
1 •'_'H9'.^

^
_

/Linear Prograimning on the PC:/

Loading through Multi-Plan and Testing.

by

Dwight Christie

B. S., Kansas State Universitii

\

', 1983

^'

^ k

A Master's Report •

'

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, KS 66506

1987

Approved by:

Major Professor

^t:) ,

—
^

'^\o\o?
i

A11207 301SE1

' Acknowledgements

^S"-) I wish to express my gratitude to committee members Dr,

Z. -^
Bryan Schurle and Dr. Richard McBride. A special thank you

goes to Dr. Elizabeth Unger for her guidance throughout this

report. I would like to extend a very special thank you to

my wife, Deborah. Without her love, support and constant

encouragement this report may not have been possible.

Table of Contents

Chapter 1: Introduction 1

Definition of Linear Programming 1

History of Computers and Linear Programming 3

Present Capabilities 5

Chapter 2: Definition of Problem 11

Objective
2^2

Chapter 3: MPS-PC Program 13

Chapter 4: Evaluation 19

Testing MPS-PC 2

Chapter 5: Conclusions 27

Future Study 28

Appendix A: MPS-MP Instructions 30

Appendix B: MPS-MP Program Listing 3 6

Bibliography
^g

List of Figures ^ -
*-

Figure 1:

Analysis of Problems Run on the MPS-PC Program . 21

Chapter 1: Introduction

One of the most important and also most difficult

decisions that a manager has to make are decisions

involving organizational resources, such as manpower,

equipment, or funds, that are to be allocated to a

particular project or operation. (7) One method used to

make such decisions is a • seat-of-the-pants ' process, or

going with what 'feels' the best. For many cases this is

the best and most economical way to arrive at such

decisions, however, as the business becomes larger and

more resources become involved this method becomes less and

less accurate or acceptable. Linear programming is one

method that has been used to present the information, about

the resources, needed to make such decisions.

Definition of Linear Programming

A simple definition of linear programming, it is a form

of economic analysis. Economic analysis is the study of

four human activities: production, consumption, utiliz-

ation and exchange. Linear programming is a quantitative

technique of analysis, with the relationships quantified,

the results specify the amount of each product that max-

imizes or minimizes the objective. (2)

A linear programming model can be mathematically

expressed as:

maximize or minimize Z = C(1)X(1) + C(2)X(2) +. . .+C(n)X(n)
subject to A(11)X(1) + A(12)X(2) + + A(ln)X(n) <= B(l)

A(21)X(1) + A(22)X(2) + +A(2n)X(n) <=B(2)

A(ml)X(l) + A(m2)X(2) + +A(2n)X(n) <=B(m)

Where X(l) , X(2) X(n) >=
C(i) 's, B(i) 's and A(i,j) 's are known constants
all functions are linear.

There are certain assumptions that must apply for

linear programming. These assumptions are linearity, addi-

tivity, and divisibility.

Usually, the input-output relationship is that it

follows the law of diminishing returns. Roughly stated

this says that if one continually increases the amount of

one resource, without changing the amount supplied of other

resources, the process will eventually result in a reduc-

tion of the product. This does not fit the assumption of

linearity, which states that for a given amount of

resources used as input the result will be in a given

amount of output produced. Therefore, a linear function

must be found that most closely represents the actual

function. -
. .

The assumption of additivity is the assumption that

the production of one product will not effect the produc-

tion of another product. If the amount of one product

produced is increased, it will not aid or restrict the

2

production of another product. Put another way, the total

is the sum of its parts. As simple as this sounds it is

not always the case as one input will often cause another

input to be more or less effective.

Linear programming assumes divisibility, that is that

all of the resources and products can be used or produced

in fractions of units. This results in linear programming

giving answers such as: 1.54 units of labor, or 3.2 units

of a product, etc. This may or may not be a problem, but,

it will always need to be considered when interpreting the

results of linear programming.

History of Computers and Linear Programming

The systematic development of practical computing

methods for linear programming began in 1952 at the Rand

Corporation in Santa Monica, under the direction of George

B. Dantzig. (13) It is not just a coincidence that work

and advancements in linear programming run parallel with

those of the computer industry. Because of the complexity

and 'number crunching' involved in linear programming there

is simply no way that problems of any size could be done

quickly enough or with suffecient accuracy without the aid

of computers.

The beginnings of linear programming could be seen as

early as 1939, when L. V. Kantorovich of the Soviet Union

did work that went highly unnoticed until 1976, when he

received a Nobel Prize. In 1947 the U. S. Air Force began

to study planning and scheduling problems. In 1947-1948,

Dantzig developed a simplex algorithm for optimization of a

linear form, siobject to linear inequality constraints,

i.e., linear programming. Computerizing the algorithm was

started in 1952. By the end of the 1950 's most of the

mathematical and computer problems were solved.

Linear programming still had a problem with overlap-

ping I/O, or the transmission of data to and from auxiliary

storage while computations were on going. This occurred

because the computers of the day were not large enough to

hold all the data and the program code in the main storage.

This problem was solved for linear programming in the

1960 's as it was also solved for computers in general,

larger computers were introduced and then were multi-

programmed.

In the late 1950 's and early 1960 's CEIR, Inc. in

Washington, D.C. began to work on large linear programming

packages and systems, at this time all work was done on

IBM computers. Simultaniously the Rand Corporation

initiated development of a set of FORTRAN programs for

linear programming. The introduction of IBM computers with

8K of core memory allowed packages to be enhanced to handle

over five hundred rows (equations) . This allowed linear

programming solutions to be produced for regular production

work, and was used mostly in the petroleum industry. At

this time each algorithmic program existed as a deck of

punched cards in absolute format whose loading had to be

done by hand. As late as 1965 it was still taking up to a

day to run a linear programming solution.

The major linear programming systems underwent sig-

nificant changes and extensions during the mid-1970 's,

taking on their present and perhaps their final form for

mainframe computers. Even though the form has remained

constant for some time, there is still work being done on

system speed, reliability, supporting data management and

control, and application techniques.

With the increase in use and affordability of micro-

computers there has been a lot of work being done to bring

linear programming to micro-computers. It might seem that

linear programming has no chance of being implemented suc-

cessfully on micro-computers because of the memory require-

ments, however the present machines have memories and are

much faster than the mainframes that the first packages

were installed on.

Present Capabilities

At present time there are several linear programming

packages for large mainframe computers. These are often

referred to as mathematical programming systems (MPS)

.

5

Although there has been extensive research and testing

done at the University level, there are very few packages

available commercially. Four such available packages are

described below.

One package available in Applesoft is a program called

System Solver. (5) This is one of the more powerful

packages available in that it allows the user to solve a

system with a size of up to seventy equations and seventy

unknowns. With System Solver the user must put all

equations, which must be linear, in the given form;

A(1)X(1) + A(2)X(2) + ... + A(N)X(N) = B

The program will first ask for the number of equations and

then it will ask for the coefficients (A values) of each

equation. The program will file the result by listing the

varibles and their computed values i.e., X(l) = l.

"What's Best" is the name of a linear programming

package for micros developed by General Optimization Inc.

(8) What's Best consists of a 6K-byte memory-resident

module that is used with Lotus 1-2-3 and a separate FORTRAN

program that performs the calculations. The program uses

Lotus 1-2-3 as an input mechanism and guides the user

through the process of building models. The optimizer is

the same as that in Lindo, a mainframe linear programming

package used at some universities. When the user invokes

What's Best he unloads Lotus 1-2-3, invokes and runs the

optimizer and then reloads Lotus 1-2-3 to insert the answer

into the worksheet.

Another linear programming package for micro-computers

is LPMaster, developed and marketed by Applied Operations

Research of Canoga Park, California. (17) Unlike the

previous packages, the input is logical in nature instead

of mathematical. The different sections of the input are

separated by control cards. The first section is the

definition section which will define the resources to be

used and the products to be produced. The second section

is the data section, it is used to enter the known infor-

mation such as gross profit, production cost, etc. This is

followed by "compile", "solve", and "report" cards. The

input is in a file format, whereas System Solver had an

interactive input format, and "What's Best" used Lotus

1-2-3 as the input mechanism.

MPS-PC is a linear programming system designed by

Dr. George H. Pfeiffer and marketed by Research

Corporation. It is designed to emulate MPS -X, for main-

frame computers, on the IBM Personal Computer and IBM

compatible personal computers. (14) This system will

allow up to seventy activities and fifty constraints to be

entered. An input file is used for MPS-PC in a similar

format as the LPMaster system. The file is divided into

three sections. The first is the rows or activity section.

the second is the columns or constraint section, and the

third is the RHS (right hand side) or limits section.

There has also been work done on linear programming

systems that are not available commercially. One such

system was developed by Robert D. Conte. (3) This system

consists of several analysis techniques, including linear

programming; it is implemented on an Apple II micro-

computer in Applesoft. This interactive package was

designed and implemented with consideration for the non-

programmer oriented user. The linear programming portion

of the system is capable of solving problems of a size of

up to twenty constraints and twenty variables. It also has

extensive editing features, allowing the user to respecify

various parameters.

In the TIMS/ORSA meeting in Detroit, Michigan during

April, 1982, there were four micro-computer based linear

programming systems. The first was developed by Ralph W.

Swain. (15) Its primary purpose was that of graphical

demonstration of techniques commonly used in operations

research. Rolf A. Daininger developed and implemented an

instructional aid which will display the iterations tables

for a maximum of nine constraints and twenty variables.

(4) This allowed students to concentrate on the simplex

methodology and solution process, rather than the numeric

operations involved. A third system was presented by Gary

8

^M</

E. Whitehouse and Yassar A. Hosni is a package involving

forty-two problem oriented programs, several of which

involve linear programming. (17) Versions of this system

are available for both the Apple II and the TRS-80 micro-

computers. One other system was presented by Byron

Gottfried. (9) There are two versions available, one for

the Apple II and one for the IBM micro-computer, both of

which are capable of solving problems of a size of about

forty-five constraints and ninety variables.

There has also been some thesis work done on the

subject of linear programming. Possibly the most powerful

linear programming package available on micro-computers was

developed by Theodore R. E. Fraley and Dale A. Kem, at the

Air Force Institute of Technology, Wright-Patterson Air

Force Base, Ohio. (7) This is a FORTRAN package supported

by USCD Pascal Operating System on an Apple II plus

computer. This package is capable of handling up to twenty

contraints and twenty variables.

Another package was developed at the Air Force

Institute of Technology, Wright-Patterson Air Force Base,

Ohio by M.L. Mullennex. (12) This package was developed on

the Apple lie micro-computer, and written in UCSD Pascal

and operates on the Pascal operating system.

The packages presented at the Detroit TIMS/ORSA

meeting and the Air Force theses all have similar data

entry modules. They are all menu driven. The data entry

is one of two methods. Some of the systems used a series

of questions asked by the computer which are to be answered

by the user. Others used formulas to enter the data,

actually typing in mathmatical equations when prompted by

the computer. This requires the user to format the data

into a formula before he/she may enter the data.

10

Chapter 2: Definition of Problem

There are a few problems involved with linear pro-

gramming. One problem common with linear programming

systems on micro-computers is that of data entry. Of the

systems available, most have the data entered by specifying

the equations. The other common form of data entry is to

give the constraints, variables, and limits of the problem

in lists. Both of these methods are considered awkward as

the common method of defining the problem is to put it in

matrix form, which requires that the information must be

converted to formulas or lists.

Another problem common to linear programming systems

is one of accuracy. The problem seems to surface quite

often when the system is required to execute several

iterations. With the micro-computer size limits, values

will often have to be rounded. Even though this rounding

is slight, when it is compounded with each iteration of the

matrix, this can result in a noticable error can result. A

problem also exists with the readability of the output of

the systems. Some systems give the results as a list of

numbers and the user must interpret them by knowing the

format and order of the input.

11

r •
J i .

Objective

The objective of the project is to design, implement

and validate a program that will allow a user to use the

Multi-Plan spread-sheet as the data entry module to a

linear programming system. The user will enter the name of

each column in the first row of the spread sheet and enter

the name of each row in the first column. This will

accomplish two things: 1). the user will be able to use

the title option to enter the data, and 2) . provides the

names that are needed for input into the system.

It was decided to use the MPS-PC Linear Programming

System, developed by Dr. George H. Pfeiffer. This system

was chosen for a variety of reasons. MPS-PC is one of the

most powerful systems available for micro-computers,

allowing seventy colvimn activities and fifty row con-

straints. This system was written for the IBM Personal

Computer and IBM compatible computers. The large avail-

ability and usage of these personal computers makes this

system a desirable target for the project.

The MPS-PC system was designed to appear the same as

the MPS-X system available for large mainframe computers.

Since MPS-X is a popular system for mainframes and with a

large portion of people using linear programming being

familiar with MPS-X, it follows that MPS-X would be a good

system to imitate.

12

' ^
•>

Chapter 3 : MPS-MP Program

A program was developed as an instrument to convert a

Multi-Plan worksheet into a data file, which can be used as

the input file for the MPS-PC package. The program was

called MPS-MP. This program has been placed on both the

printer Working Diskette and the Screen Display Working

Diskette of the MPS-PC package. This will allow the user

to use MPS-MP whether they are printing the results of the

MPS-PC program or are just looking at the results on the

screen. By putting the MPS-MP program on the Working

Diskettes, no new diskettes are required, other than the

Multi-Plan diskette when this operation is compared to just

using the MPS-PC program.

In designing the MPS-MP program there were two tasks

that needed to be accomplished. The first task was to read

and store the data in such a way as the rest of the program

can understand and use the data. The second task is to

take the stored data and write it to a data file in the

proper format that the MPS-PC program can use it.

The first step in writing the program was to determine

how the worksheet is written on the diskette when it is

printed as text to a file. The PRINT FILE function of

Multi-Plan is used to write the worksheet to the diskette.

The same data diskette is used to write this file as is

used for the data diskette of the MPS-PC program. When

13

Multi-Plan writes to the diskette the resulting text file

will list all the row values of seven columns, then produce

a page break, the number of rows may also cause a page

break. Then, on the next page, all the rows of the next

seven columns will be printed, and so on until the entire

worksheet has been printed to the file.

Each page will begin with a series of blank lines,

followed by the first row of the seven columns that are to

be printed on the page and then the second row of the seven

columns are printed, etc. Each line ends with a carriage

return followed by a line feed character, these two

characters are all that make up a blank line. These

characters are placed immediately after the last

(rightmost) non-blank character of each line. This results

in the blank lines from a page break looking the same as

blank lines coming from a row with no values for the seven

columns that are to be printed on that page. Each line

that is not a blank line begins with a series of blank

characters. i" <'"' '"
\

It was decided that the file should be read and

evaluated a character at a time. An attempt was made to

read a field, i.e., one row one column, at a time but the

carriage return and line feed characters ended up in the

fields and caused other problems. Reading a character at a

time required the program to keep track of several values

14

so as to know where to store the character. Some of the

values that it is neccessary to keep track of are listed

below:

1) The nioinber of pages read
2) The number of lines read for the page
3) The number of columns read for the row
4) The number of characters read for the field

The main process of the program is used to communicate

with the user. Procedures are called from the main process

to accomplish the two major tasks. Reading and storing the

data is accomplished in the procedure Build-Table, while

writing the data file is done in the Write-Output pro-

cedure. Write-Output calls a variety of other procedures

and functions to find the values that are needed to write

the output correctly.

A two dimensional array of ten character strings was

created to store the worksheet in memory the same way that

it appeared in the worksheet itself. This needed to con-

tain fifty-two rows to accommodate the column headings,

objective function row and the fifty rows allowed by the

MPS-PC program. It contains seventy-three columns to hold

the row headings, restriction types, right hand sides and

the seventy columns that are allowed by the MPS-PC program.

To keep track of where the incoming data belongs,

repeat loops were used in the Build-Table procedure. One

repeat loop is used to read through the blank lines at the

first of the first page. The loop will read until a blank

15

t .

character is encountered. Since a blank line has only a

carriage return and a line feed character in it, a blank

character means that the line has data. A second repeat

loop is used to read until the end-of-file is read, this

insures that all the data is read. One level inside this

repeat loop are two other repeat loops. One is used to

read to the end of the line. Inside this loop is a repeat

loop that reads one field. The second loop inside the end-

of-file loop is used to read from the end of one line until

another line is found that has data on it.

Each loop has a counter that coordinates with it. One

keeps track of the characters in a field. Another keeps

track of the fields in a line. A third keeps track of the

lines on the page. The fourth keeps track of the blank

lines between lines with data. The last keeps track of the

pages read. The different counters are used as subscripts

to assign the character read to its proper place in the

array.

A problem arose with telling the difference between a

blank line created from a row with no data on it and a

blank line created from page breaks, both may be several

blank lines back-to-back. As a result of this, the loop

that reads from one line with data to another line with

data, will treat all blank lines that are read as rows

without data and not as a page break. This means that when

16

a line with data is read the program must be able to

analyze this data and decide whether the blank lines were a

page break or not. The program can tell if the blank lines

were a page break by whether the first non-blank character

of the line is a number or not. If it is a number the

blank lines were rows without data. Since the column

headings cannot begin with a numeric character, if the

first character is non-numeric the program knows the blank

lines were a page break and can reset the row count to one

and add seven to the column count. This sets the row and

column counters for a new page.

Once the worksheet data has been recreated in the

program the Write-Output procedure and the different pro-

cedures and functions that it calls become fairly straight

forward. The nvimber of rows are found in the Number-Of-

Rows function by searching through the first column of the

array and counting until a blank field is encountered. The

first column is for row headings which must have a value in

them. Row two is not counted as a blank field as it can be

blank because the objective function does not require a

row heading.

The number of columns in the problem are found in a

function called Number-Of-Columns. The first row is used

as column headings. Therefore, the number of columns can

be and is found by searching the first row until a blank

17

field is located and counting just as with the rows. if

row two is blank this does not stop the counting as this

row holds what type each restriction and does not need a

heading.

The number of each of the types of restrictions (less

thans, greater thans, equal tos) are found by calling a

procedure called RHS-Totals. m this procedure row two is

examined. The number of L's, G's and E's are counted and

this is the number of less thans, greater thans and equal

tos respectfully.

To actually write the output to a disk file a series
of for loops are used. Each is used to print the different

portions of the array in the order that is needed for the
data file for MPS-PC to work.

• :-; I o

18

Chapter 4: Evaluation

There are a few limitations to the Multi-Plan work-

sheet. One major limitation when using it for the purpose

of creating a matrix for MPS-PC is the fact that Multi-Plan

gives the user only sixty-three columns to. This is more

restrictive than the seventy columns that are allowed by

the MPS-PC program. There is a way to get around this

restriction but it is not very convenient. The user must

enter the first sixty columns of the problem. The first

two rows are the row headings and restriction types fol-

lowed by the sixty columns, with column sixty-three being

reserved for the right hand sides. Then the user can run

the conversion program just as if it were a normal problem.

When this is done the user needs to get into the MPS-PC

program and add additional columns.

There are also limitations to the conversion program.

The program requires that all of the Multi-Plan default

values remain when entering the problem on the Multi-Plan

worksheet. This means that the user may not make adjust-

ments in Multi-Plan to enter larger headings or field

values. This is also a restriction from the MPS-PC pro-

gram, as it allows only eight significant digits and

headings of only eight characters. The MPS-MP program
assumes that the data has been entered correctly in the

Multi-Plan worksheet, see appendix A for instructions.

19

/

MPS-MP will not edit the input data to insure that it is in

the correct format. if it is not the program will write

its output file as if the data was in the correct format.

This means that the problem will not show up until the MPS-

PC program is run. Another limitation to the MPS-MP pro-

gram is that it assumes that the user already knows how to

use Multi-Plan and MPS-PC. it does not help the user with

these programs.

Testing MPS-PC

A series of linear programming problems were used to

test the MPS-PC program. Each of the twenty-seven problems

were run first on the MPS-PC program and then on the MPS

program found on the mainframe computer in Cardwell Hall,

to be used as a control. The MPS program on the main-frame

computer is readily accepted as a good and accurate

linear programming program. Each problem run on the MPS-

PC program was compared to its corresponding run on the MPS

program. The results of these comparisons were then

analyzed using three different methods to group the pro-

blems, see Figure 1. In the first method the results were

grouped depending on the number of rows that were present

in each of the problems. In the second method the problems

were grouped according to how many columns were present in

each of the problems. in the third and final method the

20

-f: ix A

./ ^.,
'

CRITERIA PROBLEMS
OBJFCNS/
AVERAGE

ROWS/
AVERAGE

COLUMNS/
AVERAGE

1-10 rows 1

22.00%
2

13.27%
1

12.76%

11-25 rows 10 2

23.86%
2

27.14%
2

13.18%

> 25 rows 1
0.41%

1
1.44%

1
13.88%

1-15 columns 10 1
3.86%

2

10.42%
1

7.67%

16-30 columns 1

22.00%
1

9.63%
1

12.76%

> 30 columns 2

3.30%
3

29.47%
3

20.97%

1-10 itertns
1

4.09%

11-20 itertns 2

26.28%
3

20.25%
3

27.01%

> 20 itertns 10 2

20.33%
2

21.16%
2

16.61%

Figure 1. Analysis of Problems Run on the MPS-PC Program

21

• - .1 T, ..*^-^-.,

problems were grouped according to the number of

iterations that were necessary for the MPS-PC program to

solve each of the problems. (*)

For each grouping the problems were evaluated on three

different criteria. The first criteria is any difference

in the value of the objective function of the problem when

it was run on the MPS-PC program and the objective function

of the problem when it was run on the MPS program. The

second criteria is the average difference of the row

activities. This entailed figuring the difference of each

row activity and then taking an average of all the row

activities. The third criteria is the average difference

of the column activities. This entailed figuring the dif-

ference of each column activity and then taking an average

of all the colxomn activities.

Nine problems were tested that had ten or fewer rows

in them. The solution to one of these nine problems pro-

duced values that were different with regards to the

objective function, the row activities, and the column

activities, between the runs on the MPS-PC program and the

MPS program. The objective function differed by 198%. The

row activities differed by an average of 86.67% and the

column activites differed by an average of 114.82%.

* A linear programming problem is solved by continuallydividing the matrix by determined values until a solutionIS reached. Each time the matrix is divided it is con-sidered an Iteration of the matrix.

22

Another problem had row activities that differed even

though the objective function and column activites were the

same. The average difference of these row activities for

this problem was 32.74%.

With between eleven and twenty-five rows, there were

ten problems tested. Of the ten problems, two differed in

the objective function, row activities and the column

activities. One problem had a difference in the objective

function of 38.55%, an average difference in the row

activities of 71.43% and an average difference in the

column activities of 76.68%. The other problem with bad

values had differences of 200% in the objective function,

200% average difference in the row activities and 55.1%

difference in the column activities.

There were eight problems with twenty-six or more rows

in the problem. Of these eight one had different results

in the objective function, row activities and column

activities. The objective function differed by 3.3%, the

row activities differed by and average of 11.55% and the

column activities differed by an average of 111.02%.

The problems were also divided and analyzed according

to the number of columns in the problem. Ten problems with

less than sixteen columns were tested. One of these gave

erroneous results for all three areas. The objective

function was off by 38.55%. The row activities were off by

23

an average of 71.43% and the column activities were off by

an average of 76.68%. Another problem had row activities

that were off by an average of 32.74%.

For the range of sixteen to thirty columns there were

nine problems. In this range, one problem gave different

results when run on MPS-PC as opposed to when it was run on

MPS. Its objective function differed by 198%, its row

activities differed by an average of 86.67% and its column

activities differed by an average of 114.82%.

The last range of column sizes tested was problems

with more than thirty columns. in this group there were a

total of eight problems. Two of these problems had dif-

ferences in the three areas being tested and one problem

had a difference in the row activities, while yet another

problem had differences in the column activities. of the

two problems first mentioned, the objective functions dif-

fered by 200% and 3.3%. The average differences of the row

activities were 200% and 11.55%. with the average dif-

ferences of the column activities being 55.1% and 111.02%.

The problem with only the row activities off, was off by an

average of 24.18%. The problem with only the column activ-

ities off, was off by an average of 51.61%.

A final method of dividing the problems was used to

analyze the problems. This method was to divide the pro-

blems depending on the number of iterations required by

24

the MPS-PC program to solve the problem. The first range

analyzed was for less than eleven iterations. In this

group one problem gave row activities that were an average

of 32.74% different than when run on MPS. All other

problems gave correct solutions.

For the range of eleven to twenty iterations there

were nine problems. Two of the nine gave different results

for their objective functions, row activites and column

activities. One problem gave different results for just

the row activities and one gave different results for just

the column activities. The two objective functions were

off by 38.55% and 198%. The three row activities were off

by averages of 71.43%, 86.67% and 24.18%. The three column

activities were off by averages of 76.68%, 114.82% and

51.61%.

There were ten problems with over twenty iterations

needed to solve the problem. Of the ten, two had variances

between the MPS and the MPS-PC runs. The first had a 2 00%

variance in the objective function, an average of 200%

variance in the row activities and an average of 55.1%

variance in the column activities. The second had a 3.3%

variance in the objective functions, an average of 11.55%

variance in the row activities and an average of 111.02%

variance in the column activities.

When all twenty-seven problems were analyzed together

25

there were seven problems with some form of difference.

Four had objective function differences, giving an average

of 12.59% difference for the entire twenty-seven. Six

problems had row activities that differed. This gave the

entire group an average difference for the row activities

of 15.8%. Finally, five problems had column activities

that differed, giving the group an average difference in

the column activities of 15.16%.

26

Chapter 5: Conclusions

There are seven of the twenty-seven problems, or

25.93%, giving some form of erroneous answer when run on

the MPS-PC program if the MPS program is considered

accurate. This is much too large of a number to accept the

MPS-PC program as an accurate linear-programming solution

program. With four of the twenty-seven, or 14.81%, giving

bad objective functions the program can not even be relied

on for this value.

The test data was divided and analyzed by different

criteria, number of rows, niomber of columns and number of

iterations, in an attempt to see if the size of the problem

had anything to do with the reliability of the results. As

shown earlier, the size of the problem makes little or no

difference in the reliability of the program. Therefore,

the program must be rejected for use on any size of

problem.

The program does, however, have some usefulness. For

several reasons the program may be used as an effective

teaching tool. The program now has the capability to be

loaded from Lotus 1-2-3 or the Multi-Plan worksheet. This

becomes more and more advantageous as more students learn

to use computers and these software packages. The MPS

program is a very popular linear programming package for

27

mainframe computers. This and the fact that the output

from MPS and the output from MPS-PC look a lot alike, MPS-

PC can be used to get students use to reading the output

without having to take the extra time and effort to use a

mainframe computer.

The MPS-MP conversion program was tested for conver-

sion time. In this test the two different times were

tested. The time for the program to read the input file

that was created by Multi-Plan was tested and the time for

the program to write the output file was also timed. The

longest reading time was fifty-nine seconds, within an

acceptable length of time. The longest output time was

nine seconds, again within an acceptable length of time.

These two times occured in a problem which had fifty rows

and seventy columns, the maximum allowed for both.

Future Study

Since the MPS-PC program is not reliable, the need for

a reliable linear programming package for micro-computers

still exists. In examining the text problems, often the

number of iterations required for the MPS-PC program to

solve the problem was different than the number of itera-

tions needed by the MPS program. This implies that the two

use different methods to solve the problem. One area of

future study, therefore, could be to find the algorithm

28

that the MPS program uses and adapt it to the micro-

computer .

Another consideration for future study is to examine

the possibilities of expanding the conversion program to be

more powerful. The program could recognize when a

duplicate row or column name has been entered, it does not

make the check at this time, and allow the user to make

the necessary corrections in MPS-MP instead of returning

to Multi-Plan. MPS-MP could also be changed to allow the

user to add colxomns or rows without either going to Multi-

Plan or MPS-PC.

The need for a program that could convert a worksheet,

whether it be Multi-Plan or not, to an input data file to

the MPS program would be nice also. This is true because

many businesses and universities are investing in software

that will allow the user to transfer files from a diskette

to a main-frame's memory. Kansas State University posseses

such a package, Kermit. This could be used until a good,

reliable linear programming package can be created for

micro-computers

.

29

Appendix A:

MPS-MP Instructions

30

J

t

J...

This program is a utility program designed to allow

the user to create linear programming matricies for the

MPS-PC linear programming system using the Multi-Plan

worksheet. While the MPS-MP program does not do anything

that the MPS-PC program can not do, in fact it will only

allow the user to create the initial matrix. To add,

subtract or change anything in the matrix the user must go

back to the Multi-Plan worksheet or go on to the MPS-PC

program. These instructions do not presume to teach the

user how to use the Multi-Plan or the MPS-PC programs.

These programs have manuals of their own and it is left to

the user to find and use these manuals.

Creating the Matrix

The matrix to be created on the Multi-Plan worksheet

is identical in format to the TRANCOL matrix tableau

printout available with MPS-PC. When using Multi-Plan to

create a matrix, all default values for the worksheet are

to be used. This means that once Multi-Plan is entered the

user cannot change any values, only enter the matrix as

directed.

The matrix should be placed in the upper left hand

corner of the" worksheet. This means that the constraint

(row) names should be listed down column one, beginning in

column three. The activity (column) names should be listed

across row one, beginning in column three. The row and

31

column names may be any combination of characters of up to

eight characters in length. The first character of each

name must be a letter or a special character (!,@, #,$,%,&).

The rest of the characters must be a letter, one of the

special characters, a number or a hyphen. No blank row or

columns names are allowed. The names cannot be 'END'

either. Either "min" for a minimizing problem or "max" for

a maximizing problem is placed in cell (1,1), row one

column one.

The objective function values of each column are

listed across row two beginning in column three. The

objective function value for each column obviously goes in

that column. Zero values may be represented with blank

cells. If the value is negative this is represented by

placing a minus sign before the value.

The nature of each constraint (less than, equal to, or

greater than) should be entered in column two beginning in

row three. The nature is listed in the same row as the

constaint that it pertains too. An "L" is used for less

than, "E" for equal to and a "G" for greater than. These

are to be left justified in their respective cells.

The right hand side values are listed in the column

after the last activity column. "RHS" is written in row

one of this column. The second row of the column is blank

as the right hand side has no objective function value.

32

Then the right hand side values are listed starting in row

three and in the row that the value pertains too. Zeros

may be represented by blank cells. Negative values are

represented by a minus sign before the value.

The constraint set values (matrix values) are

entered after column three and below row three. Each value

is placed in the cell corrisponding to the row and column

that pertains to the value. If the value is zero the cell

may be left blank. If it is a negative value this is

indicated with a leading minus sign.

Saving the Matrix

There are two ways that the matrix should be saved.

The first method is to save the matrix so that it may be

recalled for changes. This is done using the TRANSFER SAVE

instructions. The second method is used to save the matrix

as a test file so that the MPS-MP program can read it.

This is done by using the PRINT FILE instructions.

Using MPS-MP

To use the MPS-MP program the MPS-PC working diskette

or the MPS-PC screen display working diskette with the MPS-

MP program on it is inserted into drive A, while a

formatted data disk is inserted into drive B. When the A:

prompt appears on the screen the user types:

A: MPS-MP

33

and presses return or enter. This will initiate the

program. The program will then display:

Enter the name of the file to be converted.

The user will then type the file name that was saved from

Multi-Plan using the PRINT FILE instructions. If the file-

name entered is not on the data disk the following appears

on the screen:

<filename> is not on the disk.
Enter "Q" to exit to system.

Enter the name of the file to be converted.

with <filename> being the filename that the user just

entered. If the user enters "Q" the program exits the

system. Anything else entered will be interpreted as a

filename and the program will treat it the same as the file

name entered earlier.

When a valid filename is entered, the program will

read the file from the data disk in drive B. Then program

will then prompt the user to name the output for MPS-PC to

use by displaying:

Enter filename for MPS-PC.
Enter an 'X' for the default. -

Default will be "filename". ,
' '

'
•

with "filename" being the file that was read by MPS-MP.

When entering the filename the user does not give the .dat

34

extension. Upon enter the filename or 'X' the program will

allow the user to change the data disk in drive B by dis-

playing: : ; • ,'.

Put the data disk in drive B:
Press any key to continue . :\ TM /

•
'

'

The user places the desired disk in drive B and presses any

key. At this point the program creates and saves the

output file (data file for MPS-PC) . When this is done the

program will ask the user if he/she wishes to convert

another file by displaying:

Do you wish to convert another file? Y/N

If "Y" is entered the program will start over with the

enter file to be converted prompt. If "N" is entered the

program will exit to the system.

The program will tell the user if the data disk is

full by displaying:

Disk is full.

Do you wish to convert another file? Y/N

At this point the user may place another formatted data

disk in drive B and convert the file again or exit to the

system by entering "Y" or "N" respecfully.

35

_,
1

Appendix B:

MPS-MP Program Listing

36

program inps_mp (filein, fileout) ;

type '
'/'''

cell_type = string [10];
table_type = array [1. .53,1. .73] of cell_type;
line_type = array [1..7] of cell_type;

var
done,
dximmy
filename
infilename
outfilename
fileinname
fileoutname
table
filein
fileout
i/j
filefound,
too_large : boolean;

char;
string [8]

;

string [10]

;

string[8]

;

string [14]

;

string [14]

;

table_type;
text

;

text

;

integer;

(* a procedure to make all letters capitals *)

procedure capitalize (rows, columns: integer)

;

var
i,j,k: integer;

begin i

for i := 1 to rows do (capitalize row headings}
for k := 1 to 10 do

if table[i,l][k] in [•a'..'z'] then
table[i,l] [k] :=

chr(ord(table[i,l] [k]) -32);
{capitalize column headings}

for j := 1 to columns do
for k := 1 to 10 do

if table[l,j][k] in [•a'..'z'] then
table[l,j][k] :=

chr(ord(table[l,j] [k]) -32);
end; {capitalize}

37

(It**)

i* a function to find the number of rows read from file *)
(***)

function number_of_rows : integer;

var
i : integer;

begin
i : = 3 ;

(** read through column one until blank cell read **)
while table [i,l] <> ' 'do begin

i := i + 1;
end; {while}
number_of_rows := i - 1;

end ; { number_of_rows

}

(* a function to find the number of columns read in *)
(**^^^^^^^^^^^^^^^.

function number_of_columns : integer;

var
i : integer

;

begin
i : = 3

;

(** read table until blank column heading read **)
while table [l,i] <> • 'do begin

i := I + 1;
end; {while}
number_of_columns := i - i;

end; {number_of_columns}

38

(* *************************** ****if***************ieie******ie)
(* a procedure to determine the number of less thans, *)
(* equal tos, and greater than constraints *)
(*** ********'\

i r \

procedure rhs_totals
(var lessthans, equals, greaterthans, rows: integer);

var
i : integer;

begin
lessthans := 0;
equals := 0;
greaterthans : = ;

(** read row 2 thru end of column two **)
for i := 3 to rows do begin

case table[i,2] [1] of
•L' : lessthans := lessthans +1;
'E' : equals := equals +1;
'G' : greaterthans := greaterthans + l;

end; {case}
end; {for}

end; {rhs-totals}

39

(********************* ***********is*********** ****** *******)
(* a procedure to read the input file and create a table *)
(* in memory the same as in the multi-plan spread sheet. *)
(*********************************** *******it**************\

procedure build_table;

var . , -

filler : char; ^'. '
.

•• -

row, col, column, i : integer;
last_line_blank : boolean;

label error; '

.
.

,' '.

' '
)''-'

f
I ,

begin
row : = 1 ; ^

"
: .

column := 1;
last_line_blank := false;

repeat { read beginning blank lines }

read (filein, filler)

;

until filler = • •

;

repeat { read entire file }

col := column - 1;

for i := 1 to 4 do {read blanks}
read(filein, filler)

;

repeat { read one line }

i := 0;
col := col + 1;
if col > 72 then begin

writeln; writeln
('Too many columns, please correct.');

too_large := true;
goto error;

end; (if)

repeat { read one field }

i := i + 1;
read (filein, filler)

;

40

if (i = 1) and (last_line_blank) and
((filler in ['a'..'z']) or
(filler in ['A' .

. 'Z']) or
(filler in ['!•,•§•,'#•,•$',•%','&•]))
then begin { new page }

row := 1; ""
' '

.

colimn : = column + 7 ; J

,

col := colvunn;
end; {if}
if row > 52 then begin

writeln; writeln
('Too many rows, please correct.');

too_large : = true

;

goto error;
end; {if}
if (ord(filler) <> 13) and

(ord(filler) <> lO) then
table [row, col] [i] := filler;

last_line_blank := false;

until (ord(filler) =13) or (i = lO) or
(eof (filein))

;

until (ord(filler) = 13) or
(col = column + 6) or (eof (filein))

;

if (col = column + 6) and (i = lo) then
read (filein, filler)

;

i := 1;
row := row +1;
repeat { read through blank lines }

read(filein, filler)

;

if ord(filler) = 13 then begin
row := row + 1;
i := i +1;

end;
until (filler = • ') or (eof (filein))

;

if i > 1 then
last_line_blank := true;

until eof (filein);
error: writeln;

end;

41

(* a procedure to write the output file MPS-PC needs. *)

procedure write_output (var fileout:text)

;

var
disk_full : boolean;
rows,
columns

,

lessthans,
equals,
greaterthans

,

i , j , k : integer

;

rhs : string[8];
label error;

begin
disk_full := true;
rows := nuinber_of_rows;
columns := number_of_columns

;

capitalize (rows, columns)

;

rhs_totals (lessthans , equals
, greaterthans , rows)

;

(*** write number of constraints, activities, **)
(*** less thans, equal tos, and greater thans **)
{$!-}

'

write (fileout, rows - 2,
columns - 3,
lessthans,
equals,
greaterthans

,

if not (lOresult = 0) then
goto error;

(** write type of problem **)
for k := 1 to 3 do begin

write (fileout, table [1,1] [k])

i

if not (lOresult = O) then
goto error;

end; {for}

writeln(fileout, ""
)

;

if not (lOresult = 0) then
goto error; -

I II

I

);

42

(** write constraint type of each row **)
for i := 3 to rows do begin

write (fileout, ""
) ;

if not (lOresult = 0) then
goto error

;

for k := 1 to 10 do
if not (table[i,2][k] = ' •) then begin

write (fileout, table [i, 2] [k])

;

if not (lOresult = 0) then
goto error

;

end; {if}
writeln (fileout , ""

)

;

if not (lOresult = 0) then
goto error

;

end; {for}

(** write row names **)
for i := 3 to rows do begin

write (fileout, ""
)

;

if not (lOresult = 0) then
goto error;

for k := 1 to 10 do
if not (table [i,l][k] = • •) then begin

write (fileout, table [i,l] [k])

;

if not (lOresult = 0) then
goto error;

end; {if}
writeln (fileout , ""

) ;

if not (lOresult = 0) then
goto error;

end; {for}

(** write colximn names **)
for i := 3 to columns - 1 do begin

write (fileout , ""
)

;

if not (lOresult = 0) then
goto error;

for k := 1 to 10 do
if not (table[l,i][k] = ' •) then begin

write (fileout, table[l,i][k])

;

if not (lOresult = 0) then
goto error;

end; {if}
writeln (fileout, "• •)

;

if not (lOresult = 0) then
goto error;

end; {for}

43

(** write objective function values **)
for i := 3 to columns - 1 do

if table [2, i] = ' • then begin
writeln(fileout,0)

;

if not (lOresult = 0) then
goto error;

end {if}
else begin

for k := 1 to 10 do
if not (table[2,i][k] = ' ') then begin

write (fileout , table [2 , i] [k])

;

if not (lOresult = 0) then
goto error

;

end; {if} . .

writeln (fileout)

;

if not (lOresult = 0) then
goto error

;

end; {else}

(** write matrix values **)
for i := 3 to columns - l do

for j := 3 to rows do
if table [j,i] = ' i then begin

writeln (fileout, 0)

;

if not (lOresult = 0) then
goto error

;

end {if}
else begin

for k := 1 to 10 do
if not (table[j,i] [k] = ' •)

then begin
write (fileout, table [j,i] [k])

;

if not (lOresult = 0) then
goto error;

end; {if}
writeln (fileout)

;

if not (lOresult = 0) then
goto error;

end; {else}

44

(** write right hand side values **)
for i := 3 to rows do

if table [i, columns] = ' • then begin
writeln(fileout,0)

;

if not (lOresult = 0) then -:

goto error; <- -
,

-

end {if} j :- ,
*

else begin ^
'

'

i

for k := 1 to 10 do
if not (table[i, columns] [k] = ' »)

then begin
write (fileout, table [i, columns] [k])

;

if not (lOresult = 0) then
goto error

;

end; {if}
writeln(fileout)

;

if not (lOresult = 0) then
goto error

;

end; {else}

writeln (fileout ,
' "END"

')

;

if not (lOresult = 0) then
goto error;

disk_full := false;

error: (*** disk write error occured ***)
if disk_full then begin

writeln;
writeln;
writeln ('Disk is full.');

end; {if}

end; {write_output}

45

I************** MAIN PROCESS ****************)
(***)

begin
(** loop until user wants to return to system **)
repeat

done : = •
N

'

;

too_large := false;
for i := 1 to 53 do

for j := 1 to 73 do
table[i,J3 := ' •;

(** loop until user enters a valid filename **)
repeat

writeln
('Enter the name of the file to be converted.');
readln (filename)

;

fileinname := 'b: ' + filename;
assign(filein, fileinname);
{$!-} reset (filein) {$!+};
if lOresult = o then

filefound := true
else

if (filename = 'q') or (filename = 'Q')
then filefound := true

else begin
filefound := false;
clrscr;
writeln

(filename,' is not on the disk.');
writeln

('Enter "Q" to exit to system.');
writeln;

end {else}
until filefound;

46

if not ((filename = 'q') or (filename = 'Q'))
then begin

build_table;
if not too_large then begin

writeln;
writeln('Enter filename for MPS-PC.');
writeln ('Enter an "X" for the default.');
writeln

('Default will be "', filename, '".');
writeln;
readln(outfilename)

;

if (outfilename = 'X') or
(outfilename = 'x') then
outfilename := filename;

fileoutname :

=

'b: ' + outfilename + '.dat';
writeln; writeln; writeln

(•Put the data disk in drive b:');
writeln (

' Press any key to continue .

')

;

readln (dummy)

;

assign (fileout,fileoutname)

;

($!-} rewrite (fileout) {$!+};
if lOresult = then begin

write_output(fileout)

;

close (fileout)

;

end {if}
else

writeln ('Disk is full. •)

;

writeln;
writeln (

' Do you wish to convert
'

,

' another file? Y/N •)

;

readln (done)

;

end; {if}
end; {if}
clrscr;

until (done = 'N') or (done = 'n');
end.

47

BIBLIOGRAPHY

1. Barton, David G. and Francis, Cheryl Parks. "A Users
Guide to MPS: A Linear Programming System from IBM,"
Department of Agricultural Economics, New York State
College of Agriculture and Life Sciences, Cornell
University, July 1976.

2. Buller, Orlan. "Linear Programming: Notes on Theory,
Geometry and Use," Department of Agricultural
Economics, Kansas State University, 1985.

3. Conte, Robert D. "Computer Assisted Analysis for
Military Managers," Masters Thesis, Wright-Patterson
Air Force Base, Ohio: Air Force Institute of
Technology, December, 1979.

4. Daininger, Rolf A. "Teaching Linear Programming on a
Micro-computer," TIMS/ORSA Meeting, Detroit,
Michigan, April, 1982.

5. Darr's, W. "Solving Systems of Linear Equations,"
Nibble, Vol. 6, No. 1, January 1985, p. 60-62, 64.

6. DBS Corporation, Arlington, Virginia, "Development of
Software for Computer Assisted Model Simplification.
Final Report," Department of Energy, Washington,
D.C. , April 25, 1980.

7. Fraley, Theodore R. E. and Kem, Dale A. "FORTRAN
Based Linear Programming for Microcomputers ,

"

Masters Thesis, Wright-Patterson Air Force Base,
Ohio: Air Force Institute of Technology, December,
1982

.

8. Gillin, Paul. "Package Eliminates Trials and Errors
in 'What If Models," PC Week, Vol. 4, No. 4,
July/August 1985, p. 46.

9. Gottfried, Byron. "Micro-LP: A Microcomputer-Based
Linear Programming system," TIMS/ORSA Meeting,
Detroit, Michigan, April, 1982.

10 Landis, K. "Micro Finance: Linear Programming,"
Softalk for the IBM Personal Computer, Vol. 2, Mav
1984, p. 59-60. ^

11. Landis, K. and Herbers, M. "Micro Finance: Linear
Programming, Part II; LPMasters," Softalk for the IBM
Personal Computer . Vol. 3, June 1984, p. IsT-Iss.

48

12. Mullennex, M. L. "Microcomputer-Based Graphical
Linear Programming Package," Masters Thesis,
Wright-Patterson Air Force Base, Ohio: Air Force
Institute of Technology, December, 1093.

13. Orchard-Hays, W. "History of Mathematical Program-
ming Systems," Annals of the History of Computing .

Vol. 6, No. 3, July 1984, p. 296-312.

14. Pfeiffer, Dr. George H. "MPS-PC Linear Programming
System," Research Corporation, 1984.

15. Swain, Ralph W. "Microcomputers in the Classroom,"
TIMS/ORSA Meeting, Detroit, Michigan, April 1982.

16. White, G. R. "Personal Computer Aided Decision
Analysis", Masters Thesis, Wright-Patterson Air
Force Base, Ohio: Air Force Institute of Technology,
December 1984.

17. Whitehouse, G. E. and Hosni, Y. "Use of Micro-
computers to Solve Industrial Engineering and
Operations Research Problems," TIMS/ORSA Meeting,
Detroit, Michigan, April 1982.

49

Linear Programming on the PC:

Loading through Multi-Plan and Testing.

by

Dwight Christie

B. S., Kansas State University, 1983

An Abstract of A Master's Report

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, KS 66506

1987

Abstract

The developement of linear programming and the

development of computers have coincided since L. V.

Kantorovich began work on linear programming in 1939. With

the complexity and number of steps required to solve a

linear programming problem it was not feasable to solve the

problem by hand. As computers became larger and faster

linear programming programs became more prevalent and

reliable.

Now with personal computers with relatively large

memories and being quite fast, linear programming packages

are being developed for personal computers. MPS-PC is one

such package. For this report a conversion program (MPS-

MP) was written to allow a user to load the data for MPS-PC

through the Multi-Plan worksheet.

The MPS-PC package was tested against a program for

mainframe computers (MPS by IBM) . The test showed that

25.93% of the problems run on MPS-PC gave errorneous re-

sults, if the results from the MPS package are considered

accurate.

