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Abstract 

A family of bis-pyridine based pharmaceutical active ingredients were synthesized and 

co-crystallized with four iodoperfluoroalkanes. Thirteen new crystal structures that are driven by 

I···N(py) halogen bonds, are presented and compared with that of their hydrogen-bonded 

analogues. Halogen bonded co-crystals exhibit two different structural arrangements, as opposed 

to layered architectures observed in hydrogen bonded co-crystals.  

In order to explore the effect of aromatic stacking interactions on hydrogen and halogen 

bond driven co-crystallization process, we utilized a series of aromatic hydrogen and halogen 

bond donors in combination with bis-pyridine based pharmaceutical active ingredients. Aromatic 

stacking between the donor and the acceptor were limited, due to the lack of complementarity 

between the donor and the acceptor in terms of size, shape and geometry. In that case, 

homomeric interactions between the single components were translated into the structure of the 

binary co-crystals. 

According to our charge calculations, similarly activated hydrogen and iodine atoms 

possess similar electrostatics. Therefore, we wanted to investigate the interchangeability of 

hydrogen bonds and halogen bonds by utilizing 2-aminopyrimidine as the backbone for C(sp)-H 

and C(sp)-I functionalities which makes self-complementary ribbons via NH···N synthons. Our 

results show that the ethynyl proton is capable of acting as a synthon mimic of ethynyl iodine by 

interchangeable C(sp)-H···N hydrogen bonds and C(sp)-I···N halogen bonds. 

We exploited the halogen bonding donor capability of iodo, bromo and chloro ethynyl 

functionalities towards a series of halide ions. Based on the grinding experiments these donors 

showed 90%, 70% and 50% success rates towards halides. Among the halides, chlorides 

exhibited the highest red shift compared to bromides and iodides.  

We synthesized a series of cavitands functionalized with hydrogen bond donor and 

acceptor groups and studied their binding preferences towards a series of active ingredients. We 

have shown that suitably functionalized cavitands can act as carriers of active ingredients and 

especially, selective binding of aspirin is demonstrated using a two-point binding mode.     
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Abstract 

A family of bis-pyridine based pharmaceutical active ingredients were synthesized and 

co-crystallized with four iodoperfluoroalkanes. Thirteen new crystal structures that are driven by 

I···N(py) halogen bonds, are presented and compared with that of their hydrogen-bonded 

analogues. Halogen bonded co-crystals exhibit two different structural arrangements, as opposed 

to layered architectures observed in hydrogen bonded co-crystals.  

In order to explore the effect of aromatic stacking interactions on hydrogen and halogen 

bond driven co-crystallization process, we utilized a series of aromatic hydrogen and halogen 

bond donors in combination with bis-pyridine based pharmaceutical active ingredients. Aromatic 

stacking between the donor and the acceptor were limited, due to the lack of complementarity 

between the donor and the acceptor in terms of size, shape and geometry. In that case, 

homomeric interactions between the single components were translated into the structure of the 

binary co-crystals. 

According to our charge calculations, similarly activated hydrogen and iodine atoms 

possess similar electrostatics. Therefore, we wanted to investigate the interchangeability of 

hydrogen bonds and halogen bonds by utilizing 2-aminopyrimidine as the backbone for C(sp)-H 

and C(sp)-I functionalities which makes self-complementary ribbons via NH···N synthons. Our 

results show that the ethynyl proton is capable of acting as a synthon mimic of ethynyl iodine by 

interchangeable C(sp)-H···N hydrogen bonds and C(sp)-I···N halogen bonds. 

We exploited the halogen bonding donor capability of iodo, bromo and chloro ethynyl 

functionalities towards a series of halide ions. Based on the grinding experiments these donors 

showed 90%, 70% and 50% success rates towards halides. Among the halides, chlorides 

exhibited the highest red shift compared to bromides and iodides.  

We synthesized a series of cavitands functionalized with hydrogen bond donor and 

acceptor groups and studied their binding preferences towards a series of active ingredients. We 

have shown that suitably functionalized cavitands can act as carriers of active ingredients and 

especially, selective binding of aspirin is demonstrated using a two-point binding mode. 
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Chapter 1 - Introduction 

1.1 From molecular chemistry towards supramolecular chemistry 

Molecular chemistry, the chemistry of the covalent bond, is a powerful discipline for 

creating sophisticated molecules and materials as well as for establishing a connection between 

molecular structure and reactivity. The evolution of synthetic molecular chemistry began with 

Friedrich Wöhler’s synthesis of urea in 1828; “I can make urea with no need of a kidney, or let 

alone an animal, be it a man or a dog”.1 Since then, the toolbox of covalent synthesis has grown 

rapidly with so called “name reactions”2 that involve making or breaking of the covalent bonds 

allowing the “control over covalent bond”.3 Multiple steps, specific catalysts and reagents, 

solvents, isolation of intermediates, purification conditions are crucial in every aspect of strategic 

covalent synthesis. Systematic studies of these elaborative synthesis processes over the years 

have developed molecular chemistry to a higher level of sophistication beyond that realized in 

the early stage.4 

“Just as there is a field of molecular chemistry based on the covalent bond, there is a field 

of supramolecular chemistry, the chemistry of molecular assemblies and of the intermolecular 

bond.”5 Supramolecular chemistry was defined by Jean-Marie Lehn, who won the Nobel Prize in 

19876, as “chemistry beyond molecule” which introduce so called “supermolecules” as complex 

species that are synthesized by combining two or more molecules via non-covalent interactions. 

In supramolecular chemistry, molecules communicate with each other via reversible 

intermolecular interactions (e.g. hydrogen bonds, halogen bonds, van der Waals interactions and 

coordination bonds) as opposed to covalent bonds in molecular chemistry (Figure 1.1). Moreover 

supramolecular synthesis is carried out as one pot single step or one pot multiple step reactions7 

to isolate the final product without any intermediates and without further purification.  
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Figure 1.1 Schematic representation of covalent synthesis vs. supramolecular synthesis 

 

Molecular recognition is a key aspect of supramolecular chemistry with a focus on size, 

shape, and complementarity match between the two components (host and the guest) of a 

molecular association event (Figure 1.2). Selectivity as the basic concept of molecular 

recognition was enunciated by H. E. Fischer8 by his “lock-and-key” model related to enzyme-

substrate interactions, and presented a crucial part of specificity and complementarity between 

the host and the guest. Advances of this concept has become the central topic in rational drug 

design with the aid of intelligent molecular docking.9 Thus, molecular recognition involves 

structurally well-defined pattern of intermolecular interactions organized to accomplish a 

specific function. 

 

 

 

 

  

 

 

Figure 1.2 Example of selective molecular recognition event 

Host  

Guests   

Host-guest complex 

(supermolecule) 
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1.2 Crystal engineering 

Crystal engineering, a subset of supramolecular chemistry involves molecular recognition 

in the solid state. G. M. Schmidt coined the term “crystal engineering” as designing packing 

motifs of crystals in solid-state reactions using organic solid-state photochemistry.10 The concept 

is to exert rational design of organic crystals by engineering intermolecular interactions to 

generate desired supramolecular architectures in solid state. Indeed Dunitz has referred to 

organic crystals as “supermolecule(s) par excellence”11 as the association of supermolecules can 

be controlled to design new functional solids with desired physical and chemical properties.  

Recent advances in engineered structural motifs enable a specific function via carefully 

tailored multi components in a crystal lattice. Development of crystal-engineering strategies 

towards exploitation of technologically important materials has become a captivating field to 

date. Such interesting outcome is demonstrated by enantioselective [2+2] photodimerization 

reaction with favorable molecular spacing of the two components and predetermined hydrogen-

bonded dimers in the crystal lattice (Figure 1.3). 

 

 

Figure 1.3 Design strategy for the construction of photo-reactive homo dimers and solid state 

photodimerization upon UV irradiation12 

 

Noveron and coworkers13 elucidated modulated magnetic properties of a series of 

crystalline solids containing N-(4-pyridyl)benzamide (NPBA) and metal ions where NPBA is 

engaged in three modes of intermolecular interactions, (hydrogen bonding, metal coordination 
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and π stacking). The resulting solid state supramolecular scaffolds, that are in periodic 1-D, 2-D 

and 3-D networks, display paramagnetic properties.  

 

 Figure 1.4 NPBA forming 1-D, 2-D and 3-D supramolecular architectures with metal ions13 

 

Moreover, Desiraju and co-workers14 developed novel NLO materials in which the two 

dipoles of the chromophores are oriented in non-centrosymmetric fashion (Figure 1.5) in the 

same crystal lattice (Figure 1.6a). In another example, nonlinear-optical-active centrosymmetric 

solids (Figure 1.5) are synthesized by combining bent linking groups and metal centers with 

well-defined coordination geometries (Figure 1.6b). These 2D coordination networks are 

carefully engineered to achieve NLO materials with high degree of predictability.15  

 

Figure 1.5 Primary arrangement of the two chromophores and the two possible orientations of 

the pair of chromaphors14 



5 

 

 

(a) 

 

(b) 

 

Figure 1.6 Arrangement of the chromophores in (a) non-centrosymmetric fashion (b) 

centrosymmetric fashion 

These examples show that, crystal engineering can be employed to design materials with 

specific function as far as the molecular arrangement and connectivity is achieved. The 

connectivity between the molecules in a crystal lattice is governed by numerous intermolecular 

interactions such as van der Waals forces, (i.e.dispersion forces),16 dipole-dipole interactions,17 π 

stacking interactions,18 hydrogen bonding and halogen bonding. Thus in a crystal structure, a 

combination of these intermolecular interactions that co-exist between molecules are responsible 

for different angles and directionalities that wind up as a balance in overall crystal packing. Thus 

it is important to understand these non-covalent interactions in order to create reliable synthetic 

routes to generate predictable supramolecular assemblies. Hydrogen bonding and halogen 

bonding are the two most common intermolecular forces widely applied in supramolecular 

synthesis. 
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1.2.1 Importance of hydrogen bonds in crystal engineering 

Hydrogen bond is the most utilized intermolecular interaction in molecular recognition of 

macromolecules and supramolecular synthesis of molecular solids due to its strength and 

directionality.19 According to the latest IUPAC project, the hydrogen bond is “an attractive 

interaction between a hydrogen atom from a molecule or a molecular fragment, X−H···A in 

which X is more electronegative than H, and an atom or a group of atoms in the same or different 

molecule, in which there is evidence of bond formation”.20 Hydrogen bonding is ubiquitous in 

nature, best examples being the DNA double helix composed of complementary base pairs and 

protein secondary structure of α-helix and β sheet assembled via hydrogen bonding (Figure 

1.7).21 An example where hydrogen bonding finds its application is synthetic material science, 

i.e. hydrogen bond mediated supramolecular semi conducting devices. The hydrogen bonding 

reinforce intermolecular π stacking to support mobilities up to 1.5 cm2/Vs with T80 lifetimes 

comparable with the most stable organic semiconducting materials (Figure 1.8).22     

 

 

 

 

(a) (b) 

Figure 1.7 Hydrogen bonding between (a) DNA base pairs (b) polypeptide chains of β sheets 
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Figure 1.8 Hydrogen bonding between quinacridine molecules templating intermolecular π 

stacking 

1.2.2 Halogen bonds- “A world parallel to hydrogen bonding”23 

Halogen bonds (XB),23-24 a recently added item to the supramolecular tool box, has 

gained widespread attraction as a counterpart to hydrogen bonding (HB). It is an intermolecular 

interaction between an electron deficient halogen atom and an electron-rich partner (Figure 

1.9).25 The anisotropic distribution of the electrostatic potential leaves an amphiphilic character 

to the halogen atom, where there is a region of positive potential along the C-X bond, the “σ 

hole”26 and a region of negative potential perpendicular to the C-X bond (Figure 1.10). 

Therefore, a covalently bound halogen can interact with both electronegative and electropositive 

entities depending on the approaching direction. 

 

 

 

D-C, N, halogen, etc.  

X-Cl, Br, I 

A-N, O, S, Cl, Br, I, Cl-, Br-, I- 

Figure 1.9 Schematic diagram showing the formation of halogen bonds 

 

 

Figure 1.10 Anisotropic distribution of positive and negative electrostatic potential on halogen 

atom27 

D X + D 

 

X 

 

            

 
A A 

δ+ 

 

δ- 
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The understanding of halogen bonds in protein-ligand complexes consisting of X···π, 

X···N, X···O, X···S interactions is quite useful in synthesizing halogenated ligands as inhibitors 

in drug discovery and biomolecular design.28 Distribution of these interactions in biological 

systems is displayed in Figure 1.11.  

 

Figure 1.11 Distribution of different XB interactions present in biological systems 

 

Halogen bond based recognition processes have been widely used to drive molecular 

assembly in the solid state, and rapid development in this area has moved towards functional 

materials. For example, XB has proven to be involved in effective catalytic systems, by 

activation of an electrophile towards a nucleophilic attack owing to the selectivity and 

directionality possessed by halogen bonds.29 In one of those examples, iodine trichloride act as a 

strong XB donor which catalyze a  ring-opening reaction by activation of the carbonyl group 

(Figure 1.12).30 

 

Figure 1.12 Halogen bond catalyzed ring opening 
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Halogen bonding has been advantageous with recycling and resolution processes which is 

an important segment in synthetic chemistry in terms of economic and environmental point of 

view.  Resolution of a mixture of racemic perfluorocarbons is mediated by XB based adduct 

formation using Br- and I- anions.31 

Hydrogen and halogen bond strengths can range from 5-200 kJ/mol depending on the 

system based on both experimental as well as theretical calculations.32 

1.2.3 Supramolecular synthons 

Supramolecular synthons are defined by Desiraju as “structural units within 

supermolecules which can be formed and/or assembled by known or conceivable synthon 

operations involving intermolecular interactions”.33 Supramolecular synthons are thus, the 

simplest robust units of a supramolecular architecture that carry key information encoded in the 

molecular recognition event.34 By dissecting the complex supramolecular structures into simpler 

units or supramolecular synthons, defined by “supramolecular retrosynthesis”,35 it simplifies the 

understanding of the assembly process (Figure 1.13). Moreover, it helps to recognize the 

interchangeability of the synthons which is a crucial component in crystal engineering and this 

can be observed by molecules that contain different functionalities with similar crystal 

structures.36 Also, it is possible to get control over supramolecular synthesis, if the synthons can 

be designed with predictability. Examples of robust supramolecular synthons that are commonly 

used in hydrogen bonding and halogen bonding are shown in Figure 1.14, which are further 

classified as homosynthons (occur between same complementary functional groups) and 

heterosynthons (occur between different complementary functional groups). 

 

Figure 1.13 Retrosynthetic analysis from molecular synthons to supramolecular synthons35  
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Figure 1.14  (I) acid-acid,37 (II) amide-amide homosynthons and (III) acid-amide,38 (IV) acid-

pyridine,39 (V) iodo-pyridine,40 (VI) iodo-iodo41 heterosynthons 

 

1.2.4 Co-crystallizations as means of exploring intermolecular interactions 

In the process of co-crystallization, two molecular components are brought together in 

the same crystal lattice with the use of supramolecular synthons without making or breaking 

covalent bonds.42 The two possible outcomes of this process are either undesired homomeric 

interactions (recrystallization) or desired heteromeric interactions (co-crystallization) where the 

former is favorable over the latter (Figure 1.15). Co-crystal formation is being explored in 

pharmaceutical industry, agrochemicals, explosives etc. due to the possibility of modulating 

physical properties without changing the integrity of the parent component. 

 

 

 

 

 

 

 

 

Figure 1.15 Schematic representation of co-crystallization and recrystallization 

 

 

Recrystallization 
Co-crystallization 
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In one of those examples, Ethenzamide, a poorly soluble non-steroidal anti-inflammatory 

drug, showed improved solubility and dissolution rate by co-crystallization with a suitable co-

former (Figure 1.16).43 Similarly, alternative solid forms of agrochemical actives which display 

improved physical properties, such as improved melting points, decreased solubility, improved 

storage and formulation stability, modified crystal morphology can be achieved by co-

crystallization.44,45 The ability of fine-tuning the solubility of an agrochemical active, cyprodinil, 

via co-crystallization is shown in Figure 1.17.46  

 

 

Figure 1.16 Dissolution rate profiles of Ethenzamide co-crystals43 

 

 

 

Figure 1.17 Solubility profile of cyprodinil co-crystals46 

 

Time (s) 
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Co-crystals     Amount 
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1.3 The importance of molecular receptors  

Development of nano scale synthetic receptors as molecular recognition host molecules 

has been explored with numerous receptors such as, crown ethers, cryptands, spherands, 

cavitands, calixarenes, cyclophanes, cryptophanes, cyclodextrins, cucurbiturils and so on. For 

several decades now, these receptors have proven high affinity and high selectivity in binding to 

complementary guest molecules.47 With the pre-organized binding pockets, they are good 

candidates for studying and understanding the unique nano scale structure-function relationship 

which is fundamentally different from the macroscopic level. The confined space provided by 

these molecular receptors grant a specific and controlled function in both biological processes 

and synthetic systems. 

One of the most popular applications is catalysis inside a molecular host, in order to 

emulate nature’s most efficient catalysts, enzymes. Captivity of the specific substrates inside 

enzymatic pockets is a powerful strategy in order to control catalytic activity in cells.48 Inspired 

by nature, artificial molecular pockets have been designed to mimic catalysis in a restricted space 

to date. A reversible capsule composed of two resorcinarene units accelerate the 1,3-dipolar 

cycloaddition between phenylacetylene and phenyl azide where the product act as a template to 

displace the reagents out of the compartment (Figure 1.18). The highly selective molecular 

recognition properties of the capsule make a regioselective product in few days, without the 

capsule, it takes a year for the reaction completion.49 

 

 

     

 

 

 

 

 

 

 

Figure 1.18 1,3-dipolar cycloaddition reaction taking place inside capsule49 
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Macrocyclic receptors are more suitable as drug delivery vehicles compared to 

dendrimers, nanoparticles or carbon nanotubes, since they have the ability to isolate the drugs 

within the structure, preventing drug degradation and deactivation. One of the receptors that are 

extensively studied and are already been included in tablets for oral delivery are cucurbit[n]urils 

(CB[n]) due to the increased chemical and physical stabilityof the drug, improved drug solubility 

and controlled drug release by formation of drug–CB[n] complexes (Figure 1.19).50 Some of the 

drugs that are studied include cis-platin,51 paracetamol,52 glibenclamide,52 memantine,52 

coumarin,53 and prelocaine.54 

  

(a) (b) 

Figure 1.19 Drug inclusion complexes of (a) memantine-CB[7]52 and (b) coumarin-CB[8]53  

    

The versatility of the macrocyclic receptors have gained attention in the design of 

supramolecular chemosensors. Kumai and co-workers have designed a supramolecular 

fluorescence sensor base on a boronic acid fluorophore and boronic acid-modified γ-cyclodextrin 

(CD) complex for selective recognition of sugar in water (Figure 1.20). These sensors displayed 

high selectivity for glucose over fructose and galactose.  The multi-point interaction capability of 

CD hosts via hydrogen bonds resulted high sensitivity towards glucose recognition. 
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Figure 1.20 Multipoint recognition of sugars by suitably functionalized cyclodextrins 

1.4 Goals of the thesis 

A deeper understanding of the intermolecular interactions is necessary if we are to design 

new solid forms with pre-determined connectivity. The molecular building blocks should be 

designed in such a way that they can convey directional and selective interactions to construct 

supramolecular networks with high predictability, as opposed to random and coincidental 

assembly. Since there is a function behind every binding event, controlled supramolecular 

assemblies lead to understand the correlation between structure-property relationship. After all, 

hydrogen bonding and halogen bonding are two parallel synthetic tools, it is advantageous to 

look for distinctive features and resemblance features of the two interactions as far as the 

molecular recognition events are subjected to occur in the same environment. 

Understanding of supramolecular synthetic strategies will be first exerted with small 

molecules in order to establish robust and reliable supramolecular architectures using hydrogen 

bonding and halogen bonding. Structural outcomes are always analyzed with respect to hydrogen 

and halogen bonding by comparison. Then, same hydrogen bonding and halogen bonding 

functionalities will be employed into large molecular receptors in order to understand the 

molecular recognition events in solid state and in solution.  

 

The goals of this thesis are as follows;  

I. Mapping out the structural landscape of a series of halogen bonded co-crystals 

comparative to the analogous hydrogen bonded co-crystals (Chapter 2).  
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II. Explore the effect of secondary π stacking interactions on supramolecular 

architectures in the presence of hydrogen and halogen bonding. This study will focus on co-

crystallization of the same acceptors (A) used in Chapter 2 with a series of aromatic hydrogen 

and halogen bond donors (D) that are analogous to each other (Chapter 3).  

 

 

III. Investigate the interchangeability of hydrogen bonds and halogen bonds in the 

solid state, when incorporated into the same molecular backbone. This will be studied by co-

crystallizing the hydrogen and halogen bond donors with symmetric ditopic acceptor molecules 

(Chapter 4).  
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IV. Establish selectivity in halogen bond based anion recognition using three halogen 

bond donors equipped with iodo, bromo and choro bisethynyl functionalities. These are co-

crystalized with a series of chlorides, bromides and iodides to test the halogen-halide donor-

acceptor ability (Chapter 5).  

 

 

 

V. Design and synthesis of cavitands functionalized with hydrogen and halogen bond 

donor and acceptor groups. The cavitands bearing pyridy, pyridyl-N-oxide, carboxylic acid and 

iodoethynyl functionalities will be synthesized. The binding ability of these cavitands towards a 

series active ingredients (guests) will be examined in solid state as well as in solution (Chapter 

6). 
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Chapter 2 - Halogen-bond driven co-crystallization of potential 

anti-cancer compounds 

2.1 Introduction 

The process of co-crystallization, which involves incorporation of two different 

molecular species in the same crystalline lattice held together by intermolecular forces, 

represents a foundation for potentially very diverse technologies for fine-tuning physicochemical 

properties of active ingredients and specialty chemicals covering areas such as pharmaceuticals,1 

agrochemicals2 and explosives,3 etc. In particular, pharmaceutical co-crystals, a co-former and 

the API (Active Pharmaceutical Ingredient) associated in specific stoichiometry in a crystalline 

lattice, have opened the opportunity to engineer new solid forms without tampering with the 

integrity of the API. These new solid forms enables adjustment of many biopharmaceutical 

properties of a drug such as solubility, bioavailability, dissolution and melting point.4 

Hydrogen bonds are the most widely used tools for co-crystal synthesis due to their 

strength and directionality.5 However, halogen bonds have emerged as an analogous non-

covalent interaction, sharing fundamental characteristics with hydrogen bonds,6 such as 

strength,7 and electrostatic and geometric requirements.8 Therefore, halogen-bond based 

synthons have recently been employed in the synthesis of co-crystals with predetermined 

stoichiometry and topology.9 Halogen bonding can offer opportunities for engineering precise 

physical properties, such as liquid-crystalline behaviors,10 in organic molecular solids.11 

Furthermore, halogen bonds are intrinsically more lipophilic and hydrophobic than their 

hydrogen-bonding counterparts, thus they may be well suited to biological applications, 

especially in drug delivery and transport.12  

It is important to compare the structural outcomes when halogen- and hydrogen bonds are 

confronted with similar chemical environments,13  since by carefully mapping out the structural 

landscape of molecular solids it may be possible to forge supramolecular synthetic strategies that 

are versatile, robust and reliable in the assembly of solid-state architectures with desirable 

connectivities and composition.14 In this context, it is also necessary to identify supramolecular 

synthons that can operate side-by-side with limited ‘synthon-crossover’15  to ensure that a 

desired motif or architecture can be realized. 
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Hydrogen bonded pharmaceutical co-crystals have been extensively exploited with 

improved physico-chemical properties compared to that of the pure API. A recent study16 

demonstrated, O-H···N hydrogen-bond based co-crystals between aliphatic dicarboxylic acids 

and a family of bis-acetamides (A8-A0) (Figure 2.1) that exhibit improved solubility and thermal 

stability with respect to the API itself. The co-crystals are synthesized using well-known 

acid···pyridine and amide···amide synthons (Figure 2.2). The one-dimensional chains 

constructed via COOH···N(py) hydrogen bonds are cross-linked into well-defined two-

dimensional layers by self-complementary N-H···O=C interactions (Figure 2.3). All the co-

crystals displayed two dimensional arrangements with structural consistency and the 

representation of one of the resulted co-crystals of A4 with succinic acid is shown in Figure 2.4. 

As a result of the structural consistency in their binary co-crystals it was possible to alter some 

physical properties of the resulting solids in a predictable manner. 

 

 

Figure 2.1 3-Pyridyl bis-acetamides n = 8 (A8), 6 (A6), 4 (A4), 2 (A2), 0 (A0). 

 

Since the most frequently studied halogen-bond interactions involve ‘fluorine-activated’ 

iodine atoms and a nitrogen heterocycle as the halogen-bond acceptor,17 it is of interest to 

determine if the O-H···N hydrogen bond (HB) can be replaced with an I···N halogen bond (XB) 

within the same structural context as shown in Figure 2.3. 

 

 

 

 

Synthon I Synthon II 

     

Figure 2.2 Co-crystals synthesized via primary acid⋯pyridine synthon (synthon I) and 

amide···amide synthon (synthon II) 

n = 8, 6, 4, 2, 0 
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Figure 2.3 Infinite 1-D horizontal chains (from O-H···N hydrogen bonds) connected vertically 

by N-H···O=C hydrogen bonds into 2-D layers in co-crystals of 3-pyridyl bis-acetamides and 

aliphatic dicarboxylic acids16 

The chosen counterparts to the bis-acetamides are a family of haloperfluoroalkanes, 

Figure 2.5, known to form robust I···N(py) halogen bonds,18  and they are intended to mimic the 

role played by the aliphatic dicarboxylic acids in the previous study.16 

 

 

Figure 2.4 Primary interactions in the structure of A4 and succinic acid16 

 

 

 

 

Figure 2.5 Family of halogen-bond donors, D2-D8 with fluorine- activated iodine atoms 

 

 

------ 

------ 

----- 

----- 
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In this chapter we will examine/answer two different questions: 

(i) How well can a set of halogen-bond donors mimic the structural behavior of a 

series of hydrogen-bond donors in the assembly of binary co-crystals? 

(ii) Can appropriate hydrogen-bond and halogen-bond moieties operate in an 

independent manner in terms of directionality and selectivity? 

2.2 Experimental 

2.2.1 Synthesis 

All chemicals were purchased from Sigma Aldrich unless otherwise noted. Column 

chromatography was carried out on silica gel (150 Å pore size) from Analtech, Inc. Melting 

point/decomposition point determinations were done using Fisher-Johns melting point apparatus 

and are uncorrected. 1H, 19F and 13C NMR spectra were recorded on a Varian Unity plus 400 

MHz or 200 MHz spectrometer in CDCl3 or DMSO-d6. Infrared spectroscopy analysis was 

carried out using Nicolet 380 FT-IR with a digital resolution of 0.9 cm-1 and data processed 

using software, Omnic 8.0 © 1992-2008 Thermo Fisher Scientific Inc.  

2.2.1.1 Synthesis of N,N'-bis(nicotinic acid)hydrazide, A0
19

 

 

Nicotinic acid (1.52 g, 0.012 mol), pentafluorophenol (2.49 g, 0.013 mol) and 

dicyclohexylcarbodimide (DCC) (2.54 g, 0.012 mol) were dissolved in dry 1,4-dioxane (50 mL) 

and allowed to stir at room temperature for 24 hrs. The white precipitate obtained was filtered off 

and discarded. The filtrate was concentrated on a rotary evaporator to give a yellow oil. To this 

yellow oil, dimethylformamide (DMF) (40 mL) and nicotinic hydrazide (1.85 g, 0.013 mol) were 

added and left to stir at room temperature for 36 hrs. The solvent was removed on a rotary 

evaporator to yield a pale yellow solid which upon recrystallization from ethyl acetate gave pure 

A0 as light yellow crystalline solid (1.57 g, 65%).  M. p. 230-232 ºC (Reported M. p. 229-232 

ºC)19 1H NMR (δH; 200 MHz, DMSO-d6): 10.82 (s, 2H), 9.08 (s, 2H) 8.79 (d, 2H, J = 4.8 Hz), 

8.27 (d, 2H, J =6.2 Hz), 7.59 (m, 2H); IR: υ 3155, 3003, 2850, 1632, 1537, 1298, 1201, 1119, 

1023, 876, 700 cm-1. 
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2.2.1.2 Synthesis of N,N'-1,2-ethanediylbis-3-pyridinecarboxamide, A2
20

 

 

1,2-Diaminoethane (1.56 g, 0.024 mol) was slowly added to a solution of nicotinic acid 

(5.90 g, 0.048 mol) in pyridine (60 mL). The mixture was stirred for 15 minutes and triphenyl 

phosphite (TPP) (12.6 mL, 0.48 mol) was slowly added with a dropping funnel over a period of 

15 minutes. The mixture was heated under reflux at 70 ºC for 6 hrs and the volume reduced to 10 

mL under vacuum. The solution was then left to stand at room temperature upon which a white 

solid resulted. The solid was filtered off, washed with cold water to yield pure A2 (4.47 g, 72%) . 

M. p. 221-222 ºC (Reported M. p. 216-220 ºC );20 1H NMR (δH; 200 MHz, DMSO-d6): 9.00 (s, 

2H), 8.80 (s, 2H) 8.69 (d, 2H, J = 3.5 Hz), 8.16 (d, 2H, J =8.2 Hz), 7.51 (m, 2H), 3.47 (m, 4H); 

IR: υ 3360, 3036, 2936, 1638, 1537, 1418, 1297, 1240, 1158, 1026, 880, 698 cm-1. 

2.2.1.3 Synthesis of N,N'-1,4-butanediylbis-3-pyridinecarboxamide, A4
20

 

 

1,4-Diaminobutane (2.05 g, 0.023 mol ) was slowly added to a solution of nicotinic acid 

(5.72 g, 0.46 mol) in pyridine (100 mL). The mixture was stirred for 15 minutes and triphenyl 

phosphite (TPP) (12.0 mL, 0.046 mol) was slowly added with a dropping funnel over a period of 

15 minutes. The mixture was heated under reflux at 70 ºC for 6 hrs and volume reduced to 10 

mL under vacuum. The solution then left to stand at room temperature upon which a white solid 

resulted. The solid was filtered off, washed with water and recrystallized from ethanol to produce 

A4 (5.48 g, 80%). M. p. 202-204 ºC (Reported M. p. 199-204 ºC);20 1H NMR (δH; 200 MHz, 

DMSO-d6): 8.98 (s, 2H), 8.67 (m, 4H) 8.17 (d, 2H, J = 4.8 Hz), 7.50 (d, 2H, J =6.2 Hz), 3.31 (m, 

3H), 1.51 (m, 4H); IR: υ 3294, 3073, 2932, 1628, 1591, 1544, 1475, 1421, 1311, 1164, 1020, 

836, 704 cm-1. 
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2.2.1.4  Synthesis of N,N'-1,6-hexanediylbis-3-pyridinecarboxamide, A6
21

 

 

1,6-Diaminohexane (1.58 g, 0.013 mol) was slowly added to a solution of nicotinic acid 

(3.20 g, 0.026 mol) in pyridine (40 mL). The mixture was stirred for 15 minutes and triphenyl 

phosphite (TPP) (6.8 mL, 0.026 mol) was slowly added with a dropping funnel over a period of 

15 minutes. The mixture was heated under reflux at 70 ºC for 6 hrs and the volume reduced to 10 

mL under vacuum. The solution was then left to stand at room temperature upon which a pale 

yellow solid resulted. The solid was filtered off, washed with water and recrystallized from 

ethanol to produce colorless crystals of A6 (2.54 g, 61%). M. p. 166-167 ºC (Reported M. p.  

168-170 ºC);21 1H NMR (δH; 200 MHz, DMSO-d6): 8.98 (s, 2H), 8.67 (d, 2H, J =4.6 Hz), 8.61 

(m, 2H) 8.17 (d, 2H, J = 6.4 Hz), 7.50 (m, 2H), 3.26 (m, 6H), 1.54 (m, 6H); IR: υ 3310, 3046, 

2934, 2869, 1629, 1587, 1528, 1476, 1419, 1341, 1291, 1158, 1024, 863, 707 cm-1. 

2.2.1.5 Synthesis of N,N'-1,8-octanediylbis-3-pyridinecarboxamide, A8
20-21

 

 

1,8-Diaminooctane (1.49 g, 0.010 mol) was slowly added to a solution of nicotinic acid 

(2.54 g, 0.020 mol) in pyridine (30 mL). The mixture was stirred for 15 minutes and triphenyl 

phosphite (TPP) (5.2 mL, 0.020 mol) was slowly added with a dropping funnel over a period of 

15 minutes. The mixture was heated under reflux at 70 ºC for 6 hrs and the volume reduced to 10 

mL under vacuum. The solution was then left to stand at room temperature upon which a white 

solid resulted. The solid was filtered off, washed with water and recrystallized from ethanol to 

produce colorless crystals of A8 (1.91 g, 54%). M. p. 150-152 ºC (Reported M. p. 150-154 & 

154-158 ˚C);20-21 1H NMR (δH; 200 MHz, DMSO-d6): 8.98 (s, 2H), 8.68 (d, 2H, J =4.9 Hz), 8.61 

(m, 2H) 8.17 (d, 2H, J = 7.9 Hz), 7.50 (m, 2H), 3.26 (m, 9H), 1.51 (m, 6H); IR: υ 3320, 3039, 

2932, 2862, 1622, 1530, 1474, 1419, 1319, 1275, 1164, 1020, 865, 706 cm-1. 
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2.2.2 Synthesis of co-crystals 

Bis-acetamide based ditopic acceptor ligands, A0-A8 were subjected to co-crystallization 

experiments with four aliphatic halogen bond donors: 1,2-diiodotetrafluoroethane D2, 1,4-

diiodooctafluorobutane D4, 1,6-diiodoperfluorohexane D6, 1,8-diiodoperfluorooctane D8. Donor 

and acceptor were combined in 1:1 stoichiometric amounts and ground together with a drop of 

methanol until a solid paste is resulted, which was then analyzed using IR spectroscopy for 

product formation. This procedure was performed on all 20 (5x4) combinations and single 

crystals suitable for X-ray diffraction were obtained by dissolving the ground mixture in suitable 

solvents in borosilicate vials and carrying out slow evaporation (thirteen single crystals were 

obtained by using this method).  

2.2.2.1 Synthesis of N,N-1,2-ethanediylbis-3-pyridinecarboxamide 1,4-diiodooctafluorobutane, 

A2·D4 

N,N-1,2-Ethanediylbis-3-pyridinecarboxamide (0.010 g, 0.037 mmol) was dissolved in 1 

mL of methanol. To this solution was added 1,4-diiodooctafluorobutane (0.017 g, 0.037 mmol, 8 

µL) in 1 mL of methanol. The resulting solution was allowed for slow evaporation in a 2 dram 

borosilicate vial at room temperature. Colorless prism-shaped crystals were obtained after three 

days. Dec. 89 ºC.  

2.2.2.2 Synthesis of N,N-1,2-ethanediylbis-3-pyridinecarboxamide 1,6-diiodoperfluorohexane, 

A2·D6 

N,N-1,2-Ethanediylbis-3-pyridinecarboxamide (0.010 g, 0.037 mmol) was dissolved in 1 

mL of methanol. To this solution was added 1,6-diiodoperfluorohexane (0.020 g, 0.037 mmol) in 

1 mL of methanol. The resulting solution was allowed for slow evaporation in a 2 dram 

borosilicate vial at room temperature. Colorless plate-shaped crystals were obtained after five 

days. Dec. 86 ºC. 

2.2.2.3 Synthesis of N,N-1,2-ethanediylbis-3-pyridinecarboxamide 1,8-diiodoperfluorooctane, 

A2·D8 

N,N-1,2-Ethanediylbis-3-pyridinecarboxamide (0.010 g, 0.037 mmol) was dissolved in 1 

mL of methanol. To this solution was added 1,8-diiodoperfluorooctane (0.024 g, 0.037 mmol) in 

1 mL of methanol. The resulting solution was allowed for slow evaporation in a 2 dram 
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borosilicate vial at room temperature. Colorless prism-shaped crystals were obtained after seven 

days. Dec. 99 ºC. 

2.2.2.4 Synthesis of N,N-1,4-butanediylbis-3-pyridinecarboxamide 1,2-

diiodotetrafluoroethane, A4·D2 

N,N-1,4-Butanediylbis-3-pyridinecarboxamide (0.010 g, 0.032 mmol) was dissolved in 1 

mL of methanol. To this solution was added 1,2-diiodotetrafluoroethane (0.012 g, 0.032 mmol, 7 

µL) in 1 mL of methanol. The resulting solution was allowed for slow evaporation in a 2 dram 

borosilicate vial at room temperature. Colorless crystals were obtained after five days. Dec.95 

˚C.  

2.2.2.5 Synthesis of N,N-1,4-butanediylbis-3-pyridinecarboxamide 1,4-diiodooctafluorobutane, 

A4·D4 

N,N-1,4-Butanediylbis-3-pyridinecarboxamide (0.010 g, 0.032 mmol) was dissolved in 1 

mL of methanol. To this solution was added 1,4-diiodooctafluorobutane (0.014 g, 0.032 mmol, 7 

µL) in 1 mL of methanol. The resulting solution was allowed for slow evaporation in a 2 dram 

borosilicate vial at room temperature. Colorless crystals were obtained after seven days. Dec. 

101 ˚C. 

2.2.2.6 Synthesis of N,N-1,4-butanediylbis-3-pyridinecarboxamide 1,6-diiodoperfluorohexane, 

A4·D6 

N,N-1,4-Butanediylbis-3-pyridinecarboxamide (0.010 g, 0.032 mmol) was dissolved in 1 

mL of methanol. To this solution was added 1,6-diiodoperfluorohexane (0.017 g, 0.032 mmol) in 

1 mL of methanol. The resulting solution was allowed for slow evaporation in a 2 dram 

borosilicate vial at room temperature. Colorless prism-shaped crystals were obtained after three 

days. Dec. 76 ˚C.  

2.2.2.7 Synthesis of N,N-1,4-butanediylbis-3-pyridinecarboxamide 1,8-diiodoperfluorooctane, 

A4·D8 

N,N-1,4-Butanediylbis-3-pyridinecarboxamide (0.010 g, 0.032 mmol) was dissolved in 1 

mL of methanol. To this solution was added 1,8-diiodoperfluorooctane (0.02 g, 0.032 mmol) in 1 

mL of methanol. The resulting solution was allowed for slow evaporation in a 2 dram 
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borosilicate vial at room temperature. Colorless rod-shaped crystals were obtained after five 

days. Dec. 125 ˚C. 

2.2.2.8 Synthesis of N,N-1,6-hexanediylbis-3-pyridinecarboxamide 1,2-

diiodotetrafluoroethane, A6·D2 

N,N-1,6-Hexanediylbis-3-pyridinecarboxamide (0.010 g, 0.030 mmol) was dissolved in 1 

mL of ethanol. To this solution was added 1,2-diiodotetrafluoroethane (0.012 g, 0.030 mmol, 7 

µL) in 1 mL of ethanol. Chloroform (1 mL) was added to get everything dissolved. The resulting 

solution was allowed for slow evaporation in a 2 dram borosilicate vial at room temperature. 

Yellow color plate-shaped crystals were obtained after two days. Dec. 78 ˚C.  

2.2.2.9 Synthesis of N,N-1,6-hexanediylbis-3-pyridinecarboxamide 1,6-diiodoperfluorohexane, 

A6·D6 

N,N-1,6-Hexanediylbis-3-pyridinecarboxamide (0.010 g, 0.030 mmol) was dissolved in 1 

mL of ethanol. To this solution was added 1,6-diiodoperfluorohexane (0.017 g, 0.030 mmol) in 1 

mL of ethanol. Chloroform (1 mL) was added to get everything dissolved. The resulting solution 

was allowed for slow evaporation in a 2 dram borosilicate vial at room temperature. Colorless 

plate-shaped crystals were obtained after five days. Dec. 81 ˚C. 

2.2.2.10 Synthesis of N,N-1,6-hexanediylbis-3-pyridinecarboxamide 1,8-

diiodoperfluorooctane, A6·D8 

N,N-1,6-Hexanediylbis-3-pyridinecarboxamide (0.010 g, 0.030 mmol) was dissolved in 1 

mL of ethanol. To this solution was added 1,8-diiodoperfluorooctane (0.017 g, 0.030 mmol) in 1 

mL of ethanol. Chloroform (1 mL) was added to get everything dissolved. The resulting solution 

was allowed for slow evaporation in a 2 dram borosilicate vial at room temperature. Colorless 

plate-shaped crystals were obtained after seven days. Dec. 86 ˚C. 

2.2.2.11 Synthesis of N,N-1,8-octanediylbis-3-pyridinecarboxamide 1,2-

diiodotetrafluoroethane, A8·D2 

N,N-1,8-Octanediylbis-3-pyridinecarboxamide (0.010 g, 0.030 mmol) was dissolved in 1 

mL of ethanol. To this solution was added 1,2-diiodotetrafluoroethane (0.009 g, 0.030 mmol, 8 

µL) in 1 mL of ethanol. The resulting solution was allowed for slow evaporation in a 2 dram 
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borosilicate vial at room temperature. Colorless plate-shaped crystals were obtained after five 

days. Dec. 72 ˚C. 

2.2.2.12 Synthesis of N,N-1,8-octanediylbis-3-pyridinecarboxamide 1,4-

diiodooctafluorobutane, A8·D4 

N,N-1,8-Octanediylbis-3-pyridinecarboxamide (0.010 g, 0.030 mmol) was dissolved in 1 

mL of ethanol. To this solution was added 1,4-diiodooctafluorobutane (0.012 g, 0.030 mmol, 8 

µL) in 1 mL of ethanol. The resulting solution was allowed for slow evaporation in a 2 dram 

borosilicate vial at room temperature. Colorless prism-shaped crystals were obtained after seven 

days. Dec. 79 ˚C. 

2.2.2.13 Synthesis of N,N-1,8-octanediylbis-3-pyridinecarboxamide 1,6-

diiodoperfluorohexane, A8·D6 

N,N-1,8-Octanediylbis-3-pyridinecarboxamide (0.010 g, 0.030 mmol) was dissolved in 1 

mL of ethanol. To this solution was added 1,6-diiodoperfluorohexane (0.015 g, 0.030 mmol) in 1 

mL of ethanol. The resulting solution was allowed for slow evaporation in a 2 dram borosilicate 

vial at room temperature. Colorless plate-shaped crystals were obtained after two days. Dec.81 

˚C. 

2.2.3 Single Crystal X-ray Crystallography 

Data were collected on Bruker Kappa APEX II systems using Mo Kα radiation and 

APEX2 software.22  Initial cell constants were found by small widely separated “matrix” runs. 

Data collection strategies were determined using COSMO.23  Scan speed and scan width were 

chosen based on scattering power and peak rocking curves. All datasets were collected at – 153 

°C using an Oxford Cryostream low-temperature device.  Unit cell constants and orientation 

matrix were improved by least-squares refinement of reflections “thresholded” from the entire 

dataset. Integration was performed with SAINT,24 using this improved unit cell as a starting 

point. Precise unit cell constants were calculated in SAINT from the final merged dataset. Lorenz 

and polarization corrections were applied. Multi-scan absorption corrections were performed 

with SADABS.25  Data were reduced with SHELXTL.26  The structures were solved in all cases 

by direct methods without incident. The molecules were fully ordered, no solvent was present, 

and no constraints or restraints were applied.   A6D6 crystallized in the polar space group Pca21; 
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this dataset was treated for racemic twinning, with the scale factor refining to 0.36(2). In all 

cases except for A6D6, both the diamide acceptor and the diiodo donor molecule sit on 

crystallographic inversion centers. Excepting A4D6, A6D6, and A6D2, coordinates for the amide 

hydrogen were allowed to refine (attempted refinement in the other structures did not give 

meaningful results). All other hydrogen atoms were located in idealized positions and were 

treated with a riding model.    

2.3 Results 

Initial co-crystal screening was achieved through solvent-assisted grinding27 experiments 

followed by IR spectroscopic characterization.28 However all 4x5 possible donor-acceptor 

combinations were also subjected to co-crystal synthesis from solution since the perfluorinated 

iodoalkanes are volatile and can evaporate during a grinding process. All solids obtained in this 

way were analyzed using IR spectroscopy (Table 2.1) to establish if a co-crystal had formed, and 

crystals suitable for single-crystal diffraction were grown by slow-evaporation at ambient 

conditions. A total of fifteen of the twenty reactions produced co-crystals based on IR 

spectroscopy and thirteen of those yielded crystals suitable for single-crystal X-ray diffraction. 

The only acceptor that failed to produce any co-crystals with D2-D8 was the smallest acceptor 

molecule, A0, which inevitably came out of solution as the monohydrate (the structure of which 

has previously been reported).19 Repeated attempts using different donor-acceptor ratios and 

solvents failed to produce co-crystals of A0. 

2.3.1 Characterization by IR spectroscopy 

The distinction between reaction and no reaction of the twenty experiments was made 

based on the shifts of modes in the infrared region associated primarily with C-F bonds of the 

halogen bond donors and C-H bonds of the acceptors, Table 2.1.  

2.3.2 Crystal structure descriptions 

Hydrogen-bond geometries for all co-crystals are reported in Table 2.2. 
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 Table 2.1 IR stretching frequencies (cm-1) of the solids produced by combining A8-A0 with D2-D8 

  

D2 (1144,1096, 833, 685) 

cm-1 

 

 

D4 (1192, 1134, 1041)  

cm-1 

 

D6 (1200, 1141, 1087)  

cm-1 

 

D8 (1200, 1145,1053, 965) 

cm-1 

  

Co-crystal 

(cm-1) 
 

 

Δ (cm-1) 

 

Co-crystal 

(cm-1) 

 

Δ (cm-1) 

 

Co-crystal 

(cm-1) 

 

Δ (cm-1) 

 

Co-crystal 

(cm-1) 

 

Δ (cm-1) 

 

 

A8 

 

1136 
1090 

827 

 

 

-8 
-5 

-6 

 

1189 
1140 

1045 

 

-3 
+6 

+4 

 

1191 
1132 

1080 

 

-8 
-9 

-7 

 

1191 
1153 

1059 

 

 

-9 
-8 

-6 

 

 

A6 

 
1137 

1090 

700 
 

 
-7 

-6 

+15 

 
1197 

1138 

1046 

 
+5 

+4 

+5 

 
1180 

1150 

1084 

 
-20 

+9 

-3 

 
1208 

1143 

1056 

 
-8 

-1 

+3 

 

 

A4 

 

1145 

1090 
 

 

+1 

-6 

 

1184 

1122 

 

-8 

-12 

 

1192 

1132 
1085 

 

 

-8 

-9 
-2 

 

1144 

1056 

 

-1 

+3 
 

 

 

A2 

 

- 

 
1188 

1126 

1044 
 

 
-4 

-8 

+3 

 
1214 

1079 

 
+14 

-8 

 
1214 

1057 

962 

 
+14 

+4 

-3 

 

A0 

 

                   

- 

 

- 

 

- 

 

- 

 

Table 2.2 Hydrogen bond geometries for A2·D4, A2·D6, A2·D8, A4·D2, A4·D4, A4·D6, A4·D8, 

A6·D2, A6·D6, A6·D8, A8·D2, A8·D4, A8·D6 

Structure D-H···A (Å) d(D-H)/Å  d(H···A)/Å  d(D···A)/Å  <(DHA)/º  

A2·D4
i N(17)-(17)...O(17)#3 0.83(3) 1.99(3) 2.779(2) 159(3) 

A2·D6
ii N(17)-(17)...O(17)#3 0.811(18) 2.026(19) 2.8117(15) 163.2(18) 

A2·D8
 iii N(17)-(17)...O(17)#3 0.84(4) 2.01(4) 2.817(3) 162(3) 

A4·D2
 iv N(2)-H(2N)...O(1)#3 0.830(15) 2.036(15) 2.8565(19) 170(2) 

A4·D4
 v N(2)-H(2N)...O(1)#3 0.844(17) 2.040(19) 2.866(3) 166(3) 

A4·D6
 vi N(17)-H(17)...O(17)#3 0.84(3) 2.01(3) 2.845(2) 170(2) 

A4·D8
 vii N(17)-H(17)...O(17)#3 0.84(3) 2.01(3) 2.845(2) 170(2) 

A6·D2
 viii N(17)-H(17)...O(17)#3 0.88 2.11 2.958(3) 161.8 

A6·D6
 ix N(17)-H(17)...O(17)#2 

N(27)-H(27)...O(27)#3 
0.88 

0.88 
2.03 

1.98 
2.883(6) 

2.823(5) 
164.5 

158.6 

A6·D8
 x N(17)-H(17)...O(17)#3 0.79(3) 2.21(3) 2.994(2) 169(3) 

A8·D2
 xi N(17)-H(17)...O(17)#3 0.79(3) 2.21(3) 2.980(2) 164(3) 

A8·D4
 xii  N(17)-(17)...O(17)#3 0.81(2) 2.18(2) 2.9736(14) 167.9(18) 

A8·D6
xiii  N(17)-(17)...O(17)#3 0.88(3) 2.12(3) 2.983(2) 166(3) 
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Symmetry transformations used to generate equivalent atoms  

i) #1 -x,-y,-z+2    #2 -x+1,-y+1,-z+1 ii) #1 -x,-y+2,-z    #2 -x+1,-y+1,-z+2 iii) #1 -x+1,-y+2,-z+2    #2 -x,- 

y+1,-z iv) #1 -x+2,-y+2,-z+1    #2 -x+3/2,-y+3/2,-z v) #1 -x,-y,-z+1    #2 -x+1,-y+2,-z+2 vi) #1 -x,-y+2,-z    #2 -

x+1/2,-y+3/2,-z+1 vii) #1 -x,-y,-z+1    #2 -x+1/2,-y-1/2,-z+2 viii) #1 -x+2,-y+1,-z    #2 -x+1,-y+2,-z+1 ix) #1 

x+1/2,-y+1,z x) #1 -x+2,-y+1,-z    #2 -x+1,-y,-z+1 xi) #1 -x+2,-y,-z+1    #2 -x+1,-y,-z xii) #1 -x-1,-y+1,-z    #2 -x,-

y+1,-z+1 xiii) #1 -x+2,-y,-z+1    #2 -x+1,-y,-z        

      

2.3.3 Crystal Structures 

2.3.3.1 Crystal structures of A2·D4, A2·D6 and A2·D8 

The supramolecular reaction between A2 and D4, D6 and D8 yielded co-crystals with 1:1 

stoichiometry driven by I···N (py) halogen-bond interactions resulting in infinite 1-D chains 

(Figure 2.6). Adjacent acceptor molecules are oriented in an orthogonal manner which results in 

doubly interpenetrated (4,4) networks where each molecule interacts with four nearest neighbors 

via N-H···O=C hydrogen bonding interactions producing a 3-D network, Figure 2.7. 

 

 

Figure 2.6 Infinite 1-D chains formed via I···N halogen bonds in the crystal structure of A2·D4 

 

 

 

 

(a) (b) 
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(c) 

Figure 2.7 Part of the crystal structure showing doubly interpenetrated (4,4) network in (a) 

A2·D4 (b) A2·D6 and (c) A2·D8 

2.3.3.2  Crystal structures of A4·D2, A4·D6 and A4·D8 

The crystal structures of A4·D2, A4·D6 and A4·D8 are similar in that they are all 1:1 co-

crystals of A4 and the given aliphatic halogen-bond donor. In every case, I···N (py) halogen 

bonds are driving the co-crystal synthesis and lead to infinite chains (Figure 2.8). Adjacent 

acceptors are oriented in an orthogonal manner which results in doubly interpenetrated (4,4) 

networks where each molecule interacts with four nearest neighbors via N-H···O=C hydrogen 

bonding interactions producing a 3-D network (Figure 2.9). 

 

 

Figure 2.8 Infinite 1-D chains formed via I···N halogen bonds in the crystal structure of A4·D6 
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(a) (b) 

 

(c) 

Figure 2.9 Part of the crystal structure showing doubly interpenetrated (4,4) network in (a) 

A4·D4 (b) A4·D6 and (c) A4·D8 

2.3.3.3 Crystal structure of A4·D4 

The crystal structure determination of A4·D4 confirmed the formation of a 1:1 co-crystal 

driven by I···N (py) halogen bonds to form infinite chains. However, the ligand arrangement is 

different than in A4·D2, A4·D6 and A4·D8, and in A4·D4, as self-complementary N-H···O=C 

hydrogen-bonding interactions produce a 2-D sheet-like architecture, Figure 2.10. 
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Figure 2.10  The 2-D sheet-like architecture of A4·D4 constructed via I···N (py) and C=O···N-H 

interactions   

2.3.3.4 Crystal structures of A6·D2, A6·D6 and A6·D8 

The reaction between A6 and the aliphatic halogen-bond donors show co-crystal 

formation with 1:1 stoichiometry through I···N (py) and N-H···O=C synthons. The 1-D motifs 

created by I···N (py) halogen bonds between alternating molecules of A6 and D are accompanied 

by orthogonal self-complementary N-H···O=C hydrogen bonds resulting in buckled 2-D motifs 

where adjacent acceptors are arranged in a layered array (Figure 2.11).  

2.3.3.5 Crystal structures of A8·D2, A8·D4 and A8·D6 

The crystal structures of A8·D2, A8·D4 and A8·D6 showed 1:1 co-crystal formation 

between A8 and the halogen-bond donors. The interaction between the acceptor and the donors 

result in the formation of 1-D chains using I···N (py) halogen-bonds which in turn organize into 

2-D layers via inter chain N-H···O=C amide-amide hydrogen bonds (Figure 2.12).  
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(a) 

 

(b) 

 

(c) 

 

Figure 2.11 2-D layered motifs in (a) A6·D2, (b) A6·D6 and (c) A6·D8 
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(a) 

 

(b) 

 

(c) 

 

Figure 2.12 2-D layered motifs in (a) A8·D2, (b) A8·D4 and (c) A8·D6 
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2.4  Discussion 

2.4.1 Characterization of co-crystals through IR spectroscopy 

Formation of halogen bonds was detected by IR spectroscopy since the vibrational 

frequencies and strength change upon a non-covalent interaction.29 In the halogen bonded co-

crystals, characteristic IR bands moved to both higher as well as to lower wavenumbers, with 

relatively small changes (Table 2.1). The C-F bands were red-shifted when compared to the same 

modes present in the pure perfluoroiodoalkanes in 2/3 of the co-crystals obtained. The magnitude 

of the red-shifts were in the 5-15 cm-1 range and may be a consequence of the charge transfer 

component of the XB.  In the remaining co-crystals, the C-F modes were blue-shifted by 1-14 

cm-1. Our results are comparable with literature data which indicate that about 70% of co-crystals 

of perfluoroiodoalkanes display red-shifts of their relevant C-F modes (appearing at 

approximately 1218 and 1048 cm-1, respectively).30 In the remaining cases, the C-F bands were 

shifted to higher wave-numbers upon co-crystal formation with relatively small changes.31  

 

Figure 2.13 Summary of the red shifts and blue shifts observed in the co-crystals with respect to 

the donor and acceptor  

 The vibrational modes of the N-heterocyclic XB acceptor moiety is also affected by 

halogen-bond formation. The C-H stretching modes associated with the pyridine ring (A8; 3039 

cm-1, A6; 3046 cm-1, A4; 3073 cm-1, A2; 3073 cm-1) became less intense and blue shifted; 3049-

3053 cm-1 for A8 co-crystals, 3050-3052 cm-1 for A6 co-crystals, 3078-3085 cm-1 for A4 co-

crystals, and 3084-3089 cm-1 for A2 co-crystals. Other characteristic vibrations of the pyridine 

ring (at 1470 cm-1 and 1240 cm-1) were also blue-shifted by 5-10 cm-1 in the co-crystals relative 

to their positions in the pure acceptors. These changes are attributed to a slightly reduced 

electron density in the pyridine ring due to the electron-donating pair role that the pyridine 

moiety plays in halogen bonding.32 
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2.4.2 Melting point analysis of the co-crystals 

All the co-crystals decomposed upon heating by first releasing the relatively volatile 

halogen-bond donor, followed by melting of the remaining pure acceptor (Table 2.3).  

 

Table 2.3 Decomposition points and melting points of the co-crystals 

 Decomposition 

point (˚C) 

Melting point (˚C) 

A8·D2 72 150-152 

A8·D4 79 151-153 

A8·D6 81 150-151 

A6·D2 78 157-159 

A6·D6 81 158-160 

A6·D8 86 158-159 

A4·D2 95 202-203 

A4·D4 101 204-205 

A4·D6 76 204-206 

A4·D8 125 201-203 

A2·D4 89 220-221 

A2·D6 86 221-222 

A2·D8 99 218-219 

 

The temperatures at which the halogen-bond donors are “evicted” from the crystals, are 

to some extent related to the molecular weight of the donor . The co-crystals decomposed with 

the following decomposition temperature ranges A8 (72-89 ˚C), A6 (78-86 ˚C), A4 (76-125 ˚C) 

and A2 (86-99 ˚C) where in each case, the highest temperature in each series, is associated with 

the co-crystal of the heaviest perfluorinated halogen-bond donor and vice versa within each of 

the four series (Figure 2.14).  
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(a) 

 

(b) 

Figure 2.14 Decomposition profile of the co-crystals with respect to (a) A8 and (b) A6 

 

There is a possibility for stabilizing volatile XB donors within a crystalline lattice by 

combining them with a suitable acceptor which may have significant impact on practical 

application for transport and storage of volatile perfluorinated alkanes (Figure 2.15).33 For 

example, the co-crystals of A8 are stabilized by 93°C, 88°C and 55°C respectively compared to 

the pure donor molecules. 
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(a) 

 

(b) 

Figure 2.15 Correlation between the melting point of the donor and decomposition temperature 

of the co-crystals of (a) A8 and (b) A6  

2.4.3 Structural view of the co-crystals compared to the ligands by themselves 

When the structures of the ligands A8-A2 by themselves are taken into consideration, each 

molecule contains two conventional hydrogen-bond donors, the N-H groups, and four hydrogen-

bond acceptor sites, the C=O and N(py) moieties. However in the three known structures (A4, A6 

and A8), the self-complementary N-H···O=C amide-amide synthons are the only observed 

A6D2 

A6D6 

A6D8 

A8D2 

A8D4 
A8D6 
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hydrogen bonds, and the pyridine moieties do not engage in any structure-directing conventional 

hydrogen bonds. However, the amide-amide interactions do produce two different motifs, a 

layered ribbon-like architecture in A6 and A8 and a doubly-interpenetrated orthogonal network in 

A4, (Figure 2.16).20, 34 The crystal structure of A2 is still unknown, and A0 appears as a 

monohydrate.19 

 

 

 

 

 

(a) (b) 

Figure 2.16 Adjacent bis-acetamides are arranged either in a layered (a) or in an orthogonal (b) 

manner 

The hydrogen-bonded co-crystals of An that are reported up to date have been 

synthesized with carboxylic acids as the donor using O-H···N(py) interactions. Within each 

binary lattice, the self-complementary C=O···N-H hydrogen bonds form layered ribbons 

between the adjacent bis-pyridineacetamides.16 However this structural consistency is not seen in 

bis-acetamide co-crystals with aliphatic halogen-bond donors.  For A8 and A6, the layered motifs 

are present 6/6 times, for A4 the layer is only present in one of the four examples, whereas all 

three of the co-crystals of A2 contain the orthogonal bis-acetamide motif.   

Based on these results, we propose that these bis-acetamidopyridine based hydrogen- and 

halogen-bonded co-crystals may be assembled in two-step processes. Each structure is 

constructed via two distinct synthons, where the hydrogen-bonded co-crystals are assembled via 

O-H···N(py) and amide···amide synthons and the C-I···N(py) and amide···amide interactions 

govern the assembly of the halogen-bonded co-crystals. The halogen-bonded co-crystals 

essentially display the same core as the bis-pyridines do by themselves which would suggest that 

the hydrogen-bond driven amide···amide interaction resulting in either a layer (for A8 and A6) or 

orthogonal motif (in A4) is occurring as the first (or more favorable) step in the assembly process 

----- 

----- 

----- 

----- 

-------- 
-------

-------

- -------- 
-------- 
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which is then followed by the attachment of a halogen-bond donors to this ‘core’ via a C-

I···N(py) bonds (Figure 2.17). This assembly process could be further explained by the DSC 

profile of the halogen-bonded co-crystals where we see two endothermic events, in which first 

endotherm correspond to dissociation of the halogen bond donor and the second endotherm 

correspond to the exact melting point of the API by itself (Appendix A). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.17 Step-wise self-assembly of halogen-bond driven supramolecular architectures 
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This hypothesis fits eight of the nine crystal structures of halogen-bonded co-crystals 

where the structure of the free bis-pyridine is known, with A4·D4 being the outlier. Based on this 

hypothesis, we would expect an orthogonal amide···amide motif for the structure of A2 but we 

have been unable to grow single-crystals of this compound after trying out many experimental 

conditions.   

The fact that all the known hydrogen-bonded co-crystals of A2-A8, exhibit layered 

amide···amide motifs means a different process must be involved in an O-H···N bond driven co-

crystal assembly. In this series of structures, the O-H···N(py) hydrogen bonding interaction takes 

place as the most favorable step to form chains of alternating hydrogen-bonds donors and 

acceptors, which is then followed by the self-assembly via the amide linkages to produce a 2-D 

layered arrangement (Figure 2.18). These chains are packed and oriented within 2-D layered 

architectures in such a way that anti-parallel dipoles aligned together and the polar, aromatic, and 

aliphatic moieties of neighboring chains are aggregated into distinct regions within each crystal. 

This process overcomes any possibility that the individual bis-pyridineacetamides arrange into 

an orthogonal geometry. The structural behavior of all known hydrogen-bonded co-crystal of A2-

A8 can be explained by this hypothesis.  This assembly process could be explained by the DSC 

profile of the hydrogen bonded co-crystals which has only one endothermic event corresponding 

to the breakdown of the co-crystal (Appendix A). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.18 Step-wise self-assembly of hydrogen-bond driven supramolecular architectures 
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2.4.4 Correlation between the structure and the decomposition points of the co-crystals 

The decomposition temperatures of the halogen bonded co-crystals correlate well with 

the type of ligand arrangement (layered vs. orthogonal) in the binary co-crystals. When the 

molecular weight of each halogen-bond donor is considered, the co-crystals of A4 and A2 display 

higher decomposition than those of A6 and A8 (Figure 2.19). This suggest that the volatile 

halogen-bond donors are held more firmly within the crystalline lattice due to their complex 3-D 

architecture in the co-crystals of A4 and A2, so that the decomposition point gets higher. In 

contrast, the co-crystals of A6 and A8 are arranged into distinct columns where donors and 

acceptors are separated, facilitates the escape of the volatile halogen bond donors from the lattice 

more easily. In all cases, the final melting temperature was the melting point of the individual 

acceptor molecule indicating that only one of the two components remains.  

  

D2 D4 

  

D6 D8 

Figure 2.19 Decomposition temperature profiles with respect to the halogen bond donor 
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Since there were two different architectures observed for the halogen bonded co-crystals 

it is no longer possible to directly correlate physical properties with molecular properties. This is 

in contrast with the corresponding hydrogen-bonded co-crystals because they all displayed 

structural consistency with layered architectures where physical properties could be correlated 

well with the structural properties.16 

2.5 Conclusion 

Halogen bonding was successfully employed in synthesizing co-crystals of a series of 

bis-pyridine based pharmaceutical active ingredients using four iodoperfluoroalkanes. Thirteen 

of the supramolecular co-crystals driven by I···N(py) halogen bonds were compared with respect 

to the OH···N(py) driven hydrogen bonded co-crystals. The success rate was comparable with 

that of the hydrogen bonded analogues. However the structures of the halogen bonded co-

crystals show two different architectures, layered vs orthogonal, depending on the relative 

orientation of the adjacent amide moieties and a two-step process is proposed as a way of 

rationalizing the observed structures. This study reveals that supramolecular architectures with 

high predictability and selectivity are possible by using appropriate hydrogen-bond and halogen-

bond moieties that can operate in an independent manner. Also, volatile organic halogen bond 

donors can be substantially stabilized by incorporating them into a crystalline lattice. 
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Chapter 3 - Effect of π-π interactions on hydrogen and halogen 

bond driven co-crystallization  

3.1 Introduction 

3.1.1 Background 

Synthetic strategies involved in crystal engineering mainly rely on “supramolecular 

synthons”;1 recognition patterns between different functional groups that give rise to different 

crystal packing motifs in solid state. Hydrogen bonds and halogen bonds are the two primary 

tools that produce these supramolecular synthons due to their strength and directionality, and 

also owing to their ability to be fine-tuned electronically and geometrically.2 Aromatic stacking 

interactions, even though a more subtle interaction in terms of consistency and robustness, has 

been widely recognized for directing the aggregation of aromatic molecules in the solid state. 

Furthermore these π-π stacking interactions can exert substantial effects on the crystallization of 

molecular species in the solid state when combined with hydrogen bonding and halogen 

bonding.3 

The stacking interactions between aromatic interactions are proposed to have 

contributions from electrostatic and van der Waals forces, however the relative effect of each 

force on the interaction is still in debate.4 The factors that contribute to the nature of the π-π 

stacking interactions was first defined by Hunter and Sanders in terms of an electrostatic model 

based on σ – π attractions, where the aromatic ring with a quadrupole moment with a partially 

positive charged σ framework is sandwiched between two negatively charged quadrupole 

moments with π electron density above and below the molecular plane (Figure 3.1).5 Thus, the 

interaction between two such molecules would be repulsive between the approaching π clouds 

(Figure 3.2a). A set of point charges is used to represent the electrostatic charge distribution and 

the electrostatic force is calculated based on the sum of charge-charge interactions between the 

two π systems (Figure 3.2b). These electrostatic effects mainly determine the geometry of the 

interaction. The van der Waals contribution to the interaction indicated by the interplanar 

separation is proportional to the surface area of π overlap between the aromatic molecules and it 

mainly contributes to the magnitude of the stacking interactions. Cozzi and Siegel, in a related 
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study6, proposed a polar/π electrostatic model to rationale the arene-arene interactions in terms of 

molecular quadrupole moments. 

 

Figure 3.1 An sp2 hybridized atom in a π-system5 

 

 
 

(a) (b) 

Figure 3.2 (a) Interaction between two face-to-face π systems (b) electrostatic charge 

distribution of the π system5 

 

Several geometries of the π-stacking interactions have been proposed based on the 

electrostatic component associated with the interaction in order to minimize the repulsive 

quadrupole-quadrupole interactions (Figure 3.3).7 The edge-face, also known as CH-π interaction 

(Figure 3.3a) is usually observed with benzene in the solid state and aromatic residues in 

proteins.8 In the off-set stacked arrangement (Figure 3.3b), which is commonly seen when the 

electron density of one or both the rings is reduced, has hydrophobic and van der Waals 

interactions prominent where the surface area is buried for the most part. The stacking 

interactions between DNA base pairs is governed by off-set stacking interactions.9 The third 

geometry that a π system can display is face-to-face stacked orientation and it mostly occurs 

between π systems that have opposite quadrupoles in which the interactions become attractive 

(Figure 3.3c). 

π 

δ 

σ 

π 
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Figure 3.3 Geometries of aromatic interactions (a) edge-face (b) off-set stacked (c) face-to-face 

stacked7 

  

A widely recognized association in this regard, is arene – perfluoroarene interactions 

where a pair of molecules comprise a face-to-face arrangement even though individual molecules 

arrange themselves in a herringbone (edge-face) pattern.10 The π stacking interactions between 

such molecules are maximized with favorable quadrupole-quadrupole interactions which are 

comparable in magnitude but opposite in sign due to the electron withdrawing effect of the 

fluorinated ring. The arene-perfluoroarene interactions studied so far include, single aromatic 

rings and their derivatives (benzene vs hexafluorobenzene) or fused-ring poly aromatic 

compounds such as naphthalene, anthracene, phenanthrene and their fluorinated analogues.11  

The crystal structure of benzene and hexafluorobenzene complex is composed of infinite 

parallel stacks of alternating Ar(H) and Ar(F) sequences of molecules suggesting that this is a 

reliable synthon in designing co-crystals (Figure 3.4).12 Also, the complexes between 

hexafluorobenzene and various benzene derivatives (aromatic hydrocarbons and aromatic 

amines) and fused ring polyaromatic molecules also reveal face-to-face stacked conformation 

due to electrostatic contributions of the stacking interactions.13  
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(a) (b) 

Figure 3.4 Schematic showing (a) quadrupoles of benzene and hexafluorobenzene and (b) the 

arrangement of parallel stacks of opposite charges12 

 

The crystallization patterns of polynuclear aromatic hydrocarbons are classified into four 

basic structural types based on symmetry, C···C and C···H interactions and energetic criteria 

(Figure 3.5).14 The simplest packing arrangement is herringbone motif where the C···H non-

bonded interactions are between the nearest non-parallel neighbors. In the sandwich herringbone 

packing, the herringbone is made up of sandwich-like diads employed by C···C interactions and 

C···H interactions between parallel molecules. The third type is a flattened-out herringbone 

called γ structure in which the C···C interactions occur between parallel translated molecules. 

The fourth type contains ‘graphitic’ planes and is labeled a β structure stabilized by C···C 

interactions.15 

However, when polynuclear aromatic hydrocarbons are combined with fluorinated 

analogues of arenes, infinite stacks of mixed parallel alternating arenes and perfluoroarenes are 

observed instead of the herringbone structure. These are not columnar, but slipped, and can be 

explained using several intermolecular parameters (Figure 3.6).16 
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Figure 3.5 Schematics showing the packing arrangements of the four basic crystal packing of 

aromatic hydrocarbons (a) herringbone, (b) sandwich herringbone, (c) γ-structure and (d) β-

structure  

 

Figure 3.6 The schematic showing the intermolecular parameters to define the arene-

perfluoroarene slipped parallel arrangements16 

 

The packing mode between octafluoronaphthalene (OFN) and naphthalene, anthracene, 

phenanthrene, pyrene, triphenylene all show mixed stacks of alternating OFN and arene 

molecules, that are slipped (Figure 3.6) 13, 17 (defined by slip angle, 1.2-6.4˚ for OFN molecules 

and 1.5-9.1˚ for arene molecules) and the molecular planes of OFN-OFN and arene-arene are 

parallel to each other. Figure 3.7 shows packing diagram of OFN·anthracene and the 

intermolecular H···F distances are lower than the sum of the van der Waals radii. The dihedral 
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angles of the molecular planes of the above stated pairs range from 0.4-2.7˚. The inter-centroid 

distance between OFN-OFN and arene-arene are the same within the stack and is in the range of 

6.73-6.81 Å which decreases with the increasing size of the polyarene.16 

 

 

Figure 3.7 The packing diagram of OFN·naphthalene and the C-H···F-C distances are shown by 

dashed lines16 

 

Fluorination of phenyl substituents lead to an increase of the displaced face-to-face 

contacts, limiting the edge-face interactions. The C–F group (‘‘organic fluorine’’) ‘‘… hardly 

ever accepts hydrogen bonds”18 however form C–H···F-C weak interactions between 

neighboring fluorinated phenyl rings and non-fluorinated phenyl rings (Figure 3.8a). Also, 

fluorination facilitates F···F interactions that are weak due to the low polarizability of fluorine 

(Figure 3.8b).19 These F···F interactions can be classified into two categories named, type I; 

which involves close packing and does not form stabilizing interactions and type II; which is 

formed through polarization of fluorine atoms. C-F···π interactions is another possibility that can 

influence the conformation and crystal packing in fluorinated systems.20 These C-F···π 

interactions occur between electronegative fluorine and electropositive center of an aromatic ring 

(Figure 3.8c). 
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Figure 3.8 (a) C–H···F-C interactions (b) F···F interactions (c) C-F···π interactions 

 

π stacking interactions are extensively studied as homomeric interactions between single 

aromatic units, however only a couple of studies have reported on the influence of these π-π 

interactions on binary systems. The interplay between hydrogen bonds and π-π interactions are 

studied in construction of different supramolecular assemblies.21 Li et al. explored the 

importance of mutual influence between halogen bonds and π-π interactions in crystal packing.22 

To date, nothing has been reported on how π-π interactions affect the packing and stability of the 

hydrogen bonded and halogen bonded supramolecular architectures.  

3.1.2 Stacking interactions in co-crystals of fluorinated and non-fluorinated 

hydrocarbons: Goals 

In Chapter 2 we discussed the structural arrangements of a series of bis-acetamides (A8-

A0) (Figure 3.9) with respect to aliphatic halogen bond donors. Herein we report a systematic 

structural study using aromatic halogen-bond donors and aromatic hydrogen bond donors to 

examine the effect of π-π interactions on the orientation of these chains of bis-acetamides in the 

binary co-crystals. This would potentially add insights into manipulation of supramolecular 

architectures in solid state with combined non-covalent interactions. 

 

 

Figure 3.9 3-Pyridyl bis-acetamides n = 8 (A8), 6 (A6), 4 (A4), 2 (A2), 0 (A0) 

 

 

n = 8, 6, 4, 2, 0 



56 

 

 

Two robust synthons are used in preparing these binary co-crystals, the OH(phenol)···N 

(py) hydrogen bonds and I···N (py) halogen bonds. The library of halogen and hydrogen bond 

donors contain fluorinated bromo and iodo halogen bond donors and bis-phenols are shown in 

Figure 3.10. The 3-pyridyl bis-acetamides are co-crystallized with these library of halogen bond 

donors in order to study the influence of the aromatic back bone on the structural arrangement of 

the co-crystals. 

        

 

      

Figure 3.10 Scheme representing hydrogen- and halogen bond donor molecules, 1,4-DHB, 1,4-

DITFB, 1,4-DBTFB, 1,3-DHB, 1,3-DBTFB, 4,4-BP, 4,4-DIOFB and 4,4-DBOFB 
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We intend to address the following questions in this chapter. 

i) Are aromatic hydrogen- and halogen bond donors capable of making the same robust 

architectures as discussed in Chapter 2?  

 

ii) How does the weak aromatic interactions come into play in this process? 

 

iii) Do fluorinated and non-fluorinated aromatics behave differently in the assembly of 

supramolecular architectures? Does fluorine segregation affect the crystal packing in 

the binary co-crystals?  

 

iv) Can differences in crystal packing of fluorinated and non-fluorinated single 

components homomeric interactions be translated to the structure of binary co-

crystals? 

3.2  Experimental 

3.2.1 Synthesis 

All chemicals were purchased from were purchased from Aldrich, Combi blocks, Alfa 

Aeser and used without further purification. The ligands A8-A0
 were synthesized using the 

procedure reported in Chapter 2. 1H, and 19F NMR spectra were recorded on a Varian Unity plus 

400 MHz or 200 MHz spectrometer in CDCl3 or DMSO-d6. Melting points/decomposition points 

were determined using Fisher-Johns melting point apparatus and are uncorrected. Infrared 

spectroscopy analysis was carried out using Nicolet 380 FT-IR with a digital resolution of 0.9 

cm-1 and data processed using software, Omnic 8.0 © 1992-2008 Thermo Fisher Scientific Inc.  

3.2.1.1 Synthesis of 4,4-octafluorodiiodobiphenyl, 44DIOFB 

 



58 

 

To an oven dried round bottomed flask purged with nitrogen, added 4,4-

octaflurodibromobiphenyl (3.52 g, 7.72 mmol) and sealed with a rubber septum. Freshly distilled 

THF (150 mL) was added to the flask via cannula. This solution was then immersed in an dry 

ice-acetone bath (-78 ºC) for 5-7 minutes and afterwards n-butyl lithium, 1.6 M in hexanes (14.5 

mL, 23.16 mmol) was slowly added through the septum under nitrogen upon which a white color 

solid starts to form.  The solution was stirred for 20 minutes and afterwards iodine (5.87 g, 23.16 

mmol) was added and the reaction mixture was slowly warmed up to room temperature. The 

reaction mixture was stirred overnight at room temperature and quenched with a saturated 

sodium thiosulfate solution to give a clear solution. The product was extracted with methylene 

chloride and dried over magnesium sulfate. The solvent removed under vacuum and to yield the 

crude 44DIOFB as white solid. Recrystallization from methylene chloride:methanol 1:1 mixture 

produced colorless rod shaped crystals of 44DIOFB with 64% yield. M.p. 142-144 ˚C (Reported 

M.p. 146-149 ˚C)23 19F NMR (δF; 400 MHz, CDCl3): 119.06 (m, 4F), 136.6 (m, 4F). IR: υ 1623, 

1468, 1217, 953, 836, 715 cm-1. 

3.2.2 Synthesis of co-crystals 

Bis-acetamide based ditopic acceptor ligands, A0-A8 were subjected to co-crystallization 

experiments with a series of aromatic hydrogen and halogen bond donors: 1,4-dihydroxybenzene 

14DHB, 1,3-dihydroxybenzene 13DHB, 4,4-bisphenol, 44BP , 1,4-diiodotetrafluorobenzene 

14DITFB, 1,4-dibromotetrafluorobenzene 14DBTFB, 1,3-dibromobenzene 13DBTFB, 4,4-

octafluorodiiodobiphenyl 44DIOFB. Stoichiometric amounts of acceptor and the donor were 

mixed together and solvent assisted grinding were performed on all the 35 (5x7) combinations 

using a drop of methanol as the solvent until a solid paste was obtained. Single crystals suitable 

for X-ray diffraction were obtained by dissolving the solid paste from solvent assisted grinding 

in suitable solvents in borosilicate vials and carrying out slow evaporation (thirteen single 

crystals were obtained by using this method).  

3.2.2.1 Synthesis of N,N-1,4-ethanediylbis-3-pyridinecarboxamide 4,4-bisphenol, A2·44BP 

N,N-1,2-Ethanediylbis-3-pyridinecarboxamide (0.010 g, 0.037 mmol) was dissolved in 1 

mL of methanol. To this solution was added 4,4-bisphenol (0.007 g, 0.037 mmol) in 1 mL of 

methanol. The resulting solution was allowed for slow evaporation in a 2 dram borosilicate vial 
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at room temperature. Colorless prism-shaped crystals were obtained after five days. M.p. 225-

227 ˚C. 

3.2.2.2 Synthesis of N,N-1,4-butanediylbis-3-pyridinecarboxamide 1,4-dihydroxybenzene, 

A4·1,4-DHB 

N,N-1,4-Butanediylbis-3-pyridinecarboxamide (0.010 g, 0.032 mmol) was dissolved in 1 

mL of methanol. To this solution was added 1,4-dihydroxybenzene (0.003 g, 0.032 mmol) in 1 

mL of methanol. The resulting solution was allowed for slow evaporation in a 2 dram 

borosilicate vial at room temperature. Colorless plate-shaped crystals were obtained after two 

days. M.p. 216-218 ˚C. 

3.2.2.3 Synthesis of N,N-1,4-butanediylbis-3-pyridinecarboxamide 4,4-bisphenol, A4·44BP 

N,N-1,4-Butanediylbis-3-pyridinecarboxamide (0.010 g, 0.032 mmol) was dissolved in 1 

mL of methanol. To this solution was added 4,4-bisphenol (0.006 g, 0.032 mmol) in 1 mL of 

methanol. The resulting solution was allowed for slow evaporation in a 2 dram borosilicate vial 

at room temperature. Yellow color prism-shaped crystals were obtained after five days. M.p. 

205-207˚C. 

3.2.2.4 Synthesis of N,N-1,4-hexanediylbis-3-pyridinecarboxamide 4,4-bisphenol, A6·44BP 

N,N-1,6-Hexanediylbis-3-pyridinecarboxamide (0.010 g, 0.030mmol) was dissolved in 1 

mL of methanol. To this solution was added 4,4-bisphenol (0.006 g, 0.030 mmol) in 1 mL of 

methanol. The resulting solution was allowed for slow evaporation in a 2 dram borosilicate vial 

at room temperature. Colorless plate-shaped crystals were obtained after three days. M.p. 192-

195˚C. 

3.2.2.5 Synthesis of N,N-1,4-octanediylbis-3-pyridinecarboxamide 1,4-dihydroxybenzene, 

A8·1,4-DHB 

N,N-1,8-Octanediylbis-3-pyridinecarboxamide (0.010 g, 0.028 mmol) was dissolved in 1 

mL of methanol. To this solution was added 1,4-dihydroxybenzene (0.003 g, 0.028 mmol) in 1 

mL of methanol. The resulting solution was allowed for slow evaporation in a 2 dram 

borosilicate vial at room temperature. Colorless plate-shaped crystals were obtained after seven 

days. M.p. 180-182 ˚C. 
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3.2.2.6 Synthesis of N,N-1,4-octanediylbis-3-pyridinecarboxamide 4,4-bisphenol, A8·44BP 

N,N-1,8-Octanediylbis-3-pyridinecarboxamide (0.010 g, 0.028 mmol) was dissolved in 1 

mL of methanol. To this solution was added 4,4-bisphenol (0.005 g, 0.028 mmol) in 1 mL of 

methanol. The resulting solution was allowed for slow evaporation in a 2 dram borosilicate vial 

at room temperature. Colorless plate-shaped crystals were obtained after two days. M.p. 176-177 

˚C. 

3.2.2.7 Synthesis of N,N-1,4-ethanediylbis-3-pyridinecarboxamide 1,4-

diiodotetrafluorobenzene, A2·1,4-DITFB 

N,N-1,2-Ethanediylbis-3-pyridinecarboxamide (0.010 g, 0.037 mmol) was dissolved in 1 

mL of methanol. To this solution was added 1,4-diiodotetrafluorobenzene (0.015 g, 0.037 mmol) 

in 1 mL of methanol. The resulting solution was allowed for slow evaporation in a 2 dram 

borosilicate vial at room temperature. Colorless prism-shaped crystals were obtained after seven 

days. Dec. 107 ˚C. 

3.2.2.8 Synthesis of N,N-1,4-ethanediylbis-3-pyridinecarboxamide 1,4- 

dibromotetrafluorobenzene, A2·1,4-DBTFB 

N,N-1,2-Ethanediylbis-3-pyridinecarboxamide (0.010 g, 0.037 mmol) was dissolved in 1 

mL of methanol. To this solution was added 1,4-dibromotetrafluorobenzene (0.011 g, 0.037 

mmol) in 1 mL of methanol. The resulting solution was allowed for slow evaporation in a 2 dram 

borosilicate vial at room temperature. Colorless plate-shaped crystals were obtained after two 

days. Dec. 83˚C. 

3.2.2.9 Synthesis of N,N-1,4-ethanediylbis-3-pyridinecarboxamide 4,4-

diiodooctafluorobiphenyl, A2·4,4-DIOFB 

N,N-1,2-Ethanediylbis-3-pyridinecarboxamide (0.010 g, 0.037 mmol) was dissolved in 1 

mL of methanol. To this solution was added 4,4-diiodooctafluorobiphenyl (0.020 g, 0.037 mmol) 

in 1 mL of methanol. The resulting solution was allowed for slow evaporation in a 2 dram 

borosilicate vial at room temperature. Colorless prism-shaped crystals were obtained after five 

days. Dec. 112˚C. 
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3.2.2.10 Synthesis of N,N-1,4-butanediylbis-3-pyridinecarboxamide 1,4-

diiodotetrafluorobenzene, A4·1,4-DITFB 

N,N-1,4-Butanediylbis-3-pyridinecarboxamide (0.010 g, 0.032 mmol) was dissolved in 1 

mL of methanol. To this solution was added 1,4-diiodotetrafluorobenzene (0.013 g, 0.032 mmol) 

in 1 mL of methanol. The resulting solution was allowed for slow evaporation in a 2 dram 

borosilicate vial at room temperature. Colorless prism-shaped crystals were obtained after two 

days. Dec. 94˚C. 

3.2.2.11 Synthesis of N,N-1,4-butanediylbis-3-pyridinecarboxamide 1,4-

dibromotetrafluorobenzene, A4·1,4-DBTFB 

N,N-1,4-Butanediylbis-3-pyridinecarboxamide (0.010 g, 0.032 mmol) was dissolved in 1 

mL of methanol. To this solution was added 1,4-dibromotetrafluorobenzene (0.009 g, 0.032 

mmol) in 1 mL of methanol. The resulting solution was allowed for slow evaporation in a 2 dram 

borosilicate vial at room temperature. Colorless prism-shaped crystals were obtained after five 

days. Dec. 79 ˚C. 

3.2.2.12 Synthesis of N,N-1,4-butanediylbis-3-pyridinecarboxamide 1,3-

dibromotetrafluorobenzene, A4·1,3-DBTFB 

N,N-1,4-Butanediylbis-3-pyridinecarboxamide (0.010 g, 0.032 mmol) was dissolved in 1 

mL of methanol. To this solution was added 1,3-dibromotetrafluorobenzene (0.009 g, 0.032 

mmol) in 1 mL of methanol. The resulting solution was allowed for slow evaporation in a 2 dram 

borosilicate vial at room temperature. Colorless plate-shaped crystals were obtained after seven 

days. Dec. 76˚C. 

3.2.2.13 Synthesis of N,N-1,4-butanediylbis-3-pyridinecarboxamide 4,4-

diiodooctafluorobiphenyl, A4·4,4-DIOFB 

N,N-1,4-Butanediylbis-3-pyridinecarboxamide (0.010 g, 0.032 mmol) was dissolved in 1 

mL of methanol. To this solution was added 4,4-diiodooctafluorobiphenyl (0.017 g, 0.032 mmol) 

in 1 mL of methanol. The resulting solution was allowed for slow evaporation in a 2 dram 

borosilicate vial at room temperature. Colorless plate-shaped crystals were obtained after three 

days. M.p. 102-105 ˚C. 
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3.2.2.14 Synthesis of N,N-1,4-hexanediylbis-3-pyridinecarboxamide 1,4-

diiodotetrafluorobenzene, A6·1,4-DITFB 

N,N-1,6-Hexanediylbis-3-pyridinecarboxamide (0.010 g, 0.030 mmol) was dissolved in 1 

mL of methanol. To this solution was added 1,4-diiodotetrafluorobenzene (0.012 g, 0.030 mmol) 

in 1 mL of methanol. The resulting solution was allowed for slow evaporation in a 2 dram 

borosilicate vial at room temperature. Colorless prism-shaped crystals were obtained after five 

days. Dec. 87˚C. 

3.2.2.15 Synthesis of N,N-1,4-hexanediylbis-3-pyridinecarboxamide 4,4-

diiodooctafluorobiphenyl, A6·4,4-DIOFB 

N,N-1,6-Hexanediylbis-3-pyridinecarboxamide (0.010 g, 0.030 mmol) was dissolved in 1 

mL of methanol. To this solution was added 4,4-diiodooctafluorobiphenyl (0.017 g, 0.030 mmol) 

in 1 mL of methanol. The resulting solution was allowed for slow evaporation in a 2 dram 

borosilicate vial at room temperature. Colorless prism-shaped crystals were obtained after two 

days. M.p. 152-154˚C. 

 

3.3 Results 

3.3.1 Crystal structure descriptions 

A total of 15 crystal structures were obtained from solution experiments and the 

hydrogen bond geometries for all the co-crystals are shown in Table 3.1 
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Table 3.1 Hydrogen bond geometries for A2·4,4-BP, A2·1,4-DITFB, A2·1,4-DBTFB, A2·4,4-DIOFB,  

A4·1,4-DHB, A4·4,4-BP, A4·1,4-DITFB, A4·1,3-DBTFB, A4·1,4-DBTFB,  A4·4,4-DIOFB, A6·4,4-BP, 

A6·1,4-DITFB, A6·4,4-DIOFB,  A8·1,4-DHB, A8·4,4-BP 

Structure D-H···A (Å) d(D-H)/Å  d(H···A)/Å  d(D···A)/Å  <(DHA)/º  

A2·44BP i N(17)-H(17)...O(37) 

N(37)-H(37)...O(17)#4 

O(51A)-H(51A)...N(11) 

O(51B)-H(51B)...N(11) 

0.87(2) 

0.911(18) 

0.97(6) 

0.95(6) 

1.95(2) 

1.941(19) 

1.85(5) 

1.85(5) 

2.8091(15) 

2.8311(16) 

2.75(3) 

2.72(3) 

167.6(16) 

165.0(15) 

153(5) 

150(6) 

A2·1,4-DITFBii N(17)-H(17)...O(17)#3 0.80(2) 2.04(2) 2.8037(16) 161(2) 

A2·1,4-DBTFBiii N171-H171...N112#5 

N172-H172...O171#6 

0.88 

0.88 

2.13 

2.05 

2.910(3) 

2.814(2) 

147.5 

144.4 

A2·44DIOFB iv N(17)-H(17)...O(27)#3 

N(27)-H(27)...O(47) 

N(47)-H(47)...O(17)#4 

0.88 

0.88 

0.88 

2.00 

1.95 

1.95 

2.7710(18) 

2.7790(18) 

2.7742(18) 

145.1 

156.7 

154.7 

A4·14DHB v N(17)-H(17)...O(27)#3 

N(27)-H(27)...O(17)#4 

O(41)-H(41)...N(11) 

O(51)-H(51)...N(21) 

0.902(12) 

0.894(12) 

0.846(16) 

0.904(15) 

2.022(12) 

2.016(12) 

1.920(16) 

1.865(15) 

2.9078(11) 

2.8957(11) 

2.7430(13) 

2.7411(13) 

166.8(11) 

167.4(11) 

163.7(15) 

162.6(13) 

A4·44BP vi N(17)-H(17)...O(27)#3 

N(27)-H(27)...O(17)#4 

O(41)-H(41)...N(11) 

O(51)-H(51)...N(21) 

0.898(14) 

0.894(14) 

0.879(17) 

0.913(16) 

 

2.028(14) 

2.012(14) 

1.912(17) 

1.846(16) 

 

2.9096(11) 

2.8952(11) 

2.7460(13) 

2.7354(14) 

 

166.6(12) 

169.3(12) 

157.8(15) 

164.3(14) 

A4·1,4-DITFB vii N(17)-H(17)...O(17)#3 0.74(2) 2.23(2) 2.9630(15) 170(2) 

A4·1,3-BTFBviii N171-H171...O174#5 

N172-H172...O173#5 

N173-H173...O171#6 

N174-H174...O172#6 

0.88 

0.88 

0.88 

0.88 

1.96 

1.99 

2.00 

1.99 

2.816(7) 

2.824(7) 

2.856(7) 

2.850(7) 

163.7 

157.8 

162.6 

163.7 

A4·1,4-DBTFB ix N(17)-H(17)...O(17)#3 0.80(2) 2.08(2) 2.8684(16) 169.5(19) 

A4·44DIOFB x N(17)-H(17)...O(27)#1 

N(27)-H(27)...O(17)#2 

0.87(4) 

1.01(4) 

2.13(4) 

1.99(4) 

2.904(3) 

2.947(3) 

149(4) 

157(3) 

A6·44BP xi N(17)-H(17)...O(27)#3 

N(27)-H(27)...O(17)#4 

O(41)-H(41)...N(11) 

O(51)-H(51)...N(21) 

0.880(12) 

0.872(12) 

0.928(14) 

0.885(14) 

 

2.032(12) 

2.058(12) 

1.837(14) 

1.898(14) 

 

2.8992(9) 

2.9141(9) 

2.7374(11) 

2.7510(11) 

 

168.1(11) 

166.9(11) 

162.9(12) 

161.3(13) 

 

A6·14DITFB xii N(17)-H(17)...N(11)#3 0.88 2.09 2.896(4) 152.8 

A6·44DIOFB xiii N(17)-H(17)...O(17)#3 

N(37)-H(37)...O(37)#4 

0.82(2) 

0.83(2) 

2.16(2) 

2.15(2) 

2.971(2) 

2.963(2) 

173(2) 

167(2) 

A8·14DHBxiv O(31)-H(31)...N(11) 

N(17)-H(17)...O(17)#3 

1.05(5) 

0.94(5) 

1.74(5) 

2.00(5) 

2.750(5) 

2.927(4) 

162(4) 

168(4) 

A8·44BP xv N(17)-H(17)...O(27)#3 

N(27)-H(27)...O(17)#4 

O(41)-H(41)...N(11) 

O(51)-H(51)...N(21) 

0.866(14) 

0.851(14) 

0.834(17) 

0.879(17) 

2.066(14) 

2.062(15) 

1.966(17) 

1.883(17) 

2.9193(13) 

2.9028(13) 

2.7503(15) 

2.7365(15) 

168.1(13) 

169.1(14) 

156.3(16) 

163.3(15) 



64 

 

Symmetry transformations used to generate equivalent atoms 

i) #1 -x,-y,-z+1    #2 -x+1,-y+1,-z+1    #3 -x+1,-y+2,-z+2 #4 x,y+1,z ii) #1 -x+1,-y,-z+1    #2 -x,-y+1,-z+2    #3 x,-

y+1/2,z+1/2 iii) #1 -x-1,-y,-z    #2 -x+2,-y,-z+1    #3 -x+2,-y+1,-z #4 -x+2,-y+1,-z+1    #5 x-1,y,z    #6 -x+1,-y,-z iv) 

#1 -x+1/2,-y-1/2,-z+1    #2 -x,y,-z+3/2    #3 -x+1/2,y+1/2,-z+1/2 #4 -x+1/2,-y+1/2,-z+1 v) #1 -x+2,-y+1,-z    #2 -x-

1,-y,-z+2    #3 -x+1,-y,-z+1 #4 -x,-y+1,-z+1 vi) #1 -x,-y,-z+2    #2 -x+1,-y+3,-z    #3 -x+1,-y+1,-z+1 #4 -x,-y+2,-z+1 

vii) #1 -x+1,-y+1,-z+2    #2 -x,-y+2,-z    #3 -x+1,y-1/2,-z+3/2 viii) #1 -x+1,y+1/2,-z+1/2    #2 -x+1,y-1/2,-z+1/2    

#3 -x+1,-y+2,-z+1 #4 -x+1,-y+1,-z+1    #5 x-1,-y+3/2,z-1/2    #6 x+1,y,z  ix) #1 -x+1,-y+2,-z+1    #2 -x+1/2,-y+3/2,-

z    #3 x,-y+1,z-1/2 x) #1 x,y-1,z    #2 x-1,y,z  xi) #1 -x,-y-1,-z    #2 -x+1,-y+2,-z+2    #3 -x+1,-y,-z+1 #4 -x,-y+1,-

z+1 xii) #1 -x+1,-y,-z+1    #2 -x+2,-y,-z    #3 x+1/2,-y+1/2,z+1/2 xiii) #1 -x-2,-y+1,-z-1    #2 -x+3,-y,-z+2    #3 x-

1,y,z #4 x+1,y,z  xiv) #1 -x+1,-y+2,-z+1    #2 -x+2,-y,-z    #3 x+1,y,z xv) #1 -x,-y-1,-z    #2 -x+1,-y+2,-z+2    #3 -

x+1,-y,-z+1 #4 -x,-y+1,-z+1 

 

3.3.2 Crystal structures 

3.3.2.1 Crystal structures of A2·14DITFB, A4·14DITFB and A6·14DITFB 

The crystal structures of A2·14DITFB and A4·14DITFB show halogen bond formation 

resulting 1-D infinite chains which are then cross-linked in an orthogonal manner forming 3-D 

doubly interpenetrated (4,4) networks (Figure 3.11 a and b). However, the crystal structure of 

A6·14DITFB does not display the expected amide ladder, instead two major interactions are 

responsible for the formation of the 3-D co-crystal; C=O···I halogen bonds and N-H···N 

hydrogen bonds (Figure 3.11 c).  

 

 

 

(a) (b) 
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(c) 

Figure 3.11 Hydrogen and halogen bond formation in the co-crystals (a) A2·14DITFB (b) 

A4·14DITFB (c) A6·14DITFB 

 

In A2·14DITFB the 14DITFB molecules form infinite columns in bc plane organizing 

themselves into a γ-structure (Figure 3.12 a). In contrast assembly of parallel stacks of off-set 

14DITFB molecules are seen in A6·14DITFB (Figure 3.12 b). Neither structure show stacking 

between the donor and acceptor. However, in A4·14DITFB, face-to-face stacking of infinite 

planar parallel layers of alternate pyridine and 14DITFB molecules is observed, Figure 3.13 

(mean interplanar separation ~ 3.38 - 3.39 Å).  

 

 

 

(a) (b) 

Figure 3.12 Space filling model representing crystal packing of 14DITFB molecules in the 

crystal lattice of (a) A2·14DITFB (b) A6·14DITFB   
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Figure 3.13 Face-to-face stacking in A4·14DITFB 

3.3.2.2 Crystal structure of A2·14DBTFB and A4·14DBTFB  

A4·14DBTFB arrange into a 4,4 3-D network with halogen bonds and self-

complementary amide linkages Figure 3.14 a. The crystal structure of A2·14DBTFB, however 

does not display the amide ladder, instead several interactions are responsible for the formation 

of the co-crystal. Br···N(py) and Br···O=C halogen bonds make infinite 1-D chains and N-

H···N(py), N-H···O=C hydrogen bonds yield a 3D network Figure 3.14 b. The 14DBTFB 

molecules organize into a γ-structure with infinite columns, along bc plane in A4·14DBTFB and 

ab and ac planes in A2·14DBTFB (Figure 3.15). Further, off-set stacking interactions were 

observed between A2 molecules in A2·14DBTFB (Figure 3.16). 

 

 

 

 

 

 

(a) (b) 

Figure 3.14 (a) Infinite 1D chains produced by halogen bonds (b) space filling model 

representing the γ structure of 14DBTFB molecules 
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(a) (b) 

Figure 3.15 Space filling model representing γ-structure of 14DBTFB molecules in the crystal 

lattice of (a) A2·14DBTFB (b) A4·14DBTFB 

 

Figure 3.16 Off-set stacking interactions between A2 molecules in A2·14DBTFB 

3.3.2.3 Crystal structure of A2·44DIOFB, A4·44DIOFB, A6·44DIOFB 

All three crystal structures show I···N(py) halogen bonds and amide linkages in the 

lattice (Figure 3.18). Stacking interactions between the donor and the acceptor could be observed 

in all three cases (Figure 3.18). Edge-face interactions are seen between 44DIOFB and A2 

molecules with a mean distance of 3.06 Å and 3.00 Å which is less than sum of van der Waals 

radii, 3.17 Å (Figure 3.18 a). Face-to-face stacking interactions are present between A4 and 

44DIOFB molecules (Figure 3.18 b) similar to A4·14DITFB. There are edge-face stacking 

interactions between A6 and 44DIOFB with a separation of 3.00 Å (Figure 3.18 c).  
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(a) 

 

(b) 

Figure 3.17 I···N(py) halogen bonds and amide linkages in (a) A2·44DIOFB and (b) 

A6·44DIOFB 

  

(a) (b) 

 

(c) 

Figure 3.18 (a) Edge-face interactions in A2·44DIOFB (b) face-to-face interactions in 

A4·44DIOFB (c) edge-face interactions in A6·44DIOFB 
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The 14DIOFB molecules, form a γ-structure in A2·44DIOFB in the bc plane arranging 

into infinite columns (Figure 3.19 a), parallel stacks in the ab plane forming off-set stacking 

interactions in A4·44DIOFB crystal lattice (Figure 3.19 b) and a γ-structure in A6·44DIOFB in 

the ab plane, Figure 3.19 c. 

 

(a) 

 
 

(b) (c) 

Figure 3.19 Space filling representation of 44DIOFB molecules in (a) A2·44DIOFB γ-structure 

along the bc plane (b) A4·44DIOFB - parallel stacks in the ab plane forming off-set stacking (c) 

A6·44DIOFB γ-structure along the ab plane 

3.3.2.4 Crystal structure of A4·13DBTFB 

The crystal structure of A4·13DBTFB shows Br···N(py) halogen bond formation and  

C=O···H-N hydrogen bonds to form doubly interpenetrated (4,4) network (Figure 3.20 a). The 

13DBTFB molecules form a γ-structure along the b direction extending into columns in the ac 

plane (Figure 3.20 b). Neither the individual A4 molecules nor A4 and 13DBTFB molecules had 

stacking interactions. 
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(a) (b) 

Figure 3.20 (a) Interpenetrated 3-D network formed by Br···N(py) halogen bonds and C=O···H-

N hydrogen bonds (b) space filling model representing the γ-structure formed between individual 

13DBTFB molecules.   

3.3.2.5 Crystal structure of A4·14DHB and A8·14DHB 

The crystal structure of A4·14DHB shows OH···N (py) and N-H···O=C hydrogen 

bonding to produce 1-D infinite chains which are then cross-linked to form 2-D network (Figure 

3.21 a). The 14DHB molecules in A4·14DHB, stack to form a γ-structure along the c direction 

extending into 2-D columns in the ab plane, Figure 3.22 a. In A8·14DHB, the 14DHB molecules 

are arranged in parallel stacks along the a direction forming infinite columns in the ab plane with 

off-set stacking (Figure 3.22 b). Also, there are off-set π-π stacking interactions between A4 

molecules in A4·14DHB (Figure 3.23). No stacking interactions observed between the donor and 

the acceptor. 

  

(a) (b) 

Figure 3.21 1-D chains formed via OH···N hydrogen bonds which are extended into 2-D amide 

ladder via C=O···H-N hydrogen bonds  
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(a) (b) 

Figure 3.22 Space filling model representing the arrangement of 14DHB molecules (a) γ-

structure in A4·14DHB (b) parallel stacks forming off-set stacking in A8·14DHB 

 

 

Figure 3.23 Off-set stacking interactions between A4 molecules in the crystal lattice of 

A4·14DHB 

3.3.2.6 Crystal structure of A2·44BP, A4·44BP, A6·44BP, A8·44BP 

All four crystal structures show OH···N (py) hydrogen bonds and 1-D infinite chains 

which are then oriented in an orthogonal manner resulting in a (4,4) network in A2·44BP (Figure 

3.24 a) and 2-D amide ladders in A4·44BP, A6·44BP and A8·44BP (Figure 3.24 bcd). As far as 

the packing of 44BP molecules goes, in A2·44BP, the 44BP rings arrange into infinite parallel 

stacks in the ab plane as shown in Figure 3.25 a. The 44BP molecules in all other three structures 

form a herringbone structure along the c direction stacking into columns in the ab plane (Figure 

3.25 bcd).   

The ligands in A4·44BP, A6·44BP and A8·44BP interact with each other via off-set 

stacking interactions (Figure 3.26) with a separation of 3.37 Å, 3.37 Å and 3.389 Å respectively. 

In A2·44BP, where there are no stacking interactions between 44BP molecules, edge-face 

stacking interactions are observed between A2 and BP with a separation of 2.73 Å, Figure 3.27. 
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(a) (b) 

  

(c) (d) 

Figure 3.24 Part of the crystal structure showing OH···N (py) and C=O···N-H hydrogen 

bonding interactions resulting (a) (4,4) network in A2·44BP and amide ladder in (b) A4·44BP (c) 

A6·44BP and (d) A8·44BP 

 

  

(a) (b) 
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(c) (d) 

Figure 3.25 Space filling representation of 44BP molecules (a) parallel stacks in A2·44BP 

(b)(c)(d) herringbone structure in A4·44BP, A6·44BP and A8·44BP 

 

 

Figure 3.26 Off-set stacking interactions between A6 

 

 

Figure 3.27 Edge-face stacking interactions between A2 and 44BP 
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3.4 Discussion 

3.4.1 Characterization by IR spectroscopy 

3.4.1.1 Halogen bonded co-crystals 

The distinction between reaction and no reaction of the 25 experiments that we carried 

out, was made based on shifts of various modes in the infrared region associated primarily with 

C-F bonds of the halogen bond donors (Table 3.2) and C-H bonds of the acceptors. As discussed 

in Chapter 2, we observed both red shifts and blue shifts of IR bands of the co-crystals with these 

aromatic halogen bond donors. 14/25 experiments show co-crystal formation with a red shift in 

the range of (1-20 cm-1) due to the charge transfer from the pyridine ring during halogen-bond 

formation. Our results are in accordance to the literature data, where the stretching modes of the 

co-crystals shift to lower wave numbers due to halogen-bond formation.24  

 

Table 3.2 IR stretching frequencies (cm-1) of halogen bonded co-crystals of ligands A0-A8 

  

14DITFB 

(1456,938, 757) 

cm-1 

 

14DBTFB 

 (1480, 952,786) 

cm-1 

 

13DBTFB 

(1488,1083,895, 

742) cm-1 

 

44DIOFB 

 (1468, 954,715) 

cm-1 

 

44DBOFB 

 (1463, 956,720) 

cm-1 

  

Co-crystal 

(cm-1) 

 

 

Δ 

(cm-1) 

 

Co-crystal 

(cm-1) 

 

Δ 

(cm-1) 

 

Co-crystal 

(cm-1) 

 

Δ 

(cm-1) 

 

Co-crystal 

(cm-1) 

 

Δ 

(cm-1) 

 

Co-crystal 

(cm-1) 

 

Δ 

(cm-1) 

 

A8 

1458 

937 

756 

+2 

-1 

-1 

1473 

957 

787 

-7 

+5 

+1 

1485 

1086 

894 

-3 

+3 

-1 

1467 

945 

 

-1 

-9 

1465 

960 

714 

+2 

+4 

-6 

 

A6 

1461 

941 

758 

+5 

+3 

+1 

1472 

944 

 

-8 

-8 

1486 

1080 

895 

-2 

-3 

0 

1465 

952 

717 

-3 

-2 

+2 

1467 

956 

717 

+4 

0 

-3 

 

A4 

1455 

935 

750 

-1 

-3 

-7 

1474 

954 

784 

-6 

+2 

-2 

1480 

1072 

891 

-8 

-11 

-4 

1448 

944 

713 

-20 

0 

0 

1466 

956 

718 

+3 

0 

-2 

 

A2 

1453 

942 

756 

-3 

+4 

-1 

1476 

952 

789 

-4 

0 

+3 

1482 

1083 

898 

-6 

0 

+3 

1459 

952 

715 

-9 

-2 

0 

1467 

957 

705 

+4 

+1 

-15 

 

A0 

1460 

936 

754 

+4 

-2 

-3 

1482 

952 

787 

+2 

0 

+1 

1486 

1084 

898 

-2 

+1 

+3 

1464 

952 

716 

-4 

-2 

+1 

1464 

956 

721 

+1 

0 

+1 
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Among the halogen bond donors, 44DBOFB does show co-crystal formation with blue 

shifts in the IR, however it did not form co-crystals from solution experiments as the donor 

always precipitated as a single component. The ligand, A0 precipitate as a monohydrate in the 

solution experiments. 

3.4.1.2 Hydrogen bonded co-crystals 

The solids obtained from the grinding experiments of each of the four ligands with the 

three aromatic hydrogen bond donors were analyzed via IR spectroscopy paying particular 

attention to intermolecular OH···N hydrogen bonding interactions. However the broad stretches 

that appear near 2500 and 1900 cm-1 were not very prominent for the phenolic OH unlike for 

carboxylic acid in most of the cases. Grinding experiments of A0 – A8 with 13DHB always gave 

a sticky solid, which was evidence of a reaction taking place and these showed prominent 

OH···N interactions in the IR spectrum, Figure 3.28. The vibrational modes of the N-

heterocyclic XB acceptor moiety was taken into consideration when determining a positive co-

crystal event, because the C-H stretching modes (~3073-3039 cm-1) and other characteristic 

vibrations (~1470 cm-1) associated with the pyridine ring are also affected by hydrogen bond 

formation due to the reduced electron density in the pyridine ring. This is reflected by a blue shift 

of these stretches by 2-14 cm-1 wave numbers, Table 3.3. 

. 

 

Figure 3.28 IR spectrum of A8·13DHB grinding showing OH···N hydrogen bonding 

OH···N stretching 
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Table 3.3 IR stretching frequencies (cm-1) of hydrogen bonded co-crystals of ligands A0-A8 

 

Ground mixture 

 

OH···N (cm-1) 

(1800-2500) 

C-H(py) (cm-1) 

A8; 3039 ,1474 A6; 3046, 1476 A4; 3073, 

1476 A2; 3073, 1475 A0; 3075, 1476 

A0·13DHB - 3078 1474 

A0·14DHB - 3075 1477 

A0·44BP 2486, 1854 3074 1480 

A2·13DHB 2647,1960 3077 1473 

A2·14DHB - 3079 1463 

A2·44BP - 3087 1481 

A4·13DHB 2560,1920 - 1486 

A4·14DHB - 3086 1473 

A4·44BP 2450, 1980 3072 1477 

A6·13DHB 2520,1850 3054 1471 

A6·14DHB - - 1473 

A6·44BP 2500,1980 3052 1474 

A8·13DHB 2590, 1950 - 1473 

A8·14DHB - - - 

A8·44BP - 3042 1476 

 

3.4.2 Do aromatics produce the same robust architectures as aliphatic donors? 

 The bis-acetamide ligand consists of two HB/XB acceptors (Figure 3.29a) which gives 

the HB/XB donor two options, pyridine N and carbonyl O. In Chapter 2 we demonstrated that, 

with aliphatic ditopic halogen bond donors, the pyridine N atom acts as the only halogen bond 

acceptor while the amide produces self-complementary hydrogen bonds (Figure 3.29b). 
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(a) (b) 

Figure 3.29 (a) Possible donor and acceptor sites of bis-acetamide ligand (b) binding preferences 

observed in Chapter 2 

 

With aromatic hydrogen and halogen-bond donors, pyridine N, 6/8 times acts as the 

halogen bond acceptor and 8/8 times as the hydrogen bond acceptor (Figure 3.30). Therefore, the 

results are in agreement with Chapter 2 and aromatic hydrogen and halogen bond donors are 

capable of making the same robust architectures. In the remaining cases, 2/8 times 

(A6·14DITFB, Figure 3.11c and A2·14DBTFB, Figure 3.14b), carbonyl O acts as the halogen 

bond acceptor disrupting the amide linkage based network Figure 3.30a.  

 

Figure 3.30 Illustration of the success rate of (a) halogen bond (XB) formation and (b) hydrogen 

bond (HB) formation with N(py) and C=O 
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3.4.3 Structural role played by aromatic stacking interactions 

The stacking interactions between aromatic components is classified into three main 

categories as edge-face, off-set stacked and face-to-face interactions, where the aromatic-

aromatic interactions between the donor (D) and the acceptor (A) could possibly stack into one 

or more different categories (Figure 3.31). The edge-face interactions are further categorized 

under four main crystal packing types, Figure 3.32. Based on the crystal packing of all 15 crystal 

structures, we analyzed each structure individually to determine the stacking interactions 

between acceptors, between donors and between acceptor and donor molecules.  

3.4.3.1 Halogen-bonded co-crystals 

The results shows that aromatic donor molecules tend to stack together by themselves 

into separate 2-D columns within the crystal lattice via stacking interactions. In halogen bonded 

co-crystals 89% of the structures show stacking between fluorinated donor molecules. From this 

89%, edge-face stacking (γ-structure) seems to be the most stable packing arrangement giving 

rise to 75% of the structures. Off-set stacking interactions are observed for 25% of the time of 

the structures. We only observe 44% stacking interactions between the donor and the acceptor 

(edge-face and face-to-face stacking) and only 11% stacking interactions between the acceptor 

molecules. Figure 3.33 and Table 3.4 summarizes these results. 

 

Figure 3.31 Different possibilities of stacking between the donor (D) and the acceptor (A) 
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Herringbone Sandwich 

herringbone 

γ-Structure β-Structure 

Figure 3.32 The basic structural types of edge-face stacking 

 

   

Off-set 

11% 

Off-set 

22% 

Edge-face Edge-face 

22% 

Face-to-face 

22% 

  

 

 

  

44% stacking 

  γ-Structure 

67% 

 

Figure 3.33 Halogen bonded co-crystals - stacking interactions between A-A, D-D and A-D 
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Table 3.4 Halogen bonded co-crystals - stacking interactions between A-A, D-D and A-D 

Structure A-A D-D A-D 

A2·14DITFB No stacking Edge-face  

(γ-structure) 

No stacking 

A4·14DITFB No stacking No stacking Face-to-face 

A6·14DITFB No stacking Off-set stacking No stacking 

A2·14DBTFB Off-set stacking Edge-face  

(γ-structure) 

No stacking 

A4·14DBTFB No stacking Edge-face  

(γ-structure) 

No stacking 

A4·13DBTFB No stacking Edge-face  

(γ-structure) 

No stacking 

A2·44DIOFB No stacking Edge-face  

(γ-structure) 

Edge-face 

A4·44DIOFB No stacking Off-set stacking Face-to-face 

A6·44DIOFB No stacking Edge-face  

(γ-structure) 

Edge-face 

Overall results 11 % stacking 89% stacking 

 (67% γ-structure 

22% off-set stacking) 

44% stacking 

 

3.4.3.2 Effect of fluorination on crystal packing 

The fluorinated aromatic halogen bond donors influence crystal packing via three types 

of fluorine contacts in these co-crystals, listed in Table 3.5. Edge-face stacking interactions are 

mostly governed by C-F···C contacts, between the donor and the acceptor. C-F···H-C contacts 

are the most frequently observed contacts between the donor and the C-H(py) of the acceptor 

(Figure 3.34a). C-F···F-C contacts are responsible for packing of the aromatic halogen bond 

donors into off-set arrangement or a γ-structure. Both type I and type II fluorine contacts or 

either one was observed in the crystal packing (Figure 3.34b).  
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Table 3.5 Fluorine contacts of the co-crystals 

Co-crystal Type of F contact/s 

A2·14DITFB C-F···H-C 

A4·14DITFB C-F···H-C 

A6·14DITFB C-F···H-C 

A2·14DBTFB C-F···C 

A4·14DBTFB C-F···H-C 

C-F···F-C 

A4·13DBTFB C-F···H-C 

C-F···F-C 

C-F···C 

A2·44DIOFB C-F···C 

A4·44DIOFB C-F···C 

A6·44DIOFB C-F···C 

C-F···F-C 

C-F···H-C 

 

 

 

  

(a) (b) 

 

Figure 3.34 (a) C-F···C contacts and C-F···H-C contacts in A6·44DIOFB (b) type I and type II 

C-F···F-C contacts between 14DBTFB molecules in A4·14DBTFB 
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3.4.3.3 Hydrogen-bonded co-crystals 

In the case of hydrogen-bonded co-crystals, again we see 100% stacking between the 

donor molecules, 66% edge-face (50% herringbone and 17% γ-structure) stacking, being the 

most stable packing arrangement and 33% off-set stacking interactions. Stacking between 

acceptor molecules seemed to be favorable with the hydrogen bonded co-crystals (83% off-set 

stacking), however, stacking between A-D is furthermore only 17%, similar to the halogen 

bonded co-crystals. 

 

  

 

Off-set 

83% 

Off-set 

33% 

 Edge-face                 Edge-face 

                  17% 

 

 

  Herringbone 

50% 

γ-Structure 

17% 

 

Figure 3.35 Hydrogen bonded co-crystals - stacking interactions between A-A, D-D and A-D 

3.4.3.4 How does our system compare with literature data? 

Even though it may be expected in this binary system, that the electron rich pyridine ring 

interacts with the electron deficient halogen bond donors via face-to-face stacking as the most 

stable crystal packing arrangement, we observe only 2/9 of the structures following this 

behavior. On the other hand, the packing arrangement of the single donors are reproduced in the 

binary co-crystal system as the herringbone structure or the γ-structure. Reported to date, the 

face-to-face stacking of electron rich and electron deficient aromatic rings occurs for most single 
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component assemblies25 as well as for binary co-crystal assemblies.21-22, 26 In these cases the 

shapes of arene and perfluoroarene molecules were geometrically close matched or moderately 

different. Moreover, Gdaniec et al26c showed that, some degree of size and shape compatibility 

between the supramolecular substrates is necessary to allow effective aryl–perfluoroaryl stacking 

within the molecular complexes. The ligands A0-A8, in which the pyridine rings are separated by 

methylene units, are not compatible in size, shape and geometry with that of the individual donor 

molecules in order to undergo face-to-face stacking interactions, thus the donor molecules adopt 

the most favorable crystal packing arrangement that they can achieve, which is a γ-type packing 

in the binary co-crystal lattice with the aid of weak F contacts. Similar results were observed 

with hydrogen bonded co-crystals where stacking between the donor and the acceptor was 

minimum, and the aromatic hydrogen donors adopt either a herringbone or a γ-structure as the 

most stable packing arrangement reproduced in the crystal lattice presumably due to the lack of 

size, shape and geometric complementarity between the donor and the acceptor.  

 

Table 3.6 Hydrogen bonded co-crystals - stacking interactions between A-A, D-D and A-D 

Structure A-A D-D A-D 

A4-14DHB Off-set stacking Edge-face  

(γ-structure) 

No stacking 

A8-14DHB No stacking Off-set stacking No stacking 

A2-44BP Off-set stacking Off-set stacking Edge-face 

A4-44BP Off-set stacking Edge-face  

(herringbone) 

No stacking 

A6-44BP Off-set stacking Edge-face  

(herringbone) 

No stacking 

A8-44BP Off-set stacking Edge-face  

(herringbone) 

No stacking 

Overall results 83% stacking 100% stacking 

(33% Off-set stacking 

17% γ-structure 

50% herringbone) 

17% stacking 
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The weak F contacts do affect the crystal packing as the A-D stacking is higher in 

halogen-bonded co-crystals compared to the hydrogen-bonded co-crystals. The C-F···C and C-

F···H-C contacts assist the face-to-face and edge-face interactions between the donor and the 

acceptor of the halogen-bonded co-crystals, which the hydrogen-bonded co-crystals are not 

privileged of during crystal packing. Thus aggregation between the individual donor and 

acceptor molecules dominates in the hydrogen bonded co-crystals.  

3.5 Conclusion 

Our results demonstrate that aromatic hydrogen- and halogen bond donors are capable of 

forming robust supramolecular architectures via OH···N(py) and I···N(py) synthons, similar to 

the aliphatic hydrogen- and halogen bond donors. The weak aromatic interactions come into play 

during the assembly of the co-crystals by aggregation of the individual aromatic donors and 

acceptors into 2-D columns rather than stacking interactions between the donor and the acceptor.  

This reveals that effective stacking interactions between donor-acceptor pair can only occur by 

having some degree of size, shape and geometric compatibility between the two molecules. 

Fluorine aggregation affect the crystal packing, thus the stacking interactions between A-A, D-D 

and A-D differs in halogen bonded and hydrogen bonded co-crystals. Given that no stacking 

interactions take place between the donor and the acceptor, the homomeric interactions between 

the single components can be thus translated into the structure of the binary co-crystals. 
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Chapter 4 - Simultaneous hydrogen bonding and halogen bonding 

as synthon mimics of each other 

4.1 Introduction 

Crystal engineering involves the self-assembly of designed molecular species to form 

predictable supramolecular architectures with complementary size, shape and positioning of the 

functional groups to maximize the intermolecular interactions. In this regard, halogen bonding, a 

specific, directional and strong interaction that gives rise to robust supramolecular architectures, 

can complement the opportunities presented by hydrogen bonding.1 Strong halogen bonds can be 

achieved via electron withdrawing substituents attached to the halogen atom resulting in a more 

positive electrostatic potential of the “σ hole”. Iodoperfluoroalkanes (Chapter 2) and fluorinated 

aromatic compounds (Chapter 3) have been used as powerful halogen bond donors for 

constructing reliable synthons. In addition to fluorine substitution, the hybridization of the 

carbon atom bound to the halogen atom also contributes to the effectiveness of the halogen bond 

donor; the strength of the halogen bond donor usually follows as C(sp)-X > C(sp2)-X > C(sp3)-X 

making the sp-hybridized carbon bound halogen to be the strongest halogen bond donor (Figure 

4.1).2 Furthermore, C(sp)-X has a comparable electrostatic potential compared to its fluorinated 

analogue (Figure 4.2). In a competitive scenario, where an activated and a non-activated iodine 

atom are present on the same molecular backbone, the C(sp)-X moiety is the better halogen bond 

donor (Figure 4.3).3  

+79 kJ/mol +102 kJ/mol +168 kJ/mol 

 

 

 
                  

 

Figure 4.1 Molecular electrostatic potentials of C(sp3)-I, C(sp2)-I and C(sp)-I 
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+168 kJ/mol +173 kJ/mol 

 

 

Figure 4.2 Comparison between C(sp)-I and fluorinated analogue 

 

 

Figure 4.3 Selectivity of the halogen bonding between C(sp)-I and C(sp2)-I 

 

Halogen bond strength also depends on the polarizability of the C(sp)-halogen which 

increases down the periodic table C(sp)-Cl < C(sp)-Br < C(sp)-I indicated by the calculated 

molecular electrostatic potentials (Figure 4.4). The ability of C(sp)-I to form strong halogen 

bonds has been used in designing pharmaceutical co-crystals4 and in functional materials and 

devices.5  

Similarly functionalized hydrogen atoms also participate in “non-conventional” hydrogen 

bonds due to its acidity, which is around pKa of 25. The hydrogen bond donor ability of the 

fluorinated hydrogen and acetylene hydrogen are illustrated by the high positive electrostatic 

potential along the terminal of the covalent C-H vector compared to the non-activated or C(sp2)-

H (Figure 4.5). Based upon molecular electrostatic potentials, it is evident that C(sp)-H has a 

higher positive potential than C(sp)-Br and C(sp)-H and C(sp)-I have comparable charges. Due 

to this positive potential, C(sp)-H has been utilized in supramolecular synthons as synthetic tools 

in designing discrete supramolecular architectures in solid state (Figure 4.6).6 
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+106 kJ/mol +142 kJ/mol +168 kJ/mol 

   

Figure 4.4 Molecular electrostatic potential charges of the C(sp)-Cl, C(sp)-Br and C(sp)-I based 

on DFT calculation 

 

+78 kJ/mol +167 kJ/mol +157 kJ/mol 

  

 

Figure 4.5 Molecular electrostatic potential charges of the C(sp2)-H and C(sp)-H based on DFT 

calculation 

 

Figure 4.6 Synthons based on C(sp)-H 
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Hydrogen and iodine atoms are far apart in the periodic table and display dramatic 

differences in chemical and electronic properties (Table 4.1). However, when they are activated 

with similar functionality and geometry, they possess similar charges. Thus similarly 

functionalized hydrogen and iodine atoms playing the role of hydrogen-bond and halogen-bond 

donors of the same shape and geometry, could give rise to identical architectures in the solid 

state despite the fact that the iodine atom is about 40-50 times larger than the hydrogen atom and 

they obviously display drastically different electronic structures. Therefore, we wanted to 

explore whether these two atoms of radically different size and chemical characteristics 

nevertheless can display “synthon mimicry” in the solid state.    

 

Table 4.1 Comparison of the properties of hydrogen and iodine7 

 Hydrogen Iodine 

Atomic weight (amu) 1.0079 126.90 

Atomic radius (Å) 0.25 1.40 

Atomic volume (Å)3 0.065 11.49 

Electron configuration 1s2 [Kr] 4d10 5s2 5p5 

1st Ionization energy 

(kJ/mol) 

1312 1008 

 

In fact, the “synthon mimicry” of organic halogen and ethynyl groups,-C-X and -C≡C-H 

has been studied as they possess isostruturality due to their similar charge distribution and 

volume (Figure 4.7).8 The interchangeability of the -C-X and -C≡C-H functionalities has realized 

isostructural supramolecular assemblies with reproducible topological identity in cyclic and 

finite architectures (Figure 4.8).9 
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Figure 4.7 Charge distribution of the -C-X and -C≡C-H groups8 

 

 

(a) 

 

(b) 

Figure 4.8 Similar architectures realized by -C-X and -C≡C-H groups9 (a) halogen-halogen type 

II geometry is mimicked by T-geometry of -C≡C-H (b) halogen trimer synthon is mimicked by -

C≡C-H trimer synthon  

 

Further, if XB and HB pairs could produce structurally similar architectures, it would 

confirm that the electrostatic component possessed by both HB and XB is crucial in solid state 

crystal engineering. In order to explore this idea we eliminated the conventional hydrogen bond 
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donors such as carboxylic acids, phenols, oximes, amines and amides due to their inherent 

different geometric features and selected ethynyl hydrogen, C(sp)-H as the hydrogen bond donor 

as it has the same basic molecular shape as ethynyl iodine, C(sp)-I. We incorporated these 

hydrogen bonding, C(sp)-H and halogen bonding, C(sp)-I functionalities into the same backbone 

to study the possible interchangeability of the two functionalities in the solid state. We employed 

a 2-aminopyrimidine moiety as the source of a reliable supramolecular structural backbone 

thanks to its propensity to form ribbon-like architectures via self-complementary NH···N 

hydrogen bonds. (Figure 4.5).10  

 

 

 Figure 4.9 2-aminopyrimidines making ribbon-like architectures via N-H···N hydrogen bonds 

 

The 2-aminopyrimidines were functionalized with C(sp)-H (Hpym) and C(sp)-I (Ipym) 

(Figure 4.10 a) to examine how they individually behave in the solid state via the expected C-

X···π (X=H/I) synthons (Figure 4.10 b) which is well recognized in acetylene and iodoacetylene 

derivatives.9c Also, the possible interchangeability of these C(sp)-H and C(sp)-I synthetic vectors 

was evaluated with the help of suitable halogen/hydrogen bond acceptor. 



92 

 

 

 

 

 

(a) (b) 

Figure 4.10 (a) Functionalized 2-aminopyrimidines (b) C-H···π and C-I···π synthons expected 

to form between the individual Hpym and Ipym molecules 

 

An effective way of probing these structural consequences of hydrogen bonds and 

halogen bonds is through the use of co-crystallizations and to investigate this idea, several 

symmetric ditopic acceptors were chosen in order to study the binding preferences and possible 

synthon interchangeability of Hpym and Ipym, (Figure 4.11). 

 

 

Figure 4.11 Symmetric ditopic acceptor molecules 
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The main objectives in this chapter are: 

i. To determine how the ligands by themselves behave in the solid state 

ii. To examine whether those interactions be disrupted by combining Hpym and Ipym 

with a strong acceptor  

iii. To investigate the interchangeability of Hpym and Ipym in the co-crystals 

iv. To establish if two atoms of radically different size and chemical characteristics 

nevertheless can display “synthon mimicry” in the solid state 

 

4.2 Experimental 

4.2.1 Synthesis 

Tetramethyl pyrazine (TMP), 1,2-bis(4-pyridyl)ethylene (BPE), pyrazine (PZ), 4,4-

bipyridyl were purchased from Sigma Aldrich and 4,4'-bipyridyl N,N'-dioxide (BNO) from 

Acros Organics. Column chromatography was carried out on silica gel (150 Å pore size) from 

Analtech, Inc. 1H and 13C NMR spectra were recorded on a Varian Unity plus 400 MHz 

spectrometer in CDCl3. Data is expressed in parts per million (ppm) downfield shift from 

tetramethylsilane as internal reference and are reported as position (in ppm). Melting 

point/decomposition point determination was performed using Fisher-Johns melting point 

apparatus and are uncorrected. Infrared spectroscopy analysis was carried out using Nicolet 380 

FT-IR with a digital resolution of 0.9 cm-1. Data were analyzed using software, Omnic 8.0 © 

1992-2008 Thermo Fisher Scientific Inc. 

4.2.1.1 Synthesis of 5-bromo-2-aminopyrimidine11 

 

A solution of N-bromosuccinimide (5.2 g, 29.2 mmol) dissolved in methylene chloride 

(100 mL) was added dropwise to a solution of 2-aminopyrimidine (2.36 g, 24.8 mmol) dissolved 

in methylene chloride (50 mL) kept over an ice bath. After addition, the ice bath was removed 

and the reaction mixture was stirred at room temperature for 1 hr. Upon completion, the reaction 

was quenched with 10% sodium bicarbonate and 10% sodium sulfite solution. The mixture was 
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filtered and the precipitate washed with water twice and dried to yield a white powder. (3.7 g, 

86.2 %). M.p. > 250 ºC (Reported M.p. 245 ºC)12; 1H NMR (δH; 200 MHz, CDCl3): 8.31 (s, 2H), 

5.09 (br, 2H). 

4.2.1.2 Synthesis of 2-amino-5-trimethylsilanylethynylpyrimidine13 

 

5-Bromo-2-aminopyrimidine (2.0 g, 11.5 mmol) was dissolved in triethylamine (30 mL) 

and degassed by bubbling nitrogen through the reaction mixture. TMS-acetylene (2.82 g, 28.7 

mmol), PdCl2(PPh3)2 (0.81 g, 1.15 mmol) and CuI (0.438 g, 2.30 mmol) were added and the 

mixture was refluxed at 70 ºC overnight. The solvent was removed by evaporation and the 

residue dissolved in diethyl ether (200 mL), washed with 1 M HCl (50 mL) and brine (50 mL). 

The organic layer was separated and dried over anhydrous magnesium sulfate.  The solvent was 

removed on a rotary evaporator and the residue was chromatographed on silica with hexane: 

ethyl acetate mixture as eluent to obtain a light brown colored powder. Upon recrystallization 

from methylene chloride, colorless crystals were obtained, (1.4 g, 63.6 %). 1H NMR (δH; 200 

MHz, CDCl3): 8.40 (s, 2H), 5.21 (br, 2H), 0.26 (s, 9H). 

4.2.1.3 Synthesis of 2-amino-5-ethynylpyrimidine (HPym)10  

 

2-Amino-5-trimethylsilanylethynylpyrimidine (1.3 g, 6.8 mmol) and potassium carbonate 

(0.99 g, 7.20 mmol) were stirred in methanol at room temperature for 2 hrs. Upon completion, 

the solvent was removed by rotary evaporation and the residue dissolved in diethyl ether and 

washed with water (2 x 50 mL). The combined organic layers were dried over anhydrous 

magnesium sulfate and concentrated via rotary evaporation to obtain the product, Hpym as 
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yellow crystalline solid. (0.69 g, 85.1%). Dec. 148 ˚C. 1H NMR (δH; 200 MHz, CDCl3): 8.41 (s, 

1H), 5.23 (br, 2H), 3.19 (s, 1H); IR: υ 3280, 3241, 2753, 2530, 2350, 2170, 2104, 1659, 1588, 

1476, 1080, 939, 798 cm-1. 

4.2.1.4 Synthesis of 2-amino-5-iodoethynylpyrimidine (IPym)14 

             

To a solution of 2-amino-5-ethynylpyrimidine (0.5 g, 4.2 mmol) dissolved in THF (50 

mL), added dropwise simultaneously a concentrated solution of iodine in methanol (1.407 g, 

5.54 mmol) and a 10% sodium hydroxide solution over 30 min, vigorously stirring. The mixture 

was stirred overnight, and quenched with 100 mL water upon which a light yellow color 

precipitate forms. The filtered solid washed with sodium bisulfite solution afforded pure pale 

yellow color powder of Ipym, (0.82 g, 79.7%). Dec. 160 ˚C. 1H NMR (δH; 200 MHz, CDCl3): 

8.38 (s, 1H), 5.21 (br, 2H). IR: υ 3308, 3163, 2956, 2702, 2158, 1649, 1587, 1525, 1493, 1368, 

1219, 1069, 942, 796 cm-1. 

 

4.2.2 Synthesis of co-crystals 

The co-crystals were synthesized using solvent assisted grinding15 where the two 

hydrogen and halogen bond donor molecules, Hpym and Ipym were mixed in a 2:1 molar ratio 

with each of the five ditopic acceptor molecules and ground together using a drop of methanol 

until a solid paste was obtained. The resulting solid from each of the ten reactions (2x5) were 

analyzed using attenuated total reflectance (ATR) FTIR spectrometry for the confirmation of co-

crystal formation. Based on the result of the grinding experiment, if the IR showed that a reaction 

has occurred, the solid paste was dissolved in methanol or methanol:THF mixture in 2 dram 

borosilicate vials and allowed for slow evaporation at room temperature. The single crystals 

suitable for X-ray diffraction were again analyzed by IR for the confirmation of co-crystal 

formation. By this method, four single crystals confirmed to be co-crystals and two single 

crystals confirmed to be Hpym by itself and Ipym by itself were obtained.  
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4.2.2.1 Synthesis of 2-amino-5-ethynylpyrimidine·tetramethylpyrazine, HPym·TMP 

2-Amino-5-ethynylpyrimidine (HPym) (0.010 g, 0.084 mmol) and tetramethylpyrazine 

(TMP) (0.034 g, 0.25 mmol) were dissolved in methanol in a 2 dram borosilicate vial and 

allowed for slow evaporation at ambient conditions. After seven days colorless plate shaped 

crystals were obtained. Dec. 112 ˚C.  

4.2.2.2 Synthesis of 2-amino-5-ethynylpyrimidine·1,2-bis(4-pyridyl)ethylene, HPym·BPE 

2-Amino-5-ethynylpyrimidine (HPym) (0.010 g, 0.084 mmol) and 1,2-bis(4-

pyridyl)ethylene (BPE) (0.046 g, 0.25 mmol) were dissolved in methanol in a 2 dram 

borosilicate vial and allowed for slow evaporation at ambient conditions. After five days gold 

color plate shaped crystals were obtained.  M.p. 135-137 ˚C. 

4.2.2.3 Synthesis of 2-amino-5-iodoethynylpyrimidine·tetramethylpyrazine, IPym·TMP 

2-Amino-5-iodoethynylpyrimidine (IPym) (0.010 g, 0.041 mmol) and 

tetramethylpyrazine (TMP) (0.003 g, 0.020 mmol) were dissolved in methanol: THF 1:1 mixture 

in a 2 dram borosilicate vial and allowed for slow evaporation at ambient conditions. After three 

days colorless plate shaped crystals were obtained. M.p. 108-110 ˚C. 

4.2.2.4 Synthesis of 2-amino-5-iodoethynylpyrimidine·1,2-bis(4-pyridyl)ethylene, IPym·BPE 

2-Amino-5-iodoethynylpyrimidine (IPym) (0.010 g, 0.041 mmol) and 1,2-bis(4-

pyridyl)ethylene (BPE) (0.004 g, 0.020 mmol) were dissolved in methanol:THF 1:1 mixture in a 

2 dram borosilicate vial and allowed for slow evaporation at ambient conditions. After two days 

colorless plate shaped crystals were obtained. Dec. 171 ̊C. 

 

4.2.3 Single Crystal X-ray Crystallography 

X-ray data were collected on a Bruker APEX II CCD diffractometer at 120 K using, a 

fine-focus molybdenum Kα tube. Data were collected using APEX216 software. Initial cell 

constants were found by small widely separated “matrix” runs. Scan speed and scan width were 

chosen based on scattering power and peak rocking curves. 

Unit cell constants and orientation matrix were improved by least-squares refinement of 

reflections thresholded from the entire dataset. Integration was performed with SAINT17 using 

this improved unit cell as a starting point. Precise unit cell constants were calculated in SAINT 
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from the final merged dataset. Lorenz and polarization corrections were applied. All datasets 

were corrected for absorption using SADABS18 Laué symmetry, space group, and unit cell 

contents were found with XPREP. 

Data were reduced with SHELXTL.19 The structures were solved in all cases by direct 

methods without incident. Except where indicated, hydrogens were assigned to idealized 

positions and were allowed to ride. Heavy atoms were refined with anisotropic thermal 

parameters. Absorption correction was carried out on all datasets. 

Ipym - The molecule sits on a crystallographic mirror plane. All hydrogens were located 

in idealized positions. Attempts to account for the residual electron density in the vicinity of the 

iodine, either with more sophisticated absorption correction or with molecular disorder, were 

unsuccessful. 

Ipym·TMP - The asymmetric unit contains one alkyne and one half-pyrazine. All 

hydrogens were located in idealized positions. 

Ipym·BPE - The asymmetric unit contains one alkyne and one half-ethylene. 

Coordinates of the amine hydrogens H32A & H32B were allowed to refine. 

Hpym·TMP - The asymmetric unit contains one alkyne and one half-pyrazine. The two 

unique methyl groups were rotationally disordered and were each treated as two species. All 

hydrogens were located in idealized positions. Coordinates of the amine hydrogens H12A & 

H12B and the ethynyl hydrogen H18 were allowed to refine. 

Hpym·BPE - The asymmetric unit contains two alkynes and two half-ethylenes. These 

molecules were grouped into two different residues for consistent numbering. One of the two 

half-ethylenes was disordered and was modeled as two species. Geometries of the two species 

were restrained with the “SAME” command and thermal parameters were pairwise constrained 

with the “EADP” command. For both residues, coordinates of the amine hydrogens H12A & 

H12B and the ethynyl hydrogen H18 were allowed to refine. 

Hpym - The molecule sits on a crystallographic mirror plane. Coordinates of the unique 

amine hydrogen H11 were allowed to refine. 
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4.2.4 Molecular electrostatic potential charge calculations 

Molecular electrostatic potential calculations for Hpym and Ipym were performed using 

Spartan ’10 (Wavefunction, Inc., Irvine, CA) (Figure 4.12). The geometry optimization of the 

molecules were done using DFT with B3LYP procedure and 6-311+G** basis set, where a 

positive point charge in the vacuum was used to determine the maximum value of the potential, 

V(r), corresponding to the depth of the σ-hole on each halogen atom surface (0.002 e/au 

isosurface). The numbers indicate the interaction energy (kJ/mol) between particular point of the 

molecule and the surface of the positive point probe. A negative number corresponding to 

negative charge and positive number corresponding to positive charge which represents the 

electrostatic potential on the atoms. 

 

 

 

 

  

 

 

 

Figure 4.12 MEP surface charge calculations for Hpym and Ipym; numbers represent the 

electrostatic potential on hydrogen atom and iodine atom  

 

4.3 Results 

4.3.1 Characterization by IR spectroscopy 

Formation of a co-crystal was established by carefully comparing the IR spectrum of the 

ground solid mixture with the IR spectra of the pure donor and the acceptor. The C≡C (2100-

2200 cm-1) bond stretch was analyzed which is directly affected by the presence of a halogen 

bond (Table 4.2). The shifts of other stretches corresponding to either donor or the acceptor is 

also taken into consideration and the results are tabulated and used as a basis when determining a 

successful co-crystal event.  

+211 kJ/mol 

+157 kJ/mol +171 kJ/mol 

-81 kJ/mol 

-142 kJ/mol 

-71 kJ/mol 

-141 kJ/mol 

+213 kJ/mol 
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Table 4.2 FT-IR significant bands from solvent-assisted grinding experiments and the 

frequencies are expressed in wavenumbers, (cm-1) 

 Original PZ TMP BP BPE BNO 

Hpym 2170 2155 2152 2151 2167 2162 

2108 2106 2100 2096 2098 2105 

1659 1660 1650 1654 1643 1660 

1080 1064 1064 1068 1065 1083 

798 797 796 799 795 797 

Ipym 2159 2157 2155 2150 2153 2159 

1649 1651 1648 1654 1651 1653 

1587 1589 1589 1587 1582 1590 

1544 1546 1547 1546 1542 1546 

1525 1527 1528 1528 1521 1526 

796 797 794 801 794 799 

 

4.3.2 Crystal structures 

A total of four co-crystal structures were obtained along with the crystal structures of 

Hpym and Ipym. The hydrogen bond geometries for Hpym, Ipym and the co-crystals are 

presented in Table 4.3. 

 

Table 4.3 Hydrogen bond geometries for Hpym, Ipym, HPym·TMP, HPym·BPE, IPym·TMP 

and IPym·BPE 

Structure D-H···A (Å) d(D-H)/Å  d(H···A)/Å  d(D···A)/Å  <(DHA)/º  

Hpymi
 N(11)-H(11)...N(12)#2 0.929(13) 2.108(13) 3.0342(10) 175.2(10) 

Ipymii
 N(12)-H(12A)...N(11)#2 0.90 2.22 3.075(8) 158.2 

HPym·TMPiii N(12)-H(12A)...N(11)#2 

N(12)-H(12B)...N(13)#3 
C(18)-H(18)...N(31) 

0.890(16) 

0.882(16) 
0.943(16) 

2.174(16) 

2.176(16) 
2.414(16) 

3.0642(16) 

3.0575(17) 
3.3375(18) 

177.7(13) 

178.3(13) 
166.2(14) 

HPym·BPEiv N121-H12A1...N112 

N122-H12A2...N111 

N121-H12B1...N131#3 
N122-H12B2...N132#4 

C181-H181...N21A1 

C182-H182...N212 

0.925(17) 

0.912(18) 

0.868(18) 
0.848(18) 

0.952(17) 

0.941(17) 

2.295(18) 

2.144(18) 

2.323(18) 
2.192(18) 

2.341(18) 

2.277(18) 

3.2169(17) 

3.0562(17) 

3.1905(18) 
3.0381(18) 

3.280(2) 

3.2090(19) 

174.1(14) 

178.4(16) 

176.8(16) 
175.3(16) 

169.0(15) 

170.5(15) 

IPym·TMPv N(32)-H(32A)...N(31)#2 
N(32)-H(32B)...N(33)#3 

0.88 
0.88 

2.15 
2.18 

2.999(3) 
3.004(4) 

161.5 
155.4 

IPym·BPEvi N(32)-H(32A)...N(31)#2 

N(32)-H(32B)...N(33)#3 

0.81(3) 

0.82(3) 

2.21(3) 

2.27(3) 

3.014(2) 

3.088(2) 

176(3) 

178(3) 
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Symmetry transformations used to generate equivalent atoms: i) #1 x,-y+1/2,z    #2 -x+2,-y+1,-z, ii) #1 -x+1,y,z    

#2 -x+3/2,-y+1/2,-z+1, iii) #1 -x,-y,-z+1    #2 -x+1,-y+3,-z    #3 -x+2,-y+2,-z, iv) #1 -x+4,-y-1,-z    #2 -x-2,-y+2,-

z+2    #3 -x+2,-y+1,-z+1 #4 -x,-y,-z+1 v) #1 -x+2,-y,-z+1    #2 -x-1,-y+1,-z    #3 -x,-y+2,-z, vi) #1 -x+1,-y+1,-z-1    

#2 -x+2,y+1/2,-z+5/2    #3 -x+2,y-1/2,-z+5/2 

4.3.2.1 Crystal structure of 2-amino-5-iodoethynylpyrimidine, Ipym 

The crystal structure of Ipym shows that the aminopyrimidine moiety of the individual 

molecules form a ribbon-like arrangement via self-complementary NH···N interactions. These 

ribbons further extend to a 2-D network via perpendicular C(sp)-I···π interactions (Figure 4.13). 

The pyrimidine rings are offset stacked and arranged in an anti-parallel fashion (Figure 4.14). 

 

Figure 4.13 Primary interactions in the crystal structure of Ipym, the self-complementary 

NH···N interactions which makes ribbons and extension of the ribbons via C(sp)-I···π 

interactions 

 

Figure 4.14 Offset stacked pyrimidine units in the crystal of Ipym 
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4.3.2.2 Crystal structure of 2-amino-5-ethynylpyrimidine, Hpym 

In the structure of Hpym itself, a ribbon-like architecture is formed between 2-

aminopyrimidine moieties via NH···N self-complementary interactions (Figure 4.15). The 

structure is different than Ipym in which the ribbons are extended via C(sp)-H···N hydrogen 

bonding interactions (Figure 4.15). The structure involves off-set stacks of pyrimidine units that 

are arranged in a parallel fashion (Figure 4.16). 

 

 

Figure 4.15 Part of the crystal structure of Hpym showing N-H···N interactions and C(sp)-

H···N interactions 

 

 

Figure 4.16 Off-set stacks of pyrimidine units that are arranged in parallel fashion 

 

4.3.2.3 Crystal structure of 2-amino-5-iodoethynylpyrimidine·tetramethylpyrazine, IPym·TMP 

The structure determination of IPym·TMP showed a 1:1 co-crystal with self-

complementary NH···N synthons forming ribbon-like architecture. These ribbons are further 

cross-linked by C(sp)-I···N halogen bonds (Figure 4.17). 
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Figure 4.17 The primary N-H···N interactions that form ribbons and C(sp)-I···N halogen bonds 

that cross-links the ribbons 

4.3.2.4 Crystal structure of 2-amino-5-ethynylpyrimidine·tetramethylpyrazine, HPym·TMP 

When 2-amino-5-ethynylpyrimidine was combined with tetramethylpyrazine, the 

structure determination showed 1:1 co-crystal formation similar to the structure of IPym·TMP. 

The ribbon-like architecture was consistent and formed via NH···N synthons further cross-linked 

via C(sp)-H···N hydrogen bonds instead of C(sp)-I···N halogen bonds in IPym·TMP (Figure 

4.18). 

 

Figure 4.18 The primary N-H···N interactions that form ribbons and C(sp)-H···N hydrogen 

bonds that cross-links the ribbons 

4.3.2.5 Crystal structure of 2-amino-5-iodoethynylpyrimidine·1,2-bis(4-pyridyl)ethylene, 

IPym·BPE 

The crystal structure of IPym·BPE showed similar behavior (with 1:1 stoichiometry), 

where symmetry related self-complementary NH···N synthons produce a ribbon like 

architecture. The C(sp)-I···N halogen bonds crosslink the pyrimidine molecules into infinite 

chains (Figure 4.19). 
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Figure 4.19 The extended 2-D network formed via self-complementary N-H···N interactions 

and C(sp)-I···N halogen bonds  

4.3.2.6 Crystal structure of 2-amino-5-ethynylpyrimidine·1,2-bis(4-pyridyl)ethylene, 

HPym·BPE 

When 2-amino-5-ethynylpyrimidine was combined with 1,2-bis(4-pyridyl)ethylene, the 

structure determination showed 1:1 co-crystal similar to the structure of IPym·BPE. The ribbon-

like architecture is consistent and formed via NH···N synthons that are further cross-linked via 

C(sp)-H···N hydrogen bonds instead of C(sp)-I···N halogen bonds in IPym·BPE (Figure 4.20). 

 

 

Figure 4.20 The structural roles of C(sp)-H···N hydrogen bonding and self-complementary N-

H···N hydrogen bonding in HPym·BPE co-crystal 
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4.4 Discussion 

4.4.1 Characterization of the co-crystals from IR spectroscopy 

Systematic analysis of the IR spectra is a good way of characterizing co-crystal formation 

since the vibrational frequency and the bond strength changes as a result of new non-covalent 

interactions. The identification of co-crystal formation was done by carefully analyzing the IR 

spectra of the ground solid mixture or the single crystals that are formed and comparing them 

with the IR spectra of the individual donor and acceptor molecules. The C-I stretch was not 

within the range of our instrument. The C(sp)-H stretch that shows up around 3300 cm-1 is very 

weak and its precise position could not be identified with Hpym or Hpym based co-crystals. 

Therefore, the most telling characterization was based on the shift of the stretch corresponding to 

the C≡C in Hpym and Ipym (2170 and 2158 cm-1 respectively). In addition, C═C stretching 

bands (1400 – 1500 cm-1 and 1200 – 1300 cm-1), C-H in-plane bending modes (900 – 1000 cm-1) 

and C-H out-of-plane bending modes (750 – 850 cm-1) from both donor and acceptor were taken 

into consideration. A successful co-crystal formation was confirmed when the IR spectra of the 

ground solid mixture or the single crystals consist of stretches from both the donor and the 

acceptor and the magnitude of the shift of the IR bands are 2 cm-1 or more. An example of IR 

spectra of co-crystals IPym·TMP and HPym·TMP and their corresponding starting materials 

are shown in Figure 4.21 and Figure 4.22. 

The grinding experiments showed 100% co-crystal formation from the IR spectral 

analysis, based on the red shifts of the halogen / hydrogen bond donor and blue shifts of the 

halogen / hydrogen bond acceptor molecules. The C≡C in Hpym (2170 cm-1) and Ipym (2159 

cm-1) is diagnostic of the presence of halogen bonding or hydrogen bonding where a significant 

red shift is observed in all the co-crystals as iodoalkyne and acetylene proton are directly 

involved in co-crystal formation (2157, 2155, 2150, 2153, 2158 cm-1 in Ipym co-crystals and 

2155, 2152, 2151, 2167, 2162 cm-1 in Hpym co-crystals). The symmetric ring stretching modes 

of BPE (975 cm-1), TMP (986 cm-1), BNO (1020 cm-1), PZ (972 cm-1), BP (1026 cm-1) are blue 

shifted and the C(sp2)-H stretching modes of the heterocyclic ring (above 3000 cm-1) have 

become less intense and blue shifted, indicative of co-crystal formation (Figure 4.2) consistent 

with literature data.20 These changes are attributed to the n → σ* electron density donation from 

the heterocyclic ring to the electropositive iodine or hydrogen atom. 



105 

 

 

Figure 4.21 The comparison of the IR spectra of IPym·TMP (orange) with pure TMP (green) 

and Ipym (red). 

 

Figure 4.22 The comparison of the IR spectra of HPym·TMP (pink) with pure TMP (green) 

and Hpym (red). 
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The magnitude of the shifts of C═C and C-H modes are relatively small and showed 

either a red shift or blue shift. This is in agreement with literature and can be explained since the 

C═C and C-H bonds are not directly involved in C-X···N (X=I/H) hydrogen bonds or halogen 

bonds and could be affected by the nearest neighbors during crystal packing.3  

4.4.2 Interchangeability of ethynyl iodine and ethynyl hydrogen 

In order to assess the interchangeability of ethynyl iodine and ethynyl hydrogen, we need 

to carefully look at the crystal structures of Hpym and Ipym themselves and their co-crystals in 

detail. 

4.4.2.1 Behavior of the ligand by itself, Hpym and Ipym 

Both Hpym and Ipym have two acceptor sites and one donor site (Figure 4.23) and these 

give an idea of possible synthons in each individual molecule.  

 

Figure 4.23 The possible donor and acceptor sites in Hpym and Ipym (D – donor, A – acceptor) 

 

 

Figure 4.24 The two possible synthons that can result from the interactions 

 



107 

 

The crystal structure of Ipym shows a self-complementary ribbon-like architecture 

involving the 2-aminopyrimidine moiety. However, the main interest is paid to the haloethynyl 

moiety which displays synthon I (Figure 4.24), where the σ hole on the iodine atom forms a 

halogen bond with the π electron cloud of the C≡C (which acts as halogen bond acceptor) of the 

adjacent molecule. The I···C distance is 3.38 Å, shorter than sum of van der Waals radii (3.68 Å) 

and the interaction is almost perpendicular to the triple bond axis, 82.5°. The C-I···C≡C angle is 

171.5 Å suggesting a linear strong halogen bond between the σ hole and the π electron cloud. 

This (T-shaped) triple bond centroid perpendicular halogen bonding leads the ribbons to zig-zag 

chains. Crystal packing of Ipym is also controlled by off-set stacked pyrimidine units that are 

arranged in an anti-parallel fashion (Figure 4.14). The interplanar distance (3.38 Å) is smaller 

than the sum of van der Waals radii (3.40 Å) indicating that π stacking interactions also play a 

role in crystal packing. 

The same T-shaped C-H···π interactions are known to occur in terminal alkynes to form 

zig-zag type chains, in which the distance of C-H···π ranges from 2.56 – 3.58 Å and the C-

H···C≡C angle is linear with 180±10̊.9a, 9b, 21 However, the ethynyl hydrogen of Hpym exhibit 

synthon II in which the hydrogen bond is formed between the electropositive hydrogen and the 

amino N atom (Figure 4.24). The distance of C-H···N is 2.71 Å which is slightly less than sum 

of van der Waals radii (2.75 Å) and the C≡C-H···N angle is 139.4°. The π stacking interactions 

contribute to the crystal packing in Hpym as well given the interplanar distance 3.32 Å is shorter 

than sum of van der Waals radii (3.34 Å) where the pyrimidine units off-set stack in parallel 

fashion (Figure 4.16). 

Hpym and Ipym possess two different synthons, based on MEP charge calculations, the 

amine N is the better acceptor than the comparatively less electronegative electron cloud on the 

C≡C triple bond. However, the bigger size of the iodine atom may prohibit it from reaching the 

amine N lone pair due to steric factor and therefore, interacts with the π electron cloud of the 

C≡C triple bond. Hydrogen atom on the other hand is small and can easily access the amine N 

atom to form C-H···N hydrogen bonds. 
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4.4.3 Comparison of hydrogen and halogen bonded co-crystals of Hpym and Ipym 

Both IPym·TMP and HPym·TMP exhibit the same structural behavior where C(sp)-

I···N halogen bonds and C(sp)-H···N hydrogen bonds crosslink the pyrimidine molecules into 

infinite chains indicating the synthon mimicry of C(sp)-I···N halogen bonds and C(sp)-H···N 

hydrogen bonds. This structural similarity was reproducible when Hpym and Ipym were co-

crystalized with a different acceptor, BPE which again points that C(sp)-H···N hydrogen bonds 

can act as C(sp)-I···N synthon mimics (Figure 4.25).  

 

HPym·TMP and IPym·TMP 

 

HPym·BPE and IPym·BPE 

Figure 4.25 Representation of IPym and HPym interacting with two acceptors, TMP and BPE 

 

In each case, halogen bonding occurs with C(sp)-I···N distances 2.897(2) Å and 

2.7859(17) Å for TMP and BPE, respectively (Table 4.4), which are considerably shorter than 

sum of van der Waal radii for nitrogen (1.55 Å) and iodine (1.98 Å) atoms. The C(sp)-H···N 

distance in structures 2.414(16) Å in Hpym·TMP and 2.341(18) Å, 2.277(18) Å in Hpym·BPE 

are also shorter than sum of van der Waal radii for nitrogen (1.55 Å) and hydrogen (1.20 Å).  
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Table 4.4 Key geometric parameters in structures Hpym and Ipym 

Structure C-I···N (Å) C-I···N (˚) 

Ipym·TMP 2.897(2) 176.76(11) 

Ipym·BPE 2.7859(17) 175.11(7) 

 C-H···N (Å) C-H···N (˚) 

Hpym·TMP 2.414(16) 166.2(14) 

Hpym·BPE 2.341(18) 169.0(15) 

170.5(15) 

 

When the co-crystal structures of Hpym and Ipym are analyzed more closely (Table 

4.5), Ipym·TMP and Hpym·TMP are isostructural with the same space group with triclinic 

crystal system. Ipym·BPE and Hpym·BPE has different monoclinic and triclinic structures with 

P2(1)/c and P-1 space group respectively. The density of Ipym·TMP and Ipym·BPE is higher 

than Hpym·TMP and Hpym·BPE as expected due to the high atomic mass of iodine. 

 

Table 4.5 Co-crystal structural comparison between Hpym and Ipym 

 Space group Crystal system Volume (Å3) Density (g/cm3) 

Ipym·TMP P-1 Triclinic 560.46(8) 1.855 

Hpym·TMP P-1 Triclinic 502.2(3) 1.238 

Ipym·BPE P2(1)/c Monoclinic 1200.9(2) 1.859 

Hpym·BPE P-1 Triclinic 1033.84(18) 1.351 

 

 

4.4.4 Structural comparison with CSD 

A search for relevant analogous structures in CSD revealed two pairs of molecules with 

the same acceptor, 4,4-bipyridine with the hydrogen and halogen bond donors 1,4-

bisethynylbenzene (RUXMAZ)22 and 1,4-diiodoethynylbenzene (MB1201)23. The co-crystals of 

Ipym and Hpym are compared with the reported co-crystals, RUXMAZ and MB1201 (Figure 

4.26).  
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Figure 4.26 Representation of the co-crystals RUXMAZ and MB1201 

 

The co-crystal of 1,4-bisethynylbenzene and 4,4-bipyridine exhibits C(sp)-H···N 

hydrogen bonds, the distance of C-H···N is 2.264 Å which is slightly less than sum of van der 

Waals radii (2.75 Å) and the C-H···N angle is 174.9°. The co-crystal of 1,4-

diiodoethynylbenzene and 4,4-bipyridine shows C(sp)-I···N halogen bonds, the distance of C-

I···N is 2.759 Å which is slightly less than sum of van der Waals radii (3.53 Å) and the C-I···N 

angle is 174.9° (Table 4.6). The geometric parameters are in agreement with the co-crystals of 

Hpym and Ipym. 

 

Table 4.6 Key geometric parameters in structures RUXMAZ and MB1201 

Structure C-I···N (Å) C-I···N (˚) 

RUXMAZ 2.759  174.9  

 C-H···N (Å) C-H···N (˚) 

MB1201 2.264  174.9  

 

The chains of both hydrogen bonded and halogen bonded assemblies arrange in such a 

way that alternate molecules stack together to form the infinite layers of molecules (Figure 4.27). 

This shows that both hydrogen bonded and halogen bonded assemblies possess analogous 

behavior to each other and that C(sp)-I···N halogen bonds and C(sp)-H···N hydrogen bonds act 

as synthon mimics of each other. 
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(a) 

 

(b) 

 

Figure 4.27 Space filling representation of a portion of the crystal structure (a) The C-H···N 

hydrogen bonded assembly between 1,4-bisethynylbenzene and 4,4-bipyridine in RUXMAZ (b) 

The C-I···N halogen bonded assembly between 1,4-bisiodoethynylbenzene and 4,4-bipyridine 

MB1201 

4.5 Conclusions 

Our charge calculations and experimental structural data demonstrate that hydrogen 

atoms and iodine atoms connected to an sp hybridized carbon atom act as hydrogen and halogen 

bond donors. 2-aminopyrimidine backbone provides robust and reliable self-complementary 

NH···N synthon to investigate the interchangeability of the hydrogen bonding and halogen 

bonding. 

(i) The individual ligands Hpym and Ipym behave differently to one another; hydrogen of  

one Hpym binds with the amine nitrogen of another molecule which is the best acceptor 
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whereas the iodine in Ipym binds with the π electron cloud of another Ipym molecule due to its 

bigger size hindering the access to the amine nitrogen.  

(ii) However, by combining the ligands with a strong acceptor disrupts the 

homomeric interactions between individual molecules and creates supramolecular assemblies 

using C(sp)-H···N hydrogen bonds and C(sp)-I···N halogen bonds. 

(iii) Despite the fact that hydrogen and iodine atoms possess drastically different 

physical and chemical characteristics with respect to each other, they share a common 

electrostatic potential which could potentially influence non-covalent interaction geometries in 

solid state. We have been able to prove that ethynyl proton is capable of acting as a synthon 

mimic of ethynyl iodine by interchangeable C(sp)-H···N hydrogen bonds and C(sp)-I···N 

halogen bonds. 

The versatility of halogen bonding has been recognized in light responsive functional 

materials where low-molecular-weight halogen-bonded polymeric complexes were found to be 

exceptionally efficient and reproducible. These low-molecular-weight halogen-bonded polymeric 

complexes facilitate the mass transport which increases the dynamics towards equilibrium, 

compared to high molecular weight complexes.20a, 24 Possible interchangeability of C(sp)-H···N 

hydrogen bonds and C(sp)-I···N halogen bonds provides opportunities to employ C(sp)-H···N 

hydrogen bonds in the place of C(sp)-I···N halogen bonds which enables even lower molecular 

weight photoresponsive supramolecular complexes. The structural similarities offered by these 

synthons also proves that, by replacing the I atom by a H atom, the macroscopic properties (i.e. 

mass) of a system can be modulated, without changing the integrity of the system. Haloprogin, 

an antifungal agent, has been exploited in terms of designing new solid forms using halogen 

bond based co-crystal design.4b The employed C(sp)-I···N synthons can be replaced by C(sp)-

H···N hydrogen bonds (Figure 4.28) to realize same structural motifs with less density offered 

by the H atom.   

The findings of our study provide interesting design strategies for functional materials 

and drug design with the aid of C(sp)-H···N synthon in the place of C(sp)-I···N synthon to create 

low weight and less density materials. 
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Figure 4.28 Interchangeability of the C(sp)-I···N and C(sp)-H···N synthons in haoprogin co-

crystals 
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Chapter 5 - Halogen bond driven anion recognition and 

coordination using bishaloethynyl compounds 

5.1 Introduction 

Anions play an important role in most biological, environmental and chemical processes.1 

Some examples include phosphate ions in nucleic acids and ATP,2,3 nitrates and phosphates in 

agricultural industry,4 pertechnetate ions as radiopharmaceuticals5 and halides in organic 

synthesis.6 However, an excess of anions can have deleterious effects on the environment such as 

eutrophication of lakes,7 accumulation of radioactive materials8 and also on health issues such as 

cystic fibrosis.9  Anion recognition is challenging for several reasons. First, anions are larger 

than their isoelectronic cations, therefore, the charge density is low and the electrostatic potential 

is thus less effective. Secondly, at low pH the anions can get protonated and compete with the 

selective recognition process. Therefore, the design of hosts for anions need to be carefully 

tailored to achieve high selectivity and high affinity. 

Anion recognition has been achieved using a vast number of receptors through hydrogen 

bonding,10 metal-coordination,11 anion – π interactions12 and ionic bonds with positively charged 

receptors (polyammonium, guanidinium, and imidazolium cations).13 Halogen bonding 

interactions which occur between a halogen atom and an electronegative atom has drawn 

particular interest as a potential tool in anion coordination in solid state supramolecular 

chemistry. The increased electron density on the halogen bond acceptor increases the Lewis 

basicity and thus make strong and directional halogen bonds. Therefore, anions are better 

halogen bond acceptors than neutral species, having greater binding affinity towards halogen 

bond donors.14 

Iodoperfluoroalkanes being inherently good electron acceptors, have been effectively 

directing the halogen bonded assemblies in anion driven recognition process, giving rise to many 

applications. For example, ω-Diiodoperfluoroalkanes which are useful intermediates for the 

synthesis of fluoro-containing resins, elastomers, and surfactants, have been employed for 

separation and purification process using anion coordination.15 Also, iodoperfluoroalkanes find 

applications in radioactive waste management via anion coordination in cryptation, extraction, 

and recovery in the fluorous phase of radioactive metal cations16 and development of selective 

ion channels or dynamic porous materials.17 Likewise, the design and synthesis of 
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iodofluoroarenes based halogen bond receptors has been reported with applications in anion 

binding.18 

The supramolecular architectures of halogen bond based anion coordination can be 

classified into two main groups in order to identify the number of halogen bonds formed by a 

given anion depending on the composition of the system, the structure of interacting 

components, and the overall geometric and electronic requirements in the crystal packing. 

Therefore, the XB based anionic assemblies fall into either heteromeric two-component systems 

or heteromeric three-component systems (Figure 5.1).19  

 

 

(a) 

 

(b) 

Figure 5.1 (a) Heteromeric two-component system (b) Heteromeric three-component system in 

XB based anion coordination 

In heteromeric two-component systems, the positive and negative charges of the crystal 

lattice are balanced by the number of halogen bonds formed by the anion, therefore, the  anion 

play the role of  the XB-acceptor and the halogenated organic cation acts as the XB-donor 

moiety (Figure 5.1a). In heteromeric three-component systems, weakly coordinating cations are 
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employed, and halogen bonding takes place between an anion and a XB donor while the cation 

does not participate (Figure 5.1b), therefore, these systems are better tailored to study the ability 

of the anions to template the XB-donor partner(s). 

Halides are spherical anions that can be tailored to form a variety of halogen bonded 

supramolecular architectures. The topology of the halogen bonded (XB) supramolecular halide 

ion is strictly dependent on the number of halogen bonds formed, the geometry around the anion 

and the nature and size of the counter cation.19  

The number of halogen bonds formed by a given halide is a key factor in anion 

coordination. It can vary as a function of the composition of the system, the molecular structure 

of the donor sites, and the overall geometric and electronic requirements in the crystal packing. 

Halides usually have a moderate bias and therefore, frequently give rise to two or three halogen 

bonds,18a, 20 but careful crystal engineering can make the halide form other coordination numbers 

(CN), (Figure 5.2).21 

 

 

 

 

 

 

 

  

CN: 1 CN: 2 CN: 3 CN: 4 

(a) 

 

 

 

 

 

 
 

 

 

CN: 1 CN: 2 CN: 3 CN: 6 

(b) 

Figure 5.2 Different coordination numbers around (a) bromides14, 21f, 22 and (b) iodides21f, 23 

 



118 

 

The geometry around the halide ion, (Ar)R–X···Y-···X–R(Ar) varies from 60º-180º 

(Figure 5.3) which is different to the high linearity of the angle formed in the covalent bond and 

the halogen bond formed by the XB donor atom, Y-···X–R(Ar).19 The cation nature and size also 

influence the topology of the halogen bonded anion assembly. The anion tends to act as an XB 

acceptor and forms a greater number of halogen bonds when the anion is paired with a weakly 

coordinating cations.24  

 

 

 

 

72º 120° 

 

180° 

Figure 5.3 Different coordination geometries around iodides23b, 25 and bromides21f 

 

The haloperfluoroarenes are reliable and robust tectons in anion binding and 

coordination.24 The crystal structures reported are heteromeric three component systems where 

the cation acts as the weakly coordinating species, iodide or bromide as the halogen bond 

acceptor and the haloperfluoroarene as the halogen bond donor. These supramolecular assembly 

can be arranged in two different ways, first, the fluorinated aromatic rings can aggregate 

(Chapter 3) away from the cations and anions (Figure 5.4a) and secondly there is no fluorine 

aggregation and all three components are mixed together in the crystal lattice (Figure 5.4b).  
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(a) (b) 

Figure 5.4 The possible arrangements of halogen bond driven anion supramolecular assembly 

(a) fluorine aggregated assembly (b) cation, anion and the donor assorted arrangement 

 

As demonstrated in Chapter 4, a halogen atom next to an sp hybridized C atom also acts 

as a halogen bond donor and similarly functionalized 1,4-bis(iodoethynyl)benzene) and 

derivatives have been utilized in anion based halogen bonds for introducing molecular 

conductors containing supramolecular assemblies (Figure 5.5).21f, 26  

 

 

Figure 5.5 1,4-bis(iodoethynyl)benzene) forming halogen bonds with Cl- and Br- ions 

 

However, very little work with 1,4-bis(haloethynyl)benzene derivatives on anion binding 

has been reported to date. Since haloethynyl moiety is an alternative halogen bond donor 

candidate for anion binding, it is useful to investigate the binding preferences of this 

functionality towards different anions. Also, it is interesting to explore the similarities and/or 
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differences of these 1,4-bis(haloethynyl)benzene - anion driven supramolecular assemblies with 

respect to the perfluoroarene systems. 

Thus, in this current study we investigate the halogen bonding capability of three 1,4-

bis(haloethynyl)benzene analogous, CEB (1,4-bis(chloroethynyl)benzene), BEB (1,4-

bis(bromoethynyl)benzene) and IEB (1,4-bis(iodoethynyl)benzene) (Figure 5.6) towards a series 

of anions. IEBP (4,4'-bis(iodoethynyl)-1,1'-biphenyl) analogue was also used as an iodine donor 

since IEB has issues with co-crystallization.  

Since heteromeric three component systems can be better tailored towards anion 

recognition, with no limitations on anion coordination and geometry, a series of 

tetraalkylammonium salts are chosen as the anions of interest, due to the weakly coordinating 

nature of the tetraalkylammonium cation (Figure 5.7). There are two iodide salts, seven bromide 

salts, and one chloride salt in the series. 

 

Figure 5.6 1,4-bis(haloethynyl)benzene derivatives as symmetric ditopic halogen bond donors 

 

In this chapter we will attempt to answer the following questions: 

i) Are 1,4-bis(haloethynyl)benzene derivatives capable of forming halogen bonds to 

halide anions? 

ii) Is there a selectivity towards anion recognition that can be achieved from CEB vs. 

BEB vs. IEB? 

iii) Do we observe aromatic π stacking interactions or mixed cation-anion based 

assembly with these 1,4-bis(haloethynyl)benzene derivatives based anion 

coordination ? Do F···F contacts have any effect in the fluorinated aromatic halogen 

bond based coordination which does not appear in the former case? 
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iv) How is the topology of the halogen bonded anion influenced by the number of 

halogen bonds formed (coordination number), the geometry around the anion and the 

cation nature and size?  

 

 

Figure 5.7 Series of tetraalkylammonium halides acting as halogen bond acceptors in this study 

 

5.2 Experimental 

5.2.1 Synthesis 

All the tetraalkylammonium salts were purchased from Sigma Aldrich, Acros Organics. 

Column chromatography was carried out on silica gel (150 Å pore size) from Analtech, Inc. 1H 

and 13C NMR spectra were recorded on a Varian Unity plus 400 MHz spectrometer in CDCl3. 

Data is expressed in parts per million (ppm) downfield shift from tetramethylsilane as internal 

reference and are reported as position (in ppm). Melting point/decomposition point determination 

was done using Fisher-Johns melting point apparatus and are uncorrected. Infrared spectroscopy 

analysis was carried out using Nicolet 380 FT-IR with a digital resolution of 0.9 cm-1. Data were 

analyzed using software, Omnic 8.0 © 1992-2008 Thermo Fisher Scientific Inc. 
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5.2.1.1 Synthesis of 1,4-bis((trimethylsilyl)ethynyl)benzene27 

 

1,4-Dibromobenzene (8.2 g, 34.7 mmol) was dissolved in triethylamine (250 mL) and 

degassed by bubbling nitrogen through the reaction mixture. TMS-acetylene (6.81 g, 69.4 

mmol), PdCl2(PPh3)2 (2.43 g, 3.47 mmol) and CuI (1.32 g, 6.94 mmol) were added and the 

mixture was heated under reflux at 70 ºC overnight. The solvent was removed by evaporation 

and the residue was dissolved in diethyl ether (500 mL), washed with 1 M HCl (100 mL) and 

brine (100 mL). The organic layer was separated and dried over anhydrous magnesium sulfate.  

The solvent was removed on a rotary evaporator and the residue was chromatographed on silica 

with hexane: ethyl acetate mixture as eluent to obtain a light brown colored powder. The crude 

product was purified by flash column chromatography with hexanes as the eluent, to give pure 

1,4-bis((trimethylsilyl)ethynyl)benzene as colorless crystalline powder (7.3 g, 77.8 %). 1H NMR 

(δH; 200 MHz, CDCl3): 7.39 (s, 4H), 0.25 (s, 18H). 

5.2.1.2 Synthesis of 1,4-bis(ethynyl)benzene28 

 

1,4-Bis((trimethylsilyl)ethynyl)benzene (2.3 g, 8.5 mmol) and potassium carbonate (1.23 

g, 8.92 mmol) were stirred in methanol at room temperature for 2 hrs. Upon completion, the 

solvent was removed by rotary evaporation and the residue dissolved in diethyl ether and washed 

with water (2 x 50 mL). The combined organic layers were dried over anhydrous magnesium 

sulfate and concentrated via rotary evaporation to obtain the product, 1,4-bis(ethynyl)benzene, as 
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a yellow crystalline solid. (0.99 g, 93%). 1H NMR (δH; 200 MHz, CDCl3): 7.45 (s, 4H), 3.18 (s, 

2H). IR (Zn ATR crystal): υ 2192, 1904, 1656, 1499, 1399, 1263, 1176, 1098, 826 cm-1. 

5.2.1.3 Synthesis of 1,4-bis(iodoethynyl)benzene, IEB29 

 

To a solution of 1,4-bis(ethynyl)benzene (0.85 g, 6.73 mmol) dissolved in methanol (50 

mL), added dropwise simultaneously a concentrated solution of iodine in methanol (2.25 g, 8.87 

mmol) and a 10% sodium hydroxide solution over 30 min, vigorously stirring. The mixture was 

stirred overnight, and quenched with 100 mL water upon which a light yellow color precipitate 

forms. The filtered solid washed with sodium bisulfite solution afforded orange color powder of 

IEB, (2.19 g, 86%). Dec.124 ˚C. 1H NMR (δH; 200 MHz, CDCl3): 7.37 (s, 4H). IR (Zn ATR 

crystal): υ 2162, 1905, 1786, 1698, 1599, 1362, 1212, 1181, 1116, 1028, 904 cm-1. 

5.2.1.4 Synthesis of 4,4'-bis((trimethylsilyl)ethynyl)-1,1'-biphenyl27 

 

4,4'-Dibromo-1,1'-biphenyl (4.05 g, 12.9 mmol) was dissolved in triethylamine (150 mL) 

and degassed by bubbling nitrogen through the reaction mixture. TMS-acetylene (2.54 g, 25.9 

mmol), PdCl2(PPh3)2 (0.90 g, 1.29 mmol) and CuI (0.49 g, 2.58 mmol) were added and the 

mixture was refluxed at 70 ºC overnight. The solvent was removed by evaporation and the 

residue dissolved in diethyl ether (250 mL), was washed with 1 M HCl (100 mL) and brine (100 

mL). The organic layer was separated and dried over anhydrous magnesium sulfate.  The solvent 
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was removed on a rotary evaporator and the residue was chromatographed on silica with hexane: 

ethyl acetate mixture as eluent to obtain a light brown colored powder. The crude product was 

purified by flash column chromatography with hexanes as the eluent, to give pure 4,4'-

bis((trimethylsilyl)ethynyl)-1,1'-biphenyl as colorless crystalline powder (3.59 g, 80.4 %). 1H 

NMR (δH; 200 MHz, CDCl3): 7.61-7.65 (m, 8H), 0.22 (s, 18H). 

5.2.1.5 Synthesis of 4,4'-diethynyl-1,1'-biphenyl28 

 

4,4'-Bis((trimethylsilyl)ethynyl)-1,1'-biphenyl (3.4 g, 9.8 mmol) and potassium carbonate 

(1.42 g, 10.28 mmol) were stirred in methanol at room temperature for 2 hrs. Upon completion, 

the solvent was removed by rotary evaporation and the residue dissolved in diethyl ether and 

washed with water (2 x 50 mL). The combined organic layers were dried over anhydrous 

magnesium sulfate and concentrated via rotary evaporation to obtain the product, 4,4'-diethynyl-

1,1'-biphenyl, as a yellow crystalline solid. (1.72 g, 87%). 1H NMR (δH; 200 MHz, CDCl3): 

7.54-7.60 (m, 8H), 3.16 (s, 2H).  

5.2.1.6 Synthesis of 4,4'-bis(iodoethynyl)-1,1'-biphenyl, IEBP29 

 

To a solution of 4,4'-diethynyl-1,1'-biphenyl (1.5 g, 7.4 mmol) dissolved in methanol (50 

mL), added a concentrated solution of iodine in methanol (2.47 g, 9.75 mmol) and a 10% sodium 

hydroxide solution over 30 min, under vigorous stirring. The mixture was stirred overnight, and 
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quenched with 100 mL water upon which a light yellow color precipitate forms. The filtered 

solid washed with sodium bisulfite solution afforded orange color powder of IEBP (2.75 g, 

82%). Dec.182 ˚C. 1H NMR (δH; 200 MHz, CDCl3): 7.50-7.56 (m, 8H) IR (Zn ATR crystal): υ 

3033, 2916, 2159, 1920, 1605, 1486, 1431, 1392, 1220, 1004, 822 cm-1. 

5.2.1.7 Synthesis of 1,4-bis(chloroethynyl)benzene, CEB30 

 

1,4-Bis((trimethylsilyl)ethynyl)benzene (2.4 g, 8.87 mmol) and AgF (2.25 g, 17.74 

mmol) was placed in round-bottomed flask and CH3CN (200 mL) was added. The mixture was 

stirred under purging nitrogen for 20 minutes. The flask was wrapped in aluminum foil and 

under dark conditions, NCS (2.37 g, 17.74 mmol) was added. The mixture was stirred for 

overnight at room temperature after which time it was passed through a 2 cm plug of silica gel. 

The solvent was removed by rotary evaporation. The resulting residue was dissolved in Et2O and 

washed with H2O (50 mL). The organic part was separated, dried with Na2SO4 and the solvent 

was removed under vacuum to yield off white powder of CEB in 54 % yield (0.93 g, 4.79 

mmol). Dec. 89 °C; 1H NMR (δH; 200 MHz, CDCl3): 7.40 (s, 4H) IR (Zn ATR crystal): υ 2214, 

1904, 1664, 1643, 1541, 1404, 1325, 1287, 1236, 1017, 957, 864 cm-1. 

5.2.1.8 Synthesis of 1,4-bis(bromoethynyl)benzene, BEB30 

 



126 

 

1,4-Bis((trimethylsilyl)ethynyl)benzene (1.5 g, 5.54 mmol) and AgF (1.61 g, 11.08 

mmol) was placed in round-bottomed flask and CH3CN (200 mL) was added. The mixture was 

stirred under purging nitrogen for 20 minutes. The flask was wrapped in aluminum foil and 

under dark conditions, NBS (1.97 g, 11.08 mmol) was added. The mixture was stirred for 

overnight at room temperature after which time it was passed through a 2 cm plug of silica gel. 

The solvent was removed by rotary evaporation. The resulting residue was dissolved in Et2O and 

washed with H2O (50 mL). The organic part was separated, dried with Na2SO4 and the solvent 

was removed under vacuum to yield brown color crystals of BEB in 57 % yield (0.89 g, 3.13 

mmol). M.p. 103˚C. 1H NMR (δH; 200 MHz, CDCl3): 7.39 (s, 4H). IR (Zn ATR crystal): υ 

2192, 1906, 1779, 1659, 1502, 1483, 1400, 1362, 1264, 1102, 1017, 826, 743 cm-1. 

 

5.2.2 Synthesis of co-crystals 

The halogen bond donor molecules, CEB, BEB, IEB and IEBP were subjected to co-

crystallization experiments with ten different tetraalkyl ammonium salts. We used two iodides, 

tetraethyl ammonium iodide [Et4N]+I- and tetrabutyl ammonium iodide [Bu4N]+I-, six bromides, 

tetraethyl ammonium bromide [Et4N]+Br-, tetrapropyl ammonium bromide [Pr4N]+Br-, 

tetrabutyl ammonium bromide [Bu4N]+Br-, tetrapentyl ammonium bromide [Pn4N]+Br-, 

tetrahexyl ammonium bromide [Hx4N]+Br-, tetraoctyl ammonium bromide [Oct4N]+Br-, and 

didodcyldimethyl ammonium bromide [Dod4Me2N]+Br- and one chloride, tetraethyl ammonium 

chloride [Et4N]+Cl-.  

The co-crystals were synthesized using solvent assisted grinding31 where the halogen 

bond donors were mixed in a 1:5 stoichiometric ratio with each of the ten different tetraalkyl 

ammonium salts and ground together using a drop of methanol until a solid paste was obtained. 

The resulting solid from each of the 40 reactions (4x10) were analyzed using attenuated total 

reflectance (ATR) FTIR spectrometry for the confirmation of co-crystal formation. The solid 

paste was dissolved in methanol or methanol:THF mixture in 2 dram borosilicate vials and 

allowed for slow evaporation at room temperature. The single crystals suitable for X-ray 

diffraction were again analyzed by IR for the confirmation of co-crystal formation. By this 

method, ten single crystals that are confirmed to be co-crystals.  
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5.2.2.1 Synthesis of 1,4-bis(iodoethynyl)benzene tetrapropyl ammonium bromide 

IEB·[Pr4N]+Br- 

1,4-Bis(iodoethynyl)benzene (IEB) (0.010 g, 0.026 mmol) and tetrapropyl ammonium 

bromide, [Pr4N]+Br- (0.021 g, 0.079 mmol) were dissolved in methanol in a 2 dram borosilicate 

vial and allowed for slow evaporation at ambient conditions. After eight days colorless plate 

shaped crystals were obtained. Dec. 87 ˚C.  

5.2.2.2 Synthesis of 1,4-bis(iodoethynyl)benzene tetrabutyl ammonium bromide 

IEB·[Bu4N]+Br- 

1,4-Bis(iodoethynyl)benzene (IEB) (0.010 g, 0.026 mmol) and tetrabutyl ammonium 

bromide, [Bu4N]+Br- (0.025 g, 0.079 mmol) were dissolved in methanol in a 2 dram borosilicate 

vial and allowed for slow evaporation at ambient conditions. After five days colorless plate 

shaped crystals were obtained. Dec.102 ˚C. 

5.2.2.3 Synthesis of 1,4-bis(iodoethynyl)benzene tetrabutyl ammonium iodide IEB·[Bu4N]+I- 

1,4-Bis(iodoethynyl)benzene (IEB) (0.010 g, 0.026 mmol) and tetrabutyl ammonium 

iodide, [Bu4N]+I- (0.029 g, 0.079 mmol) were dissolved in methanol in a 2 dram borosilicate vial 

and allowed for slow evaporation at ambient conditions. After five days colorless plate shaped 

crystals were obtained. Dec. 115˚C. 

5.2.2.4 Synthesis of 4,4'-bis(iodoethynyl)-1,1'-biphenyl  tetraethyl ammonium iodide 

IEBP·[Et4N]+I- 

4,4'-Bis(iodoethynyl)-1,1'-biphenyl (IEBP) (0.010 g, 0.022 mmol) and tetraethyl 

ammonium iodide, [Et4N]+I-  (0.028 g, 0.11 mmol) were dissolved in methanol in a 2 dram 

borosilicate vial and allowed for slow evaporation at ambient conditions. After five days 

colorless plate shaped crystals were obtained. Dec. >200 ˚C. 

5.2.2.5 Synthesis of 4,4'-bis(iodoethynyl)-1,1'-biphenyl tetrabutyl ammonium iodide 

IEBP·[Bu4N]+I- 

4,4'-Bis(iodoethynyl)-1,1'-biphenyl (IEBP) (0.010 g, 0.022 mmol) and tetrabutyl 

ammonium iodide, [Bu4N]+I- (0.041 g, 0.11 mmol) were dissolved in methanol in a 2 dram 

borosilicate vial and allowed for slow evaporation at ambient conditions. After five days 

colorless plate shaped crystals were obtained. M.p. 132-135 ˚C. 
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5.2.2.6 Synthesis of 4,4'-bis(iodoethynyl)-1,1'-biphenyl tetrapropyl ammonium bromide 

IEBP·[Pr4N]+Br- 

4,4'-Bis(iodoethynyl)-1,1'-biphenyl (IEBP) (0.010 g, 0.022 mmol) and tetrapropyl 

ammonium bromide, [Pr4N]+Br- (0.029 g, 0.11 mmol) were dissolved in methanol in a 2 dram 

borosilicate vial and allowed for slow evaporation at ambient conditions. After five days 

colorless plate shaped crystals were obtained. Dec. 155 ˚C. 

5.2.2.7 Synthesis of 4,4'-bis(iodoethynyl)-1,1'-biphenyl tetrabutyl ammonium bromide 

IEBP·[Bu4N]+Br- 

4,4'-Bis(iodoethynyl)-1,1'-biphenyl (IEBP) (0.010 g, 0.022 mmol) and tetrabutyl 

ammonium bromide, [Bu4N]+Br- (0.035 g, 0.11 mmol) were dissolved in methanol in a 2 dram 

borosilicate vial and allowed for slow evaporation at ambient conditions. After five days 

colorless plate shaped crystals were obtained. M.p. 124-126 ˚C. 

5.2.2.8 Synthesis of 4,4'-bis(iodoethynyl)-1,1'-biphenyl tetrapentyl ammonium bromide 

IEBP·[Pn4N]+Br- 

4,4'-Bis(iodoethynyl)-1,1'-biphenyl (IEBP) (0.010 g, 0.022 mmol) and 

tetrapentylammonium bromide, [Pn4N]+Br- (0.042 g, 0.11 mmol) were dissolved in 

methanol:THF 1:1 mixture in a 2 dram borosilicate vial and allowed for slow evaporation at 

ambient conditions. After five days colorless plate shaped crystals were obtained. M.p. 89-92 ˚C. 

5.2.2.9 Synthesis of 4,4'-bis(iodoethynyl)-1,1'-biphenyl tetraoctyl ammonium bromide 

IEBP·[Oct4N]+Br- 

4,4'-Bis(iodoethynyl)-1,1'-biphenyl (IEBP) (0.010 g, 0.022 mmol) and 

tetraoctylammonium bromide [Oct4N]+Br- (0.060 g, 0.11 mmol) were dissolved in 

methanol:THF 1:1 mixture in a 2 dram borosilicate vial and allowed for slow evaporation at 

ambient conditions. After five days colorless plate shaped crystals were obtained. M.p. ˚C. 

5.2.2.10 Synthesis of 4,4'-bis(iodoethynyl)-1,1'-biphenyl didodecyldimethyl ammonium 

bromide IEBP·[Dod2Me2N]+Br- 

4,4'-Bis(iodoethynyl)-1,1'-biphenyl (IEBP) (0.010 g, 0.022 mmol) and 

didodecyldimethyl ammonium bromide [Dod2Me2N]+Br- (0.050 g, 0.11 mmol) were dissolved 

in methanol:THF 1:1 mixture in a 2 dram borosilicate vial and allowed for slow evaporation at 
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ambient conditions. After five days colorless plate shaped crystals were obtained. M.p. 120-

122˚C. 

 

5.3 Results  

5.3.1 Characterization by IR spectroscopy 

The results of the co-crystallization reactions were screened using IR spectroscopy, 

paying particular interest to the diagnostic alkynyl group of the halogen bond donor. Usually the 

occurrence of a halogen bond results in a red shift of the C≡C bond when the iodoethynyl moiety 

is halogen bonded to a halide.32 The results of the grinding experiments between the halogen 

bond donors, CEB, BEB, IEB and IEBP and the halogen bond acceptors are shown in Table 

5.1. 

Table 5.1 C≡C IR stretching frequencies of the supramolecular complexes 

 CEB 

(2214 cm-1) 

BEB 

(2192 cm-1) 

IEB 

(2162 cm-1) 

IEBP 

(2159 cm-1) 

[Et4N]+I- 2212 (-2) 2196 (+4) 2159 (-3) 2157 (-2) 

[Bu4N]+I- 2216 (+2) 2193 (+1) 2158 (-4) 2151 (-8) 

[Et4N]+Br- 2213 (-1) 2191 (-1) 2155 (-7) 2158 (-1) 

[Pr4N]+Br- 2215 (+1) 2186 (-6) 2159 (-3) 2145 (-14) 

[Bu4N]+Br- 2212 (-2) 2189 (-3) 2155 (-7) 2151 (-8) 

[Pn4N]+Br- 2214 (0) 2192 (0) 2152 (-10) 2156 (-3) 

[Hx4N]+Br- 2212 (-2) 2195 (+3) 2156 (-6) 2154 (-5) 

[Dod4Me2N]+Br- 2215 (+1) 2186 (-6) 2163 (+1) 2155 (-4) 

[Oct4N]+Br- 2216 (+2) 2190 (-2) 2155 (-7) 2159 (0) 

[Et4N]+Cl- 2214 (0) 2197 (+5) 2149 (-13) 2147 (-12) 

Success rate 50% 70% 90% 80% 

 

 

 



130 

 

5.3.2 Crystal structures 

5.3.2.1 Crystal structures of IEB·[Bu4N]+Br- and IEB·[Bu4N]+I- 

Single crystal X-ray diffraction analysis revealed that IEB·[Bu4N]+Br- and 

IEB·[Bu4N]+I- are isostructural and crystallize in the P21/c space group, that anion and the XB 

donor are present in a 1:2 ratio. XBs occur between IEB and iodide and bromide anions, which 

behave as bidentate XB acceptors (Figure 5.8). The halide coordination sphere is completed by 

HB contacts with H atoms belonging to the cation alkyl chains, one contact in IEB·[Bu4N]+Br- 

and three contacts in IEB·[Bu4N]+I- (Figure 5.8). The distance between the XB donor and 

acceptor is 3.464 Å in IEB·[Bu4N]+I-  and 3.267 Å for IEB·[Bu4N]+Br- (~ 16-17% reduction of 

the sum of van der Waals radii of I and the Pauling ionic radius of I− and Br−) and the 

C(18)−I(1)···I-(3)  and C(22)−I(1)···Br-(1) angles are 174° and 176º respectively.  

  

(a) (b) 

Figure 5.8 Bonding pattern around halide anions in the co-crystals (a) IEB·[Bu4N]+Br-and (b) 

IEB·[Bu4N]+I- 

The halogen bonded bidentate halide anions form infinite chains in a zig-zag type 

arrangement angles spanning 73º and 75º for IEB·[Bu4N]+I- and IEB·[Bu4N]+Br- respectively 

where the tetrabutylammonium cations sit perfectly between the zig-zag chains sandwiched 

between the aromatic XB donor where it is pinned by electrostatic interactions and weak C-H···π 

interactions. The overall crystal packing for the two assemblies are the same Figure 5.9.  
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(a) 

 

(b) 

Figure 5.9 Overall packing in (a) IEB·[Bu4N]+Br- and (b) IEB·[Bu4N]+I- . Anionic networks are 

in ball-stick style while cations are in spacefill style. 

5.3.2.2 Crystal structures of IEBP·[Bu4N]+Br- and IEBP·[Bu4N]+I- 

IEBP·[Bu4N]+Br- crystallizes in the P-1 space group and shows a disordered structure 

with 1:2 stoichiometry with two iodo compounds and one quaternary ammonium bromide ions. 

Also, there are two orientations present as shown by the thermal ellipsoid plot, Figure 5.10 a. 

There are two halogen bonds between I and the Br-, which behaves as a bidentate halogen bond 

acceptor and there are two C-H···Br- short contacts are seen from the alkyl chain of the cation 

Figure 5.11 a.  
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(a) (b) 

Figure 5.10 Thermal ellipsoid plot (50% probability level) and the labeling scheme of the 

supermolecules (a) IEBP·[Bu4N]+Br- (b) IEBP·[Bu4N]+I- 

X-ray analysis confirmed that the IEBP·[Bu4N]+I- ratio is 1:2 (Figure 5.10 b), with an 

interplay of XB and HB creating a sphere around the iodide ion, (Figure 5.11 b). The iodide 

anion acts as a monodentate donor, forming a dianionic [I-··· IEBP··· I-] species. 

 

(a) 

 

(b) 

Figure 5.11 Bonding pattern around halide anions in the co-crystals (a) IEBP·[Bu4N]+Br- and 

(b) IEBP·[Bu4N]+I- shown in ball-stick style 
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5.3.2.3 Crystal structures of IEB·[Pr4N]+Br- and IEBP·[Pr4N]+Br- 

The single crystal X-ray diffraction of IEB·[Pr4N]+Br- and IEBP·[Pr4N]+Br- reveals that 

the propylammonium bromide forms two halogen bonds with both the halogen bond donors, IEB 

and IEBP. Two cations are coordinating to the bromide ion via HB contacts in both structures, 

Figure 5.12. Both XBs are short, linear, and similar in their geometrical parameters. Br-···I 

distances are 3.188 Å for IEB·[Pr4N]+Br- and 3.198Å for IEBP·[Pr4N]+Br- (around 17-19% 

reduction of the sum of van der Waals radii of the interacting atoms) and angles, C22–I1···Br-1 

and C18–I1···Br-1 are 176° and 176° respectively. 

We observe in both the structures that, IEB and IEBP halogen bond with the bromide ion 

making infinite zig-zag chains with angles of 139º and 79º respectively. In the crystal structure of 

IEBP·[Pr4N]+Br-, the tetrapropylammonium cations sit in the center of the zig-zag chains 

formed with the aid of C-H···π contacts (Figure 5.13 a), but in the case of IEB·[Pr4N]+Br-, the 

tetrapropylammonium cations are moved slightly out of the zig-zag chains so that the overall 

crystal packing consists of alternating anionic and cationic layers (Figure 5.13 b). 

 

 

 

 

 

(a) (b) 

Figure 5.12 Bonding pattern around halide anions in the co-crystals (a) IEB·[Pr4N]+Br- and (b) 

IEBP·[Pr4N]+Br- 
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(a) 

 

(b) 

Figure 5.13 Overall packing in (a) IEBP·[Pr4N]+Br- and (b) IEB·[Pr4N]+Br-. The cations are 

displayed in spacefill style. 

5.3.2.4 Crystal structures of IEBP·[Et4N]+I- 

In the crystal structure of IEBP·[Et4N]+I-, there are three alkynes and three ammonium 

iodides in the asymmetric unit, Figure 5.14 a. The anions are closely associated with the alkyne 

and form three different zig-zag infinite chains of I-···I-alkyne-biphenyl-alkyne-I··· I- assembly. 

The iodide acts as a bidentate acceptor forming two halogen bonds with IEBP with I···Br-···I 

coordination angle of 162º. The halogen bonds are linear with C-I···I- angle of 179º and C-I···I- 

distance of 3.403 Å. The ammonium ions are not interacting with the iodide instead make short 

contacts with IEBP using C-H···π interactions (Figure 5.14 b).  



135 

 

 

(a) 

 

(b) 

Figure 5.14  (a) Thermal ellipsoid plot (50% probability level) and the labeling scheme of the 

supermolecule (b) Overall packing and the bonding pattern around the iodide ion, the 

tetraethylammonium cation is displayed in spacefill style. 

5.3.2.5 Crystal structure of IEBP·[Pn4N]+Br- 

The crystal structure of IEBP·[Pn4N]+Br- show a halogen bond with an I···Br- distance 

of 3.174 Å (20% reduction of the sum of van der Waals radii) and C18−I1···Br- angle of 176° 

and undergo HB contact with the cation alkyl chains (Figure 5.15a). The halogen bonding 

between IEBP and Br- has an angle of 76º forming infinite zig-zag chains and the 

tetrapentylammonium cations stick in between the chains (Figure 5.15b).  
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(a) 

 

(b) 

Figure 5.15 (a) Bonding pattern around halide anions in the co-crystal (b) Overall packing and 

the bonding pattern around the bromide ion, the tetrapentylammonium cation is displayed in 

spacefill style. 

5.3.2.6 Crystal structure of IEBP·[Oct4N]+Br- 

The single crystal XRD analysis of IEBP·[Oct4N]+Br- confirmed the formation of a 1:1 

complex in which bromide functions as a ditopic XB acceptor and interacts at each end with two 

molecules of IEBP via to Br···N XBs (Figure 5.16a). The Br-···I distance is 3.184 Å, which is 

about 19% shorter than sum of van der Waals radii and the C18−I1···Br- angle is 176º. The 

bromide ion makes two hydrogen bonds with the alkyl protons of two cations and the 

coordination angle around the bromide anion is 158º, which makes zig-zag type infinite chains 

similar to previous structures. The tetraoctylammonium cations make alternate chains along and 

in between the zig-zag chains (Figure 5.16b). 
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(a) 

 

(b) 

Figure 5.16 (a) Bonding pattern around halide anions in the co-crystal (b) Overall packing and 

the bonding pattern around the bromide ion, the tetrapentylammonium cation is displayed in 

spacefill style. 

5.3.2.7 Crystal structure of IEBP·[Me2Oct2N]+Br- 

The crystal structure of IEBP·[Me2Oct2N]+Br- shows that Br- is halogen bonded to the 

iodine with a Br-···I distance of 3.20 Å (19% reduction of the sum of van der Waals radii) and 

C18−I1···Br- angle of angle of 177°, and undergo one HB contact with the cation alkyl chains 

(Figure 5.17a). The halogen bonding between IEBP and Br- makes a coordination angle of 75º 

forming infinite zig-zag chains and the tetrapentylammonium cations form alternate parallel 

chains along with the rows of polymeric chains between the halide and the IEBP molecules, via 

CH···π interactions (Figure 5.17b). 
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(a) 

 

(b) 

Figure 5.17 (a) Bonding pattern around halide anions in the co-crystal (b) Overall packing and 

the bonding pattern around the bromide ion, the cation is displayed in spacefill style. 

 

5.4 Discussion 

5.4.1 Characterization of the co-crystals from IR spectroscopy 

Involvement of the haloalkynyl fragment with a strong electron density-donor site in the 

co-crystal formation was evidenced by the red shifts of the stretching band of the C≡C bond. The 

stretching bands of the C≡C bond of the pure CEB, BEB and IEB appear around 2214 cm-1, 

2192 cm-1 and 2162 cm-1 respectively and these bands are closely monitored as an event of co-

crystal formation. An example of a positive co-crystal hit between IEB and [Bu4N]+I- is shown 

in (Figure 5.18) where the C≡C bond stretch at 2162 cm-1 red shifts to 2157 cm-1. About 48% of 

the successful grinding experiments displayed a red shift for the halogen bond donor, however, 
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about 16% of the results revealed blue shifts of the C≡C bond stretch, which are also counted as 

a positive co-crystal event whenever the shift is greater than two wavenumbers.  

 

Figure 5.18 The comparison of the IR spectra of IEB·[Bu4N]+I- with pure IEB and [Bu4N]+I- 

 

The halogen bond donors CEB, BEB and IEB (IEBP) all showed positive co-crystal 

events with grinding experiments, even though only the iodine donors, IEB and IEBP were able 

to give rise single crystals suitable for X-ray diffraction. The co-crystallization attempts of BEB 

failed precipitating the ligand by itself even after increasing the stoichiometric amount of the 

anion to five fold. All the halogen atoms may, in principle, function as XB donor sites, however, 

the strength of the interaction is heavily influenced by the polarizability of the halogen atom. 

Based on our grinding experiments, CEB showed 50% success, BEB 70% and IEB (IEBP) 85% 

success towards anion binding, Table 5.1. Also, the red shifts (Δῡ) observed for CEB was less 

compared to the red shifts observed for BEB and IEB (IEBP). This result is consistent with the 

fact that halogen bond strength depends on the polarizability of the C(sp)-halogen atom which 

increases down the column following the trend C(sp)-Cl < C(sp)-Br < C(sp)-I indicated by the 

molecular electrostatic potentials (Figure 4.4) demonstrated in Chapter 4. 

Ground mixture 
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Figure 5.19 Highest polarizable atom makes the best XB donor based on the IR results 

 

FTIR spectroscopy of co-crystals showed red-shifted triple bond stretching modes from 

2162 cm−1 in pure IEB through 2159 cm−1 (-3) in [Et4N]+I and to 2155 cm−1 (-7) in [Et4N]+Br- 

and to 2149 cm−1 (-13) in [Et4N]+Cl- which clearly indicates the electron acceptor ability of the 

anions following in the trend Cl- > Br- > I-. Based on overall grinding results of IEB and IEBP 

iodine donors, the highest maximum red shifts are observed for bromide and chloride ions (Table 

5.1) consistent with reported data,32b implying that bromides and chlorides are better acceptors 

than iodides due to the high charge density possessed by bromides and chlorides.  

 

 

Figure 5.20 Anion with the highest charge density makes the best XB acceptor based on IR 

results 
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5.4.2 Comparison of the structures with diiodotetrafluorobenzene based anion 

coordinated structures 

A detailed systematic study of the anion coordination ability of 1,4-

bis(iodethynyl)benzene compounds has not been performed to date. Hence in this section our 

new crystal structures are analyzed to explore whether they could act as reliable and robust 

tectons for anion coordination. Furthermore, these halogen bond based anion coordinated 

supramolecular architectures of 1,4-bis(iodethynyl)benzene derivatives are examined in terms of 

how they compare with previously reported crystallographic data. For this purpose, the 

analogous anion coordinated 1,4-diiodotetrafluoro benzene (DITFB) supramolecular assemblies 

are taken into account, as these have been explored as means of anion coordination and anion-

templated assembly process. Moreover, structures are evaluated with respect to the trends in 

aromatic π stacking interactions, coordination number of the anion, geometry around the anion 

and effect of the counter cation. 

5.4.2.1 Effect of aromatic π stacking interactionson the halogen bond driven anion 

coordination supramolecular assemblies 

All the crystal structures reported in this chapter are heteromeric three component system 

where the tetraalkyl ammonium cation plays virtually no active role, as far as XB is concerned. 

No aromatic π stacking interactions is seen and all three components are mixed together in the 

crystal lattice. As far as the overall crystal packing is considered, either the tetraalkylammonium 

cations sit in between the zig-zag chains sandwiched between the aromatic XB donor where it is 

pinned by electrostatic interactions and weak C-H···π interactions (Figure 5.21a) or they form 

alternate chains along with the rows of polymeric halide···XB zig-zag chains with the use of 

CH···π interactions (Figure 5.21b).  
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(a) 

 

(b) 

Figure 5.21 Overall packing arrangements of the co-crystals 

 

On the other hand the analogous DITFB co-crystals reported in the CSD (CSD 

REFCODE: GIXGAV, GIXGEZ, GIXGUP, MAHCIJ and OHOVUD) show π stacking 

interactions within the crystal lattice via F···F interactions (Figure 5.22a). Therefore, in the case 

of bis-haloethynyl donors, the CH···π interactions and electrostatic interactions from slightly 

diffuse positive and negative charges, dominate over aromatic π stacking interactions as shown 

in Figure 5.22b. The π electron cloud of the triple bond act as a good electron donor which plays 

a role in the secondary interactions. However, the electrostatic interactions may not be powerful 

enough to overcome the aromatic π stacking interactions governed by F···F contacts between the 

DITFB molecules in the arrangement. 
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(a) (b) 

Figure 5.22 Schematic picture showing the packing arrangement of (a) DITFB co-crystals (b) 

1,4-bis-haloethynyl co-crystals 

5.4.2.2 Coordination number of the anion 

Based on the ten crystal structures (Table 5.2), we tried to find trends in the coordination 

number around the anion with respect to the analogous DITFB co-crystals. In this case, the 

number of halogen bonds are counted as the coordination number neglecting the HB contacts 

from the tetra alkylammonium cation. Out of the ten crystal structures, all seven bromides have a 

coordination number of two. Also, 2/3 of the iodide based crystal structures show a coordination 

number of two and only 1/3 involves in a coordination number of one. Altogether 9/10 structures 

of bromides and iodides have a preference for forming two halogen bonds regardless of the 

counter cation (Figure 5.23).  

 

Figure 5.23 Summary of the coordination numbers formed by iodides and bromides 
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Table 5.2 Coordination numbers (number of XBs formed), HB contacts around the anion and the 

I···X-··· I (º) angle X- = Br- or I- 

 

Crystal Structures 

Coordination  

number 

HB contacts 

around the anion 

 

I···X-··· I (º) 

IEB·[Bu4N]+Br- 2 1 75.12 

IEB·[Bu4N]+I- 2 3 73.43 

IEB·[Pr4N]+Br- 2 2 139.60 

IEBP·[Bu4N]+Br- 2 2 - 

IEBP ·[Bu4N]+I- 1 3 - 

IEBP ·[Et4N]+I- 2 0 162.18 

IEBP ·[Pr4N]+Br- 2 4 79.82 

IEBP ·[Pn4N]+Br- 2 1 76.82 

IEBP ·[Oct4N]+Br- 2 2 157.69 

IEBP ·[Me2Oct2N]+Br- 2 1 75.32 

 

This results are in agreement with the analogous ditopic DITFB based co-crystals, 

previously reported by Viger-Gravel et al,33 where 2/3 of the structures, the bromides have a 

coordination number of two regardless of the counter cation (Figure 5.24).  

 

   

DITFB·[Bu4N]+Br- DITFB·[Bu4P]+Br- DITFB·[EtPh3P]+Br- 

Figure 5.24 Halogen bonding contacts between bromide ion and DITFB33 

 

Iodides when halogen bonded to ditopic aliphatic or aromatic halogen bond donors are 

known  to form two halogen bonds, reported by Casnati et al (Figure 5.25a)20b and Mele et al 

(Figure 5.25b).18a According to these results, it further proves that even with the fluorinated 

halogen bond donors, iodides have a bias towards formation of two halogen bonds regardless of 

the counter cation.  
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Comparison of all these previously reported structures to our results demonstrate that 1,4-

bis-iodoethynyl functionality is a robust XB donor as good as fluorinated XB donors that can be 

utilized in anion coordination. 

 

 

 

 

(a) (b) 

Figure 5.25 (a) Iodide ion forming two halogen bonds with diiodoperfluorooctane shown in 

spacefil model20b (b) iodide ion forming 2 halogen bonds with the receptor bearing XB donors18a 

5.4.2.3 Geometry around the anion 

As the coordination number of the I- or Br- anions turned out to be two almost all the 

times when coordinated to these ditopic halogen bond donors, it is important to note that at all 

times the angles of either I···I-···I or I···Br-···I are observed in the range of either 70º-80º or 

140º-160º (Figure 5.26). This observation is consistent with the analogous anion co-crystals of 

DITFB, when coordinated to Br-, the most common I···Br-···I angles observed are ~70º (Ex. 

CSD REFCODE: GIXGEZ) (Figure 5.27a)34 and ~140º (Ex. CSD REFCODE: OHOWAK01) 

(Figure 5.27b)22b.  

 

Figure 5.26 Variation of the observed X···X-···X angles 
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74.3° 139.2° 

Figure 5.27 Examples showing the geometry around the bromide ion of the reported structures 

(a) GIXGEZ and (b) OHOWAK0122b 

 

Another important point to consider here is that the size of the cation or the number of 

HB contacts it forms with the anion or the arrangement of the alkyl chains does not influence the 

geometry around the anion whether it is a bromide or an iodide (Figure 5.28). Therefore, 

regardless of the presence of the cation, only two angles are observed for iodides and bromides. 

The most common angle is 70º-80º which was shown by 5/8 structures. The remaining 3/8 

structures has a coordination angle of 140º-160º (IEBP·[Bu4N]+I- is a dianionic [I-··· pBIBP··· I-

] species and IEBP·[Bu4N]+I- is a disordered structure, which are not counted in considering the 

geometry).  

 

Size of the counter cation 

 

Number of HB contacts 

Figure 5.28 Schematics showing (a) the size of the counter cation (b) number of HB contacts 

doesn’t have an effect on the X···X-···X angle  
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However, when multitopic halogen bond donors are employed with iodides with different 

counter cations, the cation size has an effect on the coordination number and the geometry as 

illustrated by the bromoform co-crystals with the [Me4N]+Br-, [Et4N]+Br- and [Pr4N]+Br- salts 

(Figure 5.29a).21a Furthermore, Metrangolo et al23b reported obtaining supramolecular assemblies 

with similar topology by using similar counter cations, i.e. 1,3,5-triiodotrifluorobenzene co-

crystals of [Et4N]+I- and [Et4P]+I- (Figure 5.29b). 

 

 

 

 

 

 

 

 

 

[Me4N]+I- 

Cation size increases 

[Et4N]+I- 

 

[Pr4N]+I- 

 

 (a)  

               

[Et4N]+I-                        [Et4P]+I- 

Similar cations 

(b) 

Figure 5.29 Effect of the size of the cation on the topology of the iodide ion 
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5.5 Summary and conclusion 

We have successfully demonstrated, that the haloalkynyl moiety is a robust and reliable 

tecton for halogen bond based anion recognition. The effect of the halogen bond donor atom was 

studied using CEB, BEB and IEB and we observed the trend of XB donor ability Cl<Br<I and 

XB acceptor ability I-<Br-<Cl-.  

 

Figure 5.30 XB donor acceptor ability 

 

All the crystal structures obtained with the iodine donors are heteromeric three 

component systems where the tetraalkyl ammonium cation did not play active role as far as XB 

is concerned. The aromatic donor molecules does not exhibit aromatic π stacking interactions 

within this anionic co-crystal lattice as opposed to the DITFB systems.  

The topology of the anion center (Figure 5.31) is fixed to form two halogen bonds in 

almost all the structures, where it give rise to infinite polymeric zig-zag chains with either owing 

a X···X-···X angle in the range of 70º-80º or 140º-160º. The size of the tetralakyl ammonium 

cation or the HB contacts from the alkyl chains of the cation does not seem to affect either the 

coordination number of the anion or the geometry around the anion.   
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Figure 5.31 Topology of halide ion 

 

This restricted coordination profile of the anion might be due to the balance between the 

nature of the halogen bond donor (number of halogen bond donor sites, the spatial arrangement 

of the donor sites, etc.) and the anion, which may arise from the general entropic factors.22b As 

the best way to investigate this concept further, halogen bond donors with multiple donor sites 

which are arranged in different geometry are proposed (Figure 5.32) as a continuation of this 

project. The synthesis and characterization of these iodine donors are already performed (NMR 

in Appendix A) and the co-crystal growth attempts with above mentioned alkyl ammonium 

halides are being pursued currently experimenting with different solvents and different methods.  

 

Figure 5.32 Proposed halogen bond donors with multiple sites and different geometry  

Coordination 

number 

Geometry 

Cation size 
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As the haloalkynyl moiety is available in the anion recognition tool box as a new tecton, 

it allows to access various topologies of the anion coordination sphere. A comprehensive study 

of these new XB based systems will allow the advantage of having predictability in various 

different architectures. Consequently it invites the opportunities of these systems to be employed 

in tuning the physical properties of functional materials in near future.  
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Chapter 6 - Suitably functionalized cavitands as carriers of active 

ingredients 

6.1 Introduction 

Molecular recognition, a key concept employed in fundamental biological processes rely 

on complementary balance between size, shape and functional entities and is responsible for their 

unique behavior.1 Parts of this concept is used in developing new strategies in modern 

supramolecular chemistry.2 In this area, reversible non-covalent intermolecular forces provide a 

tool box for the supramolecular chemist as means of achieving enormous diversity in functional 

complementarity in supramolecular assemblies and architectures. Large synthetic receptors have 

offered high binding affinities,3 remarkable selectivity,4 high catalytic efficiency5 and unique 

signaling systems.6 Cavitands, bowl-shaped molecules that feature sizable concave surfaces hold 

prominent place in the history of these synthetic receptors.  

Resorcin[4]arene based cavitands (Figure 6.1) were first introduced by Cram in 1980s as 

“molecules that contain enforced cavities large enough to accommodate simple molecules or 

ions”.7 Since then their popularity grew exponentially with particular attention of these 

molecules in numerous applications, for example, molecular catalysis,8 molecular sensing,9 

stabilization of reaction intermediates,10 as a reaction chamber,11 gas encapsulation,12 and as 

photosensitizers.13 Furthermore, individual cavitand molecules can be self-assembled or 

covalently bound together to form capsules10b, 14 or hexameric superbowl structures15 which find 

applications due to the restricted inner space isolated from the bulk environment. The 

“nanospace” of these cavitands, capsules and superbowl structures have this unique well-defined 

size, volume and chemical characteristics that are well-suited for incorporating complementary 

guest molecules inside. 

A resorcin[4]arene based cavitand exhibit a versatile scaffold with the possibility of 

achieving large variation in covalent modification in three different positions without altering the 

integrity of the cavitand framework (Figure 6.2). The lower end of a cavitand is termed as “feet” 

where covalent modification can be done to alter the solubility of the molecule.16 The middle 

part of the molecule which constitutes the cavity is the “body” and is made up of four phenyl 

rings providing a π basic interior for capturing electron deficient guest molecules.17 The 

methylene groups that are connecting the adjacent aromatic rings are the “bridging groups” 
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which are responsible for reducing the flexibility thus avoiding other possible conformations of 

the molecule. Bridging groups can be modified in order to alter the width or depth of the 

cavity.7a, 18 The four positions on the rim of the cavity constitute the “upper rim” where most 

modifications can be performed to achieve cavitands decorated with a multitude of functional 

moieties. Our synthetic efforts will focus on functionalizing the upper rim (labeled X) while 

methylene bridges and the pentyl feet will not be altered Figure 6.2.  

  

 

Figure 6.1 Resorcin[4]arene based cavitand scaffold; top view (left) right view (right) 

 

 

Figure 6.2 A resorcin[4]arene-based cavitand outlining the possible adaptable locations 

  

A resorcin[4]arene-based cavitand, bearing four aromatic positions, upon 

functionalization, offer the advantage of binding four guest molecules per one host molecule. 

Moreover, the versatility offered by the cavitands creates opportunity for a wide range of guests 

that can be tailored towards a molecular recognition event. Reversibility is a key factor which 

needs to be achieved in any molecular recognition event and hydrogen bonding and halogen 

bonding have so far been the most promising supramolecular synthetic tools in the field of non-

covalent synthesis.   
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6.1.1 Molecular recognition by upper rim functionalization 

6.1.1.1 Hydrogen-bonded cavitands  

Resorcin[4]arene based cavitands have been functionalized with hydrogen bond donors 

and acceptor moieties to impart hydrogen bonding capabilities. Hydrogen bond donors such as –

COOH,19 –OH,20 –C(R)=NOH,21 -NH2,
22 -NHCOR17a, 23 and hydrogen bond acceptors such as –

pyridyl,24 -pyrazole,25 -C≡N26 functionalities are reported with the major binding motifs as O-

H···N, N-H···N, N-H···O bonding interactions (Figure 6.3). These synthons are employed in 

either guest binding of individual cavitands or dimeric hydrogen-bonded capsular assemblies.  

 

Figure 6.3 Schematic showing some examples of the observed synthons 

6.1.1.2 Halogen-bonded cavitands 

Employing halogen bonding functionalities is another way of decorating the rim of a 

cavitand, however, there are not many known examples of halogen bonded cavitands in the 

literature to date. Resorcin[4]arene cavitands, functionalized with fluorinated iodine donors 

assemble into a molecular capsule via halogen bonds is reported.27 Tetraiodoethynyl 

resorcinarene cavitands are known to act as multivalent halogen bond donors towards neutral and 

anionic acceptors.28 On the other hand, N-alkyl ammonium resorcinarene halides acting as 

halogen bond acceptors for perfluoroiodobenzene and bromotrichloro methane are also known.29 

 

Figure 6.4 Schematic showing some examples of the observed synthons 
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6.1.2 Molecular recognition via cavity inclusion 

The pre-organized hydrophobic interior of the cavitand is capable of encapsulating guests 

with high affinity and high selectivity. The structural complementarity between the host cavity 

and the guest is crucial in order for the molecular recognition to take place, where the size and 

shape of the guest determines the selectivity.  

The aromatic walls that compose the cavity generate a polarizable π surface interior, and 

thereby has the potential to encapsulate and stabilize cations (by cation- π interactions),30 

molecules bearing a thin layer of positive charge such as C−H bonds (by CH- π interactions),31 

anionic species such as surfactants (sodium dodecyl sulfate, SDS),32 and neutral species33 are 

reported. 

6.1.3 An approach for quantifying the molecular recognition event 

 Some of the major challenging tasks in supramolecular chemistry are, the design of large 

multicomponent systems with predictable stoichiometry and quantitative analysis of the 

intermolecular interaction of interest. Solid state experiments, i.e. FTIR analysis provide 

information to prove that the host and the guest of a particular system are interacting with each 

other, however, does not grant the stoichiometry or the strength of a binding event. Besides, 

single crystal growth of these larger systems suitable for X-ray diffraction is a major issue in 

supramolecular chemistry. The most common method to address this issue is the supramolecular 

titration method. 

In this titration method, one component (i.e.guest) is incrementally titrated into the other 

component (i.e. host), by carefully monitoring the change of a physical property sensitive to the 

molecular recognition event, for example, the change in the resonance (NMR spectroscopy), the 

change in the absorbance (UV/fluorescence spectroscopy) etc. The data acquired from the 

titration is fit into non-linear binding curves to obtain the association constants Ka which is the 

basic criterion for evaluating the host-guest recognition process. In addition, free energy, ΔG can 

be calculated as expressing the favorability of the complexation and also the stoichiometry of the 

binding event can be determined by means of a Jobs plot. 
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6.1.4 Goals 

The goals of this study are related to the fact that one cavitand molecule with the 

appropriate rim functionalization can act as a carrier of four guest molecules. We aim to design 

and synthesize cavitands with suitable upper rim functionalization and to study their binding 

ability towards a series of guest molecules. The guest have three options to bind to the cavitand 

via, 1) cavity inclusion, 2) upper rim binding, or 3) cavity inclusion and upper rim binding 

(Figure 6.5). The upper rim of the cavitand will be decorated with hydrogen bond and halogen 

bond donor and acceptor functionalities in order to evaluate their ability towards guest binding. 

 

Figure 6.5 Cartoon representation showing the three possible modes of guest binding to the 

cavitand (A - binding site, G - guest) 

 

The overall specific goals of this chapter are as follows-  

i) To synthesize tetracarboxylic acid cavitand and tetraethynyl cavitand as hydrogen-

bond (HB) donor functionalized cavitands and tetraiodoethynyl cavitand and 

tetrabromoethynyl cavitand as the halogen-bond (XB) donor functionalized cavitands 

ii) To study the binding ability of these cavitands towards a series of active ingredients 

bearing HB/XB acceptor moieties 
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iii) To synthesize tetrapyridyl cavitand and tetra pyridyl-N-oxide cavitand as HB/XB 

acceptor functionalized cavitands  

iv) To study the binding ability of these cavitands towards a series of active ingredients 

bearing HB/XB donor moieties 

    

 

Figure 6.6 Target cavitands 

6.2 Experimental  

6.2.1 Synthesis 

All chemicals were purchased from Aldrich, Fisher, TCI America, Oakwood products 

Inc. and the agrochemicals were from Syngenta crop protection, Inc. which were used without 

further purification unless otherwise noted. Column chromatography was carried out on silica gel 

(150 Å pore size) from Analtech, Inc. THF was distilled from sodium-benzophenone ketyl under 

an argon atmosphere. The ligands 3A8-3A0
 and 4A8-4A0

 were synthesized using the procedure 

reported in Chapter 2. Ibuprofen and naproxen were extracted from Advil and Aleve tablets. 1H 

and 13C NMR spectra were recorded on a Varian Unity plus 400 MHz spectrometer in CDCl3 or 

DMSO. Data is expressed in parts per million (ppm) downfield shift from tetramethylsilane as 
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internal reference and are reported as position (in ppm). Variable temperature 1H NMR 

experiments were carried out by cooling down the probe from 25 °C to 10 °C, 0 °C, -20 °C and -

50 °C in CDCl3. If not mentioned otherwise, all spectra were recorded at 25 °C. The residual 

solvent peak was used as the internal reference (CDCl3: δH = 7.26 ppm, δC = 77.16 ppm; 

DMSO: δH = 2.56 ppm, δC = 53.32 ppm). The 1H NMR spectra are reported as follows: 

chemical shift δ in ppm relative to TMS (δ = 0 ppm), multiplicity, coupling constant (J in Hz), 

number of protons. The resonance multiplicity is described as s (singlet), d (doublet), t (triplet), q 

(quartet) or m (multiplet). The determinations of melting points were carried out on Fisher-Johns 

melting point apparatus and are uncorrected. Infrared spectroscopy analysis was carried out 

using Nicolet 380 FT-IR with a digital resolution of 0.9 cm-1. Data were analyzed using software, 

Omnic 8.0 © 1992-2008 Thermo Fisher Scientific Inc.   

6.2.1.1 Synthesis of C-pentylcalix[4]resorcinarene, 134 

 

Into a solution of resorcinol (50.0 g, 0.45 mol) dissolved in ethanol (500 mL), added 

hexanal (45.5 g, 0.45 mol). The mixture was cooled to 0 °C and conc. HCl (70 mL) was added 

dropwise under a dinitrogen atmosphere. The mixture was refluxed at 70 °C under nitrogen for 

16 hours. Upon completion, reaction mixture was allowed to cool to room temperature and 

diluted with water (500 mL) to obtain a orange color precipitate with a fruity smell. It was 

filtered using a fritted Buchner funnel and washed with hot water until the filtrate is pH neutral. 

The product was air dried to yield 1 (77 g, 88 %). M.p. >280 ˚C; 1H NMR (δH; 400 MHz, D6-

DMSO): 8.86 (s, 8H), 7.15 (s, 4H), 6.13 (s, 4H), 4.20 (t, J = 7.6Hz, 4H), 2.00 (m, 8H), 1.23-1.25 

(m, 24H), 0.83 (t, 12 H, J=6.4Hz)  

 

 

 



160 

 

6.2.1.2 Synthesis of C-pentyltetrabromocalix[4]resorcinarene, 235 

 

C-pentylcalix[4]resorcinarene, 1 (50.0 g, 0.065 mol) was added to the flask containing 2- 

butanone (375 mL) and stirred until all of 1 is dissolved. Reaction mixture was then cooled to 0 

°C and was covered with aluminium foil. Under dark conditions, N-bromosuccinamide (69 g, 

0.39 mol) was slowly added in small portions to the reaction mixture over a period of 1 hour. 

The reaction mixture was stirred at room temperature for 16 hours under dinitrogen atmosphere. 

After the addition of NBS, the reaction mixture was allowed to stir at room temperature for 12 

hrs. The precipitate formed in the reaction was filtered and washed with cold 2- butanone (3 x 50 

mL) then cold acetone (3 x 100 mL). Product 2 was air dried followed by drying in the oven 

overnight (at 100 °C) to produce off-white solid, (51.9 g, 74 %). M.p. >280 ˚C; 1H NMR (δH; 

400 MHz, D6-DMSO) 9.1 (s, 8H), 7.34 (s, 4H), 4.34 (t, J = 6.4Hz, 4H), 2.17 (m, 8H), 1.28 (m, 

24H), 0.84 (t, J = 7.2Hz, 12H) 

6.2.1.3 Synthesis of C-pentyltetrabromocavitand, 336 

 

To a stirred solution of C-pentyltetrabromoresorcin[4]arene, 2 (30.00 g, 27.80 mmol) 

dissolved in dry DMF (500 mL) was added K2CO3 (50.00 g, 510.0 mmol). The reaction mixture 

was purged with nitrogen for 20 minutes followed by the addition of CH2BrCl (54.15 g, 418.51 

mmol). A condenser was attached and solution was heated at 65 °C for 24 h under a dinitrogen 
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atmosphere. After 24 hours an additional amount of CH2BrCl (7.50 g, 58.01 mmol) was then 

added, and the reaction mixture was stirred at 65 °C for a further 24 h. After completion, the 

reaction mixture was cooled to room temperature and poured into an aqueous HCl solution (2%, 

600 mL). The solid, which contained mainly 3, was filtered off and washed with water until pH 

is neutral. The solid was air dried and was then purified by column chromatography using 

Hexane : dichloromethane 1:1 mixture as the eluent. The product, 3 was isolated as a white solid, 

which upon recrystallization from dichloromethane gave colorless crystals. (23.6 g, 75 %). M.p. 

>280 ˚C; 1H NMR (δH; 400 MHz, CDCl3): 7.05 (s, 4H), 5.95 (d, J = 7.4Hz, 4H), 4.86 (t, J = 

7.6Hz, 4H), 4.39 (d, J = 7.2Hz, 4H), 2.18 (m, 8H), 1.34 (m, 24H), 0.92 (t, 12H) 

6.2.1.4 Synthesis of C-pentyltetracarboxyl cavitand, 47a, 19b 

 

Dry freshly distilled tetrahydrofuran (20 mL) was added to C-pentyltetrabromocavitand 3 

(2.16 g, 1.91 mmol), and then the solution was evaporated and dried at 80 °C (0.1 mmHg) for 2 h 

under an nitrogen atmosphere to get extremely dry solid of 3. This procedure was repeated twice. 

At the end of the drying procedure, the solid, 3 was dissolved in dry tetrahydrofuran (200 mL) 

and cooled to -78 °C using dry ice/ acetone bath under dinitrogen atmosphere for 10 minutes. N-

butyllithium (1.6 M in hexanes) (5.96 mL, 9.55 mmol) was slowly added dropwise to this 

solution upon which a milky solution begin to appear.  After addition, the reaction mixture was 

stirred for 30 minutes under nitrogen. Then carbon dioxide gas was purged through the reaction 

mixture for 20 minutes at -78 °C.  A balloon filled with carbon dioxide gas was then attached to 

the reaction flask and exchanged few times with fresh CO2 balloons until the reaction mixture is 

saturated with CO2 gas. The reaction was let warmed to room temperature and stirred over a CO2 

balloon overnight. Upon completion, a NaOH (1 M) aqueous solution (100 mL) was added to the 

reaction mixture at room temperature. THF was then removed under vacuum and the aqueous 

layer was washed with Et2O (100 mL × 3), followed by acidifying with concentrated HCl at 0 

°C. The resulted white solid of the product, 4 was then extracted with Et2O (100 mL × 3). The 
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organic layer washed with water and brine, dried over anhydrous MgSO4 and solvent removed 

under vacuum to yield 4 as colorless solid. The solid was then titurated with hexanes, filtered off 

and recrystallized from methanol to yield colorless crystals of 4 (1.5 g, 78%). M. p. > 280 ˚C; 1H 

NMR (δH; 400 MHz, d6-DMSO): 7.66 (s, 4H), 5.77 (d, J = 8.4Hz, 4H), 4.59 (t, J = 6.2Hz, 4H), 

4.37 (d, J = 7.2Hz, 4H), 2.40 (m, 8H), 1.31 (m, 24H), 0.88 (t, 12H);  13C NMR (δC; 400 MHz, 

d6-DMSO) : 165.58, 149.86, 138.61, 125.54, 122.87, 99.27, 36.55, 31.62, 29.07, 27.42, 22.51, 

14.19. IR : 3530, 3224, 2929, 2862, 1711, 1588, 1454, 1247, 1087, 954, 700 cm-1. 

6.2.1.5 Synthesis of C-pentyltetra(trimethylsilyl)ethynyl) cavitand, 537 

 

C-pentyltetrabromocavitand, 3  (4.02 g, 3.55 mmol) was dissolved in triethylamine (200 

mL) and degassed by bubbling nitrogen through the reaction mixture for 20 minutes. TMS-

acetylene (1.74 g, 17.75 mmol), PdCl2(PPh3)2 (0.24 g, 0.35 mmol) and CuI (0.13 g, 0.71 mmol) 

were added and the mixture was heated under reflux at 70 ºC overnight under dinitrogen 

atmosphere. The solvent was removed by evaporation and the residue dissolved in diethyl ether 

(500 mL), was washed with 1 M HCl (200 mL) and brine (200 mL). The organic layer was 

separated and dried over anhydrous magnesium sulfate.  The solvent was removed on a rotary 

evaporator and the residue was chromatographed on silica with hexane: ethyl acetate mixture as 

eluant to obtain a light brown colored powder. The crude product was purified by flash column 

chromatography with hexanes as the eluent, to give pure 5 as colorless crystalline powder (3.23 

g, 76 %). 1H NMR M. p. > 280 ˚C; 1H NMR (δH; 400 MHz, CDCl3): 6.99 (s, 4H), 5.86 (d, J = 

7.2Hz, 4H), 4.79 (t, J = 7.6Hz, 4H), 4.52 (d, J = 8.4Hz, 4H), 2.18 (m, 8H), 1.34 (m, 24H), 0.92 (t, 

12H), 0.20 (s, 36H) 
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6.2.1.6 Synthesis of C-pentyltetra(ethynyl) cavitand, 6 

 

C-pentyltetra(trimethylsilyl)ethynyl) cavitand, 5 (5.3 g, 4.42 mmol) and potassium 

carbonate (2.44 g, 17.6 mmol) were stirred in methanol at room temperature for 2 hrs. Upon 

completion, the solvent was removed by rotary evaporation and the residue dissolved in diethyl 

ether and washed with water (2 x 50 mL). The combined organic layers were dried over 

anhydrous magnesium sulfate and concentrated via rotary evaporation to obtain the product, C-

pentyltetra(ethynyl) cavitand, 6, as a yellow crystalline solid. (3.14 g, 78%). M. p. > 280 ˚C;  1H 

NMR (δH; 400 MHz, CDCl3): 7.07 (s, 4H), 5.95 (d, J = 6.8Hz, 4H), 4.81 (t, J = 7.4Hz, 4H), 4.53 

(d, J = 8.2Hz, 4H), 3.33 (s, 4H), 2.20 (m, 8H), 1.36 (m, 24H), 0.92 (t, 12H) 

6.2.1.7 C-pentyltetra(iodoethynyl) cavitand, 7 

 

To a solution of C-pentyltetra(ethynyl) cavitand, 6 (1.05 g, 1.15 mmol) dissolved in 

methanol (100 mL), added dropwise simultaneously a concentrated solution of iodine in 

methanol (1.54 g, 6.072 mmol) and a 10% sodium hydroxide solution (10.49 mmol) over 30 min, 

vigorously stirring (Note : Initially the color of iodine disappears upon dropping into the reaction 

mixture and with time the color tend to persist. Therefore, NaOH should be added until the 

dropping iodine color no longer changes upon addition of NaOH in the reaction mixture). The 

mixture was stirred overnight, and quenched with 100 mL water upon which a light yellow color 
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precipitate forms. The filtered solid washed with sodium bisulfite solution afforded white color 

powder of 7 , (1.18 g, 73%). Dec. ˚C >280 °C. 1H NMR (δH; 400 MHz, CDCl3): 6.99 (s, 4H), 

5.92 (d, J = 7.2Hz, 4H), 4.75 (t, J = 7.4Hz, 4H), 4.45 (d, J = 7.2Hz, 4H), 2.15 (m, 8H), 1.33 (m, 

24H), 0.90 (t, 12H); 13C NMR (δC; 400 MHz, CDCl3) 156.38, 138.30, 120.25, 98.44, 36.34, 

31.78, 29.37, 27.32, 22.62, 14.06. 

6.2.1.8 C-pentyltetra(bromoethynyl) cavitand, 8 

 

C-pentyltetra(trimethylsilyl)ethynyl) cavitand, 5 (1.2 g, 1.00 mmol) and AgF (0.51 g, 

4.00 mmol) was placed in round-bottomed flask and CH3CN (200 mL) was added. The mixture 

was stirred under purging nitrogen for 20 minutes. The flask was wrapped in aluminum foil and 

under dark conditions, NCS (0.71 g, 4.00 mmol) was added. The mixture was stirred for 

overnight at room temperature after which time it was passed through a 2 cm plug of silica gel. 

The solvent was removed by rotary evaporation. The resulting residue was dissolved in Et2O and 

washed with H2O (1000 mL x 2). The organic part was separated, dried over anhydrous 

magnesium sulfate and solvent was removed under vacuum to yield colorless crystals of 8 in 86 

% yield (1.07 g, 0.86 mmol). Dec. ˚C >280 °. 1H NMR (δH; 200 MHz, CDCl3): 7.03 (s, 4H), 

5.94 (d, J = 6.4Hz, 4H), 4.77 (t, J = 7.2Hz, 4H), 4.46 (d, J = 7.2Hz, 4H), 2.17 (m, 8H), 1.35 (m, 

24H), 0.92 (t, 12H); 13C NMR (δC; 400 MHz, CDCl3) : 156.36, 138.65, 120.63, 112.88, 98.82, 

72.29, 57.68, 36.68, 32.13, 29.72, 27.66, 22.95, 14.39 
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6.2.1.9 C-pentyltetra(4-pyridyl) cavitand, 9 

 

A mixture of C-pentyltetrabromocavitand, 3 (2.0 g, 1.77 mmol) and 

tetrakistriphenylphosphine palladium (II) (420 mg, 0.362 mmol) were placed in a round bottom 

flask under a stream of dinitrogen. To this added a mixture of toluene (30 mL), ethanol (20 mL) 

and aqueous sodium bicarbonate (100 mg, 5 mL) purged with dinitrogen. Then 4-pyridylboronic 

acid (2.8 g, 22.76 mmol) was added to the reaction mixture and was refluxed for 72 hours under 

a dinitrogen atmosphere. Upon completion the reaction was cooled to room temperature and 

diluted with water (100 mL). The aqueous phase was washed with dichloromethane (3 x 100 

mL) and dried with anhydrous magnesium sulfate. The solvent was removed on a rotary 

evaporator and the residue purified by column chromatography using an ethanol/ethyl acetate 

(1:2) mixture as the eluant. The product 9 was isolated as a white crystalline solid, (1.44 g, 72%). 

Dec. ˚C >280 °C. 1H NMR (δH; 400 MHz, CDCl3): 8.53 (d, J = 4Hz, 8H), 7.37 (s, 4H), 7.03 (d, J 

= 6.2 Hz, 8H), 5.19 (d, J = 7.2Hz, 4H), 4.87 (t, J = 7.6 Hz, 4H), 4.26 (d, J = 7.0Hz, 4H), 2.36 (m, 

8H), 1.48 (m, 24H), 0.97 (t, 12H); 13C NMR (δC; 400 MHz, CDCl3) : 152.48, 149.66, 142.44, 

138.88, 127.21, 125.25, 121.16, 100.65, 37.30, 32.28, 30.53, 27.87, 22.97, 14.42 

6.2.1.10 C-pentyltetra(3-pyridyl) cavitand, 10 

 

A mixture of C-pentyltetrabromocavitand, 3 (2.0 g, 1.77 mmol) and 

tetrakistriphenylphosphine palladium (II) (420 mg, 0.362 mmol) were placed in a round bottom 
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flask under a stream of dinitrogen. To this added a mixture of toluene (30 mL), ethanol (20 mL) 

and aqueous sodium bicarbonate (100 mg, 5 mL) purged with dinitrogen. Then 3-pyridylboronic 

acid (2.8 g, 22.76 mmol) was added to the reaction mixture and was refluxed for 72 hours under 

a dinitrogen atmosphere. Upon completion the reaction was cooled to room temperature and 

diluted with water (100 mL). The aqueous phase was washed with dichloromethane (3 x 100 

mL) and dried with anhydrous magnesium sulfate. The solvent was removed on a rotary 

evaporator and the residue purified by column chromatography using an ethanol/ethyl acetate 

(1:2) mixture as the eluant. The product 10 was isolated as a white crystalline solid, (1.63 g, 

92%). Dec. ˚C >280 °C. 1H NMR (δH; 400 MHz, CDCl3): 8.44 (d, J = 6.4Hz, 4H), 8.29 (s, 4H), 

7.47 (d, J = 7.2Hz, 4H), 7.37 (s, 4H), 7.23 (d, J = 8Hz, 4H), 5.27 (d, J = 7.2Hz, 4H), 4.87 (t, J = 

7.4Hz, 4H), 4.31 (d, J = 8Hz, 4H), 2.37 (m, 8H), 1.49 (m, 24H), 0.97 (t, 12H); 13C NMR (δC; 

400 MHz, CDCl3): 153.84, 149.52, 147.98, 138.67, 130.46, 126.88, 123.40, 120.95, 100.49, 

37.38, 32.35, 30.49, 27.92, 23.00, 14.46.  

6.2.1.11 C-pentyltetra(4-pyridyl-N-oxide) cavitand, 1138 

 

A mixture of C-pentyltetra(4-pyridyl)cavitand, 9 (1.05 g, 0.93 mmol), 30% hydrogen 

peroxide (1.3 mL, 0.44 g, 13.02 mmol) and glacial acetic acid (10 mL) was placed in a round 

bottom flask and refluxed overnight at 70 °C. Upon completion, reaction mixture was cooled to 

room temperature and diluted with water (20 mL) to precipitate C-pentyltetra(4-pyridyl-N-oxide) 

cavitand 11 as colorless solid. Recrystallization of the solid in ethylacetate:ethanol mixture gave 

colorless crystals of pure 11 (1.01 g, 92%). Dec. ˚C >280 °C. 1H NMR (δH; 400 MHz, CDCl3): 

8.07 (d, J = 6Hz, 8H), 7.36 (s, 4H), 7.01 (d, J = 7.2Hz, 8H), 5.46 (d, J = 7.0Hz, 4H), 4.84 (t, J = 

7.2Hz, 4H), 4.28 (d, J = 8Hz, 4H), 2.33 (m, 8H), 1.43 (m, 24H), 0.97 (t, 12H) 
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6.2.1.12 C-pentyltetra(3-pyridyl-N-oxide) cavitand, 12 

 

A mixture of C-pentyltetra(3-pyridyl)cavitand, 10 (0.95 g, 0.84 mmol), 30% hydrogen 

peroxide (1.2 mL, 0.39 g, 11.76 mmol) and glacial acetic acid (10 mL) was placed in a round 

bottom flask and refluxed overnight at 70 °C. Upon completion, reaction mixture was cooled to 

room temperature and diluted with water (20 mL) to crash out C-pentyltetra(3-pyridyl-N-oxide) 

cavitand 12 as orange color solid. Recrystallization of the solid in ethylacetate:ethanol mixture 

gave yellow color crystals of pure 12 (0.94 g, 95%). Dec. ˚C >280 °C. 1H NMR (δH; 400 MHz, 

CDCl3): 8.14 (d, J = 7.2Hz, 4H), 8.06 (s, 4H), 7.37 (d, J = 7.6Hz, 4H), 7.37 (s, 4H), 7.24 (d, J = 

8Hz, 4H), 5.32 (d, J = 7.2Hz, 4H), 4.81 (t, J = 7.4Hz, 4H), 4.27 (d, J = 8Hz, 4H), 2.34 (m, 8H), 

1.47 (m, 24H), 0.97 (t, 12H); 13C NMR (δC; 400 MHz, CDCl3) : 152.43, 139.35, 138.37, 137.76, 

133.18, 129.00, 125.36, 123.98, 121.37, 100.32, 36.88, 31.89, 30.03, 27.48, 22.60, 14.06. 

6.2.1.13 Extraction of ibuprofen from Advil tablets39 

 

Advil tablets (800 mg x 5) were crushed using a mortar and pestle and to the resulting 

powder added 10 mL of 3M HCl. The contents were agitated gently and the aqueous solution 

was extracted with dichloromethane (3 x 5 mL). The organic layer was dried over anhydrous 

magnesium sulfate and the solvent removed under reduced pressure to yield crude ibuprofen as a 

white solid. For recrystallization, the solid was dissolved in minimum amount of hot 

isopropylalcohol and cooled back to room temperature after which water was added dropwise 

with swirling until the solution become cloudy. It was cooled on ice until the precipitation is 

complete to give pure ibuprofen as white crystalline solid (3.03 g). M.p. 76-78 ˚C. 1H NMR (δH; 
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400 MHz, CDCl3): 7.22 (d, 2H), 7.10 (d, 2H), 3.70-3.75 (m, 1H), 2.45 (d, 2H), 1.82-1.89 (m, 

1H), 1.50 (d, 3H), 0.91 (d, 6H). 

6.2.1.14 Extraction of naproxen from Aleve tablets39 

 

Aleve tablets (550 mg x 5) were soaked in 30 mL of methanol in a small beaker until 

outer layer of the tablets will begin to peel away from the inner tablet. As soon as this happens, 

the inner tablets were removed carefully with forceps leaving all of the outer coating in the 

methanol solution, which will be discarded. The 5 inner tablets were placed in 25 mL of fresh 

methanol and swirled to dissolve the naproxen sodium salt (dissolution is rather slow and require 

about 20 minutes at room temperature). When the naproxen is completely dissolved, the solution 

was filtered off to get rid of the flaky material that is still left undissolved. Methanol was 

removed by rotary evaporation to yield the solid naproxen sodium salt, which was then dissolved 

in water, and added 3 M HCl to precipitate the free acid of naproxen. The white precipitate of 

naproxen was filtered and dissolved in chloroform. It was washed with water, dried over MgSO4 

and solvent removed by rotary evaporation to yield naproxen as white solid (2.20 g). M.p. 154-

156 ˚C. 1H NMR (δH; 400 MHz, CDCl3): 7.69-7.72 (m, 2H), 7.40 (d, 1H), 7.11-7.15 (m, 2H), 

3.91 (s, 3H), 3.87-3.91 (q, 1H), 1.58 (d, 3H). 
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6.2.2 NMR titration experiments 

6.2.2.1 Preparation of the solutions 

The host (cavitand) concentration [H] was kept constant throughout the titration while the 

guest (active ingredients) concentration [G] was varied gradually. A stock solution of the host 

cavitand is prepared from which a constant amount is added to each NMR sample thus the 

concentration of each final sample is 1.6 mM. A stock solution of the guest is prepared from 

which successive volumes are added into the host during the titration. In our experiments, the 

concentrations of the guest [G] in the final solution would range from 0.25-12 mM. 

6.2.2.2 Binding constant determination 

A solution of known concentration of the guest is successively added to the host until an 

equilibrium is reached in the host-guest binding event which is indicated by a constant value of 

the chemical shift in the NMR spectrum. All the spectra were run at 298 K in CDCl3 unless 

otherwise noted. A series of 9-10 data points were recorded for each titration experiment. The 

changes in the chemical shifts acquired from the titrations were graphed against the guest 

concentration with non-linear mathematical approach based on Benesi-Hildebrand analysis40 

using Origin 8.1 software. The equation used for curve fitting is given below, 

 

 

 

 

where [H]o is the host concentration, [G]o is total concentration of the guest (bound and 

unbound), Ka is the association constant and Δδ is the change in the chemical shift. 

 

 

 

(1) 
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6.3 Results and discussion 

6.3.1 Guest binding in solid state 

Solvent assisted grinding was performed by mixing the cavitand host and the guests in 

1:4 stoichiometric ratio and grind them together in the presence of a drop of methanol until a 

solid paste is resulted, which was then analyzed by IR spectroscopy for presence of hydrogen 

bonding and halogen bonding between the host and the guest. The two broad stretches that 

appear at approximately 2500 and 1900 cm-1, is an indicative of intermolecular O-H···N 

(heterocyclic) hydrogen bond. The shifts of the carbonyl stretch around 1700 cm-1 also suggests 

the presence of hydrogen bonds. The major characteristic band to observe the occurrence of a 

halogen bond is the C≡C stretch which appear in the range 2100 – 2260 cm-1 as mentioned in 

Chapter 4 and 5. 

6.3.1.1 HB/XB donor cavitands 

The HB/XB donor cavitands, 4, 7 and 8 were reacted with a series of active ingredients 

(AI) with HB/XB acceptor moieties in order to evaluate their binding ability in solid state 

(Figure 6.7). The expected interactions that are intended to occur between the donor and the 

acceptor are shown in Figure 6.8. 

The solid paste from the grinding experiments between 4 and active ingredient were 

analyzed using IR spectroscopy for detection of effective co-crystal formation with the assistance 

of characteristic OH···N stretch and the shift of the carbonyl peak of the cavitand donor. Two 

examples to illustrate a positive co-crystal formation by 4 reacting with A6 (Figure 6.9) and 

tridimefon (Figure 6.10) displaying the two stretches around 2200 cm-1 and 1800 cm-1 and by the 

shift of the carbonyl stretch. The salt formation was evident by the presence of COO- anion 

which is formed upon proton transfer, display a strong asymmetric stretch around 1650-1550 cm-

1.41 The outcome of all the grinding experiments are summarized in Table 6.1. All the active 

pharmaceutical ingredients exhibit interaction with 4 forming 20% salts and 80% co-crystals. 

The ground solid mixtures of 4, containing pyraclostrobium, clomazone and cyprodinil did not 

show a carbonyl stretch around 1706 cm-1, instead a new peak appear at 1654, 1677 and 1662 

cm-1 respectively indicating salt formation. Overall, successful co-crystal formation was 50% 

with the agrochemicals (2/4) and 100 % with the fungicides (4/4). 
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4 7 8 

 

Active ingredients 

Figure 6.7 The HB/XB donor cavitands, (4, 7 and 8) and the active ingredients used in the study 

 

  

              (a)               (b) 

 

Figure 6.8 (a) OH···N hydrogen bonding between cavitand 4 and AI (b) C-I···N halogen 

bonding between cavitand 7 and active ingredient 
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Figure 6.9 IR spectra of the ground mixture of cavitand 4 with API (4A6) (top), in comparison 

with API (A6) (middle), cavitand 4 (bottom) 

 

Figure 6.10 IR spectra of the ground mixture of cavitand 4 with tridimefon (bottom), in 

comparison with tridimefon (middle), cavitand 4 (top) 

OH···N stretch 

C=O stretch 

OH···N stretch 

C=O stretch 
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Table 6.1 Characteristic IR stretches evidenced for hydrogen bonding 

Active 

ingredient (AI) 

 

OH···N stretch  (cm-1) 

C=O stretch (cm-1) 

(1706 cm-1) 

 

Product 

4A8 2545, 1979 1705 Co-crystal 

4A6 2496, 1967 1710 Co-crystal 

4A4 2557, 1854 1707 Co-crystal 

4A2 2475, 1951 1678 Salt 

4A0 - 1675 Salt 

3A8 2534, 2033 1725 Co-crystal 

3A6 2545, 1928 1703 Co-crystal 

3A4 2557, 1975 1708 Co-crystal 

3A2 2545, 1986 1729 Co-crystal 

3A0 - 1709 Co-crystal 

Triadimenol 2523, 1812 1712 Co-crystal 

Triadimefon 2490, 1784 1724 Co-crystal 

Pyraclostrobium - 1654 Salt 

Terbuthylazin - 1704 No reaction 

Thiamethoxam - 1708 No reaction 

Clomazone - 1677 Salt 

Cyprodinil - 1662 Salt 

 

 

However, attempts to proceed with cavitand 7 and 8 as XB donor cavitand using solvent 

assisted grinding was not successful, as we were unable to identify the C≡C stretch of 7 and 8 

that was already weak and indistinct and became more weaker and disappeared when combined 

with a coformer, and thus characterization of whether or not complexation, based on IR data had 

occurred, was not possible (Figure 6.11). 
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Figure 6.11 IR spectra of iodoethynyl cavitand with vague C≡C stretch 

6.3.1.2 HB/XB acceptor cavitands 

Cavitands 9 and 10 were combined with six active pharmaceutical ingredients (API) with 

hydrogen donor functionalities (Figure 6.12) paying particular attention to the OH···N stretch 

and the shift of the carbonyl peak of the API.  

 
 

9 10 

 

APIs 

Figure 6.12 Cavitands 9 and 10 and APIs used in the study 

C≡C stretch 
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An example of a successful co-crystal formation between cavitand 9 and ibuprofen is 

displayed by Figure 6.13, where the two characteristic broad stretches appear at 1984, 2579 cm-1 

and the carbonyl peak is red shifted 10 cm-1 wave numbers compared to free ibuprofen. The 

physical mixture of ibuprofen either ground together with 9 or 10 turned out to be a sticky solid 

indicative of the interaction between the two components. Table 6.2 summarizes the vibrational 

stretches observed for each ground mixture. For the HB donor, resveratrol, the OH···N stretches 

were not prominent thus the shifts of the peaks of both the donor and acceptor was taken into 

consideration. Based on IR spectroscopy, cavitand 9 forms co-crystals with all the active 

ingredients except resveratrol and coumaric acid providing 67% supramolecular yield. Except 

resveratrol, cavitand 10 seemed to hydrogen bond with all the other active ingredients with an 

83% supramolecular yield. 

 

Figure 6.13 IR spectra of the grinding experiment between cavitand 9 and ibuprofen 

 

 

 

 

 

 

OH···N stretch 
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Table 6.2 Summary of IR data (cm-1) for cavitands 9 and 10 

 Cavitand 9 

OH···N stretch 

C=O stretch 

Cavitand 10 

OH···N stretch 

C=O stretch 

Ibuprofen 1984, 2579 

1704 

1796, 2525 

1708 

Naproxen 1964, 2493 

1721 

1864, 2502 

1724 

Diclofenac 1835, 2613 

1690 

- 

1689 

Resveratrol - - 

p-Coumaric acid - 

1750 

1876, 2524 

1670 

Aspirin 1910, 2615 

1751 

- 

1752 

Supramolecular yield 67% 83% 

 

 

6.3.2 Guest binding in solution via hydrogen bonding 

The binding affinity and selectivity of the hosts, 9 and 10 towards the APIs (Figure 6.12) 

were evaluated in solution using 1H NMR spectroscopy. We expected a multi component 

pentameric supramolecular assembly to form in solution since one cavitand bears four HB 

acceptor functionalities on the upper rim accessible for four HB donors (Figure 6.14a). We 

focused our work on 1H NMR titration as a way of quantifying this binding event, where the 

binding of the HB donors to the cavitands 9 and 10 is monitored by changes in the chemical 

shifts of the hydrogen atoms, H2 and H6, ortho to the pyridyl N and N-oxide groups (Figure 

6.14b).  
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(a) (b) 

 

Figure 6.14 (a) An example of proposed multicomponent supramolecular assembly created via 

hydrogen bonding (b) Schematic representation of the guest binding via hydrogen bonding; the 

ortho protons, H2 and H6 are indicated in green 

 

Cavitands 9 and 10 are reacted with all the HB donors by adding excess amounts (10 

equivalents) of the guest into a host solution. Particular attention is paid to the deshielding of the 

H2 and H6 protons upon addition of HB donors and the changes in δ ppm values (δbound host – δfree 

host) were used for in determining the association constants, Ka and the stoichiometry. Figure 6.15 

shows some examples of the changes in the chemical shifts of H2 and H6 protons of 9, with the 

addition of  Naproxen, Diclofenac, Ibuprofen and aspirin. Naproxen doesn’t seem to hydrogen 

bond to 9 with no shift of H2 and H6, while the others did show interaction. 

Table 6.3 summarizes the chemical shifts observed with the addition of excess guest into 

the hosts, 9 and 10.  All the guest molecules except naproxen and resveratrol seems to bind to 9, 

where the peaks corresponding to ortho protons of the host (8.51-8.53) is shifted downfield by 

0.10 ppm, 0.09 ppm, 0.1 ppm for ibuprofen, diclofenac and p-coumaric acid respectively. The 

average signal appears as a well-resolved sharp doublet. The ortho protons of cavitand 10, which 

appear at 8.04-8.05, shifted downfield to ~8.22 ppm with the addition of all the guests except 

resveratrol, with an intact doublet.  
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Figure 6.15 Chemical shift changes of H2 and H6 of 9 upon addition of 10 equivalents of 

naproxen, diclofenac, ibuprofen and aspirin 

 

Table 6.3 Chemical shift changes of the ortho protons of cavitands 9 and 10 in 1H NMR spectra 

by the addition of 10 equivalents of the guests in CDCl3 at 25 °C. d - doublet, br, s- broad singlet 

 

 Chemical shift (δ in ppm) of ortho protons 

after complexation 

 

Active ingredient  

Cavitand 9 

Free (8.51-8.53) 

Cavitand 10 

Free (8.04-8.05) 

Ibuprofen 8.62-8.63 (d) 8.18-8.20 (d) 

Naproxen 8.52-8.53 (d) 8.20-8.22 (d) 

Diclofenac 8.60-8.61 (d) 8.26-8.28 (d) 

Resveratrol - - 

p-Coumaric acid 8.61-8.63 (d) 8.20-8.21 (d) 

Aspirin 8.36 (br, s) 8.21-8.22 (d) 

 

The deshielding of the ortho protons is attributed to the reduced electron density on the 

N(py) and O-N(py) atoms due to hydrogen bonding. The complexes evaluated here are in host-

9 + Ibuprofen   

9 + Diclofenac   

9 + Naproxen    

9   

H2 and H6 

9 + Aspirin  
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guest complexation equilibrium which show a fast exchange rate compared to the 1H NMR 

chemical shift time scale. Therefore, the peaks assigned to the free and complexed host protons 

appear at a weighted average chemical shift of the free host and complexed host. Besides, no 

significant changes of the peaks corresponding to the guests are observed and they remained 

unchanged in all the cases presumably due to the fast exchange on the NMR time scale. 

Nevertheless, the H2 and H6 protons were shielded and shifted upfield to 8.36 ppm as a 

broad singlet, with the addition of aspirin to cavitand 9 and they are deshielded as an intact 

doublet with the addition of aspirin into 10. This unique binding event will be further explored in 

section 6.3.2.2. 

6.3.2.1 [10-Naproxen] system for quantifying the binding event 

From the results that we observed, we chose [10-Naproxen] system as an example to 

quantify the strength of binding and to determine the stoichiometry of the binding event. 

Successive addition of 0.25-12.5 equivalents naproxen into a solution containing 10, induced 

progressive downfield shifts of the ortho protons of the O-N(py) moiety (Figure 6.16).  
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Figure 6.16 1H NMR spectral changes observed in H2 and H6 protons of 10 in CDCl3 at 25 °C 

during the addition of up to 12 equivalents of naproxen 

The changes in δ ppm values (δbound host – δfree host) obtained by titrating naproxen into 10, 

were plotted against naproxen concentration and by non-linear curve fitting into equation 1 

H2 and H6 

0.25 eq. 

0.5 eq. 

1 eq. 

2 eq. 

4 eq. 

6 eq. 

10 eq. 

12.5 eq. 

Naproxen 

10 
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afforded Ka = 1888 M-1 (Figure 6.17). Jobs plot analysis of the results revealed 1:4 complexation 

(Figure 6.18). These results are in agreement with the study performed by Aakeroy et al, where a 

pentameric hydrogen-bonded architecture formed between C-pentyltetra(3-pyridyl) cavitand and 

4-nitrobenzoic acid in solution.42 This hydrogen bonded assembly formed in solution was 

analyzed using isothermal titration calorimetry, gave binding constant of 4130 M-1, which is 

higher compared to what we observed, and can be explained by the fact that, 4-nitrobenzoic acid 

is a comparatively strong acid.   

 

Figure 6.17 (a) Titration curve of naproxen into 10 in CDCl3 at 25 °C where the chemical shift is 

plotted against the naproxen concentration (b) Job’s plot of [naproxen-10] pair at 25 °C  

  

 

Figure 6.18 Job’s plot of [naproxen-10] pair at 25 °C 
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Based on the results from the 1H NMR titrations and Job’s plot, guest binding takes place 

on the upper rim of the cavitand via OH···N hydrogen bonds and one cavitand is capable of 

binding to four guest molecules (Figure 6.19).  

 

Figure 6.19 Cartoon representation of guest binding on the upper rim 

 

6.3.3 The unique case of aspirin 

Since aspirin was behaving differently, further studies were carried out by using four 

different cavitands, 9, 10, 11 and 12 with different orientations of the hydrogen bond acceptor 

functionalities (Figure 6.20). 

  

9 10 

  

11 12 

Figure 6.20 Tetrapyridyl and tetrapyridyl N-oxide functionalized cavitands and aspirin used in 

the study 
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6.3.3.1 Asprin binding with 9 

Successive additions of 0.25-10 equivalents of aspirin into 9, revealed some significant 

spectral changes of 9. The protons affected by aspirin are H2, H6 and H3, H5 on the pyridyl ring 

and the Hin and Hout of the bridge (–O-CHinCHout-O-) (Figure 6.21a).  
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(b) 

Figure 6.21 (a) Protons of the host that are affected by aspirin (b) 1H NMR spectra of cavitand 9 

in the presence of aspirin 
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The observations based on the spectral changes are as follows (Figure 6.21b). 

 H2 and H6 protons lost their resolution and upfield shift as a broad singlet upto one 

equivalent of aspirin, however, after 4 equivalents, the peak gets relatively deshielded 

 Protons H3 and H5 behaves the same manner 

 Hin and Hout protons get deshielded and shielded respectively, however, remains 

constant after addition of 4 equivalents 

 

The conclusions based on the observations; 

 The pyridyl protons are shielded probably due to the presence of the guest at the 

vicinity of the upper rim. The deshielding effect after one equivalent of aspirin, might 

be attributed to the hydrogen bonding between the host and the guest. 

 The deshielded Hin protons reveal hydrogen bonding of the guest to the bridge of the 

cavitand. 

 The guest (aspirin) can reside inside the cavitand as well as it can hydrogen bond with 

the pyrine ring. 

 The Job’s plot analysis revealed 1:1 stoichiometry based on the H2 and H6 protons 

(Figure 6.22) 

 

 

Figure 6.22 Job’s plot based on the chemical shift of H2 and H6 protons 
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Variable temperature 1H NMR experiments were carried out in order to gather more 

evidence of aspirin binding to 9. (Figure 6.23). It is noticeable that a new peak begin to arise 

when the mixture is cooled to -20 °C and the intensity of this new peak increases with further 

cooling down to -50 °C. This reveals that the exchange of aspirin with 9 becomes slow on the 

NMR time scale and display two signals corresponding to free aspirin (2.37 ppm) and bound 

aspirin (-1.23 ppm at -20 °C and -1.31 ppm at -50 °C). This observation is consistent with aspirin 

residing in the cavity of 9, in such a way that the O-CH3 group is pointing into the cavity 

experiencing the shielding effect of the aromatic π electron cloud. 
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Figure 6.23 1H NMR spectra of [9-Aspirin] complex in CDCl3 at 25 °C to 10 °C, 0 °C, -20 °C 

and -50 °C 
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6.3.3.2 Aspirin binding to 11 

The pyridyl protons H2 and H6 and the bridging protons Hin are affected by the addition of 

aspirin (Figure 6.24). Based on these observations, the predicted sequential steps of aspirin 

binding to 11 is given in Figure 6.25 which will be further confirmed by hosts 10 and 12. 

 The bridging protons are downfield shifted with one equivalent of aspirin and does 

not change beyond that point. Aspirin binding to the bridging protons takes place first 

(Figure 6.25b). 

 The pyridyl protons H2 and H6 are not affected by one equivalent of aspirin, however, 

they get deshielded with 4 equivalents of aspirin. Hydrogen bonding of aspirin to the 

upper rim of the cavitand takes place as the second step, Figure 6.25c. 
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Figure 6.24 1H NMR spectra of the cavitand 11 upon successive addition of aspirin 
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        Without aspirin [11-aspirin] 

1:1 mixture 

[11-aspirin] 

at high aspirin concentration 

                   (a) (b) (c) 

Figure 6.25 Sequential steps of aspirin binding 

 

6.3.3.3 Aspirin binding to 10 and 12 

A significant chemical shift of the protons of the host as well as guest, shown in Figure 

6.26, was observed upon successive addition of 0.5-40 equivalents of aspirin into cavitands 10 

and 12. The host protons, H2 and H6 were significantly deshielded. The aromatic protons and the 

methyl protons of aspirin are shielded in the presence of the host.  

  

 

 

10 12 Aspirin 

(a) (b) 

Figure 6.26 The protons that are affected by the host-guest interaction, (a) H2, H6 and Hin 

protons of 10 and 12 (b) aromatic protons and methyl protons of aspirin 
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6.3.3.3.1 [10-aspirin] system 

The observations based on the chemical shifts are; 

 H2 protons are deshielded drastically at lower concentrations of aspirin and deshielding 

effect is relatively low at high concentrations (Figure 6.27a)  

 The deshielding effect of the H6 protons is less compared to the H2 protons (Figure 6.27a) 

 All the aromatic protons of aspirin are shielded (Figure 6.27a) 

 Most importantly, the peak corresponding to the methyl protons of aspirin gets 

broadened, shielded and nearly coalesced at 0.5-1 equivalents of aspirin (Figure 6.27b) 

 Job’s plot analysis revealed 1:1 stoichiometry based on the chemical shift of Hin protons 

(Figure 6.28) 
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(b) 

Figure 6.27 1H NMR showing (a) deshielding of host protons H2, H6 of 10 and shielding of 

aspirin aromatic protons (b) shielding of aspirin methyl protons 

 

 

Figure 6.28 Job’s plot based on Hin 
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6.3.3.3.2 [12-aspirin] system  

The observations based on the chemical shifts are; 

 H2 protons experience a drastic deshielding effect, such that H2 and H6 protons start to 

switch with 0.5 equivalents of aspirin. This effect continues until 4 equivalents of aspirin 

is added and beyond this point they get relatively less deshielded 

 The deshielding effect of the H6 protons starts with 1 equivalent of aspirin 

 All the aromatic protons of aspirin get shielded and nearly coalesced at low 

concentrations of aspirin 

 The bridging proton, Hin gets deshielded up until 1 equivalent of aspirin is added and 

remains constant at higher concentrations 

 The methyl protons of aspirin gets broadened at high concentrations of aspirin and get 

broadened and nearly coalesced at lower concentrations of aspirin 

 Job’s plot analysis revealed 1:1 stoichiometry based on the chemical shifts of Hin (Figure 

6.30) and H2 (Figure 6.31) 
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Figure 6.29 1H NMR showing (top) deshielding of host protons H2, H6 and shielding of aspirin 

aromatic protons (bottom) shielding of aspirin methyl protons and deshielding of the Hin bridging 

protons 

 

Figure 6.30 Job’s plot based on the chemical shifts of Hin 
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Figure 6.31 Job’s plot based on the chemical shifts of H2 

 

Conclusions based on the observations of aspirin binding to cavitands 10 and 12; 

 

Without aspirin [cavitand-aspirin] 

1:1 mixture 

[cavitand-aspirin] 

at high aspirin concentration 

(a) (b) (c) 

 

(a) Before addition of aspirin - the pyridyl rings are pointing into the cavity, because the H2 

protons are more shielded than the H6 protons. Solid state structure of 12 also supports 

this evidence (Figure 6.32). 

(b) With successive addition of aspirin, it binds into the cavity indicated by the huge upfiled 

shift of the methyl protons and the shielding of the aspirin aromatic protons 

(c) With the addition of more than one equivalents of aspirin, a conformational change of the 

pyridine rings take place, in which pyridine N turn out of the cavity, causing a huge 

downfield shift of the H2 protons. This conformational change now make the pyridine N 
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accessible for hydrogen bonding, indicated by the relatively small downfield shift of the 

H2 and H6 protons observed with high concentrations of aspirin. The solid state structure 

of 12 also supports the conformational change upon aspirin binding into the cavity, unless 

otherwise would be sterically hindered (Figure 6.32). 

 

Figure 6.32 Ball and stick model of preliminary structure of 12 

 

6.3.4 Binding mode of aspirin inclusion 

Based on our evidence gathered from aspirin binding to hosts 9, 10, 11 and 12, it seems 

that at lower concentrations, aspirin binds inside the cavity via CH···π interactions and 

C=O···Hin hydrogen bonds, a two-point binding mode for aspirin binding into the cavity (Figure 

6.33a). A different binding mode was proposed by Nguyen et al, where a superbowl receptor 

composed of five cavitands uptake aspirin via CH···π interactions and OH···O (–CH2O–bridge) 

hydrogen bonds (Figure 6.33b).43 Recently, the same binding mode was proposed in simple 

cavitand receptors where several structural features are required for aspirin binding (Figure 

6.34).44 However, our experiments show that aspirin does bind to hosts 9, 10, 11 and 12 in a 

sequential manner, when R = 4py, 4pyNO, 3py and 3pyNO respectively. It is clear that aspirin 

binding is stronger and favorable (slow on NMR time scale) when R = 3py and 3pyNO, which 

changes the conformation providing space for aspirin inclusion in the cavity.  
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(a) (b) 

Figure 6.33 (a) Proposed two-point binding mode (b) binding mode reported in literature43 

 

Figure 6.34 Structural features required for aspirin binding, reported by Nguyen et al 44 

 

Association constants (Ka) for aspirin inclusion in the cavity were obtained from the 

chemical shifts of Hin and H2 protons (Figure 6.4). Results indicate that binding of aspirin to 

cavitands 10 and 12 is stronger compared to 9 and 10. Initial orientation of the 3py and 3pyNO 

substituents towards the interior of the cavity, changes their conformation and switch out of the 

cavity, upon aspirin binding into the cavity, making aspirin inclusion more favorable with high 

affinity confirmed by the binding constant values. 

 

Table 6.4 Binding constants of aspirin to 9, 10, 11 and 12 

Host 9 11 10 12 

Ka (M
-1) 4520 3975 6346 8734 
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6.3.5 Control experiment  

A control experiment was performed with cavitand 11 and Naproxen, a similar candidate 

to aspirin which bears a O-CH3 group.  

 None of the protons corresponding to cavitand or naproxen did shift except a slight 

deshielding of H2 and H6 protons presumably due to the hydrogen bonding on to the 

upper rim of the cavitand. 

 No cavity inclusion is taking place. 
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Figure 6.35 1H NMR spectra of the cavitand 11 upon successive addition of Naproxen 
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Aspirin inclusion was facilitated by two binding modes, CH···π interactions and 

C=O···Hin hydrogen bonds. Naproxen on the other hand show no CH···π interactions indicating 

that C=O···Hin hydrogen bonds are crucial and thus both binding modes are necessary for the 

host-guest complexation. Functional group discrimination of guests by a similar host was studied 

by Nishimura et al,45 where they observed selectivity for –O-(C=O)CH3 over –C(=O)OCH3 and 

–OCH3 groups which arises due to the combination of CH···π interactions and C=O···Hin 

hydrogen bonds taking place between the host and the –O-(C=O)CH3 functionality of the guest. 

6.4 Conclusions 

We were able to successfully synthesize HB/XB donor and acceptor cavitands which 

were used as hosts in studying their binding preferences towards a series of active ingredients. 

Host-guest binding in solid state was confirmed by IR spectroscopy. 

1H NMR spectroscopy was used to analyze guest binding in solution and we observed 

two preferential ways of guest binding (Figure 6.36). Upper rim binding via OH···N hydrogen 

bonds was observed with almost all the active ingredients except aspirin. The stoichiometry 

determined in these cases were 1:4.  

Aspirin binding to both upper rim as well as inside the cavity was observed with suitably 

functionalized cavitands, which occurred in a sequential manner (Figure 6.37).  

 

Figure 6.36 Two ways of host-guest binding observed in solution 
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Figure 6.37 Sequential binding event of aspirin 

We demonstrated selective and unique binding of aspirin inside the cavity via a two-point 

binding mode and 1H NMR data show that one cavitand is capable of hosting five aspirin 

molecules. These findings establish a markedly distinct receptor-drug chemistry that widens the 

scope of drug delivery systems. 
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Chapter 7 - Future work 

The knowledge and understanding of intermolecular forces in molecular recognition 

events as outlined in the thesis not only lead us to design new solid forms with high 

predictability and selectivity but also achieve preferential binding of guests with a series of hosts 

in solution. However, there is still much to be done to extend some of the systems to the next 

level. 

First, a restricted coordination profile of halide ions was observed by using ditopic bis-

haloethynyl compounds. Therefore, we can use multitopic and different geometrically oriented 

halogen bond donors as new tectons that will afford anion coordinated assemblies in a 

predictable manner (Figure 7.1). Understanding of the anion coordination under the control of 

halogen bonding can be utilized in rational design of new functional materials with predictable 

characteristics and properties, especially halogen bond based semiconducting materials. 

 

 

Figure 7.1 Some of the expected architectures of multitopic halogen bond donors, X- = halide 

 

As the C(sp)-H can act as a synthon mimic of C(sp)-I, C(sp)-H can be exploited in anion 

coordination as hydrogen bonding tectons. This will allow us gain a broader view on the 

hydrogen bond based anion coordination profile and will open alternative approaches in 

designing novel receptors for anion recognition. 
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Figure 7.2 Synthon mimicry can be applied in anion coordination 

 

Designing ternary co-crystals is of high importance and a challenging task in the context 

of crystal engineering1 and the right balance between the intermolecular interactions is crucial in 

this regard.2 Even though amino pyrimidines are known to form self-complementary ribbons via 

NH···N synthons, carboxylic acids and amides do form heteromeric interactions with 2-

aminopyrimidines via OH···N and C=O···H interactions, disrupting the homomeric interactions 

(Figure 7.3). Therefore, Hpym and Ipym would be a good source of designing ternary co-

crystals via hydrogen bonding and halogen bonding (Figure 7.4) and it will allow us create more 

complex supermolecules with three building blocks controlled in a predictable manner. 

  

(a) (b) 

Figure 7.3 Supermolecules showing heteromeric interactions between Ipym and (a) carboxylic 

acid (b) amide 
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  X = H, I 

Figure 7.4 Proposed interactions that build up ternary co-crystals 

 

Finally we can study the binding preferences of tetraethynyliodo/bromo cavitands 

towards a series of guest molecules in solution using UV spectroscopy. Tetraethynylhalo 

cavitands were not UV active, thus a series of UV active guest molecules can be selected in 

which the absorbance would be changed upon binding with the host. 
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Appendix A - 1H NMR, 13C NMR, 19F NMR and DSC data 
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DSC profile of A4·Succinic acid 
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DSC profile of A4·D2 

 

 

 


