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Abstract

The generalized epidemic modeling framework simulator (GEMFsim) is a tool designed

by Dr. Faryad Sahneh, former PhD student in the NetSE group. GEMFsim simulates

stochastic spreading process over complex networks. It was first introduced in Dr. Sahneh’s

doctoral dissertation ”Spreading processes over multilayer and interconnected networks” 1

and implemented in Matlab. As limited by Matlab language, this implementation typically

solves only small networks; the slow simulation speed is unable to generate enough results in

reasonable time for large networks. As a generalized tool, this framework must be equipped

to handle large networks and contain sufficient support to provide adequate performance.

The C language, a low-level language that effectively maps a program to machine in-

structions with efficient execution, was selected for this study. Following implementation of

GEMFsim in C, I packed it into Python and R libraries, allowing users to enjoy the flexibility

of these interpreted languages without sacrificing performance.

GEMFsim limitations are not limited to language, however. In the original algorithm

(Gillespie’s Direct Method2 3), the performance (simulation speed) is inversely proportional

to network size, resulting in unacceptable speed for very large networks. Therefore, this

study applied the Next Reaction Method4, making the performance irrelevant of network

size. As long as the network fits into memory, the speed is proportional to the average node

degree of the network, which is not very large for most real-world networks.

This study also applied parallel computing in order to advantageously utilize multiple

cores for repeated simulations. Although single simulation can not be paralleled as a Markov

process, multiple simulations with identical network structures were run simultaneously,

sharing one network description in memory.
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Chapter 1

Introduction

In this section I give a brief introduction to the background of my work as well as some

essential concepts in epidemic modeling.

1.1 Background

Epidemic spreading occurs in both natural and technological contexts, such as pathogen

spreading among human or animal groups, computer virus propagation over the Internet,

or viral rumours in SNS. Various models have been developed to predict the movements of

spreading processes. Traditional models define individuals’ compartments including immune,

susceptible, exposed, infectious, symptomatic, recovered, dead, vaccinated, and then the

models define rules for compartment transformation, assuming that the entire network is

fully connected.

Scientists have studied this area for decades and proven that interactions among pop-

ulations significantly impact spreading dynamics. Classic random network models assume

only a particular network structure, however, so a generic model was recently developed, in

which nodes represent individuals, links denote interactions between a pair of individuals,

and a node’s current state (compartment) and states of its neighbors determine the system

transition.
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Due to the infinite possibilities of node state definitions and transition rules, the number

of potential models is unmeasurable. However, one widely applied fundamental assumption

is that individuals influence each other by statistically independent pairwise interactions.

Independent means that interaction between nodes A and B is statistically independent of

interactions between nodes A and C or nodes C and D. Pairwise indicates no higher order

interaction such as A−B − C, which is equivalent to A−B, B − C, and A− C combined.

1.2 Generalized Epidemic Modeling Framework

GEMFsim is a stochastic simulator for the Generalized Epidemic Modeling Framework

(GEMF)5 that was designed by Dr. Faryad Sahneh. GEMFsim numerically simulates epi-

demic spreading processes over complex networks, including the expansion of viruses and

information over the Internet and the propagation of multiple pathogens within a group of

hosts.

1.2.1 Motivating example: SIS model on a graph

Although many models with various complexities are available for studying epidemic spread-

ing driven by interactions of individuals in a network, I chose the susceptible-infected-

susceptible (SIS) model because of its simplicity. In the SIS model, nodes of the graph

represent individuals and edges of the graph stand for possible interactions. A link between

node m and node n is evident if one of the nodes can potentially infect the other node di-

rectly. Moreover, xn(t) ∈ {1, 2} denotes the state of node n at time t, where xn(t) = 1 means

node n is susceptible and xn(t) = 2 means node n is infected. The SIS model contains two

types of transition: susceptible to infected (1 → 2) and infected to susceptible (2 → 1).

The first transition occurs if a susceptible node has infected neighbors. When a node n is in

the susceptible state, the probability of this transition depends on a parameter β determined

by the epidemic model and the number of infected neighbors. The second transition, or re-

covery process, occurs spontaneously with a rate δ, independent from the state of neighbors.
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Fig. 1.1 shows node-level transitions for the SIS model.

S I

δ

β,(I, E )

Figure 1.1: Transition diagram for SIS epidemic model: δ is the recovery rate of infected
nodes, and β is the rate for infecting a susceptible node by an infected neighbor in the
network denoted by the edge set E.

1.2.2 GEMF description

Although spreading models have unique specific assumptions, most models share the char-

acteristic of independent pairwise interaction. Therefore, Dr. Sahneh developed the gen-

eralized epidemic modeling framework (GEMF), which facilitates systematic development

of a broad spectrum of stochastic spreading processes over complex networks. As a simple

epidemic model, SIS can be formulated within GEMF, and similar to the SIS model, GEMF

uses nodes and edges of networks to represent individuals and interactions, respectively.

However, because contact network can contain several layers, I represented the network by

G(V,E1, . . . , EL), where L is the number of contact layers, V is a set of N nodes, and El is a

set of links between the nodes in layer l. As with the SIS model, the state of node n at time

t is a random variable denoted by xn(t). However, each node can assume a state among M

possible states, which are labeled with an integer from 1 to M (i.e., xn(t) ∈ {1, . . . ,M}). In

GEMF, transitions of a node n over all possible states 1 to M are divided into two categories.

The multilayer network topology makes GEMF a novel framework for stochastic simula-

tion.

1.2.3 Nodal transition

Nodal transition occurs independently from the states of neighbors in the network (i.e.,

recovery process in the SIS model). Since any state i can potentially transition to another
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state j, I define a M×M nodal transition matrix, Aδ, where element Aδ(i, j) is the transition

rate of a node n from state i to state j. In other words, nodal transition i → j can be

considered a jump of node n from state i to j with a jump time exponentially distributed

with rate Aδ(i, j). Actually, I used this data structure to store and access such parameters

in the program.

1.2.4 Edge-based transitions

Edge-based transitions are caused by interactions with neighbors in the network depending

on states of the neighbors (i.e., infecting process in the SIS model). For a single contact

layer, the edge-based transition matrix is similar to that of a nodal transition. Since GEMF

allows each layer to have their own transition rates, I defined a transition rate array Aβ to

represent all edge-based transition rates. Element Aβ (i, j; l) was the rate of transition of a

node n from state i to j as a result of interaction with neighbors in state q(l) for layer l.

State q(l) was called the influencer state for layer l; only one influencer state was identified

in each layer. If k (k > 1) influencers are present in one layer for some epidemic models,

GEMF must consider k network layers with identical network structure and one influencer

state each layer. The layer provides contacts for a node in the influencer state to spread over

neighboring nodes. In the SIS model, the influcencer of the only layer is the infected state

represented by integer 2. Similar to nodal transitions, I considered the edge-based transition

i→ j of layer l as a jump of node n from state i to j with a jump time that was exponentially

distributed with a rate related to Aβ (i, j; l) and the number of neighbor nodes in state q(l).

If no neighbor of node n was in state q(l), then the edge-based transition of node n for layer

l did not exist.

These two types of transitions, nodal transition and edge-based transition, are not exclu-

sive, however. Depending on the epidemic model, the jumping of node n from state i → j

could be a result of neighbor interaction or nodal transition. In this case, the processes

are assumed to be mutually independent and the transition rate is the sum of all rates for
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possible processes, that

Pr(xn(t+ ∆t) = j|xn(t) = i) = λn(i→ j)∆t,

where λn(i→ j) = r1 + · · ·+ rk and r1, . . . , rk are rates for the possible process.

1.2.5 Algorithm

For a system of stochastically interactional components, Gillespie3 proposed two exact

stochastic simulation algorithms. I used the Direct Method, which primarily focuses on

determining the sequence and timing of each reaction by specifying the probability density

P (n, t) that the next reaction is n and occurs at time t. Therefore,

P (n, t)dt = rnexp(−t
∑
j

rj)dt.

Integration of P (n, t) over all t from 0 to ∞ results in

Pr(Reaction = n) = rn/
∑
j

rj,

which is the probability distribution for reactions. Sum P (n, t) over all n results in

P (t)dt = (
∑
j

rj)exp(−t
∑
j

rj)dt,

which is the probability distribution for time.

The Direct Method presented above is similar to the algorithm of GEMF, except that

the transition rate in GEMF is more complicated due to nodal transition and multilayer

edge-based transition. GEMF simulation is a Markov process with dynamics that arise from

node-level transitions. Using contact network G(V,E1, . . . , EL), nodal transition matrix Aδ,

and edge-based transition array Aβ, all node-level transition rates set S can be calculated. I

used λn(xn → j) to represent the transition rate of node n from its current state xn to state
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j.

The probability of Tn(xn → j) being the minimum element in S is

Pr(Tn(xn → j) = min(S)) =
λn(xn → j)

λtot
,

where λtot =∆
∑N

n=1

∑M
j=1(xn → j) is the sum of all transition rates corresponding to elements

of S.

Although probability distribution allows sampling of a node-level transition that is a

transition of the network state, the occurring time of the transition also must be sampled.

Because elements of S have exponential distributions and are independent, T = min(S) can

easily be proven to be exponentially distributed with a rate of λtot. Therefore, I sampled a

time δt for the network state transition based on the distribution of T , and then I selected

a node n that achieved the next transition according to probability distribution Pr(n) =

λn/λtot .

After selecting the node , I chose a new state j according to probability distribution

Pr(j|n) = λn(xn → j)/λn, resulting in the acquisition of complete information of current

transition, including node n, state jump from i to j, and time cost δt. As a Markov process,

this procedure can be repeated after updating the state change followed by the current

transition. Modification includes updating the transition rates of node n and neighbors that

are affected by node n in any contact layer. The other rates remain unchanged.

Utilization of GEMF also allowed the assignation of weight to each link in order to

quantify the effect of neighbors on edge-based transitions. Compared to the unweighted

model, all parameters, including q(l), Aδ, and Aβ, remained the same. When calculating the

rates of edge-based transitions, the weight of the link must be multiplied to each edge. The

revised transition rate formula of node n jumping from current state xn to state j is

λn(xn → j) = Aδ(xn, j) +
L∑
l=1

Aβ(xn, j; l)
N∑
m=1

W (m,n; l)δxm,q(l),

where δs,t is Kronecker delta and λtot =∆
∑N

n=1

∑M
j=1(xn → j).
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1.3 Contributions

This reported work is primarily theoretical. Although Dr. Faryad Sahneh implemented

GEMFsim in Matlab language, this implementation was incapable of handling large networks

due to inefficient memory management of the Matlab language.

I first implemented GEMFsim in C language, thereby increasing simulation speed ap-

proximately 103 times depending on network size and the epidemic model. Overall, the

speed ratio of the C version compared to the Matlab version was bigger for larger networks.

The C implementation had O(n) time complexity, where n is the number of nodes in the

contact network, a barrier inherent in the algorithm and unbreakable by any optimization.

Therefore, I bypassed the barrier via the Next Reaction Method developed by Gibson4. With

proper data structure adopted, the revised program has O(m) time complexity, where m is

the sum of average node degrees over all layers of the network. This value does not grow

with network size for a fixed network model and is small for most situations as common

sense.

As a low-level language, C is, unfortunately, not at all user friendly. Therefore, I packed

the simulation function into Python and R libraries so that users can generate or import

contact networks and control parameters in these script languages and run simulations with

the C function, consequently preserving convenience and efficiency. Moreover, I applied

parallel computation techniques in order to advantageously utilize multi-core CPUs, thereby

saving significant simulation time without additional memory requirements since all threads

share one copy of the contact network.
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Chapter 2

Implementation of the Direct Method

In this chapter I explain basic implementation of the GEMFsim tool in C language.

2.1 Program structure

The simple program structure as shown in Figure 2.1 was comprised of read, run, and save,

and the program consisted of four files as shown in Figure 2.2. The running process was

controlled by a main function in gemf.c, and functions used to check and read the config file

were stored in para.c. Data structure and common functions such as time and mathematical

calculations were contained in common.c. The simulation function was in sim.c.

Read
config

Load
network

Run
simulation

Write
output

Figure 2.1: Program flowchart

In order to support the generalized model and multilayer simulation, however, the usage

is more complicated than the structure: users must specify a network file in adjacency list

format, nodal transition matrix, and edge-based transition matrices, as well as basic simula-

tion control parameters. A sample configuration file is included in Appendix A. Additional

usage details can be acquired from program manual6.

8



GEMF

gemf.c

para.c

common.c

sim.c

Figure 2.2: Program file list

2.2 Data structure and interface

The simulation function is defined below.

int sim(Graph* graph , Transition* tran , Status* sts , Run* run);

All four arguments are C structs: the first three are inputs, and the last one is input/output

dual-direction. All input values are subject to change except for transition matrices.

Details of these self-defined structures are presented in Appendix B. This independent

simulation function is the foundation for the next steps, including packing into Python and

R library and applying new algorithms, which I will talk about later.

2.3 Performance-improving methods

In order to save simulation time for each step, I optimized the program from two main

aspects: saving memory space and reducing computation. I used an adjacency list to store

contact networks, more efficiently saving memory space compared to a 2-D adjacency matrix

when the matrix is sparse. I also defined different structs for weighted and unweighted

models to avoid memory waste caused by dealing with an unweighted network model using

the weighted link struct.

In order to reduce computation, I generated an index array to track the start and end

position of links oriented from every node, thereby requiring the network to be sorted and

directed. If the network is undirected, I transformed it into directed and then sort the

network with qsort. Because the search space was monotone nondecreasing, a search was
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performed among all nodes to find the expected node n according to λn distribution. Then∑M
i λ(i→ j) was stored for all j since it is frequently used. For λtot, an increment according

to the rate change of every affected node in current event was used to update instead of full

re-summation.

2.4 Simulation and performance

Experimental simulations demonstrated that C significantly outperformed Matlab due to

direct memory control of C and adopted optimization tricks.

net nodes edges event number simulation time sec/event
G1 103 9589 2 ∗ 104 0.10s 5.0*10−6

G2 104 102230 2 ∗ 105 3.97s 1.98*10−5

G3 105 1029821 2 ∗ 106 347.61s 1.73*10−4

G4 106 10350638 2 ∗ 106 13179.84s 6.58*10−3

Table 2.1: Update time

The simulation shown in Table 2.1 was based on ρ(G1) = 28, δ = 1, β = 3δ
ρ(G1)

= 0.11

and was performed in a Windows 7 64-bit system, on a dell workstation with 2 Intel Xeon

X5650 2.67 GHZ CPUs and 60.0 GB RAM. The table gave basic metrics of the four networks

involved in the simulation and the corresponding update time per event.

Experimental results in Figure 2.3 showed that, as expected, the simulation speed was

linear to the network size. In each step of of the Gillespie’s Direct Method a node was drawn

probabilistically, making time complexity O(n+ log(n)) for one event.
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Figure 2.3: Avarage time to simulate an event in the SIS model, where the contact network is
assumed to be a geometric network. The average node degree was kept constant for various
network sizes.7
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Chapter 3

Improvement via the new algorithm

and parallel computing

Gillespie’s Direct Method algorithm is direct because it generates next event m and time τ

directly. However, as shown in Figure 2.3, simulation speed is proportional to network size,

which is not good enough.

Therefore, this chapter introduces Gibson’s Next Reaction Method4, which is optimal.

3.1 Next Reaction Method

As mentioned in Section 1.2.5, Gillespie developed two algorithms. The Direct Method was

explained previously, but the second method, the First Reaction Method (FRM),2 although

inefficient, offers a new solution to the epidemic modeling problem and thus can be optimized

significantly. FRM generates a putative time τi for each reaction, in which m is the reaction

with the least putative time, and τ is the putative time τm. Formally, the algorithm for the

First Reaction Method is as follows:

Exact Stochastic Simulation First Reaction Method:

1. Initialize (set initial values, set T ← 0).

2. Calculate the propensity function λi for all i.

12



3. For each i, generate a putative time τi, according to exponential distribution with

parameter λi.

4. Let m be the reaction with the lest putative time τm.

5. Let τ be τm.

6. Change affected λis to reflect execution of reaction m. Set T ← T + τ .

7. Go to Step 2.

For n mutually independent random variables X1, X2, . . . , Xn with Xi ∼ exponential(λi),

the distribution of min{X1, X2, . . . , Xn} can be recognized as exponential(
∑n

i=1 λi). Based

on this theorem, the First Reaction Method is equivalent to the previous Direct Method.2

Although inefficient in practice, the First Reaction Method can be adapted into an op-

timal method. In order to save computation, the Next Reaction Method focuses on three

activities that occur during every iteration which take time proportional to the number of

potential events, n:

1. Updating all n λis

2. Generating a putative time τi, for each i ∈ {1, 2, . . . n}

3. Identifying the smallest putative time τm among τi, i ∈ {1, 2, . . . , n}

In order to prevent unnecessary computation, the Next Reaction Method incorporates the

following main ideas:

1. Store τi, not just λi.

2. Be extremely sensitive in recalculating λi (and τi); recalculate only if it changes.

3. Reuse τis where appropriate.

The Next Reaction Method is formally expressed as follows:

1. Initialize (set initial values, set t← 0).

2. Calculate the propensity function λi for all i.

13



3. For each i, generate a putative time τi according to an exponential distribution with

parameter λi.

4. Let m be the reaction whose putative time τm is least.

5. Let T be τm.

6. Change affected λis to reflect execution of reaction m.

7. For all node j ∈ {neighbours of m}, set τj ← (λj,old/λj,new)(τj − T ) + T .

8. Set τm ← ρ + T , where ρ is a random number generated according to an exponential

distribution with parameter λm.

9. Go to Step 4.

Although random numbers often cannot legitimately be reused since Monte Carlo simu-

lations assume them to be statistically independent, it is legitimate in this particular special

case. Gibson proved4 that for all i 6= m where m is the next event, τi is distributed according

to

Pr(Ti > u) =

 exp(−λi,n(u− tn+1)) u > tn+1

1 otherwise,

thereby making the Next Reaction Method equivalent to the First Reaction Method, switch-

ing from relative time to absolute time. Meanwhile, for those i 6= m whose λi remains

constant from the nth to n+ 1th iteration, λi,n+1 = λi,n, preventing the need to change these

τis.

Experiment results showed that the Next Reaction Method obtained the same result as

the Direct Method, as shown in Figure 3.1. However, appropriate data structures must be

used to store λis (and τis) so that those that change can be updated efficiently. Since the

τis are frequently updated but only the least is read, binary heap is the optimal choice with

O(log(n)) for updating and O(1) for least value reading.

Figure 3.2 compares simulation results with Gillespie’s Direct Method. The simulation

was performed on a server with Intel Xeon E5-2630 CPUs and 4GB memory limitation for

each process. The speed of Gibson’s Next Reaction Method was nearly network size free.

It is easy to deduce from the NRM algorithm that the number of update operations

14
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Figure 3.2: Speed comparison of the Direct Method and the Next Reaction Method

is proportional to the average node degree since only neighbours are affected in each step.

Therefore I ran simulations based on two network models: the Erdős–Rényi model and

the Barabasi-Albert model. For each model, simulations were run over 10 networks with
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identical sizes of 105 with average node degree varying from 10 to 100 at step 10. Node degree

distribution was similar within networks of the same model. One sample with average node

degree equal to 40 is shown in Figure 3.3a and Figure 3.3c. Simulation results are shown in

Figure 3.3b and Figure 3.3d. This experiment perfectly supported the inference.

Node degree
0 10 20 30 40 50 60 70

P
o
p
u
la
ti
o
n

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

(a) Node degree distribution with average equal
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Node degree
10

2
10

3
10

4

P
o
p
u
la
ti
o
n

10
0

10
1

10
2

10
3

10
4

10
5

(c) Node degree distribution with average equal
to 40, Barabasi-Albert model

Average node degree
10 20 30 40 50 60 70 80 90 100

R
u
n
-t
im

e
p
er

ev
en
t
u
p
d
a
te

5

10

15

20

25

30

35

(d) Update time corresponding to average node
degree, Barabasi-Albert model

Figure 3.3: Simulation on networks with node number= 105 and average node degree varying
from 10 to 100 for the Erdős–Rényi model and the Barabasi-Albert model
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3.2 Packing into Python library

Python is a script language with implementation written in C. The Python application

programmers interface (API) defines a set of functions, macros, and variables that provide

access to most aspects of the Python run-time system. The Python API is incorporated in

a C source file by including the header ”Python.h”.

In order to make the program useful in Python, I extracted the simulation function and

transplanted to Python 3 by writing an interface function. The main task of this interface

function is to translate Python variables to C types and pass it to the C simulation function.

I also imposed some validity checks. In order to increase process efficiency, I tried to avoid

memory manipulation. I adopted the Numpy library to construct an adjacency network

identical to C, allowing the memory address to be passed directly, quickly, and efficiently to

the C function.

3.3 Packing into R library

Although an R library is constructed similarly to a Python library, several practical differ-

ences exist in implementation. The interface between C and R is simpler than the interface

between C and Python. Technically, a C standard shared library can be called directly in R,

but an interface programme is still necessary due to the complex data type of the simulation

function. The main obstacle is that R does not support C format struct. Therefore, I packed

parameters with similar properties into one vector and maintained the large vectors.

By applying rapply(Para,c) to the Para variable from the original R version GEMF-

sim, all parameters were transformed into one real-type vector. Because this vector contains

all transition information, it can be recovered after passed to C, without additional config-

uration. Since no struct type was present, network input and simulation output must be

passed separately. Three vectors represented i, j, and weight and one vector defined stop

condition as input.

Output varied according to transition matrices and stop condition. For a single sim-
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ulation, four vectors stored time, node, old status, and new status of each event in

addition to an integer n that indicated the number of events comprising the output. Aside

from time vector and event number, a vector indicating the population at each time point

for every compartment was expected if the simulation was run multiple times. In order to

avoid variable parameter numbers in the interface, I concatenated all integer vectors into

one single vector, allowing simple extraction of expected information when the vector was

split with event number n. In this way, a majority of the preparation procedure from the

original R version can be used to call this C function.

3.4 Parallel computation

Multi-thread parallel computation allows advantageous utilization of multiple cores. This

technique is useful for GEMFsim because the simulations always repeat many times since

GEMFsim is based on stochastic method. Because the networks remain unchanged during

simulation, all threads can share one copy of adjacency lists, thereby saving a lot of space. To

ensure stability and robustness of the program, all threads run independently without data

synchronization, and read-only data is shared while live simulation status is preserved by

each thread. In addition to networks, all threads use initial input status to reset respective

values at the initialization of each iteration. After simulations of all threads are complete

simulation are gathered results from all threads and the final output is calculated with

histogram.

I used POSIX Threads to implement parallel computation. POSIX Threads is a parallel

execution model that exists independently from a language. It allows a program to control

multiple flows of work that overlap in time. Each flow is referred to as a thread, and

creation and control over these flows is achieved by making calls to the POSIX Threads

API. The API is widely supported by Unix-like POSIX-conformant operating systems such

as FreeBSD, NetBSD, OpenBSD, Linux, Mac OS X, and Solaris, making this solution flexible

and compatible with different platforms without further requirements.

Simulation results are shown in Figure 3.4. The network reading and time analysis were
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not accounted for since this period is constant for a fixed network; the simulation time,

however, varies according to the simulation condition. If a network with N nodes needs

approximately N events to achieve significant results, then the preprocess time should require

approximately 1% of the total simulation time. Therefore, I considered only the simulation

part in this study.

I used the Beocat cluster from the Computer Science Department to do the experiment.

The host I used had 8 Intel Xeon E5-2630 CPUs. I ran simulation with different thread

numbers. All four networks are generated from geometric model with an average node

degree of 20. Each simulation ran for 120 rounds, with each round generating 10, 000 events.

All 120 rounds were divided evenly to all threads. Results showed that, compared to one

thread only, two threads save time. Increasing threads did not speed up when the network

was small, even occasionally slowing down the entire process. When the network was as

large as 106, additional threads caused faster average speed.
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Figure 3.4: Speed comparison: parallel computation with 1, 2, 4, and 6 threads
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3.5 Demonstration of phase transition

Van8 proved the existence of a threshold for an SIS model. If τ = β
δ

is over the threshold

τc, a fraction of nodes always remains infected. If τ is below the threshold, the disease will

die out given enough time. Threshold τc is equal to 1
λ
, where λ is the spectral radius of the

matrix, which represents the contact network.

In order to demonstrate this phase transition phenomenon, I used a real-world net-

work, Pokec social network from Slovakia.9 Although the network contained 1,632,803 nodes

and 30,622,564 edges, the network is weakly all connected but not strongly all connected.

Therefore, I made the network undirected for simulation. After transformation the network

contained 22,301,964 edges. The largest eigenvalue λ was 148, so I tried τ = 0.9
λ

and τ = 2
λ
.

Approximately 1.5 million events occurred in each simulation. In fact, τ = 1.1
λ

also obtained

phase transition. However, the population of infected state was only several hundreds, which

is too small to make a difference in the figure. Therefore, I chose τ = 2
λ
. Simulation results

are shown in Figure 3.5
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Figure 3.5: Demonstration of phase transition
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Chapter 4

Conclusion

This report introduced the GEMFsim tool and described its implementation into C language.

An improved algorithm was applied to the tool, implementation was packed into Python and

R libraries, and parallel computing was utilized. As a generalized model, GEMFsim can be

applied to various areas, thereby affirming the usefulness of this study’s attempt to improve

the tool.

Chapter 1 introduced nodal transitions and edge-based transitions, as well as Gillespie’s

Direct Method algorithm2, which is the basis of GEMFsim. Chapter 2 described implemen-

tation of GEMFsim in C language, including explanation of program structure and basic

API. Details are included in Appendix A and Appendix B. Using Gillespie’s Direct Method,

C language implementation allowed the tool to work for a large network and significantly

improve efficiency of the framework. However, the algorithm restricted the simulation speed

to linearity with network size, which is unacceptable for super large networks. Section 3.1

introduced a new algorithm, Gibson’s Next Reaction Method4, which generates exact results

but does not correlate speed to network size. This new algorithm was optimized from Gille-

spie’s First Reaction Method2. Switching from relative time to absolute time and reusing

unchanged rates retained a majority of the computation, and only neighbors of the node

involved in current event required updating regardless of the network’s size. A binary heap

was used to store all rates since the least value was the only pertinent value.
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As a low-level language, the C language offers efficient execution but inconvenient usage;

consequently, Section 3.2 and 3.3 explained how the C program could be useful in Python

and R environment. This report also explained the ideology of the framework design, which

allows users to obtain high-speed simulation with handy languages.

Although the simulation was sequential as a Markov chain process, meaningful results

required many simulations under identical initial conditions. Section 3.4 applied parallel

computing to the program. Running multiple simulations simultaneously allowed advanta-

geous utilization of multi-core CPU, resulting in increased speed. In addition, all threads

shared one copy of network structure since it remained unchanged throughout the entire

process, which is memory efficient.
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Appendix A

Sample configuration file

[DATA_FILE]

ContactNetwork1.txt

ContactNetwork2.txt

[STATUS_FILE]

status_SAIS.txt

[OUT_FILE]

output_file.txt

[DIRECTED]

1

[STATUS_BEGIN]

1

[MAX_TIME]

25



200.000

[MAX_EVENTS]

30000

[SIM_ROUNDS]

100

[INTERVAL_NUM]

1000

[NODAL_TRAN_MATRIX]

0.0 0 0

0.3 0 0

0.0 0 0

[EDGED_TRAN_MATRIX]

0 0.94 0

0 0.00 0

0 0.47 0

0 0 0.02

0 0 0.00

0 0 0.00

[INDUCER_LIST]

2 2
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Appendix B

Data structure

typedef struct {

// adjacency list i->j

NINT i;

NINT j;

} Edge;

typedef struct {

// weighted adjacency list i->j and weight w

NINT i;

NINT j;

double w;

} Edge_w;
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typedef struct {

Edge **edge;

Edge_w ** edge_w;

// number of nodes

NINT V;

//nodes start from _s , end at _e - 1

NINT _s;

NINT _e;

//edge number list for each layer

size_t *E;

// weighted flag , 0 for unweighted , weighted otherwise

int weighted;

// directed flag , 0 for undirected , directed otherwise

int directed;

// number of layers

size_t L;

} Graph;

typedef struct{

// number of compartments

size_t M;

// number of layers

size_t L;

// compartments start from _s, end at _s+M -1

size_t _s;

//2D array , (_s+M+1) by (_s+M)
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double ** nodal_trn;

//3D array , L by (_s+M+1) by (_s+M)

double *** edge_trn;

//1 by L array , inducer for each layer

size_t *inducer_lst;

} Transition;

typedef struct{

// number of compartments

size_t M;

// compartments start from _s, end at _s+M -1

size_t _s;

// number of nodes

NINT _node_V;

//nodes start from _node_s , end at _node_e - 1

NINT _node_s;

NINT _node_e;

//1 by _node_e list , initial status for each node

size_t *init_lst;

//1 by (_s+M) array

//the population of each compartment

NINT *init_cnt;

} Status;

typedef struct{

// arbitrary stop time

double max_time;
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// maximum events number

size_t max_events;

// number of rounds

size_t sim_rounds;

// sampling interval number for

// multiple simulation( histogram like)

size_t interval_num;

char *out_file;

}Run;
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