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I. INTRODUCTION

Many recent studies have involved the behavior of fluids in the
presence of various internal and external flelds of forece., The earliest
of these investigations involved the equilibrium and stability of self-
gravitating fluid structures under the effects of rotation.
Chandrasekhgrl has extended these investlgations fo rotating fluid drops
under the influence of a constant surface tension. There also have been
similar studies of non-rotating dielectric fluid drops in uniform

slpetyle Tlelds by Taylor” and Résenkilie,?

In this paper we shall
draw from two of the previous investligations and consider the equilibrium
and stabllity of an isolated conducting fluid drop with constant surface
tension which is rotating in an uniform external electric field. This
paper clarifies and extends the investigation of equilibrium shapes
given by Habip, Siekmann, and Chang.u

The method of the tensor virial, which has been developed by

5 provides the basis for the ensuing investigation.

Chandrasekhar,
Spherical, spheroidal, and ellipsoldal shapes are shown to satisfy the
first twelve moments of the hydrodynamical equation of motion. A

linear, one parameter (the elongation) family of equilibrium curves for
spheroidal shapes 1s obtalned on a configuration plane. In this configur-
ation plane, the ordinale represents the square of the angular momentum
and the absclissa represents the electrostatic energy of possible
spheroidal equilibrium configurations. The stabllity of these equilibrium

shapes with respect to second-harmonic deformations is investligated by

using a normal-mode analysis based upon linearized perturbations of the
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~time-dependent moment equations. Stable spheroidal configuraiions are
shown to be restricted to a closed region in this configuration plane.
The anlysis of the normal mode closely resembles the one given by
Lebovitz6 for the classical Maclaurin spheroids and Jacobl ellipsoids.

The general moment equations are derived in Section II by making
an appropriate extension of the correspending derivation given by
Rosenkilde3 for a nonrotating dlelectric fluid drop., In Section III,
these moment equations are reduced to the form that describes a state of
statie equilibrium, as viewed from the rotating frame of reference in
which the surface ls at rest. The resulting equations are evaluated
and analyzed for ellipsoidal shapes by using expressions that are
summarized in Appendix B. Expressions given there for a conductor have
been obtained from those for a dielectric in the limit that the dielectric
permeablility approaches infinity. Section IV contains the general form
taken by the moment equations that desecribe small oscillations about an
equilibrium configuration. The resulting characteristic value problem
is analyzed in Sectlon V. Conditions for the onset of instability are
obtained by examining the nature of the characteristic frequencies of
oscillation. Numerical results and comparisons are presented in
Section VI. Appendix A contains a complete summary and discussion of
the varlous dimensional units and nondimensional parameters that are

used throughout the text.



II. MOMENT EQUATIONS

Consider an uniformly rotating dielectric fluid drop situated in
an uniform external electric field, with the axis of rotation along the
direction of the electric field at infinity. After transforming to a
coordinate frame rotating about the »; axis with a constant angular
speed §) , the hydrodynamical equation* describing the motion of an
arbitrary fluid element is

i 2 F of
pJJt_ui B ZPQQH U= ;;; ~ 3%, ‘l‘PQ[’Xz )3 /"J , (2.1)

where F) is the mass density of the fluld, U is fhe mean veloclty of
a fluld element, 7 is the hydrostatic pressure, and O, 1is an
appropriate stress tensor.

A set of moment equationslcan be constructed by multiplying the
above squation by /X; , and then formally integrating over the volume

containing the fluid drop., The result is

d ¥
j%ﬁﬂ? dr — ZQQH P%ﬁ%JT
V N 14
w ; d
= [0 2% dr — [ 32 or
j L (2.2)
v e v o,

+a f Koty =8, ] dr

¥The summatlon convention on repeated indices applies here as well as in
the rest of the paper, unless otherwlse stated.



These integral relations depend upon the second moments of the

mass distribution

:—.:f/)(i /)(_,,-pclfr (2.3)
v

and their time derivatives. By using the equation of continuity, one

obtains
fP/xE]—u g = -—fp/x U; dr — , (é.u)

where

Il

}
3 Tfp ;U o7 (2.5)
V

is the kinetic-energy tensor. The trace of :E} is the macroscopic
kinetic energy of the fluid, By symmetrizing the relation (2.4) one
may obtain an expression which involves the second time derlvative
of II.J- »

The remaining terms in Eq, (2.2) may be rewritten in more

recognizable physical forms. By using the divergence theorem,
oCik _ =) )
fﬁ’(B/Xk — e chr crh Py — 7 nt] dS
L
v

Jr&-ﬂ‘*foza aT, (2.6)

v

where the superscript (-) is assoclated with quantities evaluated just

inside the bounding surface S whose outward normal is n . The quantity



:f P dT (247)
Vv

involves the remaining kinetic energy assoclated with the microscopic
internal motion of the fluid partlcles within the drop. The hydrostatic
pressure f#” and the stress tensor Cg:ﬂ just outside the bounding
surface are related to the corresponding quantities Jjust inside this

surface by the condition

0= P hi= it — o — (V'E)“a , (2.8)

where | 1is the constant surface tension, By using this boundary
condition with " set to zero (i.e., the drop is isolated), the

surface integral in Eq. (2.6) becomes

- r)e= T Thiganis o
)

where

—— . (+)
3;. -—fﬂ(, T s rﬁde (2.10)

is the moment of the external normal stress on S . The quantity

2

+ [ (+ | (+ —(+)
T; x —_g,;[g ]th‘k yreg oY E (2,11)

&
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is the usual Maxwell stress tensor assoclated with the exterlor electric

(+1}

field E; on $ . The contribution involving surface tension may be

rewritten in the form

T ”‘s‘(?-fj)nidS: 24, (2.12)

Cog.

where

4y = *2{" T f [85 — n,} d$ @19

is the surface-energy tensor (cf, Rosenkilde).3
The dielectric is assumed to be isotropic and homogenous so that
the dielectric permeabllity € is a scaler and is at most a function
of the densityfj of the fluid, In the interior of the drop the appropriate

stress tensor (cf. Iandau & Lifshitz,? Eq. (15.9))is

N Z \ (2.14)
% = gr EIE’SH ’1_71;7{6{‘; E..; ;o

where E; is the interior electric field. The additional diagonal
contribution due to electrostriction included by ROSenkilde3 has been
suppressed here in anticipation of specialization to the conducting
limit., For the systems of interest, §) - (typical radius)/(speed of
light)cigg:ZI so that the induced maghetle field arising from the rotation
of the fluid drop may be ignored in the first approximation.

By using the expression (2.14), the renaining volume integral in

Eg. (2.6) becomes



—fodT = 58”-— 2 E,-J- , - (2.25)
4

where

EL-J-:—_— gl?fe E; E_,- dr (2.16)

is the electrostatic-energy tensor whose trace is E .

Finally, the resulting moment equations are
< AU dT — 2Q€ y a: dT
44 P % 4 as P % %

v

= £ CJ!: +S€[I‘:7’_8£3 LJ -l_TI—Sz.{ - 2,{3&-*‘ Z‘%,' !

(2.17)

where

Z{/fj = 25;; + é; é%i -2 Z;EJ ’ 8:28)

includes the various electrostatic contributions. They represent a set
of nine time-dependent equations for the second moments of the mass
distribution. By adding the three equations for which i1=Jj, and ignor-

ing rotation (as a special case), one obtains

g-;-fp/x‘-uéa’TZZT—Z,wg + W+ 3T (2.19)
v

where iT' ’ Jg ¢ and 24} are, respectively, the kinetic, surface,
and electrostatle contributions of the fluid. This relation, originally

due to Lagrange and Jacobl, is a more general form of the virlal theorem



later derlved by Clausius (cf. Chandrasekhar,a chapt. 13). 1In view
of this similarity, the moment equations (2.17) are also known
collectively as the tensor virlal-theorem,

The Tormal volume integral of the equation of motion (obtained
without first multiplying by /X;) ylelds the conservation law for
linear momentum. The nine moment equatlons Jjust obtained imply the
conservation of angular momentum and a generalization of the Qirial
theorem, Successive sets of moment equations may be generated by
repeating this process with X;/Xj /G <** ., This infinite sequence
of sets of equations replaces the original equation of motion, In
this paper the dynamics of the fluld drop will be approximated by

satisfying only the lowest nontrivial set describing the second moments.



ITI. EQUILIBRIUM CONFIGURATIONS

Assume that the equilibrium configurations of the dielectrie
fluid drop are initlally rotating uniformly with constant angular
speed ) , and that these configurations are initially at rest
within the chosen frame of reference. The moment equations (2.17) must
be satisfied when no relative motions are present and hydrostatic
equilibriun prevails., Under these conditions, all velocities and
time derivatives vanish. These equations reduce to

O = sf[LJ- —SL.SL-] =~ 2y + o,

¢J

— &, +ETTs, ,

(3.1)

where /; has been replaced by its equivalent. Equatlons (3.1)
represent a total of nine equations,

The appllication of the moment method requires, initially, the
selectlon of a trial shape that 1s compatible with the moment equation
of lowest order. It 1s known that the equilibrium confilguratlons of a
slowly rotating fluld drop acting under the influence of surface tension
alone are nearly spheIOidal.l It is alse known that the equilibrium
configurations of a stationary dieleciric fluid drop in a small uniform
electric field are nearly spheroidal.2 In view of these results it is
natural to try, initially, to represent the equillbrlum configurations
in the present case by spheroidal shapes. Therefore, the equilibrium

configurations will be expliclitly assumed to have ellipscidal surfaces
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of the form defined by Eq., (A.1l). For the sake of convenience, these
surfaces have initially been chosen to be tri=-axial having nondimensional
semlaxes @, , 4, 5 and 4, « (All dimensional units are defined in
Appendix A.)

The surface energy tensor ,; is diagonal for an ellipsoid.’
If the ellipsoidal body is assumed to rotate about one of the principal
axes (hereafter identified as the third axis), then the off-diagonal
elements of the moment of inertla tensor vanish. Under these conditions

the six moment equations for which i#j reduce to

z. =7 E;J (c;é j) _ | (3.2)

¢

In order to explore the consequenhces of this requirement, 1t is
useful to obtain a more explicit expression for the tensor
evaluated for ellipsoical surfaces.

From the electrostatic boundary conditions

n‘[g(ﬂ“ef:qﬁ 0 o [}x[gtigt—jzo  (3.3)

it follows that

EHJ__: EH +(E _ XU'EH>9 . (3.4)
This relation may be used to express the quantity
g = [le- -7 1€ ] n;
e ZE [B‘ EHJ Ez-)

(3.5)
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(-) {+)
in terms of [  instead of £ (ef. Eq. (2.11)). The substitution
of Eg. (3.5) into the definition (2.10) leads to the general expression

T, =an e (—ff(@fﬂ”f}ds 0

L

where the superscript (=) on E: has been suppressed for the sake of

simplicity.
When an ellipsoidal dielectric is placed .n an uniform electric
field [ , the resulting £ within the dielectric is also uniform

7

regardless of the orlentatlon of the ellipsoid. Thus the assumptlon

of an ellipsoidal surface simplifies the evaluation of the electrostatic

tensors, 3:3- and ¢ ;4 + Equations (3.2) beconme

0= -2+ 7 :—fq;g‘i[jfcjf,—
v

L1

EF f nA; dS-—~—-—E XN, dS (3.7)

é_
4

)EE nn,n:ds .

These equations may be further simplified by using the relation

.I:A(,, ", d§ = SPEL(JT ; - (3.8)

which follows from the divergence theorem. One then obtains

=—0E.+5 :%—fﬁ'—) Eiz_rjfnf(nj«ads ;@)
S

(no sum)



_since the last integral in Eq, (3.7) vanishes unless 1=3 and m=i or

1=i and m=j due to the tri-planer symmetry of the ellipsoidal surface.
The integral in expression (3.9) is not zero, Therefore the

requirement (3.9) cannot be satisfled unless two of the three components

of E: are zero, Thls is possible only if E; i1s parallel to the axis of

rotation. With this, together with the above assumptions, the six

."off-diagonal" equations (3.1) are satisfied. ‘

The remaining three diagonal equations (for which i=j) are

Slz:[; — h77rﬁﬁ+_ 2 ’yu - Zﬁ/ix ’

gl =T +id,= Zt/,.z , 58]
O =71 +24, — U, .

These equations must be satisfled simultaneously in order to relate the
fleld strength and the amount of rotation to the shape. The last equa-
tion of the set (3.10) is used to elininats the quantity T from the
remaining two equations. One obtains

ol = [2 J - — ZJJ ‘P% ~ U]

—

y
(3.11)

11

DT, =247 24,10

In order to explore the consequences of these two equations 1t is
necessary to evaluate the tensors Iii 9 ZL%L y and JJ[L for ellipsoidal

configurations, The results of this evaluatlion are summarlzed in
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_Appendix B. The required expressions Invelve multi=-indexed symbols,
such ns :413and tAl y which represent particular members of certaln
classcs of elliptic integrals (which are also defined in Appendix B).
By using Eqs. (B.1), (Be5), (B.6), (B.9), and (B.10), the equilibrium
relations (3.11) become
e o -
5 I%a = L L]0~ Q) -EATeA, - 33A)

(3402)

Tl =760 Q- EAfA- 254

where the units of the moment of inertia L , the surface energy f:: "
and the electrostatic energy [, are defined in Appendix A, This pair
of equatlons assoclates a definite angular momentum and electrostatlc
energy with a glven ellipsoidal shape characteriéed by the palir of
ratios, ﬂv/ﬁ3 and G%//aj « TPurther discussion of these shapes willl
be deferred to Section VA,

Since the equilibrium configurations are expected to be nearly
spheroidal in the limit of small fields or slow rotation, this case will
be examined first. The spheroidal configurations are expected to rotate
about thelr axis of symmetry, &; . By replacing 4, by 4, wherever it
occurs in Eqs. (3.12), one finds that these two equations become identical.

They reduce to the single expression

y = % t?,"[aj - f(,] - a,"/ﬁ};[afﬁ,; - ga; /433]//1’ ,. (3.13)
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where the electrical parameter A and the rotational parameter j/
are explicitly defined in Appendix A,

The electrical parameter /X represents the electrostatiec
energy of the conflguration expressed in units of the surface energy,

E ; » of a reference sphere having the same mass and volume as the
spheroidal configuration. The rotatlonal parameter Y represents the
square of the angulay momentum of the equilibrium configuratidn expressed
in units associlated with the same reference sphere.

Spheroidal shapes are completely specified by a single parameter,
the elongation R = Q, / a, y vhere a; 1s the semimajor axls of symmetry.
The coefficients in Eq. (3,13) are functions of the elongation, Hence,
thls expresslion implies a linear relationship between the physical

Parameters, /X and Y o for a given spheroidal equilibrium shape.
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Representative members of this one-~parameter famlly of straight
lines are shown in Fig. 1. The line representing the spherical shape
(labeled & =1.0) extends dlagonally from the origin. Each point on
this line associates a particular amount of angular momentum and electro=-
static energy with the same spherilcal equillbrium configuratlon with a
gilven mass and volume, All along this "spherical"” line the rotational
forces that tend to flatten the configuration are opposed by the induced
electrical stresses in such a way that the resulting equilibrium
configuration remains spherical,

The configurations, which comprise the ordinate, form the sequence
of oblate spheroidal shapes that approximate the exact flgures of
equilibrium obtained by Rayleighlo and Chandrasekhar.l (The quality of
this approximation will be examined in Sedtion VYI,) In the absence of
any applied electric field (/X =0), the configurations possessing more
angular momentum require additional flattening in the polar reglons in
order to generate sﬁfficient curvature (and hence interfacial tension)
along the equation to counter balance the centrifugal spreading. All
of the configuratlons that lie inlthé region 1o the right of the ordinate
and above the "spherical" line are oblate (k<1)s, For a given angular
momentum, ¥, in this region, an increaée in electrostatic energy
(#4 > 0), concentrates the induced polariﬁation charge density and
electrical stress in the polar regions while diminishing these near the
equation so as to combine with the interfaclal tension to reduce the
oblateness caused by rotatlon.

The configurations which comprise the abscissa form the sequence of
prolate spheroidal shapes that have been investigated by Taylorz and

Rosenkilde.3 As the electrostatic energy is lncreased in the absence of
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FIG. 1. Linear equilibrium relations betwéen the electirical parameter,
/% ¢ and the rotational parameter, ¥ , for selected values of the
elongation; R , between 0.6 and 10.0.
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" any rotation (y =0), these configurations must yleld to some elongation
in the polar reglons in order to generate sufficient curvature (and
hence interfacial tension) there to counter balance the induced electrical
stress, All of the configurations that lie in the region above the
absclssa and to the right of the "spherical” line are prolate (k > 1).
In this region the centrifugal force comblnes with the surface tension
to reduce the elongation caused by electrical stress.

Although equilibrium configurations obtain throughdut the entire
first quadrant of this ¢~y configurative plane (for this spheroidal
approximation), it is known that these configurations cannot all be
stable, In particular, those configuratlons along the ordinate and the
absclissa that are unstable wlth respect to second~-harmonic deformations
have been identified by Chandrasekharl and Rosenkilde,3 respectively,
using normal-mode analyses based upon small variations in moment
equations corresponding to appropriate limiting cases of Eqgs., (2.17).

On this account one may expect some bounds on the possible stable

conflgurations in thils plane,
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IV. VIRIAL EQUATIONS OF SMALL OSCILLATIONS

ABOUT EQUILIBRIUM

The moment equations (2.17) will be used to investigate the
stabllity of the spheroldal equilibrium configurations with respect
to second-harmonic deformations. Conditlons for the onset of in-
stability will follow from an examination of the nature of the
characteristic frequencles of oscillation associated with these
deformations. The normal mode analysls to be given here for a con-
ducting spheroid that is rotating in the presence of an electric field
rclosely resembles earlier analyses of rotating fluid conflgurations
glven by Lebovitz,é Chandrasakhar,l and ROSenkilde.3

Let us assume that the fluid drop, which is initially in a state
of equilibrium, is slightly perturbed; and further that the ensuing

motions are described by a Lagrangian displacement of the form

g e, (1)

where A is a parameter whose characteristic values are to be determined.
To the first order in é.. the first varlation of the moment equa-

tions (2.17) is

2V; = 220e, L/
— LQJD/* + M,J_Ql[%j_F ,:jgia

t1)

3
“%"5517“Ei5“h_;253.<tj +8 ZL%; ’

(4.2)
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. where(C\),JE jr 8 Zt{j ,877- are varlations of the assocliated quantitles in

g, (2.7). The quantities

\/ fpég A CIT

i1
where the symbol without the star 1ls nondimensional, are known as the

*-‘.u_._

i

{ ]
TI %J. P (4.3)

¥
virials., The unsymmetrized virials, \{;i are related to the variation

of the moment-of-inertia tensor,.I;; » by the equation

3 * |
Sfp/XL.A(J,; dr= |/ + %5 = M;E ()
i |

Lr)

Clearly, variations of higher-~order moment equations would require
the introduction of additlonal virlals of higher order. However, the
present considerations are limited to the nine moment equations of
lowest order. The number of unknown parameters in the spatlal depen-
dence of the Lagranglan displacement cannot exceed the total number of
moment equations belng considered. Under these condltions, an appro=

priate choice for the form of §' is the linear function

= . b,
§—*— Lt’,' Aj ) (4.5)

J

where the th;are undetermined nondimensional constants. This dis-
placement is approprlate for an examinatlon of the oscillatlons associated
with the second=harmonic deformations of the equillibrium configurations
of an incompressible fluid drop.

The specification ofé;]rrfequires some supplementary assumption

concerning the physical nature of the osclllations. For an incompressible
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fluid, the Lagrangian displacement 1s required to be solenoidal in
order to preserve the total volume. By supplementing the set of virial

equations with the requirement that

O=VveE= Lm - L1,1+ Ls,s ? e

it is possible to dlspense wlth the evaluation of SWM eliminate it
from the system of equations.

Expressions for the variations.s Z(/;,‘J' a.ndS :-?M' , in terms of the
nondimensional virials, \{',j y are summarlized in Appendix B. The
necessary integrals have been evaluated over unperturbed spheroldal
equilibrium conflgurations. As was the case 1n earlier investigationgl'j’é
the virial equations (4,2) may be separated into three noncombining

groups whose proper solutions are normal modes of the transverse-shear,

the toroidal, and the pulsation types, respectively.
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(A) Transverse-shear Mode

The equations that govern the transverse-shear mode depend upon
the virials kﬁa and yég(i=l,2). The associated displacement induces
relative motion of the two hemispheres; the spherold appears to oscillate
about a diameter in the equatorial plane.

From the set (4.2), the four equations which describe the transverse-
shear oscillatlons are

* *
XVip—= 220V = ~184, +80/,+2V,

*
’

34l 2

TPL.
Y, = -84, +sl,
| " (.7)

,1’"\4;21&\/:%:'—eg,glfg%ﬂ*—n‘\{ﬁ ;
v % -
AV =—284,+8L, -

By using Egs. (B.11), (B.13), (B.1%4), and (B.18), one obtains

TN M=G 228 o r\‘/,g ]
N J+N 0 o ||V,
29 0- M M| [V [TO L
0 0 Y XNV

4 | L
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and the unit of frequency, W, is defined by Eq. (A,10).
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(B) Toroidal Mode

The equations that govern the toroldal mode depend upen the two
virials(%{+‘\é,,) and{\ﬂﬁ“‘»é,;) « The associated displacement
destroys the axlal symmetry; the spheroid is transformed into a tri-

axial ellipsoid.
From the set {4.2), the two equations which describe the toroidal

mode oscillation are

A+ Jrarali= V) =228 d-s L)
tosl, s

fMi NJ_ZLQVT:}_ﬁEJFBJJ (4.11)
sls Y

By using Eqs. (B.11), (B.12), (B.15), (B.17), and (B.19), one obtains

9l

P o[- P aa | VLY .
—0 4,12

H

b o

228 i‘—~z[n‘——ﬂ V.=V,

where

| 2 2 X
=5 ’:aum_/]‘— B,,J : (4.13)
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(¢) Pulsation Mode

The equations that govern the pulsation mode depend upon the virials
*®

¥
(\4,,*‘ \i,L) ' (\4,L—‘ 1'1) » and V, 5. The assoclated displace~
ment preserves the axlal symmetry; the spheroid 1s transformed into
another spheroid having a slightly different elongation.

From the set (4.2), the equations which describe the pulsation

oscillation are

)= 2= o,
)\L[\{j—}- \ﬁ— Z\{j] - l&‘a[\{j* M,, J 2511[\{5— ,1] (ba14)

— 284,484, 28 Hsl+e1/~251).

The second of these results from the elimination ofESTTfrom the
set by using the third diagonal equaiion(£=f:-3) « Thls process does not
¥
eliminate \é,3 s0 it is necessary to supplement Eqs, (4.1%) with the

algebrale relation
¥ * ¥
W e a‘a"[\/ +V J (4.15)
3,3 SR BT PE A

which 1s equlvalent to the divergence condition (4.6). By using Egs.

(B.16) and (B.20), one obtains



_1 1 -2 i s . - 26
ZlFeadieQ -2 6 [V +V,
| =0, (4.16)
=2 A8 X V- \{mj
where
Q= %5- wf[@s — bnatd, QCJ (#.17)
with
Q=20 0+ sef50.,-4,] (9
and

0= 6BA + 248, 34B, . o

EE .

Altogether there are a total of nine, homogencous, linear egqua-
tions as required for the determination of the nine unknown virials,
=~

Vi,; . Elght of these (excepting Eq. (4.15) ave quadratic in A

indicating that there are a total of sixteen characterlstic frequencies.,
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V. CHARACTERISTIC FREQUENCIES

AND INSTABILITY

The normal modes of oscillation of a liquid drop correspond to
the proper solutlons of three non-combining groups (4.8), (4.12) and
(4,15) of equations derived from the virial equation (4.2) by subjecting
a spheroldal equilibrium configuration to a Lagrangian displacement
(4,1) having an exponential time dependence, exp (1t ). Each group of
equations yields a characteristic polynomial in llwhose ccefficlents
are real functions of the equilidbrium elongation. It is convenlient to
replace )f by -UJL, so that real characteristic roots, W , of these
polynomisls correspond to undamped osclllatory, stable motion, while
pairs of conjugate complex roots reveal the possibility of exponentially
growing deformations assoclated with unstable motion. Thus, by
examining the nature of these characteristic roots as a function of the
elongation, it is possible to identify those equilibriuﬁ configurations

that are unstable.
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(A) Torrodial Mode

The system of equations (4.12) ylelds a characteristic polynomial
of fourth degree in W that may be separated into two physically

equlvalent quadratic factors
W' 20w +2[Q“P] , (5.2)

which differ only in the sign (and hence the direction) of the angular

speed of rotatlon, & w

These characteristic polynomials have a palr of conjugate complex

roots if

Q> 7 F . (5.2)

By using the definitions (%4.13), (A.10), and (A.12), this inequality

becomes
¥ > q,‘*(du — 2/4; B“; A’) . (5.3)

Conflgurations possessing sufficlent angular momentum, Yy to simul-
taneously satisfy both the equilibrium relation (3.13) and the inequality
(5.3) 1le in the region above the curve IMN in Fig. 2. These configura=
tions are unstable. Infinitesimal deformations will grow exponentially

via overstable oscillations (in the sense of Eddington).ll



29

Further examinaztion of the toroldal mode reveals another important
property. Each polynomial (5.1) has a nontrivial zero characteristic

root in the particular case that

‘_Qfl — P (5-4)

J

which is equivalent to the requirement that

y= 4o [0,—24 B,4]. o7

Those spheroidal configurations which possess sufficient angular
momentum, Y , to simultaneously satisfy both the equilibrium relation
(3.13) and the requirement (5.5) lie along the curve BCF in Fig. 2.

This curve ECF in Fig, 2 1s a cur#e of bifurcation (in the terminology
of Poincare).12 The differential equations corresponding to the system
(4,12) possess a time independent solution when the condition (5.4)
1s satiasfied. The resulting displacement transforms an axisymmetric

spheroidal cbnfiguration into a genulne triaxial ellipsoidal equilibrium

configuration. These triaxial shapes first become possible figures of

equilibrium when the angular momentum equals or exceeds the values of
along this curve of bifurcation.

The existence of these triaxial equilibrium configurations can be
examined from another viewpoint. Reconsider the pair of equilibrium
relations (3.12), By using the definitions (A.11) and (A.12) for the

parameters X and y s the sum of these two relatlons becomes
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FIG. 2. Critical curves separating regions of unstable conflgura-
tions from possibly stable ones are shown superimposed upon the
background of equilibrium relations displayed in FIG. 1. Stable
configurations are restricted to the closed region ABCDEA,
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tyfo+ = 4120,-0-0,
. A;[[a;‘ AH—}— Q;An— éa;‘ASJ

and the difference becomes

(5-6)
ur

-2 i
43{[61,‘—}- Q:J — MZI— Q’“. #As 8113 X ? (57)

after the cancellation of a common factor of (& — 4, ). This palr of
equations is equivalent to the pair (3.12). In the limit that Q,
approaches Glthe first of these relatlons reduces to the spheroidal
equilibrium relation (3.13), while the second reduces to condition

(5¢5) which implies the existence of the zero characteristic root. This
limiting procedure confirms the exlstence of new sequences of trlaxial
equllibrium configurations which bifurcate from the axlsymmetric con-
Tigurations provided that the angular momentum exceeds certain critical
values. _

The situation here is reminiscent of the bifurcation of the
classical, self-gravitating Jacobl ellipsclds from the equilibrium
sequence of Maclaurin spheroids.5 Similar behavior also 1s exhibited
by a rotating liguid dropl (#=0) and a rotating, homogeneously charged
atonic nucleus.13

In the absence of any dilssipative mechanism, the srhercidal con-
figurations which 1lle in the reglon between the curve of bifurcation BCF
and the curve of overstabllity IMN are expected toc be stable with respect

to second~-harmonic dlasplacements assoclated with the toroidal mode,

However, the incluslon of any vigeous stress or radiatlion reaction, no
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’ matter how small, is expected to induce secular instabllity in accor=-
dance with the behavlor of the slightly viscous Maclaurin spheroids
Investigated by Roaenkildelu and the rotating, charged liquid drops
Investigated by Stettner.15 Thus any realistic axlsymmetrlc configura-

tions are expected to be (secularly) unstable above the curve of

bifurcation,



(B) Pulsation Mode

The system of equations (4.16) ylelds a characteristic polynomial
of fourth degr-e which has two trlvially zero roots that correspond to
trivial rigid body rotatlons in opposite directions about the @, axis.

The remaining quadratic factor 1s
wl[hLZ a§af"]—2£f—- &6 (5.8)
This factor ylelds purely imaginary roots if
2+ << 0, (5.8)
which is equivalent to the condition

3 a,’%: (x> ——é— MO (5.9)

where () and Q, are defined by Eqs. (4.17) and (4.18), respectively.
Those configuratlions which possess sufflcient electrostatic energy to
simultaneously satisfy both the equilibrium relation (3.13) and the
inequality (5.9) lie in the region to the right of the curve EDFN in
Flg. 2. These configurations are unstable. Infinitesimal deformations
will grow exponentially with time.

It is worth noting that the equilibrium conditions are such that
the required strength of the applied electric fleld, which is characterized

-l

i
by the parameter FﬂR 7- defined by equation (A.l&), attains a
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relative maxlimum for a glven angular mOmentum,‘y ¢ along the curve
EDFN., Consequently, for values of the electric fleld which are less
than this maxlimum value..there exlst two prolate spheroidal equilibrium
:configurations of which the more elongatéd one ls unstable, Thls con=~
clusion agrees with the results of earller investigatlons of the limiting
case with no rotation.??> Efforts to avoid confusion over this dichotomy
led to the definition of the electrical parameter A being used in the
present considerations. Corresponding parameters used in other inves-

tigations are compared in Appendix A,
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(C) Transverse=Shear Mode

The system of equations (4.7) ylelds a characteristic polynomial
of eighth degree which has two trivially zero roots that correspond to
trivial rigid body rotations about the Q@ and Q, axes. The remaining
sixth degree polynomial in W may be separated into two physically

equivalent cuble factors
ng:BQwi+Eﬁ—M——WwaEQN::CL (5.10)

which differ only in the sign of the angular speed of rotation, SJ .
These characteristic polynomials have a palr of conjugate complex

ot — oM —2N) = [2* 4 3(MH\D]3 -

is satisfied. Configuratlons which possess sufficient electrostatic
energy, X 5 to simultaneously satisfy both the equilibrium relation
(3.13) and the inequality (5.11) lie in the region to the right of the

curve DCM in Fig., 2., These conflgurations are unstable,
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(D) Combined Mode Analysis

The foregoling analysis of the normal modes of oscillatlon associated
with second-harmonic deformations restricts stable spheroidal equilibrium
configurations to the closed polygon ABCDEA in the A—Y configuration
plane shown in Flg. 2. Configurations which lie outside this region are
definitely unstable, while thcse wilthin this reglon may be stable

rending an examination of other, perhaps hlgher harmonic, deformations,
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V1. NUMERICAL RESULTS AND COMPARISONS

The numerical calculations required to construct the curves
displayed Figs. 1 and 2 were performed on a programable Hewlett-
Packard desk calculator, model HP 9100B, wlth an extended memory unit,
model 9101A., The results of these calculations are presented in
Tables I-VI,

Table I contains the slopes and Intercepts of the equilibrium
lines as a functlon of the elongation, k . Selected lines are dis-
playea in Fig. 1, The 1y -intercepts for oblate shapes (k< |) agree
with those obtained by Rosenkilde:l3 the /X =intercepts for prolate
shapes (R > | ) agree with those obtained by Rosenkilde,-

Tables II=-V contain data for the "critical" curves associated with
the normal modes of oscillation described in Section V. These curves
are displayed in Fig. 2.

Table VI contains the values of X , { , and k associated with the
points of intersection of the critical curves with each other and with
the coordinate axes. The parameters at E agree with those obtained by
Ro:sc:nkildl,:3 the parameters at B and L agree with those obtained by
Rosenk.ide.13

It 1s of interest to examine the domaln of applicability of the
ellipsoidal approximation by comparing the present results with the
earlier ones obtalined for certain limiting cases by using more exact
equilibriun shapes. On the oblate side (_k <: f), the exact figures of
equilibrium in the limit of the zero electric field (/X —> 0 ) have been

obtained analytically by Hayleighlo and Chandrasekhar.l The points of
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intersection, B and I, were obtained for the exact shapes by Chandrasekhar.
He showed that the point B corresponds to (% , KR ) = (0.28338, 0.67139)
and the point L corresponds to (Y , k)= (0.5936, 0.4924), These
falues are to be compared with the corresponding ones in Table VI. The
exact shapes are flatter in the polar rezioms than the corresponding
ellipsoidal shapes and have 2 dimple there for values of ¥ > 0,74306
and R < 0.43118, Consequently, the ellipsoidal approximation cannot
be valid beyond these values.

The situation on the prolate side ( B> | ) is less certain. Con-

trary to earlier expectatlons, exact analytical expressions for the figures

of equilibrium in the limit of zero angular momentum (gj-4> O ) are un-
known. These can only be obtained through an exact treatment of both the
interfacial tension and the electrical stress. The cholce, here, of a
sphieroidal shape as a first zpproximation permits an exact treatment of
the electrical stress but ultimately introduces an error by way of the
surface tensioh. Alternativaly, Garton and Krasuck116 give an exact
treatment of the interfacial tension but introduce an error in the
treatment of the electrical stress by assuming an uniform fleld within
thelr dielectrie, The resulting external field, and hence the required
exterior electrical stress, obtained by using the Maxwell boundary con=-
ditions, will still be in error even in the conducting limit (in which
the dlelectric permeability approaches infinity)., However, Garton and
Krasucki show that thelr equilibrium shapes differ little from the
corresponding spheroids at least for small electric flelds (4 < 0,18),
At the other extreme near the unstable point E in Flg., 2 (X & 0,18),

Taylor2 has argued that the elongated ends of a drop develop conical



40
points prior to the appearance of a narrow Jet. Such behavolr clearly
involves harmonlcs of order greater than two.

It is possible to calculate the exact shape of a charged drop in an
'electric fleld by using the iterative numerlical procedure described by
Brazier-Smith.l? For the particular case of zero charge of interest
here, he showed that the exact shapes were slightly more elongated than
the-COrresponding spherolds, but that the spheroi&al approximation was
quite good unless the parameters were within a few per cent of those
associated with the unstable point at E in Fig. 2. Indeed, by assoclating
this point with the point at which hls iterative procedure ceased to
converge, he predicted that the critical elongation should be 1.83 at
which the electrical parameter, F(Fa/rijt should be 1.603. (See
Appendlx A, Eq. A.15, for the relation between this electrical parameter
end the /X being used in the present analysis). The spheroidal approxi-
mation used together with the present moment method ylelds F(Fl//TT){;
1.6028, Of course this is only slightly more accurate than the value of
1.625 originally obtained by Taylorl who very simply, and effectively,
balanced the stresses just at the poles and at the equatbr of the
spherold. |

The situaticn for rotatiig drops is much the same. The equilitrium
shapes obtained by Habip, Siekmann, and Changu were derived by acceptiling
the analysls of the electrlcal stress as given by Garton and Krasucki,l6
and hence, are subject to the same criticism. The electrical field
within thelr dielectriﬁ drop certalnly cannot be uniform after the
appearance of the polar dimples at high angular momentum (¥ > 0.75).
Fortunately, the present analysis predicts that instabllity will set in

long before such a conflguration can be attained.
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Among the possibly stable conflguratlons within the polygon
ABCDEA in Fig. 2, the points B (K = 0.6858) and E ( R = 1.8391)
correspond to the extreme values of the elongatlon. Within these
limits, there appears to be considerable justification for the ellipsoidal
approximation, The qualitative features of Fig. 2 are not expected
to change radically with the lnclusion of additlonal higher moments or

haxrmoniecs in the approximate equilibrium shape.
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VII. CONCLUDING REMARKS

The present analysis may be extended in several directiocns,
Isolated rotatling configurations having finlte dlelectiric permeability
can be investigated within the context of the ellipsoidal approximation
by uslng the moment method applied here. The properties of the trilaxial
configurations, predicted here, are also accessible with these techniques.,
The inclusion of an external dielectric medium will add complexity.
An analysls of the radiation reaction, expected to have dipole character
here, should be posslible following the methods outlined by Stettner.l5
The nore difficult tasks of obtaining exact axisymmetrie figures of
equilibrium for zero angular momentum and exact triaxial figures in

zero electric fleld remain for the future.
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APPENDIX A: THE DIMENSIONAL UNITS AND

THE PARAMETERS ~X AND Y

It is necessary to establish definite unlts of length, frequency,

angular momentum and energy assoclated with the ellipsoidal figure

3

Sl =1 e
p=1

*

¥
having semlaxes Qf s B, 4 and Q43 ,

Introduce a reference sphere which has the same density F)

and volume N as the ellipsoidal configuration. The radius,

!fg

R=ora a;j , (h.2)

of this sphere is a convenlent unit of length. The non dimensional

semi=-axes of the ellipsoid may be denoted by

4 = & R (¢=1%3) (8.3)

' =8TpR (A.8)

The angular momentum, F{, of a homogeneous ellipsoid which

rotates uniformly with the angular speed S about the axis 4, is



= %_Ip[a,’“—{—- R:JQ : (A.5)M

The electrostatlc energy,¥ Lw’. associated with an uniform dielectric
ellipsoid having the electrical permeabllity € and the volume V and
which is situated in an uniform applied electric field F is given by

the general expression

— 1 [F )
W = 2‘!;[__)3’&7, (.6

3

where the uniform polarization f? has the components

4o :[E—']‘E[HL“%‘(E-*)A;T (=153, )

(The indexed-symbols, /Qi , "re defined in Appendix R.) For the

particular case of a conducting ellipsoid {obtained in the limit
E— 0 ) whose semlaxis, a3 y 1s parallel to the applied electric

Tield, 1t is useful to define the guantity

= FRpA =ML e

The surface energy, ET: y Of the liquid reference sphere having a

constant surface tenslion 7— is

E: — 4_17 Rz—!— ' (A..9)

*Gausslan unlts are assumed for all electrical quantities,
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A convenlent unit of frequency 1is

Ya. /2.

w =[8T] [pR]" =[6E] 5T,

which 1s assoclated with the second-harmonie deformations of the uniform
liquld reference sphere.
It is further useful to introduce two additional non-dimensional

parameters, The electr.cal parameter,

= el =rAlmTAY,

is the electrostatic energy expressed In units of the surface energy

of the reference sphere. The rotational parameter,

y=H[IL]= [Te+dafse], o

is the square of the angualr momentum expressed in units assoclated with
the reference sphere. '

The rotational parameter Yy defined here has long been utilized in
investigations of spheroidal nucleil”® rotating about the axis of
symmetxry, ﬂ3 . It was adopted because it increases monotonically with
the elongation, ﬂslfa, » along a sequence of equilibrium conglgurations
characterized by a glven mass and charge, whereas the more natural

mathematlcal parameter,

leRB[Z TJI: !5y[2 ﬂﬂ ) , (A.13)



utilized by Habip, et. al..4 attains a maximum value along such a
sequence, The sltuation here 1is reminiséent of the contrasting
characterizations of the sequence of self-gravitating Maclaurin spheroids
in terﬁs of elther increasing angular momentum or changing angular
speed of rota.tion.5
The electrical parameter /X defined here differs from the non-
dimensional parameters commonly utilized in carlier investigations, It
was adopted in the present case because it increases monotonically
with the elongatlon along a sequence of equilibrium configurations
characterized by a glven angular momentum and mass. In this respect it

is similar to the parameter

[l_ J@ = 6/><[AJ (h 1)

;

defined by Hablp, et. al.LL The more natural mathematical parameter

RTeAd, e

vwhich was used by Tay10r2 and Rosenkilde,3 has the disadvantage of not
being monotonic in the present case., For a fixed angular momentum, the
applied electric fleld, fq y attains a maximum value when the equilibrium
configurations become unstahle with respect to the pulsation mode

(cf. Section VB). However this disadvantage is offset by the utility

in comparing theory with experiment because of the absence of the shape-

dependent factor, /43 ¢ in the definition,
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APPENDIX B: TENSORIAL QUANTITIES

FOR ELLIPSOIDS

Expressions are necded for the varlous tensorial guantitles which
appear in the moment e-uation (2.7) and its variation (4.2) in the
particular case that the equilibrium configurations are assumed to be
homogeneous ellipscids with nondimensional semiaxes @, , 4, ,
and O, . (All dimensional units are defined in Appendix A.) The
summation convention over repeated indices does not apply in Appendix B.

The diagonal components of the moment of inertia tensor are

-]

| . _
I:T I a; (L:Ll’a): (B.1)

il

&

vhere the moment, I y is defined in Appendix A.

The elecﬁrOStatic contributions contained in the tensor, 24/,, 1
defined by equatlon (2,18), have been evaluated by Rosenkild33 for
ellipsoida.i surfaces enclosing an incompressible dielec{ric f£luid drop
situated in an uniform electric fleld. The components involve a
certain elass of elliptic lntegrals which is well known In the potential
theory of elllpsoids. These integrals will be denoted by the multi-

indexed symbols /45 ’ /45 ;0 B s etc., where in general

id

A.. Ef f(u)du - (Be2)
bd ko 3 |
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and

Efwu f(w) du

[Tk (B.3)
with
- Ya.

[?(z)} E[CQHE)(??H)@?JFZ)] L7 +2la+2 et 2)

for arbltrary combinations of (¢, 4 , k). Chandrasekhar’ has given a
more conmplete summary of the propertles of these integrals including
the algebraic recursion relations utilized in making reductions and
numerical computations,

In the present context, the components of 2945 are requlred for a
conducting fluid drop in an uniform electric field., The necessary
expressions may be obtained from the corresponding ones for the dielectric
case by taking.the limit as the dlelectrlic permeability € approaches
infinity (cf, Landau & Lifsitz).? The general expressions obtained by
Rosenkildeslmay be furthef sinplified by making use of tﬂe necesgsary
orientation of the electric field (cf. Section I1II). The resulting
combinations reguired here are

&/ ‘“"‘2/: [C /];[a}A,g—gai/u (8.5)

/! el

Z’/u o Z‘/ssz Z‘:A:[afA” ——*ZQ;AHL (.6)
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where the electrostatic energy, Ec s 1s defined in Appendix A.

The surface-energy tensor, “ji P which is defined by equation
(2.13), has been evaluated for an ellipsoidal surface by Hosenkild.e.9
.The components involve another class of elliptic integrals denoted by
the multl-indexed symbols 0‘- ’ Q‘; Py and @J 4 etcey where in

general

Qz I hoee Ef F(tl) at (.7)

B.. Ej;ﬂ(f*)a/f s

LIk

with "F(Z) defined by equation (B.4). This class of integrals also
satisfies algebraic recursion :t'ela.‘bions.9
The particular combinations of the components of st? ;7 Trequired

here are

_ 21?1!—“2’{}733

|

= L[0,-0) e

and

2;<Pu - 2"%3 —_ —é— EO[Q - QJ , (8.10)

-3

where the surface energy, ES y is defined in Appendix A,

All of the above expressions are also valid 1f two semimajor axes

of the ellipsoid are identical. For a spheroid with Q= a, # 5(3 %
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the appropriate expressions for ZLéj and x{w; may be obtalned by replacing
a, by 4, wherever 1t appears. For example, */ﬁs and a&_would,become
/4,3 and 0, y respectively, Then the right hand sides of each pair
‘of equations (B.5), (Bs6) and (B.9), (B+10) become identical.
The specification of the variations in the virial equations (4.2)

in terms of the nondimensional virials,

Y

Y iod Y

defined by equation (4.2) has been given in the general ellipsoidal
case by Rosenki1d93’9 in different units than are being employed here.
Since the present investigation is limited to conducting, spheroldal
equilibriun configurations, it is useful to list the particular com-
blnations in that limit that are needed here,

The electrostatic contributions contained in the variation
that are required here for an incompressible, conducting, spheroidal
drop may be obtained from the corresponding general expressions in the
case of a dielectric drop3 by taking the limit as the dielectric
permeablility € approaches infinity. Further simplification is obtained
by setting f,= &, , by making use of the orientation of the unper=
turbed applied electric fleld (F =F=0 # F, ), and by using the
dlvergence conditlon (4.15). The resulting combinations requlred

here are:

82{/,2":8%;": EA BV (5.12)

3 ng 12
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slf= E A [2aAA +3B,-24 ]y, @
2)

,824/3.-{: EC%]; [2 a}A:'A; + 5 B,”JV:::?}
87,«/” —8sl, =/ ECA: lea[\/l,, —*\{’J ’ (3.15)

=12) 3 (B.14)

82‘/”'4”8 Mz—lgi‘jss —
26 A2 BB ) -2V |

= (B.16)

24 A3 AL + AT

343

Roaenkildeg also developed the needed variations of the surface-

gy eass; 8 oy o oo somdaaticas
/84, =284, = % E: a, v, . | (8.27)
084, = 284, = — E70,V, - v, (520
E[SJ,I*SJQJ — —'2~ E, Ql,[\/m - \/1,1} , (3.19)

ik 4,+84,—28 4| =
£ e = 0], + V] (0
‘_‘[3 a;; — &' ata] \/3;3:] ’



TABIE I. Equilibrium lines,

R ¥ -intercept Slope R /X =intercept Slope
0,50 0.6924 1.2598 1.1 0.0395 1,1814
0.55 0.5478 1.2596 Ly2 0, 0709 1.1625
0.60 0.4326 1.2573 1.3 0.0966 1.1435
0.65 0.3393 1.2532 1.4 0.1178 1.1246
0,70 0.2627 1.2478 1.5 0.1356 1,1061
0.75 0,1991 1.2413 16 0,1508 1,0879
0,80 0, 1456 1.2341 1.7 0.1640 1.0702
0.90 0,0618 1,2178 1.8 0.1755 1.0530
1,00 0, 0000 1.2000 1.9 0.1856 1.0363
2.0 | 0.1945 1,0200
3.0 0.2500 0.8835
540 0.2993 0,7072
10,0 0. 3600 0.4952
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TABLE I1. Eifurcation curve BCF.

X Y R
0,00 0,2830 0,6858
0,05 0,2702 0. 7424
0,10 0.2574 0,8119
0.15 0. 2447 0.8998
0.20 0.2319 1,014
0.25 0,2191 1.1708
0,30 0.2060 1.3957
0,35 0.1926 1. 7404
0.40 0.1786 243040
0.45 0,1637 J.2482
0.50 0.1488 4o7h23

TABIE IIT. Overstability

curve IMN,

X i y:
0,00 0.5795 0. 5380
0.05 0.5550 0.5729
0,10 0.5306 0.6138
0.15 0.5063 0.6626 ’
0,20 0,482k 0,7219
0.25 0.4588 0.7955
0.30 0.4356 0,8892
0.35 0.4129 21,0121
0,40 0.3908 1.1792
0,45 0.3694 1.4151

0,50 0,3488 1.7551




TABIE IV. Pulsation

curve EDFN,
/X 2 R

0.1796 0.00 1,8390
0,213 0,05 1.7211
04 2L64 0,10 1.,6237
0.2787 0,15 1.5412
0.3105 0,20 1,4700
0.3418 0,25 1.4078
0.3728 0.30 1.3526
0.4036 0.35 1,3032
0.4340 0.40 1.2587
0.4643 0.45 1.2183

0, 4ol 0,50 1,1813




TABLE V. Transverse=-Shear
curve DCHM,

/X Y 4
0.1896 0.6000 0.6368
0,1925 0.5500 0.6685
0,1955 0.5000 0.7048
0.1989 0,4500 0. 7467
0,2027 0.4000 0.7958
0.2069 0.3500 0. 8547
0.,2116 0.3000 0.9270
0,2171 0.2500 1.0189
0,2237 0,2000 1.1413
0.2319 0.1500 1,3167
0.2430 0.1600 1,6017
0.2500 0,0770 1.8124
0.3000 0,0113 L2622
0,3500 0, 0029 8. 4477




TABIE VI,

Intersections of

critical curves.

Point

/% y R
B 0, 0000 0.2830 0,6858
L 0,0000 0.5795 0.5380
B 0.1796 0,0000 1.8390
D 0,2440 0,0963 1.6302
c 0.2200 0.2268 1.0710
M 0.1966 0. 4840 0,7175
F 0.3123 0.2028 1, 4664
N 0,4225 0.3811 1,2750

56
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ABSTRACT

The equilibrium and stability of an 1solated, invisecld,
incompressible, neutral conducting fluld drop whose axis of uniform
rotation coincides with an uniform applied electric fleld are examined
by using an appropriate extension of the virial method developed by
Chadrasekhar., Rotating spheriecal, spheroidal, and ellipscidal
equilibrium shapes are shown to satisfy the first twelve moment equa=-
tions., A linear, one=parameter (the elongation) family of equilibrium
curves relates the electrostatic energy, AX_. t0 the square of angular
momentum, 3/ s of a given spheroidal shape. Conditions for the onset of
instability, obtained from a linearized normal-mode analysls assoclated
with second-~harmonic deformations, restrict stable spheroidal con-
figurations to a closed reglon of this /X-Y configuration plane. Con-
parisons are made with the classical, self-gravitating Maclaurian

spherolds and Jacobl ellipsoids.



