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Abstract

Process migration is a technique in clustering and distributed computing by which parallel
applications can be dynamically moved between nodes in a cluster in response to differing
phases of execution, which is of growing usefulness in the field of distributed computing.
A drawback to many recent implementations of process migration is that sockets for in-
terprocess communication do not migrate with the process requiring communication to be
rerouted through the process’ starting, or home, node, resulting in reduced communications
performance when the process is migrated away from its home node.

This thesis focuses on the implemention a solution to this problem at the kernel level
for the OpenMosix process migration system with efficient socket handoff and cluster-wide
unique addressing by reimplemting TCP on top of the existing network code in the Linux
kernel.

Although falling short of the intial goal of fully transparent operation, this thesis presents
a working implementation of migratable sockets for the OpenMosix process migration system
that demonstrates working socket migration and improved performance over non-migrating
sockets in OpenMosix.



Table of Contents

Table of Contents iii

List of Figures v

List of Tables vi

Acknowledgements vii

1 Introduction 1
1.1 MOSIX and OpenMosix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Origin of Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 TCP/IP and Sockets 4
2.1 TCP/IP Protocol Suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Berkeley Sockets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 TCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Design 12
3.1 Design Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Practical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 MTCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Metasockets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Implementation 19
4.1 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Sockets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Packets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3.1 Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3.2 Lower-Level Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.3 Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Interface to Existing IP Stack . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.5 Socket Migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.5.1 Migration Daemon . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.5.2 Metasockets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

iii



4.5.3 Miscellaneous Migration Handling . . . . . . . . . . . . . . . . . . . . 33

5 Testing and Performance 35
5.1 Userspace Unit Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Kernel Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Conclusion and Future Work 42
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

A Kernel API 47

B User API 55
B.1 ms calls.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
B.2 ms calls.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

C Client/Server Example 60
C.1 test common.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
C.2 test common.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
C.3 client2.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
C.4 server2.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

iv



List of Figures

1.1 DESPOT system architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 TCP/IP protocol layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 UDP header layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 TCP header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 TCP handshake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 TCP states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 MTCP protocol layering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 MTCP header layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 The connection fields of the socket structure . . . . . . . . . . . . . . . . . . 22
4.2 The status fields of the socket structure, along with corresponding value def-

initions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 The sequence variables for the socket structure . . . . . . . . . . . . . . . . . 23
4.4 Sychronization and threading variables for the socket structure . . . . . . . . 24
4.5 Socket list/list entry fields in the socket structure . . . . . . . . . . . . . . . 25
4.6 Definition of the ms packet structure . . . . . . . . . . . . . . . . . . . . . . 26
4.7 Definition of the mtcp hdr structure . . . . . . . . . . . . . . . . . . . . . . . 27

5.1 Chart of performance on cluster of single-Celeron nodes. . . . . . . . . . . . 38
5.2 Chart of performance gains on both clusters. . . . . . . . . . . . . . . . . . . 40

v



List of Tables

2.1 File system calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Socket system calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Metasocket messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1 Header files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Source files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.1 Process migration pattern used in performance testing. . . . . . . . . . . . . 37
5.2 Comparative performance numbers on the cluser of single-Celeron nodes. . . 38
5.3 Comparative performance numbers on the cluser of dual-Athlon nodes. . . . 40

A.1 Receive flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
A.2 Socket options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

B.1 Socket migration system calls . . . . . . . . . . . . . . . . . . . . . . . . . . 56

vi



Acknowledgments

I would like to thank Dan Andresen, my parents, and my employers at Geoprobe Systems
for their support and patience.

vii



Chapter 1

Introduction

The purpose of this thesis is to discuss a technique for improving network communications

of processes running on a MOSIX/OpenMOSIX cluster. This first section explains what

MOSIX and OpenMOSIX are, and what the motivations were for this project; the second

section details the overall design for my socket migration system; the third section discusses

issues encountered during implementation and testing of the project; the fourth section

shows the comparative performance of the project’s implementation; and the final section

lists observations about the project and potential for future work/improvements.

1.1 MOSIX and OpenMosix

MOSIX is a patch to the Linux kernel and a set of userspace utilities that facilitates the

automatic distribution of running processes across a cluster as appropriate, its slogan being

“fork and forget”. MOSIX was initially developed in 1983 by a research team at the The

Hebrew University of Jerusalem led by Dr. Amnon Barak. [9] Known at that time as MOS

(Multicomputer OS), it was based on Bell Lab’s Unix 7 and ran on a cluster of PDP-

11 computers. Following revisions were based on Unix System V (1987) [11] and BSD

(1993) [7], finally arriving on Linux in 1999. The chief benefit MOSIX provides over a

static job-queueing system for a cluster is the ability to dynamically alter the distribution of
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processes across a cluster in response to each process’s phases execution such as processor-

versus network-bound, or being able to move processes off a node if its free RAM is running

low to prevent disk thrashing. [8]

In 2001, it was decided that future releases of MOSIX would be proprietary (when it had

previously been open source); for commercial use the current MOSIX2 release for the Linux

2.6 kernel is $1000 per node (for the first ten nodes, $50 per node beyond that). [2] Because

of this, Moshe Bar began the openMosix fork of MOSIX in February 2002. Moshe Bar

announced the end of his involvement in the openMosix project on July 15, 2007, although

other people are pursuing further development. [4]

1.2 Origin of Project

The DESPOT project, under the direction of Dr. Andresen, was to develop new scheduling

and load-balancing algorithms for processes running on compute-intensive Linux Bewulf

clusters. It was decided to use MOSIX as a basis for the project because it provides the

infrastructure needed at the kernel level to automatically migrate processes to different nodes

in a cluster, and, although it provides its own scheduler for distributing processes across the

cluster, it is possible to turn off the builtin scheduler and control the process migration from

userspace.

DESPOT’s architecture included a master/scheduler node using a plugin-style/DLL in-

terface for the scheduling algorithm to allow experimentation with varying algorithms with-

out having to rebuild the entire program, and a process monitoring tool, distop, [6] running

on each node to gather information about the memory, processor, and network bandwidth

usage of all running processes. A primary goal of DESPOT in comparison to MOSIX was

to improve performance by taking into account a process’s network usage to more optimally

distribute processes during network-intensive phases of execution, which MOSIX didn’t do

at the time (OpenMOSIX still does not, and MOSIX2 may or may not have improved in
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Fig. 1.1. DESPOT system architecture

this regard). A problem with this, though, was that all network communication was routed

through a process’s starting, or home, node, so that the optimal location for a process with

regard to network communication was always its home node, hence the need for migratable

network sockets (network connections that would move with the process instead of remaining

on its home node). [5]
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Chapter 2

TCP/IP and Sockets

The standard implementation of the TCP/IP protocol suite comes from the Berkeley Soft-

ware Distribution (BSD) of Unix, with the first major release with TCP/IP being version 4.2

released in 1983. This chapter gives a brief overview of TCP/IP and the “sockets” program-

ming interface established by BSD, as well as covering some of the more significant details

of TCP specifically. [16]

ApplicationTransportNetworkLink

HTTP, FTPTCP, UDPIPEthernet

user processes
kernel

Fig. 2.1. TCP/IP protocol layers [16]

2.1 TCP/IP Protocol Suite

The TCP/IP protocol suite is divided into four layers of communication, shown in figure 2.1:

link, network, transport, and application. The link layer is the hardware interface, the most

common for network endpoints being ethernet. Addressing at the link layer is visible only
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to the local network. [16]

The network layer is the layer at which hosts on separate networks connected by routers

are visible to each other (thus internetwork, or simply “internet”). This functionality is

provided by the Internet Protocol (IP). Hosts are identified at this level by 32-bit number

(in IPv4, or a 128-bit number in IPv6) referred to as an “IP address” to identify it across

all the connected networks.

The transport layer is concerned with facilitating an end-to-end connection between spe-

cific applications on two hosts. The most common protocols at this level are TCP (transport

control protocol) and UDP (user datagram protocol). In both protocols, the application

on the host is identified by a 16-bit “port number”. Network communications are not a

continuous stream of data, but are divided into discrete messages commonly referred to as

“packets”, which, when transmitted across the Internet, can potentially take different paths

and arrive out of order. TCP is concerned with presenting a continuous stream of data to

the application and ensuring that the data is correct and is delivered to the application in

the correct order, as well as confirming that the remote host has received the data that has

been sent.

0 8 16 24 32 bits
Source Port Destination Port

Length Checksum
0
4bytes

Fig. 2.2. UDP header layout [13]

UDP is a connectionless protocol that presents the data in the packets directly as received.

(The “connectionless” means that a single UDP socket is able to send and receive data from

multiple sockets instead of being tied to one other socket with which to communicate.) UDP

does little to guarantee delivery or ordering, although it can optionally have a checksum in the

packet header to verify that the data in that packet is at least correct. These characteristics

make it a much simpler protocol than TCP with a lower overhead, both in processor use and
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header size.

Finally, at the highest level, is the application layer. As the name suggests, this is

the specific application running on a given host, such as, for instance, a web browser or

web server. While all lower-level protocols are implemented in the kernel and/or hardware,

application-level are user space programs.

2.2 Berkeley Sockets

The most common application programming interface (API) for software that makes use

of the TCP/IP protocols is the sockets interface, sometimes referred to as Berkeley sockets

because it originated in 4.2 BSD. Although TCP/IP is the primary concern of this paper, the

sockets interface is not limited to the TCP/IP protocols. Another protocol suite accessible

through the sockets interface is the set of Unix domain protocols. These protocols can be used

for interprocess communication on the same host, using the same programming interface but

not having to go through the lower layers of the network stack for increased efficiency. [17]

The sockets interface consists of a set of system calls (kernel routines that are callable

from user applications). Sockets are treated the same as open files, so that, while there are

socket-specific system calls (see table 2.2), system calls for file I/O (see table 2.1) are also

applicable to sockets. An open file (or socket) in a process is referenced by a number which

is selected by the kernel when the file/socket is opened or created, called a file descriptor.

Sockets generally follow a client/server model, where the server is the side that listens

for connections, and the client is the side that attempts to connect to the server. Generally

speaking, for TCP and UDP sockets, the general defining characteristics by which a socket

can be accessed are the IP address of the host the socket is on and the port number it is

bound to, as well as the IP address and port number for the remote socket if it is connected.

All sockets are initially created through the socket call, which does not bind the socket to a

particular port or make a connection, but only sets the protocol family and type of socket, the
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Category Name Function

input read receive data into a single buffer
readv receive data into multiple buffers

output write send data from a single buffer
writev send data from multiple buffers

I/O select wait for I/O conditions

termination close terminate connection and release socket

administration fcntl modify I/O semantics
ioctl miscellaneous socket operations

Table 2.1. General file system calls that apply to sockets

Category Name Function

setup socket create a new unnamed socket within a specified commu-
nication domain

bind assign a local address to a socket

server listen prepare a socket to accept incoming connections
accept wait for and accept connections

client connect establish a connection to a foreign socket

input recv receive data specifying options
recvfrom receive data and address of sender
recvmsg receive data into multiple buffers, control information,

and receive the address of sender; specify receive options

output send send data specifying options
sendto send data to a specified address
sendmsg send data from multiple buffers and control information

to a specified address; specify send options

termination shutdown terminate connection in one or both directions

administration setsockopt set socket or protocol options
getsockopt get socket or protocol options
getsockname get local address assigned to socket
getpeername get foreign address assigned to socket

Table 2.2. Socket-specific system calls
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two types of interest in this context being stream-oriented (e.g. TCP) and datagram-oriented

(e.g. UDP) sockets.

In order to prepare a socket to listen to a particular port as a server, it is necessary

to call the bind (to bind the socket to a specific port by which the client can connect to

it) and listen system calls. Then, the accept call is used to actually accept an incoming

connection, which creates a new socket for the connection, leaving the original socket free to

continue listening for new connections. Initiating a connection from the client side is much

simpler, needing only to call the connect system call, which selects the local port for the

socket automatically. [18]

2.3 TCP

The original TCP specification is documented in RFC 793 [14]. A central concept of TCP

is that of “sequence numbers”, which are used for ordering, delivery confirmation, and flow

control. For each direction (server to client and client to server), each byte of the transmission

also has a contiguously-ordered sequence number, with the starting value chosen to avoid

duplicate sequence numbers for the same connection on the network. By including a packet’s

starting sequence number in the TCP header (see figure 2.3) it is possible to determine if

the packet is a duplicate or if it has arrived out of order. For delivery confirmation, an

“Acknowledgment Number” is included in the header that, if the appropriate flag is set,

contains the expected starting sequence number for the next packet. The acknowledgment

mechanism allows the networking code to determine if a packet hasn’t been received (and

acknowledged) in a reasonable amount of time and needs to be retransmitted. Finally, for

flow control there is a “Window” field in the packet header to indicate how far into sequence

space (essentially how many bytes, with the exceptions noted below) unacknowledged data

will be received. In other words, if the transmitter sends the amount of data indicated by

the window field before an acknowledgment is received, further packets will be dropped.
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0 8 16 24 32 bits
Source Port Destination Port

Sequence Number
0
4

Acknowledgment Number
FIN

SYN
RST

PSH
ACK

URG Window SizeReservedDataOffset
Checksum Urgent Pointer

Options...

8
12
14
16bytes

Fig. 2.3. TCP header [14]

The header contains six flags that indicate how the packet should be interpreted. The

most notable of these for the purposes of this paper are ACK, RST, SYN, and FIN. The

SYN (synchronize) flag is used in establishing the connection, and the FIN (finish) flag is

used to request that the connection be terminated. The RST (reset) flag is used to imme-

diately reset the connection or indicate that the packet just received was invalid. The ACK

(acknowledge) flag is used to indicate an acknowledgment of received data, in conjunction

with the “Acknowledgment Number” field. The PSH (push) flag was originally intended to

signal that the data in the current and previous packets should be delivered immediately

to the user application, but most socket implementations don’t delay delivery of data to

the user application, so this flag is generally ignored. [16] Finally, the URG (urgent) flag,

in conjunction with the “Urgent Pointer” field facilitates a secondary stream of data being

transmitted on the same socket, referred to in the TCP specification as “urgent data” or, in

the BSD sockets documentation as “out-of-band data”.

The process of establishing a TCP connection is commonly referred to as a “three-way

handshake”, because three packets must be transmitted and received (two by the client and

one by the server) before the connection is fully established. The purpose of the SYN flag

(short for “synchronize”) is to set the starting sequence number for the transmitting direction
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of the connection, and a packet with the SYN flag set with no other flags set is treated as a

connection request from a (potential) client. The SYN and FIN flags both occupy one value

in sequence space (SYN being treated as falling at the beginning of the packet in sequence

space, and FIN being treated as coming at the end), so the proper response of a server

accepting the connection is to reply with the SYN and ACK flags set, the acknowledgment

number for the packet being one higher than the sequence number for the first packet.

Finally, to complete the connection, the client sends back an acknowledgment of the second

packet. This is illustrated in figure 2.4.

Client Server
 q SYN / se 1000

3SYN,ACK / seq 5 00
a  10 1ck 0

A seq 1001CK / ck 01a 53

time

pkt 1

pkt 3

pkt 2

Fig. 2.4. An example of the TCP connection “three-way handshake”

The TCP specification defines eleven valid states for a socket, shown in figure 2.5, which

will not be discussed in detail here. These states are Closed, Listen, SYN Received, SYN

Sent, Established, FIN Wait 1, FIN Wait 2, Closing, Time Wait, Close Wait, Last ACK,

and Closed.
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Closed

Listen
SYNReceived SYNSent

Established

FINWait 2
Closing

Time Wait

FINWait 1 CloseWait
LastACK

Fig. 2.5. TCP states [14]
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Chapter 3

Design

This chapter discusses the general design of the socket migration system put forth in this

thesis, as well as motivations for the design.

3.1 Design Goals

In the context of a clustering system such as MOSIX or OpenMOSIX, the primary goal of

introducing a socket migration feature would be to reduce or eliminate the performance hit

a process takes in network communication when it is away from its home node. Here are

other design targets for the socket migration system, most of which have been fulfilled:

Transparency. Ideally, applications should not need to be rewritten to take advantage of

socket migration system. Unfortunately, though, the project was later restricted in

scope such that currently separate, still largely BSD-style, system calls are required to

use the sockets in this system.

Kernel-Level Support. For performance reasons, socket migration should be implemented

at the kernel level and automatically follow process migrations.

Portability. The system should be relatively self-contained so as to be easily ported to

future kernel versions or different process migration systems.
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Interoperability. Nodes in the cluster should still be able to communicate with hosts

outside the cluster.

State Preservation. The socket must retain its state when migrated.

Delivery of All Packets. If any packets were pending during the migration, none of them

must be discarded.

Allowance of Simultaneous Migration. The connection between processes should still

be correctly maintained even when both processes migrate to new nodes simultaneously.

Unique Addressability. The sockets should be uniquely addressable within the cluster

(i.e. processes with different home nodes should be able to use the same ports and not

interfere with each other even if they migrate to the same node).

Migratability of Server Sockets. Socket migration should not be limited to sockets that

are already connected.

3.2 Related Work

This thesis project is built on MOSIX/OpenMosix, which was mentioned in section 1.1. The

last stable version of OpenMOSIX is still based on the 2.4.26 version of the Linux kernel. A

port to the 2.6 kernel has been in progress for a while now, and this unstable version still

doesn’t have any kind of socket migration capability. MOSIX2 was announced in August

2007 and is the “official” MOSIX for the 2.6 kernel. The primary new feature mentioned

in the white paper [10] is the ability to coordinate multiple clusters e.g. across a campus

network. The white paper goes into little detail regarding MOSIX2’s socket migration facil-

ities, describing the system as involving each process running on the cluster being assigned

a “mailbox”. Said description most likely indicates that making use of socket migration in

MOSIX2 involves writing (or recompiling) user applications to target a different socket type.
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Another clustering system for Linux is OpenSSI (Single System Image), which has an

emphasis on making the cluster appear as a single computer to the user, including a dis-

tributed filesystem, unique process IDs across the entire cluster, among other features. Much

like MOSIX, a significant portion of its functionality is implemented in the kernel, but, to

achieve the full single system image effect, changes are made to a number of userlevel utili-

ties, making installation more involved if one wants to run it on a distribution of Linux for

which it has not been packaged. Its development appears to be slightly more active than

that of OpenMOSIX, but like OpenMOSIX it still has no socket migration ability the stable

version is still stuck on the 2.4 branch of the Linux kernel. [3]

One more clustering system to mention is Kerrighed. Somewhat less mature than the

others mentioned, its development began in 1999 at the French research facility INRIA.

Nonetheless, it is currently under quite active development, having had several significant

releases since April. Kerrighed apparently has some features that would go a long way toward

transparent cluster operation, although some of them have been temporarily disabled in the

process of porting the system to the 2.6 branch of the Linux kernel, namely distributed

inter-process communication (pipes, local and TCP sockets), and distributed threads. [1]

A related project to mention is a standalone socket migration solution undertaken by

students at CMU in 2002 called MIGSOCK, designed to be independent of the particular

clustering/process migration system being used. The actual mechanism for achieving the

migration is in the kernel, predominantly in a kernel module, but still with some modifications

to the kernel itself. The migration of the sockets, though, is controlled by a usermode API,

which involved copying the socket information to a user buffer, and, as it was tested, saving

it to a shared filesystem, then, on the new node, creating a new socket for the migrated

process through the socket() system call and calling the MIGSOCK API to restore the

socket state. The implementation of this thesis aimed to improve over this project in three

ways: allowing multiple sockets to be connected on the same ports as long they didn’t

start on the same node; allowing communication to resume correctly even if both of the

14



communicating processes migrate at the same time; and in making the socket migration

process entirely automatic within the kernel instead of needing to be controlled by a user

process. [12]

3.3 Practical Considerations

This thesis project is chiefly concerned with the transport layer of the TCP/IP protocol

stack, which, as mentioned in chapter 2, consists primarily of UDP and TCP. UDP is the

simpler of the two protocols, being connectionless and a fairly thin layer over the underlying

IP (Internet Protocol) data packets. It does not generally make any guarantees regarding

the correctness of the packets or the order in which they are delivered. TCP is the “heavier”

of the two protocols, being strongly oriented around a connection between two endpoints

and providing a stream of data derived from the delivered packets, which are guaranteed

to be both the correct data and in the correct order independent of the order in which the

packets were received; and providing confirmation to the sender that the data was successfully

delivered by way of acknowledgment from the host on the receiving end. [cite RFCs 793 and

768]

Some of the more pragmatically-motivated design choices arise from the differences be-

tween the two protocols. Since UDP is so open-ended, migration of UDP sockets would be

more difficult and have greater overhead, quite possibly requiring the location of all UDP

sockets to updated across the entire cluster, so for this project I decided to limit myself to

TCP (or at least a TCP-like protocol; I discuss this further in section 3.4) sockets.

For the sake of portability, as mentioned in section 3.1, packets for the migratable sockets

are tunnelled over the existing IP stack to avoid changes to the existing networking code in

the kernel, for the most part. Although the differences between TCP and UDP mean that

UDP sockets take more work to migrate, they also mean that UDP works well as a thin

layer to build on, especially since this socket migration implementation provides (most of)
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the features of TCP itself and doesn’t need to duplicate the overhead of the protocol, so that

is the protocol over which the packets are tunnelled.

Application
UDPIPv4Link

user processes
kernel MTCP

Fig. 3.1. MTCP protocol layering

3.4 MTCP

In order to satisfy the requirement of sockets within the cluster being uniquely addressable

within the cluster (see section 3.1), some additions to the TCP packet header are needed.

The “new” version of the protocol with larger packet header is referred to as as MTCP

(Migratable Transmission Control Protocol). The new fields in the MTCP header are the

home nodes of the receiving and sending processes, as shown in figure 3.2.

Although MTCP is essentially an implementation of TCP according to the specifica-

tion, some of TCP’s features have not been omitted to limit the scope of the project. The

omissions/simplifications are using a fixed send/receive window, no support for urgent/out-

of-band data, and no support for any options, with the exception of using the option field

to signal migration.
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RST
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12
14
16
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20bytes
Fig. 3.2. MTCP header layout. Fields not in the original TCP header are shown in bold
face.

3.5 Metasockets

To facilitate socket migration, an additional channel of communication is needed for the pur-

pose of transmitting information about migrating sockets between nodes. This requirement

is fulfilled by node-to-node fixed (i.e. non-migrating) sockets referred to as “metasockets”.

The metasockets, although non-migrating, use the MTCP socket functionality, and are in-

dicated to be metasockets by setting the values of the ports and home nodes in the packet

header to 0.

Of the messages listed in table 3.1, the most important is MIGTOYOU, as it is the one into

which the socket information is serialized. Also, any packets that were pending to be sent

over the socket or delivered to the process are included in this message.

Use of the MIGACKED message allows both processes to migrate simultaneously and still

have both ends of the socket migrate successfully, because the socket information can be

retained on the previous node until the other end of the connection has acknowledged the

migration.

Information on a process’s server sockets is retained on the process’s home node even
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Title Description

MIGTOYOU Sent to the node a process is migrating to.

MIGACKED Sent to the node a process has migrated from when the remote process
has acknowledged the migration, such that the old socket entry is no
longer necessary.

MIGLISTEN Sent to a process’s home node when the process migrates if the process
has any listening (server) sockets open.

OPENLISTEN Sent to a process’s home node when that process opens a listening
(server) socket.

CLOSELISTEN Sent to a process’s home node when that process closes a listening
(server) socket.

Table 3.1. Metasocket messages

when that process has migrated so that a process wishing to connect can send a connection

request to the process’s home node and find out where to redirect its request if the process

has migrated away. Keeping this information up-to-date is facilitated by the MIGLISTEN,

OPENLISTEN, and CLOSELISTEN messages.
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Chapter 4

Implementation

This chapter details the key elements of the socket migration implementation put forth in

this thesis.

4.1 Organization

The code for the migratable socket implementation exists as a set of additions and modifica-

tions to version 2.4.26 of Linux kernel, which is the last version for which a stable version of

openMosix has been released. The main MOSIX/openMosix code is located in the directory

hpc in the kernel source tree, with header files being stored in the directory include/hpc.

Since the project is generally an extension of openMosix, the main source code and header

files are in a directory migsock under the hpc and include/hpc directories, respectively. The

header and source files specific to this project are listed in tables 4.1 and 4.2, respectively.

Additionally, the project also includes some small modifications to standard kernel and

OpenMosix source files. The added user system call is facilitated by changes to entry.S and

mosasm.H in arch/i386/kernel, as well as hpc/syscalls.c and include/asm-i386/

unistd.h. A new call in hpc/config.c initializes the migratable sockets at the same time as

openMosix is initizialized. Hooks in the files mig.c and remote.c in the directory hpc notify

the socket migration code when a process is migrating. Finally, a couple of additional macros
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Filename Description

migsock.h Function and structure declarations for use from other parts of the
kernel.

ms_internal.h Function, structure, etc. declarations for use by code in the hpc/mig-

sock directory.

ms_debug.h Declarations of debugging macros.

ms_systest.h Definitions of system call types for migratable sockets.

Table 4.1. Header files, stored in include/hpc/migsock.

Filename Description

ms_systest.c Migratable sockets system call functions.

ms_external.c Functions composing the API to the rest of the kernel.

ms_data.c Functions for creating, deleting, referencing, and accessing sockets.

ms_pkt.c Functions for creating, deleting, and manipulating packets. (This in-
cludes reading from and writing to a socket.)

ms_routing.c Functions for handling and responding to all packets coming into a
socket.

ms_input.c Functions for handling packets coming from the network.

ms_sockopts.c Functions for setting and retrieving socket options.

ms_metasock.c Metasocket routines.

ms_migd.c Daemon for responding to process migration.

ms_debug.c Debugging routines.

Table 4.2. Source files, stored in hpc/migsock.
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in include/linux/sched.h are used to find a process on the current node based on its home

node and the process ID it had on that node, as unique process IDs are not maintained across

the cluster. Also, inclusion of the migratable socket code into a compiled kernel is controlled

by several new options in the kernel build system added to the file arch/i386/config.in.

4.2 Sockets

As noted in table 4.2, general socket maintenance is handled in ms_data.c. This includes cre-

ation and deletion (ms_create_sock() and ms_delete_sock()), system-wide socket hash

table maintenance (ms_init_sock_tables(), ms_hash_sock(), and ms_unhash_sock()),

searching for sockets (ms find sock port(), ms find sock fd(), and ms find metasock()),

and socket locking (ms_acquire_slock() and ms_release_slock()). The socket structure,

struct mig_sock, is defined in ms_internal.h. Its fields can be divided into the following

categories:

• Local and remote connection information

• Socket status

• Sequence variables (mostly from section 3.2 of RFC 793)

• Synchronization and threading variables

• Packet queues

• Socket list/list entries

• Resend variables

• Socket options

• Fields used to facilitate migration
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struct mig sock {
int fd;
pid t pid;
int local hnode;
int local cnode; 5

int rem hnode;
int rem cnode;

u16 local port;
u16 rem port;

struct sockaddr in rem cip; 10

. . .
};

Fig. 4.1. The connection fields of the socket structure

The connection fields of the socket, shown in figure 4.1, are as follows: fd is the file

descriptor; pid is process ID (on the process’s home node) of the process that owns the

socket; local_hnode and rem_hnode are the home nodes of the local and remote processes,

respectively; local_cnode and rem_cnode are the current nodes of the local and remote

processes respectively; local_port and rem_port are the ports of the local and remote ends

of the connection; and rem_cip is a cache of the current IP address of the process on the

remote end of the connection.

The status fields are listed in figure 4.2 along with any value definitions for those fields

that are defined in my code. The values of the mts_state enumeration used by the state

field correspond directly to the states listed in section 3.2 of RFC 793. The iostate field

indicates if the socket can currently be read from or written to. It is defined as a bitfield

of the MTIO_RD and MTIO_WR values, for reading and writing respectively, which also happen

to match the values used by the how parameter of the shutdown() system call. If an error

occurs, causing the socket to be disconnected, the value of that error, as defined in errno.h,

is stored in the errno field until it is able to be received by the process that owns the socket.

The sequence variables listed in figure 4.3 mostly correspond to the send and receive se-

quence variables listed in section 3.2 of RFC 793 [14], although some of them are not currently
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enum mts state {
MTS CLOSED=0, MTS LISTEN, MTS SYN SENT, MTS SYN RECEIVED,
MTS ESTABLISHED, MTS FIN WAIT 1, MTS FIN WAIT 2, MTS CLOSE WAIT,
MTS CLOSING, MTS LAST ACK, MTS TIME WAIT

}; 5

#define MTIO RD 1
#define MTIO WR 2

struct mig sock { 10

. . .

enum mts state state;
int iostate;
int newly migrated; 15

long errno;

. . .
};

Fig. 4.2. The status fields of the socket structure, along with corresponding value definitions

struct mig sock {
. . .

u32 snd una;
u32 snd nxt; 5

u32 snd wnd;
u32 snd up;
u32 snd wl1;
u32 snd wl2;
u32 iss; 10

u32 rcv nxt;
u32 rcv wnd;
u32 rcv up;
u32 irs;
u32 deliver nxt; 15

u32 prev ack sent;

. . .
};

Fig. 4.3. The sequence variables for the socket structure
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in use due to the lack of support for urgent/out-of-band data (snd_up and rcv_up) or adap-

tive send/receive window sizes (snd_wl1 and snd_wl2). The two fields that don’t correspond

to any of the sequence variables listed in RFC 793 are deliver_nxt and prev_ack_sent.

The deliver_nxt field contains the sequence number of the next byte to return when a pro-

cess reads from the socket, allowing for reading partial packets, and prev_ack_sent is used

by the socket’s resend thread to keep track of when it needs to send a new acknowledgement.

struct mig sock {
. . .

struct semaphore lock;
pid t lock pid; 5

atomic t lock cnt;
struct task struct *rt thread;
wait queue head t wait queue;

. . . 10

};

Fig. 4.4. Sychronization and threading variables for the socket structure

The synchronization and threading variables of the socket structure are listed in figure 4.4.

The lock field is, as the name implies, the socket’s lock. When a socket is connected to

another process on the same node, updates to the other socket are made directly from

the same socket, necessitating recursive locks (i.e. allowing the same process to acquire

the same lock more than once). Semaphores in the Linux kernel do not natively have

this capability [15], so some additional structure is required, namely, the lock_pid and

lock_cnt fields. The lock_pid field is the ID of the process that currently holds the lock,

and lock_cnt is the number of times the lock is currently held. So, if a process fails to

acquire the lock immediately, but its process ID matches lock_pid, it simply increments

lock_cnt and continues on its way; otherwise, it sleeps on the lock. The wait_queue field

is for processes waiting for something to happen to the socket, such as the owner of the

socket waiting to receive data. The rt_thread field is a pointer to the process information
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for socket’s retransmission thread, which also handles other time-based socket maintenance.

struct mig sock {
. . .

struct list head connect queue;
struct list head list port; 5

struct list head list connect;

. . .
};

10

struct ms task {
pid t pid;
int cnode, hnode;
int prev node;
int socks count; 15

struct mig sock *socks[SOCKS PER PROCESS];
struct list head list;

};

Fig. 4.5. Socket list/list entry fields in the socket structure

Sockets are referenced in several ways. Global hash tables are maintained for sockets

by ports & home nodes, and by process; and server sockets maintain a list of pending

connections. The connect_queue field shown in figure 4.5 is head node for the list of pending

connections if the socket is a server socket, and, if the socket is a pending connection,

list_connect is its entry in the parent socket’s connection queue. The list_port is the

socket’s entry in the hash table that is sorted by port. (The only value used for hashing is

the local port, but of course when searching for a socket, remote port and local & remote

home nodes are checked as well.)

In the initial implementation, sockets were directly hashed by file descriptor, which would

result in hash collisions since file descriptors are not unique across multiple processes. Now,

there is a hash table for process information, including the sockets that process currently

owns. This information is stored in the ms_task structure, also shown in figure 4.5. Pointers

to a process’s sockets are stored in a simple array socks, and socks_count contains the
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number sockets owned by the process.

4.3 Packets

4.3.1 Structures

struct ms packet
{

struct sockaddr in addr;
int datalen;
int seqlen; 5

struct msghdr msg;
struct sk buff *skb;
unsigned long timestamp;
struct list head list;

}; 10

Fig. 4.6. Definition of the ms packet structure

The important packet-related structures, namely ms_packet and mtcp_hdr, are defined

in ms_internal.h. As shown in figure 4.6, the actual packet data is pointed to by an

embedded msghdr structure (the same structure used by the sendmsg() and recvmsg()

system calls), field msg. The socket address is embedded in the structure (field addr) since

the the msghdr structure contains a pointer to the address, and not the address structure

itself. The datalen field is the length of the packet data pointed to from within the msg

field, including the packet header. The seqlen field contains the TCP sequence length of

the packet. This means the length of the packet’s content in bytes, plus 1 each for the SYN

and FIN flags in the header if either of those are set. If the packet in question came from

the network, or the packet data is otherwise contained in a sk_buff structure (the kernel’s

existing packet structure), then the skb field is a pointer to that structure. Otherwise, it is a

null pointer. The timestamp field contains the time of the last attempt to send the packet,

using the kernel clock in the global variable jiffies. Finally, the list field is the packet’s
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struct mtcp hdr
{

u16 sport;
u16 dport;
u16 shnode; 5

u16 dhnode;
u32 seqnum;
u32 acknum;

unsigned int reserved1:4; 10

unsigned int dofs:4;
unsigned int fin:1;
unsigned int syn:1;
unsigned int rst:1;
unsigned int psh:1; 15

unsigned int ack:1;
unsigned int urg:1;
unsigned int reserved2:2;

u16 window; 20

u16 cksum;
u16 urgptr;

char options[0];
};

Fig. 4.7. Definition of the mtcp hdr structure

entry in a packet queue.

The mtcp_hdr structure, shown in figure 4.7, is the “MTCP” header structure and corre-

sponds directly to the header layout as shown in figure 3.2 on page 17. The sport and dport

fields are the source and destination ports of the two sockets, respectively. The shnode and

dhnode fields are the home nodes of the source and destination processes, respectively. The

seqnum field is the starting sequence number of the packet, and, if the ACK flag is set (field

ack), the acknum field contains the expected starting sequence number of the next incoming

packet. The field dofs is the “Data Offset” field, indicating the length of the header in

bytes divided by four. The 1-bit fields (indicated by a :1 after the field name) are header

header flags. In the current implementation, the PSH and URG flags are unused. SYN

(“synchronize”) is used when establishing the connection to set the initial sequence number,

27



FIN (“finish”) is used in terminating a connection, and a packet with the RST (“reset”) flag

set is sent in response to an invalid packet. The window field is the sequence length of the

receive window, the cksum is the packet’s checksum, the urgptr field is unused in the current

implementation. The zero-length array option is a convenience pointer to any option fields

that may come after the header.

4.3.2 Lower-Level Routines

What I would call the “lower-level” packet creation, manipulation, etc. routines are in the file

ms_pkt.c. There are two functions relating to packet creation, one of which is deprecated.

Originally, when I was sending packets on the network with a lower-level version of the

sendmsg() system call (sock_sendmsg()), which need a msghdr structure, which would

be created from a set of buffers by ms_create_pkt(). The new packet-creation routine,

ms_alloc_pkt(), allocates memory for the packet as the kernel’s internal packet structure,

sk_buff and populates the ms_packet structure with pointers into the sk_buff. This is

discussed further in section 4.4. The ms_free_pkt() function deallocates a packet that is

no longer needed.

Packets are transmitted by the ms_send_pkt() and ms_resend_pkt() functions, with

ms_resend_pkt() being used to send a packet that has already been sent once before. If the

packet is being sent to a local socket, these functions pass the packet to ms_route_pkt(),

removing the steps of populating and verifying the checksum field of the packet header

and going through the lower-level network stack. How these functions handle transmitting

packets across the network is covered in section 4.4.

Sending and receiving data from user applications are handled at the lower level by the

ms__sendmsg() and ms__recvmsg() functions, respectively. The ms_cksum_calc() function

calculates a packet’s checksum either to put into the header or to compare against the

checksum in the header in a received packet, and, finally, the ms_crop_pkt() function, as

the name implies, crops a packet.
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4.3.3 Routing

The two “top-level” functions in ms_routing.c are ms_route_pkt() and ms_sock_thread().

The function ms_route_pkt() processes an incoming packet (after the checksum has been

verified, if necessary), determining what socket it goes to and/or how to respond to the

packet. This is done as specified by the TCP specification, with the exception of the short-

cuts noted earlier, and some additional checks for socket migration that are discussed in

section 4.5.

For each connected or almost-connected socket, a background thread is created that

runs the function ms_sock_thread(). The ms_sock_thread() function handles sending

standalone acknowledgment (ACK) packets, resending packets if necessary, and sending

packets that are placed on the socket’s send queue. (Packets to send are only queued if a

send is attempted before the socket has finished connecting.)

4.4 Interface to Existing IP Stack

The key portions of the interface to the existing network code in the kernel are in ms_input.c

(handling packets incoming from the network) and ms_pkt.c (allocating lower-level packet

structure sk_buf, and transmitting packets on the network). The primary function in

ms_input.c is ms_recv_daemon(), which is launched as a separate thread on initializa-

tion and is responsible for creating the lower-level UDP socket used to send and receive

packets and for handling incoming packets. When a new packet arrives, it is passed to an-

other thread that creates an ms_packet structure for the packet and verifies that the packet

has come from within the cluster and that the checksum is matches the packet, then passes

the packet on to ms_route_pkt(). (When both sockets are on the same node, the checksum

field in the header is not populated or verified.)

As noted in section 4.3.2, the newer packet-creation routine ms_alloc_pkt() allocates

a lower-level packet buffer then creates an ms_packet structure to point to it. In both
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ms_send_pkt() and ms_resend_pkt(), if the packet’s sk_buff pointer skb is null, it calls

sock_sendmsg(), the lower level function that is called by the sendmsg() system call. To

do this checking for the pointer not to be in kernel memory space is temporarily disabled

since a buffer in user memory is expected. This results in two copies of the data to transmit

being made every time, first from user space into kernel space, and then a second time

by sock_sendmsg(). To improve performance in this area, I added the ms_alloc_pkt()

function and wrote the function ms_send_pkt_skb() to send the packet more directly from

my own code. If the packet is being retransmitted then the data still needs to be copied (hence

the need for the ms_resend_pkt() function), but this at least optimizes the common case. At

this point most of the signalling and acknowledgment code still uses the old ms_create_pkt()

function but ms__sendmsg() and ms__recvsmsg() were rewritten to take advantage of the

new functions so that most of the data transmitted on the socket is optimized in this way.

4.5 Socket Migration

The bulk of the socket migration code is in the files ms_metasock.c and ms_migd.c, al-

though there are also related bits in ms_external.c, ms_data.c, and ms_routing.c. All

metasocket processing is in ms_metasock.c, and ms_migd.c contains a daemon that handles

properly responding to process migration. This is necessary because attempting to perform

the necessary allocations, etc. directly from the context of the migration cause problems

with the migration process. Secondarily, ms_external.c contains the means of accessing

the code in ms_migd.c from the rest of the kernel and locks a process from migrating while

it is establishing a connection; ms_data.c contains some code for handling an internal rep-

resentation of processes; and ms_routing.c handles the interaction between a migrating

socket and the socket on the other end of the connection.
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4.5.1 Migration Daemon

In ms_migd.c, the migration daemon is accessed by the ms_signal_migd_outbound() and

ms_signal_migd_inbound() functions, for processes migrating onto or away from the node,

respectively. These functions are called from the ms_process_migrate_outbound() and

ms_process_migrate_inbound() functions in ms_external.c, mentioned in section A.

The daemon itself is contained in the function ms_migd_thread(), which, as appropri-

ate, calls functions ms_migd_handle_outbound() and ms_migd_handle_inbound(). From

here, inbound process handling is the simpler of the two cases, simply adding some internal

information about the process (what node it came from, etc.) and locks the process from

migrating away if connected sockets for the process have already migrated onto the node.

(A process with connected sockets is locked from migrating until the remote sockets have

acknowledged the migration.) For outbound processes, internal process information is also

appropriately updated, as well as the local_cnode field of all sockets owned by the process,

the metasocket message MIGTOYOU is sent to the new node (if the process has any sock-

ets), the MIGLISTEN message is sent to the home node for any server sockets, and on a

timeout (currently 30 seconds) the server sockets are deleted.

4.5.2 Metasockets

In ms_metasock.c, the primary means of accessing the metasocket functionality is the func-

tion msm_send_msg(), which accepts the message types listed in table 3.1 on page 18. The

actual metasocket functionality is actually accomplished in various background threads: lis-

tening for connection requests (msm listen thread()), receiving messages (msm accept

thread() and msm recv thread()), sending messages (msm connect thread() and msm

send thread()), and processing messages (msm_proc_thread()). Which functions are used

for sending and receiving messages whether the current node initiated the connection—

msm_accept_thread() and msm_send_thread if initiated by the other node, otherwise msm

recv thread() and msm_connect_thread(). In both cases, the lower-level functions called
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for sending and receiving are msm_send_loop() and msm_recv_loop(), respectively. Both of

these functions watch for either incoming messages or requests for new messages to send then

dispatch as appropriate. In the case of sending, the function msm_build_and_send_msg()

called, and for a message that is received it is passed on to the processing thread (a new

one is launched if one is not already running). Process migration messages are built by

msm_build_migtoyou_msg(), and all others are built by msm_build_connectinfo_msg().

Message structures are populated from incoming packets by msm_parse_incoming_msg()

and msm_parse_migtoyou_msg().

Each metasocket message type has its own function for appropriately handling the mes-

sage. These are msm proc migtoyou msg(), msm proc migacked msg(), msm proc

miglisten msg(), msm proc openlisten msg(), and msm proc closelisten msg() for MIG-

TOYOU, MIGACKED, MIGLISTEN, OPENLISTEN, and CLOSELISTEN, respectively.

As one might guess, the most involved message type to handle is the MIGTOYOU.

This involves allocating memory for the recreations of the sockets, copying the snapshots

of the sockets over, clearing and/or intializing any fields that do not transfer over directly

(pointers, locks, etc.), rebuilding any packet queues that might not have been empty, starting

retransmission threads, linking the sockets into system-level hash tables, and, if any of the

sockets are established connections (and the process has already arrived on the node), locking

the process from migrating. (The process is allowed to migrate again once all remote sockets

have acknowledged the migration.)

The MIGACKED message is sent to a socket’s previous node when the remote end of the

connection has acknowledged the migration. At this point the old copy of the socket structure

is deleted from the node. (The socket is retained so that ms_route_pkt() can respond with

a migration signal if the other end of the connection is unaware of the migration.)

The MIGLISTEN, OPENLISTEN, and CLOSELISTEN messages are all sent to a pro-

cess’s home node to report changes in a server socket. The MIGLISTEN message indicates

that the process has migrated to a new node and the specified socket’s should local_cnode
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field should be updated with the process’s new node. The OPENLISTEN and CLOSELIS-

TEN messages indicate that the specified socket should be created (with the local_cnode

initialized to the process’s new current node) or deleted, respectively.

4.5.3 Miscellaneous Migration Handling

Although ms_routing.c does not contain primarily socket migration code, it plays an impor-

tant role in handling socket migrations, from both the migrating end, and from the (usually)

stationary end (although the migration system is designed such that it will work even if the

processes on both sides of the connection migrate at the same time), as well as the node from

which the socket has migrated. The ms_route_pkt() function, as well as several lower-level

functions it calls, handles several different cases related to socket migration. In the case of

the socket opposite the migration, if the socket receives either a valid packet from an address

different from the one cached in the socket structure, or a valid packet from the old node

with a migration signal in the option field of the packet header, it updates the rem_cnode

field of the socket as well as the IP address cache. In the case of the node away from which

the socket has migrated, as long as the old copy of the socket structure has not yet been

deleted, if a packet is received for the socket, the response is a packet with the migration

signal in the header. Finally, for the node to which the socket has just migrated, as indicated

by the flag newly_migrated in the socket structure being set, if a valid acknowledgment is

received from the remote socket, that newly_migrated flag is cleared and a MIGACKED

metasocket message is sent to the node from which the socket had migrated.

The socket’s retransmission thread ms_sock_thread() in ms_routing.c also plays a role

in ensuring that socket migrations go smoothly and in preventing data loss when a socket

migrates. If the remote socket has migrated while the thread was asleep, any packets that

might be on the socket’s resend queue are retransmitted immediately, this time to the new

address (with a new checksum as appropriate). Also, for a newly-migrated socket, acknowl-

edgment packets are periodically sent to the remote socket until the socket’s migration is
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acknowledged.

To simplify socket migration, processes are, in certain cases, temporarily prevented from

migrating to another node. These are when a process owns a socket that is not in either the

Closed or Established state (i.e. when it is in the process of connecting or closing the connec-

tion), and when the process owns a connected socket that just migrated but whose migration

hasn’t yet been acknowledged by the remote socket. The latter case has been mentioned in

sections 4.5.1 and 4.5.2; the process is locked from migrating from whichever arrives later—

the process, or the socket. The process is then re-allowed to migrate in ms_routing.c when

a valid acknowledgment is received from the remote socket. All instances of disabling and re-

enabling process migration due to socket state are handled as appropriate in ms_external.c

and ms_routing.c.
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Chapter 5

Testing and Performance

In this chapter the tests performed to insure the correct functioning of the socket implemen-

tation are described. The last of which was also a performance benchmark once the code

was working.

5.1 Userspace Unit Tests

At the beginning of this project core portions of the TCP implementation (socket and packet

structures, some routing and packet processing code) were written such that they could be

compiled in a userspace executable so that unit testing could be performed on at least some

of the code. These tests fell into four primary categories: packet cropping, packet signalling,

socket hashing, and packet routing.

The user executable ms_crop_test and ms_pcf_crop_test verified the correct func-

tioning of the ms_crop_pkt() function used in handling packets that straddle the edge of

either duplicate data or the end of the receive window. Whereas ms_crop_test manually

created the packet from the test, ms_pcf_crop_test added calls to ms_create_pkt() and

ms_free_pkt() to test packet allocation as well.

The programs ms_signs_test and ms_sigrem_test verified the correctness of the pack-

ets created by the functions ms_signal_nosock() and ms_signal() functions in
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ms_routing.c, respectively. The first is for replying to an incoming packet that doesn’t

match the information for a known, and the second is for building packets to reply to an

incoming packet addressed to a known socket.

The ms_hash_test program verified the proper functioning of the ms_hash_sock() and

ms_unhash_sock() functions in ms_data.c for adding sockets to and removing sockets from

the system-level socket hash table, as well as proper retrieval from the hash tables with

ms_find_sock_port() and ms_find_sock_fd().

Finally, ms_route_test() created sockets of varying states, added to them to the system

hash table and verified the correct response of ms_route_pkt() to various valid and invalid

incoming packets.

5.2 Kernel Tests

Once the basic socket implementation code was added to the kernel and run successfully,

simple client and server programs were written, called client1 and server1. The client

would send a text file to the server one line at a time, which would be echoed back by the

server and checked by the client to verify that the echoed data matched the original data. At

this point, only communication with other sockets on the same node was supported, but this

same test program was also used to verify proper communication over the network before

adding the actual migration functionality to the implementation.

To test the migration functionality a second version of the client/server test programs was

written, called client2 and server2. These programs transmitted the data as blocks instead

of lines of text and would migrate periodically as specified on the command line (source code

listed in appendix C). For performance comparison against the standard sockets a version

of the two programs was written, that did the same thing except using the standard socket

system calls. These were called client2_std and server2_std.
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5.3 Performance

As mentioned in section 5.2, client2/server2 and client2_std/server2_std were used

to do comparative performance testing on two separate three-node clusters. The first cluster

was a set of three eMachines computers with 600 MHz Intel Celeron processors and 160 MB

RAM on a 100 megabit network. The second was a set of Atipa dual-processor AMD Athlon

machines with 2 GB RAM on a gigabit network (two nodes had 1.8 GHz processors and

the other had 2 GHz processors). Files of varying sizes were used for comparison, and in

all cases the file would be transmitted three times before migrating to the next node (the

migration pattern used is shown in table 5.1), and the time taken for each transmission

would be measured on the client side.

Node 1 Node 2 Node 3

Run 1 server client

Run 2 server / client

Run 3 server / client

Run 4 server client

Run 5 server / client

Table 5.1. Process migration pattern used in performance testing. Nodes 1 and 2 are the
home nodes for the server and client processes, respectively.

In the tests run, the time elapsed for each transmission is less a reflection purely of

bandwidth but a combination of bandwidth and latency, as the client would wait for the

server to echo the last block of data before sending the next block. Nonetheless, to present

the performance data in a more “raw”, but still readable, form, I have divided the file size

by time taken to transmit the file and converted the value into megabits per second.

The table and chart on page 38 show the performance on the cluster of single-Celeron

nodes for the standard sockets and of the migratable sockets both initially and after some

performance optimizations that are discussed below. As can be expected, there is some
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Cur Standard Mig. Socks Mig. Socks
Nodes (Mb/s) before opt. (Mb/s) imp. after opt. (Mb/s) imp.

1,2 8.25 7.12 −13.73% 7.69 −6.73%

1,1 2.34 3.58 52.84% 3.62 54.53%

2,2 8.22 7.11 −13.51% 7.65 −6.89%

2,3 2.69 3.04 13.08% 3.21 19.44%

3,3 2.74 3.13 14.12% 3.28 19.71%

Table 5.2. Comparative performance on the cluster of single-Celeron nodes, between the
standard sockets and migratable sockets, before and after optimizations. (The first column
shows which node the server and client are on, respectively, and the “imp.” (improvement)
columns show the percentage gain or loss compared to using standard sockets.)

Fig. 5.1. Chart of percentage performance gains and losses on the cluster of single-Celeron
nodes before and performance optimizations.
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performance loss in comparison to the standard sockets when both processes are on their

home nodes. In the test program, the client is stepping through a buffer containing all

the data from the file while the server is receiving each block of data into the same part

of memory, meaning that more memory is accessed regularly on the client side, which has

some interesting performance effects when both processes are moved onto either the server’s

home node (1,1) or the client’s home node (2,2) which could possibly be generalized to the

case where one process is primarily sending data (the client in this case) and the other is

primarily receiving data (the server in this case). The case where both processes are moved

to the client’s node appears to be not much different (in terms of performance) from the case

where both processes are on their home nodes, but when both processes are on the server’s

home node performance improves significantly over the standard sockets, even without the

performance optimizations. When both processes are moved away from their home nodes

(2,3 and 3,3) performance is still improved, but the gain is more modest in comparison to

both processes running on the server’s home node.

As can be noted from table 5.2 and the chart in figure 5.1, the initial performance was

somewhat disappointing, with performance gain when both processes are away from their

home nodes being approximately equal to the performance loss when they are both on their

home nodes. In an effort to address these issues some effort was put into optimizing for

performance. The two greatest inefficiencies in the code at that point were that user data

for packets transmitted over the network was being copied twice due to calling a lower-

level equivalent of the sendmsg() system call that still expected userspace buffers, and that

there were a number of places where steps could be short-circuited in the common case,

particularly in queuing packets when they did not need to be queued. With these issues

addressed, as shown on page 38, the gap in performance lost was closed by just over half,

and the performance gain when both processes are moved away from their home nodes (2,3

and 3,3) increased almost by half.

Moving from single-processor computers to dual-processor computers revealed some syn-
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Cur Standard Mig. Socks
Nodes (Mb/s) (Mb/s) imp.

1,2 34.58 30.71 −11.20%

1,1 6.01 8.42 40.11%

2,2 36.19 32.21 −11.00%

2,3 5.05 5.82 15.29%

3,3 5.01 5.77 15.17%

Table 5.3. Comparative performance on the cluster of dual-Athlon nodes between the
standard and migratable sockets. (The first column shows which node the server and client
are on, respectively, and the “imp.” (improvement) column shows the percentage gain or
loss compared to using standard sockets.)

Fig. 5.2. Chart of percentage performance gains and losses on both clusters.
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chronization bugs in the code, and after those were corrected additional performance data,

shown on page 40, was collected. The performance in comparison to standard socket is sig-

nificantly lower than on the cluster of single-processor nodes, although still an improvement

over the initial relative performance on the eMachines cluster. The drop is most likely due to

coarse-grained locking on the migratable sockets compared the existing sockets in the Linux

kernel, which has been heavily optimized for multi-processor systems. This is discussed

further in the Future Work section.
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Chapter 6

Conclusion and Future Work

This chapter gives the conclusions drawn and discusses ways that this project could be

improved and expanded.

6.1 Conclusion

Although all of the design goals initially set out for this project were not met, namely full

transparency of operation, a working implementation of migrating sockets that do exhibit a

performance improvement over the standard nonmigrating sockets was demonstrated. Look-

ing at the design goals laid out in section 3.1 we see that the implementation is, indeed,

at the kernel level, and that the socket implementation is fairly self-contained making it

relatively portable. As for interoperability, while the sockets implemented are able to only

communicate with each other, standard TCP sockets are still available for applications to

use for communicating with hosts outside the cluster (the original thought of intercepting

the socket system calls was to use the migratable sockets for intracluster communication, but

fall back to the standard TCP sockets for communication with hosts outside the cluster).

As for maintaining state, the sockets are fully reconstructed on migration (and processes

are temporarily prevented from migrating if a socket is neither closed nor fully connected,

so as to avoid any odd communication that might result from migrating while the socket
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is in an “inbetween” state). Additionally, any outstanding packet queues are reassembled

during socket migration, ensuring that no packets are lost on either end of the connection.

Because the old copy of the socket is retained on migration until the socket on other end

of the connection has acknowledged the migration, each socket is still able find the new

location of the other one, allowing for both to migrate simultaneously while maintaining the

connection. As for cluster-wide unique addressing, the addition of home nodes to the packet

headers allows sockets from differing home nodes to use the same port while temporarily on

the same node. Finally, because the current location of a server socket is maintained on its

home node, this allows clients to connect even if it has migrated away (because the home

node responds with a migration signal).

6.2 Future Work

Port to 2.6 Linux kernel. As I noted in the introduction, in this project I added to the

stable version of OpenMosix, which is still tied to version 2.4.26 of the Linux kernel.

It would be desirable to move to a more recent version under the 2.6 branch. One

possibility here would be to port it to the as-yet unstable version of openMosix, or to

port it to another process migration system that works with the 2.6 kernel.

Further performance optimizations. Although some reasonable gains in performance

were made, more optimizations can still be made. Particular ways performance could

be improved would be by reducing the number of memory allocations (the existing

TCP code in the kernel allocates memory for packets by page instead of allocating

the packets individually), and, on multiprocessor systems in particular, reducing the

socket-access related critical regions as much possible.

System call transparency. As mentioned when discussing the design of this socket im-

plementation, one of the original goals in this project was to allow existing networking

applications to take advantage of the socket migration without needing to be rewritten,
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and that this is a feature that did not ultimately make it into the project. The sock-

ets, and the handling of their migration, would need to be reworked a bit to achieve

this, because the sockets are tied directly to the process using them, which is not true

of standard TCP sockets (these are instead associated with the filesystem), making

it possible for a server application to hand off a new connection to another process.

To accomplish this, the sockets would need to be accessible to any process with same

home node as the process that created the socket, and some algorithm for determining

which process uses the socket the most and that the socket should therefore follow.

Adapt as back-end for MPI or other message-passing interface. Alternately to the

above option, the socket migration facility could be adapted as the back end for an

existing parallel software messaging interface such as MPI.

Deeper integration with kernel network stack. If this “MTCP” protocol were adapted

into another transport protocol at the same level as UDP and TCP, it would be pos-

sible to eliminate the overhead of the UDP header. Another possibility would be to

move the home node information into the option field of the TCP header to allow

interoperability with standard TCP hosts, where the sockets would fallback into stan-

dard TCP/non-migratable functionality when communicating with hosts outside of the

cluster.
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Appendix A

Kernel Programming Interface

The original intention for this project was to make the operation of migratable sockets
transparent to user processes by redirecting standard system calls that would operate on
any of the “special” sockets to my code, but, as it currently stands, user processes have
to use a separate set of system calls to take advantage of socket migration. Many of the
functions listed here present a BSD-style socket interface that is currently accessed from a
system call (sys_migsock(), discussed in section B), but with further work could be called
from the standard system calls when the request applies to a migratable socket.

1. long ms_init(void)

Description
This function initializes the migratable sockets.

Return Value
Returns 0 on success or a negative error value on failure.

2. struct mig sock *ms find sock(unsigned int fd)

Input Arguments
fd The file descriptor of the socket to look for.

Description
This function searches for a socket owned by the currently running process that has
the specified file descriptor. If it is initially unable to find the socket or the process
information, it will sleep up to 500 milliseconds in case the socket is migrating over but
hasn’t yet completed the migration. If the socket is found, its lock is released before
the function returns.

Return Value
Returns a pointer to the requested socket if it is found, or a null pointer if the socket
is not found.

3. long ms listen(unsigned int fd, u16 lport, struct ms opts *opts)

Input Arguments
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fd The desired file descriptor for the new socket.
lport The local port to bind to.
opts A pointer to the socket options to use. Default options are used if it is a null
pointer.

Description
Compared to a BSD-style socket interface, this function is roughly equivalent to calling
socket(), bind(), and then listen(). It attempts to create a server socket and bind
that socket to the requested port. If the currently-running process is not on its home
node, the metasocket message OPENLISTEN is sent to the home node.

Return Value
Returns 0 on success, or a negative error value on failure. Specific error states han-
dled in the function include existence of a conflicting socket (EINVAL), and insufficient
memory (ENOMEM).

4. long ms accept(struct mig sock *ms, long fd new, struct sockaddr in

*addr)

Input Arguments
ms A pointer to the listening socket. fd new The desired file descriptor for the new
socket if a new connection is established.
addr A pointer to a user buffer to fill in with the address of the remote host if a new
connection is established.

Description
This function accepts a connection request on a listening socket. If the socket is not
non-blocking, this function will sleep on the socket until there is a new connection
request.

Return Value
Returns 0 on success, or a negative error value on failure. Specific error conditions
handled by this function include the file descriptor in fd_new being already in use
(EBADF), addr being an invalid pointer (EFAULT), and no pending connections on a
non-blocking socket (EAGAIN).

5. long ms connect(unsigned int fd, u16 peer, u16 lport, u16 rport,

struct ms opts *opts)

Input Arguments
fd The desired file descriptor for the new socket.
peer The node number of the host to connect to.
lport The local port to use.
rport The port to connect to.
opts A pointer to the socket options to use. Default options will be used if the
pointer is null.
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Description
This function attempts to create a new socket and connect to the requested host. If
this function is called from sys_migsock(), the second parameter is taken to be a 32-
bit IP address in network byte ordering (big-endian) which sys_migsock() converts
to a node number.

Return Value
Returns 0 on success, or a negative error value on failure. If the socket is requested to
be non-blocking, the function will return as soon as the socket has been created, but
before the connection has been established, with the EINPROGRESS error value. Specific
error cases handled in this function include insufficient memory (ENOMEM) and invalid
peer value (EINVAL).

6. long ms sendmsg(struct mig sock *ms, struct msghdr *msg, unsigned int

flags)

Input Arguments
ms A pointer to the socket on which to send the data.
msg A msghdr struct pointing to the data to send.
flags A bitwise OR of flags indicating how the data is to be sent.

Description
This function sends data as specified by a msghdr structure. The flags parameter
is roughly equivalent to the one in the sendmsg() system call, but the only flag that
actually has any effect is MSG_NOSIGNAL, which causes a SIGPIPE signal not to be sent
when the socket is not writable, although it will still return the error value EPIPE.

Return Value
Returns 0 on success, or a negative error value on failure.

7. long ms send(struct mig sock *ms, void *buf, size t len, int flags)

Input Arguments
ms A pointer to the socket on which to send data.
buf A pointer to the data to send.
len The length of the buffer.
flags A bitwise OR of flags indicating how the data is to be sent.

Description
This function sends data the same way as ms_sendmsg(), except that it is passed a
pointer to a single buffer to send.

Return Value
Returns 0 on success, or a negative error value on failure.

8. long ms recvmsg(struct mig sock *ms, struct msghdr *msg, unsigned int

flags)
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Input Arguments
ms A pointer to the socket to read from.
msg A pointer to a msghdr structure indicating the buffers into which to copy the
data.
flags A bitwise OR of the values in table A.1 indicating how to receive the data.

Description
This function reads data from a socket’s receive queue, potentially waiting for data
to arrive. If the socket is non-blocking and there is no data in the receive queue, the
function will return immediately with an EAGAIN error value, unless the MSG_WAITALL

flag is set.

Return Value
On success, returns the number of bytes read, or 0 if the connection has ended and
there is no more data to read. If there is an error, the appropriate negative error value
is returned.

Title Description

MSG_PEEK Retrieves data from the receive queue without actually removing that
data from the queue.

MSG_DONTWAIT Returns immediately with the EAGAIN error value if there is no data in
the receive queue.

MSG_WAITALL Waits for enough data to fill the buffer(s).

Table A.1. Flags supported by ms recvmsg() and ms recv()

9. long ms recv(struct mig sock *ms, void *buf, int buflen, unsigned int

flags)

Input Arguments
ms A pointer to the socket to read from.
buf A pointer to the user buffer to copy the data to.
buflen The length of the buffer in bytes.
flags A bitwise OR of any of the values in table A.1 indicating how to receive the
data.

Description
This function works the same way as ms_recvmsg(), except that it is passed a single
buffer into which to read the data.

Return Value
On success, returns the number of bytes read, or 0 if the connection has ended and
there is no more data to read. If there is an error, the appropriate negative error value
is returned.
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10. long ms shutdown(struct mig sock *ms, int how)

Input Arguments
ms A pointer to the socket on which to end the connection.
how Which part of the connection to end. Valid values are SHUT_RD, SHUT_WR, and
SHUT_RDWR, for read, write, and both, respectively.

Description
Ends the connection on a socket without destroying the socket itself.

Return Value
Returns 0 on success, or a negative error value on failure.

11. long ms close(struct mig sock *ms, int exiting)

Input arguments
ms A pointer to the socket to close.
exiting A boolean value indicating if the close is due to the process exiting. If the
call is from sys_migsock() this value is always false and the user is not allowed to
pass in this parameter.

Description
This function closes a socket.

Return Value
Returns 0 on success, or a negative error value on failure.

12. long ms exit(void)

Description
Called when the current process is exiting to close all outstanding sockets.

Return Value
Returns 0 on success, or a negative error value on failure.

13. long ms setsockopt(struct mig sock *ms, int level, int optname, char

*optval, int optlen)

Input Arguments
ms A pointer to the socket to set an option for.
level The level of the option to set. Recognized values are SOL_SOCKET, SOL_IP,
SOL_TCP, and SOL_FILE. (SOL_FILE is nonstandard and would be accessed by the
fcntl() system call in a fully-integrated version of this implementation.)
optname The option to set as listed in table A.2.
optval A pointer to the new value to set the option to.
optlen The length in bytes of optval.

Description
Sets a socket option.
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Return Value
Returns 0 on success, or a negative error value on failure.

14. long ms getsockopt(struct mig sock *ms, int level, int optname, char

*optval, int *optval)

Input Arguments
ms A pointer to the socket to retrieve an option for.
level The level of the option to retrieve. Recognized values are SOL_SOCKET, SOL_IP,
SOL_TCP, and SOL_FILE.
optname The option to retrieve as listed in table A.2.
optval A pointer to a buffer into which to copy the option’s value.
optlen A pointer to an int variable to set with the option value’s length.

Description
Retrieve’s the value of a socket option.

Return Value
Returns 0 on success, or a negative error value on failure.

15. pid t ms get pid from mypid(pid t mypid, u16 hnode)

Input Values
mypid The process ID on the process’s home node of the process to find.
hnode The home node of the process to find.

Description
Finds the process ID on the current node of a process that has migrated to current
node from its home node.

Return Value
Returns the process ID of the process in question, or the negative error value ESRCH if
the requested process is not found.

16. long ms process migrate inbound(struct task struct *p, int prev node)

Input Arguments
p A pointer to the process structure for the process that is migrating onto the
current node.
prev node The node that the process has migrated away from.

Description
Performs the necessary actions and checks for a process that has just migrated onto
the current node.

Return Value
Returns 0 on success, or a negative error value on failure.
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Level Option Data Type Description

SOL_SOCKET SO_ERROR int Read-only. Gets (and resets) the
socket’s error variable.

SOL_SOCKET SO_LINGER struct linger Gets or sets the linger and timeout
settings for closing the socket.

SOL_SOCKET SO_RCVLOWAT int Gets or sets the minimum number of
bytes to wait for in a receive call.

SOL_SOCKET SO_RCVTIMEO struct timeval Gets or sets the default timeout in a
receive call.

SOL_IP IP_TTL int Read-only. Gets the time-to-live
(TTL) value for the underlying UDP
socket.

SOL_IP IP_RECVERR struct
sock extended err

Read-only. Gets extended error in-
formation on the underlying UDP
socket.

SOL_IP IP_MTU_DISCOVER int Read-only. Gets the path-MTU dis-
covery (maximum transmission unit)
setting for the underlying UDP
socket.

SOL_IP IP_MTU int Read-only. Gets the MTU (maxi-
mum transmission unit) of the under-
lying UDP socket.

SOL_TCP TCP_LINGER2 int Number of seconds to wait before
forcing a close on an orphaned socket.

SOL_FILE FILE_FLAGS int Gets or sets the file flags for the
socket. (The only one observed is
O_NONBLOCK.)

SOL_FILE FILE_SET_FLAGS int Write-only. ORs the file flags value
with the value passed in.

SOL_FILE FILE_CLEAR_FLAGS int Write-only. ANDs the file flags with
the complement of the value passed
in.

Table A.2. Socket options supported by ms setsockopt() and ms getsockopt()
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17. long ms process migrate outbound(struct task struct *p, int new node)

Input Arguments
p A pointer to the process structure for the process that is migrating away from the
current node.
new node The node onto which the process is migrating.

Description
Performs the necessary actions and checks when a process is migrating away from the
current node.

Return Value
Returns 0 on success, or a negative error value on failure.
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Appendix B

User Application Programming

Interface

Access to the socket migration functionality is currently provided through the system call

sys_migsock() in ms_systest.c, which is only compiled if the build option CONFIG MOSIX MIGSOCK SYSTEST

is enabled. Here are the details of sys_migsock():

long sys migsock(int call, unsigned long *args)

Input Arguments
call The function to call, as listed in table B.1. The MSC_INIT call is deprecated
since ms_init() is now called automatically when OpenMosix is initialized.
args A pointer to an array of arguments to pass to the desired function.

Description
The parameters in the args array generally map directly to the parameter list of
the desired function, with the exception that if the function to be called expects
a socket pointer as the first parameter, this function attempts to do a socket
lookup, calling ms_find_sock(), using the first value passed as the socket’s file
descriptor.

Return Value
Returns 0 on success or a negative error value on failure.

In my userspace testing code the module ms_calls.c contains system call wrappers for

each of the functions listed in table B.1. The header and source for this module are listed
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Value Function Called Value Function Called

MSC_INIT ms_init() MSC_SEND ms_send()

MSC_LISTEN ms_listen() MSC_SHUTDOWN ms_shutdown()

MSC_ACCEPT ms_accept() MSC_CLOSE ms_close()

MSC_CONNECT ms_connect() MSC_SETSOCKOPT ms_setsockopt()

MSC_SENDMSG ms_sendmsg() MSC_GETSOCKOPT ms_getsockopt()

Table B.1. System call types for sys migsock().

in sections B.1 and B.2, respectively. Any differences in parameter lists beyond replacing

a pointer to the socket to operate on with a file descriptor are mentioned in discussing the

appropriate function in section A. If the system call fails, the value returned to the userspace

program will be −1, and the global errno variable will be set with a positive version of the

error value.

B.1 ms calls.h

#ifndef MSCALLS H
#define MSCALLS H

#include <asm/types.h>
#include <netinet/in.h> 5

struct ms opts {
int fd flags;
int linger;
int linger len; 10

int linger2;
unsigned int rcvlowat;
unsigned long rcvtimeo;
unsigned int sndlowat;
unsigned long sndtimeo; 15

};

long ms init(void);
long ms listen(long fd, u16 lport, struct ms opts *opts);
long ms accept(long fd, long fd new, struct sockaddr in *addr); 20

long ms connect(long fd, u32 ip, u16 lport, u16 rport, struct ms opts *opts);
long ms sendmsg(long fd, struct msghdr *msg, unsigned int flags);
long ms send(long fd, void *buf, size t len, int flags);
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long ms recvmsg(long fd, struct msghdr *msg, unsigned int flags);
long ms recv(long fd, void *buf, int buflen, unsigned int flags); 25

long ms shutdown(long fd, int how);
long ms close(long fd);
long ms setsockopt(long fd, int level, int optname, char *optval, int optlen);
long ms getsockopt(long fd, int level, int optname, char *optval, int optlen);

30

#endif

B.2 ms calls.c

#include <asm/unistd.h>
#include <hpc/migsock/ms systest.h>
#include <stdlib.h>
#include <errno.h>
#include "ms_calls.h" 5

/* The kernel tree pointed to by the makefile MUST HAVE the migsock() syscall
* configured for this to compile correctly.
*/

static syscall2(long, migsock, int, call, unsigned long *, args) 10

long ms init(void)
{

return migsock(MSC INIT, NULL); 15

}

long ms listen(long fd, u16 lport, struct ms opts *opts)
{ 20

long args[3];

args[0] = fd;
args[1] = (long)lport;
args[2] = (long)opts; 25

return migsock(MSC LISTEN, args);
}

30

long ms accept(long fd, long fd new, struct sockaddr in *addr)
{

long args[3];

args[0] = fd; 35

args[1] = fd new;
args[2] = (long)addr;

return migsock(MSC ACCEPT, args);
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} 40

long ms connect(long fd, u32 ip, u16 lport, u16 rport, struct ms opts *opts)
{

long args[5]; 45

args[0] = fd;
args[1] = (long)ip;
args[2] = (long)lport;
args[3] = (long)rport; 50

args[4] = (long)opts;

return migsock(MSC CONNECT, args);
}

55

long ms sendmsg(long fd, struct msghdr *msg, unsigned int flags)
{

long args[3];
60

args[0] = fd;
args[1] = (long)msg;
args[2] = (long)flags;

return migsock(MSC SENDMSG, args); 65

}

long ms send(long fd, void *buf, size t len, int flags)
{ 70

long args[4];

args[0] = fd;
args[1] = (long)buf;
args[2] = (long)len; 75

args[3] = (long)flags;

return migsock(MSC SEND, args);
}

80

long ms recvmsg(long fd, struct msghdr *msg, unsigned int flags)
{

long args[3];
85

args[0] = fd;
args[1] = (long)msg;
args[2] = (long)flags;

return migsock(MSC RECVMSG, args); 90

}
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long ms recv(long fd, void *buf, int buflen, unsigned int flags)
{ 95

long args[4];

args[0] = fd;
args[1] = (long)buf;
args[2] = (long)buflen; 100

args[3] = (long)flags;

return migsock(MSC RECV, args);
}

105

long ms shutdown(long fd, int how)
{

long args[2];
110

args[0] = fd;
args[1] = (long)how;

return migsock(MSC SHUTDOWN, args);
} 115

long ms close(long fd)
{

return migsock(MSC CLOSE, &fd); 120

}

long ms setsockopt(long fd, int level, int optname, char *optval, int optlen)
{ 125

long args[5];

args[0] = fd;
args[1] = (long)level;
args[2] = (long)optname; 130

args[3] = (long)optval;
args[4] = (long)optlen;

}

135

long ms getsockopt(long fd, int level, int optname, char *optval, int optlen)
{

long args[5];

args[0] = fd; 140

args[1] = (long)level;
args[2] = (long)optname;
args[3] = (long)optval;
args[4] = (long)optlen;

} 145
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Appendix C

Sample Client/Server Application

Source

This appendix contains the source code for the final testing and benchmarking program,

client2/server2. These are contained in four files, client2.c, server2.c, and the code

shared between the two programs, test_common.c and test_common.h.

C.1 test common.h

#ifndef TEST COMMON H
#define TEST COMMON H

void mosctl init();
unsigned short mosctl get home node(); 5

void mosctl lock();
void mosctl unlock();
void mosctl goto(unsigned short node);
unsigned short mosctl get cur node();
#define mosctl goto home() (mosctl goto(0)) 10

size t build msg(int msgtype, unsigned short curnode, void *data, long datalen, void *msgbuf);

typedef struct hdr {
int msgtype;
long msglen; 15

unsigned short curnode;
} hdr t;
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#define MSGTYPE START 2
#define MSGTYPE DATA 1 20

#define MSGTYPE END 0

#endif

C.2 test common.c

#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <sys/types.h>
#include <unistd.h> 5

#include "test_common.h"

static char mosctl hnode path[64] = "/proc/hpc/admin/mospe";
static char mosctl goto path[64];
static char mosctl where path[64]; 10

static char mosctl lock path[64];

static unsigned short mosctl hnode;

static void write num(char *path, int num); 15

static int read num(char *path);
static inline void mosctl write num(char *path, int num);
static inline int mosctl read num(char *path);

void mosctl init() 20

{
pid t pid = getpid();
sprintf( mosctl goto path, "/proc/%d/goto", pid);
sprintf( mosctl where path, "/proc/%d/where", pid);
sprintf( mosctl lock path, "/proc/%d/lock", pid); 25

mosctl lock();
mosctl hnode = (unsigned short)mosctl get home node();

}

static inline void mosctl write num(char *path, int num) 30

{
FILE *f = fopen(path, "wt");
if(NULL==f) {

printf("Unable to open file \"%s\": %s (errno %d)\n\n", path, strerror(errno), errno);
fflush(stdout); 35

return;
}
fprintf(f, "%d\n", num);
fclose(f);

} 40

static inline int mosctl read num(char *path)
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{
FILE *f = fopen(path, "rt");
int num = 0; 45

if(NULL==f) {
printf("Unable to open file\"%s\": %s (errno %d)\n\n", path, strerror(errno), errno);
fflush(stdout);
return;

} 50

fscanf(f, "%d", &num);
fclose(f);
return num;

}
55

unsigned short mosctl get home node()
{

return (unsigned short) mosctl read num( mosctl hnode path);
}

60

void mosctl lock()
{

mosctl write num( mosctl lock path, 1);
}

65

void mosctl unlock()
{

mosctl write num( mosctl lock path, 0);
}

70

void mosctl goto(unsigned short node)
{

mosctl unlock();
mosctl write num( mosctl goto path, node);

mosctl lock(); 75

}

unsigned short mosctl get cur node()
{

unsigned short node = (unsigned short) mosctl read num( mosctl where path); 80

return (0==node ? mosctl hnode : node);
}

size t build msg(int msgtype, unsigned short curnode, void *data, long datalen, void *msgbuf) 85

{
hdr t *ptr = msgbuf;
size t msglen = (MSGTYPE DATA==msgtype ? datalen : 0) +

sizeof(int) + sizeof(long) + sizeof(unsigned short);
90

ptr−>msgtype = msgtype;
ptr−>msglen = msglen;
ptr−>curnode = curnode;
if(MSGTYPE DATA==msgtype) {

ptr++; 95

memcpy(ptr, data, datalen);
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}
return msglen;

}

C.3 client2.c

#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <stdlib.h>
#include <sys/socket.h> 5

#include <netdb.h>
#include <time.h>
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h> 10

#include <math.h>
#include "ms_calls.h"
#include "test_common.h"

#define PORTNUM 1000 15

#define FD 100
#define BUFSIZE 2000

#define BLOCK SIZE 1024
20

#define FALSE 0
#define TRUE −1

void timeval subtract(struct timeval *a, struct timeval *b, struct timeval *out);
char *read file(char *filename, long *len); 25

int parse cmdline();
void hex dump(void *ptr, int len);

int reps per node;
unsigned short *nodes; 30

int nodes len;
u32 ip;

char *file to send;
char *file data;
long file len; 35

int main(int argc, char **argv)
{

int ret;
int i, j; 40

printf("Calling ms_init()\n");
fflush(stdout);
if(ms init()<0) {
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printf("Error %d, %s\n", errno, strerror(errno)); 45

return 1;
}

mosctl init();
50

ret = parse cmdline(argc, argv);
if(ret!=0) return ret;

file data = read file(file to send, &file len);
55

/* no options for now */
printf("Calling ms_connect()\n");
fflush(stdout);
if(ms connect(FD, ip, PORTNUM+1, PORTNUM, NULL)<0) {

printf("Error %d, %s\n", errno, strerror(errno)); 60

return 1;
}

printf("Entering main loop\n");
for(i=0;i<nodes len;i++) { 65

mosctl goto(nodes[i]);
for(j=0;j<reps per node;j++) {

printf("nodes[%d] -- %d, rep %d\n", i, nodes[i], j);
fflush(stdout);
if(!send file()) break; 70

}
if(j<reps per node) break;

}

printf("Calling ms_shutdown()\n"); 75

fflush(stdout);
if(ms shutdown(FD, SHUT WR)<0) {

printf("Error %d, %s\n", errno, strerror(errno));
errno = 0;

} 80

printf("Calling ms_close()\n");
fflush(stdout);
if(ms close(FD)<0) {

printf("Error %d, %s\n", errno, strerror(errno)); 85

return 1;
}

free(nodes);
return 0; 90

}

int send file()
{

char msg buf[BUFSIZE]; 95

void *cur data = file data;
void *msg data = (void *)((hdr t *)(msg buf)+1);
long cur ofs = 0;
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long block size;
long msg size; 100

unsigned short local cur node, rem cur node;
struct timeval start time, end time, time diff;
int ret, col=0, i;
int num width = (int)ceil(log10((double)file len)), info width;
char info fmt[32]; 105

sprintf(info fmt, "%%%dd bytes, CN %%d ", num width);
info width = num width + 17;

gettimeofday(&start time, NULL); 110

while(cur ofs<file len) {
local cur node = mosctl get cur node();
block size = ((cur ofs+BLOCK SIZE)<=file len ? BLOCK SIZE : file len−cur ofs);
msg size = build msg(MSGTYPE DATA, local cur node, cur data, block size, msg buf); 115

if(ms send(FD, msg buf, msg size, 0)<0) {
printf("\n\nSend failed: %s (errno %d)\n\n", strerror(errno), errno);
fflush(stdout);
return FALSE;

} 120

if((ret = ms recv(FD, msg buf, BUFSIZE, 0))<0) {
printf("\n\nReceive failed: %s (errno %d)\n\n", strerror(errno), errno);
fflush(stdout);
return FALSE; 125

}

if(((hdr t *)msg buf)−>msgtype!=MSGTYPE DATA) {
printf("\n\nServer didn’t echo back data!\n\n");
fflush(stdout); 130

return FALSE;
}
if(msg size!=((hdr t *)msg buf)−>msglen) {

printf("\n\nReceived message size mismatch (sent %d, received %d)\n\n",
msg size, ((hdr t *)msg buf)−>msglen); 135

fflush(stdout);
return FALSE;

}
if(0!=memcmp(cur data, msg data, block size)) {

printf("\n\nData sent doesn’t match data received!\n\nSent data:\n"); 140

hex dump(cur data, block size);
printf("\nReceived data:\n");
hex dump(msg data, block size);
printf("\n");
return FALSE; 145

}
cur data += block size;
cur ofs += block size;
fflush(stdout);

} 150

local cur node = mosctl get cur node();
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printf("\ncomplete, CN %02d\n", local cur node);
msg size = build msg(MSGTYPE END, local cur node, NULL, 0, msg buf);
if(ms send(FD, msg buf, msg size, 0)<0) { 155

printf("\nSend failed: %s (errno %d)\n\n", strerror(errno), errno);
fflush(stdout);
return FALSE;

}
if((ret = ms recv(FD, msg buf, BUFSIZE, 0))<0) { 160

printf("\nReceive failed: %s (errno %d)\n\n", strerror(errno), errno);
fflush(stdout);
return FALSE;

}
165

if(((hdr t *)msg buf)−>msgtype!=MSGTYPE END) {
printf("\nDidn’t echo end data message!\n\n", strerror(errno), errno);
fflush(stdout);
return FALSE;

} 170

gettimeofday(&end time, NULL);
timeval subtract(&end time, &start time, &time diff);
printf("\n%d sec %d usec\n\n", time diff.tv sec, time diff.tv usec);
fflush(stdout); 175

return TRUE;
}

static void hex line(void *p, int len, int ofs) 180

{
int i;
unsigned char *ptr = (unsigned char *)p;

printf("%04x ", ofs); 185

for(i=0;i<16;i++) {
if(i<len)

printf("%02x ", ptr[i]);
else 190

printf(" ");
}
printf(" ");

for(i=0;i<len;i++) { 195

if(ptr[i]>=32 && ptr[i]<=126)
printf("%c", ptr[i]);

else
printf(".");

} 200

printf("\n");
}

void hex dump(void *ptr, int len) 205

{
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int i;

for(i=0;i<len/16;i++) hex line(ptr+(i*16), 16, i*16);
if(len%16 != 0) hex line(ptr+(i*16), len−(i*16), i*16); 210

fflush(stdout);
}

int parse cmdline(int argc, char **argv)
{ 215

struct hostent *hinfo;
int i, val;

if(argc<3) {
printf("Usage:\n %s {host} {filename} [repetitions per migration] [node 1] [node 2] . . .\n\n", 220

argv[0]);
fflush(stdout);
return 1;

}
225

hinfo = gethostbyname2(argv[1], AF INET);
if(h errno!=0) {

printf("Unable to resolve %s\n\n", argv[1]);
fflush(stdout);
return 1; 230

}

ip = htonl(*( u32 *)(hinfo−>h addr list[0]));
printf("Host resolves to %d.%d.%d.%d, (hex %x)\n", (ip&0xff000000)>>24, (ip&0xff0000)>>16,

(ip&0xff00)>>8, ip&0xff, ip); 235

fflush(stdout);

file to send = argv[2];

if(argc>=4) { 240

if(sscanf(argv[3], "%d", &reps per node)<1 | | reps per node<1) {
printf("Repetitions per migration must be >= 1!\n\n");
fflush(stdout);
return 1;

} 245

} else {
reps per node = 1;

}

nodes len = (argc>=5 ? argc − 4 : 1); 250

nodes = calloc(nodes len, sizeof(unsigned short));
if(NULL==nodes) {

printf("Unable to allocate memory for nodes list!\n\n");
fflush(stdout);
return 1; 255

}

if(argc>=5) {
for(i=0;i<nodes len;i++) {

if(sscanf(argv[4+i], "%d", &val)<1) { 260
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printf("Usage:\n %s {host} {filename} [repetitions per migration] [node 1] "
"[node 2] . . .\n\n", argv[0]);

fflush(stdout);
free(nodes);
return 1; 265

}
nodes[i] = (unsigned short)val;

}
} else {

*nodes = 0; 270

}
return 0;

}

void timeval subtract(struct timeval *a, struct timeval *b, struct timeval *out) 275

{
out−>tv sec = a−>tv sec − b−>tv sec;
out−>tv usec = a−>tv usec − b−>tv usec;
if(out−>tv usec<0) {

out−>tv sec−−; 280

out−>tv usec += 1000000;
}

}

char *read file(char *filename, long *len) 285

{
FILE *in;
char *buf;

in = fopen(filename, "r"); 290

if(NULL==in) {
printf("Unable to open file \"%s\": %s (errno %d)\n\n", filename, strerror(errno),

errno);
fflush(stdout);
return NULL; 295

}

fseek(in, 0, SEEK END);
*len = ftell(in);
if(*len<0) { 300

printf("Reading file \"%s\" failed: %s (errno %d)\n\n", filename, strerror(errno),
errno);

fflush(stdout);
fclose(in);
return NULL; 305

}
rewind(in);
buf = malloc((*len)+10); /* pad the length a bit just to be safe */
if(NULL==buf) {

printf("Insufficient memory to read file\n\n"); 310

fflush(stdout);
fclose(in);
return NULL;

}
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fread(buf, 1, *len, in); 315

fclose(in);
return buf;

}

320

C.4 server2.c

#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <stdlib.h>
#include <sys/socket.h> 5

#include "ms_calls.h"
#include "test_common.h"

#define PORTNUM 1000
#define FD 100 10

#define BUFSIZE 2000

#define FALSE 0
#define TRUE −1

15

unsigned short hnode list[ ] = { 0 };

int reps per node = 1;
unsigned short *nodes = hnode list;
int nodes len = 1; 20

int nodes alloc = FALSE;

int xfer loop();
int parse cmdline(int argc, char **argv);

25

int main(int argc, char **argv)
{

long ret, ret2;
char buf[BUFSIZE];
struct timeval start time, end time, diff time; 30

int i, j, data fin;

printf("Calling ms_init()\n");
fflush(stdout);
if(ms init()<0) { 35

printf("Error %d, %s\n", errno, strerror(errno));
return 1;

}

mosctl init(); 40
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ret = parse cmdline(argc, argv);
if(ret!=0) return ret;

printf("Calling ms_listen()\n"); 45

fflush(stdout);
if(ms listen(FD, PORTNUM, NULL)<0) { /* no options for the moment */

printf("Error %d, %s\n", errno, strerror(errno));
return 1;

} 50

printf("Calling ms_accept()\n");
fflush(stdout);
if(ms accept(FD, FD+1, NULL)<0) {

printf("Error %d, %s\n", errno, strerror(errno)); 55

errno = 0;
printf("Calling ms_close()\n");
fflush(stdout);
if(ms close(FD+1)<0 | | ms close(FD)<0)

printf("Error %d, %s\n", errno, strerror(errno)); 60

return 1;
}

for(i=0; i<nodes len; i++) {
mosctl goto(nodes[i]); 65

for(j=0; j<reps per node; j++) {
if(xfer loop()<0) break;

}
if(j<reps per node) break;

} 70

if(i>=nodes len) {
while(0==xfer loop()) { }

}
75

fflush(stdout);
if(ms shutdown(FD+1, SHUT RDWR)<0) {

printf("Error calling ms_shutdown(): %s (errno %d)\n", strerror(errno), errno);
errno = 0;

} 80

printf("Calling ms_close()\n");
fflush(stdout);
if(ms close(FD+1)<0 | | ms close(FD)<0) {

printf("Error: %s (errno %d)\n", strerror(errno), errno); 85

return 1;
}

return 0;
} 90

int parse cmdline(int argc, char **argv)
{

struct hostent *hinfo;
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int i, val; 95

if(argc>=2) {
if(sscanf(argv[1], "%d", &reps per node)<1 | | reps per node<1) {

printf("Usage:\n %s [repetitions per migration] [node 1] [node 2] . . .\n\n",
argv[0]); 100

fflush(stdout);
return 1;

}
}

105

if(argc>=3) {
nodes len = argc − 2;
nodes = calloc(nodes len, sizeof(unsigned short));
if(NULL==nodes) {

printf("Unable to allocate memory for nodes list!\n\n"); 110

fflush(stdout);
return 1;

}
nodes alloc = TRUE;
for(i=0;i<nodes len;i++) { 115

if(sscanf(argv[2+i], "%d", &val)<1) {
printf("Usage:\n %s [repetitions per migration] [node 1] "

"[node 2] . . .\n\n", argv[0]);
fflush(stdout);
free(nodes); 120

return 1;
}

}
}

125

return 0;
}

/* returns 0 on successful cycle, returns <0 on error or close request */
int xfer loop() 130

{
char msg buf[BUFSIZE];
hdr t *msg hdr = (hdr t *)msg buf;
int ret, ret2;

135

while((ret=ms recv(FD+1, msg buf, BUFSIZE−1, 0))>0) {
msg hdr−>curnode = mosctl get cur node();

ret2 = ms send(FD+1, msg buf, ret, 0);
if(ret2<0) { 140

printf("Error sending reply: %s (errno %d)\n\n", strerror(errno), errno);
fflush(stdout);
return −1;

}
if(MSGTYPE END==msg hdr−>msgtype) break; 145

}

return (ret>0 ? 0 : −1);
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