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Abstract

This work utilizes finite differences to approximate the first derivative of non-periodic

smooth functions. Math literature indicates that stabilizing Partial Differential Equation

solvers based on high order finite difference approximations of spatial derivatives of a non-

periodic function becomes problematic near a boundary. Hagstrom and Hagstrom have dis-

covered a method of introducing additional grid points near a boundary, which has proven

to be effective in stabilizing Partial Differential Equation solvers. Hagstrom and Hagstrom

demonstrated their method for the case of the one-dimensional advection equation using

spatial derivative approximations of even orders up to twenty-second order. In this disser-

tation, we explore the efficacy of the Hagstrom and Hagstrom method for the same Partial

Differential Equation with spatial derivative approximations of odd orders and orders higher

than twenty-two and report the number and locations of additional grid points required for

stability in each case.
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Chapter 1

Introduction

Definition 1. A partial differential equation (PDE) is an equation involving a function u

of several variables and its partial derivatives [11].

Definition 2. A PDE is linear if it depends linearly on u and its derivatives [11].

To many, the advection equation is the simplest first-order PDE. The advection equation

acts as a transport instrument that models a substance being carried along by a flow of liquid

[9, 11]. Consider the following PDE defined as

ut + a(u)ux = 0 t > 0 and x ∈ (xl, xr) (1.1)

where (xl, xr) represents the left and right endpoints for the interval on which x is defined

on. When a(u) ≡ a, where a is a constant, (1.1) is called the advection equation (aka the

transport equation). In general, when a(u) ≡ u, (1.1) is categorized as quasilinear equation

and is called the inviscid Burgers equation. Here quasilinear means that all the highest-order

derivatives of u occur linearly with coefficients depending only on x, u, and the lower order

derivatives of u [11].

In our research we will be solving the one dimensional advection equation with a(u) = 1,

which is

ut + ux = 0. (1.2)

In general, with a bounded domain, the advection equation can have only one boundary

condition. Since a > 0, a boundary condition is required at x = 0. The boundary condition
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as well as the initial condition for (1.2) are displayed below:

u(x, 0) = u0(x) ∀x ∈ (0, 1) (1.3)

u(0, t) = f(t) ∀t > 0

for some arbitrary function f . The conditions provided above indicate that x = 0 represents

an inflow boundary. Thus, this makes the boundary at x = 1 the outflow boundary, meaning

that the solution at the boundary x = 1 is determined solely from what is flowing to the

right from the interior. If it were the case where a < 0, then a boundary condition would be

required at x = 1 pertaining to the inflow boundary. Using the Method of Characteristics,

the exact solution of (1.2) and (1.3) is found to be

u(x, t) =

{
u0(x− t), if x > t;

f(t− x), if x < t [9].

Recall what was previously mentioned about the one dimensional advection equation

being the most simple first-order PDE. Part of this simplicity is due to the fact that the

solution to this problem is already known. In general, PDEs are not so simple and the exact

solution may not be known. These types of PDEs require some kind of numerical solver.

The method of lines (MOL) provides a general framework for constructing numerical

solvers for time dependent PDEs. The MOL process will discritize a PDE in both space

and time. To keep the analysis simple, we will consider a MOL discretization for the

one dimensional advection equation initial boundary value problem with periodic boundary

conditions:

ut + ux = 0 (1.4)

u(x, 0) = u0(x) ∀x ∈ (0, 1)

u(0, t) = u(1, t) for t ≥ 0.

The physical description of the system in the case of a periodic boundary would be that

whatever leaves the interior through the outflow boundary reenters the system through the

inflow boundary [9].
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We seek an approximate solution vector, v,

vi(t) ≈ u(xi, t), xi = ih for i = 0, 1, 2, ..., N + 1,

where h is the distance between points on the uniform grid, also known as, the grid mesh.

That is, v is a finite vector approximating an infinite collection of function values of u. The

MOL consists of first discretizing in space. The vector v will be represented in the spatial

discretization. The spatial discretization of problem (1.4) will form an approximation of

the spatial derivative, ux. More specifically, the process of transforming ∂
∂x

into a discrete

approximation of a finite difference operator D. Here finite difference methods will be

used to discretize (1.4) in space and produce a system of ODEs. Finite differences will be

discussed in greater detail later.

In this problem, a uniform grid with N + 2 grid points including the boundary points is

being used. Notice that in the periodic boundary case v0(t) = vN+1(t), so we will not have

to find vN+1 because we already know v0. Either v0 or vN+1 needs to be represented in the

vector of grid values v(t). By choosing to represent vN+1, the vector of grid values is

v(t) =


v1(t)
v2(t)

...
vN+1(t)

 .
For the interior of the system, that is, for i = 2, 3, ..., N , the following finite difference

approximation is used:

v′i(t) = − 1

2h
(vi+1(t)− vi−1(t)).

Then considering the periodicity of the system, the first and last finite difference approxi-

mations must be modified. For the first finite difference approximation in the system, we

get

v′1(t) = − 1

2h
(v2(t)− v0(t))

= − 1

2h
(v2(t)− vN+1(t)).
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Moreover the last finite difference approximation in the system is

v′N+1(t) = − 1

2h
(vN+2(t)− vN(t))

= − 1

2h
(v1(t)− vN(t)).

Having all the ODEs in the system allows one to form the (N +1)× (N +1) finite difference

operator matrix, D, which in this case looks like

D =
1

h



0 1
2

0 · · · 0 −1
2

−1
2

0 1
2

. . . 0

0 −1
2

0 1
2

. . .
...

...
. . . . . . . . . . . . 0

0
. . . −1

2
0 1

2
1
2

0 · · · 0 −1
2

0


[9].

Having discretized in space and formed the matrix D, the one dimensional advection equa-

tion (1.4) now takes the form

vt +Dv = 0 (1.5)

vi(0) = u0(xi) for i = 0, 1, 2, ..., N + 1

Now we seek

Un
i ≈ vi(tn) ≈ u(xi, tn),

a numerical approximation of u at the grid point xi at the nth time for i = 0, 1, ..., N + 1

and n ≥ 0 [9]. After discretizing in space and obtaining the system of ODEs (1.5), the next

step in the MOL process is to discretize in time. As indicated above, the vector U is also a

finite collection of approximations of the function u and is part of the time discretization.

To discretize in time means that we want to solve the system of ODEs (1.5) using an ODE

solver. Keep in mind that in general, we have a number of options for solving this system

of ODEs. A reasonable choice however, is to use the midpoint point to solve this system of

ODEs. Consider the generic ODE, dv
dt

= g(v(t), t) for the purpose of defining the midpoint

method. The midpoint method is

Un+1
i − Un

i

2k
= g(Un

i ) for i = 0, 1, 2, ..., N + 1[9].
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If one were to use the midpoint method to solve the system of ODEs in (1.5), a recurrence

relation could be obtained. This recurrence relation could then be solved to provide the

solution to the initial boundary value problem in (1.4).

For linear PDEs, the Lax equivalence theorem tells us that consistency and stability of

a method is equivalent to convergence of the numerical solution to the true solution. When

solving a PDE initial boundary value problem, such as the one in (1.4), one hopes that the

solution obtained through using MOL is a good approximation of the real solution. Roughly

speaking, a numerical method is consistent if the truncation error of the approximation goes

to zero as grid mesh, h, and time step size, k, go to zero. Absolute stability requires that

k · spec(−D) ⊆ S, where spec is the spectrum of the finite difference operator D, which

is the set containing the eigenvalues of D and S denotes the stability region of the time

integration method.

Some additional analysis on matrix D will show that D is a skew-symmetric matrix

meaning that DT = −D and the eigenvalues of D are purely imaginary. The eigenvalues

are contained in the interval (− i
h
, i
h
). In order to obtain stability after solving the time

dependent ODE system (1.5), the stability region must include the interval k(− i
h
, i
h
). The

midpoint method was an appropriate choice for the time integration method because it

yielded a stability region containing the interval iy of the imaginary axis with |y| < b. Thus,

the method will be stable provided that |k/h| ≤ b [9]. The MOL and stability analysis of

the spec(D) are both important factors that tie into our research.
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Chapter 2

Accuracy and Stability

2.1 Finite Difference Methods

For the purpose of our research, we aim to use finite difference formulas to approximate

the first derivative of a specified function given a finite number of discrete function values.

Suppose that f(x) is a univariate function assumed to be smooth, unless otherwise stated.

Finite difference methods require the smoothness characteristic of functions so that the

required function derivatives of particular orders exist and are bounded on an interval about

a distinct point of interest x0.

Definition 3. The right one-sided first order accurate finite difference approximation to

f ′(x0) is

D+,1f(x0) =
f(x0 + h)− f(x0)

h
, for h > 0, (2.1)

where the subscript + denotes a right sided approximation and the subscript 1 represents

first order accuracy.

Notice that as h → 0, D+,1f(x0) is the definition of the derivative of the function f(x).

D+,1f(x0) is the slope of the interpolating line to the graph of f(x) at the points x0 and x0+h.

The formula given in (2.1) is considered first order accurate because D+,1f(x0) − f ′(x0) =

O(h).

Definition 4. The left one-sided first order accurate finite difference approximation to
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f ′(x0) is

D−,1f(x0) =
f(x0)− f(x0 − h)

h
, for h > 0, (2.2)

where the subscript - denotes a left sided approximation and the subscript 1 represents first

order accuracy.

The left one-sided finite difference approximation (2.2) is also first order accurate because

D−,1f(x0) − f ′(x0) = O(h). It turns out that taking an average of the two one-sided

approximation formulas will yield a more desirable approximation of f ′(x0). The resulting

approximation is the centered formula, which represents the slope of the line interpolating

f at the points x0 − h and x0 + h:

D0,2f(x0) =
f(x0 + h)− f(x0 − h)

2h
for h > 0. (2.3)

Furthermore, the centered finite difference approximation of f ′(x0) is second order accurate,

meaning D0,2f(x0)−f ′(x0) = O(h2). The notation D0,2 with subscript 0 denotes a centered

approximation and the subscript 2 represents second order accuracy. So for small h, the error

for the centered approximation will be much less than the error made with the one-sided

approximations [9].

D+,1, D−,1 and D0,2 are the canonical examples of the three basic types of finite difference

approximations to the first derivative, namely right biased approximations, left biased ap-

proximations and the centered approximations. The term biased approximations indicates

that there are more sample points lying to the left or right of the point of interest x0.

We will be using finite difference methods to replace the spatial derivative in the one-

dimensional advection equation ut + ux = 0. Considering that we started working with a

second order accurate finite difference method, we have chosen to only display the derivation

of such methods below. A derivation of the centered finite difference formula (2.3) along

with the second order right and left biased finite difference formulas will be provided.
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2.1.1 Derivation of second order finite difference formulas

Taylor series expansion and the method of undetermined coefficients are used to derive each

approximation formula.

Example 1. Derive a second order left one-sided approximation to f ′(x0) utilizing the

points f(x0), f(x0−h) and f(x0−2h). First, form the Taylor series expansion for f(x0−h)

and f(x0 − 2h), both of which are centered at x0:

f(x0 − h) = f(x0)− hf ′(x0) +
h2

2
f ′′(x0)− h3

6
f ′′′(x0) +O(h4) (2.4)

f(x0 − 2h) = f(x0)− 2hf ′(x0) +
(2h)2

2
f ′′(x0)− (2h)3

6
h3f ′′′(x0) +O(h4). (2.5)

Then substitute the Taylor series expansions of f(x0 − h) (2.4) and f(x0 − 2h) (2.5) into

the following equation

D−,2f(x0) = af(x0) + bf(x0 − h) + cf(x0 − 2h) (2.6)

where a,b and c are coefficients, often referred to as weights. A simple rearrangement of

terms results in obtaining

D−,2f(x0) = (a+b+c)f(x0)−(b+2c)hf ′(x0)+(b+4c)
h2

2
f ′′(x0)−(b+8c)

h3

6
f ′′′(x0)+(b+c)O(h4)

Since we hope to have D−,2f(x0) agree with f ′(x0), we need to require

a+ b+ c = 0

b+ 2c = −1

h

b+ 4c = 0.

In attempting to make a more accurate approximation, we would want the higher order

coefficients to be zero as well. However, working in the context of the given formula for

D−,2f(x0), we are restricted to the system of three equations with the three unknowns, a,b
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and c. Next, use back-substitution to get

a =
3

2h

b = −2

h

c =
1

2h
.

Now that a,b and c have have been identified, return to the arbitrary formula for D−,2f(x0)

(2.6) and make the necessary substitutions, that is,

D−,2f(x0) =
1

h
[
3

2
f(x0) +−2f(x0 − h) +

1

2
f(x0 − 2h)].

Then the error in the approximation is found by

D−,2f(x0)− f ′(x0) = −h
2

3
f ′′′(x0)− 3

2h
O(h4)

= O(h2).

A simple algebraic rearrangement of the latter, will result in the equality

f ′(x0) = D−,2f(x0) +O(h2).

If one were to use the method of undetermined coefficients to find a second order right

one-sided finite difference approximation to f ′(x0) using the grid points f(x0), f(x0 + h)

and f(x0 + 2h), they would discover a connection with the weights found in Example 1.

Roughly speaking, the weights between a right and left biased finite difference approxima-

tion are negative of each other. To establish a second order right biased finite difference

approximation to f ′(x0) we will need the Taylor series expansion of f(x0 +h) and f(x0 +2h)

centered at x0:

f(x0 + h) = f(x0) + hf ′(x0) +
(h)2

2
f ′′(x0) +

(h)3

6
h3f ′′′(x0) +O(h4) (2.7)

f(x0 + 2h) = f(x0) + 2hf ′(x0) +
(2h)2

2
f ′′(x0) +

(2h)3

6
h3f ′′′(x0) +O(h4). (2.8)
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Consider the formula for a second order right biased finite difference approximation to f ′(x0)

denoted D+,2f(x0):

D+,2f(x0) = af(x0) + bf(x0 + h) + cf(x0 + 2h).

Substituting the Taylor series expansions of f(x0 + h) (2.7) and f(x0 + 2h) (2.8) into the

latter formula and rearranging terms will result in obtaining

D+,2f(x0) = (a+b+c)f(x0)+(b+2c)hf ′(x0)+(b+4c)
h2

2
f ′′(x0)+(b+8c)

h3

6
f ′′′(x0)+(b+c)O(h4).

At this point, one could set-up and solve a similar system of three equations (as in Example

1) of the three unknowns, a, b and c, but that is not necessary considering the relationship

mentioned above. Thus, the weights for this approximation are negative the weights that

are depicted in Example 1. So

a =
−3

2h

b =
2

h

c =
1

2h

and the formula for D+,2f(x0) is

D+,2f(x0) =
1

h
[−3

2
f(x0 + 2f(x0 + h)− 1

2
f(x0 + 2h)].

Moreover, the error in the approximation is found by

D+,f(x0)− f ′(x0) = −h
2

3
f ′′′(x0) +

3

2h
O(h4)

= O(h2).

Again, a simple rearrangement of the latter, will result in the equality

f ′(x0) = D+f(x0) +O(h2).
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Example 2. Now let’s find a second order centered approximation to f ′(x0) utilizing the

points f(x0), f(x0 − h) and f(x0 + h). This requires one to substitute the Taylor series

expansions of f(x0 − h) (2.4) and f(x0) (2.7) into the following equation:

D0,2f(x0) = af(x0) + bf(x0 − h) + cf(x0 + h).

A simple rearrangement of terms results in obtaining

D0,2f(x0) = (a+ b+ c)f(x0) + (−b+ c)hf ′(x0) + (b+ c)
h2

2
f ′′(x0) + (−b+ c)

h3

6
f ′′′(x0)+

+(b+ c)
h4

24
f 4(x0) + (−b+ c)O(h5).

In order to have D0,2f(x0) agree with f ′(x0), this time we need to require

a+ b+ c = 0

−b+ c =
1

h

b+ c = 0.

To solve this system of three equations use back-substitution and get

a = 0

b = − 1

2h

c =
1

2h
.

Having found a,b, and c, the formula for D0,2f(x0) is

D0,2f(x0) =
1

2h
[−f(x0 − h) + f(x0 + h)].

Notice this was the derivation for the centered finite difference approximation defined in

(2.3). The error in the approximation is found by

D0,2f(x0)− f ′(x0) =
h2

6
f ′′′(x0) +

1

h
O(h5)

= O(h2).

11



Notice the error term for this centered finite difference approximation of f ′(x0). i.e. h2

6
f ′′′(x0)+

1
h
O(h5). The error for this centered finite difference approximation is still O(h2), conse-

quently making the approximation second order accurate. In fact, here the error acts like

h2

6
as compared to −h2

3
as seen with the left biased approximation from Example 1. This

observation suggests the error for the centered approximation is approximately two times

as small as compared to the error seen in the left biased approximation. Considering the

derivation given above, we obtain the equality

f ′(x0) = D0,2f(x0) +O(h2).

2.2 ODE Solvers

Working with an initial boundary value problem means that one is given data at the initial

time, t0 = 0. For example let us consider the following initial boundary value problem with

the PDE given by (1.2) along with the boundary condition and initial condition in (1.3).

After discretizing in space, this initial boundary value problem takes the form

vt + D̃v = 0 (2.9)

vi(0) = u0(xi) ∀x ∈ (0, 1)

v0(t) = f(t) ∀t > 0,

again where vi(t) ≈ u(xi, t), xi = ih for i = 0, 1, 2, ..., N . Now, we wish to solve the

ODE system in (2.9). The given information allows one to march forward in time using a

particular time-stepping method to compute approximations to the solution at subsequent

times. These time-stepping methods are also referred to as ODE solvers. Let k represent

the time step size, so that the nth time step is given by tn = nk for n ≥ 0 [9].

Notice that the system of ODEs in (2.9) differs from the system of ODEs presented in

(1.4) in the sense that (2.9) does not have a periodic boundary. So the spectrum of the

differential operator D̃ will have a different pattern as compared to the differential operator
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D in the introduction. Applicable time step methods such as Runge-Kutta 4 and Adams-

Bashforth 4 that accommodate the spectrum of D̃ are presented.

First, we will discuss Runge-Kutta 4 (RK4). For purposes of defining RK4, let dv
dt

=

f(v(t), t) be a generic ODE. RK4 is a four-stage iterative method that approximates the

solutions of ODEs and is given by

Y1 = Un

Y2 = Un +
1

2
kf(Y1, tn)

Y3 = Un +
1

2
kf(Y2, tn +

k

2
)

Y4 = Un + kf(Y3, tn +
k

2
)

Un+1 = Un +
k

6
[f(Y1, tn) + 2f(Y2, tn +

k

2
) + 2f(Y3, tn +

k

2
) + f(Y4, tn + k)].

A key feature of the Runge-Kutta methods is that each successive Ym value is computed

using only the previous Yl value, where in the case of RK4, m = 1, 2, 3, 4 and l = 1, 2, 3.

Notice that in the first step, when computing Y1, this is the first Ym generated, which does

not have a previous Yl value to use.

Now we will move on to discuss the Adams-Bashforth 4 (AB4) method. A generic r-step

linear multistep method (LMM) is of the form

r∑
j=0

αjU
n+j = k

r∑
j=0

βjf(Un+j, tn+j). (2.10)

The value Un+r is computed using the formula 2.10 and is based on values Un+r−1, Un+r−2, · · · , Un

as well as the function values at these points. AB4 is a four step LMM that also approxi-

mates the solution of ODEs. Let dv
dt

= f(v(t), t) be a generic ODE, such that, AB4 is given

by

Un+4 = Un+3 +
k

24
(−9f(Un) + 37f(Un+1)− 59f(Un+2) + 55f(Un+3)).

Considering that AB4 is a LMM, Un+4 is computed in terms of the four preceding values:

Un+3, Un+2, Un+1, Un [9].
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In the results section we will see that the eigenvalues of the differential operator, D̃,

pertaining to the system of ODEs for the one dimensional advection equation are in general

complex valued. Furthermore, these eigenvalues have negative real part and are often times

close to the imaginary axis. In the next section we will see that RK4 and AB4 yield desirable

stability regions for the initial boundary value problem seen in (2.9).

2.3 Stability and Convergence

The convergence of a numerical method for an initial value problem is determined through

analyzing the error in the approximation of u(T ), for some arbitrarily fixed time T > 0,

with time step k. Intuitively, the method will converge if the error in the approximation

goes to zero as k → 0. Thus, convergence is defined in the sense of the following limit,

lim
k→0

UN = u(T ),

where the number of time steps needed to reach time T is given by N = T/k.

In general, referring to a convergent r-step method means that it converges on all prob-

lems (of a relatively large collection) and with all reasonable starting values. The given

notion of convergence typically assumes that the starting values converge to the correct

initial value η as k → 0, that is,

lim
k→0

Uν(k) = η for ν = 0, 1, · · · , r − 1 [9].

Proving convergence of a method can be difficult. In [9], there are some examples of

convergence proofs. In one of these examples, LeVeque has proved the convergence of

general one-step methods. This proof is the first instance when we see that when dealing

with one-step methods, the error formed for each single step ties into the global error of the

method. In general, the global error can be bounded by the sum of all the one-step errors.

This implies that the global error will be of the same order as the local truncation error

as k → 0. These properties make-up our first concept of stability, more specifically, called

zero-stability.
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Definition 5. An r-step LMM (2.10) is said to be zero-stable if the roots of the characteristic

polynomial ρ(ξ) defined by
∑r

j=0 αjξ
j satisfy the following conditions:

|ξj| ≤ 1 for j = 1, 2, · · · , r.

If ξj is a repeated root, then ξj < 1 [9].

If all the roots of the polynomial ρ satisfy the conditions given in definition 5, then the

polynomial is said to satisfy the root condition. Considering that proving convergence of a

method can be a difficult task, if one can instead show that the method is consistent and

zero-stable, then the method is convergent. A method is consistent if the local truncation

error is o(1) as k → 0.

In comparison to zero stability, absolute stability is way of analyzing how the error in

an approximation behaves for a chosen time step k > 0. We will obtain stability of our

semidiscrete finite difference approximations to the one dimensional advection equation by

utilizing absolute stability regions. A region of absolute stability is found by applying a

generic LMM 2.10 to u′ = λu, resulting in the formula
r∑
j=0

αjU
n+j = k

r∑
j=0

βjλU
n+j.

By rearranging the line above, we arrive at the recurrence relation
r∑
j=0

(αj − zβj)Un+j = 0.

In particular, this is a homogeneous linear difference equation and has a general solution of

the form

Un = c1ξ
n
1 + c2ξ

n
2 + · · ·+ crξ

n
r ,

where cj are constant coefficients and ξj are roots of the characteristic polynomial
∑r

j=0(αj−

kλβj)ξj. Let z = kλ. The previous polynomial is referred to as the stability polynomial and

denoted π(ξ; z). π is a polynomial in terms of ξ with coefficients dependent on the value of

z [9].
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Definition 6. The region of absolute stability for the LMM (2.10) is the set of points z

in the complex plane for which the polynomial π(ξ; z) satisfies the root condition in the

definition of zero stability 5 [9].

RK4 is an appropriate ODE solver for the problem in (2.9) because it has a suitable

stability region, S, such that k · spec(D̃) ⊆ S. That is, there exists a time step size k that

can scale each eigenvalue of D̃ to be included inside of S. The stability region for RK4 is

depicted in Figure 2.1.

Figure 2.1: Stability region for RK4.

AB4 is also a good method to solve the system of ODEs in (2.9). Just like with RK4,

there exists a time step size k when using AB4 such that k · spec(D̃) ⊆ S, where this time

S represents the stability region of AB4. The stability region for AB4 is shown in Figure

2.2.

2.3.1 The Courant-Friedrichs-Lewy (CFL) condition

In [3], the English translation of Courant, Friedrichs and Lewy’s 1928 paper on PDEs, the

authors investigate how the approximation to the solution of a linear PDE reacts as the mesh

width, h, goes to zero. This study encompasses working with a system of linear difference

equations constructed from rectangular grids that approximate a particular hyperbolic PDE
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Figure 2.2: Stability region for AB4.

initial value problem. Courant, Friedrichs and Lewy focus on solving the wave equation

where the solution u and the derivatives of u are given on the line t = 0. Each difference

equation corresponding to a particular grid point, relates the value of the function at the

grid point of interest and the function values of surrounding grid points.

The explicit solution of the specified initial value problem can be determined at any

point in terms of the initial values lying in the first two rows of the grid. That is, each point

on the grid has a certain domain of dependence in the first two rows of the grid. In addition

to working with a rectangular grid, the triangle of determination is introduced. The triangle

of determination contains values of u that remain unchanged under the assumption that the

first two rows of the triangle are fixed. Courant, Friedrichs and Lewy go further to say that

the solution of a linear hyperbolic PDE at a point is dependent on a portion of the line

containing initial values. This initial value line lies between the sides of the triangle, which

are referred to as the lines of determination. It is also true that the solution of the difference

equation at the specified point has its own domain of dependence indicated by the lines of

determination [3].

In order to illustrate the definition of a domain of dependence, we will consider the do-

main of dependence of a finite difference method. For a fixed grid, the domain of dependence
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at a point (xi, tn is defined to be the collection of grid points xr at the initial time, t0, such

that the data U0
r at xr has an effect on the solution Un

i [9].

Definition 7. The CFL condition says that a numerical method can be convergent only if

its numerical domain of dependence contains the true domain of dependence of the PDE,

at least in the limit as k and h go to zero [9].

The CFL condition acts as a necessary condition for convergence. By necessary condition,

it is meant that if a method disregards the CFL condition then the method will not converge.

However, if a method fulfills the CFL condition then the method may or may be convergent

[9].

2.3.2 Upwind methods

Considering that the advection equation models a substance being carried along by a flow of

liquid, naturally the equation is not symmetric. Recall if a > 0, the fluid mixture is moving

to the right and moving to the left respectively if a < 0. Consequently, this situation

gives reason to use biased approximations to the function’s derivative(s). For simplicity, we

will present both one-sided approximations of the spatial derivative of u (in the advection

equation below):

ux(xi, t) =
1

h
(Ui − Ui−1)

ux(xi, t) =
1

h
(Ui+1 − Ui).

Applying forward Euler to either method from above, results in the following two schemes

for the advection equation:

Un+1
i = Un

i −
ak

h
(Un

i − Un
i−1) (2.11)

or

Un+1
i = Un

i −
ak

h
(Un

i+1 − Un
i ). (2.12)

Note that both (2.11) and (2.12) are first order accurate in both space and time.
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The sign of a will determine which of the two schemes,(2.11) or (2.12), are to be used.

The true solution of the advection equation after one time step is

u(xi, t+ k) = u(xi − ak, t).

Thus, for a > 0, the solution at the point xi for the succeeding time step is provided using

data to the left of xi and then to the right of xi provided a < 0. Therefore, (2.11) should

be used when a > 0 and (2.12) when a < 0 [9]. According to [9], (2.11) is stable under the

condition that

0 ≤ ak

h
≤ 1

and (2.12) is stable if

−1 ≤ ak

h
≤ 0.

2.4 The Importance of High-order Methods

2.4.1 Dispersion and dissipation errors

When a discrete model (e.g. a finite difference method) is used to approximate the solution of

a PDE, almost always there are errors associated with this approximation. One can consider

truncation analysis to find bounds on discretization errors, which will be dependent on the

size of the grid mesh, h, and the size of the time step, k. The study of the behavior of

discretization errors is done through numerical dispersion and dissipation [13].

We see in [13], that any time-dependent scalar, linear PDE with constant coefficients on

an unbounded space domain admits plane wave solutions

u(x, t) = e(i(ξx+ωt)), ξ ∈ <, (2.13)

where ξ is the wave number and ω is the frequency. There is a relationship between ξ and

ω respective to each PDE equation,

ω = ω(ξ), (2.14)

which is referred to as the dispersion relation.
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Taking one time and one spatial derivative of (2.13) gives

ut = −iωu

ux = iξu

Now substitute ut and ux into the one dimensional advection equation (1.2) which becomes

−iωu+ iξu = 0

−iu(ω − ξ) = 0 such that

⇒ either − iu = 0 or ω − ξ = 0

⇒ u = 0 or ω = ξ.

This computation provides us with the dispersion relation, ω = ξ for the specified one

dimensional advection equation. This dispersion relation is plotted in Figure 2.3.

Figure 2.3: The dispersion relation for ut + ux = 0.

In his book, Trefethen states that discrete approximations to differential equations also

experience dispersion relations. Trefethen reports that the dispersion relation for the cen-

tered finite difference approximation of the specified one dimensional advection equation

is

ω =
1

h
sin(ξh).
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This dispersion relation is 2π/h-periodic in ξ and shown in Figure 2.4 for ξ ∈ [−π/h, π/h].

After a comparison of the curves presented in Figure 2.4, notice that the approximation

dispersion relation is accurate for a small values of ξ. Trefethen identifies the number of

points per wavelength for the wave (2.13), to be given by 2π/ξh. The small values of ξ that

yield an approximate dispersion relation depicted in Figure 2.4 correspond to many grid

points per wavelength.

Figure 2.4: The dispersion relation for ut + ux = 0.

Dissipation error is responsible for the decay of a wave form. To examine this kind

of error, suppose we have a linear PDE or finite difference approximation that introduces

waves (2.13) with ω given by the dispersion realtion in (2.14). Considering that ξ ∈ <, the

absolute value of the wave is given by

|e(i(ξx+ωt))| = e−tIm(ω),

and is a function of t. The following definition identifies when a finite difference approxi-

mation will be nondissipative and dissipative.

Definition 8. A finite difference formula is nondissipative if Im(ω)=0 for all ξ. It is dissi-

pative if Im(ω)> 0 for all ξ 6= 0. It is dissipative of order 2r if ω satisfies

Im(ωk) ≥ γ1(ξh)2r, i.e., |eiωk| ≤ 1− γ2(ξh)2r
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for some constants γj > 0. In each of these statements, ξ varies over the interval [−π/h, π/h],

and ω represents all possible values ω corresponding to a given ξ. For problems in mutiple

space dimensions, (ξh) is replaced by ‖ξh‖ in any norm [13].

In the case where a multistep method is used, one should interpret the defintion of

dissipative as requiring Im(ω)> 0 for every value of ω corresponding to some ξ 6= 0. Note

that dissipative and nondissipative are mutually exclusive entities. For instance, a finite

difference approximation can be neither dissipative nor nondissipative [13].

Kreiss and Oliger investigated the consequences of using high order methods in their

1972 paper [8]. Kreiss and Oliger’s primary study was on dispersion error, or what they

called phase error. Kreiss and Oliger managed to place bounds on the maximum dispersion

error allowed in the computation of a wave for a specified amount of time. Kreiss and Oliger

then observed the advantage of using a fourth and sixth order finite difference method over

the second order finite difference method. Moreover, when considering a maximum error of

0.1, the fourth order method was approximately two orders of magnitude smaller than the

error found with the second order method. Then the sixth order method was approximately

3/2 times the order of magnitude seen in the fourth order method. This means that the

error found using the fourth and sixth order methods was significantly smaller than the

error found in the second order method. As the bound on the allowed error is decreased

and the computation of the wave is carried for a longer amount of time, the superiority of

the fourth and sixth order methods is clear [8].

In [7], Jameson explains that the error in an approximation is not constant and depends

on the order of the method as well as the wavenumber. This paper indicates that it is

advantageous to use high order methods in comparison to low order methods because with

the use of a high order method the approximation error will be orders of magnitudes smaller.

Jameson proves this notion through the use of truncation errors. The algebraic manipulation

and computations in this paper are done through using Fourier series. Jameson works with
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different computational fields defined as

fm(x, t) =
∑
k

cmk (t)eikx, (2.15)

where m denotes the field and cmk is a set of coefficients with respect to each field. Further-

more, the time element is dependent on the PDE in a given problem.

In general, we find that errors made in a spatial discretization typically dominate the

errors that occur in a temporal discretization. With that said, the spatial derivative of

(2.15) involves taking the spatial derivative of a complex exponential, that is,

d

dx
fm(x, t) =

∑
k

cmk
d

dx
(eikx)

=
∑
k

cmk
d

dx
(cos(kx) + i sin(kx)).

Consequently, errors arise from differentiating the sine waves. Jameson provides the follow-

ing truncation error formula,

TE = const · (4x)p−1kp, (2.16)

where k is the kth Fourier mode, p represents the method order, and 4x is the distance

between adjacent grid points (equivalent to the mesh width h). Jameson says that const

shown in the above equation will be dependent upon the method used, but is not important

for the point being made. Next, a relationship between 4x and k is presented with 4x

being small as compared to 1/k, such that,

4x < 1

2kmax

.

We see that 4x < 1. It is clear that for a fixed k, increasing the method order, p, will result

in a dramatic decrease of the truncation error (2.16).

The error at the final time should be the one that takes precedence over all others. When

using a time-domain PDE solver, errors will occur in each step of the method. Furthermore,

these numerical errors can sometimes accumulate linearly with time. Naturally, the more
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steps taken in an approximation means more errors are being introduced. Jameson provides

a rough formula for the final time error at the kth sine mode,

Ek
final = Tfinal · TEk [7].

2.5 Stable High-order Methods

One need be aware of the difficulty that arises in stabilizing finite difference based PDE

solvers. Note that the absence of data outside the computational domain forces finite dif-

ference stencils to become increasingly biased as the domain boundaries are approached.

The simple procedure of using centered finite difference methods in the interior of the do-

main and biased stencils near the boundaries typically does not result in a stable method.

This issue has been investigated and resulted in a number of stable high-order PDE solvers.

Padé methods involve inverting banded matrices and reducing the stencil size as the domain

boundary is approached. There are also the summation-by-parts (SBP) methods which in-

corporate energy estimates for semidiscrete problems to obtain derivative operators near

the domain boundary. A shortcoming of both the Padé and SBP methods is the restric-

tion placed on the method order near a boundary. By decreasing the method order near

a boundary, this introduces a tradeoff between accuracy and stability. Essentially, both

the Padé and SBP methods reduce accuracy near a boundary to in turn obtain stability.

The Fourier Continuation (FC) method also results in a stable approximation[1]. The FC

method consists of taking a non-periodic function and extending the function on a larger

domain, such that, a periodic extension is obtained. The FC method has spectral accuracy,

but restricted method order near the boundary [1, 2, 10]. An additional fact about the

Padé, SBP and FC methods are that the time step size, k, is scaled like the mesh size, h.

There is another high-order method called the Chebyshev polynomial method, which

can achieve good accuracy using a moderate number of grid points as compared to the sub-

stantial number of points required for a high-order finite difference method. The Chebyshev

polynomial methods have non-uniform grids that use a clustering of grid points to avoid
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using function values near the domain boundary that have singularities at these points.

These methods consist of representing the unknown solution of a system of ODEs as a large

series of Chebyshev polynomials. This series is then truncated and the approximation is

substituted back into the ODE equation so that an equation that describes the coefficients

of the solution can be obtained [12]. The Chebyshev polynomial methods maintain high

order near the domain boundary and k is scaled like h2.

In the next chapter we will discuss the Hagstrom and Hagstrom method. As an intro-

duction to the Hagstrom and Hagstrom method, it is a stable method that incorporates

finite differences and does not require reduction of the method order near a boundary. The

Hagstrom and Hagstrom method also has k scaled like h.
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Chapter 3

Understanding Grid Stabilization of
High-order One-sided Differencing I:
First-order Hyperbolic Systems By
T. Hagstrom and G. Hagstrom

In [6], a technique is presented that is utilized to avoid order restrictions of biased finite

difference approximations near a boundary. In effort to counteract the instability problem

near a boundary, a number of additional grid points are introduced, close to each boundary.

This idea of introducing additional gird points is somewhat similar to the clustering of points

as seen in the Chebyshev polynomial methods. This technique finds the smallest number of

additional points required to yield stability near each boundary.

3.0.1 Formulation and usage of the grid

We require approximations of a functions first spatial derivative. Suppose the function f is

defined for x in the interval (0, 1) with N linearly spaced points between 0 and 1. The grid,

Gh is defined to be the union of the uniform grid with grid width h = 1/N and the finite

set of additional grid points. That is,

Gh = {jh, 0 ≤ j ≤ N}
⋃
{zkh, 1− zkh, k = 1, ..., p},

where zk is not an integer and p represents half the number of additional grid points.
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The finite difference operator, Dord, of order ord, is a matrix of size N + 2p × N + 2p,

containing the coefficients or weights of the finite difference approximation at each x ∈ Gh.

That is, the ith row in Dord contains the finite difference weights for the first derivative

approximation of f at the ith grid point in Gh for i = 1, 2, ..., N + 2p. Considering the

additional grid points and accommodating the boundary, the points used in a stencil that

are somewhere in the middle of the grid will differ from the points in a stencil near the

boundary. As a result of the differing stencil points, the finite difference weights will be

different in these locations. When computing the finite difference weights of a particular

order at a point x0 on the uniform grid, with ord/2 points on either side of x0, all of which

still lie on the uniform grid, the weights of the centered finite difference formula is used.

Hagstrom and Hagstrom indicate that for the other grid points in Gh, they used the the

derivative of the degree ord interpolating polynomial (e.g. Lagrange polynomial) formed

from the point of interest x0 and ord/2 points to the left and right of x0. Notice sometimes

x0 is a grid point close enough to either boundary and either ord/2 points to the left or

right of x0 are not attainable. That is, one of the boundary points has been reached and is

one of the grid points included in the stencil [6]. When ord/2 grid points are not available

to the left and right of x0, the only choice is to use a biased stencil. Keep in mind that, in

general, we want the finite difference stencils to be as centered as possible.

Hagstrom and Hagstrom considered the spectra of matrices Dord to determine that the

construction of the grid Gh is in fact a solution to stabilizing boundary closures. In partic-

ular, Hagstrom and Hagstrom focused on stabilizing finite difference approximations to the

following hyperbolic partial differential equation initial value problem:

ut = ux + F, u(x, 0) = g(x), u(1, t) = 0.

The method used in solving this partial differential equation required a spatial discretization

and yielded a stability region in which the eigenvalues of Dord need to have negative real

part. In an effort to minimize the time step stability constraints without being restrained

to a particular solver, Hagstrom and Hagstrom alternatively minimize the spectral radius
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of Dord [6].

Consider the following problem proposed by Hagstrom and Hagstrom:

Problem 1. For fixed N, p, ord/2 choose zk, for k = 1, · · · , p to minimize ρ(D ord
2
,h) subject

to σ(D ord
2
,h) ⊂ C−.

Prior to obtaining results, it was important to know how to find the points zk for any

value of N . Thus, Hagstrom and Hagstrom had to check how the spectrum of Dord was

effected by the value of N . It was found that stability could still be achieved for large values

of N , such as, N = 100 and N = 200. Furthermore, it was noted that the spectral radius of

Dord for the most part appeared unaffected by N , except that as N increased, the distance

between the spectrum and imaginary axis decreased. A few cases where performed to

check how changing the number and location of additional grid points effected the spectrum

of Dord. In each case, the discretization is stabilized for a range of zk values and the

spectral radius of Dord remains small if the first additional grid point, z1, is not to small

[6]. In particular, Hagstrom and Hagstrom investigated the stability of finite difference

methods of even orders ranging from four to twenty-two. Hagstrom and Hagstrom went up

to incorporating three additional grid points near the boundary in their search for stability.

This left us with the possibility to analyze stability in finite difference methods of even order

greater that twenty-two as well as methods of odd order. When it came to stabilizing odd

order methods, we needed to incorporate upwinding. Hence, the biased stencils being used

are biasing to the left.
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Chapter 4

Results

Using the technique presented in the Hagstrom and Hagstrom paper, we too wanted to

stabilize boundary closures for the one dimensional advection equation. That is, we wanted

to choose additional grid points zk, for k = 1, · · · , p that would minimize the spectral radius

of D as specified in problem 1. Our primary objective was to identify the minimum number

of additional grid points required to stabilize biased finite difference approximations of the

spatial derivative of a function near each boundary. With that said we aimed to achieve this

goal using finite difference methods of odd order and orders higher than twenty-two. The

finite difference weights are calculated using R. LeVeque’s MATLAB script fdcoeffF.m, which

is based on Fornberg’s code titled weights. Fornberg’s code generates the finite difference

weights by taking derivatives of Lagrangian polynomials and can be found in [4] and [5].

We found that adding one additional grid point to the first cell results in a stable biased

finite difference approximation near the boundary for orders up to ninth order. Then using

two additional points (in the first cell), stable approximations can be obtained for orders up

through seventeenth order. Moreover, three additional grid points (two in the first cell and

one in the second cell) will allow for stable approximations up through twenty-third order.

We went as far as finding that these biased finite difference approximations of orders up to

the twenty-ninth order can be stabilized using four additional grid points (three of which

are in the first cell and one in the second cell). See Table 4.1 for the list of the nodes zk, for

k = 1, · · · , p corresponding to a particular order finite difference method, spectral radius,
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and the maximum negative real eigenvalue. Notice that just as before in the Hagstrom and

Hagstrom paper, for methods that can be stabilized for a certain value of p, means that all

methods of lower order can also be stabilized for the same value of p. Another observation to

be made is that the maximum real eigenvalues for odd order methods presented in 4.1 differ

by certain orders of magnitude in comparison to the even order maximum real eigenvalues

presented in [6].

We have selected methods of orders eleven, seventeen, twenty-three, and twenty-nine and

displayed their spectra in Figures (4.1,4.2,4.3, and 4.4). Again, we see that each spectrum

displayed is formed from mostly eigenvalues lying on what looks like a smooth curve and a

number of outlying eigenvalues. The outlying values determine the spectral radius, where as,

the rightmost part of the curve should give rise to the maximum real part of the eigenvalue

[6].

Note that the additional grid points zk can be chosen independently from the sample size,

N . In determining the placement of the additional grid points, we developed a multistepper

MATLAB script that looped over the points zk, for k = 1, · · · , p. Then we identified the

minimum number of additional grid points necessary to find stability in each method by

selecting the outputted zk values which yielded the minimum spectral radius. Next, we will

discuss how the spectra of D are effected by varying the value of N . Again we will consider

the methods of orders 11,17,23, and 29. Figures (4.5,4.6,4.7 and 4.8) show the sensitivity of

spectral quantities for hD11,h, hD17,h, hD23,h and hD29,h with the respective number p and

varying N. In all of these figures, the subfigure to the left, shows how close the spectrum

is to the imaginary axis. We see that each spectrum reaches a certain distance from the

imaginary axis for many values of N . The subfigures to the right, show the spectral radius

times h converging to some value for many values of N . In each case the spectral quantities

experience asymptotic behavior for increasing values of N . Thus, the spectral quantities are

independent of N .
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z1 z2 z3 z4 ord N N−1ρ(D) N−1maxλ∈σ(D)<λ
0.206800 - - - 5 100 1.681970 -3.004915(-1)
0.206800 - - - 5 200 1.690465 -1.742913(-1)
0.189000 - - - 7 100 1.810830 -2.286831(-1)
0.189000 - - - 7 200 1.819976 -1.733495(-1)
0.189000 - - - 9 100 1.957880 -7.585413(-2)
0.189000 - - - 9 200 1.967769 -7.623723(-2)
0.135600 0.972200 - - 11 100 2.862939 -3.666573(-2)
0.135600 0.972200 - - 11 200 2.877399 -3.685091(-2)
0.117800 0.740800 - - 13 100 2.993467 -1.341673(-1)
0.117800 0.740800 - - 13 200 3.008586 -1.344209(-1)
0.100000 0.572200 - - 15 100 3.013943 -1.141864(-1)
0.100000 0.572200 - - 15 200 3.029165 -1.147632(-1)
0.100000 0.545000 - - 17 100 2.956401 -2.979540(-3)
0.100000 0.545000 - - 17 200 2.971332 -2.994588(-3)
0.100000 0.440000 1.952200 - 19 100 3.167522 -9.527889(-2)
0.100000 0.440000 1.952200 - 19 200 3.183520 -9.524120(-2)
0.100000 0.440000 1.950600 - 21 100 3.172817 -8.674499(-2)
0.100000 0.440000 1.950600 - 21 200 3.188841 -8.680982(-2)
0.100000 0.440000 1.911200 - 23 100 3.282088 -2.361086(-2)
0.100000 0.440000 1.911200 - 23 200 3.298665 -2.373010(-2)
0.079400 0.317000 0.965600 1.871800 24 100 4.389232 -5.679191(-4)
0.079400 0.317000 0.965600 1.871800 24 200 4.411400 -5.662071(-5)
0.079400 0.317000 0.965600 1.871800 25 100 4.381588 -7.402243(-2)
0.079400 0.317000 0.965600 1.871800 25 200 4.403718 -5.381928(-2)
0.079400 0.317000 0.965600 1.871800 26 100 4.372633 -6.204306(-4)
0.079400 0.317000 0.965600 1.871800 26 200 4.394717 -5.954113(-5)
0.079400 0.317000 0.965600 1.871800 27 100 4.366301 -3.224161(-2)
0.079400 0.317000 0.965600 1.871800 27 200 4.388353 -3.240444(-2)
0.079400 0.317000 0.886800 1.950600 28 100 4.888664 -7.111271(-4)
0.079400 0.317000 0.886800 1.950600 28 200 4.913354 -6.567527(-5)
0.079400 0.317000 0.768600 1.950600 29 100 5.491674 -6.166857(-3)
0.079400 0.317000 0.768600 1.950600 29 200 5.519410 -6.198002(-3)

Table 4.1: Optimized grid locations and spectra of Dord
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Figure 4.1: Spectra of hD11,h for p = 2.

−3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3
Spectrum of D: N=100 p=2 ord=17

−3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3
Spectrum of D: N=200 p=2 ord=17

Figure 4.2: Spectra of hD17,h for p = 2.
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Figure 4.3: Spectra of hD23,h for p = 3.
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Figure 4.4: Spectra of hD29,h for p = 4.
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Figure 4.5: Sensitivity of spectral quantities for hD11,h with p = 2 and varying N.
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Figure 4.6: Sensitivity of spectral quantities for hD17,h with p = 2 and varying N.
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Figure 4.7: Sensitivity of spectral quantities for hD23,h with p = 3 and varying N.
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Figure 4.8: Sensitivity of spectral quantities for hD29,h with p = 4 and varying N.
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Chapter 5

Conclusion

In this study, we used the grid formulation and analysis techniques presented in [6] and

hoped to answer two main questions. First being, could finite difference approximations of

odd order be stabilized via the Hagstrom and Hagstrom method for the one dimensional

advection equation? We had also posed the question of whether or not it is possible to

stabilize these methods for orders greater than twenty-two. We were able to answer both of

these questions positively.

The results in the Hagstrom and Hagstrom paper indicate that one additional grid point

is needed to stabilize finite difference methods up to eighth order, two additional points to

stabilize methods up to sixteenth order, and three additional points to stabilize methods

up to twenty-second order. There are a few subtleties in regards to these additional grid

points. The first being that the two additional grid points required to stabilize methods up

to sixteenth order are placed in the first cell of the grid. For the three additional points

used to stabilize methods of orders seventeen to twenty-two, two points are placed in the

first cell and one in the second cell of the grid [6].

By combining our findings with the results provided by Hagstrom and Hagstrom, we

can now say the following. With the use of upwinding in the case of odd orders and biasing

to the left, orders up through ninth order can be stabilized with the addition of one grid

point in the first grid cell. Two additional grid points (both points in the first grid cell)

are required to stabilize method orders ten through seventeen. Three additional grid points
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(two points in the first cell and one point in the second cell) to stabilize method orders

eighteen through twenty-three. We were also able to find that by including four additional

grid points (three in the first cell and one in the second cell), finite difference methods for

orders between twenty-four and twenty-nine can be stabilized.
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