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Abstract 

Behaviors and immune-measures can be used as indicators of animal health and welfare. 

Measures of passive immune transfer and solid-feed intake often are used to gauge weaning 

readiness for dairy cattle. Technological improvements in an automated collection of behavioral 

data make it feasible to replace invasive techniques and time-consuming measures. This thesis 

will introduce studies that used applied ethology for beef and dairy calves as indicators of 

resilience, passive immune transfer, and weaning readiness. 

Study 1 was conducted to determine if automated data collection of stand-lie behaviors 

and environmental enrichment device (EED) usage could detect differences among four different 

weaning protocols for male Holstein calves. For first treatment, MOD-STEP calves were fed 

0.66 kg/d of milk replacer (MR) and were step-down weaned by age 6 weeks (PM milk replacer 

feeding was withdrawn 1 wk before weaning, and last milk replacer feeding was withdrawn at 

age 42 d). For the remaining 3 treatments, calves were fed higher planes of milk replacer (1.09 

kg/d MR). Treatments were: 1) Step-down weaned (HI-STEP) at age 6 wk; 2) Step-down 

weaned at age 8 wk (HI-LATE), or; 3) Gradually weaned by age 8 wk (HI-GRAD). From age 6 

d to 1 wk after weaning, calves were provided an environmental enrichment device (EED), 

which was a dummy nipple attached to a bottle and holder. In addition, calves had an 

accelerometer attached to their rear leg to detect stand-lie data before, during, and after weaning. 

Results showed that calves fed HI-milk replacer (HI-STEP and HI-GRAD) used EED with more 

frequency and spent less time resting. This study confirms that applied ethology can be used as 

an indicator of “weaning readiness” in dairy calves. 

Study 2 was conducted to identify and refine directly observed calf nursing behaviors and 

better understand their relationships to physiological biomarkers in dams and calves. Data from 



  

59 two-year-old Angus-cross heifers’ body weight and blood were collected during day one of 

the study. Heifers were then moved to a maternity pasture where trained observers monitored 

calving progression. Times were collected for each calf’s: birth (calf on the ground); stand (all 

four limbs upright for > 5 seconds); first-suckle (mouth contact with any teat); and each teat 

during 24 hr after birth. After the 24 h observation period, body weights were measured, and 

blood was collected and used to measure complete blood counts. Plasma was analyzed for: 

immunoglobulins G1 and M, total plasma protein (TPP), cortisol, and haptoglobin. Calves were 

divided in two groups using a threshold of 10 g/L of IgG. Calves that failed to acquire passive 

immune transfer required more time to stand up and to start suckling. Correlations were found 

between TPP and latency to stand and to first suckle, indicating that precocious behaviors can be 

used to predict passive immune transfer in neonatal calves. 

Applied ethology tools can be used to refine and replace invasive and time-consuming 

measures, such as blood collection and solid feed weigh back. Ethology also may be used guide 

calf raisers’ management decisions. 
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Chapter 1 - Review of Literature 

 

 Introduction 

A neonatal calf is referred to period of birth until its first 28-30 days of life. During this 

period, proper care and good welfare are extremely important for calf health. Intense care can 

prevent early morbidity and high mortality. Leading factors associated with neonatal mortality 

are failure of passive transfer (FPT; Weaver et al., 2000) and dystocia (Odde, 1996; Laster and 

Gregory, 1973). Although failure of passive transfer is not a disease, it makes calves susceptible 

to develop infectious disorders (Weaver et al., 2000) such as diarrhea, respiratory diseases, and 

omphalophlebitis (Mee, 2013; Besser and Gay, 1994). During the first hour of life, mortality risk 

was estimated to be approximately 69% (Bellows et al., 1987) for beef calves and 75% for dairy 

calves (Mee, 2013). These calf deaths cause a significant economic loss to producers. The USDA 

in 2011 estimated 13.1% of the non-predator loss in U.S. is due to calving problems. 

Management during parturition can help prevent exposure to pathogens, decreasing risk of 

infections (Smith, 2007). Dystocia and failure of passive transfer are the most common factors 

associated to neonatal calf losses (Mee, 2004; Odde, 1996). These two factors can be decreased 

by improving management of the farm. Although there is more attention paid to management of 

neonates’ environment, cow and calf behavior are emerging as a toolset to predict health and 

immune resilience in calves (Hulbert et al., 2019; Hulbert and Moisa, 2016). Knowledge of 

natural behaviors is important to identify abnormal behaviors throughout different species. 

Maternal behaviors such as licking a calf will promote cardiovascular and respiratory stimulation 

of a neonatal calf (Von Keyserlingk and Weary, 2007; Edwards and Broom, 1982). A vigorous 

calf will stand up and start suckling colostrum with a few hours after birth (Odde et al., 1985). 
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This innate behavior is extremely important for calf to acquire enough colostrum to ensure a 

successful passive transfer, especially when they are left to suckle their dams (Besser et al. 

1991). Behavior studies are necessary to improve managements practices related to neonatal 

calves, but it is time consuming when data is acquired from live observations. More recently, 

video cameras and automated devices such as loggers are being used to acquire remote 

behavioral data with more precision and disturbing the least researched animals (Bonk et al., 

2013; Ledgerwood et al., 2010).  

 

 Pre-Parturition 

 Cow overall health 

The overall health during pregnancy and parturition need to be accounted for calf health 

and survival. Homeostasis and homeorhesis are involved in control of cow body metabolism 

during pregnancy and lactation. During gestation, fetus growth and mammary gland 

development will be prioritized, and considerable a part of maternal nutrients will be used for 

their maintenance (Picciano, 2003; Bauman and Currie, 1980). Energy requirements for a 

pregnant cow will be 75% greater than for a non-pregnant cow (Bauman and Currie, 1980). 

During this time, it is essential that cows are fed properly to maintain a desired body score. For 

first-calf heifers, a body condition between 5.5 to 6.0 at calving is recommended (Odde, 1996). 

This recommendation is given once what cows and heifers are fed prior to parturition influences 

calf survival. Researchers reported that calves born to heifers with lower body condition (< 5; 

scale of 1 = emaciated to 9 = obese; Richards et al., 1986) have a lower vitality and consequently 

a lower passive transfer (Odde, 1996; Carstens et al., 1987).  
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 Parturition  

 Environmental conditions 

 Environmental conditions where calves are born are variable, and dependent on weather, 

available facilities, and farm managements. Heifers and cows are usually moved to maternity 

pastures prior to their calving date. This practice will decrease calves’ exposure to pathogens 

once they are born (Smith, 2007). In cold weather, it is common to move dams to maternal pens 

inside barns, especially heifers because they require more assistance than cows (Odde, 1996). 

Although these pens allow dams to be closely monitored during their stages of parturition, 

pathogen exposure is also greater (Odde, 1996). Environmental conditions such as temperature 

and moisture can affect the ability of neonatal calves to resist disease and can influence pathogen 

replication, increasing risk of infections (Smith, 2007). A well-managed environment will 

decrease exposure to infectious pathogens and prevent future calf loss. Weather conditions at 

calving time may also affect calf vitality and behavior (Smith, 2007). During early neonatal 

periods, calves are predisposed to thermolysis to adapt to extra-uterine life (Carstens, 1994). 

Calves born in warm weathers tend to be more active, standing up quickly and suckling 

colostrum easily, while calves born in harsh cold and high humid conditions have difficult time 

keeping body temperature homeostasis. Carstens (1994) reported that calf mortality 

progressively increases as environmental temperature decreases or precipitation increases. 

Calves are born covered in placental fluid which can freeze within seconds after they are born in 

negative temperatures. In addition, calves exposed to severe cold during prolonged hours can 

deplete their energy reserves, inducing physical weakness, and can have a decrease in 

immunoglobulins absorption, leading to mortality (Carstens, 1994). Cold weather can also make 
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calves more susceptible to “weak calf syndrome”, a condition where calves show muscle 

weakness and lethargy. They also take longer to stand up and suckle (Stauber, 1976). 

 Dystocia 

 In order to deliver a health and viable calf, management of cows is undoubtedly 

important. Dystocia and perinatal mortality are the leading problems at calving time (Mee, 2004; 

Odde, 1996) and comprise 16% of periparturient disorders of U.S. dairy herds (Mee, 2004). In 

addition, dystocia increases neonatal calf disease susceptibility and mortality (Andersen et al., 

1993). First-calf heifers are more susceptible to dystocia than pluriparae cows, especially due to 

fetal-pelvic incompatibility (Mee, 2004; Andersen et al., 1993). Dystocia is considered a painful 

condition (Huxley and Whay, 2006) and its causes can differ between groups. In first-calf 

heifers, the most relevant causes in crescent order are incomplete dilation of the cervix and 

vulva, abnormal fetal disposition, and feto-pelvic incompatibility (Mee, 2004; Andersen et al., 

1993). Researchers attribute the most important factor in dystocia as the proportion between a 

dam’s pelvic area and fetus birth weight (Andersen et al., 1993). While in cows the most 

common causes are incomplete dilation of the cervix and vulva followed by uterine torsion, 

uterine inertia, twinning, fetal-pelvic incompatibility, and abnormal fetal disposition. Dystocia is 

also considered a risk factor for neonate respiratory acidosis, which later can affect acquisition of 

passive immunity (Quigley and Drewry, 1998).  

 

 Calf immunologic development 

 Fetal and neonatal calf immune defenses 

Calves immunology starts to develop in utero, immune and non-specific mechanisms are 

built to promote calves’ defenses. Stomach acids, enzymes secretions, and microbiota in mucosal 
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tissues are anatomic barriers and examples of non-specific defenses in neonatal calves 

(Barrington and Parish, 2001). Neutrophils and macrophages are also non-specific defenses that 

contribute to early fetal protection, although they are only released into the blood later in 

gestation (Banks, 1982).  When calves are born, nonspecific defenses are functional; however, 

they can be suppressed by stress, malnourishment, mild infections, and toxins exposures 

(Barrington and Parish, 2001). Immune defenses are developed and increased during the course 

of gestation, including lymphocytes (T and B), antibodies, and effector cells. Lymphocytes will 

migrate from their original mature sites: thymus, bone marrow, and Peyer’s patches to lymphoid 

organs during the first trimester of gestation (Barrington and Parish, 2001). Although calves have 

lymphocytes, they still lack immunocompetence (Hulbert and Moisá, 2016), which is the reason 

why Schultz et al. (1972) suggested that antigenic stimulation is required to induce 

morphological and functional immunological activity in the fetus. To prove this hypothesis, 

researchers studied E. coli in utero vaccination that showed increased production of fetus 

antibodies (Conner et al., 1973; Gay, 1971). Calves born to prenatal vaccinated cows had IgG, 

IgM, and anti-E. coli defenses in duodenum, jejunum, ileum, and jejunal lymph nodes (Conner et 

al., 1977). Although nonspecific and immune defenses are present in newborn calves, they are 

still exposed to new environment and unfamiliar microorganisms at calving time. Neonatal 

calves are considered to be agammaglobulinemic (McGuirck and Collins, 2004) and their 

immunity relies mostly on complement components (Banks, 1982) that will enhance activity 

from phagocytic cells such as neutrophils. A newborn calf will have larger number of neutrophils 

than an adult cow during its first days of life (Rossi et al, 1979). During the immune maturation 

phase, passive immune transfer provided from colostrum promotes protection to calves (Gomes 

et al., 2014). 
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 Passive immune transfer 

The importance of passive immune transfer is very well discussed, especially in ruminant 

species due to their synephiteliochorial placentation that is impermeable to macromolecules 

passage. Therefore, colostrum is the first mammary secretion after birth and supplies 

immunoglobulins, immune cells, growth factors, lactoferrin, nucleosides, vitamins, peptides, 

lysozyme, oligosaccharides, cytokines, and nutrients to neonatal calves (Gapper et al., 2007; 

Barrington and Parish, 2001). Colostrogenesis starts a few weeks prior and terminates shortly 

before parturition (Barrigton et al., 1997; Sasaki et al., 1976; Pierce and Feinstein, 1965; Larson, 

1958). Immunoglobulins are derived from blood or produced by intra-mammary plasma cells 

(Stelwagen et al., 2009) that will later be transported to colostrum by an active receptor in alveoli 

cells (Besser and Gay, 1994). These immunoglobulins are the main immune component present 

in colostrum (Stelwagen et al., 2009) and their absorption is crucial to provide passive immunity 

to neonatal calves (Pakkanen and Aalto, 1997). The most predominant immunoglobulin is IgG1, 

comprising approximately 80% of total bovine colostrum components (Larson, 1958; Pierce and 

Feinstein, 1965; Sasaki et al., 1976; Barrigton et al., 1997), whereas IgG2, IgA, and IgM are also 

present but in lower concentrations (Besser and Gay, 1994; Larson et al., 1980).  Because of its 

higher concentration, IgG1 is frequently used as efficient proof of passive transfer (Godden, 

2008; Besser and Gay, 1994).  

 After colostrum ingestion, a non-selective macromolecular transport system in the small 

intestine will absorb immunoglobulins from colostrum and forward them to blood (Stelwagen et 

al., 2009; Pakkanen and Aalto, 1997). This transfer occurs within 24 hours after birth (Moore et 

al., 2005; Pakkanen and Aalto, 1997; Besser and Gay, 1994) and its absorption decreases 

significantly within 12 hours after birth (Stott et al., 1979). It is important to emphasize that after 
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being absorbed, immunoglobulins are the main agents protecting gastrointestinal mucosa against 

pathogens (Gapper et al., 2007). Management of passive transfer differs between dairy and beef 

cattle. In the majority of dairy cattle operations, heifer calves are hand-fed colostrum (53.2%; 

USDA, 2014) when calf is removed from its dam within 2 hours after birth (McGuirk and 

Collins, 2004). From those hand-fed calves, around 87.4% are bottle-fed, 8.1% are fed using an 

esophageal tube, and 4.5% are bucket-fed (USDA, 2014), while beef calves are usually allowed 

to seek and suckle a dam’s teat to ingest colostrum (Von Keyserlingk and Weary, 2007; Besser 

and Gay, 1994). 

 Failure of passive immune transfer 

Many factors can be associated with failure of passive transfer (FPT). In dairy calves FPT 

is considered when serum IgG is lower than 10 g/L (Elsohaby et al., 2015; Deelen et al., 2014; 

Morril et al., 2013; McGuirk and Collins, 2004). The major critical factors are quality of 

colostrum, adequate volume fed, and timing of colostrum ingestion (McGuirk and Collins, 

2004). Factors affecting colostrum quality can also be related to cow such as parity, breed, 

vaccination, and health (Stelwagen et al., 2009; McGuirck and Collins, 2004; Quigley and 

Drewry, 1998). Volume of colostrum ingested by the calf is very important to ensure success of 

passive immune transfer. Commonly, a calf needs at least 0.15-0.2 kg of IgG to achieve 

appropriated passive transfer (Godden, 2008). This can be reached with 3 to 4 liters of high-

quality colostrum (McGuirk and Collins, 2004). Researchers have reported that calves left to 

suckle colostrum from a dam have fewer immunoglobulins than hand-fed calves (Besser et al. 

1991; Brignole and Stott, 1980). A survey from USDA 2014 showed the majority of dairy 

operations (87.5%) fed at least 3.7 liters of colostrum to heifer calves during first 24 hours of 

life, representing an increase of almost 48% from data reported in their previous survey (USDA, 
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2002). That shows greater concern and a better knowledge of passive immune transfer success. 

High-quality colostrum should have more than 50 mg/mL of IgG, less than 100,000 cfu/mL of 

total bacteria, and less than 10,000 fecal coliforms (McGuirk and Collins, 2004). An alternative 

when these standards cannot be reach is to use a colostrum replacer (Lago et al., 2018) or 

colostrum from donor cows properly tested and well managed (McGuirk and Collins, 2004). The 

USDA (2014) recommends usage of colostrum from only one cow, or pasteurized, colostrum 

from a greater number of cows. According, to Besser and Gay (1994), beef breeds have higher 

immunoglobulin concentration than dairy breeds. However, if colostrum is unavailable or 

deficient, dairy cows’ colostrum can be used to feed beef calves to ensure success of passive 

immune transfer. 

 Non-immune factors in colostrum 

Although immunoglobulins are the most predominant component, there are also non-

immunoglobulin factors present in colostrum. These factors can exert bacteriostatic and 

bactericidal activities and help protect neonatal calf from infectious diseases (Hooijdonk et al., 

2000). Lactoferrin and lactoperoxidase are the predominant non-specific antimicrobial 

components in bovine milk and colostrum (Hooijdonk et al., 2000). Lactoferrin causes depletion 

of iron from the intestinal environment, inhibiting bacteria growth and preventing neonatal 

infections in calves (Salmon et al., 2009; Hooijdonk et al., 2000; Pakkanen and Aalto, 1997). 

Nevertheless, lactoferrin plays many different roles in cellular defense, such as regulation of 

macrophages activity, proliferation of lymphocytes, and potentization of polymorph nuclear 

neutrophils bactericidal activity (Hooijdonk et al., 2000). In addition, this molecule also alters 

lipopolysaccharide membrane permeability, when bind directly to microbial membrane, inducing 

microorganism death (Adlerova et al., 2008; Hooijdonk et al., 2000). On the other hand, 
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lactoperoxidase in vitro studies showed bacteriostatic, bactericidal, and antiviral activities 

(Hooijdonk et al., 2000) due to production of a toxic intermediary oxidation product that inhibits 

microorganisms’ metabolism (Pakkanen and Aalto, 1997). Because of its bactericidal activities, 

lactoferrin and lactoperoxidase are commercially extracted from milk to be used in food 

preservation, oral care, and cosmetics products (Stelwagen et al., 2009).  

 

 Cow and calf behavior 

 Cow maternal behaviors 

Cows’ maternal behaviors are believed to be driven by hormonal changes, though 

research about these correlations are limited. Changes in progesterone, estrogen, testosterone, 

prolactin and oxytocin levels are reported to be associated with aspects of maternal behaviors 

(Von Keyserlingk and Weary, 2007). Hours prior to calving, cows leave their gregarious natural 

state to seek isolation and a nesting site (Von Keyserlingk and Weary, 2007). Increased activity, 

standing and lying behaviors, and vocalizations are perhaps due to discomfort around calving 

time (Huzzey et al., 2005; Houwing et al., 1990; Edwards and Broom, 1982). Additionally, it is 

common for cows to calve in recumbence and they might be reluctant to stand up to lick the calf 

after a difficult parturition (Edwards and Broom, 1982), especially heifers that usually require 

more assistance than cows (Houwing et al., 1990). Cows usually stand up faster and spend more 

time licking the calf.  Edwards and Broom (1982) reported that cows spend around 30-50% of 

the first post-partum hour licking their calves, stimulating calves cardiovascular system, 

promoting defecation and urination (Von Keyserlingk and Weary, 2007), cleaning fetal 

membranes, and promoting drying of the calves’ coat (Edwards and Broom, 1982). This 

behavior is also associated with offspring recognition using olfactory-gustatory stimuli to create 
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a dam-offspring bond (Grau, 1976). Additionally, cows and heifers can perform placentophagia 

(i.e., placental ingestion) and move their calves away from the nesting site to reduce risk of 

predation (Edwards and Broom, 1982; Kristal, 1980). Although the previous statement seems to 

be reasonable regarding placentophagia, many other hypotheses for this behavior have been 

discussed. Some researchers attribute placentophagia to a transition to carnivore state right after 

calving or simple hunger (Kristal, 1980). 

 Neonate calf behaviors 

In time following calving, neonate calves first try to lift their heads and then stand using 

their front legs (Houwing et al., 1990). When standing behavior is mastered, calves will follow 

the cow and spend some time rubbing and sniffing the dam’s body (Edwards and Broom, 1982). 

After locating the dam’s udder, calves will start to head bud in search for a teat to suckle, and 

finally finding a teat to start suckling colostrum. According to Odde et al. (1985) on average a 

beef calf performs five suckles in 24 hours and can spend a total time of 46 min suckling. As 

mentioned previously, beef calves are usually left to suckle their dams, while dairy calves are 

separated from dams within 2 hours after birth. However, feeding calves using buckets are a 

concern because an increase in non-nutritive oral behaviors was reported in calves separated 

from dams within 2 hours after birth (Houwing et al., 1990). Group housed calves can start 

sucking on each other, increasing risk of contamination and infection among them (Veissier et 

al., 2002). More studies are needed to understand non-nutritive oral behaviors and how they 

affect calf health and immune status. 

 Automated behavior collection 

Behavioral data collection requires great amount of time and labor. Conventionally, these 

collections are in person, scan sampling, or data logging from recorded videos. However, 
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recently automated loggers were implemented to access stand-lie behaviors in dairy cows 

(Ledgerwood et al., 2010) and dairy calves’ activity (Bonk et al. 2013). According to Brown et 

al. (2013) accelerometers have been used to measure body posture and activity in more than 120 

species, increase in accelerometer usage is due to their ability to provide fine-scale 

measurements of behavior and make it possible to collect data without any influence of human 

presence (Brown et al, 2013). Accelerometers even allowed measurement and differentiation 

between grazing and browsing in goats (Moreau et al., 2009), while Luo (2016) reported usage 

of accelerometers attached to ear tags in mini-swine to collect measures of activity. Event 

loggers are being validated to access and measure swine and cattle oral-nasal-facial behaviors 

(Hulbert et al., 2019). The Onset Pendant G data logger (Onset Computer Corporation, Bourne, 

MA) is commonly used to collect domestic animals’ behavioral data and it was reported to 

accurately measure lying time, laterally lying, and number of lying bouts in both dairy cows and 

calves (Bonk et al., 2013; Ledgerwood et al., 2010). Usage of accelerometers to measure 

behavior is not restricted only to terrestrial and domestic animals. Researchers reported data 

collection in wild and aquatic animals as well (Brown et al., 2013). This fairly new resource 

allowed behavioral collections that was previously considered very difficult to achieve. 

 

 Conclusion 

Behavioral collection and immune-resilience are common neonatal calf topics. Previous 

neonatal calf researches are now becoming obsolete in virtue of all new automated technology 

available. Hence, there is a need to update studies and add new information that previously was 

very difficult to obtain. Applied ethology and immune resilience may be used as indicators to 
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intervene and improve management of neonatal calves, and possibly prevent morbidity and 

mortality the during first days of life.  
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Chapter 2 - Automated-collection of environmental enrichment 

device and stand-lie behaviors measure weaning readiness of calves 

reared with four different milk-replacer and weaning strategies  

 

 Abstract 

Solid feed intake is often used to determine the “weaning readiness” in dairy production. 

Calves fed higher (HI) planes of milk replacer nutrition consume less solid feed prior to weaning 

than calves fed a moderate amount (MOD) of milk replacer. Therefore, the objective of this 

study was to determine if automated-data collection of stand-lie behaviors and use of an 

environmental enrichment device (EED) could detect differences between calves on four 

different nutrition-weaning methods. Male Holstein calves (n = 28; 43 ± 1.2 kg BW; 1 to 2 d of 

age) were housed in individual pens in a naturally ventilated barn with no added heat for 56 d. 

All calves were initially fed one type of milk replacer (25% CP, 17% fat, 0.66 kg of DM) via 

nipple-buckets twice daily (0600 h and 1530 h) and one type of textured calf starter (ad libitum; 

20% CP and 37% starch). At enrollment (age 0 d), they were randomly assigned to one of 4 

nutrition-weaning methods. For the first treatment, calves were fed 0.66 kg/d of milk replacer 

and were step-down weaned by age 6 wk (MOD-STEP; the PM milk replacer feeding was 

withdrawn 1 wk before weaning and the last milk replacer feeding was withdrawn at age 42 d). 

For the other 3 treatments, calves were fed a higher plane of nutrition for milk replacer (1.09 

kg/d MR). These treatments were: 1) step-down-weaned (HI-STEP) at age 6 wk; 2) HI-milk 

replacer and then step-down weaned at age 8 wk (HI-LATE), or; 3) HI-milk replacer and then 

gradually weaned by age 8 wk (HI-GRAD); MR reduced to 0.45 kg/d at 40 d, 0.34 kg/d at 44 d, 
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one 0.34 kg/d AM MR-feeding at 48 d, one 0.23 AM MR-feeding at 51 d; and all MR withdrawn 

at 53 d). From age 6 d to 1 wk after their weaning, calves were provided an environmental 

enrichment device (EED) which was a dummy nipple attached to a bottle and holder. A sensor 

and automated logger tracked events when each calf manipulated the EED (sensitivity was 25 

Hz, event collection was 1 Hz). In addition, accelerometers were attached to the rear leg of each 

calf. Weaning caused calves in MOD-STEP and HI-STEP to increase solid feed intake in two 

steps (P < 0.05). While in HI-LATE and HI-GRAD, solid-feed intake increased only after 

weaning completion. Total lie duration, left-sided lying, and lying bouts increased among MOD-

STEP calves after weaning (P < 0.05). For HI-LATE, HI-STEP and HI-GRAD these behaviors 

did not change over time (P > 0.10). Usage of EED did not change during weaning among 

MOD-STEP, HI-LATE, and HI-GRAD calves (P > 0.10), but EED usage increased among HI-

STEP calves during weaning (P < 0.05). Sixteen percent of HI-STEP calves were considered 

frequent EED users, which was greater than expected. Behaviors of calves in HI-STEP and HI-

GRAD are indicators that calves were not ready for weaning. 

Key Words: neonatal, pre-weaning, post-weaning, sucking behaviors, lie behavior 

 

 Introduction 

Calf raisers often use solid feed intake to determine if a calf is ready to be weaned from 

milk or milk-replacer. Before 2010, many U.S. dairy heifers were fed what is now considered by 

nutritionists and industry a “low” plane of nutrition of milk or milk-replacer (e.g., 20% CP, 20% 

fat, 0.45 kg/d of DM), weaned at an average of 6 weeks, although some calf-raising specialists 

wean as late as 9 weeks (Hulbert and Moisá, 2016). Most U.S. dairy calf raisers begin weaning 

calves from milk using a variation of step-down weaning (Hulbert and Moisá, 2016), which 



19 

includes either removing a feeding or decreasing milk concentration to motivate calves to 

consume more of their readily available solid feed. Recently, milk replacer programs of 

moderate or high planes of nutrition (e.g. MOD = 25% CP, 17% fat, 0.66 kg/d of DM; HI = 25% 

CP, 17% fat, 1.09 kg/d of DM) have been adopted. Calf raisers anecdotally reported that calves 

fed with HI-milk replacer programs were not motivated to consume solid feed prior to step-down 

weaning. Researchers then confirmed that calves fed high MR programs consumed less solid 

feed prior to weaning compared to calves fed conventional programs (Terre et al. 2007, Hill et 

al., 2010; Ballou et al., 2013). This early programming of solid feed intake behaviors may be 

important to overall growth of HI-fed calves. Researchers reported improvements in average 

daily gain among HI-fed calves compared to calves fed a moderate-plane of nutrition, dissipated 

after 4 months of age. A possible way to reduce the challenges of weaning calves HI-fed milk 

replacer is to decrease milk replacer allowance gradually over several days (Dennis et al., 2018). 

Although increased post-weaning digestion and growth after weaning for HI-fed calves on 3 wk 

step-down period compared to HI-fed calves on a 1wk step-down was reported (Hill et al., 2016). 

Important behaviors related to overall growth and “weaning-readiness” were not measured or 

reported. Cross-sucking is cause of concern among calf raisers by the time calves are grouped 

after weaning. It is known that teat-fed calves express less non-nutritive oral behaviors compared 

to bucket-fed calves (Veissier et al., 2002). This behavior is associated with the lack of suckling 

rather than the ingestion of milk itself (Rushen and de Passillé, 1995). However, restrictions of 

milk during weaning time were reported to increase duration and frequency of non-nutritive oral 

behaviors (Rushen and de Passillé, 1995) even for teat-fed calves. Duration of non-nutritive oral 

behaviors (NNOB) reduced when calves displayed more non-nutritive sucking even after a 

smaller meal (Rushen and de Passillé, 1995). Nevertheless, similar but smaller effects were 
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observed when a non-nutritive teat was provided after a meal (Veisser et al., 2002). Perhaps an 

environmental enrichment device and automated collection of non-nutritive oral behaviors would 

give better indication of “weaning-readiness” than amount of solid-feed intake alone. Calf raisers 

do not typically weigh back refusals; rather, they visually assess residual feed once or twice 

daily. Automated collection of behaviors potentially provides semi-real time assessments of 

individual calf affective state at high sampling rate. Therefore, for this thesis, the author focused 

on two major classes of behaviors in addition to solid feed intake: non-nutritive sucking of a 

dummy-nipple (EED) and postural positions in stand-lie behaviors. Our laboratory and other 

researchers demonstrated that non-nutritive sucking of an additional nipple provides 

environmental enrichment for calves (Hulbert et al., 2015; Horvarth et al., 2017). In addition, 

Sharon et al. (2019) demonstrated that usage of an environmental enrichment device served as a 

sensitive indicator of “weaning readiness” among calves fed HI-milk replacer than solid feed and 

water intake. Automated collection of Stand-Lie behaviors has also served as indicators of calf 

wellbeing and comfort; calves that have a high frequency of stand-lie bouts, especially at night 

hours, may be in a more vigilant or frustrated affective state at weaning (Hulbert et al., 2019; 

Bonk et al., 2013). Usage of 3-axis accelerometer data loggers such as the Hobo Pendant G 

(Onset Computer Corporation, Bourne, MA) was validated for precisely recording lying 

behaviors in dairy cows (Ledgerwood et al., 2010), while Bonk et al. (2013) validated the same 

accelerometer for precise measures of lying time and bout frequency for young dairy calves. 

Therefore, the objective of this study was to compare solid-feed residual weights, EED, and 

stand-lie behaviors among calves in four different weaning strategies to predict weaning 

readiness.  
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 Material and methods 

 Animals and facilities 

This study was conducted at the Nurture Research Center nursery in southwest Ohio. All 

calves were under the approval of the institutional animal care and use committee; and cared 

accordingly to the Guide for the Care and Use of Agricultural Animals in Research and 

Teaching (FASS, 2010). At 3 or 4 (SD) days of age, 28 Holstein bull calves were transported 

approximately 300 km for 3.5 h to the facility from a Fair Oaks farm in Indiana. Calves were 

housed in 1.2 x 2.4 m individual pens with deep wheat straw bedding inside a non-heated barn 

with natural ventilation and side curtains. A French-drain system managed liquid waste to reduce 

pen moisture and fresh wheat straw was provided as needed. Temperatures ranged from 0-33oC 

(21oC average) and the relative humidity ranged from 17-100% (77% average). 

 Timelines and treatments 

Until weaning, all calves were fed milk replacer twice daily (0600 h and 1530 h) via 

nipple-buckets. Milk replacer was a formula common to all treatments. During their first 3-4 d of 

life, calves were fed one type of milk replacer (25% CP, 17% fat, 0.66 kg of DM). Throughout 

experiment, calves were fed water and one type of textured calf starter (20% CP and 37% starch; 

specific fatty acids were added as in Hills et al., 2011) ad libitum. At age d 4, calves were 

randomly assigned to one of 4 nutrition-weaning programs (Figure 2.1). Calves in the MOD-

STEP program were fed a moderately high plane-of-nutrition (Figure 2.1; n = 7) and 

conventional stepdown weaning was initiated at age 43 d. For step-down method, the PM 

feeding was withdrawn for 3 days (i.e., weaning initiation), followed by elimination of the AM-

feeding (i.e., weaning completion). All other calves were fed a high plane of milk replacer 

nutrition (HI; Figure 2.1). Calves in HI-STEP program (Figure 2.1; n = 7) were weaned using 
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conventional step-down method, which was initiated at age 39 d. At age 50 d, weaning was 

initiated for HI-LATE (Figure 2.1; n = 7) calves by removal of PM-feeding but they were 

provided 7 days of AM-feeding until weaning completion. Weaning was initiated at age 43 d by 

reducing both AM- and PM-feeding solids to 0.43 kg for HI-GRAD calves (Figure 2.1; n = 7); 

then, they were gradually weaned by reducing the solids by 25-35% increments in three more 

steps over next 10 days (Figure 2.1), and they were completely weaned at age 57 d.  

 Weaning readiness measures 

At 6 d, 28 calves (n = 7 per TRT) were provided an environmental enrichment device 

(EED). The EED consisted a dummy nipple and bottle with sensor and logger to track in events 

every time calf manipulated the nipple (20 Hz sensitivity of movement; 1 Hz collection-rate, 

HOBO State Data Logger UX90–001M). Environmental enrichment device was provided until 1 

wk after weaning. A 3-axis accelerometer (Onset Computer Corp., Bourne, MA) was attached 

medially to hind-leg of each calve for the same time period, logging in 60 sec intervals.  

 Growth and health measures 

Weights were measured a day after arrival (4 d; 43 ± 1.2 kg of initial BW) and then 

weekly. Data for growth are reported elsewhere (Dennis et al., 2018). For monitoring of health, 

calves were visually observed, and fecal scores were collected daily using a 1 to 5 scale (1 – 

normal, 5 – watery) (modified from Kertz and Chester-Jones, 2004). Medical treatments using 

antibiotics were also recorded daily accordingly to a binomial scoring system of lethargy, 

coughing, nasal discharges, or rectal temperature (> 39oC). Even though electrolytes were 

provided to calves with fecal scores > 2, this procedure was not counted as medical treatment.  
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 Statistical analyses 

 Sampling 

The automated and starter-intake data were sampled for 3 days prior to weaning initiation 

(Wi) (Pre-wean), first 3 days after Wi, and first 3 days after weaning completion (Wc). Prior to 

analyses, these data were checked for normality of residuals by evaluating Shapiro-Wilk statistic 

using UNIVARIATE procedure of SAS (v. 9.2, SAS Inst. Inc., Cary, NC, USA), and all data were 

normally distributed. From these data, a linear, mixed model with fixed effects of time, treatment, 

and interactions of treatment vs time was fitted and analyzed by restricted maximum likelihood 

ANOVA using MIXED procedure of SAS. Random effect was calf nested within treatment. 

Compound symmetry covariance structure for the within-subject measurement was used for all 

models. Pair-wise comparisons were performed 1) among treatments at each time using a sliced-

effect multiple comparison approach and 2) within each treatment across time using a Tukey-

Kramer adjustment to control family-wise Type-1 error. Least square means (± SEM) are reported 

throughout. In addition, every calf was categorized as a frequent EED-user (< 400 events per day) 

or a moderate EED-user (³ 400 events per day). Categorical data and treatments were analyzed 

using Chi-square analysis in SAS. Treatment, time, and interaction differences of P < 0.05 were 

considered significant and P > 0.05 < 0.10 when biologically appropriate were considered 

tendencies. 

 

 Results 

Performance measurements were reported by Dennis et al. (2018). Calves in MOD-STEP 

(76.2 kg; SEM = 1.633) treatment were lighter by 56 d (pre-weaning) when compared to HI-

STEP, HI-LATE, and HI-GRAD (77.5 kg, 80 kg, and 81.2 kg respectively; SEM = 1.633). 
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However, on day 112 post-weaning MOD-STEP calves body weight (138.9 kg; SEM = 2.065) 

were heavier than HI-STEP and HI-LATE (134.7 kg and 136.9 kg; SEM = 2.065) and lighter 

than HI-GRAD (139.9 kg; SEM = 2.065). No growth rates improvements were observed for HI-

GRAD calves, while MOD-STEP calves had similar results in body weight and structural growth 

as high milk replacer calves (Dennis et al., 2018). 

Although there were treatment vs time differences for sampled solid-feed intake and 

automated behavioral data (Table 2.1; P < 0.05). Weaning caused calves in MOD-STEP 

treatment to increase (Figure 2.2; P < 0.05) solid-feed intake in two steps (weaning initiation and 

completion). Total lie-duration, left-sided lying, and number of lying bouts increased among 

MOD-STEP calves after weaning (Figure 2.3; P < 0.05). However, MOD-STEP did not change 

their EED-use (Figure 2.4; P > 0.10). Calves in MOD-STEP treatment corresponded to 14.3% of 

the total frequent EED-users (Table 2.2; χ2 = 63.59, P < 0.001). Weaning also caused calves in 

HI-STEP treatment to increase (Figure 2.2; P < 0.05) solid-feed intake in two steps (weaning 

initiation and completion). Total lie-duration and left-sided lying did not change throughout time 

(Figure 2.3; P > 0.10) and number of lying bouts decreased among HI-STEP calves after 

weaning (Figure 2.3; P <0.05). However, HI-STEP calves have an increase use of their EED 

during weaning (Figure 2.4; P < 0.05). Additionally, HI-STEP calves corresponded to 42.9% of 

the total frequent EED-users, which was higher than expected (Table 2.2; χ2 = 63.59, P < 0.001). 

For HI-LATE calves, weaning completion increased solid-feed intake yet there was no 

difference between before and after weaning (Figure 2.2; P > 0.10). Total lie-duration, left-sided 

lying and lying bouts did not change during and after weaning (Figure 2.3; P > 0.10). Calves on 

HI-LATE treatment did not had a change their EED-use (Figure 2.4; P > 0.10). Percentage of 

frequent EED-users was lower than expected (Table 2.2; χ2 = 63.59, P < 0.001). For calves in 
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HI-GRAD treatment weaning completion caused an increase solid-feed intake (Figure 2.2; P < 

0.05). However, there was no differences between before and after weaning (Figure 2.2; P > 

0.10). Total lie-duration, left-side lying and lying bouts did not changed during and after 

weaning (Figure 2.3; P > 0.10). However, HI-GRAD did not change their EED-usage throughout 

weaning process (Figure 2.4; P > 0.10), 33.3% of calves in this treatment were frequent EED-

users, which was higher than expected (Table 2.2; χ2 = 63.59, P < 0.001). 

 

 Discussion 

Calves in MOD-STEP increased solid-fed intake gradually and according to milk 

replacer withholdings. This could be attribute to the fact that calves were hungrier during milk 

replacer withdrawals and needed solid feed to complement their nourishment, similarly to results 

from previous studies (Jensen, 2006; Borderas et al., 2009). However, calves in HI-STEP 

treatment had a gradual increase in solid-feed intake but much lower than compared to MOD-

STEP calves. While calves in HI-LATE and HI-GRAD treatments had a sudden rise in solid-

feed intake after milk replacer was completely withdrawn. Similar results were reported by 

Borderas et al. (2009), indicating that HI-fed calves take longer time to catch up with moderate-

fed calves solid feed intake. In virtue of this, later solid-feed intake rise similar structural growth 

was found between moderate- and HI-fed calves (Dennis et al., 2018). Researchers reported that 

activity was higher than expected in calves fed moderated milk replacer nutrition (De Paula 

Vieira et al., 2008). Similarly, in our study MOD-STEP calves were more active before and 

during weaning, although time spent lying and the number of lying bouts were significantly 

greater after weaning completion. Time spent lying on left-side was greater for MOD-STEP 

calves after weaning compared to the other treatments. Tough, the amount of time spent lying on 
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the left was about half of the total time lying. Calves on HI-STEP treatment spent significantly 

greater time lying and had a higher number of lying bouts, particularly during weaning compared 

to other treatments. While HI-STEP calves did not have a significant change in their time spent 

lying or lying on their left, the number of lying bouts significantly decreased during and after 

weaning completion. This is an indication that even though HI-STEP calves did not decrease 

their time lying, their time napping was lower than 120 sec of duration and thus was not 

considered a bout. That may be a cue that those calves were more active than we previously 

assumed just looking into lying time. Additionally, HI-GRAD calves had a slightly, but not 

significant, reduction in lying time during weaning, but no changes were observed in lying on 

their left or on number of lying bouts. In a study looking for standing time variances in less than 

2 mo of age Holstein calves in different periods of the year, researchers found out that calves 

averaged 300 min per day standing but no differences were found between time periods (Hill et 

al., 2013). Our study had similar results for treatments MOD-STEP and HI-LATE: standing time 

averaged 310 and 314 min per day, respectively. Treatments HI-STEP and HI-GRAD spent more 

time standing when compared to previous studies, which could be an indication that those calves 

were less comfortable during weaning progress. Our Environmental Enrichment Device (EED) 

provided a way for calves to manipulate and suck a pacifier performing non-nutritive oral 

behaviors (Metz, 1984; Jung and Lidfors, 2001). A non-nutritive sucking device such as a 

pacifier was already reported to induce a calmer state in rats and human infants (Blass, 1994), 

although in this study a high usage of EED was observed in HI-STEP and HI-GRAD calves 

around weaning. These two treatments also had calves spending less time lying down, indicating 

restless behaviors. These calves still seem motivated to suckle in comparison to the other two 

groups, and for that reason they are not ready to be weaned. To wean these calves could become 
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a concern if sucking behaviors are still in place. When commingled they could likely start 

suckling on each other increasing pathogen spread and infections (Veissier et al., 2002). In 

contrast to other researchers’ findings, calves fed moderate milk replacer did not use EED as 

frequently as we expected. In addition, increased stereotypies behaviors were reported in sows 

(i.e., bar chewing), lactating dairy cows, and broiler breeders and were associated with restricted 

feeding systems (de Jong et al., 2002; Redbo et al., 1996; Terlouw et al, 1991). An increase in 

vocalization by calves was also reported in moderate milk replacer systems (Thomas et al., 2001) 

but these observations were not made during this study. Further research using video footage can 

be implemented in the future to address vocalizations.  

 

 Conclusions 

In conclusion, behavioral measures in this study could be used as indicator of weaning 

readiness. Calves that are still motivated to suckled are not ready to be weaned or commingled. 

Increased activity after weaning could likely be an indication of discomfort during the weaning 

process, where they spend less time lying and use EED more frequently. High plane milk 

replacer nutrition did not increase the weaning readiness among calves in HI-STEP and HI-

GRAD. However, calves in HI-STEP and MOD-STEP had similar results, a longer weaning 

protocol seems to mitigate discomfort and improve weaning readiness. An environmental 

enrichment device and lying behaviors can be used by calf raisers as indication that calves are 

ready or not to be weaned. These tools can also help in decision making around weaning and 

commingling time. 
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 Tables 

Table 2.1. Solid-feed intake and automated behaviors of calves fed four different milk replacer (MR) programs during three periods 
relative to weaning initiation sampled and averaged (72 h before weaning, just after initiation wening, and just after weaning 
completion). 

  Treatment1     
Time2 relative to 

initiation of weaning     P - values 

 
MOD-
STEP 

HI-
STEP 

HI-
LATE 

HI-
GRAD SEM3 Pre During After SEM3 TRT Time 

TRT x 
Time 

Number of calves 7 7 7 7 — 28 28 28 — — — — 
Solid-feed g/d 1077a 530b 1046a 937a 86.60   366a   659b 1668c   0.04 <0.001 <0.001 <0.001 
Lie position, min/d 1130a  1079a 1126a  1072a 18.70 1121a 1078b 1106ab 12.92 0.067 0.017 0.001 
Lie Left4, %  591.2a  552.7a  571.0a    534.9a 20.64  563.3a   545.1a   578.8a 14.50 0.261 0.156 0.005 
Lying bouts5, no./d    24.5a    23.1a   25.1a    23.9a   1.66    25.3a  23.0b   24ab 22.40 0.845 0.036 <0.001 
EED, sec/d  152.6a  306.6ab 101.7ac   253abc 21.80  200.8a   224.8a   184.8a 29.70 0.036 0.101 <0.001 
EED bouts6, no./d      3.2a   11.1ab     7.3a    22.0b   3.55     7.3a  14.8b    10.6a   1.94 0.006 <0.001 <0.001 
a-d-cLS-means differ (P < 0.05; Tukey-Kramer adjustment); 1MOD-STEP= 0.66 kg of DM/d for the first 39 d of treatment and 0.33 kg 
only AM for 3 d; HI-STEP = 0.87 kg of DM/d for 4 d, 1.09 kg for 31 d, and 0.54 kg only AM for 7 d; HI-LATE =  0.87 kg of DM/d 
for 4 d, 1.09 kg for 42 d, and 0.54 kg only AM for 7 d; HI-GRAD = 0.87 kg of DM/d for 4 d, 1.09 kg for 35 d, and 0.87 kg for 4 d, 
0.66 kg for 4 d, 0.44 kg for 3 d, and 0.22 kg only AM for 3d; 272 h of continuous data were sub-sampled to represent each time period, 
Pre: Before Weaning, During: During weaning, After: After weaning; 3Largest SEM; 4While in the lie-position, the time in min each d 
calf leaned to the left. 5The number of times per day calves lie for longer than 120 sec. 6The number of times calf moved from not 
touching to touching the EED for at least 2 sec with 1 sec interval. 
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Table 2.2. Percentage of normal (< 400 sec of EED usage per day) and frequent (> 400 sec of EED usage per day) EED users for each 
treatment during the 72 h pre-, during- and after-weaning. Chi-square analysis. χ2 = 63.59, P < 0.001. 

 Normal1  Frequent2  
Treatment n3 %4 Expected5 Residuals n3 %4 Expected5 Residuals 
MOD-STEP 6   85.7 90  2.35 1 14.3 10 -2.35 

HI-STEP 4   57.1 90 -5.66 3 42.9 10  5.66 
HI-LATE 7 100.0 90  6.22 0   0.0 10 -6.22 
HI-GRAD 5   66.7 90 -2.90 2 33.3 10  2.90 

1Normal EED users (< 400 sec of EED usage per day); 2Frequent EED users (> 400 sec of EED usage per day); 3Total number of 
calves that were categorized as normal or frequent EED users. 4Percentage of calves in each treatment that were categorized as normal 
or frequent EED users. 5Expected percentage of calves for each group (normal and frequent) according to Chi-square analysis. 
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Figures 

Figure 2.1. Milk replacer (MR) time line with the following treatments: (1) 0.66 kg of DM/d during the first 39 d of treatment and 
0.33 kg only a.m. for 3 d (MOD-STEP); (2) 0.87 kg of DM/d for 4 d, 1.09 kg for 31 d, and 0.54 kg only AM for 7 d (HI-STEP); (3) 
0.87 kg of DM/d for 4 d, 1.09 kg for 42 d, and 0.54 kg only AM for 7 d (HI-LATE); and (4) 0.87 kg of DM/d for 4 d, 1.09 kg for 35 
d, and 0.87 kg for 4 d, 0.66 kg for 4 d, 0.44 kg for 3 d, and 0.22 kg only AM for 3d (HI-GRAD). 
 

 
d = days of age; AM = morning feeding; PM = evening feeding; 
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Figure 2.2. Box-plot (center line = mean, error bars = standard deviation, and points = outliers) of grain intake from MOD-STEP (0.66 kg of 

DM/d for the first 39 d of treatment and 0.33 kg only AM for 3 d), HI-STEP (0.87 kg of DM/d for 4 d, 1.09 kg for 31 d, and 0.54 kg only AM for 

7 d), HI-LATE (0.87 kg of DM/d for 4 d, 1.09 kg for 42 d, and 0.54 kg only AM for 7 d), HI-GRAD (0.87 kg of DM/d for 4 d, 1.09 kg for 35 d, 

and 0.87 kg for 4 d, 0.66 kg for 4 d, 0.44 kg for 3 d, and 0.22 kg only AM for 3d) represented by 72 h of continuous data sub-sampled to represent 

each time period. Pre-weaning, During-weaning, and After-weaning. P values for TRT, TIME, TRT*TIME were <0.01. a-e LS Means differ (P < 

0.05; Tukey-Kramer adjustment). For each plot, the box upper and lower limits represent the IQR (1o and 3o quartiles), the bold line within the box 

represents the median, the whiskers delimit the range and the circles represent the outliers. 
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Figure 2.3. Estimates (± SE) of (A) time spent in lie position, (B) time spent in lie position 
leaned to left, (C) number of times in lie position < 2 min, by treatment (MOD-STEP= 0.66 kg of 
DM/d for the first 39 d of treatment and 0.33 kg only AM for 3 d; HI-STEP = 0.87 kg of DM/d 
for 4 d, 1.09 kg for 31 d, and 0.54 kg only AM for 7 d; HI-LATE =  0.87 kg of DM/d for 4 d, 
1.09 kg for 42 d, and 0.54 kg only AM for 7 d; HI-GRAD = 0.87 kg of DM/d for 4 d, 1.09 kg for 
35 d, and 0.87 kg for 4 d, 0.66 kg for 4 d, 0.44 kg for 3 d, and 0.22 kg only AM for 3 d) and 
represented by 72 h of continuous data were sub-sampled to represent each time period. Pre-
weaning, During-weaning and After-weaning. * Treatment by time LS means differ (P < 0.05; 
Tukey-Kramer adjustment).��Within treatment LS means differ (P < 0.05; Tukey-Kramer 
adjustment). 
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Figure 2.4. Box-plot (center line = mean, error bars = standard deviation, and points = outliers) of EED total usage from MOD-STEP (0.66 kg of 

DM/d for the first 39 d of treatment and 0.33 kg only AM for 3 d), HI-STEP (0.87 kg of DM/d for 4 d, 1.09 kg for 31 d, and 0.54 kg only AM for 

7 d), HI-LATE (0.87 kg of DM/d for 4 d, 1.09 kg for 42 d, and 0.54 kg only AM for 7 d), HI-GRAD (0.87 kg of DM/d for 4 d, 1.09 kg for 35 d, 

and 0.87 kg for 4 d, 0.66 kg for 4 d, 0.44 kg for 3 d, and 0.22 kg only AM for 3d) represented by 72 h of continuous data sub-sampled to represent 

each time period. Pre-weaning, During-weaning, and After-weaning. P values for TRT, TRT*TIME were <0.05. * LS Means differ (P < 0.05; 

Tukey-Kramer adjustment). For each plot, the box upper and lower limits represent the IQR (1o and 3o quartiles), the bold line within the box 

represents the median, the whiskers delimit the range and the circles represent the outliers. 
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Chapter 3 - Association among neonatal beef calf behaviors, dam 

blood parameters, and immune-status of cows and calves 

 

 Abstract 

Calf suckling behaviors after birth have a direct effect on risk for morbidity and 

mortality, yet measures of hematology, stress, and immunity are typically used as biomarkers for 

health. Therefore, the overall objective was to detect if calf innate behaviors and maternal blood 

measures can serve as biomarkers for passive transfer and replace invasive measurements 

techniques. For this observational study, two-year-old Angus-cross heifers (n = 59; South 

Dakota, USA, March 2018) were moved to a maternity pasture. Before moving heifer body 

weight was measured, and a total of 8-mL of whole blood (EDTA and Heparin) was collected 

via jugular venipuncture. Three trained observers (inter-observer reliability > 95%) monitored 

calving progression in 24-h shifts. Times were collected for each calf’s: birth (calf on the 

ground); stand (all four limbs upright for >5 seconds); first-suckle (mouth contact with any teat); 

and each teat during the first 24 h of life. Relative to birthing time, latency to stand, first-suckle, 

and to suckle on all four teats were calculated. After the 24 h observation period, calf 

bodyweights were measured and a total of 8 mL of whole blood (EDTA and Heparin) via jugular 

venipuncture were collected. All EDTA-blood samples were used to measure complete blood 

counts (CBC; Idexx Procyte, Westbrook, ME, USA). Plasma was analyzed for: 

Immunoglobulins: G1 and M (Bethyl Laboratories Inc., Montgomery, TX), cortisol (DetectXÒ; 

Arbor Assays, Ann Arbor, MI, USA), and haptoglobin concentrations (Hp). Data were analyzed 

for descriptive statistics, ANOVA using the GLM analyses, a t-test analyses and Pearson’s 
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Correlation in SAS (v. 9.2, SAS Inst. Inc., Cary, NC, USA). Mean differences were reported for 

two groups of calves: failed and succeed passive immune transfer, using a threshold of 10 g/L of 

plasma IgG. Seventeen percent of the calves failed to acquire passive immune transfer from 

maternal colostrum. Same calves took a longer time to stand up (P < 0.001), a longer time to first 

suckle (P < 0.05), and a longer time to suckle least teat (P < 0.05). As expected, calf total plasma 

protein, IgG, and IgM concentration were higher for Succeed calves (respectively: P < 0.001; P 

= 0.052; and P = 0.052). When comparing heifer and calf groups, hematocrit, hemoglobin, 

MCV, MCH, MCHC, and lymphocytes mean values were higher in heifers (P < 0.001), while 

total erythrocyte counts, and neutrophils were higher in calves (P < 0.001). Plasma bactericide 

activity and haptoglobin concentrations were higher in heifers, which may be due to parturition 

inflammation. Using correlations, calf total plasma protein (TPP) increased when latency 

between birth to stand or birth to first suckle decrease (respectively: r = -0.45, P < 0.01; r = -0.24 

P = 0.08). Positive correlations were founded between calf TPP, IgG1 and IgM concentrations (r 

= 0.52, P < 0.01). Gestation length tended to cause increased neonatal calf cortisol 

concentrations (r= 0.24, P =0.07). Calf precocious behaviors can be used by producers as 

biomarkers to measure calf successful passive immune transfer and replace invasive techniques.  

 

 Introduction   

The hours after birth are a critical window for behavioral development in calves (Hulbert 

and Moisá, 2016). Some calves can have innate precocious behaviors and take less time to obtain 

their first meal than calves with a delayed development. The ruminant placenta is impermeable 

to antibodies (Chucri et al., 2010) and nonetheless, colostrum is important to be ingested 

immediately after birth. This first meal is particularly important for bovine neonates because they 
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need to ingest colostrum within 24 h of birth in order to gain passive immunity from their dams 

(Stott et al., 1979b; Gay, 1984; Godden, 2008; Murray and Leslie, 2013). Colostrum will also 

help the development of non-specific immunity such as mucosal barriers that will protect 

neonatal calf from pathogens without an inflammatory response (Hulbert and Moisá, 2016; Kelly 

and Coutts, 2000).  

When time for the calf to stand and start suckling (i.e. latency-to-suckle) is greater, then  

less immunoglobulins and nutrients are absorbed from colostrum. Researchers reported that 

closure of intestinal permeability occurs approximately 24 h after birth (Besser and Gay, 1994; 

Pakkanen and Aalto, 1997; Moore et al., 2005) due to maturation of intestinal epithelial cells 

(Stott et al., 1979b). The critical window for colostrum ingestion may even be shorter than 24 h, 

Stott et al. (1979a) reported that Holstein-Friesian calves fed colostrum after 12 h post-calving, 

had failure of passive transfer (FTP) due to intestinal permeability closure. Based on gut closure 

timeline, other researcher (Gay, 1984) recommended feeding colostrum as soon as 2 h after birth. 

 Influence of maternal state, even among apparently normal births is well studied when 

related to nutrition and body scores. Lower vitality and lower passive immune transfer were 

reported in calves born from heifers with lower body conditions (Odde, 1996; Carstens et al., 

1987). Protein restrictions for heifers during pre-partum were shown to reduce thermoneutral 

metabolism in neonatal calves (Carsterns et al., 1987). This also reduces calves’ thermogenesis 

ability to respond to cold stress after parturition (Smith and Carsterns, 2005). In abnormal 

parturition researchers reported increase in cortisol concentrations in dams and calves (e.g. 

dystocia; Vannuchi et al., 2015). In addition, dystocia can increase the risk for calves to develop 

respiratory acidosis which later on will affect passive immune transfer (Quigley and Drewry, 

1998). Besides nutritional and birth difficulties, maternal status can also influence calf 
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hematological and biochemical status (Shil et al., 2012). However, cow and calf comparisons are 

not commonly reported.  

Over half of dairy producers will hand feed by bottle or gavage calves to mitigate passive 

immune transfer critical window (NAHMS, 2014). In contrast, beef production is more 

extensive, and calves are allowed to seek and suckle before a human intervenes (Von 

Keyserlingk and Weary, 2007; Besser and Gay, 1994). Calf raisers have the option of measuring 

passive transfer using spectrophotometers to quantify the total amount of protein present in 

calves’ blood (Deelen et al., 2014; Elsohaby et al., 2015; Stott et al., 1979). Calf total serum or 

plasma protein were reported to be highly correlated with total immunoglobulin G (IgG; r = 0.87; 

Morrill et al., 2013). Other antibody-subtypes are directly measured (e.g. IgG1 and IgM), but 

methods for data collection are not rapid, and therefore, by the time the calf raiser receives the 

information, there may not be an opportunity for intervention. Therefore, the overall objective 

was to detect if calf innate behaviors and maternal blood measures can serve as biomarkers for 

passive immune transfer and replace invasive techniques. 

 

 Material and methods 

 Animals and facilities 

This study was conducted in March and April 2018 at a cow-calf operation ranch near 

Pollock, north central South Dakota. Angus-cross heifers (n = 59; age 2 years) were housed in 

approximately 0.4 km2 maternity pasture. Heifers were provided a nutritional ration one time a 

day and water ad-libitum. In mild weather conditions, heifers were allowed to give birth in the 

maternity pasture. Within the maternity pasture, a calf-nesting area was set up and consisted of 

wind shield panels and 20 cm-deep straw bedding at maternity pasture. Small entry ways only 



40 

allowed the calves to enter calf-nesting area preventing peripartum heifers from stepping on 

nesting calves. When weather conditions became harsh, animals were moved into a maternity 

barn. Maternity barn was approximately 4047 m2 divided in twelve maternity pens, a maternity 

chute, an area for food and bedding storage, and an area with water source. Maternity pens were 

bedded with straw 10 cm deep. Daily, soiled and dirty bedding were removed, and new straw 

was added. Heifers were allowed inside only for 24 h to assure bond with their calf; afterwards 

they were moved out into the maternity pasture. Wind shield panels and bedding were also 

provided as a shelter for heifers close to the calf bedding area.  

 Behavior collection and live observations 

Three trained observers (inter-observer reliability > 95%) monitored calving progression 

in 24-h shifts. Times were collected for each calf’s: birth (calf on the ground); stand (all four 

limbs upright for >5 seconds); first-suckle (mouth contact with any teat); and each teat during the 

first 24 h of life. Relative to birthing time, latency to stand, first-suckle, and latency to suckle on 

all four teats were calculated. 

 Blood collection and body weight 

 Heifers 

Heifer blood was collected before moving into maternity pasture. A hydraulic squeeze 

chute was used to restrain heifers during collections. A total of 8 mL of blood was drawn from 

jugular venipuncture using a vacutainer system (20-gauge x 1 ½ inch) into two tubes with 

anticoagulants (EDTA and Heparin). During blood collections pre-calving heifer body weights 

were recorded using a calibrated scale from a hydraulic cattle chute. 

  

  



41 

 Calves 

Calf blood was also collected via venipuncture but 24-48 h after birth. Calves were gently 

handled and restrained in left side decubitus for collection. A total of 8 mL of blood was drawn 

from jugular venipuncture using a vacutainer system (22-gauge x 1 inch) into two tubes with 

anticoagulants (EDTA and Heparin). Calf birth weight was recorded 24-48 hours after birth 

using a mobile scale. 

 Blood analyses 

A field laboratory was set up at the ranch shop to process and do a pre-analysis of blood. 

All EDTA-blood samples were used to measure complete blood counts (CBC; Idexx Procyte, 

Westbrook, ME, USA).  

 Immune measures 

Heparin-blood samples were immediately centrifuged at 230 rfc for 15 min. Plasma was 

harvested and frozen at -20°C for further analysis. At Kansas State University animal physiology 

lab, plasma samples were unfrozen overnight in a refrigerator and analyzed for immunoglobulins 

(IgG1 and IgM), cortisol, haptoglobin concentrations (Hp), plasma bactericide assay (PB), and 

total plasma protein (TPP). For all assays, samples were randomly assigned to each assay 

protocol. Immunoglobulins measures, IgG1 and IgM, were analyzed using a commercially 

available ELISA kit (Bethyl Laboratories Inc., Montgomery, TX) with suggested plasma 

dilutions. Optical density was estimated at 450 nm in a microplate reader and concentrations 

were calculated using an app (elisaanalysis.com). Intra- and inter-assay coefficient of variations 

were respectively 3.82% and 14.8% for IgG1, and 5.21% and 0.43% for IgM. A refractometer 

was used to measure refractive index (BRIX) of total plasma protein (TPP). 
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Cortisol measurements were calculated using a commercially available ELISA kit 

(DetectXÒ; Arbor Assays, Ann Arbor, MI, USA) in 15 µl of plasma. Optical density was 

estimated at 450 nm in a microplate reader and concentrations were calculated using an app 

(elisanalysis.com). Intra- and inter-assay coefficient of variation were respectively 3.90% and 

4.12%.  

Acute-phase protein haptoglobin (Hp) concentrations were measured based on 

colorimetric method using peroxidase activity previously described (Cooke and Arthington, 

2013). High concentration Hp samples were used to prepare standards and curved with serial 

dilutions of 1:1 ratio. In a borosilicate tube (16 x 100 mm), plasma samples (10 µl) and 7.5 ml of 

O-dianisidine solution were incubated for 45 min at 37.5°C. Hemoglobin solution (25 µl) was 

then added followed by more 45 min of incubation at same temperature. Hydrogen peroxide 

solution (100 µl) was added after incubation and samples were incubated at room temperature 

for 1 h. For optical density measurements, samples were pipetted into a 96 well-plate and read at 

450 nm in a microplate reader. Intra- and inter-assay coefficient of variation were respectively 

2.23% and 0.07%.  

Adapted methods for measurements of plasma bactericidal activity against a live culture 

of bacteria were based on previous described protocol (Crokaert et al., 1988). A live E. coli 

(8739®) culture was incubated with plasma sample at 1:20 ratio for 10 min. After incubation, 

samples were vortexed and 50 µl were cultured over tryptic soy agar plates (DifcoTM Microbial 

Content Test Agar, Becton Dickinson Company, Sparks, MD) in duplicates. Control samples 

were prepared only with RPMI and live E. coli. Samples and control plates were incubated for 24 

h at 37.5°C and the number of colony-forming units (CFU) were estimated. Percentage of CFUs 

eliminated by plasma were calculated using control means. 
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 Statistical analyses 

To perform the analyses, total plasma protein was converted to IgG using regression equation 

reported by Morril et al. 2013. The following equation was used: 9.12846x-59.2122. Failure of 

passive transfer was defined as plasma IgG < 10 g/L. After conversion, data were analyzed for 

descriptive statistics, ANOVA using GLM analyses, mean differences using a t-test and, 

Pearson’s Correlation. Repeated data were tested for normality of residuals by evaluating 

Shapiro-Wilk statistic using UNIVARIATE procedure of SAS (v. 9.2, SAS Inst. Inc., Cary, NC, 

USA). Data that were not normally distributed were log- or arcsine square root-transformed 

before t-test and GLM model analysis. Comparisons were performed between two groups of 

calves: calves that failed (Failed calves) or succeeded (Succeed calves) in acquiring passive 

immune transfer from maternal colostrum using a Tukey-Kramer adjustment. Least squares 

mean (± SEM) are reported throughout. Differences of P < 0.05 were considered significant and 

when biologically appropriated P > 0.05 <0.10 were considered tendencies. A t-test was used to 

compared group means for hematology and immunology data. Animals were separated in two 

groups: heifers and calves. Mean group differences (± SE) are reported using a Cochran 

adjustment for unequal means. Differences of P < 0.05 were considered significant. Correlations 

between calf immune measures, calf behaviors, cow immune status, and gestation length were 

performed using Pearson’s correlation for each variable. Differences of P < 0.05 were considered 

significant and when biologically appropriated P > 0.05 <0.10 were considered tendencies.  
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 Results and discussion 

 Descriptive information 

The first few hours after birth are extremely important for neonatal calves’ health. During 

this time, calves will need to acquire the first meal through their innate behaviors. Importance of 

colostrum intake in domestic animals is well discussed (Besser et al., 1991). This intake is 

essential for ruminants due to their synephiteliochorial placenta that is impermeable to antibodies 

(Stott et al., 1979b, Chucri et al., 2010). Failure of passive transfer increases morbidity and 

mortality among dairy and beef calves (Weaver et al., 2000). To ensure successful passive 

transfer dairy calf raisers routinely hand-fed calves (USDA, 2014). Although, methods to 

measure immunoglobulins in calves’ blood are invasive (i.e. blood collection) and time 

consuming, which can delay intervention. Maternal influences on calves’ health are mostly 

reported throughout pre-partum nutritional studies or abnormal parturitions (Odde, 1996, Laster 

and Gregory, 1973). Measurements of maternal blood parameters on calves’ health and 

behaviors are not commonly reported. Therefore, the overall objective of this study was to 

determine if calf innate behaviors and maternal blood measures can replace invasive techniques 

of passive immune transfer by identifying FPT calves, comparing maternal and offspring blood 

parameters, and correlating behavioral and blood measures from cows and calves.  

The primarily goal was to observe innate neonatal calf behaviors outdoors, however there 

were several days of severe weather (Figure 3.1), with high wind speed, cold temperatures, 

snow, and freezing fog. Therefore, thirteen heifers gave birth outdoors and then were moved 

indoors, all data were collected for these calves. However, five heifers delivered outdoors before 

observations were collected, their observational data were removed from the analyses. 

Remaining forty-one heifers were moved to the indoor barn as soon as the first stage of 
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parturition was observed (i.e. fetal membranes with mucous, tail upright). The covariate of 

birthplace (indoor vs. outdoor) was examined for each variable and there was no effect (P > 

0.10) on these variables. 

 Calf behaviors and immune status differences  

Measures of inflammation and immunology, such as haptoglobin, cortisol, and plasma 

bactericide did not differ among calves that were successful or failed to acquire passive immune 

transfer (Table 3.1; P > 0.10). Using a passive immune transfer threshold of 10 g/L of IgG 

(McGuirk and Collins, 2004; Morril et al., 2013; Deelen et al., 2014; Elsohaby et al., 2015), 17% 

of calves failed to acquire passive immune transfer from maternal colostrum. As expected total 

plasma protein (TPP) was higher for Succeed calves (Table 3.1; P < 0.001). Immunoglobulins 

G1 and M tended to be higher for Succeed calves than Failed calves (Table 3.1; P = 0.052). To 

support the previous findings, a positive correlation was established between calf percentage of 

total plasma protein and calf IgG1 (Table 3.3; r = 0.52, P < 0.01). Morrill et al. (2013) reported 

an even higher correlation (r = 0.87) between total serum protein from 1 d year-old calf and IgG 

concentrations. This difference may be due to fact that in our study a correlation was made 

between TPP and IgG1 measured through an ELISA assay, while Morrill et al. 2013 correlated 

TPP to IgG using radial immunodiffusion. Calf plasma IgM concentrations also correlated 

positively with TPP, although with a much stronger correlation than IgG1 (Table 3.3; r = 0.89, P 

< 0.01). On average Failed calves took almost 69 min longer to stand up than calves that had a 

successful passive immune transfer (Figure 3.2; P < 0.001). Following the same pattern, Failed 

calves took longer to start suckling and longer to reach last teat suckled (Figure 3.2; P < 0.05). 

According to previous research, a progressive decrease in immunoglobulins occurs when age 

increases due to maturing of intestinal epithelial cells (Stott et al., 1979b). In support of the 
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previous statement, a negative correlation tendency was found between latency to first suckle 

and TPP. In that way calves that took longer to first suckle tended to have lower TPP (Table 3.3; 

r = -0.24; P = 0.08). Succeed calves’ latency to stand and to first suckle were almost 30 min less 

than previous reported in Holstein calves (Houwing et al., 1990). Although the overall calves in 

this study took less than 3 hours to stand, some thoughts need to be given to the amount of 

colostrum intake for each individual calf. The amount of time that each calf spent suckling was 

not recorded in this study. Therefore, some calves may have had lower intake of colostrum than 

others by spending less time suckling. Previous reports showed that calves with lower vitality 

will take longer to stand up and probably suckle with less vigor ingesting less colostrum (Hulbert 

and Moisá, 2016, Kelly and Coutts, 2000). In addition, besides heifers IgG1 concentrations no 

other differences were found regarding heifers’ immune status and FPT calves (Table 3.1; P > 

0.10). Calves born from heifers with higher IgG1 concentrations tended to successfully acquire 

passive immune transfer from maternal colostrum (Table 3.1; P = 0.09). Previous literature 

reported that during pre-partum, immunoglobulins will be transported from blood to colostrum 

(Besser and Gay, 1994; Herr et al., 2011). That way we could assume that high IgG1 heifers also 

had high IgG1 concentrations in colostrum, which will influence their offspring passive immune 

transfer. 

Differential hematological parameters between heifers and calves. 

In this study percentage of eosinophils did not differ among heifers and calves (Table 3.2; 

P > 0.05). Hematocrit, hemoglobin, MCV, MHC, MCHC, lymphocytes, and monocytes were 

higher in heifers than calves (Table 3.2; P < 0.001), while TEC, reticulocytes, platelets, 

basophils, and neutrophils were higher in calves (Table 3.2; P < 0.01). Hematological parameters 

can indicate animals’ physiology, welfare, and immune status (Shil et al., 2012). These measures 
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can be helpful to diagnose hematological disorders and systemic diseases (Roland et al., 2014). 

However, hematology parameters are age related in many species, including bovine (Brun-

Hansen et al., 2006). Similarly, with our findings, researchers reported higher TEC and lower 

MCV, MCHC, and lymphocytes in calves when compared adult cattle (Shil et al., 2012; Brun-

Hansen et al., 2006). According to Shil et al. (2012), calves have higher hemoglobin blood 

concentrations than cows, possibly due to more erythropoiesis, which is the development of red 

blood cells. Hemoglobin outcomes for this study were higher for heifers when compared to 

calves (Table 3.2; P < 0.001). In addition, bovine species were reported to have higher 

neutrophils and basophils during early life, which later decreases with age and the consequent 

maturation of their immune system (Roland et al., 2014; Rossi et al, 1979). In calves, 6 to 8 

weeks are needed for lymphocytes to reach 80% of total leukocytes circulation (Brun-Hansen, 

2006; Barrigton and Parish, 2001). However, the higher neutrophil concentration in neonatal 

calves was already addressed by previous researchers. According to Banks (1982) neutrophils 

are the main fetal non-specific defense. Other researchers also reported that the larger number of 

neutrophils in neonatal calves can be explained by the fact that their immune system relays 

mostly in non-specific defenses and maternal antibodies (Rossi et al., 1979). In swine and rodent 

species, researchers reported that leukocytes are transported from dams’ colostrum to neonates’ 

blood (Sheldrake and Husband, 1985; Williams, 1993). Despite of the fact that heifers had fewer 

neutrophils numbers than their offspring, dam neutrophils and basophils were (Table 3.3; P ≤ 

0.05) positively correlated with calf neutrophils (r = 0.26) and basophils (r = 0.38). The main 

hematological reference intervals used for cattle health are based on dairy herds (George et al., 

2010), however, a reference range from a healthy animal group in similar environmental and 

physiological conditions should be more appropriated to diagnose hematological disorders 
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(Roland et al., 2014). The hematological values from Angus-cross heifers and calves describe in 

this study (Table 3.2) were inside the reference range previously reported by Schalm (1965) and 

outside the reference range reported by George et al, 2010. Since our data were collected from 

apparent healthy animals we can conclude that our values could be used as reference for pre-

parturient Angus-cross heifers and neonatal calves in upper Midwest, United States. Thus, 

hematological values can be used to access animal health, different values between adult cattle 

and calves, their breed, and location should be taken into consideration.  

 Differential immunological parameters between heifers and calves  

Cortisol concentrations did not differ among heifers and calves (Table 3.2; P > 0.05) 

endorsing that even eutocia is a stressful event for both dam and calf (Vannucchi et al., 2015). In 

contrast to previous researches, there were no correlations between dam-cortisol and calf-cortisol 

concentrations (Table 3.3; P > 0.05). Although our findings of calves’ cortisol concentrations 

were much lower at 24 h then in Holstein calves at the same age (Uetake K., 2014). In addition, 

calf cortisol concentrations tended to increase with gestation length (Table 3.3; r = 0.24, P = 

0.07), perhaps implying that a higher development and activity of neuroendocrine system occurs 

in longer-gestation-length calves. In humans, no correlations were found between gestation 

length and maternal cortisol (Buss et al., 2009), but an increase in maternal stress was reported to 

risen preterm birth (Ruiz et al., 2003). 

 In our study, heifers had higher plasma bactericide activity, total plasma protein, IgM 

concentration, and acute-phase haptoglobin than their calves (Table 3.2; P < 0.001). 

Haptoglobin, immunoglobulins, and pro-inflammatory leukocytes are expected to change in 

parturient cow due parturition inflammation. However, heifers’ plasma had greater bactericide 

activity compared to calves (Table 3.2; P < 0.001) due to their humoral immunity. Since humoral 
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immune response happens when B cells are activated and differ into antibody secretion cells 

after the contact with pathogens (Janeway et al., 2001). Calves will have less humoral immunity 

response than cows because their immune memory will just start to be developed after birth. In 

addition, a correlation was found between calf haptoglobin and plasma bactericide activity 

(Table 3.3; r = -0.03, P < 0.05), ratifying that the effectiveness of humoral immunity can be 

influenced by acute-phase proteins (Moisá et al., 2018). Immunoglobulins G1 concentrations 

were higher in calves than in heifers (Table 3.2; P < 0.001), probably because immunoglobulins 

were already transported to colostrum by time the heifers’ blood were collected (Besser and Gay, 

2014). However, a positive correlation was found between heifer IgG1 and calf cortisol (Table 

3.3; r = 0.29, P < 0.05), suggesting that heifers had less IgG1 transported to colostrum increasing 

cortisol concentration in their calves.  

  

 Conclusions 

In conclusion, behavioral measurements provided a better interpretation of calf passive 

immunity transfer acquired from maternal colostrum compared to heifer’s and calf’s immune and 

hematologic measures. Observation of calf behaviors is a simple and inexpensive tool that can be 

used by producers to improve the health and welfare of neonatal calves. Assistance is 

recommended for calves that are taking longer than 1 h to stand after birth. Hematological and 

immunological measures for cows and calves can be used as health indicators. Further studies on 

time spent suckling and amount of colostrum ingested may help to answer remaining questions 

about adequate passive immune transfer in beef calves.  
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 Tables 

Table 3.1. Differences between calf behaviors and immune status, and cow immune status for 
calves that fail or pass passive immune transfer. 

      Passive Transfer1     

      FAILED SUCCEED SEM2 P - values3 
Number of calves 10 49 — — 
Calf behaviors        

 Latency4 to:     
  Stand, min 119.4   50.6 15.67 <0.001 

  First suckle, min 182.3 104.9 31.59   0.029 

  Last teat suckled, min5 222.3 135.6 39.59   0.014 
  Udder usage, %   86.1   90.8   6.57 0.52 
Calf immune status      

 Total Plasma Protein, %      6.4   10.2  0.41 <0.001 

 IgG1, mg/mL5   14.5   27.4  7.60   0.052 

 IgM, mg/mL6     0.6     1.8  0.58   0.052 

 Haptoglobin, ug/mL5   59.1   54.8  9.04   0.904 

 Cortisol, ng/mL5   18.1   14.9  5.48   0.479 
  Plasma Bactericide, %6   22.1   18.8  3.31   0.331 
Cow immune status      

 Total Plasma Protein, %    13.2   13.3  0.45 0.86 
 IgG1, mg/mL6     6.3   10.2  3.65   0.091 
 IgM, mg/mL     4.3     4.1  0.60   0.792 

 Haptoglobin, ug/mL5   59.1   54.8  9.03   0.852 
 Cortisol, ng/mL   14.5   16.7  2.83   0.555 

  Plasma Bactericide, %    31.3         30  3.72   0.746 
1Passive immune transfer was calculated using IgG from BRIX (Morril et al., 2013) 
calves were separated in two groups using the threshold of 10 g/L of IgG (Failed < 
10 g/L; Succeed > 10 g/L); 2Largest SEM; 3LS-means differ (Tukey-Kramer 
adjustment); 4Time interval between birth and next behavior; 5P-values derived from 
log-transformed values; 6P-values derived from square-root-transformed values. 
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Table 3.2. Hematological and immunological parameters of Angus-cross heifers and calves. 

  Heifer   Calf   
Parameters n5 Mean SE  n5 Mean SE P-value  
Hematocrit % 58     42.24 0.49   59     37.73 0.82 <0.001 
TEC, x 106/uL1 58       7.84 0.10  59       8.29 0.14  0.01 
Hemoglobin, g/dL 58     13.03 0.14  59     10.96 0.20 <0.001 
MCV, fL2 58     53.62 0.43  59     45.30 0.36 <0.001 
MCH, pg3 58     16.66 0.94  59     13.20 0.60 <0.001 
MCHC, g/dL4 58     31.09 0.11  59     29.17 0.14 <0.001 
Reticulocyte, x 103/uL 58       2.80 0.15  59     4.55 0.57 <0.001 
Leukocytes, x 103/uL 58     11.04 0.37  59     9.96 0.42   0.059 
Neutrophil, x 103/uL 58       5.39 0.35  59       6.52 0.33   0.024 
Lymphocyte, x 103/uL 58       4.47 0.13  59       3.10 0.12 <0.001 
Monocyte, x 103/uL 58       1.04 0.03  59       0.18 0.03 <0.001 
Eosinophil, x 103/uL  58       0.13 0.01  59       0.02 0.16   0.745 
Basophil, x 103/uL 58     0.003 <0.01  59       0.01 <0.01 <0.001 
Platelets, x 103/uL  58 350.0 14.27  59   404.90 12.47   0.004 
Neutrophil:Lymphocyte 58      1.29 0.10  59    2.16 0.10 <0.001 
Cortisol, ng/mL 58     12.98 1.17  59     14.13 1.83   0.600 
Haptoglobin, ug/mL 58   158.20 26.31  59     55.56 3.69 <0.001 
Plasma bactericide % 58     30.17 1.53  59     19.36 1.38 <0.001 
Total plasma protein, bryx 58     13.22 0.26  59       9.51 1.92 <0.001 
IgG1, mg/mL 58       9.51 1.54  59     25.20 3.16 <0.001 
IgM, mg/mL 58       4.17 0.25  59       1.58 0.24 <0.001 
1Total erythrocyte count; 2Mean corpuscular volume; 3Mean corpuscular hemoglobin; 4Mean 
corpuscular hemoglobin concentration; 5Number of heifers or calves used in the analyses. 
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Table 3.3. Correlation statistics of calf behaviors, immune status, and cow immune status and gestation length. 
  Calf immune status 
  TPP IgG1  IgM  Hp Cortisol  PB 

    r 
P-

value r 
P-

value r 
P-

value r 
P-

value r 
P-

value r 
P-

value 
Calf behaviors, latency1 to:             
 Stand, min -0.45 <0.01 -0.16   0.24 -0.09   0.52 -0.03 0.8  0.14 0.3  0.15 0.27 

 First suckle, min -0.24   0.08 -0.21   0.12   -0.2   0.15 -0.09   0.52  0.06   0.64  0.13 0.33 

 Last teat suckled -0.17   0.22    -0.1   0.46 -0.11   0.44 -0.08   0.56  0.11 0.4  0.16 0.25 
 Udder usage, %  0.08   0.55  0.14   0.3  0.17   0.22   0.19   0.18  0.08   0.57 -0.03 0.83 

Calf immune status                         
 Total plasma protein, % (TPP)  —   —  0.52 <0.01  0.52 <0.01   0.02   0.86 -0.21   0.12 -0.15 0.26 

 IgG1, mg/mL  0.52 <0.01  —   —  0.89 <0.01   0.16   0.21 -0.19   0.15 -0.19 0.16 

 IgM, mg/mL  0.52 <0.01  0.89 <0.01  —   —   0.09 0.5 -0.16   0.22 -0.21 0.11 

 Haptoglobin, ug/mL (Hp)  0.02   0.85  0.16   0.21  0.08     0.5  —  —  0.16   0.22      -0.30 0.02 

 Cortisol, ng/mL     -0.2   0.11 -0.18   0.15 -0.16   0.22   0.16   0.22  —  — -0.12 0.37 
 Plasma bactericide, % (PB) -0.15   0.26 -0.18   0.15 -0.05 0.7   -0.3   0.02 -0.12   0.37  — — 

Cow immune status                         
 Total plasma protein, % (TPP) -0.03   0.81    -0.1   0.44 -0.07 0.6 - 0.03   0.84 -0.08   0.57 -0.14 0.3 

 IgG1, mg/mL  0.07   0.58 -0.07   0.58 -0.05   0.67   0.21   0.12  0.29   0.03    -0.2 0.15 

 IgM, mg/mL -0.03   0.79  0.02   0.83  0.16   0.21   0.17   0.21  0.14   0.28 -0.17 0.21 

 Haptoglobin, ug/mL (Hp)  0.16   0.22 -0.01   0.93  0.06   0.66   0.03   0.85 -0.12   0.39 -0.23 0.09 

 Cortisol, ng/mL  0.05 0.7 -0.08   0.52  0.01   0.92   -0.1   0.47 -0.15   0.26  0.24 0.07 
 Plasma bactericide, % (PB) -0.18   0.17 -0.18   0.15 -0.17 0.2 -0.03   0.82 0.15   0.25 -0.05 0.72 

Cow                          
 Gestation length  0.11   0.37  0.07   0.59 -0.02   0.85 -0.11   0.43  0.24   0.07  0.33 0.01 
First column correlates calf behaviors, calf immune status, cow immune status, and gestation length with calf measures of immunity; r 
= correlation coefficient; 1 Time interval from birth to next behavior. 
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 Figures 

Figure 3.1. Daily (mean ± SD) environmental temperatures and wind speed (top and bottom 
panels respectively) near Pollock, SD from March 18th to April 4th, 2018. Precipitation is 
represented with asterisks (snow) and solid circle (freezing fog) symbols.  
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Figure 3.2 Neonatal behavior differences between calves that failed or succeed in receiving 
passive immune transfer from maternal colostrum. 

 
Failure of passive transfer was defined as IgG < 10 g/L. Behaviors are represent by latency: time 
interval between birth and next behavior (stand; first suckle; and last teat suckled). LS-means 
differ (** P < 0.001; * P < 0.05; Tukey-Kramer adjustment). Latency to last teat suckled P-value 
derived from log transformed values. 


