation. Alternatively apliced transcript variants encoding different isoforms have been described for this gene.	3300	100165812	DNAJH2
DnaJ (Hup40) homolog, subfamily B, mamber 9	MDG1; ERdj4; MDG-1; MSTD49; MSTP049	Unfolded Protein Binding / Protein Folding	member of the J prodult family. J proteins function in many cellular processes by nguitating the ATJ on activity of 70 kHz hand shock proteins. This genes is a member of the type 2 subgroup of Denal proteins. The sencodul protein is localized to the endeplanetic retrictants. This product its induced by endeplanetic retrictants shows and plays a role in protecting stratead usits from apoptoxis.	4189	100165140	DNAJH9
Dnal (Hap40) homolog, subfamily C, member 4	HSPF2; MCG18; DANIC4	Unfolded Protein Binding / Protein Folding		3338	100163347	DNAJC4
SEC63 homolog (S. arrevisiac)	ER4[2; SEC631; DNAJC23; PRO2507	Unfolded Protein Binding / Protein Folding	The Sucfit complex is the cantral component of the probab translocation apparatus of the (ER) membrane, encoded by this gene and SEID22 protein are found to be susceitated with theorem-free SEIG5 complex, repeatable that SucG-SecG-SecG- any perform post-translational protein translocation into the ER. The complex might also perform the backward transport of ER proteins that are undject to the ubiquitis- proteaseme-dependent degradation pathway, integral membrane protein in the rough ER.	11231	100159107	SEC63
DnaJ (Hap40) homolog, subfamily C, member 3	P5& HP5& ERdje, PRKR‡ P581PK		This game encodes a produin with real-liple intradricespeptide repeat (TFR) results as well as the highly conserved J domain frond in DNAJ chapters family members. It is a member of the intradricespetide integrates family of proteins and acts as an inhibitor of the interfereo-induced, doRNA-activated protein kinase (PKR)	5611	100165162	DNAJC3
heat shock 70kDa protein 1-like	HSP70T; barr70t; HSP70-1L; HSP70-HOM		This gene encodes a 70kDa hust shock protein. In conjunction with other hust shock proteins, this protein stabilizes existing proteins against aggregation and multiasts the fielding of newly translated proteins in the cytanol and in origonalise. The gene is located in the major histocompatibility compiles cleans III region, in a cleanter with two cleanly related genes which also encode isoforms of the 70kDa hust shock protein	3305	100159065	HSPAIL
heat shock 70kDa protein 4	RY; APG 2; HSPH2; hap70; hap70RY; HS24/P52			3308	100163455	HSPA4
hmat shock 105kDa/110kDa protein 1	10%Da; Hap105; Hap110; hap 1775; Al790491			10808	100163455	HSPH1
		Р	rimary UPR Role: Protein Disulfide Isomerization			
VIMP VCP. interacting membrane protein	SELS; ADO15; SBBI8; SEPS1; AD-015	Apoptoxis	encoder a subscoprolain, which contains a solatocyteine (Soc) muldar at its active site. Stadion register that this protein may regulate cytokine production, and thus play a kay role in the control of the influenzatory response. You observables) updited transcript variants encoding the same protein have been found for this gene	55829	100569049	SELS
Starol negalatory okrnent binding transcription factor 1	SREBP1; bHLHd1; SREBP 1c	Transcription Factor / Chokatarol Regulation	success a transcription factor that binds to the attent regulatory element-1 (SRE1), which is a doctarter flanking the low density lipoprotein morphy gene and some genes involved in starts biosynthesis. The previous in synthesized as a presence that is attached to the nuclear membrane and endoplasmic reticulars. Following chaveage, the matter protein transformers to the mackous and activates transcription by binding to the SRE1	6720	100164413	SREEFI
	4 170/54 770/54 4 48		Primary UPR Role: Protein Folding			
Endoplasmic oxidoreductin-1	AERO1; T9N14.18; T9N14_18	Double Isometization	endoplasmic oxidereductin1 - helps FR proteins form disulfides	30001	100169648	ERO1
Protein disulfide isomerase family A member 3	P58; ER60; ERp57; ERp60; ERp60; ERp61; GRP57; GRP58; IP-PLC; HaT17083	Disulfide Isomerization / Apoptosis	protein of the endoplasmic noticulars that interacts with lectin chaperones calesticulin and calescin to modulate folding of newly synthesized glycoproteins	2923	100164598	PDIA3
DNA-damage- indacible transcript 3	CEBPZ; CHOP, CHOP10; CHOP-10; GADD153	Disulfide Isomerization / Apoptosis / Transcription factor	Protein Disulfike Isomerization, functions as a deminant-negative inhibitor by forming heterodimers with other (JTBP neurohers, such as CVERP and LAP (liver activator protein), and preventing their DNA binding activity. The protein is implicated in adpogenesis	1649	N/A	DDIT7
DnaJ (Hsp40) homolog, subfamily C, member 10	JPDI; MTH:: ER45; PDIA19	Disalistic Isomerization / HRAD / HSP/ Unfolded Protein Binding	jene encodes an endephaemic reticulum co-chapterone which is part of the endephaemic nticulum-associated degradation complex. Alternatively splitud transcript variants encoding multiple isoforms have been observed for this gene	54431	100164598	DNAJC10
Endoplasmic reticulum protein 44	PDIA10; TXNDC4	Doulfide Isomerication/ Folding Quality Control	also known as thioradoxin domain-containing protein 4	23071	100158679	ERIP44
ERO1-like (S. cerevisiae)	ERO1A; ERO1-alpha	Protein Folding		30001	100169648	ERO1L
heat shock protein 4 like	94kDx; APG-1; Oxp94; AI461691	Protein Folding		22824	100163455	HSPA4L
prefoktin subunit 2	19402	Unfolded Protein Binding	This gene encodes a member of the prefridds beta subunit family. The encoded protein is one of aix subunits of prefridds, a molecular chaptrons complex that block and stabilizen newly synthesized polytoptists; thenty allowing them to field cornecity. The empiris, consisting of two alpha and four tests subunits, forms a double tests barred assembly with six pretrading collad-colls.	5202	100574163	PFDN2
peptidylprolyl isomerase A (cyclophilin A)	сүра; сүрн	Unfolded Protein Binding	member of the poptidyt-probyl cis-trans isomerase (PPLasse) family. PPLassa catalyze the cis-trans isomerization of proline imidic poptidic bonds in oilgopoptidas and acaterias the folding of prokine. a cyclosporth binding protein and may play a role in cyclosporth A-mailand intranscompression, can also intract with nearest HIV prokine, including p55 gay, Vpr. and capsid proteins, and has teen there to be	5478	100162386	PPIA
			nonseary for the formation of infectious HIV virions.			
SIL1 homolog endoplactric teticulum chapterote (S. artevisite)	BAP, MSS; ULC5	Unfolded Protein Binding		64374	100164154	SIL1
SIL1 homolog, endoplasmic acticulum chaparone (S.	BAP, MSS; ULG5 CITTi; CITis; D65230F; CIT-alpha; TCP-1-alpha	Unfolded Protein Binding Unfolded Protein Binding	nearonary for the formation of infloctions HIV virians. naident endoplasmic mticulum (ER), N-linked glycoprotein with an N-terminal ER targeting sequence, 2 patieties N-glycopration nion, and a C-terminal ER reterior signal. This protein functions as a macketide exchange factor for another unfolded protein mapping protein. Matalation in this gans bars bars associated with Marinesson	64374 6950	100164154	SILI TCPI

Image: CORE, PR0, 200 Linkake heaks linker in the same har water of the share har water of the shar water of the shar water of the share har water of							
Incrementative Base BIR_COLUCT DELTA Use data Presh limits abase IDPA regards, make of 21% table is in a marker of the integend of anyone is integend on a marker of the integend of anyone is integend on a marker of the integend of anyone is integend on a marker of the integend of anyone is integend on a marker of the integend of anyone is integend on a marker of the integend of anyone is integend on a marker of the integend of anyone is integend on a marker of the integend of anyone is integend on a marker of the integend of anyone is integend on a marker of the integend of anyone is integend on a marker of the integend of anyone is integend on a marker of the integend of anyone is integend of anyone is integend of anyone is integend of anyone is integend of anyone is integend of anyone is integend of anyone and its integend of anyone is integend of anyone is integend of anyone is integend of anyone is integend of anyone is integend of anyone and its integend of anyone is integend of anyone is integend of anyone and its integend of anyone is integend of anyone is integend of anyone and its integend of anyone is integend of anyone is integend of anyone and its integend of anyone is integend of any of anyone is integend of anyone anyone is integend of any of anyone is integend of any of any of any of any of anyone anyone is integend of any of anyone is integend of any of	calazia	CNX; 190; 1190	Unfolded Protein Binding	succeided protein is a calcium-binding, endeplasmic miliculum (HR)-associated protein fluit interacts transiently with newly synthesized N-linkol glycoproteins, facilitating protein folding and assembly. It may also play a central role is the quality control of protein folding by retaining incremently folded protein substituti within the HR for	821	100163271	CANX
sevent making CTR CTTR TTR NT : TOT, show? TOT A CTR CTTR NT : TOT IN CTR TTR NT : TOT IN CTR NT : T	TCP1, subunit 4	SRH; Cese; CCT-DELTA	Unfolded Protein Hinding	The chaptronin containing TCP1 (MIM 186980) complex (CCT), also called the TCP1 ring complex, constitut of 2 back-to-back rings, each containing 8 unique but homologous substrains through multiple rounds of ATP-driven mission and robinding of partially foliable intermediate forms. Substrains of CCT include the systomication protein actin (see MIM 102560) and tabulin (see MIM 191130), as well as alpha- transdation (MIM 102530).	10575	100162102	0274
gby opening hypothymical purch products ULTT, IECT & LODZL I (See Str. Character Purch (See Str. Character))			Unfokkal Protein Rinding	containing TCP1 complex (CCT), also known as the TCP1 ring complex (TRIC). This complex consists of two identical stacked rings, each containing eight different proteins. Unfolded polypeptides enter the annual avoid of the complex and are folded in as ATT-dependent mannes. The complex folds various proteins, including actin and	:0574	100168452	0217
meldade under 3 MMI; NM 1, PR03 Dadada Detail Bindary Feldaring Opperation Comple for its and under servey optimals, considing of the instance, The source is considered of the instance, and the optimals, consider of the instance is the instance instance, considered of the instance is the instance instance, considered of the instance is instance. The instance is instance is instance is instance instance is instance instance is instance instance instance instance instance is instance insta	glycoprotein	UGT1; HUGT1; UGCGL1		endoplasmic reticulum (ER) that solocitively reglucosylatos unfolded glycoproteine, thus providing quality control for protein transport out of the ER	56886	100159031	UOCTI
Instruction Op/Englishing and failing other presents of a constrained of the presents of the instruction of present	profokiln subunit 5	MM1; MM-1; PFD5		profolding a molecular chaperone complex that black and stabilizes newly synthesized polypeptides, thereby allowing them to fold cornectly. The complex, consisting of two alpha and four beta subunits, forma a deable beta barrel assembly with six pretraining calidad colls, protein may also repress the transcriptional activity of the proto-one-cogene	5204	100166994	PFDN5
Integration RCA1; TRCN; IBCA1 The practic models is the sub-state interactive quantity much consisting a sub-state of the interactive interactive quantity of the interacti quantity quantity of the interactive quantity of the	90kDa beta (Grp94).	Grp64; gg94; endeplasmin; ECOP; TRA1		noiseabar chapterous with roles in stabilizing and folding other proteins. The encoded protein is localized to real-necessors and the endoplasmic relicators. For provide in social with the a variety of proteipspic states, including turner formation.	7184	100169283	HSP90B1
Integrating flags presist 19 RCA1; TRC9, HRC01 BRS11 (fngs: This press is faculd in the endplagment stratum, and us two in the integration of the complexity stratum in the results by the stratum integration of the complexity stratum integration in the complexity stratum integration of the complexity stratum integration in the complexity stratum integration is stratum integration in the complexity stratum integration is stratum integration in the complexity stratum integration is stratum integration in the stratum integration is stratum integration in the stratum integration in the stratum integration is stratum integration in the stratum integration in the stratum integration is stratum integration in the stratum integration in the stratum integration is stratum integration in the stratum integrate in the stratum integrate in the stratum integrate i				Primary UPR Role: Ubiquitination			
ing figure predix 5, 103 RMA1; RIN25 is involved in predix predix instruction. This is methrate-bound shaping the distribution of a distribution shaping the distribution and keying the distribution distribution and keying the distribution and key in the distribution and keying the distribution and key in the distribution and keying the distribution and key in the distribution and key in the distribution of a distribution and key in the distribution and key in the distribution of a distribution	ring finger protein 139	RCA1; TRC8; HRCA1		RING-142 frages. This precisin is located in the endeplasmic relicators, and has been down to possion ubiquitic ligose arithly. This gene was found to be interrupted by a (3.8) translocation in a family with hereditary small and non-modulary thyreid constr. Stadlin of the Densephila constructure suggisted that this protein may interact with haver suppresses protein VIII., as well as with COUSYMABL, a protein requestion requestion.	11236	100160538	RNF139
abiguitis conjegang ensyme ISR 2LBC7abiguitis abiguitis conjegange without a character ensyme, with a single provide in graduation. Ubiguititation involves at a construction of the 12 shighting conjunction ensyme, with Tex, Shighting and the second of the 12 shighting conjunction and in sublicitation of the second of the 12 shighting conjunction and in sublicitation of the second of the 12 shighting conjunction and in sublicitation of the second of the 12 shighting conjunction and in sublicitation of the second of the 12 shighting conjunction and in sublicitation of the second of the 12 shighting conjunction and in sublicitation of the second of the se	E3 ubiquitin protein	RMA1; RING5		he involved in protein protein interactions. This protein is a membrane-bound abiquitin ligans. It can regulate cell motility by targeting pacifilm ubiquitination and altering the distribution and localization of pacifilm in cytoplasm and cell focal	6048	100166523	RNF5
ubiquitin fusion degradation UFD1 production of hipsilinated produins, and thin complex in neuronay for the degradation of hipsilinated produins. In Addition, this complex in controls the diazonethy of the mixels, mixels and the formation of a cloud nucker envelope after mixels. Mixelson in this gene have been anoclaids with Cath 22 synthem as well as credice and creatificated affects. Alternative splicing reads in mixels in most well as credice and creatificated affects. Alternative splicing reads in mixels in most well as credice and creatificated affects. Alternative splicing reads in mixels in most well as credice and creatificated affects. Alternative splicing reads in mixels in most well as credice and creatificated affects. Alternative splicing reads in mixels in most well as credice and creatificated affects. A soluble production of the oblight is specific precessing (UBP) family of proteins in located in the cytoplasm and cleaves the ubiquitin-fine only from ubiquitis- protein in located in the cytoplasm and cleaves the ubiquitin mostly from ubiquitis- generic terms and ableght balanchy approxem. (UBP) with His and Cyto domains. This protein in located in the cytoplasm and cleaves the ubiquitin mostly from ubiquitis- fine and cytoplasm and cleaves the ubiquitin mostly from ubiquitis- fine and cytoplasm and cleaves the ubiquitin mostly from ubiquitis- forms, have been characterized. 9097 100162453 USP14 Primae reaccified diffects in follow partyline and the bight share the product of age followed by the and the reaction of the dispertism of the ortholog of this protein in mostly from ubiquitis- forms, are then in the share terms of cleature, this storal ensuing dimain (SSD) and wene WD data terms. This data controls as protein with a storal ensuing damain (SSD) and wene WD data terms. This data conthis protein with a storal ensuing damain (SSD) and w		UBC7		largeting abnormal or there lived products for degradation. Ubiquitination involves at last three classes of enzymer, ubiquities activating enzymes, or E1s, shippilits- enzinguing enzymes, or E2s, and ubiquities product higgs, or E1s). This gene encodes a member of the E2 abiquities conjugating enzymes family. The encoded product hareas E00% sequences identify with the mesone construct. This gene is a biquiteously as pressed, with high expressions usen in adult masses. There allowed by splicad	7327	100159962	UBE202
ubiquitin specific peptidae 14 (RNA- guarine transfer of 16 (RNA- guarine transfer on 14 (RNA- guarine) TGT TGT Image of the period result is an extended for growth, alwedge on the orbital period result in medicate expression of the orbital period result in the orbital result in the orbital period result in the orbital period result in medicate expression of the orbital period result in the orbital result in the orbital period result in the orbital period result in the orbital result in the orbital period result in the orbital period result in the orbital period result in the orbital result in the orbital period result in the orbital result in the orbital period result in the orbita	degradation 1 like	UFDI		prokin localization 4 and valonis containing prokin, and this complex is nearously for the departation of abipatinated proteins in addition, this complex controls the discourtedy of the mixtic spinite and the formation of a closed nectorate newelops after mitesis. Mutations in this gen have been associated with Catch 22 syndrome as well as cardiac and ensitefacial defects. Alternative splicing results in multiple transcript variants encoding different informas. A valued possedgeme has been in identified on	7353	100166745	UFD1L.
SREER chaptrone Transcription Factor / Choksterel Regulation This gene encodes a protein with a stard securing domain (SSD) and seven WD 22037 100168369 SCA P SREER chaptrone Transcription Factor / Choksterel Regulation This gene encodes a protein with a stard securing domain (SSD) and seven WD 22037 100168369 SCA P ERO1-like hets (S. carrolulae) SREEPs are then protectively cleaved and regulate stard biosynthesis. 56605 100169648 ERO1LB beat shock 70Db UPTRO 3. UPTRO 3. SSCA P 3306 3306 3306	poptidate 14 (tRNA- guardine	тат		prokases that is a deabiguitinating enzyme (DUB) with His and Cyn domains. This protein is located in the cytoplasm and classes the ubiquitin modely form ubiquitin- found procursor and abiquiting hand proteins. Mice with a matation that rounds in natazoid expression of the ortholog of this protein are starked for growth, develop event tensors by 2 to 3 works of ago forkout by bindlimb paralysis and death by 6 to 10 works of age. Alternate transcriptional splice variants, encoding different	907	100162453	USP14
SREBF chaptrone Transcription Factor / Oxolations In the protons of cholations, the protons total regulatory element hinding protons (SREBP) and mediates their transport from the ER to the Golgi. The SREBPs are then protonly fically cleared and regulate iteral biosysthesis. 22037 100168/69 SCA P ERO1-like hets (S. carrolular) SREBPs are then protonly fically cleared and regulate iteral biosysthesis. 56605 100169648 ERO1LB bast theory folds UPTO 5. UPTO 5. UPTO 5. UPTO 5. UPTO 5. UPTO 5.				Primary UPR Role: Unfolded Protein Binding			
anovidas) 100100000 10010000 10010000 10010000 100100				domains. In the presence of cholesterol, this protein binds to storol regulatory element binding proteins (SREBPs) and mediates their transport from the ER to the Golgi. The	22937	100168369	SCAP
heat shock 70kDa usersa a tao tao tao tao tao tao tao tao tao					56605	100169648	EROILB
		HSI70-2; HSI70-3			3306	100159065	HSPA2