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Abstract

This dissertation presents an approach to assess and validate causal inference tools to es-

timate the causal effect of a treatment. Finding treatment effects in observational studies

is complicated by the need to control for confounders. Common approaches for controlling

include using prognostically important covariates to form groups of similar units containing

both treatment and control units or modeling responses through interpolation. This disser-

tation proposes a series of new, computationally efficient methods to improve the analysis

of observational studies.

Treatment effects are only reliably estimated for a subpopulation under which a common

support assumption holds—one in which treatment and control covariate spaces overlap.

Given a distance metric measuring dissimilarity between units, a graph theory is used to

find common support. An adjacency graph is constructed where edges are drawn between

similar treated and control units to determine regions of common support by finding the

largest connected components (LCC) of this graph. The results show that LCC improves

on existing methods by efficiently constructing regions that preserve clustering in the data

while ensuring interpretability of the region through the distance metric.

This approach is extended to propose a new matching method called largest caliper

matching (LCM). LCM is a version of cardinality matching—a type of matching used to

maximize the number of units in an observational study under a covariate balance constraint

between treatment groups. While traditional cardinality matching is an NP-hard, LCM can

be completed in polynomial time. The performance of LCM with other five popular matching

methods are shown through a series of Monte Carlo simulations. The performance of the

simulations is measured by the bias, empirical standard deviation and the mean square

error of the estimates under different treatment prevalence and different distributions of

covariates. The formed matched samples improve estimation of the population treatment



effect in a wide range of settings, and suggest cases in which certain matching algorithms

perform better than others. Finally, this dissertation presents an application of LCC and

matching methods on a study of the effectiveness of right heart catheterization (RHC) and

find that clinical outcomes are significantly worse for patients that undergo RHC.
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Chapter 1

Introduction

1.1 Introduction

Estimation of treatment effects in observational studies is complicated by the need for an

appropriate model—one that adjusts for all important covariates and their interactions.

Adjustment can weaken asymptotic precision if an appropriate model is not being consid-

ered (Lin, 2013). Furthermore, to make the treated and control groups comparable, we need

to find a control group that has same covariate distribution as the treated group. Common

approaches for handling these challenges include using prognostically important covariates

to form groups of similar units containing both treated and control units (e.g. statistical

matching) and/or modeling responses through interpolation. Hence, treatment effects are

only reliably estimated for a subpopulation under which a common support assumption

holds—one in which treatment and control covariate spaces overlap.

Incomplete overlap and imbalance are issues for causal inference largely because they

cause model dependency. In general, when the treatment and control groups are unbalanced,

the simple comparison of group averages is not a good estimate of the average treatment

effect due to the presence of confounders. Even though researchers try to fit the best model

to estimate treatment effects, their results may become biased due to incorrect specifica-

tion of the relationship between confounders, treatment, and response in the model. To

1



ensure robustness of estimates, some analysis must be performed to adjust for pre-treatment

differences between the groups.

Researchers often use statistical matching based on pre-treatment confounders to improve

the precision of causal estimates. Matching helps to remove the covariate imbalance between

treated and control groups in the following way: given a dissimilarity measure between pre-

treatment covariates, each unit is grouped with a set of units of the opposite treatment

status with small dissimilarity. Common choices for dissimilarity include (possibly weighted)

Euclidean and Mahalanobis distances. Often researchers use the propensity score—which is

the probability of being a treated unit given the observed covariates—or genetic matching

to automatically weight covariates when the number of covariates is large (Rosenbaum and

Rubin, 1983; Diamond and Sekhon, 2012). In many cases, applying matching methods on

large observational study can answers questions that are difficult using randomized trial

designs. For example, large administrative datasets are frequently used by pharmaceutical

researchers to discern rare but dangerous side-effects of medications that were approved for

sale based on trials of a few thousand persons but may eventually be used by millions of

people per year (Stuart et al., 2013).

Imbalance can increase when there are a few observed units that are far away from the rest

of the units in the sample. In that case, treatment effect estimation is only reliable if we can

trim those units. However, trimming those units to obtain an interpretable region of common

support is a big challenge (King and Zeng, 2006), and many methods have been proposed to

find a common support region. We develop a method called largest connected components

(LCC) to eliminate those distanced units and form a subpopulation under which all units

have acceptable match. LCC seeks a balance between computational efficiency, estimation

efficiency, flexibility of permitted regions, performance in high-dimensional covariate spaces,

and interpretability of the common support region.

We analyze a study on right heart catheterization (RHC)—a procedure involving inserting

a catheter into the heart to monitor critically ill patients—to compare the performance

of LCC against other common support methods. We supplement our findings thorough

simulation study based on real observational data. We show that the covariate imbalances

2



are reduced between treated and control group under LCC. In addition, LCC improves

existing methods by efficiently constructing regions that preserve clustering in the data

while ensuring interpretability of the region through the distance metric. Our results also

show that treatment effect estimation is more robust to choose of model ]under common

support.

1.2 Overview of Statistical Literature on Causal Infer-

ence

One common misconception of many researchers when confronted with causation and corre-

lation is that ‘Correlation implies causation’ (Beebee et al., 2009). In literature, causation

is defined as: “Cause is an event followed by another (effect),” and “Without the first event

(cause), the second (effect) would never happen,” which forms the foundation for the suffi-

cient and necessary conditions for causality (von Giźycki and Coit, 1891). These intuitive

causal definitions were translated into statistical language by Splawa-Neyman et al. (1990)

using the ‘potential outcomes’ paradigm to define ‘causal effects’ (Neyman’s framework).

1.2.1 Potential Outcomes Framework

In Neyman’s framework, the causal effect is defined as the comparison of potential outcomes

Y1 under treatment and potential outcomes Y0 under control, i.e., Y1 versus Y0 for a given

unit i. This comparison can be measured either in the form of a difference (additive scale)

or a ratio (multiplicative scale) or some other generalized contrasts. As defined in Holland

(1986), the fundamental problem of causal inference is that once treatment assignment has

occurred, each subject is assigned either to treatment or control, so only one of the two

potential outcomes is observed. The potential outcomes that we do not observe are known

as ‘counterfactuals ’. Given a counterfactual condition, e.g., ‘What would be response if a

treated patient received no treatment’, we estimate the potential treatment effect.

Let Yi1 and Yi0 denote the potential outcomes of unit i under treatment and control
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respectively—that is, Yit is the hypothetical potential outcome if that unit receives treatment

Ti ∈ {0, 1}. We observe Ti and Yi , where

Yi = Yi(Ti) ≡


Yi1 if Ti = 1,

Yi0 if Ti = 0.

In a simple observational study with four subjects, we might observe data like that sum-

marized in Table 1.1. Since we cannot observe the potential outcomes under treated and

control units, we aim to compute the sample average of the response of observed treated and

control units.

Subject Potential Y1 Potential Y0 T Observed Y1 Observed Y0 Causal Effect
1 Y11 Y10 1 Y11 ? ?
2 Y21 Y20 1 Y21 ? ?
3 Y31 Y30 0 ? Y30 ?
4 Y41 Y40 0 ? Y40 ?

Mean Y11+Y21
2

Y30+Y40
2

Y11+Y21
2
− Y30+Y40

2

Table 1.1: Fundamental problem of causal inference in terms of potential outcomes. The
row “Mean” gives standard sample estimates.

1.2.2 Review of Causal Inference

In evaluating causation or causal effects, randomized experiments are the “gold standard” (Hall,

2007). Their strength stems from the principle of randomization or lack of bias towards any

covariate levels, as noted by Fisher (Hall, 2007; Fisher, 1925; Basu, 1980). However, random-

ized experiments are not always feasible in medical science and may be expensive compared

to observational studies. Providing a causal interpretation of an estimate obtained from ob-

servational data requires additional assumptions or conditions under which we could imagine

some form of chance mechanism was involved in the process of data collection.

Suppose we have a random sample of size n from a large population in which there are

n1 treated units and n0 control units. Thus n = n1 +n0. For each unit i in the sample, let Ti
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indicate whether or not the treatment of interest was received, with Ti = 1 if unit i belongs

to the treatment regime, and Ti = 0 if unit i belongs to control regime. We denote the K

observed covariates for individual i as the column vector xi = (xi1, . . . , xiK)′ ∈ RK .

1.3 Assumptions

We need the following two assumptions to estimate the average treatment effect.

Assumption 1.3.1 (Unconfoundedness). We assume that Ti |= (Yi1, Yi0) |X.

Assumption 1.3.2 (Common Support). For all x ∈ X, 0 < P (Ti = 1|X) < 1.

The first assumption is known as ‘ignorability ’ or unconfoundedness assumption (Rosen-

baum and Rubin, 1983) and asserts that, conditional on the pre-treatment variables, the

treatment indicator is independent of the potential outcomes. The second assumption en-

sures common support in the covariate distributions and it is required to have a comparable

treatment and control group. Together, unconfoundedness and overlap constitute a property

known as“strong ignorability.” For example, in a study of a risky medical procedure, sick

people are most likely to receive treatment and are less likely to survive. We would pre-

dict a person that gets treatment that have a lower survival chance under both treatment

and control. Hence, the covariates X must include initial health (along with possibly other

covariates) in order to ensure the assumption of ignorability or unconfoundedness holds.

Making a causal statement or interpretation requires that the observational study im-

itates a randomized experiment where all the covariates are equally distributed between

the treated and control groups. However, such balance between the treated and untreated

groups is not usually seen in observational studies. Under the strong ignorability assump-

tions, observational studies can be viewed as quasi-randomized experiments, i.e., treatment

assignment can be assumed random conditional on measured covariates. It is then possible

to make causal inferences with the hope that the untestable assumptions are approximately

true. Unfortunately, without subject-area knowledge or use of additional information to

justify the assumptions, such inferences cannot be validated.
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1.4 Neyman-Rubin Potential Outcomes Model

We assume the Neyman-Rubin potential outcomes model for response (Splawa-Neyman

et al., 1990; Holland, 1986; Rubin, 1973), where potential outcomes are non-random. In

particular, we assume that randomness in the response entirely depends on the treatment

assignment. The observed outcome, Yi, can be written as:

Yi = Yi1Ti + Yi0(1− Ti). (1.1)

Inherent in 1.1 is the SUTVA, i.e., that treatment status of a unit does not affect the response

of any other units (Heckman and Robb, 1985). Since, for each subject depending on the

treatment status, only one potential outcome is observed—the treatment effect for unit i,

denoted τi ≡ Yi1 − Yi0, is unobservable.

1.5 Quantity of Interest

The causal estimands of interest depend largely on the design of the study and the research

question asked. The average treatment effect

ATE ≡ E[Yi1 − Yi0],

measures the average treatment effect across all units for the whole population. The average

treatment effect on the treated

ATT ≡ E[Yi1 − Yi0|T = 1],

measures the average effect over the distribution of the treated units. ATE is common

quantity of interest for randomized experiments, while ATT is more frequently used for

observational studies.

Unbiased estimation of the ATE or ATT may not be possible if there are subsets of
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the population that violate the common support assumption. Thus, it may be necessary

to identify a subpopulation that satisfies common support and to isolate analysis to that

subpopulation. This necessitates a change the quantity of interest to a conditional ATE

(CATE) or conditional ATT (CATT)—the ATE or ATT conditional on observations being

in the subpopulation. Under Assumption 1.3.1, the average treatment effect (ATE) for the

subpopulation with X = x equals

CATE ≡ E[Y1 − Y0|X = x]

= E[Y |T = 1, X = x]− E[Y |T = 0, X = x]

almost surely. Then the conditional average treatment effect can be estimate for a given

value of X. The average treatment effect on the treated can be written as:

CATT ≡ E[Y1 − Y0|T = 1, X = x]

= E[E[Y |T = 1, X = x]|T = 1]− E[E[Y |T = 0, X = x]|T = 1]

= E[Y |T = 1, X = x]− E[E[Y |T = 0, X = x]|T = 1]

Often, inference is restricted to the sample of the units at hand. In this case, the quantity

of interest becomes on sample average treatment effect:

SATE ≡ 1

n

n∑
i=1

[Yi1 − Yi0]

or sample average treatment effect on the treated:

SATT ≡ 1

n

n∑
i=1,Ti=1

[Yi1 − Yi0].

Let us define the observed response for ith treated unit as yi1 and the observed response

for the ith control units as yi0. A baseline estimator of SATE is the difference in the sample
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means of the observed outcome variable between the treated and control groups:

τ̂ = n−11

n1∑
i=1

yi1 − n−10

n0∑
i=1

yi0.

The difference between sample estimate and population estimate is known as estimation

error.

We focus on the most basic goal of statistical inference—the deviation of an estimate

from the truth. Examples include as unbiasedness, consistency, efficiency, asymptotic distri-

bution, admissibility and mean-square error. These statistical criteria can each be computed

from our results (by taking expectations, limits, variances, etc.), but all are secondary to

understanding and ultimately trying to reduce estimation error in a real life scenario.

The estimation error (∆) can be decomposed into two parts (Imai et al., 2008): error due

to sample selection (δs ≡ATE-SATE) and error due to treatment imbalance (δt ≡ SATE-τ̂).

Moreover, sample selection and treatment imbalance each can be divided into two parts—

due to selection on observed (X) and unobserved (U) covariates. Thus, the estimation error

can be written as:

∆ ≡ δs + δt

= δsx + δsu + δtx + δtu,

where δs = δsx + δsu and δt = δtx + δtu. If the sample is representative part of the population

then E(δs) = 0. On the other hand, blocking in experimental design and matching in

observational studies ameliorate treatment imbalance (δt). Other biases that could arise

in empirical analysis—for example, post-treatment effects, measurement error, simultaneity,

lack of compliance with the treatment assignment and missing data—are out of scope of this

study.
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1.6 Stratification and Randomized Experiments

Randomized experiments are the gold standard for statistical studies because they allow the

greatest reliability and validity of estimation of treatment effects. They involve randomly

selecting a sample and randomly allocating the subjects in the sample across the treatment

groups. For example, if an experiment compares a new drug against a standard drug, then

the patients should be randomly allocated to either the new drug or to the standard drug

control using randomization. Random selection avoids selection bias by identifying a given

population and guaranteeing that the probability of selection from this population is related

to the potential outcomes only by random chance. Random allocation of treatment can

even guarantee the absence of omitted variable bias (in expectation) without adjustment for

confounding variables.

In the subsequent discussion of observational studies, we consider methods for (non-

randomized) observational data that can be viewed as analyzing the data as if they arose from

hypothetical stratified randomized experiment (Imai et al., 2008). Suppose there are s strata

in which the jth stratum contains nj units. In each stratum, njt units receives the treatment

t (t = 1, 2, . . . , r). Furthermore, njt is fixed across randomization, resulting in nj distinct

assignments to treatment for each stratum j. Under the potential outcomes framework with

multiple responses, the ith unit in the jth stratum when exposed to treatment regime t has

potential outcome Yij(t). Each unit is associated with observed covariates xij. The treatment

effect of treatment t with respect to t′ for the ith unit in jth stratum, τij,tt′ = Yijt − Yijt′ , is

unobservable as each unit is either receives exactly one treatment condition.

The observed response under Neyman-Rubin causal model (NRCM) can be written as:

Yij =
r∑
t=1

yijtTijt

where Tijt takes the value 1 if ith unit in jth stratum receives tth treatment and 0 otherwise.

We assume that all the units satisfy the assumptions 1.3.1 and 1.3.2. There are n =
∑s

j=1 nj

units in the study, of whom nt =
∑s

j=1 njt receive the treatment t. Let F = {Yijt, Yijt′ ,xij, i =
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i, . . . , nj, j = 1, . . . , s}. For a randomized experiment, we can write that P(Tijt = 1|F) =

njt/nj.

1.7 Post Stratification and Observational Studies

Using post stratification to obtain a causal interpretation of a treatment effect estimate from

observational data requires additional considerations and assumptions. One way to obtain

this is through the assumption that strata satisfying treatment symmetry can be formed.

Miratrix et al. (2012) define the assignment symmetric in the following way:

Definition 1.7.1. A randomization is assignment symmetric if the following two properties

hold:

• All
(
nj

njt

)
ways to treat njt units in stratum j are equiprobable, given njt.

• For all strata j, j′, with j 6= j′, the treatment assignment pattern in stratum j is

independent of the treatment assignment pattern in stratum j′, given njt and nj′t.

We assume data are selected in a manner that does not generate selection bias under

assignment symmetry. We also assume that researchers analyzing observational data have

sufficient information in their measured pretreatment variables X so that it is possible to

obtain the strata satisfying treatment symmetry. However, in the observational study case,

njt and nj may be random. Assumption 1.3.1 asserts that treatment and the unobserved po-

tential outcomes are independent after conditioning on observed covariates and the observed

potential outcomes, so we can ignore all unobserved variables. Under the definition 1.7.1, we

assume that each unit in a stratum is equally probable to receive the treatment. Therefore,

post-stratification recovers the randomization inference for an observational study.

Theorem 1. An unbiased estimate of the strata-level treatment effect of treatment t with

respect to t′ is:

τ̂j,tt′ ≡
∑
i:i∈j

[yijtTijt
njt

− yijt′Tijt′

njt′

]
,
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and its variance is

Var(τ̂j,tt′) =
[
E
( nj
njt

) σ2
j,t

nj − 1
−

σ2
j,t

nj − 1

]
+
[
E
( nj
njt′

) σ2
j,t′

nj − 1
−

σ2
j,t′

nj − 1

]
+ 2

γj,tt′

nj − 1
.

The proof is given in Appendix A.

Theorem 2. Suppose µi and σi are the finite expected value and variance of τi. Let us define

s2n =
∑
σ2
i . Suppose that for ε > 0,

lim
n→∞

1

s2n

n∑
i=1

E[(τi − µi)2.1{|τi−µi|>εsn}] = 0.

Under Lindeberg CLT condition, 1
sn

∑n
i=1(τi − µi) converges towards the standard normal

distribution N (0, 1).

This theorem requires a certain type of degeneracy. It requires a finite number of strata,

each with nonzero variance and a sufficiently large number of units.

Lemma 1.7.1. Suppose that τ1, τ2, . . . is a sequence of random variables and that the dis-

tribution of τn converges to the distribution of the constant c as n → ∞. Then τn → c in

probability as n→∞.

Proof. First note that P (τn ≤ τ) → 0 as n → ∞ if τ < c and P (τn ≤ τ) → 1 as n → ∞ if

τ > c. It follows that P (|τn − c| ≤ ε)→ 1 as n→∞ for every ε > 0.

1.8 Observed and Unobserved Bias

Often researchers face situations where comparative studies between two or more groups are

necessary to make causal inferences for policy implications. The estimation of the treatment

effect can have bias due to both observed and unobserved covariates. Matching methods

are popular to estimate the unbiased estimate of the treatment effect both in randomized

and non-randomized experiments. In randomized experiments, researchers use matching-

type methods to block similar subjects and assign treatments (Greevy, 2004; Higgins et al.,
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2016). In non-randomized experiment, researchers use pre-treatment covariates to match

the treated subjects with control subjects and attempt to replicate a randomized experi-

ment as if the treatments were randomly assigned. When the covariate distributions of the

treated and control subjects are different—i.e. in presence of treatment imbalance—analysis

without consideration of the confounders may create a substantial bias. An appropriate

matching method should reduce bias due to covariates (or treatment imbalance) by reducing

the observed and unobserved covariate imbalances between treated and control groups.

Matching methods have five key steps (Stuart, 2010), with the first three representing

the design and the last two representing the analysis:

1. Define “closeness”: the distance measure based between units on covariates.

2. Implement a matching method given that measure of distance.

3. Iterate Steps (1) and (2) until a well-matched sample is obtained.

4. Estimate the treatment effect and inference based on the matched sample done in Step

(3).

5. Conduct a sensitivity analysis on unobserved confounding variables.

Common measures of distance that can be use in Step 1 of matching are:

• Standardized Euclidean distance:

Dii′ =

∥∥∥∥xi − µx

sx
− xi

′ − µx

sx

∥∥∥∥
2

,

• Mahalanobis distance:

Dii′ =
√

(xi − xi′)TS−1(xi − xi′),

where S is the p× p-dimensional variance–covariance matrix of x.
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• Propensity scores:

Dii′ = |πi − πi′ |.

The propensity score is the probability of receiving a particular treatment (T ) given a vector

of observed covariates (Rubin, 1973, 2001). The propensity score is the most popular distance

metric in matching (Rosenbaum and Rubin, 1983; Austin, 2007, 2008).

πi = P (Ti|Xi) (1.2)

Often πi is estimated with a logistic model. There are two key features of propensity scores:

(1) At each value of the propensity score, the distribution of observed covariates (that went

into the propensity score) is the same for the treated and control groups. (2) the treatment

assignment is independent of potential outcomes given the propensity score (no unmeasured

confounders). A detail description of matching methods are discussed in Chapter 3.

1.9 Organization of the Dissertation

So far we have portrayed the assumptions, Neyman-Rubin potential outcomes model and the

key concepts of the causal inference framework in a very general way. This framework allows

us to to consider dependency of response on both treatment and confounders. Chapter 2

discusses in detail the assumption of common support. We introduce a method to find a

common support and compare matching methods to estimate the treatment effect. In Chap-

ter 3, a new matching technique is proposed and performance is compared with conventional

matching methods and examines different aspects of the matching method—the runtime and

the complexity of the algorithm. Finally, we conclude in Chapter 4.
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Chapter 2

Finding Common Support Through

Largest Connected Components

2.1 Introduction

In this chapter, we discuss different departures from comparability between treated and

control groups. First, incomplete overlap, which occurs if there are regions in the space of

relevant pre-treatment covariates where there are treated units but no controls, or controls

but no treated units. Second, covariate imbalance, which occurs if the distributions of rele-

vant pre-treatment variables differ for the treatment and control groups. Often researchers

find a common support for an interpretable study population and then try to minimize the

covariate imbalance by matching (Fogarty et al., 2016).

In observational studies, inference on causal quantities of interest is cleanest if the distri-

bution of prognostically important pretreatment covariates is the same between treatment

and control groups. When these distributions differ, estimates of treatment effects may be

biased without some adjustment for these covariates. The success of methods to overcome

this bias—e.g. statistical matching or modeling—depends not only on successfully selecting

and observing the confounding covariates, but also depends on an assumption of covariate

overlap or common support.
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To ensure the common support for an interpretable study population we require overlap

of the covariate space. By covariate overlap we mean that, for every treated (control) unit

there is at least one matched control (treated) unit and all units forms an interpretable

cluster in terms of covariate space. Sometimes a lack of overlap arises from a covariate that

itself was used to assign units to treatment conditions. Sometimes it is prudent to abandon

causal inferences utterly if common support cannot be found for the study.

When common support is not satisfied, methods for adjusting for covariate imbalances

rely on extrapolation for estimating counterfactuals—the hypothetical outcomes for treated

units if they had received control and vice versa. This can lead to substantial bias in treat-

ment effects if counterfactual models do not account for important covariates or covariate

interactions, or if treatment heterogeneity is present in the study (Lin, 2013; Rosenbaum,

2005). At minimum, treatment effect estimates will be highly dependent on the model

used (King and Zeng, 2006; Ho et al., 2007).

To prevent these problems, it may be preferable to isolate analysis on a subset of data

in which common support holds. Creating this subset, however, presents its own problem—

interpretability of estimates on this subset. For example, when satisfying common support

requires the removal of treated units, matching estimators on the corresponding subset no

longer provide an estimate for the average treatment effect on the treated units (ATT). The

ability to interpret the new estimand is highly dependent on the method used to subset

the data. All current methods for finding regions of common support undergo trade-offs

between interpretability of the region, flexibility on the shape of the region, and feasibility

and performance when the number of observations and/or the number of prognostically

important covariates are large.

The idea of identifying the common support is not only limited to find an interpretable

study population but also to reduce imbalances in covariates between-groups. Covariate

balance can be achieved by dropping observations whose characteristics are dissimilar to

retained units according to a pre-defined metric. When treatment and control groups do

not have common support, the data are inherently limited in what they can tell us about

treatment effects in the regions of non-overlap. No amount of adjustment can create direct
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treatment/control comparisons, and one must either restrict inferences to the region of over-

lap, or rely on a model to extrapolate outside this region. Thus, lack of common support is a

more serious problem than imbalance (Gelman and Hill, 2007). Since both scenario includes

same statistical approach, we discuss the problems together here.

2.1.1 Review of Common Support

In the methodological literature, researchers have conducted substantial research on methods

to find common support. Dehejia and Wahba (1999) identify the study population removing

treated units whose propensity score are larger than the maximal propensity score among

the control units, and removing control units whose propensity score are smaller than the

minimal propensity score among the treated units. King and Zeng (2006) interpret the co-

variate overlap by means of the convex hull of the treated and control covariate distributions.

The idea is that interpolation is performed if a given treated (control) individual is in the

convex hull of the control (treated) covariate distributions, and extrapolation is performed

otherwise. Crump et al. (2009) identify the study population by finding the optimal subsam-

ples which minimizes the efficiency bound for the variance of the study population average

treatment effect. Rosenbaum (2012) finds an optimal subset of the sample where one chooses

the upper bound on the maximum number of treated units that can be removed from the

optimal matching. Zubizarreta et al. (2014) derive cardinality matching to create a largest

balanced subset. Fogarty et al. (2016) identify the study population through solving the

maximal box problem on important covariates. Many of these existing methods face com-

putational challenges in attaining balanced subsamples with large datasets. Other issues

include poor performance for high-dimensional data and interpreting the derived region of

common support.

We introduce the largest connected components (LCC) method for finding common sup-

port. This method aims to strike a balance between computational efficiency, estimation

efficiency, flexibility of permitted regions, and interpretability of the common support re-

gion. Given a distance metric that measures dissimilarity of units’ pretreatment covariates
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and a threshold ω, we form a region of common support consisting of large groups of units

where each unit has a match in its group within the ω threshold. Our method allows for

many different shapes regions of common support, including non-convex regions. Addition-

ally, it is efficient enough to work when the number of units and the number of covariates are

large. We also give a suggestion for a distance metric that may help improve interpretability

of the region.

2.2 Framework and Definitions

Consider an study with n units. All units are given either treatment or control: there

are n1 treated and n0 control units. Each unit i has K observable covariates, denoted

xi = (x1, x2, . . . , xK) ∈ RK . The treatment status for unit i is denoted using a treatment

indicator Ti: Ti = 1 if unit i is given treatment and Ti = 0 otherwise.

We assume the Neyman-Rubin potential outcomes model for response (Splawa-Neyman

et al., 1990; Holland, 1986; Rubin, 1973). Let yi1 and yi0 denote the potential outcomes

under treatment and control respectively—that is, yit is the hypothetical outcome of unit

i had that unit received treatment t ∈ {0, 1}. The treatment effect for unit i, denoted

τi ≡ yi1 − yi0, is unobservable as no unit receives both treatment and control. The observed

outcome, Yi, can be written as:

Yi = yi1Ti + yi0(1− Ti). (2.1)

In particular, we assume that randomness in response entirely depends on the treatment

assignment. Inherent in 2.1 is the stable unit treatment value assumption (SUTVA), i.e.,

that treatment status of a unit does not affect the response of any other unit.

The causal estimands of interest depends largely on the design of the study and the

research question asked. The average treatment effect (ATE: E[Yi1 − Yi0]) measures, on

average, the treatment effect across all units for the whole population. The average treatment

effect on the treated (ATT : E[Yi1− Yi0|T = 1]) is the average effect over the distribution of
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the treated units. The ATE is commonly the quantity of interest for experiments, while the

ATT is more frequently used for observational studies.

Unbiased estimation of the ATE requires the assumptions 1.3.1 and 1.3.1. The assump-

tions hold over all potential realizations (yi1, yi0, Ti,xi) in the population. The first assump-

tion, also known as selection on observables, asserts that conditional on the pre-treatment

variables, the treatment indicator is independent of the potential outcomes (Rosenbaum and

Rubin, 1983). Common support, also known as covariate overlap, ensures that the ATE is

well-defined. Together, unconfoundedness and overlap constitute a property known as strong

ignorability of assignment. When estimating the ATT, Assumption 1.3.1 can be restricted

to realizations in which Ti = 1 and 1.3.2 can be relaxed to 0 ≤ P (Ti = 1|xi) < 1.

Unbiased estimation of the ATE or ATT may not be possible if there are subsets of

the population that violate the common support assumption. Thus, it may be necessary

to identify a subpopulation that satisfies common support and to isolate analysis to that

subpopulation. This necessitates a change the quantity of interest to a conditional ATE

(CATE) or conditional ATT (CATT)—the ATE or ATT conditional on observations being

in the subpopulation (Hill and Su, 2013).

2.3 Largest Connected Components

We now develop our method of using largest connected components for finding common

support. We begin with a brief description of the graph theoretic framework used for our

method.

2.3.1 Graph Theoretic Framework

We view our data as a graph G = (V = (V1, V0), E) where V1 and V0 are sets of vertices and

E is a set of edges. Every treated unit corresponds to a vertex in V1 and every control unit

corresponds to a vertex in V0. For each pair of vertices i ∈ V1 and j ∈ V0, there is an edge

ij ∈ E, and no other edges exist in E—hence, G is bipartite with |V1| = n1 and |V0| = n0.

18



Each edge ij ∈ E has a corresponding weight wij ≥ 0, which is small if units i and j are

similar.

Definition 2.3.1. For a subgraph G′ = (V ′, E ′) ⊂ G, a connected component G∗ = (V ∗, E∗)

of G′ is a subgraph of G′ induced on V ∗ such that, for any two vertices i, j ∈ V ∗, there

exists a path of edges in E∗ that connect i and j—that is, there exists {v0, . . . , vm} ⊂ V ∗

such that {iv0, v0v1, . . . , vm−1vm, vmj} ⊂ E∗—and there is no path of edges that connects a

vertex i ∈ V ∗ to a vertex k ∈ V ′ \ V ∗.

Note that a vertex with no edges is a connected component. If G′ is connected, it has exactly

one connected component consisting of the whole graph.

For a connected component G∗ = (V ∗, E∗), the size of G∗, denoted size(G∗), depends on

the initial quantity of interest: For the ATT, size(G∗) = |V ∗ ∩ V1|, the number of treated

units in G∗, and for the ATE, size(G∗) = |V ∗|. In this way, when restricting inference to

units within the largest connected components, the difference between the new and initial

quantities of interest decreases (heuristically) as the sizes of these connected components

increase.

We find it useful to focus our attention to subgraphs in which edges are drawn between

vertices i and j if and only if the corresponding units are “similar enough.” This can be

formalized through the introduction of bottleneck subgraphs.

Definition 2.3.2. The bottleneck subgraph of G given threshold ω > 0, denoted BGω =

(V,BEω), is a subgraph on V where an edge ij ∈ BEω ⊂ E if an only if wij ≤ ω.

BGω ≡ {ij ∈ E : wij ≤ ω}. (2.2)

Observe that, since there are n1n2 edges in the original bipartite graph G, there can be at

most n1n2 unique bottleneck subgraphs.
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2.3.2 Connection to Common Support

As discussed before, a region of common support is a subset of the covariate space X ⊂ RK

where there is overlap of the treatment and control covariate distributions: for all x ∈ X ,

0 < P (Ti = 1|x) < 1. While it is impossible to deduce the exact distribution of treatment

and control covariates from a sample of data, a good heuristic may be to conclude that the

covariate vector xi is in a region of common support if unit i has an acceptable match—that

is, there is a unit j of opposite treatment status whose covariates xj are “close enough” to

xi with respect to a researcher-specified measure of dissimilarity (Ramsey et al., 2010). For

example, if i is a treated unit, wij is a dissimilarity measure computed between i and each

control unit j, and ω is the tolerable dissimilarity for an acceptable match, then xi is in a

region of common support if and only if there is a control unit j with wij ≤ ω.

It follows immediately that regions of common support can be visualized through bottle-

neck subgraphs. Consider the original complete bipartite graph G = (V,E) where the weight

wij of each edge ij ∈ E is the covariate dissimilarity between i and j. If unit i is connected

to an edge in the bottleneck subgraph BGω = (V,BEω)—or equivalently, if i belongs to

a non-trivial connected component in BGω—then the covariate vector xi is in a region of

common support.

In addition, while removal of units to form a region of common support may lead to a

change in the quantity of interest, it may be necessary in order to obtain accurate treatment

effect estimates and reduce model dependence. For example, in the presence of heteroge-

neous treatment effects, it may be difficult to obtain accurate and reliable estimates for small,

isolated clusters of data (Hastings et al., 2006). Hence, while a region of common support

may be obtained by considering all non-trivial connected components in BGω = (V,BEω),

we recommend forming a region of common support using only the largest connected com-

ponents. This also leads to a natural interpretation of the largest connected components

method for finding common support (LCC)—LCC selects the largest subset of units under

which common support can be reasonably inferred and interpolation to obtain counterfactual

estimates is possible.
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A further discussion about the relationship between common support regions and model

dependence and the accuracy of treatment effect estimates is found in Section 4.2. Recom-

mended tools to choose the number of connected components and the tolerable dissimilarity

threshold is found in Section 2.6.

2.3.3 Choice of Edge Weights

Commonly used measures of dissimilarity—and hence, common choices for edge weights—

include Euclidean and Mahalanobis distances between covariate vectors and absolute differ-

ences in propensity scores. While our method works for any choice of edge weights, it may

help interpretability to choose weights that satisfy the triangle inequality: for any three units

i, j, and k:

wij + wjk ≤ wik. (2.3)

Moreover, a researcher may have an a priori preference for the amount of dissimilarity

allowed on each covariate for a pair of units to be considered an acceptable match (e.g.: units

i and j are similar enough if their heights are within 3 inches, their weights are within 20

pounds, etc). In this case, a reasonable choice of edge weight may be:

w∞ij ≡ max
p∗

|x1p∗ − x0p∗ |
cp∗

, (2.4)

where cp∗ is the dissimilarity allowed for covariate p∗. Hence, control unit i is an acceptable

match for treated unit j if and only if w∞ij ≤ 1.

Remark 1. While w∞ij may be more intuitive for continuous-valued covariates, it may still

be useful for categorical variables. For example, exact matching of a covariate p with d

categories may be accommodated by constructing d−1 dummy variables xp1, xp2, . . . , xp(d−1)

and setting cp < 1. This ensures that w∞ij > 1 if i and j differ on p. Relaxations of exact

matching may also be accommodated through, for example, using a weighted difference of

several categorical variables (e.g. creating an index variable).
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2.4 The Largest Connected Components Algorithm

The LCC algorithm requires a dissimilarity measure and a dissimilarity tolerance ω. The

number of connected components comprising the common support region can be determined

through diagnostic checks discussed in Section 2.6. The steps of the algorithm is given below:

1. Consider all the units as vertices and choose a dissimilarity measure.

2. Find the acceptable matches: find all pairs of units with opposite treatment statuses

with dissimilarity less than ω.

3. Form a bottleneck subgraphs where edges join acceptable matches.

4. Find the set of connected components in the bottleneck subgraph.

5. Identify the largest connected components. Ensure that connected components have

sufficiently many treated and control units to reliably estimate counterfactuals.

6. Select all the units that are in largest connected components to obtain a region of

common support.

2.5 Graphical Presentation of LCC

2.5.1 LCC for a simple example

To demonstrate our algorithm, we construct a synthetic dataset and describe the six steps

of LCC algorithm to get the largest connected components (LCC) of the graph when our

estimand is the ATT. We generate data with two covariates to aid in the graphical presenta-

tion of LCC. First, in Figure 2.1a, we consider all treated and control units as vertices in a

graph. Second, in Figure 2.1b we consider a value of ω to get acceptable matches. Since our

estimand is ATT, acceptable matches are control units located within the highlighted circle

of a treated unit. Third, in Figure 2.1c, we construct all edges between treated units and

22



their acceptable control matches. Fourth, we obtain the connected components as described

in Section 2.3. There are two connected components in 2.1d. Figure 2.1e presents the largest

connected components in the graph—pruning all units that are not in the LCC. There are

300 units (150 treated and 150 control units) in the original sample. The LCC contains 203

units among them 99 treated and 104 control units. Finally, all units in the LCC describe

the study population under common support, presented in Figure 2.1f.
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Figure 2.1: Figure 2.1a: plot all the units as vertices. Figure 2.1b: find an acceptable match
for all treated units for a given dissimilarity measure. Figure 2.1c: connect all the units that
have acceptable matches. Figure 2.1d: find the largest connected components. Figure 2.1e:
prune all the units that are not in the largest connected components. Figure 2.1f: form the
study population under common support.

23



●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

● ●
●

●

●
●

●

●

●

●
● ●

●

●

●

●
●

● ●

●

●

●

●

●

●●

●

●
●

●

●●

●●

● ●

●

●

●

●
●

●

●
● ●

●
●

●

●●

● ●

●

●
● ● ●

●

●●

●

●

●

●

●

●

●

●

● ●
● ●

●

−2.5

0.0

2.5

−2.5 0.0 2.5
x1

x 2

(a)

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

● ●
●

●

●
●

●

●

●

●
● ●

●

●

●

●
●

● ●

●

●

●

●

●

●●

●

●
●

●

●●

●●

● ●

●

●

●

●
●

●

●
● ●

●
●

●

●●

● ●

●

●
● ● ●

●

●●

●

●

●

●

●

●

●

●

● ●
● ●

●

−2.5

0.0

2.5

−2.5 0.0 2.5
x1

x 2

(b)

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

● ●
●

●

●
●

●

●

●

●
● ●

●

●

●

●
●

● ●

●

●

●

●

●

●●

●

●
●

●

●●

●●

● ●

●

●

●

●
●

●

●
● ●

●
●

●

●●

● ●

●

●
● ● ●

●

●●

●

●

●

●

●

●

●

●

● ●
● ●

●

−2.5

0.0

2.5

−2.5 0.0 2.5
x1

x 2

(c)

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

● ●
●

●

●
●

●

●

●

●
● ●

●

●

●

●
●

● ●

●

●

●

●

●

●●

●

●
●

●

●●

●●

● ●

●

●

●

●
●

●

●
● ●

●
●

●

●●

● ●

●

●
● ● ●

●

●●

●

●

●

●

●

●

●

●

● ●
● ●

●

−2.5

0.0

2.5

−2.5 0.0 2.5
x1

x 2

(d)

●

●●

●

●
●

●

●●

●●

● ●

●

●

●

●
●

●

●
● ●

●
●

●

●●

● ●

●

●
● ● ●

●

●●

●

●

●

●

●

●

●

●

● ●
● ●

●

−2.5

0.0

2.5

−2.5 0.0 2.5
x1

x 2

(e)

●

●●

●

●
●

●

●●

●●

● ●

●

●

●

●
●

●

●
● ●

●
●

●

●●

● ●

●

●
● ● ●

●

●●

●

●

●

●

●

●

●

●

● ●
● ●

●

−2.5

0.0

2.5

−2.5 0.0 2.5
x1

x 2
(f)

Figure 2.2: Graph 2.2a: plots all the units as vertices. Graph 2.2b: finds an acceptable
match for all treated units for a given dissimilar measure. Graph 2.2c: connect all the units
that have acceptable matches. Graph 2.2d: finds the largest connected components. Graph
2.2e: prune all the units that are not in the largest connected components. Graph 2.2f:
forms the interpretable study population under common support.

2.5.2 LCC for Clustered Data

Often, the treated and control units are clustered and researchers are interested particularly

the treatment effect for a particular cluster and/or the combined treatment effect under

several clusters rather than just the largest connected components. Figure 2.2 represents

a pictorial description of such an example, where we choose two connected components for

the interpretable study population. Figure 2.2a–2.2f presents the LCC algorithm to find the

common support. There are 200 units (50 treated units and 150 control units). The two

connected components contain 25 treated units and 25 control units each.
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2.6 Choice of caliper and threshold

Some covariates are important for the analysis and researchers want to reduce the imbal-

ance on some covariates more than others. In that case, the choice of cp for the important

covariates needs to smaller (relatively) compared to the unimportant covariates. Important

variables may be considered as those that are most correlated with both treatment assign-

ment and outcome. The imbalance on important variables could cause substantial bias of

treatment effect estimates.

Ideally, the threshold ω should be determined through researcher knowledge. However, it

may be desirable to choose an optimal ω that minimizes covariate imbalance or the ensures

a subpopulation that is sufficiently large.

First, we consider the imbalance over a covariate space X for the common support. Let us

define Θ an L1 pseudometric on X which measures the covariate imbalance. Let g and f be

the empirical multivariate densities of treated and control units respectively. The objective

function to minimize can be written as:

Θ =
1

2

∫
· · ·
∫
X
|g(x1, . . . , xk)− f(x1, . . . , xk)|dx1 · · · dxk, (2.5)

where Θ = 1 if and only if two densities are equal and Θ = 0 if and only if two densities do

not overlap each other. Equation (2.5) measures the global imbalance under the common

support. One of the limitations of equation (2.5) includes no guarantee of an optimal solu-

tion. Note that, Θ is invariant to monotonic transformations of Xi and Xi′ i.e. for strictly

increasing monotonic function Θ computes the minimum of two densities by standard ap-

plication of the law of transformation. This is a big advantage of this measure compared

with L2 or other type metrics, as this is the only member of the Lp class that possesses this

property (Anderson et al., 2012).

Second, the representation of Θ can be an expectation:

Θ = E[min{1, lgi,gi′ (X)}] = E[min{1, lgi,gi′ (X)}],
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where lgi,gi′ = gi(x)/gi′(x). The choice of the parameter ω can be chosen to minimize the Θ.

Third, the representation of imbalance parameter can be expressed to minimize the im-

balance is to Kolmogorov-Smirnov (KS) statistic between the empirical distributions of the

treated units and controls:

Θ = sup
x∈X
|Fp(x)− Gp(x)|,

where Fp(·) and Gp(·) are the empirical cumulative distribution functions of the treated and

control units for covariate p. This approach ensures that every unit has a matched unit

based on the empirical distributions.

As ω → ∞, all the treated units are matched with all the control units (a complete

graph), and consequently the bias of the treatment effect will be high and the variance of

the estimate will be low. Again as ω → 0, all units are treated (control) units are matched

with the control units that have same covariate (an exact match), and consequently the bias

of the treatment effect will be low but the variance of the estimate will be high.

Proposition 1. When n → ∞ and w → 0, then gi(x) = gi′(x), a.s. where gi and gi′ are the

density function of treated and control units respectively.

Proof. When w → 0 then, ∃ at least one match of treated and control in the covariate space.

Again, when n→∞, Pr(xi = xi′) = 1. Hence gi(x) = gi′(x), a.s..

The choice of the parameter ω can also be selected based on the size of thee connected

components that a researcher might want to consider based on equation (3.1). For exam-

ple, a line graph of the connected component size against the ω parameter can be drawn.

Flattening of this line suggests a greater compromise between the researcher’s classification

of an acceptable match and the size of a connected component. We recommend choosing a

value of ω just before portions where this graph flattens.

Figure 2.3 shows that as the ω increases, the connected component size increases. Figure

2.3a and 2.3b represent the choice of the parameter ω for Figures 2.1 and 2.2, respectively.

In Figure 2.3a, we choose the value of ω when the connected component size is 99. In Figure

2.3b, we choose the value of ω when the connected component size is 25.
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Figure 2.3: Graph 2.3a: the largest connected components with w = 0.25. Graph 2.3b: the
largest connected components with w = 0.8.

2.7 Covariate Imbalance Reduction Under LCC

It is helpful when making causal inferences to make the treated and control units compa-

rable. To ensure the treated units are control units are comparable we plot the densities

of the covariate between treated and control units. If the densities are similar between two

groups then we say the two groups are comparable. Additionally, researchers can strive

for equality between the univariate covariate means/proportions to compare two groups. If

the standardized mean/proportion differences are significant we say the two groups are not

comparable and there exits covariate imbalance in the data.

The LCC reduces the covariate imbalance and helps to make the treated and control

group comparable. We plot the densities for two covariates for treated and control group

for the original sample and sample under LCC. A visual inspection shows that covariate

imbalance reduces drastically under common support.
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Figure 2.4: Graphs 2.4a and 2.4b give the densities of the covariates under the original
sample and 2.4c and 2.4d give the densities under LCC for the figure 2.1.
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Figure 2.5: Graphs 2.5a and 2.5b give the densities of the covariates under the original
sample and 2.5c and 2.5d give the densities under LCC for the figure 2.2.
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2.8 Simulation

2.8.1 The Setup

We focus on a simple setting where the units’ covariates are distributed on a plane.

x1, x2 ∼ U(−2, 2).

There are two treatment conditions t ∈ {0, 1}, which is assigned at random based on the

following propensity score:

P (Ti = 1|X) = 1− x21 + x22
8

.

The treatment assignment is generated from Bernoulli distribution with B(n, p). We con-

struct the treatment assignment in such a way so that the it will guarantee that individual

probabilities of the occurrence of the treatment assignment will lie within the unit interval.

So, in middle on the plane, i.e. x1 = 0 and x2 = 0, units have a high chance of receiving

treatment and units in the edge side has high chance of receiving control units. The proba-

bility function is chosen in such a way to have a lack of overlap between treated and control

units in the data.

We perform a series of Monte Carlo simulations to compare the performances of several

estimation methods coupled with different methods of fining common support. The methods

are: The correctly specified model; y = x21 + x22 + T + ε, a misspecified model; y = x1 +

x2 + T + ε, nearest neighbor matching with misspecified propensity score (NN), nearest

neighbor matching with correctly specified propensity score (NNCorr), full matching (FULL)

with misspecified propensity score, full matching with correctly specified propensity score

(FullCorr) and genetic matching.

We considered the simulation under four difference common support: without common

support (Without CS), largest connected components (LCC), maximum box with correctly

specified propensity score (Maxbox)and Convex hull. The simulations were run under two

settings for the sample size, n = 500 and n = 5000. We considerd a Monte-Carlo simulation

30



to 1000 and 250 simulated data to generate the 500 units and 5000 units, respectively. We

evaluated the performance of the common support methods using the following three criteria:

(i) bias in estimating treatment effects; (ii) standard deviation of the estimated treatment

effect and (iii) the mean squared error of estimated treatment effects.

2.8.2 Homogeneous Treatment Effect

The response model for homogeneous treatment effect was defined:

y = β1x
2
1 + β2x

2
2 + T + ε,

where ε was standard normal. The expected outcome reached its minimum at (0,0). The

true effect is 1.

Method Without CS LCC Maxbox Convex Hull
τ̂ SD MSE τ̂ SD MSE τ̂ SD MSE τ̂ SD MSE

LinCorr 1.001 0.106 0.011 1.005 0.105 0.011 1.039 0.149 0.023 0.983 0.123 0.015
LinearMis -0.605 0.251 2.640 -0.218 0.151 1.505 -0.363 0.134 0.423 -0.168 0.246 1.423
NN -0.587 0.072 2.522 -0.332 0.196 1.813 - - - 0.035 0.233 0.985
NNCorr 0.003 0.207 1.038 0.160 0.414 0.860 0.013 0.265 1.043 0.096 0.295 0.903
Full 0.044 0.370 1.049 0.120 0.220 0.818 - - - -0.016 0.245 1.091
FullCorr 0.069 0.295 0.945 0.484 0.062 0.270 0.047 0.363 1.039 0.019 0.312 1.058
Genetic 0.859 0.194 0.057 0.898 0.366 0.143 0.865 0.083 0.025 0.799 0.222 0.089

Table 2.1: Estimated treatment effect, standard deviation and mean squared error under
homogeneous treatment effect when n=500. On average, LCC selects 485 units, Maxbox
selects 345 units and Convex Hull selects 470 units.

Table 2.1 presents the result of estimated treatment effect when sample size is small.

The methods are performing well under these situations. We see that LCC performs much

better than any other methods. Genetic matching perform better than any other matching

methods under this simulation.

Table 2.2 presents the result when the sample size is large. In the result we see that LCC

performs well among common support methods and genetic matching performs well among

matching methods.
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Method Without CS LCC Maxbox Convex Hull
τ̂ SD MSE τ̂ SD MSE τ̂ SD MSE τ̂ SD MSE

LinCorr 1.000 0.034 0.001 0.999 0.033 0.001 1.003 0.062 0.004 0.995 0.033 0.001
LinearMis -0.598 0.079 2.561 -0.163 0.273 1.427 -0.137 0.256 1.358 -0.161 0.155 1.372
NN -0.370 0.225 1.927 0.189 0.781 1.208 - - - 0.381 0.858 1.046
NNCorr 0.001 0.058 1.002 0.516 0.192 0.271 0.005 0.092 0.998 0.849 0.103 0.016
Full 0.030 0.263 1.01 0.161 0.786 1.259 - - - 0.012 0.161 1.003
FullCorr 0.087 0.428 0.999 0.628 1.155 1.307 0.187 1.057 1.767 0.381 0.858 1.046
Genetic 0.773 0.109 0.064 0.988 0.113 0.013 0.891 0.095 0.021 0.877 0.100 0.025

Table 2.2: Estimated treatment effect, standard deviation and mean squared error under
homogeneous treatment effect when n=5000. On average, LCC selects 4900 units, Maxbox
selects 3600 units and Convex hull selects 4960 units.

2.8.3 Heterogeneity

The response model is given by

y = β1x
2
1 + β2x

2
2 + T + Tx1x2 + ε,

The true treatment effect is 0.977 and 1.18 for n = 500 and n = 5000 respectively.

Method Without CS LCC Maxbox Convex Hull
ATT = 0.892 ATT=.963 ATT=.976 0.974
τ̂ SD MSE τ̂ SD MSE τ̂ SD MSE τ̂ SD MSE

LinCorr 0.996 0.162 0.026 0.996 0.165 0.027 0.962 0.284 0.079 1.018 0.138 0.019
LinearMis -0.585 0.276 2.587 -0.385 0.26 1.987 0.273 0.409 0.689 -0.099 0.289 1.289
NN -0.555 0.246 2.477 -0.423 0.238 2.08 - - - 0.086 0.353 0.957
NNCorr 0.011 0.222 1.027 0.511 0.222 0.288 -0.004 1.21 2.423 0.909 0.182 0.041
Full 0.030 0.346 1.06 -0.003 0.285 1.086 - - - 0.057 0.343 1.005
FullCorr 0.054 0.342 1.011 -0.009 0.31 1.115 0.117 0.945 1.643 0.011 0.442 1.17
Genetic 0.799 0.236 0.096 0.844 0.208 0.155 0.857 0.316 0.099 0.853 0.249 0.083

Table 2.3: Estimated treatment effect, standard deviation and mean squared error under
heterogeneous treatment effect when n=500. On average, LCC selects 490 units, Maxbox
selects 351 units and Convex Hull selects 460 units.

Table 2.3 presents the result of estimated treatment effect when sample size is small under

heterogeneous model. The methods are performing well under these situations. We see that

LCC performs much better than any other methods. Genetic matching perform better than
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any other matching methods under this simulation.

Method Without CS LCC Maxbox Convex Hull
ATT = 0.973 ATT=1.032 ATT=1.053 ATT=1.137
τ̂ SD MSE τ̂ SD MSE τ̂ SD MSE τ̂ SD MSE

LinCorr 1.007 0.124 0.015 1.000 0.115 0.013 0.091 0.008 1.005 0.044 0.002
LinearMis -0.623 0.175 2.663 -0.388 0.178 1.957 0.400 0.140 0.379 -0.436 0.078 2.067
NN -0.543 0.221 2.431 -0.421 0.216 2.065 - - - -0.388 0.09 1.933
NNCorr -0.007 0.05 1.016 0.527 0.191 0.260 -0.004 0.124 1.022 0.689 0.064 0.101
Full -0.005 0.144 1.030 0.034 0.146 1.090 - - - 0.012 0.108 0.987
FullCorr -0.002 0.199 1.043 0.038 0.165 1.105 -0.041 0.384 1.225 0.638 0.384 0.263
Genetic 0.854 0.094 0.030 0.986 0.107 0.011 0.891 0.095 0.021 0.955 0.079 0.008

Table 2.4: Estimated treatment effect, standard deviation and mean squared error under
heterogeneous treatment effect when n=5000. On average, LCC selects 4850 units, Maxbox
selects 3680 units and Convex Hull 4900.

Table 2.4 presents the result when the sample size is large. In the result we see that LCC

performs well among common support methods and genetic matching performs well among

matching methods. Note, in these simulation the Maxbox is discarding more units compare

to LCC and Convex Hull. Again, Convex Hull is very computationally expensive. In large

data, it is hard to compute the Convex Hull. Compare to the performance with Convex Hull

and Maxbox, LCC is performing better in this simulation setup.
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2.9 SUPPORT Data

We analyses Right Heart Catheterization (RHC) data (Connors et al., 1996) to find the

largest connected components. RHC is a diagnostic procedure used for critically ill patients.

To measure effectiveness of RHC in an observational setting, using data from the Study to

Understand Prognoses and Preferences for Outcomes and Risks of Treatments (SUPPORT).

The SUPPORT study collected data on hospitalized adult patients at 5 medical centers in

the U.S.. It also includes a rich set of variables relating to the decision to perform the RHC

and the outcome. Connors et al. (1996) found that after adjusting for ignorable treatment

assignment conditional on a range of covariates, RHC appeared to lead to lower survival than

not performing RHC. This conclusion contradicted popular perception among practitioners

that RHC was beneficial.

We have data on 5735 individuals of whom 2184 were treated and 3551 were controls.

For each individual, we observe the treatment status, which equals to 1 if RHC was applied

within 24 hours of admission, and 0 otherwise. Clinical outcome is an indicator for survival at

30 days. Support data shows that there are 68% of the RHC patients have clinical outcome

compare to 63% of the No RHC patients. There are 50 covariates for covariate adjustment

based on scientific knowledge. Table B.1 shows the covariate imbalance in the SUPPORT

data.

Out of 50 covariates there are 32 covariates that have absolute standard differences are

more that 0.1. This presents a serious covariate imbalance between treated and control

groups.

SUPPORT Data Under LCC
No Yes Total No Yes Sum

No RHC 1315.00 2236.00 3551.00 1271.00 2100.00 3371.00
RHC 698.00 1486.00 2184.00 669.00 1419.00 2088.00
Total 2013.00 3722.00 5735.00 1940.00 3519.00 5459.00

Table 2.5: The number of units under RHC and NO RHC corresponding to the clinical
outcomes for orignial data and LCC data.

Table 2.5 shows we trim 276 units from the data that are far away from the rest of the
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Figure 2.6: Right Figure show the choice of the caliper and left Figure show that for given
caliper, CC size decreases drastically after the first connected component, suggesting one
CC in the common support

data. Thus, in the original data we have 5735 observation units whereas under common

support we have 5459 observation units.

2.10 Discussion

Our method for finding common support successfully reduces model dependency, reduces im-

balances between treatment and control groups and improves estimates of treatment effects.

Our algorithm successful forms an annulus, a shape that is not possible under many com-

mon support methods. Our method yields an interpretable region. The LCC is the largest

cluster of data that have comparable matches. Interpretability can be aided through the

dissimilarity measure ω∞ii′ . Creating the graph in Step 3 and finding connected components

in Step 4 can be done very efficiently (Higgins et al., 2016), leading to a low runtime of the

algorithm.

35



Chapter 3

The Performance of Largest Caliper

Matching: A Monte Carlo Simulation

Approach

3.1 Introduction

In this chapter, we consider six popular matching algorithms and their performance based on

the simulation result. We check the bias, empirical standard deviation and the mean square

error of the estimates in the simulation under different treatment prevalence and different

distributions of covariates. A Monte Carlo simulation study and a real data example are

employed to examine the performance of these methods. It is shown that matched samples

improve estimation of the population treatment effect in a wide range of settings. Also,

findings about the relative performance of the different matching methods are provided to

help practitioners determine which method should be used under certain situations.

Matching methods are popular to estimate the unbiased estimate of the treatment ef-

fect both in randomized and non-randomized experiments. In randomized experiment, re-

searchers use matching methods to form pair/block similar subjects and assign treatments.

In non-randomized experiment, researchers use pretreatment covariates to match the treated

36



subjects with control subjects and attempt to replicate a randomized experiment as if the

treatments were randomly assigned. When the covariate distributions of the treated and

control subjects are different—crude analysis could make a substantial bias. An appropri-

ate matching method should reduce bias due to covariates by reducing the observed and

unobserved covariate imbalances between treated and control groups.

There are plenty of matching methods that have been developed in literature that improve

the covariate balance iteratively by estimating a distance between treated units and potential

controls, finding the matches, and checking balance until a satisfactory level is achieved.

When there are large number of covariates—it is impossible to reduce the imbalance of all

covariates altogether. The goal can be achieved by propensity score matching of treated and

control groups that reduce bias due to the covariates (Rosenbaum and Rubin, 1983; Dehejia

and Wahba, 1999). Recently propensity score matching has been criticized as a matching

method that can increase imbalance if the propensity score model is misspecified (Diamond

and Sekhon, 2012; King and Nielsen, Working Paper). Another common approach that

can reduce the imbalance between treated and control groups is Euclidean/Mahalanobis

distance matching. One limitation of such distance metric is that if there is an extreme

outlier in one covariate for a unit—the estimated variance for that covariate will be high, and

Euclidean/Mahalanobis distance ignore the differences in that covariate. Gu and Rosenbaum

(1993) reported that if a binary covariate that takes values 1 and 0 with probabilities p and

1 − p; whenever p → 0, Mahalanobis distance tries to match a rare treated unit with

this covariate equal to 1. Once the matched sample is selected through distance metric,

very simple methods can be used to analyze the outcomes, and typical analysis of matched

samples do not require the parametric assumptions of most regression methods (Rosenbaum

and Rubin, 1985).

The quantity of interest for the outcome analysis depends on the researcher’s objectives—

for continuous response the most common estimand is average treatment effect (ATE) or

average treatment effect on the treated (ATT) and odds ratio for the binary outcomes.

Note that, if a matching method that discards both treated and control units to find a

fine balance—do not result ATE or ATT. In this article, we focus on ATT to compare

37



the performance of the estimation of largest caliper matching compare with other matching

methods.

Section 3.3 describes matching methods that have been considered in this article. Sec-

tion 3.4 describes a series of Monte Carlo simulations to examine the performance of these

methods in estimating treatment effects. Particularly, we report on bias, standard deviation

and mean square error (MSE) of the estimates. Section 3.5 presents analysis of the right

heart catheterization data. Finally, in Section 3.6, we summarize our findings.

3.2 Motivation

A common quantity of interest in observational studies is the average treatment effect on the

treated (ATT)—the average difference for each treated unit between their observed response

and their hypothetical response given the control condition. Estimation of the ATT is

complicated by confounding—the presence of covariates that jointly affect treatment status

and response.

Matching estimators are one proposed solution to deal with confounding (Abadie and

Imbens, 2002). To estimate the ATT through matching, units are first assigned to groups

with similar values on confounding covariates (or functions of covariates, e.g., propensity

scores) so that each group with at least one treated unit also has at least one control unit

(Rosenbaum and Rubin, 1983; Rubin, 2001; Austin, 2007). Each treated unit is assigned

to exactly one group, but control units may belong to several groups, or no groups at all—

control units that belong to a group are called matches. This grouping should, intuitively,

ensure approximately identical multivariate distributions on confounders between treated

and matched control groups. Then, an estimate of ATT is obtained by computing a weighted

average of within-group differences. For example, one-to-one matching (a frequently used

matching technique) finds, for each treated unit, an acceptable control match and obtains

an estimate of the ATT by taking the average of the differences between the treatment and

matched control responses. To check that matching “worked” for a sample of units, it is

common to verify that univariate imbalance on confounders is small between treated and
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matched control groups (Stuart, 2010). In fact, univariate balance is often in the objective

of matching methods (Diamond and Sekhon, 2012; Zubizarreta, 2012).

Asymptotically unbiased estimation of the ATT requires two assumptions: selection on

observables and common support. Jointly, these assumptions are referred to as strong ignor-

ability. Selection on observables requires that all confounding variables are observable and

included in the matching procedure. Common support states that, for all treated units with

confounding covariates x, there must be a non-zero probability of observing a control unit

with covariates x. Finite samples have an additional layer of complexity: treated units may

have observed covariate values that lie in the theoretic common support but may not have

exact matches with a control unit. Hence, to be successful in practice, matching algorithms

must also must incorporate some method for determining dissimilarity between two vectors

of confounders.

Most matching methods act on the problems of selection on observables and dissimilar-

ity between confounding vectors, leaving finding a region of common support to another

method. However, recent methods have been developed to help satisfy both assumptions

of strong ignorability and measuring covariate dissimilarity simultaneously. These methods

often involve the formation of large subsets of data (with respect to the quantity of interest)

for which univariate balance is possible on each covariate (Imai and Ratkovic, 2014). Of

particular note is cardinality matching—which constructs a subset of data with as many

treated units as possible while still ensuring univariate balance between treated and control

units across the entire subset (Zubizarreta et al., 2014).

Cardinality matching can be an effective method for improving ATT estimation. How-

ever, the method comes with a substantial computational cost: exact cardinality matching

is an NP–hard problem. Hence, when dealing with large datasets, it may be necessary to

focus on efficient heuristic or approximate solutions to cardinality matching. We present one

such heuristic solution: largest caliper matching (LCM).
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3.3 Methods

Several studies have been conducted to compare the matching methods. Elze et al. (2017)

compared four propensity score matching methods to covariate adjustment on four cardiovas-

cular observational studies. Austin (2014) compared 12 matching methods for 1:1 matching

on the propensity score. Ming and Rosenbaum (2000) observed that substantially greater

bias reduction is possible if the number of controls in match to each treated unit is not fixed.

Gu and Rosenbaum (1993) compared optimal matching with nearest neighbor matching

based on Mahalanobis distance. In this article we consider six different matching methods:

nearest neighbor matching with replacement (NNWR), nearest neighbor matching without

replacement (NNWOR), optimal matching (OPT), full matching (FL), genetic matching

(GM) and largest caliper matching (LC). The choice of selecting a matched sample differs

in the methods and each serves to achieve a specific objective.

3.3.1 Nearest Neighbor Matching With Replacement

NNWR matching matches all treated subjects to their nearest control subjects based on a

distance metric. In this method, each treatment subject can be matched to the closest control

subject, even if that control subject is matched more than once. Because this approach can

provide closer matches on the distance than nearest-available matching without replacement,

it can be beneficial for reducing bias in the analysis. In our analysis, we used Mahalanobis

distance metric to find the nearest control for the treated subjects. An illustration of the

method is shown in Figure 3.1a.

3.3.2 Nearest Neighbor Matching Without Replacement

NNWOR requires that each match contains exactly one treated subject and exactly one

control subject also known as 1:1 match. Once a control subject is matched with a nearest

treated subject that control subject is no longer eligible for consideration as a match for

other treated subjects. That is why, NNWOR is also known as “greedy” matching. Matching
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without replacement can be beneficial when there are enough good matches. Mahalanobis

distance metric is used in the analysis to find nearest control for the treated subjects. The

method is illustrated in Figure 3.1b.

3.3.3 Optimal Matching without Replacement

The optimal matching method seek to match subjects to minimize a global discrepancy

measure, like the sum of distances within matched sets (Rosenbaum, 1989). Greevy (2004)

develops the idea to improve matching methods with the goal of optimizing the overall

similarity of matched subjects. Most often, optimal matching refers to matching without

replacement, as optimal matching with replacement is equivalent to NNWR matching. In

our analysis, exactly one treated subject is matched with exactly one control subject so that

we minimize the sum of the Mahalanobis distances. Figure 3.1c illustrates the method.

3.3.4 Full Matching

Full matching considers that there exist at least one matched control (treated) subject for

every treated (control) subject. Again, the treated (control) subjects are not matched with

the matched control (treated) subjects. One can choose 1 : k or k : 1 matching in full

matching. The flexibility of this matching method can result in using more of the data at

hand and yield more effective comparisons (in terms of effective sample size) and closest-

possible matches on any given distance (Hansen, 2004). In our analysis, we considered 1:3

matching in full matching with calipers of width equal to 0.2 of the standard deviation of the

logit of the propensity score. The choice of the ratio was based initial performance before we

conduct the whole simulation. Figure 3.1d illustrates how the subjects would be matched

using the method.

3.3.5 Genetic Matching

Diamond and Sekhon (2012) proposed genetic matching that automates the iterative process

of checking and improving overall covariate balance to determine the given covariates’ weight
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and ensures convergence to the optimal matched sample. They proposed a distance metric

for the method that minimize the overall imbalance by minimizing the largest individual

discrepancy based on p-values from paired t-tests. Figure 3.1e present the sample that

would be matched using the method.
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Figure 3.1: Illustration of different matching methods. The sample consists of 50 subjects,
both treated and control groups have 25 subjects each. We observe two covariates x1 and x2,
for each subject. The red triangles indicate treated subjects and green circles indicate control
subjects. Edges (based on Mahalanobis distance) indicate matched groups. A good matching
method should avoid long edges, as they corresponds to increase covariate imbalance.

3.3.6 Largest Caliper Matching

We introduce a method that provides a data-driven approach to select the maximum amount

of imbalance that researchers want to accept for a match given a covariate, namely largest
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caliper matching. For largest caliper matching we consider the following distance metric:

w∞ij ≡ max
p∗

|x1p∗ − x0p∗ |
cp∗

, (3.1)

where cp∗ is the dissimilarity allowed for covariate p∗. Hence, control unit i is an acceptable

match for treated unit j if and only if w∞ij ≤ 1.

We note several importance of largest caliper matching: First, largest caliper matching

match based on the amount of imbalance that researchers want to accept for a covariate.

For example, w∞ij = 0 means exact match based on pth covariate that researchers want to

use for matching. Again, w∞ij = ∞ means match on pth covariate is negligible. Often it is

not possible to reduce the imbalance for every covariates altogether, equation (3.1) might

not be optimal by random choice of the cp∗ . We recommend to choose the cp∗ based on the

important covariates that are related to the treatment assignment and study outcome. For

large data set one can consider cp∗ as the caliper for the propensity score (Lunt, 2014). Austin

(2011) observed optimal calipers of width equal to 0.2 of the standard deviation of the logit

of the propensity score when estimating differences in means and differences in proportions

in observational studies. Second, largest caliper matching is a heuristic matching method—

for a given cp∗—the average run time of the method is faster than optimal matching. Third,

the choice could be based on the quantity of interest. For example, if the quantity of interest

is average treatment effect for the treated (ATT) (average treatment effect for the control

(ATC)), then we chose the cp∗ in such a way so that every treated (control) subject has

at least one matched control (treated) subject. Finally, largest caliper matching ensures to

discard the extreme subjects that can increase the substantial bias in the analysis (King and

Zeng, 2006).

3.4 Monte Carlo Simulations

The simulations performed in the current paper are simplistic matching simulations proposed

in the literature (Austin, 2014; Pirracchio et al., 2015). We conduct a number of Monte Carlo
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simulations to compare the performance of six matching methods on binary outcome. In

each simulated sample we compute an estimate τ̂ of the true parameter τ . We assessed the

performance of each method using the following three criteria:

• Bias in estimating treatment effects: τ̄ − τ where τ̄ =
∑N

l=1 τ̂ /N.

• Standard deviation of the estimated treatment effect:
√∑N

l=1(τ̂ − τ̄)2/(N − 1).

• Mean square error of estimated treatment effects:
√∑N

l=1(τ̂ − τ)2/N.

3.4.1 The Setup

We consideredX be a vector of 5 covariates that had effect both on the treatment assignment

and the outcome. The treatment assignment model was generated from a linear combination

of the covariates:

logit(πt) = β0,t + β1x1 + β2x2 + β3x3 + β4x4 + β5x5,

where β = (β1, β2, β3, β4, β5) = (log(1.25), log(1.5), log(1.75), log(2), log(2)). Thus, there

were one covariate that had a weak effect on each of treatment effect and outcomes, one

covariate had a moderate effect on each treatment assignment and outcomes, one covariate

that had a strong effect on each of treatment assignment and outcomes, and two covariates

that had a very strong effect on both treatment assignment and outcomes. The intercept

of the treatment assignment model (β0,t) was generated so that the proportion of subjects

in the simulated sample that were treated was fixed at a desired proportion. We assigned

treatment status (denoted by z) of subjects from a Bernoulli distribution with parameter πt.

The dichotomous outcome was generated using the following logistic model:

logit(πo) = β0,o + τz + β1x1 + β2x2 + β3x3 + β4x4 + β5x5.

We then generated a binary outcome for each subject from a Bernoulli distribution with

parameter πo. We selected the intercept, β0,o, in the logistic outcome model so that the
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incidence of the outcome would be approximately 0.10 if all subjects in the population were

control. In a given simulated data set, we simulated a binary outcome for each subject, under

the assumption that all subjects were not treated (z = 0). We then calculated the incidence

of the outcome in the simulated data set. A bisection approach is used to determine that

value of β0,o that would result in an incidence of 0.10.

We selected the conditional log odds ratio τ so that average odds in treated subjects

due to treatment would be approximately 0.5. The same value of τ was used to generate

a cohort of n = 5000 in a given scenario. Because we were simulating data with a desired

ATT, the value of τ would depend on the proportion of subjects that were treated. This

approach allows for variation in subject-specific treatment effects. The logistic model is used

to simulate data with an underlying average treatment effect in the treated because such an

approach will guarantee that individual probability of the occurrence of the outcome will lie

within [0,1].

In Monte Carlo simulations, we consider a complete factorial design in which the following

two factors were allowed to vary: (1) the distribution of the 5 pretreatment covariates;

(2) the proportion of subjects that received the treatment. We considered four different

distributions for the 5 pretreatment covariates: (i) the 5 covariates had independent standard

normal distributions; (ii) the 5 covariates were from a multivariate normal distribution. Each

variable had mean zero and unit variance, and the pair-wise correlation between variables

was 0.25; (iii) the first two variables were independent Bernoulli random variables each with

parameter 0.5, whereas the other three variables were independent standard normal random

variables; (iv) the 5 random variables were independent Bernoulli random variables, each

with parameter 0.5. For the second factor, we considered six different levels for the proportion

of subjects that were treated: 0.1, 0.15, 0.2, 0.25, 0.3 and 0.35. Hence, there are 24 different

scenarios of the study: four different distributions for the pretreatment covariates times six

levels of the proportion of subjects that were treated.

In each of the 24 scenarios, we simulated N = 1000 datasets, each consisting of n = 5000

subjects. There were two reasons to use simulated datasets of size 5000. First, matching

methods can be computationally intensive for large data. We considered a moderate size
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of the data that are available in real life, e.g. SUPPORT data. Second, researchers in

different field usually have different size of the data—we observed in most cases these methods

have been used in datasets of size around 5000. From the setup, we know the important

covariates (i.e. x4 and x5) when matching and a good matching method should have more

weight on these covariates. Though in real life it is unknown that which variables are

important for treatment and outcome but in practice—researchers use the existing literature

or subject-matter knowledge and expertise to identify important variables that affect the

treatment assignment or outcome. In each matched sample, we estimated the log odds ratio

as the treatment effect. As the matched sample removes the effect of confounding due to

pretreatment covariates—it was expected the estimates were unbiased.

In SUPPORT data, we check the covariate imbalance by standardized difference. For

continuous variables, the standardized difference is defined as d = (x̄t − x̄c)/
√

(s2t + s2c)/2,

where x̄t and x̄c denote the sample mean of the covariate in treated and control subjects,

respectively, whereas s2t and s2c denote the sample variance of the covariate in treated and

control subjects, respectively. For dichotomous variables, the standardized differences are

defined as d = (p̂t− p̂c)/
√

(p̂t(1− p̂t) + p̂c(1− p̂tc))/2, where p̂t and p̂c denote the prevalence

or mean of the dichotomous variable in treated and control subjects, respectively.

3.4.2 Results

In Figure 3.2 we report the log odds ratio, standard deviation and mean square error of the

log odds ratio when the pretreatment covariates were independently normally distributed.

Figure 3.2a shows the bias of the methods under different treatment prevalence. A horizontal

line has been added to each panel denoting the magnitude of the true log odds ratio 0.5.

Figure 3.2b and 3.2c show the standard deviation and mean square error of the estimated log

odds ratio, respectively. In general, as the prevalence of treatment increased the precision of

the estimates increased for all matching methods. Optimal matching and nearest neighbor

matching with/without replacement tended to have similar performance under independently

normally distributed covariates. Amongst all methods, 1:3 full matching with caliper show
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the less standard deviation and mean square error of the estimated log odds. Largest caliper

matching is the second choice in this scenario. Note that when the treatment prevalence

is small, e.g. 10%, 1:1 nearest neighbor with/without replacement or optimal matching

discards at least 80% of the subjects from the data.
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Figure 3.2: Treatment effect: log odds ratio, standard deviation of estimated log odds ratio
and mean squared error of log odds ratio under independent normally distributed covariates.

Figure 3.3 presents log odds ratio, standard deviation and mean square error of log

odds ratio when the pretreatment covariates were multivariate normally distributed. The

estimated treatment effect is reported in Figure 3.3a. We see that nearest neighbor match-

ing with replacement performs better than nearest neighbor matching without replacement.

Largest caliper matching performed well through different treatment prevalence. The stan-

dard deviation and mean square error of the estimated log odds ratio are reported in Figure

3.3b and 3.3c, respectively. Optimal matching and full matching showed less standard devi-

ation and less mean square error in this case. The standard deviation was high for nearest

neighbor matching with replacement when the treatment prevalence is low. Genetic match-

ing performed better than any other methods when covariates were multivariate normally

distributed.

In Figure 3.4 we report the log odds ratio, standard deviation and mean square error of the

log odds ratio when the pretreatment covariates were both normally and binary distributed.

Figure 3.4a shows the bias of the methods under different treatment prevalence. Largest

caliper matching was performing consistent over different prevalence of treatment. Figure

3.4b and 3.4c show the standard deviation and mean square error of the log odds ratio,
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Figure 3.3: Treatment effect: log odds ratio, standard deviation of estimated log odds ratio
and mean squared error of log odds ratio under multivariate normally distributed covariates.

respectively. Optimal matching and nearest neighbor matching with replacement had low

precision in presence of low treatment prevalence. Both 1:3 full matching with calipers and

largest caliper matching performed better than other matching methods.
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Figure 3.4: Treatment effect: log odds ratio, standard deviation of estimated log odds ra-
tio and mean squared error of log odds ratio under both normally distributed and binary
distributed covariates.

In Figure 3.5 we report the log odds ratio, standard deviation and mean square error

of the log odds ratio when pretreatment covariates were independently binary distributed.

Figure 3.5a shows the bias of the methods under different treatment prevalence. Both genetic

matching and 1:3 full matching performed better than other methods in presence of low

treatment prevalence. Figure 3.5b and 3.5c show the standard deviation and mean square

error of the estimated log odds ratio, respectively.
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Figure 3.5: Treatment effect: log odds ratio, standard deviation of estimated log odds ratio
and mean squared error of log odds ratio under binary distributed covariates.

3.5 Case Study

We analyzed Right Heart Catheterization (RHC) study to investigate whether RHC led to

increase odds of severe clinical outcomes, previously analyzed by several authors (Connors

et al., 1996; Imbens, 2001). We applied six matching methods on the effectiveness of RHC

using data from the Study to Understand Prognoses and Preferences for Outcomes and Risks

of Treatments (SUPPORT). The RHC study collected on hospitalized adult patients at 5

medical centers in the U.S. Based on information from a panel of experts a rich set of variables

relating to the decision to perform the RHC and outcome. Connors et al. (1996) found that

after adjusting for ignorable treatment assignment conditional on a range of covariates, RHC

appeared to lead to increase clinical death. This conclusion contradicted popular perception

that RHC patients had less risk of clinical outcome. A detailed description of the study can

be found in Connors et al. (1996) and Imbens (2001).

We had data on 5735 subjects, 2184 treated patients and 3551 control patients. For each

subject we observed treatment status, equal to 1 if RHC was applied within 24 hours of

admission, and 0 otherwise. Clinical outcome was an indicator for death within 30 days.

There were 68% of the RHC patients that had clinical outcome compared to 63% of the No

RHC patients. We considered 50 covariates for covariate matching based on the covariates

that are associated with the both RHC and clinical outcome.

In unmatched data, out of 50 covariates there were 32 covariates that had absolute
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Figure 3.6: Covariate imbalance between treated/control subjects. The dotplot (a Love plot)
shows the absolute standardized differences for unmatched and six matched samples.

standardized differences were more than 0.1. NNWR and NNWOR had 34 and 31 covariates

that had absolute standardized differences more than 0.1. OPT performed better than

nearest neighbor matching in terms of reducing covariate imbalance. LC successfully reduced

all the covariate imbalances in the data and the result were consistent with other matching

methods. Figure 3.6 reports the standardized difference for each of the 50 covariates in the

matched and unmatched data.
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We analyzed the unmatched data and the matched samples obtained from six matching

methods. Table 3.1 shows the outcome analysis of the SUPPORT data. The second column

presents the odds ratios of the analyses. We report that RHC was significant at 5% level of

significance under all matching methods.

Method OR 2.5% 97.5%
Unmatched 1.252 1.119 1.402
NNWR 1.267 1.074 1.492
NNWOR 1.215 1.068 1.383
OPT 1.544 1.364 1.747
FULL 1.167 1.023 1.333
GM 1.243 1.097 1.409
LC 1.276 1.121 1.452

Table 3.1: Odds ratio of RHC group compare to No RHC group with 95% confidence interval.

3.6 Conclusion

The article discusses a new matching technique and compare the relative performance of the

method with current existing methods under different Monte Carlo simulations setup. In

this section, we briefly discuss our simulation results.

In general, we observed several important facts that researchers need to consider in em-

ploying these matching methods. First, as the prevalence of the treated subjects increased

from 10% to 35% in data, all methods tend to estimate unbiased estimate in the data and

both standard deviation and mean square error of the estimates started to decrease. Second,

full matching (in our case 1:3 with caliper) imposed more subjects than other methods—

tended to result more precise estimates compared with the other matching methods. Note

that full matching would perform better to reduce the covariate bias in the outcome analy-

sis but could worsen covariate imbalance. Third, the choice between nearest neighbor with

replacement and nearest neighbor matching without replacement reflected a bias-variance

trade-off. In general, the nearest neighbor with replacement had lowest bias but higher

variance compares to nearest neighbor without replacement. Some authors demonstrated

this fact—matching with replacement produces matches of higher quality than matching
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without replacement by increasing the set of possible matches but have greater variability

(Abadie and Imbens, 2006). Fourth, when covariates have multivariate normally distributed

covariates—Genetic matching tended to have a performance that was at least as good as any

of the competing methods. Fifth Sixth, we used Mahalanobis distance metric for nearest

neighbor with replacement, nearest neighbor without replacement, optimal matching and full

matching. In simulation, we observed that for small number of covariates (in our case we

considered five covariates) Mahalanobis distance metric performs much better than propen-

sity score matching. Finally, our conclusions might be restricted to our simulation scenarios

and might not apply to situations not represented by our simulated data.

The quantity of interest always depends on the researchers objectives—that need to setup

before analysis. If the number of control subjects are insufficient then nearest neighbor

without replacement can result in exclusion of some treated subjects from the matched

sample. Rosenbaum and Rubin (1985) used the term ‘bias due to incomplete matching’ to

describe the bias that arises when treated subjects are excluded from the matched sample.

In many real application, it is could be beneficial to discard some treated subjects without

good match to obtain a good covariate balance. If a matching method discards treated

subjects—the quantity of interest is no longer ATT. Since, in our simulation we considered

the treatment prevalence maximum of 35%, our quantity of interest for all matching methods

was ATT.

Our findings show that largest caliper matching performd fair under difference setup. In

presence of large number covariates we recommend to use all the covariates that are im-

portant for both treatment assignment and outcome. Unnecessary inclusion of covariates in

the matching methods could reduce the performance of the methods (Stuart, 2010). Besides

employing caliper on covariates—adding calipers of width equal to 0.2 of the standard de-

viation of the logit of the propensity score for largest caliper matching in large data could

make better performance. In this article, the analyses was conducted as a post-stratified

sample—all the formed clusters were given weight to estimate ATT. In methodological lit-

erature, researchers have conducted substantial research on methods to estimate treatment

effects. Besides, computationally they are very convenient—there are several R packages
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available for matching methods, e.g. Matching, MatchIt and optmatch.

We like to note certain attentions for the users of largest caliper matching. First, in

largest caliper matching the analysis is sensitive to the choice of the caliper that could

make substantial difference in matched sample. One choice of the caliper could be, consider

only the important covariates that have higher standardized difference than a tolerance level.

Second, a tighter caliper leads to reduce bias and make good matches but could discard those

treated subjects that do not have good matches. Third, largest caliper matching ensures that

there is at least one match for all treated subjects when the quantity of interest is ATT.

Fourth, largest caliper matching is fast for a given amount of imbalance that researchers

want to accept for a covariate. For SUPPORT data set, our largest caliper matching took

2.7 seconds to to run on a desktop computer with 2.7 GHz Intel Core i7 processor and 16.0

GB RAM. Finally, largest caliper matching forms a good match sample that forms a cluster

of homogeneous subjects. It successfully discards the control subjects that could increase

the imbalance in the data. Combining these characteristics, largest caliper matching is a

very flexible and convenient matching method.
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Chapter 4

Conclusion

4.1 Introduction

The main goal of this dissertation was to assess and validate causal inference tools to estimate

the causal effect of a treatment. Finding the treatment effect in observational studies is

complicated by the need to control for confounders. Common practice for controlling include

using prognostically important covariates to form clusters of similar units containing both

treatment and control units. This formation of similar units tries to reduce the imbalance

due to treatment assignment. Under specific assumptions described in this dissertation the

causal effect of a treatment can be estimated efficiently. The dissertation proposes a series

of new, computationally efficient methods to improve the analysis of observational studies.

Treatment effects are only reliably estimated for a subpopulation under which a common

support assumption holds—one in which treatment and control covariate spaces overlap.

Given a distance metric measuring dissimilarity between units, graph theory is used to find

common support. An adjacency graph is constructed where edges are drawn between similar

treated and control units. Regions of common support are determined finding the largest

connected components (LCC) of this graph. LCC improves on existing methods by efficiently

constructing regions that preserve clustering in the data while ensuring interpretability of

the region through the distance metric.
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This approach is extended to propose a new matching method called largest caliper

matching (LCM). LCM is a version of cardinality matching—a type of matching used to

maximize the number of units in an observational study under a covariate balance con-

straint between treatment groups. While traditional cardinality matching is NP–hard, LCM

can be completed in polynomial time. The performance of LCM with other five popular

matching methods are shown through a series of Monte Carlo simulations. The performance

is measured by the bias, the empirical standard deviation, and the mean square error of the

estimates in the under different treatment prevalence and different distributions of covari-

ates. The formed matched samples improve estimation of the population treatment effect

in a wide range of settings, and suggest cases in which certain matching algorithms perform

better than others.

4.2 Implications

Finding treatment effects in observational studies is complicated by the need for appropriate

model–one that adjusts for all the important covariates and their interactions. Adjustment

can lead to worsened asymptotic precision if appropriate model is not considered (Lin, 2013).

The model dependency is reduce under common support, hence helps to choose researchers

flexible and interpretable model. We present the sensitivity of model dependency through

a simulation in Figure 4.1. This data set was designed to illustrate the problem of model

sensitivity and increased robustness of treatment effects under common support (Ho et al.,

2007). The figure shows that common support discards the outliers in the data to reduce

model dependency. Some units in data may be influential in terms of covariate but may not

be an outlier in regression model. A good data analysis should include the units that would

not change the parameter of interest under different choice of the regression model.

In Figure 4.1, each data point plotted as a “ ” for treated units and “ ” for control

units. We fit two regression models to this data. The first is a linear regression model: y =

β0+β1x1+β2x2+ε and the second is a quadratic model: y = β0+β1x1+β2x2+β3x
2
2+ε. The

fitted values of the linear regression and quadratic regression line are given by the dashed
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line and solid line respectively. The positive vertical distance between the two lines is this

parametric model’s treatment effect estimate.

In the raw data, some of the control units are far outside the range of the treated units,

and these outlying control units are influential in the parametric models. For the data under

common support, treated units are matched with control units that are close in weight

(yellow units are discarded), and as a resul,t treatment effect estimates are similar regardless

of model specification. The two linear and two quadratic lines also appear on the right graph

(on top of one another), truncated to the location of the matched data.

A key problem that generates this model dependence is the presence of control units far

outside the range of the treated units. The model estimation thus extrapolates over a range

of data that do not include treated and control units and so is particularly sensitive to the

set of control units that do not look similar to the treated units. These extrapolations make

treatment effect estimates extremely sensitive to a small change in the statistical model (King

and Zeng, 2007).

The immediate goal of finding common support ensure overlap, allowing matching meth-

ods to reduce imbalances between treatment and control pretreatment covariate distribu-

tions, without losing too many observations in the process. The result of this process, when

done appropriately, is considerable reduction in model dependence, reduced potential for

bias, smaller variance, and as a result, lower mean squared error.
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Figure 4.1: The Figures depict estimates of the treatment effect for a linear and quadratic
specification, represented by the difference between parallel lines and parabolas, respectively.
Red lines are fitted to the treated points and green to the controls. The solid lines are for
the quadratic equation and dashed lines are for linear equation.
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4.3 Future Research

In this dissertation, we focus on estimation of treatment with two categories. My future

research will address more specific questions regarding the treatment heterogeneity and mul-

tiple treatment effects.

4.3.1 Treatment Heterogeneity

Often, identifying heterogeneous treatments is necessary; because of the effort and cost

involved in some studies, investigators frequently use analyses of subgroups of study par-

ticipants to extract as much information as possible. Heterogeneity of treatment effects in

subgroups of patients may provide useful information for the care of patients and for future

research (Wang et al., 2007; Gabler et al., 2009). Finding the heterogeneous treatment ef-

fects could be tricky as the effects are different under different covariate spaces. A pictorial

description of treatment heterogeneity is presented in Figure 4.2. A simple linear model

is parsimonious but not efficient in finding a heterogeneous treatment effect. A subgroup

analysis may be appropriate in presence of heterogeneity.

In methodological research, several approaches have been proposed to analysis hetero-

geneity in the data. One common method is random forests—a learning algorithm that

operate by constructing a multitude of decision trees at training time and outputting the

class that is the treatment effect of the individual trees (Breiman, 2001; Athey and Imbens,

2016). I would like to investigate the use of case specific random forests (CSRF) for causal

inference (Xu et al., 2016). CSRF takes weighted bootstrap resamples to create individual

trees for each unit to be predicted—units close to the training subject are given more weight

when predicting the response of the test subject.

4.3.2 Multiple Treatments

A treatment that has more than two categories or is continuous or mixed can be complicated

in terms of estimating treatment effect (Imai and van Dyk, 2004; Lechner, 1999). Those with
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Figure 4.2: Heterogeneity is presented in the Figures where a subgroup has a positive treat-
ment effect whereas another subgroup has negative treatment effect. A simple linear model
is inefficient to determine the treatment effect. The figure presents an interaction between
treatment and the covariate.

more than treatment of interest can follow all the advice herein for one variable at a time,

which would involve matching separately for each and working hard to avoid posttreatment

bias in the process (Yu et al., 2013). In this dissertation, we stick to a single binary treatment

since it greatly simplifies the exposition and improves intuition even for those who will

ultimately use more sophisticated treatments.

59



Bibliography

W. Lin, Ann. Appl. Stat. 7, 295 (2013), URL http://dx.doi.org/10.1214/12-AOAS583.

P. Rosenbaum and D. Rubin, Biometrika 70, 41 (1983).

A. Diamond and J. S. Sekhon, Review of Economics and Statistics 95, 932 (2012).

E. Stuart, E. DuGoff, M. Abrams, D. Salkever, and D. Steinwachs, EGEMS. 3, 1038 (2013),

URL http://doi:10.13063/2327-9214.1038.

G. King and L. Zeng, Political Analysis 14, 131–159 (2006).

H. Beebee, C. Hitchcock, and P. Menzies, The Oxford Handbook of Causation, Oxford

Handbooks in Philosophy (OUP Oxford, 2009), ISBN 9780199279739, URL https:

//books.google.com/books?id=xGnZtUtG-nIC.
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Appendix A

Supplement

A.1 The Estimators and Their Variances

A.1.1 The Post-Stratified Estimator

The strata-level mean and variance of potential outcomes for treatment k are:

µj,k ≡
1

nj

nj∑
i=1

yijk, (A.1)

σ2
j,k ≡

1

nj

nj∑
i:i∈j

(yijk − µj,k)2

=

nj∑
i=1

y2ijk
nj
−
( nj∑
i=1

yijk
nj

)2
.

(A.2)

The strata-level covariance between treatment k and treatment k′ is given by:

γj,kk′ ≡
nj∑
i=1

yijkyijk′

nj
−
( nj∑
i=1

yijk
nj

)( nj∑
i=1

yijk′

nj

)
, (A.3)

and strata level correlation ρj,kk′ is:

ρj,kk′ ≡
γj,kk′

σ2
j,kσ

2
j,k′
.
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The range of ρj,kk′ lies between -1 to 1 i.e −1 ≤ ρ ≤ 1. The estimated correlation coefficient

can be written as:

ρ̂j,kk′ =
γ̂j,kk′

σ̂2
j,kσ̂

2
j,k′
. (A.4)

The strata defined by our algorithm have the stratum-specific sample average treatment

effect for two treatment k and k′ (SATEj,kk′):

τj,kk′ ≡
∑
i:i∈j

[yijk
nj
− yijk′

nj

]
.

A.1.2 The Overall Estimator

The domain-level mean and variance of potential outcome for treatment k are:

µk ≡
1

n

s∑
j=1

nj∑
i=1

yijk, (A.5)

σ2
k ≡

s∑
j=1

nj∑
i=1

(yijk − µk)
n

=
s∑
j=1

nj∑
i=1

y2ijk
n
−
( s∑
j=1

nj∑
i=1

yijk
n

)2
.

(A.6)

The domain level covariance between for treatment k and treatment k′ is:

γkk′ ≡
s∑
j=1

nj∑
i=1

(yijk − µk)(yijk′ − µk′)
n

=
s∑
j=1

nj∑
i=1

yijkyijk′

n
−
( s∑
j=1

nj∑
i=1

yijk
n

)( s∑
j=1

nj∑
i=1

yijk′

nj

)
.

(A.7)

We also refer to the correlation of potential outcomes ρ, where

ρ ≡ γkk′

σ2
kσ

2
k′
.
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A post-stratification adjusted estimate is is the sum of weighted treatment effect of the

strata, written as:

τkk′ ≡
s∑
j=1

nj
n
τj,kk′ .

A.1.3 The Estimate

The estimate of the mean and variance for treatment k in jth stratum is:

µ̂j,k =
∑
i:i∈j

yijkTijk
njk

, (A.8)

σ̂2
j,kk′ =

nj − 1

nj

∑
i:i∈j

Tijk
(
yijk −

∑
i:i∈j

yijkTijk
njk

)2
njk − 1

The simple-difference estimator of stratum-specific sample average treatment effect for two

treatment k and k′ (SATEj,kk′):

τ̂j,kk′ ≡
∑
i:i∈j

[yijkTijk
njk

− yijk′Tijk′

njk′

]
= ȳ·jk − ȳ·jk′ ,

where njk and njk′ denotes the number of units in jth stratum under kth treatment and

k′th treatment respectively. The estimator is undefined when njk = 0 or njk′ = 0, ∀j, i.e.

each stratum consists of at least one unit assigned to each treatment. The post-stratification

estimate can be obtained as a weighted average of the estimates of SATEj,kk′s:

τ̂kk′ =
s∑
j=1

wj τ̂j,kk′ ,

where wj = nj/n, the proportion of units assigned to treatment k and k′ in stratum j. These

estimators are shown to be unbiased.
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A.1.4 Unbiasedness

First we find

E
(Tijk
njk

)
= E

[
E
(Tijk
njk
|njk

)]
= E

( njk

nj

njk

)
= E

( 1

nj

)
=

1

nj
.

The strata-level estimators are unbiased:

E(τ̂j,kk′) = E
[∑
i:i∈j

(yijkTijk
njk

− yijk′Tijk′

njk′

)]
=
∑
i:i∈j

E
(yijkTijk

njk

)
−
∑
i:i∈j

E
(yijk′Tijk′

njk′

)
=
∑
i:i∈j

yijkE
(Tijk
njk

)
−
∑
i:i∈j

yijk′E
(Tijk′
njk′

)
=
∑
i:i∈j

yijk
1

nj
−
∑
i:i∈j

yijk′
1

nj

= τj,kk′ .

(A.9)

The post-stratification estimator τ̂kk′ is unbiased:

E(τ̂kk′) = E
(∑

j

nj
n
τ̂j,kk′

)
=
∑
j

nj
n
E(τ̂j,kk′)

=
∑
j

nj
n
τj,kk′

= τkk′ .

(A.10)

A.1.5 Variance

First we find the following expectations:

E
(T 2

ijk

n2
jk

)
= E

[
E
(Tijk
n2
jk

|njk
)]

= E
( njk

nj

n2
jk

)
=

1

nj
E
( 1

njk

)
, (A.11)
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(A.12)

E
(TijkTi′jk′
njknjk′

)
= E

[
E
(TijkTi′jk′
njknjk′

|njk, njk′
)]

= E
( njk

nj

njk′

nj−1

njknjk′

)
=

1

nj(nj − 1)
.

(A.13)

The variance of τ̂j,kk′ can be written as:

Var(τ̂j,kk′) = E(τ̂ 2j,kk′)− [E(τj,kk′)]
2

= E(τ̂ 2j,kk′)− τ 2j,kk′ .
(A.14)

The first part of (A.14) can be written as:

E(τ̂ 2j,kk′) = E
(∑
i:i∈j

yijkTijk
njk

)2
+ E

(∑
i:i∈j

yijk′Tijk′

njk′

)2 − 2 E
[(∑

i:i∈j

yijkTijk
njk

)(∑
i:i∈j

yijk′Tijk′

njk′

)]
.

(A.15)

70



Using (A.11) and (A.12), the first part in (A.15) can be written as:

E
(∑
i:i∈j

yijkTijk
njk

)2
= E

(∑
i:i∈j

y2ijkT
2
ijk

n2
jk

+
∑
i:i∈j

yijkyi′jkTijkTi′jk
n2
jk

)
=
∑
i:i∈j

y2ijkE
(Tijk
n2
jk

)
+
∑
i:i∈j

yijkyi′jkE
(TijkTi′jk

n2
jk

)
=
∑
i:i∈j

y2ijk
nj

E
( 1

njk

)
+
∑
i:i∈j

yijkyi′jk

[ 1

nj(nj − 1)
− 1

nj(nj − 1)

(
E

1

njk

)]
=
∑
i:i∈j

y2ijk
nj

E
( 1

njk

)
+
[
(
∑
i:i∈j

yijk)
2 −

∑
i:i∈j

y2ijk
][ 1

nj(nj − 1)
− 1

nj(nj − 1)

(
E

1

njk

)]
=

(
∑

i:i∈j yijk)
2

nj(nj − 1)
−
∑

i:i∈j y
2
ijk

nj(nj − 1)
+ E

( 1

njk

)[(∑
i:i∈j

y2ijk
nj

)
+

(
∑

i:i∈j yijk)
2

nj(nj − 1)
−
∑

i:i∈j y
2
ijk

nj(nj − 1)

]
=

(
∑

i:i∈j yijk)
2

nj(nj − 1)
−
∑

i:i∈j y
2
ijk

nj(nj − 1)
+ E

( 1

njk

)[∑
i:i∈j y

2
ijk

nj − 1
−

(
∑

i:i∈j yijk)
2

nj(nj − 1)

]
=

(
∑

i:i∈j yijk)
2

nj(nj − 1)
−
∑

i:i∈j y
2
ijk

nj(nj − 1)
+ E

( 1

njk

) nj
nj − 1

[∑
i:i∈j y

2
ijk

nj
−
(∑

i:i∈j yijk

nj

)2]
=

(
∑

i:i∈j yijk)
2

nj(nj − 1)
−
∑

i:i∈j y
2
ijk

nj(nj − 1)
+ E

( 1

njk

) nj
nj − 1

σ2
j,k.

(A.16)

The second part of (A.15) can be written as similarly as (A.16). Using (A.13), third part of

(A.15) can be written as:

E
[(∑

i:i∈j

yijkTijk
njk

)(∑
i:i∈j

yijk′Tijk′

njk′

)]
= E

(∑
i:i∈j

∑
i′:i′∈j
i′ 6=i

yijkyi′jk′TijkTi′jk′

njknjk′

)
+ E

(∑
i:i∈j

yijkyijk′TijkTijk′

njknjk′

)

=
∑
i:i∈j

∑
i′:i′∈j
i′ 6=i

yijkyi′jk′E
(TijkTi′jk′
njknjk′

)
+
∑
i:i∈j

yijkyijk′E
(TijkTijk′
njknjk′

)

=
∑
i:i∈j

∑
i′:i′∈j
i′ 6=i

yijkyi′jk′

nj(nj − 1)
,

(A.17)

since E
(
TijkTijk′

njknjk′

)
= 0.
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Now (A.15) can be written as:

E(τ̂ 2j,kk′) = E
(∑
i:i∈j

yijkTijk
njk

)2
+ E

(∑
i:i∈j

yijk′Tijk′

njk

)2 − 2 E
[(∑

i:i∈j

yijkTijk
njk

)(∑
i:i∈j

yijk′Tijk′

njk′

)]
=

(
∑

i:i∈j yijk)
2

nj(nj − 1)
−
∑

i:i∈j y
2
ijk

nj(nj − 1)
+ E

( 1

njk

) nj
nj − 1

σ2
j,k

+
(
∑

i:i∈j yijk′)
2

nj(nj − 1)
−
∑

i:i∈j y
2
ijk′

nj(nj − 1)
+ E

( 1

njk′

) nj
nj − 1

σ2
j,k′

− 2
∑
i:i∈j

yijkyi′jk′

nj(nj − 1)
,

(A.18)

The second part of (A.14) can be written as:

τ 2j,kk′ =
(∑
i:i∈j

yijk
nj

)2
+
(∑
i:i∈j

yijk′

nj

)2 − 2
(∑
i:i∈j

yijk
nj

)
(∑
i:i∈j

yijk′

nj

)
. (A.19)
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Putting equation (A.18) and (A.19) in (A.14) we have:

Var(τ̂j,kk′) = E(τ̂ 2j,kk′)− τ 2j,kk′

=
nj

nj − 1

(∑
i:i∈j

yijk
nj

)2
−
∑

i:i∈j y
2
ijk

nj(nj − 1)
+ E

( 1

njk

) nj
nj − 1

σ2
j,k

+
nj

nj − 1

(∑
i:i∈j

yijk′

nj

)2
−
∑

i:i∈j y
2
ijk′

nj(nj − 1)
+ E

( 1

njk′

) nj
nj − 1

σ2
j,k′

− 2
∑
i:i∈j

∑
i′:i′∈j
i′ 6=i

yijkyi′jk′
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−
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i:i∈j

yijk
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)2
−
(∑
i:i∈j

yijk′

nj

)2
+ 2

(∑
i:i∈j

yijk
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)(∑
i:i∈j

yijk′
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)

=
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nj − 1

[∑
i:i∈j y

2
ijk
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−
(∑
i:i∈j

yijk
nj

)2]
+ E

( 1

njk

) nj
nj − 1

σ2
j,k

+
−1

nj − 1

[∑
i:i∈j y

2
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nj
−
(∑
i:i∈j

yijk′

nj

)2]
+ E

( 1

njk′

) nj
nj − 1

σ2
j,k′

+ 2
[(∑

i:i∈j

yijk
nj

)
(∑
i:i∈j

yijk′

nj

)
−
∑
i:i∈j

∑
i′:i′∈j
i′ 6=i

yijkyi′jk′

nj(nj − 1)

]

= E
( 1

njk

) nj
nj − 1

σ2
j,k −

1

nj − 1
σ2
j,k + E

( 1

njk′

) nj
nj − 1

σ2
j,k′ −

1

nj − 1
σ2
j,k′

+ 2
[(∑

i:i∈j

yijk
nj

)
(∑
i:i∈j

yijk′
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)
−
∑
i:i∈j

∑
i′:i′∈j
i′ 6=i

yijkyi′jk′

nj(nj − 1)

]
.

(A.20)
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Now using (A.3), the last part of (A.20) can be written as:

(∑
i:i∈j

yijk
nj

)(∑
i:i∈j

yijk′

nj

)
−
∑
i:i∈j

∑
i′:i′∈j
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=
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)(∑
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)
−
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i:i∈j yijk
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−
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]
=
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1− nj
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)(∑
i:i∈j
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i:i∈j
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)
+

∑
i:i∈j yijkyijk′
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(∑
i:i∈j

yijk
nj

)(∑
i:i∈j

yijk′

nj

)
+

∑
i:i∈j yijkyijk′

nj(nj − 1)

=
1

nj − 1

[∑
i:i∈j yijkyijk′
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−
(∑
i:i∈j

yijk
nj

)(∑
i:i∈j

yijk′

nj

)]
=

γj,kk′

nj − 1
.

(A.21)

Finally we have:

Var(τ̂j,kk′) =
[
E
( nj
njk

) σ2
j,k

nj − 1
−

σ2
j,k

nj − 1

]
+
[
E
( nj
njk′

) σ2
j,k′

nj − 1
−

σ2
j,k′

nj − 1

]
+ 2

γj,kk′

nj − 1

=
1

nj − 1

[
E
(nj − njk

njk

)
σ2
j,k + E

(nj − njk′
njk′

)
σ2
j,k′ + 2 γj,kk′

]
.

(A.22)

A.1.6 Variance Estimation

First we find the following expectations:

E
( Tijk
njk − 1

)
= E

[
E
( Tijk
njk − 1

|njk
)]

= E
( njk

nj

njk − 1

)
=

1

nj
E
( njk
njk − 1

)
=

1

nj
E
(njk − 1 + 1

njk − 1

)
=

1

nj
+

1

nj
E
( 1

njk − 1

)
,

(A.23)
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E
[ Tijk
njk(njk − 1

)
]

= E
[
E
( Tijk
njk(njk − 1)

|njk
)]

= E
( njk

nj

njk(njk − 1)

)
=

1

nj
E
( 1

njk − 1

)
,

(A.24)

E
[ TijkTi′jk
njk(njk − 1

)
]

= E
[
E
( TijkTi′jk
njk(njk − 1)

|njk
)]

= E
( njk

nj

njk−1
nj−1

njk(njk − 1)

)
= E

( 1

nj(nj − 1)

)
=

1

nj(1− nj)
.

(A.25)

Now we show that E(σ̂2
j,k) = σ2

j,k.

First, note that:

∑
i:i∈j

Tijk

(
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i:i∈j

yijkTijk
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(A.26)
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Now,

E(σ̂2
j,k) = E

[nj − 1

nj

∑
i:i∈j

Tijk
(
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∑
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yijkTijk
njk
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((
∑
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2
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(A.27)

By (A.23):

∑
i:i∈j

y2ijkE
( Tijk
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)
=
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(A.28)

By (A.24) and (A.25), it follows that:
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(A.29)

76



Finally, by (A.28) and (A.29), it follows that:
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nj − 1

nj
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y2ijk
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)
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(A.30)

Thus the estimate of (A.22) can be written as:

V̂ar(τ̂j,kk′) =
1

nj − 1

[
E
(nj − njk

njk

)
σ̂2
j,k + E

(nj − njk′
njk′

)
σ̂2
j,k′ + 2 γ̂j,kk′

]
. (A.31)

The first and second terms in (A.31) is positive due to E
(
nj

njk

)
≥ 1. If there is no correlation

between the kth and k′th treatment, the last term becomes zero.

A.2 Bounds on the Variance

A.2.1 Conventional Bounds on the Variance

It has been known since Splawa-Neyman et al. (1990) that neither unbiased nor consistent

variance estimation is generally possible to estimate the variance of the treatment effect using

stratification, due to the fact that the joint distribution of the potential outcomes can never

be fully recovered from data. Also unbiased variance estimation is not generally possible
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when nj <∞.

We have the the estimator of Var(τ̂j,kk′) that uses Cauchy-Schwarz and the AM-GM

inequalities

γ̂j,kk′ ≤
√
σ̂2
j,kσ̂

2
j,k′ ≤

σ̂2
j,k + σ̂2

j,k′

2
. (A.32)

Using (A.32) in (A.31) the conventional upper bound of the estimate of the variance is:

V̂ar(τ̂j,kk′)
C =

1

nj − 1

[
E
( nj
njk
− 1
)
σ̂2
j,k + E

( nj
njk′
− 1
)
σ̂2
j,k′ + σ̂2

j,k + σ̂2
j,k′

]
=

1

nj − 1

[
E
( nj
njk

)
σ̂2
j,k + E

( nj
njk′

)
σ̂2
j,k′

]
.

(A.33)

Since E(σ̂2
j,k) = σ2

j,k and E(σ̂2
j,k′) = σ2

j,k′ , V̂ar(τ̂j,kk′)
C is conservative as its bias is nonnegative:

E
(
V̂ar(τ̂j,kk′)

C − Var(τ̂j,kk′)
)

=
1

nj − 1
[σ2

j,k + σ2
j,k′ − 2γj,kk′ ] ≥ 0.

Again by (A.4), the last part in (A.31) can be bound by −{σ̂2
j,kσ̂

2
j,k′}

1
2 ≤ γ̂j,kk′ ≤ {σ̂2

j,kσ̂
2
j,k′}

1
2 .

Thus we can estimate the bound of the variance of the treatment effect by

V̂ar(τ̂j,kk′)
N± =

1

nj − 1

[
E
(nj − njk

njk

)
σ̂2
j,k + E

(nj − njk′
njk′

)
σ̂2
j,k′ ± 2 {σ̂2

j,kσ̂
2
j,k′}

1
2

]
. (A.34)

The plus or minus sign is chosen depending on whether an upper or a lower bound estimate

is desired. Aronow et al. (2014) showed by simulation that V̂ar(τ̂j,kk′)
N± provides often

narrower than intervals produced by V̂ar(τ̂j,kk′)
C and it can be obtained much narrower

interval by sharp bounds on the variance.

A.2.2 Sharp Bounds on the Variance

Let us consider estimates for the marginal distribution of yk and yk′ exist and can be used

to obtain asymptotically sharp bounds on Var(τ̂j,kk′) given the information available. Let

Fk(y) = 1
nj

∑
i:i∈j I(yijk ≤ y) and Fk′(y) = 1

nj

∑
i:i∈j I(yijk′ ≤ y) be the marginal distribution

functions of yk and yk′ ,respectively. Define their left-continuous inverses as F−1k (u) = inf{y :
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Fk(y) ≥ u} and F−1k′ (u) = inf{y : Fk′(y) ≥ u}. We define

γS+j,kk′ =

∫
F−1k (u)F−1k′ (u)du− µj,kµj,k′ ,

γS−j,kk′ =

∫
F−1k (u)F−1k′ (1− u)du− µj,kµj,k′ .

(A.35)

Lemma A.2.1 (Hoeffding). Given only Fk and Fk′ and no other information on the joint

distribution of (yk, yk′), the bound

γS−j,kk′ ≤ γj,kk′ ≤ γS+j,kk′

is sharp. The upper bound is attained if yk and yk′ are comonotonic, i.e., (yk, yk′) ∼

{F−1k (U), F−1k′ (U)} for a uniform random variable U on [0, 1]. The lower bound is attained

if yk and yk′ are countermonotonic, i.e., (yk, yk′) ∼ {F−1k (U), F−1k′ (1− U)}.

Proof. Let H(yk, yk′) be the joint distribution function of (yk, yk′) and define two other

distributions HS+(yk, yk′) = min{Fk(y), Fk′(y)} and HS−(yk, yk′) = max{0, Fk(y) + Fk′(y)−

1}. All three distributions have the same marginals Fk and Fk′ . a result by Hoeffding shows

that

EHS−(ykyk′) ≤ EH(ykyk′) ≤ EHS+(ykyk′)

Since {F−1k (U), F−1k′ (U)} ∼ HS+ and {F−1k (U), F−1k′ (1 − U)} ∼ HS−, the lower and upper

bounds are equivalent to

EHS+(ykyk′) =

∫ 1

0

F−1k (u)F−1k′ (u)du,

EHS−(ykyk′) =

∫ 1

0

F−1k (u)F−1k′ (1− u)du.

The integrals exist because |F−1k (u)|, |F−1k′ (u)| ≤ max
nj

i=1 max(|yijk|, |yijk′|) <∞.
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Lemma A.2.1 implies that [γS+j,kk′ , γ
S−
j,kk′ ] is the sharpest interval bound for γkk′

Var(τj,kk′)
S+ =

1

nj − 1

[
E
(nj − njk

njk

)
σ2
j,k + E

(nj − njk′
njk′

)
σ2
j,k′ + 2 γS+j,kk′

]
,

Var(τj,kk′)
S− =

1

nj − 1

[
E
(nj − njk

njk

)
σ2
j,k + E

(nj − njk′
njk′

)
σ2
j,k′ + 2 γS−j,kk′

]
.

(A.36)

In practice, we observe neither Fk nor Fk′ , but rather their estimates F̂k(y) = 1
njk

∑nj

i=1 TijkI(yijk ≤

y), F̂k′(y) = 1
njk′

∑nj

i=1 Tijk′I(yijk′ ≤ y) and left-continuous inverses

F̂−1k (u) = inf{y : F̂k(y) ≥ u} = yk(dnjkue),

F̂−1k′ (u) = inf{y : F̂k′(y) ≥ u} = yk′(njk+dnjk′ue),

where yk(1) ≤ · · · ≤ yk(njk) and yk′(njk+1) ≤ · · · ≤ yk′(njk′+njk′ )
are the ordered observed

outcomes, and dxe denotes the smallest integer greater than or equal to x. Substituting

(F̂k, F̂k′) for (Fk, Fk′) in (A.35) yields an interval estimator [γ̂S−j,kk′ , γ̂
S+
j,kk′ ] for γj,kk′ :

γ̂S+j,kk′ =

∫
F̂−1k (u)F̂−1k′ (u)du− µ̂j,kµ̂j,k′ ,

γ̂S−j,kk′ =

∫
F̂−1k (u)F̂−1k′ (1− u)du− µ̂j,kµ̂j,k′ .

Let the [0, 1]-partition P = {p0, p1, . . . , pP} be the ordered distinct elements of {0, 1
njk
, 2
njk

. . . , 1}∪

{0, 1
njk′

, 2
njk′

, . . . , 1}. Let ykdie = yk(dnjkpie) and yk′die = yk′(njk+dnjk′pie). The inverses F̂−1k and

F̂−1k′ are piecewise constant since F̂−1k (u) = ykdie and F̂−1k′ (u) = yk′die for u ∈ (pi−1, pi]. In ad-

dition, the symmetry pi = 1−pP−i implies that pi−pi−1 = pP+1−i−pP−i. Thus [γ̂S−j,kk′ , γ̂
S+
j,kk′ ]

reduces to

γ̂S+j,kk′ =
P∑
i=1

(pi − pi−1)ykdieyk′die − µ̂j,kµ̂j,k′ ,

γ̂S−j,kk′ =
P∑
i=1

(pi − pi−1)ykdieyk′dP+1−ie − µ̂j,kµ̂j,k′ .

(A.37)

where µ̂j,k and µ̂j,k′ are as defined in (A.8).
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Substituting σ̂2
j,k, σ̂

2
j,k′ , and (A.37) for {σ2

j,k, σ
2
j,k′ , γj,kk′} in the expressions for γS−j,kk′ and

γS+j,kk′ , we obtain the interval estimator [γ̂S−j,kk′ , γ̂
S+
j,kk′ ] for γj,kk′ :

V̂ar(τ̂j,kk′)
S+ =

1

nj − 1

[
E
(nj − njk

njk

)
σ̂2
j,k + E

(nj − njk′
njk′

)
σ̂2
j,k′ + 2 γ̂S+j,kk′

]
,

V̂ar(τ̂j,kk′)
S− =

1

nj − 1

[
E
(nj − njk

njk

)
σ̂2
j,k + E

(nj − njk′
njk′

)
σ̂2
j,k′ + 2 γ̂S−j,kk′

]
.

(A.38)
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Appendix B

Supplement

B.1 Results of SUPPORT Data

Propensity score for raw dataPropensity score for raw data
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Figure B.1: Figure shows the histogram of the propensity score for the original SUPPORT
data
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Propensity score under common supportPropensity score under common support
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Figure B.2: Figure shows the histogram of the propensity score under largest connected
components
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B.2 Previous Results of SUPPORT Data

Crump et al. (2009) find the following result for the SUPPORT data. Table B.2 show that

there are 870 control subjects that have low propensity score compare to 40 treated subjects.

Again, there are 10 control subjects that have high propensity score compare to 87 treated

subjects. Clearly, the data present a lack of common support in terms of propensity score.



Table B.1: Covariate imbalance in SUPPORT data

No RHC RHC SMD
n 3551 2184

age (mean (sd)) 61.76 (17.29) 60.75 (15.63) 0.061
sex = Male (%) 1914 (53.9) 1278 (58.5) 0.093

race (%) 0.036
black 585 (16.5) 335 (15.3)
other 213 ( 6.0) 142 ( 6.5)
white 2753 (77.5) 1707 (78.2)

edu (mean (sd)) 11.57 (3.13) 11.86 (3.16) 0.091
income (%) 0.142

> $50k 257 ( 7.2) 194 ( 8.9)
$11-$25k 713 (20.1) 452 (20.7)
$25-$50k 500 (14.1) 393 (18.0)

Under $11k 2081 (58.6) 1145 (52.4)
ninsclas (%) 0.194

Medicaid 454 (12.8) 193 ( 8.8)
Medicare 947 (26.7) 511 (23.4)

Medicare & Medicaid 251 ( 7.1) 123 ( 5.6)
No insurance 186 ( 5.2) 136 ( 6.2)

Private 967 (27.2) 731 (33.5)
Private & Medicare 746 (21.0) 490 (22.4)

cat1 (%) 0.583
ARF 1581 (44.5) 909 (41.6)
CHF 247 ( 7.0) 209 ( 9.6)

Cirrhosis 175 ( 4.9) 49 ( 2.2)
Colon Cancer 6 ( 0.2) 1 ( 0.0)

Coma 341 ( 9.6) 95 ( 4.3)
COPD 399 (11.2) 58 ( 2.7)

Lung Cancer 34 ( 1.0) 5 ( 0.2)
MOSF w/Malignancy 241 ( 6.8) 158 ( 7.2)

MOSF w/Sepsis 527 (14.8) 700 (32.1)
das2d3pc (mean (sd)) 20.37 (5.48) 20.70 (5.03) 0.063

dnr1 = Yes (%) 499 (14.1) 155 ( 7.1) 0.228
ca (%) 0.107

Metastatic 261 ( 7.4) 123 ( 5.6)
No 2652 (74.7) 1727 (79.1)
Yes 638 (18.0) 334 (15.3)

surv2md1 (mean (sd)) 0.61 (0.19) 0.57 (0.20) 0.198
aps1 (mean (sd)) 50.93 (18.81) 60.74 (20.27) 0.501

scoma1 (mean (sd)) 22.25 (31.37) 18.97 (28.26) 0.110
wtkilo1 (mean (sd)) 65.04 (29.50) 72.36 (27.73) 0.256
temp1 (mean (sd)) 37.63 (1.74) 37.59 (1.83) 0.021

meanbp1 (mean (sd)) 84.87 (38.87) 68.20 (34.24) 0.455

85



resp1 (mean (sd)) 28.98 (13.95) 26.65 (14.17) 0.165
hrt1 (mean (sd)) 112.87 (40.94) 118.93 (41.47) 0.147

pafi1 (mean (sd)) 240.63 (116.66) 192.43 (105.54) 0.433
paco21 (mean (sd)) 39.95 (14.24) 36.79 (10.97) 0.249

ph1 (mean (sd)) 7.39 (0.11) 7.38 (0.11) 0.120
wblc1 (mean (sd)) 15.26 (11.41) 16.27 (12.55) 0.084

hema1 (mean (sd)) 32.70 (8.79) 30.51 (7.42) 0.269
sod1 (mean (sd)) 137.04 (7.68) 136.33 (7.60) 0.092
pot1 (mean (sd)) 4.08 (1.04) 4.05 (1.01) 0.027

crea1 (mean (sd)) 1.92 (2.03) 2.47 (2.05) 0.270
bili1 (mean (sd)) 2.00 (4.43) 2.71 (5.33) 0.145
alb1 (mean (sd)) 3.16 (0.67) 2.98 (0.93) 0.230

resp = Yes (%) 1481 (41.7) 632 (28.9) 0.270
card = Yes (%) 1007 (28.4) 924 (42.3) 0.295

neuro = Yes (%) 575 (16.2) 118 ( 5.4) 0.353
gastr = Yes (%) 522 (14.7) 420 (19.2) 0.121
renal = Yes (%) 147 ( 4.1) 148 ( 6.8) 0.116
meta = Yes (%) 172 ( 4.8) 93 ( 4.3) 0.028
hema = Yes (%) 239 ( 6.7) 115 ( 5.3) 0.062
seps = Yes (%) 515 (14.5) 516 (23.6) 0.234

trauma = Yes (%) 18 ( 0.5) 34 ( 1.6) 0.104
ortho = Yes (%) 3 ( 0.1) 4 ( 0.2) 0.027

cardiohx (mean (sd)) 0.16 (0.37) 0.20 (0.40) 0.116
chfhx (mean (sd)) 0.17 (0.37) 0.19 (0.40) 0.069

dementhx (mean (sd)) 0.12 (0.32) 0.07 (0.25) 0.163
psychhx (mean (sd)) 0.08 (0.27) 0.05 (0.21) 0.143

chrpulhx (mean (sd)) 0.22 (0.41) 0.14 (0.35) 0.192
renalhx (mean (sd)) 0.04 (0.20) 0.05 (0.21) 0.032
liverhx (mean (sd)) 0.07 (0.26) 0.06 (0.24) 0.049

gibledhx (mean (sd)) 0.04 (0.19) 0.02 (0.16) 0.070
malighx (mean (sd)) 0.25 (0.43) 0.20 (0.40) 0.101

immunhx (mean (sd)) 0.26 (0.44) 0.29 (0.45) 0.080
transhx (mean (sd)) 0.09 (0.29) 0.15 (0.36) 0.170

amihx (mean (sd)) 0.03 (0.17) 0.04 (0.20) 0.074

Table B.2: Results from previous study. Table presents the number of subjects that have
high and low propensity score for treated and control untis

ê(x) < 0.1 0.1 < ê(x) < 0.9 0.9 < ê(x) Total
Controls 870 2671 10 3551
Treated 40 2057 87 2184
All 910 4728 97 5735
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