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1. INTRODUCTION

When the center, 6, of a symmetric population is unknown, we have
several alternatives for an estimator of 6. The almost habitual assumption
that the population is normally distributed or approximately so has led to
the wide use of the sample mean. If the population is in fact normally
distributed, the sample mean is considered the optimal estimator since it
is consistent, unbiased, sufficient, and efficient. However, the sample
mean being very sensitive to extreme outliers is not the most desirable
estimator when the parent population has "heavy-tails".

The alternative estimator we consider in this paper is the midrange.
After defining and characterizing heavy-tailed distributions, we investigate
the behavior of the midrange in a variety of heavy-tailed and light-tailed
distributions. The classicai properties of consistency, unbiasedness,
sufficiency, and efficiency are then used to compare the relative merits of
the midrange estimator with that of the sample mean and sample median.

The hypothesis put forth is that the shape of the parent distribution's
tail is the determining factor in the choice of the estimator. Only when
the tails are light is the sample mean preferred. When the tails are
"short and heavy" the midrange is found to be a very desirable estimator
while the median is preferred when sampling from populations with "long
and heavy tails";

Bryson [2] contends there is evidence for placing more emphasis on the
use of heavy-tailed distributions when modeling data. Therefore when the
form of the distribution is unknown, rather than assuming normality, the
sample informtion should be used to determine the tall-shape of the
distribution before choosing the estimator. This is a concept of robust

estimation and is briefly discussed in Chapter 5.



2. HEAVY-TAILED DISTRIBUTIONS

To define and characterize heavy-tailed distributions we consider a
symmetric distribution with a density function f£(.), distribution function
F(-), and tail function G(*) = 1 - F(:). The notion of heavy tails is a
relative one which is used to compare the tail weights of different
distributions. Intuitively, a heavy-tailed distribution assigns greater
likelihood to extreme (tail) values in the range of positive density than
does a light-tailed distribution. If the density function is positive
over a finite range (i.e. F(x) = 1 for some finite x ) the distribution is
said to be bounded and if F(x) < 1 for all finite x, then the distribution
is unbounded. This distinction leads us to adopt a separate characteriza-

tion of heavy tails for the two cases.

2.1 Unbounded Distributions.

The amount of weight in the tails of the distribution is described by
the rate at which F(x) converges to one as x goes to iInfinity. This is
equivalent to the rate at which the tail function G(x) and the demsity
function f(x) converge to zero as x goes to infinity. So if F(x) éonverges

"“slowly" to one, the distribution is considered to have heavy tails. For

example, let
_x2
e 2 - < X < @™ (2.1)
fl(x) s :
Yan
=-AX

'fz(x) = e , x>0, A>0 (2.2)



fa(x) = 1 ’ -0 < ¥ € @ (2_3)

x (1+x2)

represent the density functions for the staﬁdard normal, exponential, and
Cauchy distributions, respectively. Since as x goes to infinity, e*
approaches infinity faster than any power of x, it follows that fl(x)
approaches zero faster than fz(x) which in turn approaches zero faster

than fs(x). Therefore we can conclude the Cauchy distribution has heavier
tails than the other two distributions, while the normal distribution has
light tails whén compared to the exponential and Cauchy distributions.

To characterize heavy-tailed distributions we need some borderline
distribution ¢, such that every distribution with tails heavier than ¢ 1F
considered to be a member of the class of heavy-tailed distributioms.
Bryson [2] argues that ¢ should be the exponential distribution. He does
this by considering the conditional mean exceedence, CME, which is defined
as |

QE, = E(X-c|X2c). (2.4)
If c is sufficiently large, we obtain the following characterization of
tail weights:
(1) A distribution is said to be heavy-tailed if the CMEc
increases as ¢ increases.
(ii) A distribution is said to have light tails if the CHEc
decreases as c increases.
(ii1) A distribution is a borderline case if the CMEc is constant

as ¢ Increases.



To apply this characterization, we put (2.4) in a more tractable form:

1 r (x - ¢) dF(:_u) (2.5)
¢ 1 - F(c) c

Letting y=x-c¢c , (2.5) becomes

CME = 1 rde(Y)
& 1-F() ‘0

- —— 31 rYL[l-F(Y)] dy .
1-F@) J0 %

Integrating by parts yields

1 J [1 - F(x)] dx
c

m[E =
¢ 1 - F(c)
or ,
oME = 1 r G(x) dx . (2.6)
e G(c) c '

To illustrate (2.6) consider the exponential distribution in (2.2).

Then

F(x) = 1l-e¢e s

G(x) = e "

and




Therefore, the CMEc is a constant function and the exponential distribution
is considered a borderline case.

The rationale behind choosing the exponential as the borderline
distribution can be illustrated by considering lifetime data (in hOurB) of
a mechanical part. The CMEc is then interpreted as the mean residual
lifetime, that is, the expected lifetime remaining given that the part has
already survived at least c hours. If the lifetimes follow an exponential
distribution, then once a part has reached a certain age (sufficiently
large c) its mean residual lifetime is unaffected by any additional aging.
With heavy tails tﬁis part would improve with additional age whereas light
tails produce a decreasing mean residual lifetime.

Unfortunately, for many distributions it is difficult to express
I: G(x)dx in closed form and it is often easier to compare the density
function with the exponential density function as in (2.1), (2.2), and (2.3).
Bryson [2] presents an alternative graphical approach which plots log G(x)
against x. Heévy-tailed distributions tend to have concave-upward graphs
for sufficiently large x and distributions with light tails tend to have
concave-downward graphs whereas the borderline exponential graph is linear.

When we were concerned with the rate of convergencé of F(x) only the
extreme part of the tail was important. Intuitively, tail-weight or
"tail-thickness" should be determined by a larger portion of the distribu-

tion's tail. For example, let

- x|

fé(x) = %e — < X < @ (2.7)
-X

£ (x) = = ; . < x < 2.8

5 (1+e%)2 Y 29



represent the density functions for the Laplace (double exponential) and
logistic distributions, respectively. As x goes to infinity, fb(x) and
fs(x) approach zero at essentially the same rate as the exponential
distribution. To compare the teil-weights of fa(x) and fs(x) we consider
the length of the tail between the .75 and .95 quantiles. With this in

mind, Crow and Siddiqui [5] suggest the following measure of tail-thickness:

£(.95) - z(.5) (2.9)
£(.75) - ¢(.5)

where z(p) is tﬁé pth quantile.
For unbounded distributions the larger the value of R the heavier the tail,
so that the Laplace distribution (R = 3.322) has heavier tails than the
logistic distribution (R = 2.680).

Another useful measure of tail-thickness is the moment coefficient of

kurtosis, 82, which is defined as

m
g = —u (2.10)
2 (u2)2 '

where M. is the rth central moment.

Traditionally, 82 was viewed to describe the "flatness" of the density

curve, however Kendall and Stuart [11l] cite examples disputing this. Despite
this it still seems to follow that for most of the unbounded distributions

we encounter, the larger the value of B2 the heavier the tail. The logistic
distribution (Bz= 4.2) in (2.8) is flatter than the Laplace distribution

(82 = 6.0) in (2.7) since the maximum ordinate of fk(x) is .5 and for fs(x)

is .25, yet the Laplace distribution was shown to have heavier tails by (2.9).



In order to compare the values of 32 and R for some of the unbounded

symmetric distributions we present a table from Siddiqui and Raghunandanan

[16].
B R
2
Normal 3.00 2.439
Logistic 4.20 2.680
Laplace 6.00 3.322
t5 9.00 2.773
t3 o 3.077
Cauchy o 6.314

For the t-distribution with three degrees of freedom, t3, and for the
Cauchy distribution, 82 was calculated for the distribution truncated at

K1 and Kz aud_then letting Kl + - and K2 + «, In this case R may be a
preferable measure of tail-weight, however for our purposes 82 seems

quite adequate and will be the one we shall use in the remaining chapters.
To characterize heavy-tailed distributions for these measures the logistic
distribution, whose tails are similar to the exponential tail for extreme
values of x, would appear to offer a reasonable borderline value. Hence
for B2 > 4.2 , we describe the tails of the distribution as being long and

heavy. We also use 82 to describe the tail-weight in bounded distributioms

where the tails are short, but its behavior is somewhat different.

2.2 Bounded Distributions.

Technically, bounded distributions have very light and smooth tails
since F(x) converges rapidly to one. However distributions such as the

uniform and the U-shaped appear to have heavy tails when we consider only



the part of the tail where £(x) 1s positive. 1If these short tails are

'heavy, the .95 and .75 quantiles will be close together and the value of
R in (2.9) will be close to 1.0. So that the smaller the value of R, the
heavier the talls. This same behavior is eihibited by B2 as can be seen

in the following table:

B R

2
Normal 3.00 2.439
Triangular 2.40 2.335
Cosiﬁé 2.19 2.183
Parabolic 2.14 2,100
Uniform 1.80 1.800
U-shaped 1.19 - 1.216

The development in Chapter 4 shows that when 82 < 2.19, the midrange
is more efficient than the mean for estimating the center of bounded
symmetric populations. We therefore conveniently describe the tails of the
distribution as being short and heavy whenever 82 < 2.19. In the next
two chapters we investigate the effect that heavy tails has on the midrange

estimator,



3. MIDRANGE AND CONSISTENCY

The sample midrange is determined by the smallest and largest
observations and is therefore sensitive to outliers. This criticism,
which was also leveled against the sample mean, is justified in distribu-
tions with long and heavy tails; the consequence being that the midrange
is an inconsistent estimator in these distributions. In asymmetric
unbounded distributions, the sample midrange depends upon the sample
size and we cannot state specifically what it estimates. For this reason
we consider only symmetric populations in the subsequent development. In
this chapter we develop the distribution of the midrange and investigate

the consistency of the midrange.

3.1 Distribution of the Midrange.

Let Xl, Xz, cney Xn denote a random sample from a population having
a continuous p.d.f. f(x). Rearranging the sample in the order of their

magnitude provides the n order statistics

< X

X(l) < X(Z) L e ) *

The joint distribution of X and X is

(1) (n)

n-2
f(x(l),x(n)) n(n—l){F(x(n)) - F(x(l))} f(x(l))f(x(n)). (3.1)

Let M and W denote the midrange and half-range of the sample, respectively,

then

X + X
Me—H@ gL E : (3.2)
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and the inverse transformations are

Xy = M-W . x(}l) - M+ W . (3.3)

Then the Jacobian is

Therefore , from (3.1), the joint distribution of M and W is

£(m,w) = 2n(n-1)[F(m + w) - F(m - @)1%°2 £(m ~w) f(m+w) . (3.4)

The exact distribution of the midrange is found by

E(m) = I £(m,w) dw . (3.5)

For bounded distributions with endpoints a and b such that a < b the

limits of integration are 0 < w < (b ; a) ' m - g_g_h | Ind for
unbounded distributions the limits are O<w<w,

Most measures of central tendency, such as the mean or median (Fisz[7]),
have asymptotic normal distributions where the precision of the estimate
improves with increasing sample size. This is not true of the midrange as
Gumbel [8] shows that the asymptotic distribution of the midrange is logistic
when the parent distribution is of the exponential-type and the precision
may increase, decrease, or remain invariant with increasing sample size

depending on the form of the distribution. Unbounded distributions are of

the exponential-type 1f for very large values of x the following equations
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are approximately valid:

_fx® |- f(x) | _fi(x
1-Fx £(x) g F(x) fx)

The tails of exponential-type distributions converge at least as fast as the
exponential distribution. Included in this group is the normal, logistic
and Laplace distributions while the Cauchy is not of the exponential-type.
Certainly precision increasing with sample size is a desirable property for
an estimator to have. We now investigate the conditions under which the

median, mean, and midrange attain this property.

3.2 Consistency.

A consistent estimator of 6 is one which converges in probability to 6.
For continuous symmetric popﬁlations Fisz [7] proves that the median is a
consistent estimator of & and if E(X) exist then the mean is also consistent.
In the Cauchy distribution, where E(X) does not exist, Kendall and Stuart
[12] show that the mean is not a consistent estimator of 6. This tends to
support Robertson and Wright's [14] claim that the consistency of tﬁe sample
mean depends only on the amount of weight in the tails of the parent
distribution. They also report that consistency of the midrange depends
not only on tail-weight but also on the smoothness of the tails. The
following two theorems, useful in determining when the midrange is consistent,
are due to Geffroy and are given by Robertson and Wright [14] as they apply
to distributions symmetric about zero:
Theorem 1. The midrange converges in probability to zero if and only if,

for all € > 0

ng + €) -
1lim c(x®) 0

X -+ @
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where G(x) is the tail function.

Theoren 2. If

09 o P
G(x) = Ix ce ltl de -,

then the midrange_fﬁils to convefge in probability when p < 1, but
converges almost surely to zero when p > 1.

Theorem 2 implies that the midrange is consistent in the standard
normal distribution (p = 2), but inconsistent in the smooth-tailed logistic
distribution (p = 1) and therefore inconsistent in all distributions with
long and heavy tails. It may also be inconsistent in light-tailed
distributions if the tails are not smooth, as is demonstrated by the
following example found in Robertson and Wright [14]: Let h(:) and H(*)
be the density and distribution function of the standardized normal
population. Let f(x) be a symmetric density whose values are given by:

h(x) + h(x + 1) 2Zn <x<Z2n+1

f(x) =

0 2n + 1 <x < 2n+ 2

n= 0, 1, 2, oo
Then F(x) > H(x) for all positive x so that the tail of F(x) is no

heavier than the tail of H(x). However,

lim sup {l - F(x + %)} » {1 - F)}"! = 1

X > @

so by Theorem 1, with € = )%, the midrange fails to converge in probability
when sampling from F(x). However, by Theorem 2, the midrange converges

almost surely when sampling from H(x).
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3.3 Unblasedness.

Kendall and Stuart [l11l] state that in every symmetric population the
median is an unbiased estimator of 6 while the midrange is unbiased whenever
E(M) exists. They show that E(M) exists at least for the symmetric
exponential-type populations. The sample mean can be found to be an

unbiased estimator of 6 whenever E(X) exists, by

1T 1 v
E[Tizl Xi) = Tizl E(Xi) = E(X).

For symmetric populations there are a number of consistent unbiased estimators
and to choose between them we rely on their relative efficiency which is

discussed in the next chapter.



14

4, EFFICIENCY OF THE MIDRANGE

In bounded distributions the tails are both light and smooth since for
sufficiently large x, the tail function G(x) = 0. Therefore the midrange,
as well as the median and mean, is a consistent unbiased estimator of 8.
This is also true of unbounded light-tailed distributions. When this is the
case the choice of the estimator usually rests upon its efficiency. In
populations which are symmetric, bounded and heavy-tailed, the midrange is
found to be more efficient than the mean and this relative efficiency
1nc:e§ses as 82 decreases. The uniform distribution, where the midrange is
optimal, is discussed in detail. In unbounded light-tailéd populations
the mean is found to be the preferred estimator while in populations with
long and heavy tails the median enjoys greater efficiency than either the

mean or midrange.

4.1 Uniform (Rectangular) Distribution.

The two parameter uniform distribution is defined by the density function

1 ’ a<x<b
b-a

£(x) = |
0 . elsewhere (4.1)

or by the distribution function

0 , X < a
Py = =2 a<x<b (4.2)
L 1l ’ x>b.
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Therefore, by symmetry,
0 =E(X) = (a+Db)/2 (4.3)

Using the relation

r
wem b 0! G m_ wd (4.4)

where v is the rth central moment and m = E(xr),

we can compute the variance

n, = Var(® = o - ? (4.5)
1z

and from (2.10), B, = 1.8.
In order to find the efficiency of the midrange we need the distribution
of the midrange.

4.1.1 Exact Distribution of the Midrange. To find the exact distribu-

tion of the midrange (4.1) and (4.2) are substituted into (3.4) to get

f(mw) = m@-)[BFE -2 - Bo¥ =2 R g g7
- Zn-ln(n-l) e (4.6)
(- a)”
where a <m<b s 0 <wc< b ; a . I -4a ; L | .

Integrating (4.6) with respect ot w, we get
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n-1
f(m)-zn-ln[—-?—--|m—n;b|] / (b-a)® (4.7)

Carlton [3] shows that in the uniform distribution the midrange has a non-
normal limiting distribution and hence the concept of efficiency that we
use is not strictly applicable.

4.1.2 Efficiency. The asymptotic relative efficiency, ARE, of the

mean relative to the midrange is defined as

ARE(X,M) = Yar(D (4.8)
Var (X)
By symmetry,

E(M) = (a+b)/2 .

Using (4.7) and applying integration by parts twice we find

b
E(MZ) = I m2 f(m) dm

a+b . 2 b-az

= (=) * SmD @

Therefore the variance of M is

(b - a)?
2(otl) (n+2)

Var(M) =

and the variance of X is

Var(x) _ (b - a)” . (4.9)
n

12n

Var (3[-) =
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Hence the efficiency in (4.8) is

6n . (4.10)

ARE(X,M) = D (oD

As n increases, ARE(X,M) + 6/n -+ 0. In other words, the midrange

becomes increasingly more efficient than the mean as the sample size
increases. Therefore, the mean which uses the "full sample information"
by weighting all the observations equally is as an estimator of 6 inferior
to the midrange which weights only the two extreme observatioms.

To show that both the midrange and mean are more efficient than the
median, ﬁ, we need to find the variance of ﬁ. To simplify the calculations
we choose b = -a =%k in (4.1) and let the sample size n= 2k + 1
where k is an integer. The median then is the k+l m order statistic and

therefore the distribution of M is (see Kendall and Stuart [11l])

F@)* 1 - ra))* (4.11)
B(k+1l, k+1)

f() =

which is a Beta distribution with both parameters equal to k+l.

The variance of this Beta distribution is

Var(ﬁ) _ (k+1; (k+1)
(2k+2) “ (2k+3)
1 . _1
4(2k+3) 4(nt+2)

From (4.9), with b -a =1

1
12n *

Var(i) =
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So that

~

ARE (ﬁ’i) - %_r(‘l'?!.l
Var (X)

12n
4 (nt2)

3 as n->e ,

Therefore the median is only 1/3 as efficient as the mean and hence it
has "zero" efficiency compared to the midrange.

To show that the midrange is more efficient (i.e. smaller variance)
than any other ﬁnbiased estimator we need only show that it is sufficient
and that the uniform distribution is complete (see Hogg and Craig [10] ).
To show that M is a sufficient statistic for 6 it suffices to show that

and X are a pair of jointly sufficient statistics for a and b.

X (n)
Substituting (4.1) and (4.2) into (3.1) yields

n-2 -n
f(x(l), x(n)) n(n—l)(x(n) - x(l)) (b - a) . (4.12)
Hence the likelihood function, L, can be factored as
n
L(x)5 Xpp oeey X a, b) = I f(x; | a,b)
“ i=1
-n
= (b-a) I(x(l)-a)I(b—x(n)) (4.13)

= f(x(l), x(n)) k(x)

where I(y) is the indicator function



1 41f y> 0

I(y) =
0 if y < 0.

2-n
k(x) = (=) =~ *1))" /(-1

is independent of a and b, so M is sufficient for 6.

Hogg and Craig [10] show that the completeness property is satisfied, and
therefore the midrange is the most efficient unbiased estimator when
sampling from the uniform population. When sampling from other bounded
heavy-tailed distributions the midrange is not optimal but it remains

more efficient than the mean.

4.2 Other Bounded Distributions.

The procedure for finding the efficiency of X compared to M in the
cosine, parabolic, U-shaped and dichotomous distributions is identical to
that in the uniform distribution, although the integrations necessary are
often quite tedious. We therefore just summarize Rider's [13] results in

the following table:

Efficiency of Mean Relative to Midrange

Sample Cosine Parabolic Uniform U-shape Dichotomous
Size B = 2.19 B =214 | B =1.8 ] 8 =1.19 g =1.0
2 2 2 2 2 i

2 1.000 1.000 1.000 1.000 1.000

3 . 984 .974 .900 . 760 .750

4 971 |  .951 .800 .527 .500

5 «963 .932 714 .354 .312

6 .956 .643 .188

19



20

These values indicate that for symmetric populations with B2 < 2.19

(short heavy tails) the midrange is more efficient than the mean and

this efficiency increases as 62 decreases. Gumbel [8] cites four symmetric
distributions from the Pearson system with'B2 > 2.5 where the mean is found
to be more efficient than the midrange and the midrange becomes increasingly
inferior as 82 increases. We explore this further in unbounded distributions

of which the normal is the most important.

4.3 Unbounded Distributions.

The mean, median and midrange were all shown in Chapter 3 to be
consistent and unbiased in the normal distribution. To choose between them
we again rely on their relative efficiencies which are summarized in the

following table from Kendall and Stuart [11]

Sample Size ARE (ITI,E) ARE (M, X)
2 1.000 1.000
4 1.092 1.092
6 1.135 1.190
10 1.177 1.362
20 1.214 1.691
© 1.253 @

The mean is definitely the most reliable and the midrange becomes relatively
increasingly unreliable while the median has almost attained its limiting
value by the time n = 20.

For other unbounded distributions we refer to a paper by Broffitt [1]

who considers the family of power distributions, symmetric about zero,
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-|x|P
hp(x) = Efqif%?TTET ¢ . -» < x < (4.14)
where p > 0.
For this family,
_ Ira +3/p)
Varp(x) 3T(L + 1/p) & (4.15)

so that

r{l + 3/p) . (4.16)
3nl'(1 + 1/p)

Varp(x) =

Kendall and Stuart [11l] show the median to be asymptotically normally

distributed with variance

Var () = s ' (4.17)
P 4n h_(0)
P
where hp(O) is the median ordinate.

Then from (4.17) and (4.14)

& 2 )
Varsu) = I'(1+1/p) (4.18)

n

Therefore, from (4.16) and (4.18)

ar3(1 + 1/p) bk (4.19)

MEXM = TaTam

Broffitt [1] states that from (4.19) it can be seen numerically that X
is more efficient than the median when p > 1.41. The median is then preferred

in the heavy-tailed logistic and Laplace (p = 1) distributions.
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To compare the midrange and mean we consider only the light-tailed

distributions since for p < 1 the midrange was found in Chapter 3 to be
inconsistent. Asymptotic results for the midrange are based on X(l) and
x(n) being asymptotically independent whichlis proved in Gumbel [8].
Broffitt [l1] uses this result to find the asymptotic variance of the

midrange

Var(M) = Li (4.20)
[ 12p% (ln n)2(3-1/P)y

and therefore from (4.16) and (4.20)

nk(p) ’ l<p<e (4.21)
(In n)2(1--1/1:)

ARE(X,M) =

wz r¢l + 1/p)
4p? T + 3/p)

where k(p) =

For any fixed p, ARE(X,M) > » as n + = and hence the mean is more
efficient than the midrange. A comparison of the mean, median, and
midrange with the most efficient estimator, is given iﬂ Tiao and Lund [17]
for p =1, 4/3, and 4. It demonstrates that the median fares very well in
the Laplace distribution, whereas the efficiency of the mean remains
constant at one-half that of the minimum variance estimator and the
efficiency of the midrange falls off rapidly toward zero. For p = 4/3
(somewhat heavier tails than the normal) both the median and mean do fairly
weli, with the median slightly better for even samble sizes and the mean
preferred for odd sample sizes. The efficlency of the midrange again drops

rapidly. For p = 4 (very light tails) the median has poor efficiency while
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the midrange is more efficient than the mean for n < 13. So for very
light-tailed distributions the midrange may be preferred for small sample
sizes. This can be seen by recognizing that the density in (4.14) approaches
the uniform density as p + = . Hence we éan, by choosing p large
enough, get arbitrarily close to the uniform density, yet the asymptotic
result in (4.21) shows the unbounded tails eventually (for large enough n)
yield the mean more efficient than the midrange.

We noticed that the asymptotic variances of X and ﬁ are of the order 1/n.
This is not always the case with the midrange. The following results in
Cramér [4] illdstrate this dependence that the midrange has on the form

of the distribution.

Orders of Asymptotic Variances of M

Uniform 0(1/n2)
Triangular 0(1/n)
Normal 0(1/1n n)
Laplace 0(1)
Cauchy 0(n2)

The values for the Cauchy and Laplace distributions again point out the

inconsistency of the midrange.
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5. OTHER ESTIMATORS

We briefly consider best linear unbiased estimates to see how the
optimal weighting of the order statistics is affected by the tail weight
of the parent distribution. Then we look at an estimator having good
efficiency for a wide family of distributions. This is useful when the

form of the distribution is unknown, as 1s often the case.

5.1 Best Linear Unbiased Estimate (BLUE).

The estimator of 0 that is usually chosen is some linear combination

of the order statistics and it takes the form

6 = a.X
1= 171
n
where a, denotes the weight given the 1*® order statistic and Lo, =1

i=1
The weights should be chosen so as to guarantee that the estimator is the
best one possible according to the properties of consistency, unbiasgdness,
sufficiency and efficiency. We have already seen that the midrange,
which assigns weights @ =a = .5 and gives a zero wéight to all the
remaining observations, is optimal in the uniform population. However,
in the normal population the optimal estimator is the sample mean which
weights all observations equally. So the choice of the estimator depends
on the form of the parent distribution.

Kendall and Stuart [12] use the technique of ordered least squares to

find the weights guaranteeing an unbiased mininum variance estimator (BLUE).
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The BLUE is found by

" 1‘1125“,
e =
-1

1

-

|1

where

1l is a column vector of omes,

E(o) is a column vector of order statistics,
and V is the variance-covariance matrix of X

) °

With this approach Kendall and Stuart[12] show the midrange to be the
BLUE in the uniform distribution and David [g] shows X to be the BLUE in
the normal distribution. For other distributions a table of weights, when
one exists, should be used to determine B* . We present such a table from

Sarhan and Greenberg [15] for samples of size 5:

32 Population ay a, g o, g
1.19 U-shaped .55848 -.04486 -.02724 -.04486 .55848
1.80 Uniform .50000 0 0 _ 0 .50000

2.14 Parabolic .38629 .07954 .06835 .07954  .38629
2.40 Triangular .30608 .11885 .15014 .11885 .30608
3.00 Normal .20000 .20000 .20000 .20000 .20000

6.00 Laplace .01664 «22130 .52413 .22130 .01664

These values support the contention that when B 1s small (short heavy tails)
2 .
the best estimate gives more weight to the extreme observations, whereas

for large values of 82 (long heavy tails) more weight is given to the
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middle observations. When tables are unavailable for a particular
distribution or sample size, it may be more practical to adopt a simpler
estimator which retains good properties although it may not be quite as

efficient. The topic of robust estimators addresses that question.

5.2 Robust Estimators.

When sampling from a population whose distribution is unknown, it is
useful to have an estimator which works well for a wide family of distribu-
tions. Although the midrange may be adopted when 82 < 2.19, it is not
very desirable for other distributions. The wide use of the sample mean
results from assuming the unknown population has a normal distribution.
Instead of weighting the ordered observations according to some assumed
distribution (which may or may not be correctly assumed), Hogg [9] uses
the sample information to determine the weights in the following estimator

T of the center of a symmetric distribution:

.
*us ., b, <2.0
X ; 2.0 < b, < 4.0
X.
/4 , 4.0<b, <5.5
| m B 5.5 < b2
_e
where x1/4 is the mean of the [n/4] smallest and the [n/4] largest

observations, ii/4 is the mean of the remaining interior observations,
X and m are the sample mean and median, and b2 is the sample coefficient

of kurtosis:



n) (x1 - x)4

[ I (x, - 1?2 ]2

2

This reasonably simple estimator makes effective use of the tail shape of

the distribution provided b, is a good estimate of B2 . Hogg [9] shows

2
that T has excellent asymptotic properties while his empirical studies
have yielded a fine overall performance.

Another interesting robust estimator of location for symmetric
populations is offered by Crow and Siddiqui [5] and extended by Siddiqui
and Raghunandanan [16]. We only mention here that the efficiency of the
estimator is studied in a number of different distributions, including

those we have referred to in this paper. Other approaches to robust

estimation are referenced in David [g].
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6. CONCLUSION

We-have classified symmetric heavy-tailed distributions according to

the shape of their tail as follows:

(1) The tails are considered short and heavy 1f 82 < 2.19 in which
case the tail-weight increases as B decreases.
2
(11) The tails are considered long and heavy if 82 > 4.20 in which

case the tail-weight increases as 82 increases.

When the tails of the parent distribution are long and heavy, the
midrange is an inconsistent estimator and therefore undesirable. In this
situation, according to the BLUE, the estimator chosen should place less
weight on the extremes as the tail weight increases. The median or trimmed
mean could be appropriate when weighting tables for the BLUE are un-
available.

When the tails of the parent distribution are short and heavy the mid-
range is a consistent and unbiased estimator having greater efficiency than
the sample mean. Here the BLUE, having maximum efficiency, places more
weight on the extremes as tail-weight increases. In the uniform distribution
- the midrange is the BLUE which indicates that the efficiency of the midrange
decreases as the tail-weight deviates from that to the uniform population.
Yet the midrange may be preferred due to its computational ease.

Tail-shape then is the influencing factor in determining the appropriate
estimator. Only when the tails are light should the sample mean be
considered. When the tails are heavy the most appropriate estimators
often use less than the full sample information. Determining the tail-

shape when the form of the distribution is unknown is the basis for robust



estimation procedures. These procedures, if adopted by -textbooks, could
reduce the almost automatic assumption of normality and use of the sample

mean.
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ABSTRACT

When the center, 6, of a symmetric population is unknown, we have
several alternatives for an estimator of 6. The estimators we consider
in this paper are the sample mean, median, and midrange with emphasis
placed on the latter. After characterizing distributions according to the
shape of their tail, the behavior of the midrange with respect to the
properties of consistency and efficiency is investigated in a variety of
distributions.

The hypothesis put forth is that the shape of the parent distribution's
tail is the determining factor in the choice of the estimator. Only when
the tails are light is the sample mean preferred. When the tails are
"short and heavy" the midrange is found to be a very desiraﬂle estimator
while the median is preferred when sampling from populations with "long
and heavy" tails. When the form of the distribution is unknown, rather
than assuming normality, the sample information is used to determine the

tail-shape before choosing the estimator.



