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Abstract 

The task of short-term optimal thermal generation scheduling can be cast in the form of a 

multi-objective optimization problem. The goal is to determine an optimal operating strategy to 

operate power plants, in such a way that certain objective functions related to economic and 

environmental issues, as well as transmission losses are minimized, under typical system and 

operating constraints. Due to the problem’s inherent complexity, and the large number of 

associated constraints, standard multi-objective optimization algorithms fail to yield optimal 

solutions.    

In this dissertation, a novel, two-phase multi-objective evolutionary approach is proposed 

to address the short-term optimal thermal generation scheduling problem. The objective 

functions, which are based on operation cost, emission and transmission losses, are minimized 

simultaneously. 

During the first phase of this approach, hourly optimal dispatches for each period are 

obtained separately, by minimizing the operation cost, emission and transmission losses 

simultaneously. The constraints applied to this phase are the power balance, spinning reserve and 

power generation limits. Three well known multi-objective evolutionary algorithms, NSGA-II, 

SPEA-2 and AMOSA, are modified, and several new features are added. This hourly schedule 

phase also includes a repair scheme that is used to meet the constraint requirements of power 

generation limits for each unit as well as balancing load with generation. The new approach leads 

to a set of highly optimal solutions with guaranteed feasibility. This phase is applied separately 

to each hour long period.  

In the second phase, the minimum up/down time and ramp up/down rate constraints are 

considered, and another improved version of the three multi-objective evolutionary algorithms, 

are used again to obtain a set of Pareto-optimal schedules for the integral interval of time (24 

hours). During this phase, the hourly optimal schedules that are obtained from the first phase are 

used as inputs.  

A bi-objective version of the problem, as well as a three-objective version that includes 

transmission losses as an objective, are studied. Simulation results on four test systems indicate 

that even though NSGA-II achieved the best performance for the two-objective model, the 



 

improved AMOSA, with new features of crossover, mutation and diversity preservation, 

outperformed NSGA-II and SPEA-2 for the three-objective model. It is also shown that the 

proposed approach is effective in addressing the multi-objective generation dispatch problem, 

obtaining a set of optimal solutions that account for trade-offs between multiple objectives. This 

feature allows much greater flexibility in decision-making. Since all the solutions are 

non-dominated, the choice of a final 24-hour schedule depends on the plant operator’s preference 

and practical operating conditions. The proposed two-phase evolutionary approach also provides 

general frame work for some other multi-objective problems relating to power generation as well 

as in other real world applications. 
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Abstract 

The task of short-term optimal thermal generation scheduling can be cast in the form of a 

multi-objective optimization problem. The goal is to determine an optimal operating strategy to 

operate power plants, in such a way that certain objective functions related to economic and 

environmental issues, as well as transmission losses are minimized, under typical system and 

operating constraints. Due to the problem’s inherent complexity, and the large number of 

associated constraints, standard multi-objective optimization algorithms fail to yield optimal 

solutions.    

In this dissertation, a novel, two-phase multi-objective evolutionary approach is proposed 

to address the short-term optimal thermal generation scheduling problem. The objective 

functions, which are based on operation cost, emission and transmission losses, are minimized 

simultaneously. 

During the first phase of this approach, hourly optimal dispatches for each period are 

obtained separately, by minimizing the operation cost, emission and transmission losses 

simultaneously. The constraints applied to this phase are the power balance, spinning reserve and 

power generation limits. Three well known multi-objective evolutionary algorithms, NSGA-II, 

SPEA-2 and AMOSA, are modified, and several new features are added. This hourly schedule 

phase also includes a repair scheme that is used to meet the constraint requirements of power 

generation limits for each unit as well as balancing load with generation. The new approach leads 

to a set of highly optimal solutions with guaranteed feasibility. This phase is applied separately 

to each hour long period.  

In the second phase, the minimum up/down time and ramp up/down rate constraints are 

considered, and another improved version of the three multi-objective evolutionary algorithms, 

are used again to obtain a set of Pareto-optimal schedules for the integral interval of time (24 

hours). During this phase, the hourly optimal schedules that are obtained from the first phase are 

used as inputs.  

A bi-objective version of the problem, as well as a three-objective version that includes 

transmission losses as an objective, are studied. Simulation results on four test systems indicate 

that even though NSGA-II achieved the best performance for the two-objective model, the 



 

improved AMOSA, with new features of crossover, mutation and diversity preservation, 

outperformed NSGA-II and SPEA-2 for the three-objective model. It is also shown that the 

proposed approach is effective in addressing the multi-objective generation dispatch problem, 

obtaining a set of optimal solutions that account for trade-offs between multiple objectives. This 

feature allows much greater flexibility in decision-making. Since all the solutions are 

non-dominated, the choice of a final 24-hour schedule depends on the plant operator’s preference 

and practical operating conditions. The proposed two-phase evolutionary approach also provides 

general frame work for some other multi-objective problems relating to power generation as well 

as in other real world applications. 
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CHAPTER 1 - Introduction 

1.1 Significance of the Optimal Thermal Generation Scheduling 
A typical electric power system performs three different tasks: the generation, 

transmission and distribution of electrical energy. Electrical energy is produced by various power 

generation plants, such as fossil-fuelled plants, hydroelectric plants, wind plants, nuclear power 

plants, solar power plants, and geothermal power plants, etc. This electrical energy is then 

transmitted over great distances at high voltages (typically 110 kV or 345 kV), using alternating 

current (AC), direct current (DC) or a combination of both. The distribution system comprises of 

a network that delivers the electric power to the customers at the required relatively low voltages 

(i.e. 120 V or 240 V). 
The responsibility of power system operators includes the task of ensuring the economic 

operation of the plant. This is because it is important to produce electric energy to meet the load 

while keeping the cost as low as possible. The long term costs are minimized through judicious 

power system planning, which includes cost-effective and reliable strategies for the expansion of 

the generation, transmission and distribution systems to meet the load requirements 5 to 30 years 

into the future. Over shorter periods of time, when the network topology does not change, the 

can be brought down by optimal generation scheduling. This task is one of finding the optimal 

operating strategy to operate power plants in such a way as to minimize certain objective 

while satisfying various system and operating constraints over a given period. The objective 

functions may include economic costs, system security, or other costs [1]. When the only 

involved is the operation cost, the optimal generation scheduling problem is identical to the unit 

commitment (UC) problem. It is well known that human activities follow fixed patterns, 

in different electricity consumptions during different hours in a day. Usually, the load demands 

high during the daytime and early evening because people use more electricity to operate 

machines, keep lights on, cook food and so forth. Conversely, the load demands are low during 

night as people are asleep. In addition, the electricity usage is heavier during weekdays than in 

weekends [2-3]. It might be necessary to keep all the generators online to meet the customer 

demands during the peak hours, but operate some generators at their minimum levels in off-peak 

hours, or even switch them off. Thus, to minimize the total system-wide operation cost, the UC 
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problem is to decide which generators should be on and which generators should be off and for 

how long, while satisfying various system and operating constraints [2]. 

Even though it is desirable to develop optimal operating schedules considering both 

economic and technical constraints over a very long period [4], factors such as uncertainty in 

hourly load forecasting and generator outage status over a long planning horizon, exponentially 

increased computing time, fuel price fluctuations, maintenance time and crew constraints, 

disallow this option [5]. Therefore, recent attention has focused on short-term generation 

scheduling. It is shown that for large utility companies, even a 0.5% decrease in the fuel cost, a 

principal component of the operation cost, can save millions of dollars each year [6]. 

Although green energy, such as wind, solar and hydro power, are receiving more 

attention due to increased concern for environmental protection, fossil fuelled power plants 

burning coal, oil and natural gas still produce a large share of electricity supply. This is due to 

the fact that the renewable energy is not enough to sustain the huge electricity needs in modern 

society. These thermal plants release carbon dioxide (CO2), sulfur dioxide (SO2), nitrogen oxides 

(NOx), methane (CH4), hydro fluorocarbons (HFCs), per fluorocarbons (PFCs) and sulfur 

hexafluoride (SF6). CO2 is the main greenhouse gas resulting in global warming, while SO2 and 

NOx are key atmospheric pollutants that cause acid rain.  

Following the Clean Air Act Amendments of 1990 (CAAA90) applied to the 

environmental protection [7], electric power companies adopted some practices to reduce the 

atmospheric emissions of the thermal power plants. The strategies used to reduce emissions 

include installation of pollution cleaning equipment, replacement of aged fuel-burners and 

generator units, the use of low emission fuels as well as taking into account emission dispatch 

during generation scheduling [7-8]. For example, tall chimneys were adopted as a way to reduce 

emission concentrations at ground level [9]. As a short-term alternative to achieve the emission 

targets without any investment in new pollutant cleaning equipment, minimum emission dispatch  

and emission-constrained economic dispatch were proposed [10-11]. In addition, minimizing 

emission along with operation cost during economic and environmental dispatch, which can be 

formulated mathematically as a multi-objective optimization problem, has been getting more 

attention [12-14].  However, from an operational planning standpoint, these papers mainly 

concentrate on the economic dispatch problem, which determines the outputs of all the online 

with the aim of keeping the generation cost at the minimum, but does not decide which units 
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should be committed for each hour of the day, to limit emissions to desirable levels. In recent 

with the increasing concern on environment protection, the realistic questions that system 

operators face are: 

 How are units to be committed, and the total generation shared by them?  

 How can daily emission limits be determined? 

 How can a set of criteria be established to meet the emission requirements? 

Transmission lines carry the current and transport the energy in the electric power system. 

According to Kirchhoff’s laws, voltage drops from one end of the line to the other end due to the 

resistance, and energy lost occurs when transmitting the electricity from one electrical bus to the 

other one. Losses can be estimated as the difference between the amounts of energy produced by 

power plants and that consumed by end customers (load). Such power system losses in the 

United States amount to billions of kWh annually. Based on the statistical data, the transmission 

and distribution losses in the USA were approximately 7.2% in 1995 and 6.5% in 2007 [15-16]. 

These losses are accompanied by additional greenhouse gas emissions. 

Improving the technologies and efficiency of the transmission system is increasingly 

important to make utilities generate less power and lower their atmospheric emissions than 

before to meet the load demands. Reducing the transmission losses is a key component and 

would benefit both the industry and consumers, while at the same time, reducing the sector's air 

pollution and carbon footprint. Specific efforts have been made to improve the transmission of 

electricity. These include using high voltage direct current transmission, controlling transmission 

line flows by system optimization, and replacing a conductor with one of a larger diameter or 

changing to a material with less resistance. Of these approaches, the effective integration of 

system optimization of the generation cost, emissions and transmission losses can lead to an 

optimal thermal generation schedule to best utilize the transmission system, and save a 

significant amount of money for utilities by reducing generation requirements to meet the actual 

load demands, which also could reduce emissions of greenhouse gases and air pollutants.  

1.2 A Survey of Methods of Optimal Thermal Generation Scheduling 
The principle objective of optimal generation scheduling problem for power utilities is to 

schedule the generation units effectively over a given time horizon while meeting forecasted load 

demand and a variety of operating constraints, such as spinning reserve requirements, minimum 
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up/down time constraints, etc. When the only goal of scheduling the generation units is to 

minimize operation cost, this problem becomes the well-known UC problem. Various numerical 

techniques have been developed to address the UC problem. Some of these methods have been 

discussed in [4]. These techniques, which can be classified as deterministic and meta-heuristic 

approaches, are reviewed next. 

1.2.1 Deterministic Approaches 

Deterministic approaches include priority list, dynamic programming, mixed integer 

programming, branch-and-bound method, and Lagrangian relaxation. 

The priority list is obtained through exhaustive enumeration of all the unit combinations 

for different load conditions [17]. Lee used the commitment utilization factor and the classical 

economic index average full-load cost to determine the priority order of the generation units [18]. 

Unfortunately, this method cannot be applied to large systems. 

Dynamic programming has been employed to solve generation scheduling problems for 

specific power systems [19]. When applied to UC problems, its chief advantage is its capability 

to handle larger scale problems as well as the flexibility in modeling the requirements of specific 

utilities [20].  

Mixed integer programming was applied to the UC problem by rejecting the infeasible 

subsets to reduce the solution search space [21]. Takriti and Birge have studied the integer 

programming method on the UC problem based on the extension and modification of the 

branch-and-bound method [22]. However, it was found that the mixed integer programming 

based approaches take extremely long computation time when it is applied to UC problems with 

more detailed nonlinear models [23]. 

A branch-and-bound based approach incorporating all time dependent constraints without 

the needs of a priority ordering of generation units was developed [24]. The branch-and-bound 

method was also applied to the thermal generating scheduling [25]. However, as this method has 

to deal with the economic dispatch problem recursively to determine the upper bounds, it is 

computationally expensive [26]. 

By using the method of Lagrangian multipliers, a Lagrangian function can be obtained by 

relaxing the power balance and generation constraints and adding them to the cost function [27]. 

Lagrangian relaxation has the advantage of being easily modified to incorporate specific 
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characteristics of new unit constraints, and was used by some utilities [28]. Okuno et al. 

an effective Lagrangian relaxation based method to optimally schedule spinning reserve by 

relaxing the demand, spinning reserve and ramp rate constraints [29].  

1.2.2 Meta-Heuristic Approaches 

More recently, there has been an ever increasing interest in the area of meta-heuristic 

approaches and their applications in the engineering field. Meta-heuristic based methods have 

provided efficient and powerful approaches to obtain the global or near global optimum in power 

system optimization problems. These approaches include expert systems, fuzzy logic, artificial 

neural networks, tabu search, simulated annealing (SA), genetic algorithm (GA), and 

evolutionary programming. 

An expert system to help power system operators with generation scheduling was 

proposed in [30]. Expert system also has been applied to the short-term large UC problem in real 

time [31]. Due to the uncertainty of demand and outages of generators, different fuzzy logic based 

approaches have been proposed to tackle the UC problem when the load demand and other 

variables are not precise [32]. 

Kasangaki et al. proposed a stochastic Hopfield network for the optimal generation 

costing problem [33]. An augmented neural network model with newer interconnections that 

include discrete and continuous values was proposed in [34]. 

Mori and Matsuzaki proposed to embed the priority list into Tabu search for the UC 

problem [35]. Bai and Shahidehpour have investigated the hydro-thermal, scheduling problem by 

applying Tabu search and a decomposition method to increase the computing accuracy of 

dynamic programming [36].  

Originally proposed by Kirkpatrick, Gela, and Vecchi in 1982, simulated annealing is a 

probabilistic method that simulates the physical process of annealing, in which a material is 

initially heated at a high temperature and then is slowly cooled usually for softening and making 

the material less brittle [37]. SA was applied to UC problems with a technique of improving the 

probability of generating feasible solutions [38]. Wong and Fung applied SA to the short-term 

hydro-thermal scheduling problem [39].  

Genetic algorithms were first introduced by John Holland [40]. GA based approaches 

been used as a popular search and optimization tool during recent years. It is motivated by the 
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principles of natural selection. A GA employs a population of candidate solutions and produces 

new solutions by the reproduction operator, such as crossover and mutation, to keep the good 

solutions surviving and eliminate bad solutions base on each solution’s fitness, through the 

selection process. Several GA approaches for the solution of UC problems have been developed 

with the difference in the methods of representing chromosome and encoding the problem search 

space, and fitness evaluation. A new GA-based algorithm has been investigated on the large size 

UC problem [41]. Sheble et al. have investigated the performance of GA to solve a long-term 

problem with the time period from one to seven days [42]. A parallel GA was proposed for the 

problem [43]. Mantawy et al. have proposed an approach to integrate GA, SA and Tabu search 

the UC problem [44]. 

Evolutionary programming is a method that is very similar to the GA approach. Yang et 

al. applied evolutionary programming to the economic dispatch problem for units with 

non-smooth fuel cost functions [45]. Juste et al. proposed an evolutionary programming 

algorithm in which populations of contending solutions are evolved through random changes 

[20].  
1.3 Why Use Multi-Objective Evolutionary Algorithms? 

Most applications in electric power systems involve more than one objective to be 

optimized. For the optimal generation scheduling problem, the objectives are to minimize the 

generation cost of producing each MW of the energy, to reduce the atmospheric pollution that 

thermal power plants emit, and to keep the losses of transmission lines as minimum as possible, 

etc. This is a typical multi-objective optimization problem. Many multi-objective optimization 

problems are highly convex and nonlinear. Hence these problems cannot be addressed readily 

using classical optimization techniques, in which gradient-based methods are most popular ones. 

However, some difficulties have been revealed by many researchers for these classical methods 

when dealing with the real world application problems [46]:  

 The initial solutions chosen by user have a significant effect on the convergence 

performance to the optimal solutions. 

 Algorithms are not effective in solving the problems having a discrete search space. 

 Most algorithms are problem-specified. 

 It is possible for an algorithm to get stuck to a suboptimal solution. 

 Parallel implementations for these algorithms are not efficient. 
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Compared with conventional optimization techniques, nature-inspired algorithms are 

very popular approaches for multi-objective optimization, as they are derivative-free methods, 

which converge quickly to Pareto-optimal solutions. Evolutionary algorithms (EAs) are probably 

the most important nature-inspired multi-objective optimization algorithms. These algorithms are 

based on Darwinian mechanisms of natural selection. There are two important goals for a 

multi-objective evolutionary algorithm (MOEA): It must produce samples that are as close as 

possible to the problem’s true Pareto front. Moreover it must also produce samples that sample 

the front at regularly spaced intervals. These two features are called convergence and diversity. A 

MOEA not only should converge quickly to the Pareto front, but also maintain diversity. 

Conventional multi-objective optimization methods convert multiple objectives into a 

single objective function by multiplying each objective with a pre-defined weight, which is 

called weighted sum method. However, this preference-based weighting strategy is subjective to 

the decision maker, and it is known for the deficiency that it cannot find certain Pareto-optimal 

solutions when the objective space is nonconvex. Moreover, this approach cannot find multiple 

solutions in a single run. Compared with the weighted sum method, MOEAs are a better choice, 

as they do not need any pre-defined preference information, and are able to find many different 

trade-off solutions which are Pareto-optimal. Various EAs, such as Horn et al.’s niched-Pareto 

genetic algorithm [47], Srinivas and Deb’s non-dominated sorting genetic algorithm [48], Zitzler 

and Thiele’s strength Pareto evolutionary algorithm [49], Knowles and Corne’s Pareto-archived 

evolution strategy [50], have been applied to real multi-objective optimization problems.  

Deb et al. proposed a more efficient version, which is called NSGA-II, by adopting the 

following effective techniques which included the following features [51]: 

 A fast non-dominated sorting approach to sort a population into different 

nondomination levels. 

 A new diversity preserving mechanism in which the crowding-distance computation 

was employed. 

 A constraint-handling method in which an infeasible solution always be dominated 

by a feasible one. 

Zitzler et al. proposed SPEA-2 as an improvement over the strength Pareto evolutionary 

algorithm, with a better search performance by incorporating several new features, which are 

[52]:  An improved fitness assignment scheme which takes into account the number of 
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solutions a solution dominates and is dominated by. 

 A nearest neighbor density estimation technique for better diversity estimation. 

 A new archive truncation method to preserve boundary solutions. 

Archived multi-objective simulated annealing (AMOSA) is another powerful and 

up-to-date simulated annealing-based multi-objective optimization algorithm [53]. AMOSA 

incorporates a domination based approach to determine the probability of acceptance of a new 

solution, and an archive to retain tradeoff solutions of the problem, throughout the computation. 

Of all multi-objective optimization algorithms, NSGA-II and SPEA-2 showed excellent 

results through conducted experiments on many multi-objective optimization problems, while 

AMOSA is a very new one, with significantly lower computational complexity. All three 

schemes are effective in finding Pareto-optimal solutions with good diversity. Thus these three 

algorithms are selected to solve the short-term optimal thermal generation scheduling problem 

which needs to minimize several objective functions simultaneously. 

1.4 Scope of This Dissertation 
This dissertation is focused on the study of proposed two-phase multi-objective 

evolutionary approach applied to the short-term optimal thermal generation scheduling problem. 

Chapter 2 gives an overview of multi-objective optimization with focus on the principles of 

domination and Pareto optimality, followed by a survey of applications of multi-objective 

optimization in power systems. Chapter 3 provides detailed descriptions of the working 

of GA and SA, which can be easily used for multi-objective optimization by adopting the 

of Pareto-optimal set. Chapter 3 also presents the principles of three major multi-objective 

evolutionary algorithms, which are NSAG-II, SPEA-2 and AMOSA1. In Chapter 4, the emission 

cap and trade policy in electric power systems is introduced, and the detailed formulation of the 

mathematical model that represents the multi-objective short-term optimal thermal generation 

scheduling is described thereafter. In Chapter 5, the novel two-phase multi-objective 

approach is proposed to solve the short-term optimal thermal generation scheduling problem. In 

the first phase, this approach formulates the hourly-optimal scheduling problem as a nonlinear 

constrained multi-objective optimization problem which simultaneously minimizes operation 

                                                 
1 Simulated annealing algorithm is loosely classified as an evolutionary algorithm. Furthermore, in this dissertation it 

also incorporates several standard evolutionary operators, such as crossover and mutation. 
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emission and transmission losses, while satisfying constraints such as power balance, spinning 

reserve and power generation limits. Three MOEAs, NSGA-II, SPEA-2 and AMOSA, are 

to get the optimal solutions for each hourly time interval, and a repair method is used to meet the 

constraint requirements of power generation limits for each unit as well as balancing load with 

generation. In the second phase, the minimum up/down time and ramp up/down rate constraints 

are considered, and the three MOEAs are used again to obtain a set of Pareto-optimal schedules 

from the hourly-optimal schedules obtained in the first phase, for the integral interval of time (24 

hours). In order to investigate the performance of the proposed two-phase multi-objective 

evolutionary approach, Chapter 6 presents simulation results from all case studies applied on 

test systems. The improvement of AMOSA is also presented. The results obtained by 

incorporating the three MOEAs into the two-phase approach are compared with one another. 

Finally in Chapter 7, it is concluded that the proposed approach is effective in addressing the 

short-term optimal thermal generation scheduling problem, obtaining a set of optimal solutions 

that account for trade-offs among multiple objectives. This feature allows much greater 

in decision-making. Since all the solutions are Pareto-optimal, the choice of a final 24-hour 

schedule depends on the plant operator’s preference and practical operating conditions. In 

the proposed two-phase multi-objective evolutionary approach has a good perspective on other 

mixed-integer programming problem as long as the model can be fitted into this general 

framework. 
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CHAPTER 2 - Multi-Objective Optimization 

In many real world problems particularly in engineering design and business 

decision-making, more than one objective may be required to be taken into account. For example, 

a customer wanting to buy a new car potentially may consider six objectives: price, comfort, fuel 

consumption, power, size, and safety. While some of these objectives, such as price and fuel 

consumption would be minimal in the ideal product, others, such as comfort and size should be 

as high as possible. There is no single “best” solution that can achieve all these goals 

simultaneously, which may often be mutually conflicting. When an optimization problem 

involves simultaneously minimizing or maximizing two or more objective functions, which are 

in conflict with each other, the process of finding one or more optimal solutions is called 

multi-objective optimization [46].  This chapter gives a brief overview of multi-objective optimization with a focus on the 

principles of domination and Pareto optimality. In addition, a survey of applications of 

multi-objective optimization in power systems is provided.  

2.1 Multi-Objective Optimization 
Without the loss of generality, it is assumed that each objective function is to be 

minimized in the multi-objective optimization problem. Mathematically, the general 

multi-objective optimization problem can be defined as: 

݉            ,ሻܠ௠݂ሺ   ݁ݖ݅݉݅݊݅ܯ ൌ 1,2, … ,  (2.1)                ;ܯ

ሻܠ௝ሺ݃  ݋ݐ ݐ݆ܾܿ݁ݑݏ ൒ 0,           ݆ ൌ 1,2, … ,  (2.2)                  ;ܬ

  ݄௞ሺܠሻ ൌ 0,           ݇ ൌ 1,2, … ,  (2.3)               ;ܭ

௜ݔ  
௅  ൑ ௜ݔ ൑ ௜ݔ

௎,     ݅ ൌ 1,2, … , ݊;                (2.4) 

where  ܠ ൌ ሾݔଵ, ,ଶݔ … , ௜ݔ ௡ሿ், andݔ
௅ and ݔ௜

௎ are the lower and upper bound of the decision 

variables ݔ௜. The task of multi-objective optimization is to find the vector כܠ ൌ ሾݔଵ
,כ ଶݔ

,כ … , ௡ݔ
כ ሿ் 

that minimizes the vector objective function with M objective functions 

ࢌ ൌ ሾ ଵ݂ሺܠሻ, ଶ݂ሺܠሻ, … , ெ݂ሺܠሻሿ் , while satisfying the J inequality constraints and K equality 

constraints. The duality principle can be used to covert an original objective for maximization 

an objective for minimization. 
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Since the objective functions ௠݂ሺܠሻ may include mutually conflicting ones, there is no 

single optimum solution that is minimum along each objective. Therefore in multi-objective 

optimization problems, the goal is to seek good compromise solutions (i.e. trade-off surfaces) 

rather than a single solution. 

 If the multiple objective functions are transformed into an aggregated single objective 

function by using weighted sum method, or addressed by placing bounds on the objective values 

as in the ε-constraint method, a number of difficult issues are encountered [46]. First, there is 

only one search space, i.e. the decision variable space, in a single objective optimization, 

whereas in a multi-objective optimization problem, the objective function forms a separate 

objective-function space. Furthermore, when converting several objective functions to a single 

one, some parameters need be set up artificially. For example, the weights for each objective 

when using weighted sum method, and the ε values when using ε-constraint method, need to be 

defined. Lastly, the only goal for single objective optimization is to find only a single optimum 

solution, while in multi-objective optimization, an entire set of trade-off solutions needs to be 

obtained. As there are no convergence guarantees in general, and because multi-objective 

optimization algorithms can yield only a finite, fixed number of solutions, the output is a set of 

solutions that are very close to the true trade-off surface (which is called the Pareto front, as 

discussed later). Issues related to multi-objective optimization are discussed next. 

2.2 Pareto Optimality 
Within any multi-objective framework, it is not easy to distinguish a good solution from 

an inferior one. This is because in multi-objective optimization problems, the objective functions 

are often conflicting, and no one solution can be said to be better than other with respect to all 

objective functions. Thus a solution that is better along one objective, may evaluate to a worse 

value along another objective.  

Under these circumstances, it is convenient to invoke the concept of domination. The task 

of the multi-objective optimization problem turns into finding a set of the Pareto-optimal 

solutions by applying domination relationship between solutions. Without the loss of generality, 

throughout this chapter, we assume that all the objectives are to be minimized. 

Definition 2.1 (Domination) Let x1 and x2 be two feasible solutions (decision vectors) 

a multi-objective optimization problem. We say that x1 dominates x2(written as x1ط x2) iff  
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1) ௜݂ሺܠ૚ሻ ൑ ௜݂ሺܠ૛ሻ,    ׊ ݅ א ሼ1,2, … ,  ሽ, andܯ

2) ௝݂ሺܠ૚ሻ ൏ ௝݂ሺܠ૛ሻ,    ׌ ݆ א ሼ1,2, … ,  .ሽܯ

The above definition states that given two solutions, x1 and x2, it is said that x1 dominates 

x2 if and only if x1 is at least as good as x2 along all the objectives, and x1 is better than x2 along 

at least one objective. 

Three scenarios arise when two solutions x1 and x2 are compared with each other based 

the definition above, which are: x1 dominates x2 (x1طx2), or x1 is dominated by x2 (x2طx1), or x1 

and x2 do not dominate each other (x1ؽx2 and x2ؽx1). If x1 dominates x2, x1 is called the 

non-dominated solution within the set {x1, x2}.  The dominance relation is transitive, which 

means if x1طx2 and x2طx3, then x1طx3.  

Definition 2.2 (Non-dominated set) Given a set of solutions S, The non-dominated set of 

solutions S’ are those that are not dominated by any solutions of the set S. 

If S is the entire search space, the non-dominated set S’ is called Pareto-optimal set. The 

solutions within the Pareto-optimal set are called Pareto-optimal solutions. The image of the 

Pareto-optimal set in the space of objective functions is referred to as the Pareto front. 

. 

 
Figure 2.1 Dominated/non-dominated solutions and Pareto front 
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All feasible solutions of a bi-objective optimization problem are shown in objective space 

in Figure 2.1. The two objectives to be minimized are denoted by f1 and f2. Solution x2 is better 

than solution x6 for both objectives, thus solution x2 dominates solution x6, or it can be said that 

solution x6 is dominated by solution x2. While solution x2 is worse than solution x3 along 

objective f1, but better than solution x3 along objective f2, hence solution x2 and solution x3 do 

not dominate each other. Solutions within the non-dominated set {x1, x2, x3, x4} constitute the 

Pareto front, which is the surface connected by all non-dominated solutions. 

p

U

 
Figure 2.2 The procedure to find the non-dominated set 
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There are different approaches to find the non-dominated set, and the most intuitive and 

straightforward one is described in figure 2.2. 

2.3 Goals of Multi-Objective Optimization 
It is desired that any multi-objective optimization algorithm: 

1) converges as close to the true Pareto front as possible, and 

2) provides Pareto front samples as uniformly as possible.  

These two goals are the two crucial aspects of the multi-objective optimization. 

Figure 2.3 shows four different sets of solutions of the multi-objective optimization 

problem with different performance of convergence and diversity.  

 

 
Figure 2.3 Convergence and diversity of multi-objective optimization solutions 
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2.4 Multi-Objective Optimization in Electric Power Systems 
In recent years there has been increasing interest in applying multi-objective optimization 

approaches to power system problems. A variety of techniques, such as the ε-constrained method, 

the weighted sum method, goal-attainment, MOEAs, multi-objective particle swarm optimization, 

and artificial immune systems have been proposed for various multi-objective optimization 

problems.  

It was demonstrated that in power systems there are several advantages of multi-objective 

optimization techniques [54], which are: 1) the ability to handle different objectives 

simultaneously; 2) simplification of the decision making process, and 3) the ability to see the 

relationship between different objectives from the Pareto front. In this manner, power system 

operators can obtain the most appropriate solution considering a variety of factors. 

Chiang et al. applied the ε-constraint method to solve multi-objective optimal network 

reconfiguration problems in distribution systems [55]. In the ε-constraint method, one of the 

objective functions is selected as the primary objective function and all the other objective 

functions are converted into inequality constraints bounded by some allowable levels ε, so that 

the multi-objective optimization problem is treated as a single objective optimization problem. 

However, this method requires multiple runs to generate a set of Pareto-optimal solutions.  

In multi-objective economic-emission dispatch problems, the economic and the 

environmental objectives have been combined linearly by using a weighted sum method to form 

a single objective function [56-57].  

While the weighted sum approach has been used frequently in the past, it has three major 

disadvantages: 1) it cannot find Pareto-optimal solutions on the concave regions of the Pareto 

front (if any); 2) a uniformly distributed set of weight vectors does not necessarily lead to an 

even spread of Pareto-optimal solutions; 3) it requires multiple runs to obtain a set of Pareto- 

optimal solutions by varying weight coefficients. 

The goal-attainment method has been applied to multi-objective optimization for 

single-tuned harmonic filter planning in industrial distribution systems [58]. With the use of 

interior point methods together with goal programming and linearly combined objective 

functions as a single one, a new multi-objective optimal power flow technique was proposed to 
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optimize active and reactive power dispatch while maximizing voltage security in power systems 

[59]. 

EA inherently explores a population of solutions simultaneously by employing selection 

operators. EA is independent of the complexity of problems, i.e. the solution space can include 

nonconvex regions, and the objective functions need not to be differentiable. These features 

make EA very attractive for multi-objective optimization, to determine an entire set of 

Pareto-optimal solutions, in a single run.  

A niched Pareto genetic algorithm was applied to multi-objective 

environmental-economic dispatch problem [60]. Abido used the strength Pareto evolutionary 

algorithm to solve multi-objective optimal VAR dispatch problem [61] and economic/emission 

dispatch problem [12]. SPEA-2 is an improved version which eliminates the potential 

weaknesses of its predecessor SPEA and incorporates several new features. Li, Das and Pahwa 

proposed a new two-phase multi-objective evolutionary approach to solve the optimal thermal 

generation scheduling problem, and compared the performance of SPEA-2 and AMOSA [62]. 

NSGA-II is probably the most popular MOEA showing great potential in solving multi-objective 

optimization problems in power systems. Li, Pahwa and Das proposed implementing the 

NSGA-II for solving the multi-objective optimal strategy problem in day-ahead electricity 

market [63]. Yang and Chang have applied NSGA-II to the optimization of maintenance 

schedules and extents for composite power systems [64]. 

The multi-objective particle swarm optimization is an extensive version of the 

single-objective particle swarm optimization with redefinition of global and local best solutions, 

to handle multi-objective optimization problems. Particle swarm optimization is a population 

based heuristic search technique inspired by social behavior of bird flocking or fish schooling 

[65]. A study of stochastic economic emission load dispatch through a modified particle swarm 

optimization algorithm was presented in [13]. Pindoriya and Singh proposed a multi-objective 

particle swarm optimization based approach to study day-ahead optimal self-scheduling of 

generators under electricity price forecast uncertainty [66].  

Recently, the artificial immune system has been widely used to solve the optimization 

problems by applying some features of human immune system, such as clonal selection. Slimani 

and Bouktir proposed using multi-objective artificial immune system for solving economic 

power dispatch of power system with pollution control [67]. Ahuja, Das and Pahwa proposed a 
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hybrid algorithm based on artificial immune system and ant colony optimization for distribution 

system reconfiguration, which is formulated as a multi-objective optimization problem with the 

aim of minimizing real losses, keeping transformer load balancing and minimizing voltage 

deviation [68]. 

The optimization process in SA resembles the annealing process of metals. The molten 

metal is cooled from a high temperature slowly until it is solidified at a low temperature. There 

have been attempts in extending SA to multi-objective optimization by aggregating all the 

objectives into one by taking their weighted sum. For example, in [69], Wong et al. combined 

multiple objectives of generation dispatch into one by using weighted sum method, and then 

applied the SA method to this single-objective optimization problem. By incorporating 

Pareto-domination methods, a frame work for multi-objective simulated annealing has been 

proposed [70], [53]. Li, Das and Pahwa applied the AMOSA to solve the multi-objective optimal 

generation scheduling problem with the environmental considerations [62].  
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CHAPTER 3 - Overview of Evolutionary Algorithms 

This chapter gives an overview of evolutionary algorithms, i.e. genetic algorithms, 

evolutionary programming and evolutionary strategies. This is followed by more detailed 

descriptions of GAs and SA. Finally, this chapter outlines the three multi-objective evolutionary 

algorithms, non-dominated sorting genetic algorithm II, strength Pareto evolutionary algorithm 2 

and archived multi-objective simulated annealing. 

3.1 Introduction 
As mentioned previously, the two goals of multi-objective optimization are to find a set 

of solutions that are as close as possible to the Pareto front with a good diversity. 

EAs employ a population of solution candidates to find the optimal solutions, which is an 

efficient way to find multiple Pareto-optimal solutions simultaneously in a single simulation run. 

This characteristic inherently makes EAs suitable for multi-objective optimization. However, to 

extend the ideas of single-objective EAs to multi-objective cases, two design issues have to be 

addressed to satisfy the above goals of multi-objective optimization [71], which are: 

1) developing an effective set of evolutionary operators for selection, crossover, and 

mutation, and 

2) methods to maintain population diversity. 

Moreover, to prevent good solutions from being lost, additional elite-preserving operators 

can be used so that the elites of any generation are guaranteed to be present in the next. Early 

researchers have developed some MOEAs which do not use any elite-preserving operator. These 

algorithms include niched Pareto genetic algorithm and non-dominated sorting genetic algorithm. 

However, elite preservation enable the high probability of creating better offspring, and Rudolph 

has reported that GAs with elitism converge to the global optimal solution of some functions 

[72]. Therefore, more recent MOEAs such as NSGA-II and SPEA-2, etc. incorporate 

elite-preserving strategies. AMOSA is a SA-based multi-objective optimization algorithm, which 

naturally uses elitism by keeping an archive of best solutions that are found at each iteration.  

3.2 Overview of Evolutionary Algorithms 
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EAs aim to obtain optimal solutions by continuously making improvements to a 

population of candidate solutions starting with an initial, usually randomly generated one. It 

applies stochastic evolutionary operators to the solutions in the population in each generation, to 

obtain new ones. Using the Darwinian principle of survival of the fittest, only the better solutions, 

evaluated according to some fitness measures, are allowed to enter the next generation. EAs 

differ from many traditional optimization techniques in that they are population-based 

approaches, making them inherently parallelizable. EAs have shown success in a variety of 

domains including numerical function optimization, combinatorial optimization, adaptive control 

and machine learning.  

The general scheme of an evolutionary algorithm is described in figure 3.1.  

 

Start

Create an initial population

Stop criterion satisfied?

Evaluate all candidates

Select some pairs to be parents

Evaluate new candidates

Select individuals to be replaced by the 
new offspring

Mutate offspring

Y

N

End
 

Figure 3.1 The general scheme of an evolutionary algorithm 
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EAs consist of three basic schemes: genetic algorithms, evolutionary strategies and 

evolutionary programming. These three algorithms, although originating from the same basic 

algorithmic skeleton, differ in details such as the way of selecting the best solutions, creating 

new solutions from existing ones, and the data structures used to represent those solutions.  

A GA is initialized with a set of solutions (represented by chromosomes) called 

population. The data structure that represents the solutions can be binary or real parameters 

according to the attributes of the problem. Each solution is evaluated to see how good it is 

represented by its fitness, and is allocated the opportunity to reproduce offspring in such a way 

that the more suitable it is the more chances it has to reproduce. This procedure is repeated until 

the stop criterion, i.e. total number of iterations or improvement of the best solution, is satisfied.  

The early evolutionary strategy uses real parameters and does not have the crossover-like 

operator, which is different from GA. However, more recent do include crossover. Various 

versions of evolutionary strategies can be differentiated based on the number of parents involved 

in the procreation of an offspring, and whether selection takes place only among the offspring or 

among the offspring and parents together. Evolutionary strategies can be applied in all fields of 

optimization including continuous, discrete, combinatorial search spaces without and with 

constraints as well as mixed search spaces.  

Evolutionary programming is a predominantly mutation-based evolutionary algorithm 

which is applied to discrete search spaces. There are a few differences between evolutionary 

programming and GAs. In evolutionary programming, the solution representation is dependent 

on the problem, while GAs usually encode solutions as strings of genes. Additionally, 

evolutionary programming uses mutation as the main search operator, while GAs include both 

crossover and mutation operators for the same purpose.  

Particle swarm optimization is another nature-inspired optimization approach that is 

motivated by social behavior of organisms such as bird flocking and fish schooling. It is also a 

population-based search procedure. Unlike GA, particle swarm optimization does not apply 

evolutionary search operators, but uses other ones that are motivated by swarm behavior instead 

[65]. 

Another swarm intelligence based technique ant colony optimization, was initially 

proposed by Marco Dorigo in 1992 [73]. Ant colony optimization has been applied to a broad 



 21

range of hard combinatorial problems, such as scheduling problems, vehicle routing problems, 

etc. [74-75]. 

While swarm intelligence provides an excellent alternative approach for optimization, 

unfortunately, Particle swarm optimization being primarily a continuous optimization cannot be 

used in this research. Ant colony optimization, although intended for combinatorial optimization, 

has not been very successful in multi-objective optimization. Therefore this research is limited to 

genetic algorithms and simulated annealing algorithm. Further details of these approaches 

follow. 

3.3 Genetic Algorithms 
There are a variety of GAs proposed in recent years but in essence all the algorithms 

follow a standard format as shown in figure 3.2. 

Start

Initialize population

Stop criterion satisfied?

Set generation number i=0

Evaluation 

Assign fitness

Reproduction

Crossover

Mutation

i=i+1

End

 
Figure 3.2 The flowchart of a typical GA 
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3.3.1 Chromosome Representation 

A typical GA usually begins with a randomly selected population of chromosomes. These 

chromosomes are representations of the possible solutions of the problem. Each chromosome 

consists of a number of genes, which can be encoded in various ways, such as binary bits, real 

numbers and characters, etc., depending on the nature of the problem. Figure 3.3 shows the 

binary and real-number representations of two chromosomes. 

 
Figure 3.3 Binary and real-number chromosome representations 

 

Binary-coded GAs are naturally used in problems having a discrete search space. 

However, in handling a continuous search space problem, binary-code GA has several 

difficulties. One difficulty is the well known issue of Hamming cliffs. The other bottleneck of 

the binary-coded GA is the inability of a chromosome to represent a solution with arbitrary 

precision. These two aspects of binary-coded GAs often render them ineffective in some 

situations. Therefore, real-coded GAs are ideally suited to handle problems where the search 

space is continuous. 

3.3.2 Fitness Evaluation 

The fitness evaluation is to measure the quality of the represented solution (chromosome). 

The fitness function is always problem dependent and reflects the goodness of a candidate 

solution. In a single-objective optimization problem, the fitness is nothing more than the 

objective function to be minimized. 
With the chromosome representation and the fitness function defined, GAs proceed to 

generate a population of solutions randomly (initialization), and then improve it through 

repetitive application of selection, crossover and mutation operators. 
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3.3.3 Selection 

The selection operator is used to identify a set of parents for the mating pool. Here, 

multiple copies of better solutions are allowed, while inferior ones are probabilistically removed. 

Tournament selection and proportionate selection are the two most common selection schemes. 

In tournament selection, a group of solutions of constant size are picked randomly from 

the population and a “tournament” is carried out among them to locate the best one, which enters 

the mating pool. This process is repeated until the pool is filled. In binary tournament selection, 

the group size is kept at 2. It is clear that the larger the group size the higher probability the 

selection is biased towards fitter solutions.  

Proportionate selection, also known as roulette-wheel selection, is another way of 

choosing potentially useful solutions from the population in a way that is proportional to their 

fitness. The better the solutions are, the more is their likelihood to be selected. Unfortunately, 

due to the probabilistic nature of selection, there is no guarantee that the fittest solutions will 

enter the next generation with either tournament or roulette-wheel selection. 

3.3.4 Crossover 

Following selection, a crossover operator is applied to randomly paired chromosomes in 

the mating pool. This operator is applied with a fixed probability (0.8 is a good first choice), 

while the remainder of the selected solutions enter the next generation without being crossed 

over. Crossover is modeled after reproduction in nature, which involve two parent genotypes and 

yield one or two offspring genotypes. As in nature, crossover combines parts of solutions from 

two existing chromosomes (parents) to produce the offspring. The crossover operator is the main 

search operator in the GA. Depending on the choice of chromosomal representation, several 

methods are available. 

3.3.4.1 Crossover Methods for Binary-Coded GA 

For solutions with binary variables, only portions of the solutions are exchanged between 

the solutions during the crossover operation. Different methods are adopted based on the number 

of cross points. 

A solution consists of several variables. In single-point crossover, after one crossover 

position is selected uniformly at random, variables from the beginning of the vector representing 

the first of the two parents, up to the crossover point are copied onto the offspring, while the rest 



 24

is copied from the second parent. Figure 3.4 illustrates this process. In two-point crossover, two 

crossover positions are selected uniformly at random, and the variables in the parents between 

the two points are exchanged to produce two new offspring, which is shown in figure 3.5. 

Single-point and two-point crossover can be extended to multi-point crossover 

 

 
Figure 3.4 The single-point crossover method 

 

 
Figure 3.5 The two-point crossover method 

 

3.3.4.2 Crossover Methods for Real-Coded GA 

For solutions with real-number variables, crossover methods are different from those 

used for solutions with binary variables. Real-coded GAs directly manipulate two or more real 

numbers to generate one or more real numbers as offspring [46].  

Simulated binary crossover (SBX) for real-parameter variables was proposed by Deb and 

Agrawal [76]. SBX simulates the operation of the single-point crossover on binary strings. At 
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first, a uniformly distributed random number u between 0 and 1 is created. To model single-point 

crossover in binary-coded GAs, an offspring is created following the probability distribution 

shown below: 

 ܲሺߚሻ ൌ ൝
0.5ሺߟ௖ ൅ 1ሻߚఎ೎ ,        ݂݅ ߚ ൑ 1; 
0.5ሺߟ௖ ൅ 1ሻ ଵ

ఉആ೎శమ  (3.1)               .݁ݏ݅ݓݎ݄݁ݐ݋   ,

where  ߚ is defined as: 

ߚ  ൌ ቚ௬మି௬భ
௫మି௫భ

ቚ                            (3.2) 

and ݕଵ  and ݕଶ  are offspring variables created from the parent variables, ݔଵ  and ݔଶ . In 

equation (3.1), ߟ௖ controls the probability of the distance between the parent variable and 

offspring variable. The quantity ߚ௤  below, is calculated by equating the area under the 

probability curve to u.  

௤ߚ ൌ ൞
ሺ2ݑሻ

భ
ആ೎శభ ,             ݂݅ ݑ ൑ 0.5; 

ቀ ଵ
ଶሺଵି௨ሻ

ቁ
భ

ആ೎శభ .݁ݏ݅ݓݎ݄݁ݐ݋   ,
                   (3.3) 

Finally, two offspring variables ݕଵ and ݕଶ are computed using equations (3.4) and (3.5) 

below. 

ଵݕ ൌ 0.5ሾሺ1 ൅ ଵݔ௤ሻߚ ൅  ሺ1 െ  ଶሿ                 (3.4)ݔ௤ሻߚ

ଶݕ ൌ 0.5ሾሺ1 െ ଵݔ௤ሻߚ ൅  ሺ1 ൅  ଶሿ                 (3.5)ݔ௤ሻߚ

Some other crossover methods for real-coded GAs, such as blend crossover operator and 

simplex crossover, were also proposed in recent years [77-78]. 

3.3.5 Mutation 

After selection and crossover, solutions undergo a process of mutation. The purpose of 

mutation is to maintain diversity within the population and avoid premature convergence to local 

minima. Mutation is applied to each solution only with a certain mutation probability, which 

should usually be set fairly low, i.e. 0.01, as a high value can interfere with the search process by 

perturbing already obtained good solutions. 

3.3.5.1 Mutation Methods for Binary-Coded GA 

With binary representation, a bit-wise mutation operator simply inverts the value of the 

chosen gene (0 goes to 1 and 1 goes to 0). This mutation is also called flip mutation. 



 26

3.3.5.2 Mutation Methods for Real-Coded GA 

In real-coded GAs, the mutation operator is designed to impart a small local perturbation 

to the solutions. 

Gaussian mutation, which is a common form of this operator when using real-coded 

chromosomes, adds a zero-mean random value that follows a Gaussian distribution, to a variable 

 :௜ as followsݔ

௜ݕ ൌ ௜ݔ ൅  ܰሺ0,  ௜ሻ                             (3.6)ߪ

where σ୧ is a user-defined parameter. The new variable is clipped if it crosses the lower or 

upper bounds. 

Polynomial mutation follows a polynomial probability distribution function [KM96]: 

௜ݕ ൌ ௜ݔ ൅ ൫ݔ௜
௎ െ ௜ݔ

௅൯ ߜ௜                           (3.7) 

where the parameter ߜ௜ is calculated from the polynomial probability distribution: 

Ρሺߜሻ ൌ 0.5ሺߟ௠ ൅ 1ሻሺ1 െ  ఎ೘ሻ                        (3.8)|ߜ|

௜ߜ  ൌ ൝ ሺ2r୧ሻ
భ

ಏౣశభ െ 1,   if r୧ ൏ 0.5

1 െ ሾ2ሺ1 െ r୧ሻሿ
భ

ಏౣశభ,   if r୧ ൒ 0.5
                    (3.9) 

where ߟ௠ is a fixed user-defined parameter. 

Several other mutation operators such as uniform mutation and non-uniform mutation 

have also been proposed recently [110].  

3.4 Non-Dominated Sorting Genetic Algorithm II 
Although several evolutionary algorithms for multi-objective optimization have been 

proposed, NSGA-II is one of the most common methods. The NSGA-II algorithm maintains a 

population of parents, Pg, of size NP. In each iteration g of the algorithm, the parents are merged 

with a population of NP offspring, Qg obtained from the previous iteration. This merged set, Rg = 

Pg∪Qg is then subject to a process of non-dominated sorting, wherein the individual solutions 

are assigned individual ranks. The ranking scheme makes use of domination relationship among 

solutions. Ranks are assigned to each solution in Rg, using an algorithm called non-dominated 

sorting, such that solutions that have the same rank do not dominate one another. Each solution is 

assigned a lower rank than another that it dominates, and, in turn, is ranked higher than ones 

dominating it. The non-dominated solutions in the population are assigned a rank of zero.  
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The least ranked NP solutions, which are considered to the elites, are then retained by 

NSGA-II as the parent population of the next iteration, Pg+1, while the remaining solutions are 

discarded. Ties are resolved by invoking crowding distance evaluation. A bounding hypercube 

around each solution in the objective function space that does not enclose any other solution is 

considered. Neighboring solutions will be located at some of the corners of this hypercube. The 

perimeters of these hypercubes around each of the solutions of identical rank are used as 

measures of diversity. Solutions whose bounding hypercubes have a larger perimeter are 

considered to be located in sparser regions than those with smaller ones, and are preferred. 

The parents Pg+1, selected in this manner are then subject to crossover and mutation to 

obtain NP offspring, which become the offspring population Qg+1 of the next iteration. To create 

new offspring, SBX operator and polynomial mutation operator are used. 

3.4.1 Fast Non-Dominated Sorting 

The purpose of fast non-dominated sorting [51] is to rank a set of solutions where those 

within each rank are mutually not dominating, while lower ranked solutions dominate one or 

more of a higher rank. This approach is described below. 

 
BEGIN 

S : the solution set. 

Zi : the set of solutions dominated by solution ܑܠ. 

dci : the domination counter of solution ܑܠ. 

k : the front counter. 

Ωk : the set of solutions belonging to the kth front. 

FOR each solution ܑܠ א ܵ     

Zi = Ø    

dci = 0                    

  FOR each solution ܒܠ א ܵ 

   IF(ܑܠ ط   THEN (ܒܠ

     Zi = Zi ∪{ܒܠ} 

    ELSE IF (ܒܠ ط  THEN (ܑܠ

    dci = dci + 1 
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       ENDIF 

  ENDFOR 

  IF (dci = 0) THEN 

 1 = ܓܖ܉ܚ,ܑܠ   

   Ω1 = Ω1 ∪{ܑܠ}    

  ENDIF 

ENDFOR 

k = 1                      

WHILE (Ωk ്Ø) 

  W = Ø                 

  FOR each solution ܑܠ   Ωk א

   FOR each solution ܒܠ   Zi א

    dcj = dcj + 1 

    IF dci = 0 THEN 

 k + 1 = ܓܖ܉ܚ,ܒܠ     

     W = W∪{ܒܠ} 

ENDIF 

ENDFOR 

ENDFOR 

  k = k+ 1 

  Ωk = W 

ENDWHILE 

END 

 

Three non-dominated fronts found by the fast non-dominated sorting approach are shown 

in figure 3.6. 
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Figure 3.6 Non-dominated fronts 

 

3.4.2 Selection and Diversity Preservation 

In tournament selection, a few solutions are selected at random and the fittest is selected 

for crossover. NSGA-II uses a two-step comparison operator to determine the better of two 

solutions. A solution xi is better than another solution xj if solution xi has a better rank than xj, or 

if they have the same rank but solution xi has a better crowding distance than solution xj. The 

procedure of calculating crowding distance is [51]: 

 
BEGIN 

|Ω|: the total number of solutions in the non-dominated set Ω. 

Him: the crowding distance for solution ܑܠ along the objective 

m, where i = 1, 2, …, |Ω|. 

Hi: the crowding distance for solution ܑܠ, where i = 1, 2, …, 

|Ω|. 

FOR (i=1;i<=|Ω|;i++) 

Hi = 0 
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ENDFOR 

FOR each objective m 

Ω = sort (Ω, m) 

  H1 = H|Ω| =∞ 

  FOR (i=2;i<=(|Ω|-1);i++) 

   Hi = Hi + (Hi+1m - Hi-1m)/(fmmax - fmmin) 

  ENDFOR 

ENDFOR 

END 

 

 

During the sorting process the boundary points are assigned infinite distance values so 

that they are always selected. As shown in figure 3.7, the crowding distance for solution xi is 

actually the half of the perimeter of the cuboid enclosed with the nearest sorted two neighboring 

solutions xi-1 and xi+1. 

 
Figure 3.7 Calculation of crowding distance 
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3.4.3 Crossover and Mutation 

In NSGA-II, SBX and polynomial mutation (described earlier) are used. 

3.4.4 Constraint Handling 

To handle the equality and inequality constraints in the constrained multi-objective 

optimization problems, the concept of constrain-domination is used. A solution xi is said to 

constrain-dominate a solution xj if any of the following conditions is true [46]: 

1) Solution xi is feasible and solution xj is not. 

2) Solutions xi and xj are both infeasible, but solution xi has a smaller overall constraint 

violation. 

3) Solutions xi and xj are both feasible and solution xi dominates solution xj. 

3.4.5 Overall Procedure 

An outline of NSGA-II is provided below: 

 
BEGIN 

Initialize parent population Pg with size of NP. 

|Ω௜|:the total number of solutions that have the rank Ω௜. 

WHILE (g < max generation) DO 

Step 1: Create offspring population Qg using tournament 

selection, crossover and mutation. 

Step 2: Merge parent and offspring populations and create Rg 

= Pg ∪Qg. 

Step 3: Assign each solution in Rg a rank Ω௜ using 

non-dominated sorting approach, where i = 1, 2, …. 

Step 4: Select all solutions with ranks from Ωଵ to Ω௞ into 

new population Pg+1, so that ∑ |Ω௜|௞
௜ୀଵ <NP and ∑ |Ω௜| ൒௞ାଵ

௜ୀଵ NP. 

Step 5: Add the most widely distributed (NP - ∑ |Ω௜|௞
௜ୀଵ ) 

solutions into Pg+1 by performing the crowding distance 

sorting for all the solutions that have the rank Ω௞ାଵ. 

Step 6: g = g + 1. 
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ENDWHILE 

END 

 

The procedure to select NP solutions from the merged population Rg, to form the new 

population Pg+1, is shown in figure 3.8. 

 

 
Figure 3.8 Recombination operation in NSGA-II 

 

3.5 Strength Pareto Evolutionary Algorithm 2 
SPEA-2 is an improved version of the original strength Pareto evolutionary algorithm. 

Compared with the original version, the SPEA-2 incorporates a fine-grained fitness assignment 

strategy, a density estimation technique, and an enhanced archive truncation method.  

3.5.1 Overall Procedure 

The procedure of SPEA-2 is described as follows [52]. 

 
BEGIN 

Set archive size as N’ and generation number g = 0. 
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Initialize parent population Pg with size of NP and an empty 

archive Pg’=Ø. 

S’: the non-dominated set which is the final output. 

WHILE (g < max generation) DO 

Step 1:Calculate fitness values of solutions in Pg and Pg’. 

Step 2:Environmental selection: all non-dominated solutions 

in Pg and Pg’ are copied to Pg+1’. 

IF (|Pg+1’| > N’) THEN 

Reduce Pg+1’ to size NP by means of the truncation 

operator. 

ELSEIF (|Pg+1’| < N’) THEN 

Fill Pg+1’ with dominated solutions in Pg and Pg’. 

ENDIF 

Step 3:Perform binary tournament selection on Pg+1’ to fill 

the mating pool. 

Step 4:Create new population Pg using crossover and mutation 

to the mating pool.  

Step 5: g = g + 1. 

ENDWHILE 

S’ = Pg+1’.  

END 

 

3.5.2 Fitness Assignment 

The fitness of a solution is calculated based on the strength value of the solutions by 

which it is dominated, where the strength value of a solution is defined as the number of 

solutions that it dominates in the current population. Ties of solutions with the same fitness are 

resolved by invoking the concept of diversity, which is measured using a nearest neighbor 

density estimation method. 

The fitness value of a solution ܑܠ comprises of two terms, the raw fitness value, RF(ܑܠ), 

and the density metric, DM(ܑܠ). This is shown in the following equation [52]. 

F(ܑܠ) = RF(ܑܠ) + DM(ܑܠ)                        (3.10) 
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The raw fitness value RF(ܑܠ) is a function of other solutions’ strength values SV(ܑܠ): 

ሻܑܠሺܨܴ ൌ  ∑ ܸܵሺܒܠሻאܒܠ௉೒׫௉೒
ᇲ ܑܠطܒܠ,                      (3.11) 

ܸܵሺܑܠሻ ൌ |൛ܒܠหܒܠ א ௚ܲ ׫ ௚ܲ
ᇱ ר ܑܠ  ط  ൟ|                  (3.12)ܒܠ

where |·| denotes the cardinality of the set. The raw fitness value RF(ܑܠ)  of an non-dominated 

solution ܑܠ is equal to 0, means that no solution is better than the solution ܑܠ. The higher the 

raw fitness value RF(ܑܠ) is, the more solutions dominate ܑܠ. 

The raw fitness RF(ܑܠ) may fail when most solutions do not dominate each other, and 

therefore many solutions having identical raw fitness values. In this situation, additional density 

information is needed to discriminate those solutions. The density DM(ܑܠ)  is calculated as 

follows: 

ሻܑܠሺܯܦ ൌ  ଵ
ௗ೔

ೖାଶ
                         (3.13) 

where ݀௜
௞ is the distance between solution ܑܠ and its k-th nearest solution, and ݇ ൌ √ܰܲ ൅ ܰᇱ. 

Since ݀௜
௞ ൒ 0, the density DM(ܑܠ) is always less than 1. Because the raw fitness value 

RF(ܑܠ) of an non-dominated solution is equal to 0, the minimum fitness values F(ܑܠ) is assigned 

to each non-dominated solutions with the first rank. 

3.5.3 Environmental Selection 

In environmental selection, after all the non-dominated solutions in ௚ܲ  and ௚ܲ
ᇱ  are 

copied into the archive set ௚ܲାଵ
ᇱ , three scenarios arise [52]: 

1) The size of the non-dominated set is exactly equal to the archive size ܰᇱ. In this 

case, the environmental selection is completed. 

2) The size of the non-dominated set is less than the archive size ܰᇱ. In this case, we 

simply add the best ሺܰᇱ െ ห ௚ܲାଵ
ᇱ หሻ dominated solutions in ௚ܲ and ௚ܲ

ᇱ, based on their fitness 

values, to the archive to fill the gap. 

3) The size of the non-dominated set is greater than the archive size ܰᇱ. In this case, 

an archive truncation procedure is employed to iteratively remove solutions from ௚ܲାଵ
ᇱ  until 

ห ௚ܲାଵ
ᇱ ห ൌ ܰᇱ. At each iteration that solution ܑܠ is chosen for removal for which ܑܠ ൑ௗ  for all ܒܠ

ܒܠ א ௚ܲାଵ
ᇱ  with 
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ܑܠ ൑ௗ ܒܠ ฻ ׷
0 ׊ ൏ ݇ ൏ ห ௚ܲାଵ

ᇱ ห ׷ ݀௜
௞ ൌ ௝݀

௞ ש 
0 ׌ ൏ ݇ ൏ ห ௚ܲାଵ

ᇱ ห ׷ ሾ൫0 ׊ ൏ ݈ ൏ ݇ ׷   ݀௜
௟ ൌ ௝݀

௟൯ ר ݀௜
௞ ൏ ௝݀

௞ሿ 
      (3.14) 

Using this method, the solution which has the minimum distance to another solution is 

chosen for removal at each stage. In case there are more than one solution with minimum 

distance, the tie is broken by seeking the second smallest distances, and so forth. 

3.6 Archived Multi-Objective Simulated Annealing 
AMOSA is based on the SA and aims to solve the multi-objective optimization problem. 

It also uses an archive to store the non-dominated solutions.  

3.6.1 Simulated Annealing Algorithms 

Simulated annealing process is similar to the annealing process of metals and glass. In 

physical annealing, the glass is heated to a high temperature so that the glass is a liquid and the 

atoms can move relatively freely. Then the temperature is slowly lowered so that the atoms are 

able to relax into the most stable orientation, a state of thermal equilibrium. During the cooling 

process, any random change of the configuration of atoms results in the change of system energy, 

∆E. The new configuration is accepted if ∆E≤0, but only is accepted with a certain probability if 

∆E>0. The most common probability function is called Boltzmann distribution: 

ሻ߃߂ሺߏ ൌ ݁ି௱௲ ௞್்ᇲ⁄                       (3.15) 

where kୠ is the Boltzmann's constant and T’ is the temperature. It has two important features: 

the higher the ∆E, the lower the probability to accept the new configuration, and the higher the T’, 

the higher the probability of uphill moves.  
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 Figure 3.9 The procedure of the simulated annealing algorithm 
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Figure 3.9 shows the procedure of the simulated annealing algorithm. Various cooling 

schedules ρ(T’) can be used to reduce the temperatures, such as  

ρ(T’) = εT’                              (3.16) 
where ε between 0.8 and 0.99, and 

ρ(T’) = T’/(1+ηT’),                          (3.17) 

where η is a very small positive number around 0, and 

ρ(T’) = ξ(n-1)T0’                            (3.18) 

where ξ is a scaling factor less than 1, and n is the cooling step counter. T0’ is the initial 

temperature. 

SA works as a hill-climbing search method that allows moves in less good goal directions 

by a probabilistic method to escape local minima. One of the main drawbacks of simulated 

annealing is its slower rate of convergence. This is because the temperature has to be lowered at 

a slow rate in order to avoid the algorithm from getting trapped in local minima. 

3.6.2 AMOSA 

A number of solutions, equal to ζ×SL (ζ>1) are initially generated, where SL is the 

maximum size to which the archive may be filled. A simple hill-climbing technique is applied to 

these solutions until the archive is filled with HL non-dominated solutions. One of the solutions, 

called xcur, is selected randomly from the archive as the initial solution, and the temperature is 

initialized to T’=T’max. A new solution, called xnew, is generated by perturbing xcur. The 

domination status of xnew is checked with the xcur as well as solutions in the archive. Three 

different cases may arise based on the domination relations between xcur and xnew. The amount 

by which one dominates the other is used to calculate the acceptance probability of a new 

solution, thereby distinguishing “more dominated” solutions from “less dominated” ones. 

Whenever the number of non-dominated solutions in the archive exceeds SL, a clustering 

technique is used to reduce the archive size to HL.  

The above process is repeated iter times for each temperature T’. The temperature is then 

reduced to a value εT’, where the factor ε represents the cooling rate, whose value lies between 0 

and 1. The algorithm terminates after the temperature reaches its minimum limit, T’min. 

3.6.2.1 Amount of Domination 

The amount of domination between two solutions ܑܠ and ܒܠ is defined as [53]: 
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ᇞ ,ܑܠሺܦ ሻܒܠ ൌ ∏ |௙೘ሺܑܠሻି௙೘ሺܒܠሻ|
௙೘

೘ೌೣି௙೘
೘೔೙

ெ
௠ୀଵ,௙೘ሺܑܠሻஷ௙೘ሺܒܠሻ                  (3.19) 

Figure 3.10 illustrates the amount of domination between the two solutions for a two 

objective case, which is equal to the area of the shaded rectangle. 

 
Figure 3.10 Amount of domination between two solutions 

 

3.6.2.2 Overall Procedure 

One of the main advantages of AMOSA is in its lower computational complexity in 

comparison to NSGA-II and SPEA-2. When the parameters SL and HL follow a linear 

relationship with the archive size, N=|P’|, the complexity per iteration of AMOSA is 

O(M(N+log(N))) in comparison to O(MN2) for NSGA-II and O(MN3). The procedure for 

AMOSA [53] is given as follows: 
BEGIN 

Set T’max, T’min, HL, SL, iter, ε, T’=T’max. 

Initialize the archive P’. 

Randomly choose a solution from P’ as xcur. 

WHILE (T’ > T’min) DO 

FOR (i=0; i<iter; i++) 
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  xnew = perturb(xcur) 

IF (xcurطxnew) 

IF (xnew is dominated by k (k≥0) solutions in P’) 

Set xnew as xcur with probability of 

ߏ ൌ ଵ
ଵାୣ୶୮ ሺᇞ஽ೌೡ೒்כ’ሻ

, where  

 ᇞ ௔௩௚ܦ ൌ
ቀ∑ ᇞ஽ሺܟ܍ܖܠ,ܑܠሻೖ

೔సభ ቁାᇞ஽ሺܟ܍ܖܠ,ܚܝ܋ܠሻ

ሺ௞ାଵሻ
 

ENDIF 

ENDIF 

IF (xcurؽxnew and xnewؽxcur) 

IF (xnew is dominated by k (k≥1) solutions in P’) 

Set xnew as xcur with probability of 

ߏ ൌ ଵ
ଵାୣ୶୮ ሺᇞ஽ೌೡ೒்כ’ሻ

, where  

 ᇞ ௔௩௚ܦ ൌ ∑ ᇞ ,ܑܠሺܦ ሻ௞ܟ܍ܖܠ
௜ୀଵ  

ENDIF 

IF (xnew is non-dominating with all the solutions in 

P’) 

Set xnew as xcur and add xnew to P’. 

  IF |P’| > SL 

Reduce the size of P’ to HL by applying the 

clustering method. 

ENDIF 

ENDIF 

 IF (xnew dominates k (k≥1) solutions in P’) 

Set xnew as xcur and add xnew to P’. 

Remove all the k dominated solutions from P’. 

ENDIF 

ENDIF 

IF (xnewطxcur) 

IF (xnew is dominated by k (k≥1) solutions in P’) 
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Set solutions corresponding to ᇞ  ௠௜௡as xcur withܦ

probability of 

ܲ ൌ ଵ
ଵାୣ୶୮ ሺିᇞ஽೘೔೙ሻ

, where  

 ᇞ  ௠௜௡= minimum of the difference of dominationܦ

amounts between the xnew and the k solutions; 

else set xnew as xcur. 

ENDIF 

IF (xnew is non-dominating with the solutions in P’) 

Set xnew as xcur and add xnew to P’.  

IF (xcur is in P’) 

remove it from P’. 

  ELSE IF |P’| > SL 

Reduce the size of P’ to HL by applying the 

clustering method. 

   ENDIF 

ENDIF 

IF (xnew dominates k (k≥1) solutions in P’) 

Set xnew as xcur and add xnew to P’. 

Remove all the k dominated solutions from P’. 

ENDIF 

ENDIF 

ENDFOR 

T’ = εT’ 

ENDWHILE 

IF |P’| > SL 

Reduce the size of P’ to HL by applying the clustering 

method. 

ENDIF 

END 
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CHAPTER 4 - Short-Term Optimal Thermal Generation Scheduling 

4.1 Introduction 
The main goal of optimal generation scheduling is to schedule the generators in such a 

way as to minimize certain objective functions, while satisfying various system and operating 

constraints over a given period. The objective functions may include economic costs, system 

security, or other costs [1]. 

With the CAAA90 being applied to environmental protection in Unites States, utility 

companies have been reducing the atmospheric emissions of the thermal power plants using 

various strategies [79-80]. Emissions rates can be adjusted according to the levels of pollution 

control, the characteristics of the fuels undergoing combustion, power plant efficiency and 

emission dispatching. As a short-term alternative to achieve the emission targets without 

investment for new pollutant cleaning equipment, emission dispatching is an effective strategy to 

keep the emission below a certain level. 

The SO2 allowance trading program in CAAA90 has generally been viewed as a success 

in its goal to achieve emission reductions using a cap and trade policy. In this program, on the 

basis of historical fuel consumption, the emission trading system first allocate the marketable 

emission permits (allowances) to power plant operators free of charge. Subsequently, the 

operators are allowed to either include their own emissions as part of their allowances, or make a 

profit by selling them to others. Power plants with low emission reduction opportunity cost are 

allowed to sell unused allocated allowances. On the contrary, some plants may choose to 

purchase more allowances from others to cover their own emission excess [81]. In general, the 

annual allocation of allowances to each utility does not change over time. Utilities are required to 

measure and report emissions to the regulatory agency at the end of the operational year in order 

to balance the emissions with their allocated allowances. Each day if the operators have a set of 

different schedules, which are trade-off between operation cost and emission, they acquire a firm 

understanding of the environmental performance of the power plants on a daily basis, and can 

exercise flexibility in adopting different schedule for each day, to comply with their standards.  

During the process of transferring power supplied by generators via the transmission 

system, some of the energy is lost due to the resistance of the transmission lines and other 
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equipments. Most of this lost energy is converted to heat. The total loss in the transmission 

network can be approximated by the B-matrix loss formula, in which the loss is a function of all 

the generator outputs. Given a certain transmission network, the system operator must find an 

economical way to dispatch all the generators in order to improve the transmission efficiency. 

An appropriate coordination among operation cost, emission and transmission losses can 

result in not only significant cost savings but also compliance with the emission caps. Thus, to 

find the generation scheduling taking operation cost, emission as well as transmission losses into 

account has received increasing attention.  

This chapter gives a brief overview of the emission cap and trade policy in electric power 

systems and the detailed problem formulation of the multi-objective short-term optimal thermal 

generation scheduling is described thereafter.  

4.2 Emission Cap and Trade 
In this dissertation, although any emission source could be readily included for the study, 

only NOx emission is considered. One of the most important hazards of NOx is that it can lead to 

the formation of ground-level ozone, causing both acute and chronic respiratory ailments. In 

addition, NOx also contributes to regional haze, eutrophication of water bodies, etc. To help 

Northeast and mid-Atlantic region reduce harmful groud-level ozone, in 1990 the U.S. Congress 

established the Ozone Transport Commission (OTC) under the Clean Air Act Amendments. 

Utility companies have been reducing the atmospheric emissions of the thermal power plants by 

various strategies [82-83]. With the aim to reduce summertime NOx emissions, the OTC NOx 

Budget Program was implemented from 1999 to 2002，and has since been replaced by the  NOx 

Budget Trading Program under the NOx State Implementation Plan (SIP) Call, a broader federal 

program issued by the U.S. Environmental Protection Agency, involving 22 eastern states and 

the District of Columbia. The OTC NOx Budget Program has generally been viewed as a success 

to achieve NOx reductions using a cap-and-trade policy. The apportionment of total budget 

allowances among the OTC states, or the establishment of the state caps, was accomplished in a 

uniform manner based on heat input. However, methods to allocate allowances to regulated 

sources, i.e. electricity generating units, were determined by each state individually. For example, 

some states such as Delaware, New Hampshire, New York, Pennsylvania, and the District of 

Columbia had fixed allocations from 1999 to 2002, while some other states such as Connecticut, 
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Maryland, and New Jersey adjusted their allocations periodically based on various factors [84]. 

After receiving marketable emission permits (allowances), power plant operators are 

allowed to either cover their own emissions by their allowance, or to make profit by selling them 

to others. One benefit of the cap-and-trade program is that if the allowance market is 

well-designed, those with the lowest cost emission reduction opportunities would sell the 

unwanted allocated allowances for a profit. Meanwhile, some other plant owners may purchase 

additional allowances to cover emission excess. Finally it is expected that all the power plants 

acquire the necessary allowance they need, while the net emission comply with the emission 

caps at the lowest possible cost [85]. In general the annual allocation of allowances to each 

utility does not change over time, and utilities need to measure and report emissions to the 

regulatory agency regularly to balance the emissions with the allowances they have.  

4.3 Problem Formulation 

The following notation is used throughout the dissertation： 

,௜ߙ ,௜ߚ ,௜ߛ ߮௜, ߬௜ Characteristic coefficients of unit i’s emission 

ܽ௜, ܾ௜, ܿ௜ Characteristic coefficients of unit i’s fuel cost  

݄௜௧
௢௙௙ Number of continuous time intervals that a unit i has remained OFF before 

current period t 

݄௜௧
௢௡ Number of continuous time intervals that a unit i has remained ON before 

current period t 

i, j, k  Index of units 

t Index of time period 

λ Market price for the emission allowance 

Bij, B0i, B00 The coefficients of the B matrix loss formula 

CSCi Cold start cost of unit i 

CSHi Cold start hours of unit i 

Dt  System load demand in period t 

E Total emission produced by all units for the entire time interval T 

Ecap   Emission cap of all the units for the entire time interval T 

Et Emission produced by all units in period t 

F Total operation cost for the entire time interval T considering emission 
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allowance trading 

FCit Fuel cost of unit i in period t 

Fe Emission cost caused by purchasing or selling additional emission allowance 

F0 Total operation cost for the entire time interval T without emission allowance 

trading 

F0t Operation cost of all units in period t 

HSCi Hot start cost of unit i 

MDi Minimum down time of unit i 

MUi Minimum up time of unit i 

NG Number of units 

Pit Power output in period t 

௜ܲ
௠௔௫  Maximum generation limit of unit i 

௜ܲ
௠௜௡  Minimum generation limit of unit i 

Ploss Total transmission losses for the entire time interval T 

Ploss,t Total transmission losses in period t 

Rt Reserve requirement in period t 

RDi Ramp-down limit of unit i 

RUi Ramp-up limit of unit i 

SDCi Shutdown cost of unit i in period t 

STCi Startup cost of unit i in period t 

S0  Set of off-line units  

S1 Set of on-line units 

T Entire time interval, in this paper, 24 hours 

Uit 0/1 variable which states OFF/ON status of unit i in period t 

 

We will assume that the time period considered is T=24 hours, i.e. one day. The 

short-term optimal thermal generation scheduling attempts to minimize the operation cost, 

emission and transmission losses while satisfying different system and operating constraints. 
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4.3.1 Objective Functions 

1) The total operation cost F0, including fuel costs, startup costs, and shutdown costs for 

the entire period, is given by: 

଴ܨ ൌ ∑ ∑ ሾܥܨ௜௧ ൅ேீ
௜ୀଵ

்
௧ୀଵ ௜௧ܥܶܵ ൅  ௜௧ሿ               (4.1)ܥܦܵ

Generally, the fuel cost of a thermal unit in any given time interval is a function of the 

generator power output. Most frequently used cost function is quadratic polynomial and 

expressed as follow. 

௜௧ܥܨ  ൌ ሺܽ௜ ൅ ܾ௜ ௜ܲ௧ ൅ ܿ௜ ௜ܲ௧
ଶሻ ௜ܷ௧              (4.2) 

Turning a unit on will incur start-up costs. Startup cost is a function of the number of 

hours during which the unit has been off. If the thermal unit has been off for a long period, a cold 

start-up cost is applied. If the unit has been recently turned off (temperature of the boiler is still 

high), a hot start-up cost is applied. The startup cost function is in the form of equation below. 

௜௧ܥܶܵ   ൌ ܵ ௜ܶ௧ሺ1 െ ௜ܷሺ௧ିଵሻሻ ௜ܷ௧              (4.3) 

 ܵ ௜ܶ௧ ൌ ቊ
௜            ݂݅ ݄௜௧ܥܵܪ

௢௙௙ ൑ ௜ܪܵܥ ൅ ௜ܦܯ

௜            ݂݅ ݄௜௧ܥܵܥ
௢௙௙ ൐ ௜ܪܵܥ ൅ ௜ܦܯ

           (4.4) 

The shut-down cost is usually a constant value for each unit, which is given below. 

௜௧ܥܦܵ ൌ ௜௧ሺ1ܦܵ െ ௜ܷ௧ሻ ௜ܷሺ௧ିଵሻ              (4.5) 

As explained previously, if the emission allowances are enforced, the operators have the 

option to buy the deficit from the market or sell the excess to the market, resulting in an 

additional emission cost: 

௘ܨ ൌ ሺܧ െ  (4.6)                        ߣሻ݌ܽܿܧ

where E is the total emission produced in the entire duration of T hours, Ecap is the emission cap 

allowed in T hours, and λ is the market price for the emission allowance. Note that Fe could be 

negative if the total emission produced by all units in T hours is below Ecap, which means the 

plant operator benefits from selling the excess emission allowance to others, thereby curtailing 

the total operation cost. Although the structure and supply-demand behavior of the emission 

allowance market have an effect on the quantities of allowances exchanged, this is not the 

emphasis of this dissertation. It is assumed that the plant operator is capable of selling the excess 

allowance successfully through other means. Based on this assumption, the revised operation 

cost can be represented by: 

ܨ  ൌ ௘ܨ ൅  ଴                          (4.7)ܨ
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2) The form of the NOx emission function model depends on the parameter estimating 

techniques used to approximate the amount of NOx emission [IFM94] [RSTH88] [RHK06]. 

Some researchers used second order polynomial functions or a combination of polynomial and 

exponential terms. However, we found that the average emission rate range yielded by using 

either of them based on testing systems deviated too much from the real-world NOx emission 

rates reported in [PConline]. Meanwhile, the combination of polynomial and sinusoidal terms is 

more appropriate to be used compared with the above two forms. Thus the total NOx emission 

produced by all units in T hours is expressed by a combination of polynomial and sinusoidal 

terms of the following form [IFM94]: 

ܧ ൌ ∑ ∑ ሼሾߙ௜ ൅ேீ
௜ୀଵ

்
௧ୀଵ ௜ߚ ௜ܲ௧ ൅ ௜ߛ ௜ܲ௧

ଶ ൅ ߮௜ sinሺ߬௜ ௜ܲ௧ሻሿ ௜ܷ௧ሽ         (4.8) 

3) The transmission losses can be expressed as a function of unit power outputs using the 

B-matrix loss formula: 

௟ܲ௢௦௦ ൌ ∑ ௟ܲ௢௦௦,௧
்
௧ୀଵ                           (4.9) 

௟ܲ௢௦௦,௧ ൌ ∑ ∑ ௜ܲ௧ܤ௜௝ ௝ܲ௧
ேீ
௝ୀଵ

ேீ
௜ୀଵ ൅ ∑ ଴௜ܤ ௜ܲ௧

ேீ
௜ୀଵ ൅  ଴଴           (4.10)ܤ

4.3.2 Constraints 

1) Power balance: 

If the transmission losses are not considered, the generated power from all the committed 

units must be sufficient enough to meet the load demand, which is defined as, 

∑ ௜ܲ௧
ேீ
௜ୀଵ ൌ  ௧                     (4.11)ܦ

When the transmission losses are considered, the power balance equation becomes: 

∑ ௜ܲ௧
ேீ
௜ୀଵ ൌ ௧ܦ ൅ ௟ܲ௢௦௦,௧                     (4.12) 

2) Spinning reserve: 

To maintain system reliability, committed units must be able to supply more than the load 

demand in order to prevent power shortages in case a unit fails or an unexpected increase in load 

occurs. The spinning reserve is considered to be a prespecified amount or a given percentage of 

the forecasted peak demand. It must be sufficient enough to meet the loss of the most heavily 

loaded unit in the system. This has to satisfy the equation given in (4.13). 

∑ ௜ܲ
௠௔௫

௜ܷ௧
ேீ
௜ୀଵ ൒ ௧ܦ ൅ ܴ௧                     (4.13) 

3) Power generation limits: 

Unit rated minimum and maximum capacities must not violate. 



 47

௜ܲ
௠௜௡

௜ܷ௧ ൑ ௜ܲ௧ ൑ ௜ܲ
௠௔௫

௜ܷ௧                   (4.14) 

4) Minimum up time: 

If a unit has already been turned on, it has to be on for a certain period before it can be 

shut down. 

൫݄௜ሺ௧ିଵሻ
௢௡ െ ܯ ௜ܷ൯ሺ ௜ܷሺ௧ିଵሻ െ ௜ܷ௧ሻ ൒ 0               (4.15) 

5) Minimum down time: 

If a unit has already been shut down, it has to be turned off for a certain minimum period 

before it can be restarted. 

ቀ݄௜ሺ௧ିଵሻ
௢௙௙ െ ௜ቁሺܦܯ ௜ܷ௧ െ ௜ܷሺ௧ିଵሻሻ ൒ 0               (4.16) 

6) Ramp up rate: 

For each unit, output is limited by ramp up rate at each hour. 

௜ܲ௧ െ ௜ܲሺ௧ିଵሻ ൑ ൣ1 െ ௜ܷ௧൫1 െ ௜ܷሺ௧ିଵሻ൯൧ܴ ௜ܷ ൅ ௜ܷ௧൫1 െ ௜ܷሺ௧ିଵሻ൯ ௜ܲ
௠௜௡    (4.17) 

7) Ramp down rate: 

For each unit, output is limited by ramp down rate at each hour. 

௜ܲሺ௧ିଵሻ െ ௜ܲ௧ ൑ ൣ1 െ ௜ܷሺ௧ିଵሻሺ1 െ ௜ܷ௧ሻ൧ܴܦ௜ ൅ ௜ܷሺ௧ିଵሻሺ1 െ ௜ܷ௧ሻ ௜ܲ
௠௜௡    (4.18) 

8) Unit initial status: 

The initial status of each unit at the beginning of the scheduling period must be taken into 

account. It indicates how long the unit has been on/off. 
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CHAPTER 5 - Two-Phase Multi-Objective Evolutionary Approach 

5.1 Introduction 
In this chapter, the two-phase multi-objective evolutionary approach proposed in this 

research, is introduced to solve the short-term optimal thermal generation scheduling problem. In 

the first phase, this approach formulates the hourly-optimal scheduling problem as a nonlinear 

constrained multi-objective optimization problem which simultaneously minimizes operation 

cost, emission and transmission losses, while satisfying constraints such as power balance, 

spinning reserve and power generation limits. Three MOEAs, NSGA-II, SPEA-2 and AMOSA, 

with additional steps necessary to guarantee feasibility, are investigated separately to get optimal 

solutions for each hourly time interval. A repair method is used in conjunction with the 

optimization algorithm to meet the constraint requirements of power generation limits for each 

unit as well as balancing the load demand. In the second phase, the minimum up/down time and 

ramp up/down rate constraints are considered, and three MOEAs are applied again to obtain a set 

of Pareto-optimal schedules from the hourly-optimal schedules obtained in the first phase, for the 

integral interval of time (24 hours). Detailed aspects of the proposed method are discussed 

below. 

5.2 First Phase (Hourly Schedules) 
The hourly-optimal dispatch problem is formulated as a nonlinear constrained 

multi-objective optimization problem which simultaneously minimizes operation cost, emission 

and transmission losses, subject to the usual constraints, i.e. power balance, spinning reserve and 

power generation limits. The approach proposed in this study incorporates a novel method to 

repair solutions that are infeasible, in order to render them feasible again, with minor 

modifications. 

5.2.1 Objective Functions and Constraints 

The hourly dispatch problem, which is addressed in the first phase, is formulated as 

follows: 

Minimize ܨ଴௧, ܧ௧, ௟ܲ௢௦௦,௧ 
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where, 

଴௧ܨ ൌ ∑ ሾܥܨ௜௧ ൅ேீ
௜ୀଵ ௜௧ܥܶܵ ൅  ௜௧ሿ                   (5.1)ܥܦܵ

௧ܧ ൌ ∑ ሼሾߙ௜ ൅ேீ
௜ୀଵ ௜ߚ ௜ܲ௧ ൅ ௜ߛ ௜ܲ௧

ଶ ൅ ߮௜ ሺ߬௜݊݅ݏ ௜ܲ௧ሻሿ ௜ܷ௧ሽ         (5.2) 

௟ܲ௢௦௦,௧ ൌ ∑ ∑ ௜ܲ௧ܤ௜௝ ௝ܲ௧
ேீ
௝ୀଵ

ேீ
௜ୀଵ ൅ ∑ ଴௜ܤ ௜ܲ௧

ேீ
௜ୀଵ ൅  ଴଴            (5.3)ܤ

Subject to power balance (4.11) or (4.12), spinning reserve (4.13) and power generation 

limits (4.14). 

5.2.2 Encoding Scheme 

In this phase, the MOEA is applied separately T times, once for each hourly time interval 

t=1, 2, …, T. Although earlier genetic algorithm based approaches for unit commitment have 

typically used binary coding schemes (to denote the OFF or ON state of each unit), our method 

explicitly determines the power output of each unit. Therefore we use real valued representation 

instead. Each solution in this phase is a row vector of length NG, whose ith entry corresponds to 

the output of unit i during the time interval t under consideration, as shown in figure 5.1. As 

there will be NP such solutions in the population at any given time, the population consisting of 

NP solutions, is a matrix of NP×NG, in which the NP solutions correspond to the rows of the 

matrix.  

 
Figure 5.1 Solution encoding for hourly dispatch schedule 

 

5.2.3 Initialization 

The output of each unit i is generated from randomly generated numbers following the 

uniform distribution from 0 to ௜ܲ
௠௔௫, which is not always feasible because of the generation 

limits and load balance constraints. However we have the following repair scheme so that the 

two constraints are always satisfied. 

5.2.4 Feasibility Restoration Scheme 

Not only do the initial randomly generated solutions, but also the solutions generated 

after crossover and mutation, sometimes violate the generation limits or make the system 
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unbalanced. The repair procedure has been devised to guarantee feasibility. The details of this 

scheme are explained below.  

Start

Generation limits repair

Load balance repair

All units are either within their 
limits or equal to zeros ?

End

N

Y

  
Figure 5.2 Feasibility restoration procedure 

 

As shown in figure 5.2, the feasibility restoration procedure includes two major schemes: 

generation limits repair scheme and load balance repair scheme. 

5.2.4.1 Generation Limits Repair Scheme 

In the generation limits repair scheme, three possible situations, where generation limits 

are violated, can occur. As shown in figure 5.3, these violations are repaired in the following 

manner. A unit with its power output beyond the maximum limit ௜ܲ
௠௔௫is kept at ௜ܲ

௠௔௫. A 

parameter ߠ on interval (0, 1) is used as the threshold to rectify the infeasible unit outputs 

which are below minimum limits. A unit whose power output exceeds a threshold, ߠ ௜ܲ
௠௜௡, is 

increased to the minimum allowable value, ௜ܲ
௠௜௡ (the constant ߠ in this paper is set to 0.5). On 

the other hand, if the solution allocates a power output below ߠ ௜ܲ
௠௜௡ to the unit, then this output 

is simply reset to zero. After this change, if each unit’s output is zero, i.e. every unit is shut off, 

the output of each unit i is reset to a random number, uniformly distributed within the range 

[ ௜ܲ
௠௜௡, ௜ܲ

௠௔௫]. 
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Figure 5.3 Generation limits repair scheme 

 

5.2.4.2 Load Balance Repair Scheme without Transmission Losses 

Figure 5.4 shows the load balance repair scheme when transmission losses are not under 

consideration. In this case, if the total generation of all units is greater than the load demand, the 

outputs of on-line units are decreased to keep load balance; On the other hand, if the total 

generation of all units is less than the load demand, two possible cases arise. When the total sum 

of the maximum output limits of all the on-line units is greater than the load demand, increase 

outputs of these on-line units to keep load balance. Even if all the on-line units reach their 

maximum output limits there are still an insufficiency of generation, some of those off-line units 

have to be turned on and their outputs will be increased in order to balance the load. 
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Figure 5.4 Load balance repair scheme without transmission losses 

 

5.2.4.3 Load Balance Repair Scheme with Transmission Losses 

The transmission losses can be rewritten as [KC93]: 

௟ܲ௢௦௦,௧ ൌ યᇱܤય ൅ યᇱܤ଴ ൅  ଴଴                   (5.4)ܤ
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where યᇱ is the transpose of vector ય, which is a column vector of all generators’ outputs at 

hour t. B is a NG×NG matrix, and ܤ଴ is a NG column vector. 

ય ൌ ൦
ଵܲ௧

ଶܲ௧
ڭ

ேܲீ௧

൪                               (5.5) 

ܤ ൌ ൥
ଵଵܤ ڮ ଵேீܤ

ڭ ڰ ڭ
ேீଵܤ ڮ ேீேீܤ

൩                    (5.6) 

଴ܤ ൌ ൦

଴ଵܤ
଴ଶܤ

ڭ
଴ேீܤ

൪                               (5.7) 

Rearrangement of equation (5.4) gives: 

௟ܲ௢௦௦,௧ ൌ ሾયࢇ
ᇱ| ௥ܲ௧ሿ ൤

௔௥ܤ|ࢇࢇ࡮

௥௥ܤ|௥௔ܤ
൨ ൤

યࢇ

௥ܲ௧
൨ ൅ ሾયࢇ

ᇱ| ௥ܲ௧ሿ ൤
଴௔ܤ

଴௥ܤ
൨ ൅  ଴଴         (5.8)ܤ

where યࢇ
ᇱ is the transpose of the vector યࢇ, which is a column vector of the (NG-1) generators’ 

outputs at hour t, except for the unit r. ௥ܲ௧ is a scalar value representing the generation output of 

unit r at hour t. ࢇࢇ࡮ is a (NG-1)×(NG-1) matrix. ܤ௔௥ and ܤ଴௔ are column vectors with size of 

(NG-1). ܤ௥௔ is a row vector with size of (NG-1). ܤ௥௥, ܤ଴௥ and ܤ଴଴ are scalars. 

Equation (5.8) can be expressed by a quadratic function in the form of equation (5.9): 

௟ܲ௢௦௦,௧ ൌ ݇ଶ ௥ܲ௧
ଶ ൅ ݇ଵ ௥ܲ௧ ൅ ݇଴                   (5.9) 

where 

݇ଶ ൌ  ௥௥                                (5.10)ܤ

݇ଵ ൌ ࢇ௥௔યܤ ൅ યࢇ
ᇱܤ଴௥ ൅  ௔௥                   (5.11)ܤ

݇଴ ൌ યࢇ
ᇱࢇࢇ࡮યࢇ ൅ યࢇ

ᇱܤ଴௔ ൅  ଴଴                   (5.12)ܤ

Moreover, we also know that 

௥ܲ௧ ൌ ௧ܦ െ ∑ ௜ܲ௧
ேீ
௜ୀଵ
௜ஷ௥

൅ ௟ܲ௢௦௦,௧                  (5.13) 

After all the generators’ outputs are determined by using load balance repair scheme 

without considering transmission losses as depicted in the previous section, an online generator r 

is randomly chosen from those online generators to pick up the transmission losses. From 

equation (5.9) and (5.13), the new output of generator r is calculated by solving the equation 

below: 
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݇ଶ ௥ܲ௧
ଶ ൅ ሺ݇ଵ െ 1ሻ ௥ܲ௧ ൅ ቆ݇଴ ൅ ௧ܦ െ ∑ ௜ܲ௧

ேீ
௜ୀଵ
௜ஷ௥

ቇ ൌ 0          (5.14) 

The above equation can also be written as 

ܽ ௥ܲ௧
ଶ ൅ ܾ ௥ܲ௧ ൅ ܿ ൌ 0                        (5.15) 

where  

ܽ ൌ ݇ଶ                                   (5.16) 

ܾ ൌ ݇ଵ െ 1                                (5.17) 

ܿ ൌ ݇଴ ൅ ௧ܦ െ ∑ ௜ܲ௧
ேீ
௜ୀଵ
௜ஷ௥

                       (5.18) 

The two roots of the equation are ௥ܲ௧,ଵ ൌ ି௕ା√௕మିସ௔௖
ଶ௔

 and ௥ܲ௧,ଶ ൌ ି௕ି√௕మିସ௔௖
ଶ௔

. If both 

roots are within generation limits, one of them is randomly chosen to be the new generation 

output. If only one is within the generation limits, then the feasible one is chosen. On the other 

hand, if neither is within the limit, the one having a smaller violation is selected. This violation is 

calculated as the absolute value of the difference between the root and its closest boundary limit. 

The load balance repair scheme considering transmission losses is shown in figure 5.5. In 

case the new generation output of generator r still exceeds its generation limits, the generation 

limit repair scheme will again take care of this situation. 
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Figure 5.5 Load balance repair scheme with transmission losses 
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5.2.5 Crossover and Mutation 

SBX [76] and polynomial mutation [90] are used in modified NSGA-II and SPEA-2. 

Polynomial mutation is also adopted in AMOSA. It should be noted that the lower bounds of the 

variables used for SBX and polynomial mutation are both set to 0 as negative values of generator 

outputs are clearly inadmissible. 

5.2.6 Modified NSGA-II in the First Phase 

The flowchart of modified NSGA-II in the first phase is provided in figure 5.6, illustrating 

how feasibility restoration is incorporated as a single stage within the overall scheme. 
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Figure 5.6 Flowchart of modified NSGA-II in the first phase 
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5.3 Second Phase (T-period Schedules) 
In the second phase, the overall optimal schedule consisting of T separate periods is 

obtained by assembling all the hourly-optimal solutions from the first phase. The mathematical 

formulation of the overall dispatch problem is given below. 

5.3.1 Objective Functions and Constraints 

Minimize operation cost (4.7), emission (4.8) and transmission losses (4.10) 

Subject to minimum up/down time (4.15), (4.16), ramp up/down rate (4.17), (4.18) and 

unit initial status constraints. 

It should be noted that λ=0 indicates that the emission allowance trading is not considered 

in this phase. 

5.3.2 Encoding Scheme 

The generation schedule for the entire period T is represented by a vector of size T. The 

hth element (1 ≤ h ≤ T) in this vector, lying between 1 and NP, is the index of a solution in the 

hth hourly Pareto front obtained from the first phase. For example, if the vector [12 31 … 77] 

were to represent the generation schedule for the entire T periods, it would include the 12th 

solution obtained during the first phase for the first hour, the 31th solution for the second hour, 

and the 77th solution for the last hour.  
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mutation, by replacing them with 1 and NP respectively. In this manner, each mutated element is 

now associated with another solution from the phase-1 Pareto front. Since best results were 

obtained when the level of mutation was higher during the initial stages of the algorithm, the 

standard deviation σ of the Gaussian mutation was set to σ = max(NP×r-g ,30), where r is a 

number slightly greater than 1. For our experiments, r was chosen to be 1.007. This way the 

extent of mutation reduces with increasing iterations, leading to a good convergence 

performance of the algorithm. 

In the following argument, those solutions in the Pareto front, which are minimum along 

any one objective are called as extreme solutions. For bi-objective optimization problem, the 

Pareto front contains only two extreme solutions (indexed as 1 and NP). As neither the minimum 

up/down times nor the ramp up/down rates are considered when obtaining the hourly solutions in 

the first phase, attempting to produce extreme solutions for the T=24 hour period by simply 

concatenating the extreme solutions for each hour might be invalid in terms of any of these 

constraints. Thus, the extreme solutions of the Pareto front in the second phase might include as 

indexes, non-extreme, first phase solutions.  

The second phase includes a separate scheme to increase the spread by making further 

improvements to the extreme solutions. The extreme solutions of the second phase are examined 

to see if they contain hourly solutions that are far away from their own hourly Pareto fronts. 

When the distance between any such hourly solution and the extreme of its own front exceeds a 

certain threshold, MOEAs of the first phase are re-invoked to generate a few additional solutions, 

while simultaneously imposing the minimum up/down time as well as the ramp up/down rate 

constraints. Simulation results reported in Chapter 6 shows that this improvement, although 

invoked rarely, helped in enhancing the spread of the resulting Pareto front. 
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CHAPTER 6 - Case Studies 

In order to investigate the performance of the proposed two-phase approach, NSGA-II, 

SPEA2 and AMOSA were implemented on 4 different test systems. The two-objective model, 

which optimizes operation cost and emission, is tested on a benchmark 10-unit system first. Then 

the IEEE 118-bus system which has 54 units, is used to test the approach’s applicability to large 

systems, while also taking into account emission trading. Thereafter, the three-objective model, 

which includes the operation cost, emission and transmission losses, is tested on a 15-unit system 

and a 60-unit system. 

6.1 Two-Objective System Models 
The two-objective model optimizes the operation cost (5.1) and emission (5.2) 

simultaneously, subject to the constraints of power balance (4.11), spinning reserve (4.13) and 

power generation limits (4.14). 

6.1.1 Strategy of Increasing the Diversity 

Any schedule of T periods that is obtained by optimizing each hourly schedule separately, 

is bound to violate either the minimum up/down time or the ramp up/down rate constraints. In 

other words, the best generation schedule consisting of T periods is not necessary optimal for 

each hour. Similarly, it is likely that extreme solutions for the entire T periods with the smallest 

and the largest values for one objective function consist of some ‘inferior’ hourly-solutions that 

are dominated by the hourly-optimal solutions on the Pareto fronts obtained from the first phase. 

In this case, to obtain the extreme solutions, determining the hourly-solutions on the boundary of 

the hourly-optimal fronts in each hour is required. Next, those hours in which the 

hourly-solutions on the boundary of the hourly-optimal fronts are not included in the boundary of 

T-period solutions of the second phase’s Pareto front is identified. Finally, for each of those 

hours, the minimum up/down time constraints based on the on/off duration information of the 

boundary hourly-solutions in the previous and subsequent periods in enforced, and the 

first-phase’ MOEAs are rerun to get another set of hourly-optimal solutions. These sets of 

hourly-solutions will be involved in the second phase’ MOEAs to get the solutions around the 

boundaries of the T-period Pareto fronts. For example, let’s consider a three-unit system for 24 
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hours, for which each unit has a minimum up/down time of 5 hours. If only the 7th and 8th hours’ 

hourly-optimal solutions with minimum operation costs on the boundary of hourly Pareto fronts 

are not included in the final 24-hour-optimal solution on the boundary of the 24-hour Pareto 

front, in which the 6th and 9th hours’ status are [1 0 0] and [1 1 0] respectively, then it is 

concluded that the status of the three units in the 7th and 8th hours both are [1 x 0], where x is 1 

or 0, depending on the second unit’s on/off status before the 6th hour and after the 9th hour. 

Hence it is reasonable to enforce the first unit to be on and the third unit to be off during the 7th 

and 8th hours to get two new sets of hourly-optimal solutions for each hour, in order to help get 

the boundary 24-hour-optimal solutions in the second phase. 

 
Figure 6.1 Hourly Pareto fronts obtained with/without the strategy to increase the diversity 

in hour 22 

 

Figure 6.1 shows two hourly Pareto fronts obtained with and without the strategy to 

increase the diversity in hour 22 in the first phase for the 10-unit system. The black dot 

represents the corresponding boundary hourly-solutions on the hourly-optimal fronts included in 

the extreme boundary 24-hour-optimal solution in the second phase with the minimum operation 
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cost, without the minimum on/off constraints of unit 1, 2, 6, 7, in the hours immediately before 

and after the current one. It is clear that the extreme solution of the second phase contains the 

hourly solution that is far away from the boundary of its own hourly Pareto front. When the 

distance between any such hourly solution and the extreme of its own front exceeds a certain 

threshold, MOEAs of the first phase are rerun while enforcing the minimum on time constraints 

of unit 1, 2, 6, 7. In this case, the threshold is set as the 5% of difference between the maximum 

and minimum objective values. It can be seen that the final boundary hourly solution represented 

by the black square is exactly on the boundary of the new Pareto front.  

6.1.2 The Improvement of AMOSA 

The original AMOSA was tested on a 10-unit system, and it was found not to be efficient 

in dealing with short-term thermal generation scheduling. Therefore, the AMOSA has been 

improved by adopting several strategies as follows. 

6.1.2.1 Improvement of Diversity Preservation 

During our experiments of the original AMOSA, it was found not to be robust. First, in 

its original perturbation, AMOSA uses the m as the number of total genes to be perturbed. 

During short-term generation scheduling, m is the total number of generators whose outputs 

should be changed during the annealing process. With the perturbation as the only method to get 

the new solution, the performance of the original AMOSA is highly affected by the total amount 

of load demand. This is because when the load is low, there are several combinations of 

generators that can be online, making a large value of m necessary. For instance, if the maximum 

capacity in a 7-unit system of each unit is 100 MW, when the load demand is low, say 150 MW, 

only two or three units are adequate to match the load, requiring the value of m to be large, i.e. 4, 

to ensure that the perturbation results in different units to be on or off, using the generation limits 

repair and load balance repair strategies. On the other hand, when the load is high, at say 500 

MW, the value of m should be small enough, i.e. 1 or 2, to ensure that only a few units are shut 

down, as several units are needed to satisfy the load. Figure 6.2 and 6.3 show the Pareto fronts 

obtained for the 10-unit system by using different values for m in the original AMOSA, under 

different load conditions. From figure 6.2, it is seen that when the load is low, the Pareto-front 

obtained with m=5 is better than that with m=1, in terms of the diversity as well as convergence. 
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Conversely, under high load conditions, the Pareto-front obtained with m=5 was worse than the 

one with m=1, which is shown in figure 6.3. 

 
Figure 6.2 Hourly Pareto front obtained by original AMOSA with different m in hour 1 

(load=700MW) 
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Figure 6.3 Hourly Pareto front obtained by original AMOSA with different m in hour 12 

(load=1500MW) 

 

6.1.2.2 Improvement of Perturbation to Produce New Solutions 

To circumvent the lack of robustness of the original AMOSA, the crossover and mutation 

operators are incorporated to produce new solutions from current ones in the archive. This is 

illustrated in figure 6.4.  

In the original AMOSA, a solution xcur is randomly selected from the archive that 

undergoes perturbation to obtain a new solution xnew. To determine the probability of acceptance 

of xnew, the domination status of the latter is checked with xcur and the other archived solutions, 

Here, instead of randomly selecting a solution from the archive for perturbation, n (n≤HL) 

solutions are randomly selected from the archive, and then the one with the worst diversity is 

picked as xcur, to explore the possibility of obtaining xnew within the neighborhood of xcur to fill 

out the gap around xcur, and therefore to improve the diversity of the Pareto-front. In addition, a 

solution xtmp is randomly selected from the archive. Then crossover and mutation operators are 
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performed on the two parent xcur and xtmp, to produce two children xc1 and xc2, which could 

violate the generation limits and load balance constraints. Therefore the feasibility restoration 

procedure is applied to render such solutions feasible. Subsequently, the domination relationship 

between xc1 and xc2 is checked. There are two different cases that may arise. If one dominates the 

other, then the former one is chosen as xnew. If the two do not dominate each other, then the one 

that is dominated by less number of solutions in the archive is chosen as xnew. It can be seen from 

figure 6.4 that the new perturbation method has dramatically improved the performance of the 

algorithm, resulting in the Pareto front with better diversity and convergence. Figure 6.5 shows 

the detailed procedure of improved perturbation method. 

 
Figure 6.4 Hourly Pareto fronts obtained by AMOSA with the improved perturbation 

method and the old perturbation method for the 10-unit system in hour 1 
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Figure 6.5 Improvement of the procedure to generate new solutions 

 



 69

AMOSA applies a clustering method to the non-dominated solutions in the archive in 

order to enhance the diversity of solutions. There are two parameters related to the size of the 

archive, HL, which is the maximum size of the archive on termination, and SL, the maximum 

size to which the archive can be filled before clustering is invoked to reduce the size to HL. The 

original AMOSA uses the single linkage algorithm [91] as the clustering method, where the 

distance between two clusters is calculated as the shortest distance between a pair of elements, 

one from each cluster. However experiments show that due to the lack of normalization of 

objective values and the strategy of always keeping boundary solutions, original AMOSA does 

not perform as well as using the crowded distance estimation procedure, with respect to diversity 

preservation. Figure 6.6 shows that the Pareto fronts obtained by using these two methods with 

SL=200 and HL=100 for the 10-unit system in hour 1. 

 
Figure 6.6 Hourly Pareto fronts obtained by AMOSA with different diversity preservation 

methods 
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6.1.3 10-Unit System 

In order to investigate the performance of the proposed method, without considering 

transmission losses and the emission allowance trading (λ=0), the 10-unit system is studied. The 

system data are based on [92]. For comparison, the spinning reserve at each hour was kept at 10% 

of the load demand and the shutdown cost for each unit was neglected as in [92]. A total of 20 

independent runs were carried out to compare the performance of the proposed method using 

NSGA-II, SPEA-2 and AMOSA. 

During the first phase, the population size (NP) was kept at 200. NSGA-II was executed 

for a total of 200 iterations. The percentage of solutions in the population that were subject to 

crossover was 90%. The probability of mutation of each entry of the solution vectors was 10%. 

The distribution indexes for crossover and mutation were 10 and 20 (see [76], [90] for details). 

In SPEA-2 the number of iterations and the population and archive sizes were kept at 

the same values as NSGA-II. Additionally, the crossover and mutation operators were identical 

to the latter. Due to the poor performance of the original AMOSA, the improved version of 

AMOSA is used which incorporates the crossover, polynomial mutation, crowded distance 

ranking, and the new method to produce new solutions. The lower bound on the archive size was 

equal to NSGA-II’s population size, while the upper bound, adjusted for best performance, was 

350. It was run for an equal number of function evaluations as NSGA-II. 

Theoretically there are (210-1)24 ≈ 1.7259×1072 solutions (including infeasible ones) to 

be explored, and employing a genetic algorithm helps curtail this search by a substantial amount. 

Due to the stochastic nature of the proposed approach, a total of 20 independent runs, comprising 

of both phases, were carried out. Figure 6.7 shows 24 hourly non-dominated fronts obtained by 

the three algorithms in the first phase, based on the results from one sample run. It is obvious that 

the non-dominated front more closely resemble a convex front with increase in load from hour 1 

to hour 12. The reason is that increasing load needs more units to be on to meet the load balance, 

resulting in more plausible combinations of these units, which produces a more even distribution 

of solutions on the front. 
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Figure 6.7 Hourly Pareto fronts for the 10-unit system obtained by NSGA-II (left), SPEA-2 

(middle) and AMOSA (right) from hour 1(top) to hour 24 (bottom) in the first phase. 

 

The population size in the second phase was kept at 300 and 500 iterations of both 

NSGA-II and SPEA-2 were allowed. In AMOSA, the lower bound on the archive size was equal 

to NSGA-II’s population size, while the upper bound, adjusted for best performance, was 450. It 

was run for an equal number of function evaluations as NSGA-II. The mutation rate was lowered 

slightly to 5%, while the crossover rate was kept at 80%. 

A sample Pareto front containing 300 solutions associated with 24-hour generation 

scheduling, which were obtained from the second phase of a sample run, is shown in figure 6.8. 

It can be seen that for NSGA-II, the total operation cost of 24 hours has a range from $563,943 

to $660,813, corresponding to the emission’s range from 48.61 to 22.19 ton; for SPEA-2, the 

total operation cost of 24 hours has a range from $565,278 to $648,779, corresponding to the 

emission’s range from 46.45 to 26.16 ton; for AMOSA, the total operation cost of 24 hours has a 

range from $572,285 to $639,471, corresponding to the emission’s range from 39.93 to 23.74 

ton. 

These wide spread solutions give the plant operator more operating feasibility according 

to the realistic system conditions. It is clear that the NSGA-II performs better than both SPEA-2 

and AMOSA. While, AMOSA gives more spread non-dominated solutions close to the 

Pareto-front than SPEA-2, but SPEA-2 finds the better operation cost than the one by AMOSA. 

The best boundary solution obtained by the proposed two-phase multi-objective 

evolutionary approach using NSGA-II in the second phase with minimum operation cost of 

$563,943 from this front is shown in table 6.1. The average emission rate is 1.7936 kg/MWh 

based on this solution, which is a litter higher than the national NOx average emission rate of 

1.66 kg/MWh in USA and lower than 1.83 kg/MWh in Mexico in 2002 [88]. By comparison, the 

rate decreases to 0.8188 kg/MWh according to the other boundary solution with maximum 

operation cost of $660,813.  
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Table 6.1 Boundary solution with minimum operation cost on the 24-hour Pareto front for 

the 10-unit system obtained by NSGA-II in the second phase 

Fuel Startup Emission Emission
Hour Cost Cost (ton) Rate Generation Schedule (MW) 

($) ($) (kg/MWh)
1 13683 0 1.3481 1.9258 455 245 0 0 0 0 0 0 0 0
2 14554 0 1.4694 1.9592 455 295 0 0 0 0 0 0 0 0
3 16809 900 1.738 2.0447 455 370 0 0 25 0 0 0 0 0
4 18598 0 2.0792 2.1886 455 455 0 0 40 0 0 0 0 0
5 20020 560 1.8772 1.8772 455 390 0 130 25 0 0 0 0 0
6 22387 1100 1.8246 1.6587 455 360 130 130 25 0 0 0 0 0
7 23262 0 2.0121 1.7497 455 410 130 130 25 0 0 0 0 0
8 24154 0 2.1961 1.83 455 453.56 129.99 130 31.451 0 0 0 0 0
9 27253 860 2.2898 1.7614 455 454.5 130 130 85.409 20.088 25 0 0 0
10 30058 60 2.3659 1.6899 455 455 130 130 162 33 25 10 0 0
11 31916 60 2.4138 1.6647 455 455 130 130 161.99 73.014 25 10 10 0
12 33890 60 2.4511 1.6341 455 455 130 130 162 80 25 43.001 10 10
13 30058 0 2.3659 1.6899 455 455 130 130 162 33 25 10 0 0
14 27251 0 2.2919 1.763 455 455 130 130 85 20 25 0 0 0
15 24150 0 2.2029 1.8357 455 455 130 130 30 0 0 0 0 0
16 21514 0 1.6658 1.5865 455 310 130 130 25 0 0 0 0 0
17 20642 0 1.5361 1.5361 455 260 130 130 25 0 0 0 0 0
18 22387 0 1.8246 1.6587 455 360 130 130 25 0 0 0 0 0
19 24150 0 2.2029 1.8357 455 455 130 130 30 0 0 0 0 0
20 30058 490 2.3659 1.6899 455 455 130 130 162 33.002 25 10 0 0
21 27251 0 2.2915 1.7627 455 454.91 130 130 85.095 20.001 25.005 0 0 0
22 22736 0 2.2028 2.0026 455 455 0 0 145 20 25 0 0 0
23 17645 0 1.9714 2.1905 455 425 0 0 0 20 0 0 0 0
24 15427 0 1.6193 2.0241 455 345 0 0 0 0 0 0 0 0

Total/ 559853+4090 
48.6061 1.7936         Average =563943 
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Table 6.2 Minimum operation cost comparison of different techniques for the 10-unit 

system 

Technique 
SPL EP EPL PLEA PSO IPSO HPSO LRGA ELR GA LR ICGA 

[93] [20] [94] [95] [96] [96] [97] [98] [99] [92] [92] [100] 

Operation 
Cost ($) 564950 565352 563977 563977 564212 563954 563942 564800 563977 565825 565825 566404 

Technique 
UCCGA ACSA DP DPLR TS-RP TS-IRP MA MRCGA SF Our approach Our approach Our approach

[101] [102] [92] [99] [103] [103] [104] [105] [106] (NSGA-II) (SPEA-2) (AMOSA) 

Operation 
Cost ($) 563977 564049 565825 564049 564551 563937 565827 564244 563977 563943 565278 572285 

 

Table 6.3 Performance of the proposed approach for the 10-unit system (20 run average) 

Two-phase Multi-objective 
Evolutionary Approach 

Operation Cost ($) Emission (ton) 

Min Median Max Min Median Max

NSGA-II 
Best Operation Cost 563943 563949 563952 48.59 48.6 48.61

Best Emission 658374 659345 660813 22.19 22.28 22.32

SPEA-2 
Best Operation Cost 565278 565363 565507 46.24 46.30 46.45

Best Emission 645692 645737 648778 26.16 26.30 26.32

AMOSA 
Best Operation Cost 572285 572536 572810 39.63 39.89 39.93

Best Emission 638026 639050 639471 23.74 23.95 23.96
 

In table 6.2, the boundary solutions with the minimum operation cost achieved by the 

proposed two-phase multi-objective evolutionary approach are compared with other solutions by 

different unit commitment solving techniques that have appeared in recent literature. It is clear 

that our approach with NSGA-II produces almost the best one with the cost of $563,943, which 

is only $1 more than the best outcome of $563,942 [97]. It should be noted that in [106], the best 

operation cost calculated by the unit output power provided in the paper is $563,977 instead of 

$563,865 as reported by the author. Table 6.3 shows the minimum, maximum and the median 

values of each objective that were found by merging the Pareto-optimal solutions of all 20 runs, 

based on the experiment results by the proposed two-phase multi-objective evolutionary 

approach. The small variation between the values of the best and worst boundary solutions 

proves the robustness of the proposed approach. 
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Figure 6.8 24-hour Pareto fronts for the 10-unit system obtained in the second phase 

6.1.4 IEEE 118-Bus System 

To study the effect of the emission allowance trading, standard IEEE 118-bus 54-unit 

system is tested in this case. The system data are provided in [106]. 

Parameters of the two-phase approach with NSGA-II, SPEA-2 used here are the same as 

in the case of 10-unit system, except for the population size of 500 and iterations of 600 in the 

first phase, and 800 and 1500 in the second phase. In the improved AMOSA, both crossover and 

mutation operators were used. The lower bound on the archive size was equal to the population 

size of NSGA-II in both phases, while the upper bound, adjusted for best performance, was 750 

in the first phase and 1100 in the second phase. It was run for an equal number of function 

evaluations as NSGA-II.  

Figure 6.9 shows 24 hourly non-dominated fronts obtained by the three algorithms, 

based on the results from one sample run. From the figure, NSGA-II outperform both and 

SPEA-2 and AMOSA for most hours in the first phase. Additionally, from visual inspection, 
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NSGA-II’s solutions were more uniformly distributed over the front in all cases than those of 

SPEA-2 and AMOSA. A comparison between the performances of these three algorithms in the 

second phase is provided as follows. 
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Figure 6.9 Hourly Pareto fronts for the IEEE 118-bus system obtained by NSGA-II (left), 

SPEA-2 (middle) and AMOSA (right) from hour 1(top) to hour 24 (bottom) in the first 

phase 

 

In the second phase, the base study without considering the allowance trading by using 

NSGA-II shows the boundary solutions with maximum emission Emax of 205.8 tons 

(corresponding to the minimum cost of $1,645,374) and minimum emission Emin of 147.93 tons 

(corresponding to the maximum cost of $1,701,868), as shown in figure 6.10. While SPEA-2 



 84

achieves Emax of 174.34 tons (corresponding to the minimum cost of $1,658,071) and Emin of 

146.59 tons (corresponding to the maximum cost of $1,700,249), and AMOSA achieves Emax of 

178.97 tons (corresponding to the minimum cost of $1,654,853) and Emin of 144.03 tons 

(corresponding to the maximum cost of $1,712,598). It can be seen that although the best 

operation cost was achieved by NSGA-II, the least emission was obtained by AMOSA. In 

addition, the Pareto front obtained by NSGA-II has a better diversity than SPEA-2. NSGA-II and 

AMOSA both have better convergence compared with SPEA-2. Next the allowance trading is 

considered. The emission cap is set as Emin+ρ(Emax-Emin), where ρ is equal to 0.5.  

 

 
Figure 6.10 24-hour Pareto fronts for the IEEE 118-bus system obtained in the second 

phase 

 

In 2007, NOx allowance market spot price began the year around $900/ton, fluctuating 

between $500/ton and $1000/ton throughout the year, ended up to a year-end closing price of 

$825/ton [107], [108]. So in our simulation, the market price for emission allowance is set to 

λ=500, 600, 700, 800, 900 and 1000 $/ton respectively. Then for each λ, each of the three 

MOEAs are run in the second phase to get the Pareto-optimal solutions, which are shown in 
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figures 6.11, 6.13, and 6.15. It is apparent that with the increasing of λ, the Pareto front 

converges to a narrower range of closely spaced solution set. 

Figures 6.12, 6.14, and 6.16 show obtained Pareto fronts by each MOEA for different 

emission caps with ρ=0.1, 0.3, 0.5, 0.7, 0.9 when the allowance price is equal to 800 $/ton. It is 

found that although the emission caps are different, the obtained optimal emissions 

corresponding to the minimum operation costs are almost all around 170 ton. Meanwhile, the 

minimum emissions for each case of emission caps are also around Emin for each MOEA. 

 

 
Figure 6.11 24-hour Pareto fronts for the IEEE 118-bus system for different emission 

allowance prices with ρ=0.5 obtained by NSGA-II in the second phase 
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Figure 6.12 24-hour Pareto fronts for the IEEE 118-bus system for different emission caps 

with λ=800 obtained by NSGA-II in the second phase 

 

 
Figure 6.13 24-hour Pareto fronts for the IEEE 118-bus system for different emission 

allowance prices with ρ=0.5 obtained by SPEA-2 in the second phase 
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Figure 6.14 24-hour Pareto fronts for the IEEE 118-bus system for different emission caps 

with λ=800 obtained by SPEA-2 in the second phase 

 
Figure 6.15 24-hour Pareto fronts for the IEEE 118-bus system for different emission 

allowance prices with ρ=0.5 obtained by AMOSA in the second phase 
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Figure 6.16 24-hour Pareto fronts for the IEEE 118-bus system for different emission caps 

with λ=800 obtained by AMOSA in the second phase 

 

6.2 Three-Objective System Models 
In order to investigate the performance of the proposed two-phase evolutionary approach 

while taking into account transmission losses, the three-objective model was studied on a 15-unit 

system and a 60-unit system. The third objective in formulation was the transmission losses. 

6.2.1 15-Unit System 

The system data is provided in [109]. The shutdown cost for each unit was neglected, and 

the emission allowance trading was not considered (λ=0). A total of 20 independent runs were 

carried out to compare the performance of the proposed method by using NSGA-II, SPEA-2 and 

AMOSA. 

During the first phase, the population size was kept at 300. NSGA-II was executed for a 

total of 300 iterations. The percentage of solutions in the population that were subject to 

crossover was 90%. The probability of mutation of each entry of the solution vectors was 10%. 

The distribution indexes for crossover and mutation were 10 and 20. 
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In SPEA-2 the number of iterations and the population and archive sizes were kept at 

the same values as NSGA-II. Additionally, the crossover and mutation operators were identical 

to the latter. The improved version of AMOSA is used which incorporates the crossover, 

polynomial mutation, crowded distance ranking, and the new method to produce the new 

solutions. The lower bound on the archive size was equal to NSGA-II’s population size, while 

the upper bound, adjusted for best performance, was 450. It was run for an equal number of 

function evaluations as NSGA-II. 

Figure 6.17 shows 24 hourly non-dominated fronts obtained by the three algorithms, 

based on the results from one sample run. 
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Figure 6.17 Hourly Pareto fronts for the 15-unit system obtained by NSGA-II (left), 

SPEA-2 (middle) and AMOSA (right) from hour 1(top) to hour 24 (bottom) in the first 

phase 
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The population size in the second phase was kept at 300 and 500 iterations of both 

NSGA-II and SPEA-2 were allowed. In AMOSA, the lower bound on the archive size was equal 

to NSGA-II’s population size, while the upper bound, adjusted for best performance, was 450. It 

was run for an equal number of function evaluations as NSGA-II. The mutation rate was lowered 

slightly to 5%, while the crossover rate was kept at 80%. 

Three sample 3-dimensional Pareto fronts associated with 24-hour generation 

scheduling, which are obtained from the second phase of a sample run by NSGA-II, SPEA-2 and 

AMOSA respectively, are shown in figure 6.18, 6.22 and 6.26 respectively. The scatter 

2-dimensional plots of corresponding operation cost, emission and transmission losses are shown 

in figures 6.19, 6.20 and 6.21 for NSGA-II,  figures 6.23, 6.24 and 6.25 for SPEA-2, and 

figures 6.27, 6.28 and 6.29 for AMOSA respectively. Tables 6.4, 6.5 and 6.6 show the minimum, 

maximum and the median values of each objective that were found by merging the 

Pareto-optimal solutions of all 20 runs, for NSGA-II, SPEA-2 and AMOSA respectively. The 

small variation between the values of the best and worst boundary solutions proves the 

robustness of the proposed approach.  

 

 
Figure 6.18 24-hour Pareto front for the 15-unit system obtained by NSGA-II in the second 

phase 
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Figure 6.19 Operation cost vs. emission (based on the 24-hour Pareto front for the 15-unit 

system obtained by NSGA-II in the second phase) 

 
Figure 6.20 Operation cost vs. transmission losses (based on the 24-hour Pareto front for 

the 15-unit system obtained by NSGA-II in the second phase) 
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Figure 6.21 Emission vs. transmission losses (based on the 24-hour Pareto front for the 

15-unit system obtained by NSGA-II in the second phase) 

 

Table 6.4 Performance of the proposed approach with NSGA-II for the 15-unit System (20 

run average) 

 
Operation Cost ($) Emission (ton) Transmission Losses (MW)

Min Median Max Min Median Max Min Median Max 

Best Operation Cost 603844 603875 604133 50.98 52.00 52.49 503.92 507.15 510.22
Best Emission 624867 625477 625586 36.92 36.94 36.96 733.80 739.35 751.98
Best Transmission Losses 608143 609523 609956 50.98 51.20 51.48 467.00 467.91 471.43
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Figure 6.22 24-hour Pareto front for the 15-unit system obtained by SPEA-2 in the second 

phase 

 

 
Figure 6.23 Operation cost vs. emission (based on the 24-hour Pareto front for the 15-unit 

system obtained by SPEA-2 in the second phase) 
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Figure 6.24 Operation cost vs. transmission losses (based on the 24-hour Pareto front for 

the 15-unit system obtained by SPEA-2 in the second phase) 

 
Figure 6.25 Emission vs. transmission losses (based on the 24-hour Pareto front for the 

15-unit system obtained by SPEA-2 in the second phase) 
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Table 6.5 Performance of the proposed approach with SPEA-2 for the 15-unit System (20 

run average) 

 
Operation Cost ($) Emission (ton) Transmission Losses (MW)

Min Median Max Min Median Max Min Median Max 

Best Operation Cost 612628 612714 612749 45.93 45.95 46.16 614.76 625.03 627.63
Best Emission 627554 628217 628502 34.37 34.43 34.45 645.68 652.58 668.42
Best Transmission Losses 623772 624769 624835 44.13 44.48 44.50 528.25 528.63 531.12

 

 
Figure 6.26 24-hour Pareto front for the 15-unit system obtained by AMOSA in the second 

phase 
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Figure 6.27 Operation cost vs. emission (based on the 24-hour Pareto front for the 15-unit 

system obtained by AMOSA in the second phase) 

 

 
Figure 6.28 Operation cost vs. transmission losses (based on the 24-hour Pareto front for 

the 15-unit system obtained by AMOSA in the second phase) 
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Figure 6.29 Emission vs. transmission losses (based on the 24-hour Pareto front for the 

15-unit system obtained by AMOSA in the second phase) 

 

Table 6.6 Performance of the proposed approach with AMOSA for the 15-unit System (20 

run average) 

 
Operation Cost ($) Emission (ton) Transmission Losses (MW)

Min Median Max Min Median Max Min Median Max 

Best Operation Cost 612791 614011 614108 42.06 43.86 45.03 419.37 438.5 470.71
Best Emission 629881 632704 633521 34.11 34.13 34.22 530.46 559.87 566.57
Best Transmission Losses 627426 628567 629806 40.48 42.92 45.25 391.82 392.08 400.11

 

From all runs, SPEA-2’s solutions were dominated by 38.67% of those of NSGA-II, 

whereas NSGA-II’s solutions were only dominated by 34.67% of those of SPEA-2 in the front. 

Solutions of NSGA-II and SPEA-2 were dominated by 44.33% and 70% of those of AMOSA 

respectively, while no solutions of AMOSA were dominated by either NSGA-II or SPEA-2. 

From table 6.4, 6.5 and 6.6, among the three algorithms, it is also shown that the best operation 

cost was $603844, which was obtained by NSGA-II, while the least emission (34.11 ton) and 
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transmission losses (391.82 MW) were both obtained by AMOSA. This demonstrates that the 

improved AMOSA outperformed both NSGA-II and SPEA-2. 

6.2.2 60-Unit System 

A 60-unit system was used to further investigate the performance of the proposed 

approach. The system data is based on the reference [14] with some modifications. Parameters of 

the two-phase approach with NSGA-II, SPEA-2 used here are the same as in the case of 15-unit 

system, except for the population size of 500 and iterations of 600 in the first phase, and 800 and 

1500 in the second phase. In the improved AMOSA, both crossover and mutation operators were 

used. The lower bound on the archive size was equal to the population size of NSGA-II in both 

phases, while the upper bound, adjusted for best performance, was 750 in the first phase and 

1100 in the second phase. It was run for an equal number of function evaluations as NSGA-II. 
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Figure 6.30 Hourly Pareto fronts for the 60-unit system obtained by NSGA-II (left), 

SPEA-2 (middle) and AMOSA (right) from hour 1(top) to hour 24 (bottom) in the first 

phase 

 

Three sample 3-dimensional Pareto fronts associated with 24-hour generation 

scheduling, which are obtained from the second phase of a sample run by NSGA-II, SPEA-2 and 

AMOSA respectively, are shown in figure 6.31, 6.35 and 6.39 respectively. The scatter 

2-dimensional plots of corresponding operation cost, emission and transmission losses are shown 

in figures 6.32, 6.33 and 6.34 for NSGA-II,  figures 6.36, 6.37 and 6.38 for SPEA-2, and 

figures 6.40, 6.41 and 6.42 for AMOSA respectively. Tables 6.7, 6.8 and 6.9 show the minimum, 

maximum and the median values of each objective that were found by merging the 

Pareto-optimal solutions of all 20 runs, for NSGA-II, SPEA-2 and AMOSA respectively. The 

small variation between the values of the best and worst boundary solutions proves the 

robustness of the proposed approach.  
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Figure 6.31 24-hour Pareto front for the 60-unit system obtained by NSGA-II in the second 

phase 

 
Figure 6.32 Operation cost vs. emission (based on the 24-hour Pareto front for the 60-unit 

system obtained by NSGA-II in the second phase) 
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Figure 6.33 Operation cost vs. transmission losses (based on the 24-hour Pareto front for 

the 60-unit system obtained by NSGA-II in the second phase) 

 

 
Figure 6.34 Emission vs. transmission losses (based on the 24-hour Pareto front for the 

60-unit system obtained by NSGA-II in the second phase) 
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Table 6.7 Performance of the proposed approach with NSGA-II for the 60-unit System (20 

run average) 

 
Operation Cost ($) Emission (ton) Transmission Losses (MW)

Min Median Max Min Median Max Min Median Max 

Best Operation Cost 10677540 10677630 10678680 173.81 173.88 174.08 6367.67 6375.85 6376.92
Best Emission 11087980 11090640 11093900 159.23 159.28 159.43 5912.06 5914.21 5916.01
Best Transmission Losses 11394740 11395610 11398000 173.71 173.75 173.81 5570.11 5571.24 5571.91

    

     

 
Figure 6.35 24-hour Pareto front for the 60-unit system obtained by SPEA-2 in the second 

phase 
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Figure 6.36 Operation cost vs. emission (based on the 24-hour Pareto front for the 6-unit 

system obtained by SPEA-2 in the second phase) 

 

 
Figure 6.37 Operation cost vs. transmission losses (based on the 24-hour Pareto front for 

the 60-unit system obtained by SPEA-2 in the second phase) 
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Figure 6.38 Emission vs. transmission losses (based on the 24-hour Pareto front for the 

60-unit system obtained by SPEA-2 in the second phase) 

 

Table 6.8 Performance of the proposed approach with SPEA-2 for the 60-unit System (20 

run average) 

 
Operation Cost ($) Emission (ton) Transmission Losses (MW)

Min Median Max Min Median Max Min Median Max 

Best Operation Cost 10710390 10721530 10722440 168.59 168.97 170.19 6315.28 6367.15 6400.34
Best Emission 10890880 10937040 10945660 158.71 158.81 159.03 5975.88 5988.72 6035.54
Best Transmission Losses 11292920 11352730 11401190 170.88 172.63 174.96 5741.92 5761.78 5781.93
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Figure 6.39 24-hour Pareto front for the 60-unit system obtained by AMOSA in the second 

phase 

 

 
Figure 6.40 Operation cost vs. emission (based on the 24-hour Pareto front for the 60-unit 

system obtained by AMOSA in the second phase) 
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Figure 6.41 Operation cost vs. transmission losses (based on the 24-hour Pareto front for 

the 60-unit system obtained by AMOSA in the second phase) 

 

 
Figure 6.42 Emission vs. transmission losses (based on the 24-hour Pareto front for the 

60-unit system obtained by AMOSA in the second phase) 
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Table 6.9 Performance of the proposed approach with AMOSA for the 60-unit System (20 

run average) 

 
Operation Cost ($) Emission (ton) Transmission Losses (MW)

Min Median Max Min Median Max Min Median Max 

Best Operation Cost 10581940 10582250 10582340 175.54 175.99 175.81 6493.68 6497.86 650.12
Best Emission 10965110 10973110 10973110 158.09 158.27 158.33 5916.23 5917.31 5928.00
Best Transmission Losses 11356160 11364140 11364450 174.01 174.14 174.45 5571.61 5574.42 5575.01

   

From all runs, SPEA-2’s solutions were dominated by 74.33% of those of NSGA-II, 

whereas NSGA-II’s solutions were dominated by 70.66% of those of SPEA-2 in the front. 

Solutions of NSGA-II and SPEA-2 were dominated by 79% and 89% of those of improved 

AMOSA respectively, while only 4% of solutions of AMOSA were dominated by NSGA-II, and 

no solutions of improved AMOSA were dominated by SPEA-2. Moreover, from table 6.7, 6.8 

and 6.9, among the three algorithms, it is shown that the best operation cost ($10581940) and the 

least emission (158.09 ton) were both obtained by improved AMOSA, while the least 

transmission losses (5570.11 MW) was obtained by NSGA-II. It can be concluded that the 

improved AMOSA outperformed both NSGA-II and SPEA-2. 
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CHAPTER 7 - Conclusions and Future Work 

This dissertation presents a novel, two-phase multi-objective evolutionary approach to 

address the optimal thermal generation scheduling problem, while considering the environmental 

issue of emission as well as transmission losses, in addition to the economic issue of operation 

cost. A number of new techniques have been proposed during the research work of development 

of this two-phase approach, which are outlined below: 

 In the first phase, this approach formulates the hourly-optimal scheduling problem as 

a three-objective optimization problem, which simultaneously minimizes operation 

cost, emission and transmission losses, while satisfying constraints such as power 

balance, spinning reserve and power generation limits.  

 Improved versions of three well known MOEAs- NSGA-II, SPEA-2 and AMOSA 

are proposed. These new algorithms incorporate several additional features for faster 

convergence and to guarantee feasibility.  

 Real-coded chromosome is used to represent the power output, also to indicate the 

on/off status. 

 The first phase also includes a repair method that is used to meet the constraint 

requirements of power generation limits for each unit as well as balancing load with 

generation. 

 A new scheme to keep load balance with consideration of transmission losses is 

proposed. 

 The three MOEAs are applied to get the optimal solutions for each hourly time 

interval. 

 In the second phase, the chromosome is encoded as the indexes of the solutions on 

the Pareto front obtained in the first phase. 

 With the minimum up/down time and ramp up/down rate enforced, using the three 

modified MOEAs with or without considering emission allowance trading, the 

24-hour dispatch schedules are acquired by picking out all the hourly solutions for 

each hour achieved from the first phase. 
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 A special scheme is proposed to increase the diversity of Pareto front in the second 

phase, in which the hourly-optimal solution on the boundary of Pareto front in the 

first phase is checked with the obtained best solutions obtained in the second phase. 

 Several new features are included to improve the original AMOSA, including the 

new diversity preservation method and the new perturbation method to produce new 

solutions, which has improved the performance of AMOSA significantly. 

 The proposed two-phase approach is tested on four systems. The two-objective 

model, which optimizes the operation cost and emission simultaneously, is tested on 

the 10-unit system and the IEEE 118-bus system. Simulation results demonstrate that 

NSGA-II outperforms SPEA-2 and is comparable to the improved AMOSA. The 

three-objective model, which optimizes the operation cost, emission and transmission 

losses simultaneously, is tested on the 15-unit system and 60-unit system. It is shown 

that the improved AMOSA, with new features of crossover, mutation and diversity 

preservation, outperforms NSGA-II and SPEA-2.  

 Numerical results demonstrate that the proposed approach is effective in addressing 

the multi-objective generation scheduling problem, obtaining a set of optimal 

solutions that account for trade-offs between multiple objectives. This feature allows 

much greater flexibility in decision-making. Since all the solutions are 

non-dominated, the choice of a final 24-hour schedule depends on the plant 

operator’s preference and practical operating conditions. 

 The proposed two-phase multi-objective evolutionary approach gives a general frame 

work of solving optimal thermal generation scheduling problem.  

 This work can also be extended to include additional objectives as well as constraints 

for analyzing different operational scenarios.  

 Moreover, since only three major MOEAs are studied in the two-phase 

multi-objective approach in this dissertation, future work may focus on employing 

some other latest MOEAs in the two-phase approach to solve the multi-objective 

generation scheduling problem.  

 In addition, this two-phase approach has a good perspective on other mixed-integer 

programming problem as long as the model can be fitted into this general framework. 
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