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Abstract

Bayesian model selection has enjoyed considerable prominence in high-dimensional vari-

able selection in recent years. Despite its popularity, the asymptotic theory for high-

dimensional variable selection has not been fully explored yet. In this study, we aim to

identify prior conditions for Bayesian model selection consistency under high-dimensional

regression settings. In a Bayesian framework, posterior model probabilities can be used to

quantify the importance of models given the observed data. Hence, our focus is on the asymp-

totic behavior of posterior model probabilities when the number of the potential predictors

grows with the sample size. This dissertation contains the following three projects.

In the first project, we investigate the asymptotic behavior of posterior model probabili-

ties under the Zellner’s g-prior, which is one of the most popular choices for model selection

in Bayesian linear regression. We establish a simple and intuitive condition of the Zellner’s

g-prior under which the posterior model distribution tends to be concentrated at the true

model as the sample size increases even if the number of predictors grows much faster than

the sample size does. Simulation study results indicate that the satisfaction of our condition

is essential for the success of Bayesian high-dimensional variable selection under the g-prior.

In the second project, we extend our framework to a general class of priors. The most

pressing challenge in our generalization is that the marginal likelihood cannot be expressed in

a closed form. To address this problem, we develop a general form of Laplace approximation

under a high-dimensional setting. As a result, we establish general sufficient conditions

for high-dimensional Bayesian model selection consistency. Our simulation study and real

data analysis demonstrate that the proposed condition allows us to identify the true data

generating model consistently.

In the last project, we extend our framework to Bayesian generalized linear regression

models. The distinctive feature of our proposed framework is that we do not impose any



specific form of data distribution. In this project we develop a general condition under

which the true model tends to maximize the marginal likelihood even when the number of

predictors increases faster than the sample size. Our condition provides useful guidelines

for the specification of priors including hyperparameter selection. Our simulation study

demonstrates the validity of the proposed condition for Bayesian model selection consistency

with non-Gaussian data.



Bayesian model selection consistency for high-dimensional regression

by

Min Hua

B.A., Jiangxi University of Finance and Economics, China, 2009

M.S., Hangzhou Dianzi University, China, 2013

A DISSERTATION

submitted in partial fulfillment of the
requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Statistics
College of Arts and Sciences

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2022

Approved by:

Major Professor
Gyuhyeong Goh



Copyright

© Min Hua.



Abstract

Bayesian model selection has enjoyed considerable prominence in high-dimensional vari-

able selection in recent years. Despite its popularity, the asymptotic theory for high-

dimensional variable selection has not been fully explored yet. In this study, we aim to

identify prior conditions for Bayesian model selection consistency under high-dimensional

regression settings. In a Bayesian framework, posterior model probabilities can be used to

quantify the importance of models given the observed data. Hence, our focus is on the asymp-

totic behavior of posterior model probabilities when the number of the potential predictors

grows with the sample size. This dissertation contains the following three projects.

In the first project, we investigate the asymptotic behavior of posterior model probabili-

ties under the Zellner’s g-prior, which is one of the most popular choices for model selection

in Bayesian linear regression. We establish a simple and intuitive condition of the Zellner’s

g-prior under which the posterior model distribution tends to be concentrated at the true

model as the sample size increases even if the number of predictors grows much faster than

the sample size does. Simulation study results indicate that the satisfaction of our condition

is essential for the success of Bayesian high-dimensional variable selection under the g-prior.

In the second project, we extend our framework to a general class of priors. The most

pressing challenge in our generalization is that the marginal likelihood cannot be expressed in

a closed form. To address this problem, we develop a general form of Laplace approximation

under a high-dimensional setting. As a result, we establish general sufficient conditions

for high-dimensional Bayesian model selection consistency. Our simulation study and real

data analysis demonstrate that the proposed condition allows us to identify the true data

generating model consistently.

In the last project, we extend our framework to Bayesian generalized linear regression

models. The distinctive feature of our proposed framework is that we do not impose any



specific form of data distribution. In this project we develop a general condition under

which the true model tends to maximize the marginal likelihood even when the number of

predictors increases faster than the sample size. Our condition provides useful guidelines

for the specification of priors including hyperparameter selection. Our simulation study

demonstrates the validity of the proposed condition for Bayesian model selection consistency

with non-Gaussian data.



Table of Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Review of variable selection consistency . . . . . . . . . . . . . . . . . . . . . 2

1.2 Problem statement and set-up . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 The consistency of Bayesian high-dimensional model selection under Zellner’s g-prior 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Model set-up and assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Gibbs sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 The consistency of Bayesian high-dimensional model selection under arbitrary priors 22

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Model set-up and assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Examples of priors for model parameters . . . . . . . . . . . . . . . . . . . . 30

viii



3.4.1 Gaussian prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.2 Laplace prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.3 Scaled Student’s t prior . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.4 Generalized double Pareto prior . . . . . . . . . . . . . . . . . . . . . 32

3.4.5 Horseshoe prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Estimating unknown variance . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6.1 Simulation setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6.2 Gibbs sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.7 Real data study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.7.1 Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 The consistency of generalized Bayesian high-dimensional variable selection under

arbitrary priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Model set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Examples of priors for model parameters . . . . . . . . . . . . . . . . . . . . 57

4.4.1 Gaussian prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4.2 Laplace prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4.3 Scaled Student’s t prior . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4.4 Generalized double Pareto prior . . . . . . . . . . . . . . . . . . . . . 61

4.4.5 Horseshoe prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5.1 Simulation setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

ix



4.5.2 Shotgun stochastic search . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

A Chapter 2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.1 Sparse Riesz condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.2 Lemma A1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.3 Lemma A2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.4 Proof of Lemma 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A.5 Proof of Lemma 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A.6 Proof of Lemma 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A.7 Proof of Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.8 Proof of Corollary 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

B Chapter 3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

B.1 Lemma B.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

B.2 Lemma B.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

B.3 Proof of Lemma 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

B.4 Proof of Lemma 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

B.5 Proof of Lemma 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

B.6 Proof of Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

B.7 Lemma B.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

B.8 Examples of priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

B.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

B.10 Proof of Theorem 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

x



C Chapter 4 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

C.1 Proof of Lemma 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

C.2 Proof of Lemma 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

C.3 Lemma C.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

xi



List of Figures

2.1 The trace plots of the estimate of pr(γ∗ | y) as the sample size n increases. . 20

3.1 The trace plots of the estimate of pr(γ∗ | y) as the sample size n increases. . 41

3.2 The trace plots of the estimate of pr(γ∗ | y) as the sample size n increases. . 42

3.3 The trace plots of the estimate of pr(γ∗ | y) as the sample size n increases. . 43

3.4 The trace plots of the estimate of pr(γ∗ | y) as the sample size n increases. . 44

3.5 The trace plots of the estimate of pr(γ∗ | y) as the sample size n increases. . 45

3.6 Heat Map of Selected Genes . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 The trace plots of the relative frequency of γ∗ under the Gaussian prior as the

sample size n increases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 The trace plots of the relative frequency of γ∗ under the Laplace prior as the

sample size n increases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 The trace plots of the relative frequency of γ∗ under the scaled Student’s t

prior as the sample size n increases. . . . . . . . . . . . . . . . . . . . . . . 73

4.4 The trace plots of the relative frequency of γ∗ under the generalized double

Pareto prior as the sample size n increases. . . . . . . . . . . . . . . . . . . 74

4.5 The trace plots of the relative frequency of γ∗ under the Horseshoe prior as

the sample size n increases. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

xii



List of Tables

2.1 Simulation scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Choices of the g value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Simulation results based on 100 Monte Carlo experiments. . . . . . . . . . . 18

2.4 Simulation results based on 100 Monte Carlo experiments. . . . . . . . . . . 19

3.1 Choices of hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Simulation results based on 100 Monte Carlo experiments: Scenario 1. . . . . 37

3.3 Simulation results based on 100 Monte Carlo experiments: Scenario 1. . . . . 38

3.4 Simulation results based on 100 Monte Carlo experiments: Scenario II. . . . 39

3.5 Simulation results based on 100 Monte Carlo experiments: Scenario II. . . . 40

3.6 Choices of hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.7 Real data results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.8 Real data results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Hyperparameter settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Simulation results based on 100 Monte Carlo experiments. . . . . . . . . . . 70

xiii



Acknowledgments

The journey of the Ph.D. program is no doubt one of the most rewarding experiences I

have had my whole life. The amount of things I learned through the ups and downs during

the years of the program are priceless. I would love to take this opportunity to express my

gratitude to people who had been there for me.

First, I would like to express my most sincere gratitude to my major advisor, Dr.

Gyuhyeong Goh. I could not complete the research project without his continuous guid-

ance and support throughout the whole process. Dr. Goh always responded to my questions

with advises which were effective in solving the problems. His knowledge and expertise

helped me overcome every obstacle in my research. I am also grateful for his patience and

encouragement which kept me moving forward, especially during the most difficult time of

the program.

Second, I want to express my appreciation to the committee members, Dr. Weixing Song,

Dr. Jingru Mu and Dr. Jisang Yu. I am grateful for their time to serve in my committee

as well as their valuable comments on my research. I would like to extend my thanks to

the Department of Statistics and the Lolafaye Coyne Statistics Graduate Scholarship for

providing funding to support my research. I would like to say a special thank you to Dr.

Christopher Vahl, Dr. Weixing Song and Dr. Jieun Lee for writing the reference letters for

my job applications.

Next, I would like to express my deepest gratitude to my families and friends for their

unconditional love and support. To my parents, thank you for believing me and standing

by me every step of the way. To my friends, thank you for being the strongest emotional

support every time I feel down and lost.

The last but not the least, thank you to everyone else who had helped and supported

me. I could not have made it this far without anyone of you. Thank you all so much, and I

appreciate everything.

xiv



Chapter 1

Introduction

As data become more available in different areas, the data structure diversifies. One of

the most commonly observed data patterns is the so-called high-dimensional data. In high-

dimensional data, the number of variables is greater than the number of observations. Exam-

ples are Biotech data, financial data, satellite imagery and so on. The high-dimensionality in

data brings many challenges. For example, in a variable selection problem, the investigation

of all possible models can be computationally infeasible due to the extremely large number

of variables. In addition, for estimation, the existence of maximum likelihood estimate is not

guaranteed in general when the number of variables is larger than the number of observa-

tions. Unfortunately, the traditional regression methods are not designed to cope with the

“small n large p” nature of the high-dimensional data. Therefore, we need a better approach

to solve the curse of high-dimensionality.

In the context of regression analysis, we usually deal with the data (X, y), where y =

(y1 . . . , yn)
⊤ is the n-dimensional response vector and X = (x1, . . . , xp) is the n × p design

matrix. We assume that E(y|X) is a function of the combination ofX through the parameter

vector β in the following way:

E(y|X) = E(y|X, β) = g−1(Xβ), (1.1)

where β = (β1, . . . , βp)
⊤ is a p-dimensional regression coefficient vector and g−1(·) is the
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inverse link function. Let γ ⊂ {1, . . . , p} be an index set such that

γ = {j : βj ̸= 0, j = 1, . . . , p}.

In other words, γ indicates which variables are actually important in the model. Given γ,

model (1.1) reduces to

E(y|X, β, γ) = g−1(Xγβγ),

where Xγ is the n × pγ submatrix of X and βγ is the pγ-dimensional vector of non-zero

regression coefficients. The goal of variable selection is to estimate γ which contains all

indices of non-zero coefficients, called the true model.

1.1 Review of variable selection consistency

In high-dimensional variable selection, an important research question is “Can we identify the

true model consistently?” The model selection consistency is important to capture the true

relationship between the response and the predictor variables as the sample size increases.

The variable selection problem in high-dimensional regression has been studied intensively

from both frequentist perspective and Bayesian perspective.

From a frequentist perspective, a variety of methods are developed based on minimizing

the loss functions combined with a penalty on the complexity of the model. Knight and

Fu (2000) have shown estimation consistency for Lasso (Tibshirani, 1996) for fixed p and

fixed β0
γ∗ as n increases. Zou (2006) proposes the adaptive lasso which is consistent in the

estimation of the true model parameters for a fixed pn. For n ≪ pn, Huang et al. (2008)

show that under the partial orthogonal condition, the adaptive lasso achieves model selection

consistency. However, it fails to be consistent in estimating the model parameters. The

SCAD regression proposed by Fan and Li (2001) uses a penalty function that is nonconcave

on (0,∞). Fan and Li (2001) show the oracle property of the SCAD estimator. Under

certain regularity conditions, Wang et al. (2015) demonstrate the oracle property of SCAD
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estimator in the high-dimensional least absolute deviation regression. Candes and Tao (2007)

propose the Dantzig selector for the large pn case (including n < pn) in regression. Bickel

et al. (2009) show that the asymptotic equivalence of Lasso estimator and Dantzig selector

when the true model is sparse in both linear regression and nonparametric regression. In the

sparsity scenario, James et al. (2009) also derive conditions under which the Dantzig selector

produces identical solution as the Lasso estimator.

In a Bayesian framework, high-dimensional variable selection methods include Bayesian

Lasso (Park and Casella, 2008), stochastic search variable selection (George and McCulloch,

1995), and the spike-and-slab prior approach (Mitchell and Beauchamp, 1988). Using the hi-

erarchical representation of the Laplace prior, Park and Casella (2008) propose a full Bayesian

approach to Lasso. Under the orthogonal design and fixed variance settings, Dasgupta (2016)

develops conditions for Bayesian lasso to achieve posterior consistency in parameter estima-

tion when the number of predictor variables grows with the sample size. Castillo et al. (2015)

show that the posterior distribution of model parameters can be concentrated around the

true parameters values when assigning a Laplace-like prior for βγ. Mitchell and Beauchamp

(1988) originally propose the notion of the spike-and-slab prior that employs a mixture of

the point mass distribution at 0 and a flat uniform distribution. For easy implementation

via Gibbs sampling, George and McCulloch (1995) propose an approximation method for

the spike-and-slab prior by mixing two normal distributions. Kuo and Mallick (1998) adopt

the mixture of a point mass distribution at 0 and a normal distribution.

In addition, there are several studies that focus on theoretical aspects of Bayesian model

selection methods. Jiang (2007) show that the Bayesian method is consistent in estimating

the true density of the data under a carefully chosen prior. Bondell and Reich (2012)

propose a model selection method via penalized credible regions and show its model selection

consistency. Under several popular shrinkage priors, Armagan et al. (2013) show consistency

in parameter estimation based on the posterior probability of the model parameters under

the general conditions that hold when the dimension grows with the sample size. Sparks

et al. (2015) derive necessary and sufficient conditions to achieve high-dimensional posterior

consistency in parameters estimation under g-priors.

3



1.2 Problem statement and set-up

The definition of consistency for variable selection can be classified into two categories: i)

Consistency in estimating the true model parameters; ii) Consistency in identifying the true

model. In this study, the consistency we focus on is the consistency in identifying the true

model, often referred to as model selection consistency. Our approach to model selection

consistency is coming from a Bayesian perspective. Under the Bayesian framework, both

model γ and parameter β are treated as random variables. By the Bayes theorem, the

posterior probability of model γ is computed as

pr(γ|y) = p(y|γ)p(γ)∑
γ∈M p(y|γ)p(γ)

,

where

p(y|γ) =
∫

p(y|βγ, γ)p(βγ|γ)dβγ,

andM is the set of candidate models under consideration. The posterior model probability

represents the probability that γ is the true model given the observed data. If we compute the

posterior model probability for each candidate model, naturally, the model with the greatest

posterior probability will be selected as the true model. Thus, we define the Bayesian variable

selection consistency as:

pr(γ∗|y)→ 1,

in probability as n → ∞, where γ∗ is the true model. In the Bayesian variable selection

context, this implies that the chance of selecting the true model increases as we accumulate

more data, while the chance of selecting models other than the true model decreases.

One of practical challenges in Bayesian variable selection is the choice of priors. Note

that the posterior model probability depends on the priors of both γ and βγ. For the prior

of γ, we naturally assume an uniform distribution to avoid preference over any candidate

models. Thus, the real challenge lies in the choice of the prior for βγ. Since the success

of model selection depends on the choice of the prior, we are required to use a valid prior
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that leads to the asymptotic concentration of the posterior model distribution at the true

model. However, we do not have a clear picture of how the prior of βγ affects the asymptotic

behavior of the posterior model probability. Thus, our objective in this study is largely cen-

tered at uncovering the conditions for the prior of βγ to achieve posterior model probability

consistency in the high-dimensional regression analysis. Considering the “small n, large p”

nature of the high-dimensional data, we allow the size of the full model to grow with the

sample size, i.e. we assume that p = O(nα) for α ∈ (0,∞) which is a distinctive feature of

this dissertation.

1.3 Outline

In Chapter 2, we investigate the model selection consistency under a specific prior, namely

the Zellner’s g-prior (Zellner, 1986). The g-prior is one of the popular choices for model

selection in Bayesian linear regression. The hyperparameter g plays a crucial role in model

selection. The success of model selection hinges on the choice of the g value. It is not yet

well understood how the choice of g values affect the results of model selection. In our

investigation, we focus on deriving conditions under which the posterior model distribution

tends to concentrate at the true model as the sample size increases. The setting of our

investigation is different from the existing literatures in that we allow the size of the full model

to grow with the sample size. Under this setting, we find simple and intuitive conditions for

the Zellner’s g-prior to yield model selection consistency. The sufficient conditions provide

guidelines for the specification of the hyperparameter g. The results of our simulation study

confirm that our proposed conditions are crucial to the success of the model selection.

In Chapter 3, we extend the framework of Chapter 2 to a general class of priors. Under

the general prior framework, we do not impose any specific distribution on the prior of

βγ. Without knowing the prior distribution, the marginal likelihood is not available in

closed form. We propose a general form of Laplace approximation. The proposed Laplace

approximation holds even when the model dimension grows with the sample size. We derive

general sufficient conditions under which the posterior model distribution concentrates at
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the true model asymptotically. The sufficient conditions suggest that the prior needs to be

noninformative to avoid prior dominates the likelihood. At the same time, the prior should

not be too noninformative to avoid the model selection favors the null model regardless of the

information contained in the data. The sufficient conditions are consistent with the results

in Chapter 2. Since the conditions are general conditions, we expect them to be applicable to

various priors. To make our theoretical findings more practical, we discuss several examples

from the shrinkage prior family such as Gaussian prior, Laplace prior, scaled Student’s t

prior, generalized double Pareto prior, and Horseshoe prior. In our examples, the sufficient

conditions provide useful guidelines for hyperparameter specification. The simulation study

demonstrates that the satisfaction of the sufficient conditions is essential in the success

of model selection. The real data study also shows that specifying the hyperparameters

according to our sufficient conditions leads to better model selection results.

In Chapter 4, we extend our framework to the generalized linear regression model by

relaxing the normal likelihood assumption. Under this framework, we do not impose any

specific distribution on the likelihood of the data. We derive sufficient conditions of the

prior of βγ for maximizing the marginal likelihood of the true model. The conditions we

derived under this setting can be applied in a wide range of model selection cases. By

investigating several commonly-seen likelihood as well as several frequently used priors in

variable selection, we find that the sufficient conditions provide useful guidelines for prior

hyperparameter specification. The results in Chapter 4 are consistent with the results in both

Chapter 2 and Chapter 3. The simulation study demonstrates the validity of our proposed

sufficient conditions.
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Chapter 2

The consistency of Bayesian

high-dimensional model selection

under Zellner’s g-prior

2.1 Introduction

Zellner’s g-prior (Zellner, 1986) is one of the popular choices of priors in Bayesian variable

selection. Under the Zellner’s g-prior, the marginal likelihood is available in closed form

which significantly reduces computational time. The marginal likelihood plays a key role

in deriving the posterior model probability, thus the use of Zellner’s g-prior increases the

efficiency of the model selection. Despite the popularity of the Zellner’s g-prior in the

model selection studies, there is an important question we need to address which is ”Can we

consistently select the true model under the Zellner’s g-prior?”

Our study focuses on the consistency of the posterior model probability derived under

the g-prior. We investigate the posterior model probability consistency under the high-

dimensional settings. We allow the model dimension to grow with the sample size, and even

faster than the sample size in some cases. A Growing model space can be challenging, since

the number of candidate models can grow immensely as the sample size gets larger. The
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large number of candidate models make it infeasible to investigate every candidate model

for model selection.

One of the demanding task in using the Zellner’s g-prior is the choice of the hyperparam-

eter g in the prior. The hyperparameter g is crucial to the success of model selection, there

are many studies addressing the challenge of choosing the g value. Kass and Wasserman

(1995) suggest to choose g = n, and the resulting prior is known as the ”Unit information

prior”. Foster and George (1994) recommend to choose g = p2n according the risk inflation

criterion(RIC) for variable selection. Fernandez et al. (2001) suggest to use g = max(n, p2)

which is referred as “Benchmark prior”. All these choices of g are based on the consistency

of Bayes factor which does not guarantee the consistency of posterior model probability. We

find in our study that, in order to achieve posterior model probability consistency, we need

to choose a large value for g, however, g can not be too large. In other words, the g value

needs to be confined within a certain range.

In this chapter, we derive sufficient conditions to achieve the posterior model probabil-

ity consistency under the Zellner’s g-prior. The sufficient conditions propose a theoretical

boundary for the g values, which provides useful guidelines for the specification of the g

value. The simulation study demonstrates the sufficient conditions are essential in establish-

ing posterior model probability consistency.

2.2 Model set-up and assumptions

Consider a linear regression model,

y = Xβ + ϵ, (2.1)

where y = (y1, . . . , yn)
⊤ is the n-dimensional response vector, X = (x1, . . . , xp) is the n× p

design matrix with xj = (x1j, . . . , xnj)
⊤, β = (β1, . . . , βp)

⊤ is a p-dimensional regression

coefficient vector, and ϵ = (ϵ1, . . . , ϵn)
⊤ is a n-dimensional random error vector with ϵi

iid∼

N(0, σ2). Without loss of generality, we assume both y and X are centered so that the
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intercept is omitted in our model.

Let γ be an index set representing a subset of the predictor variables. Given model γ,

model (2.1) reduces to

y = Xγβγ + ϵ,

where Xγ is the submatrix of X and βγ is the subvector of β corresponding to the active

predictors in model γ. The goal of model selection is to identify the subset γ∗ which contains

all the true predictor variables, namely, the true model.

Let M = {γ : pγ ≤ K} be the set of candidate models under our consideration, where

pγ denotes the size of the model γ and K is the upper bound of the candidate model size.

Since we adopt the Bayesian approach to the model selection, given model γ, we consider

the following priors for βγ and σ2:

π(βγ|γ, σ2) = ϕ
{
βγ|0, gσ2(X⊤

γ Xγ)
−1
}
,

π(σ2|γ) =
1

σ2
,

where ϕ(·|µ,Σ) denotes a multivariate normal density function with mean µ and variance Σ

and g is a hyperparameter. We consider a flat prior for γ to show no preference over any

candidate models,

π(γ) ∝ I(γ ∈M),

where I(·) denotes the indicator function. Given hierarchical model representation, we can

derive the closed form expression of the marginal likelihood, which is

p(y|γ) =
Γ(n

2
)2

n
2

(2π)
n
2 (1 + g)

pγ
2

[
y⊤y − 1

1+g−1y⊤Hγy
]n

2

, γ ∈M,

where Hγ = Xγ(X
⊤
γ Xγ)

−1X⊤
γ .
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Then, by the Bayes theorem, the posterior model probability of γ is proportional to

pr(γ|y) ∝ 1

(1 + g)
pγ
2

[
y⊤y − 1

1+g−1y⊤Hγy
]n

2

I(γ ∈M).

Posterior model probability measures the probability that the data is generated by the

candidate model, thus it is a natural model selector. The model which maximizes the

posterior model probability is selected as the true model. The model selection consistency

means that the posterior model probability of true model becomes one as the sample size

increases. The consistency of posterior model probability ensures that the chance of selecting

the true model increases as we collect more data. In this paper, the Bayesian model selection

consistency is defined as follows:

Definition 2.1. Let γ∗ be the true model. When the observations, y, is generated by

Nn(Xγ∗β
0
γ∗ , σ

2
0In), where β0

γ∗ is the pγ∗ × 1 vector of the true non-zero coefficients and σ2
0

is the true value of variance. The Bayesian model selection is consistent if

pr (γ∗|y)→ 1,

in Y|βγ∗-probability as n→∞.

Our objective is to derive sufficient conditions to achieve posterior model probability

consistency in high-dimensional regression while the model dimension grows with the sample

size, including the cases in which the dimension grows faster than the sample size.

To achieve our goal, the following regularity conditions are needed.

Assumption 2.1. γ∗ ∈M, whereM is the set of candidate models and γ∗ is the true model.

Assumption 2.1 ensures the true model belongs to the candidate model set so that the

model selection consistency is achievable.

Assumption 2.2 (Asymptotic identifiability). Let µ∗ = Xγ∗βγ∗ and Hγ = Xγ(X
⊤
γ Xγ)

−1X⊤
γ .
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The true model γ∗ is asymptotically identifiable if there exists a0 > 0 such that

lim
n→∞

min
{
n−1∥(In −Hγ)µ∗∥2 : γ∗ ̸⊂ γ, pγ ≤ K + pγ∗

}
> a0,

where ∥ · ∥ is the Euclidean distance and K is an upper bound of pγ.

The sparse Riesz condition is a common requirement in high-dimensional variable selec-

tion for model identifiability (Huang et al., 2012; Wei and Huang, 2010; Zhang et al., 2008,

2010). Assumption 2.2 is weaker than the sparse Riesz condition since it implies the sparse

Riesz condition, see Appendix A.1 for the proof.

Assumption 2.3. K = o(n), where K = max{pγ : γ ∈M}.

Assumption 2.3 restricts the size of candidate models to be smaller than sample size due

to the belief that the true model is sparse.

2.3 Main results

We begin our discussion of posterior model selection consistency with two cases of Bayesian

pairwise model comparison: (1) the true model is compared with a underfitting model, i.e.

the candidate model is a sub-model of the true model; (2) the true model is compared with

a overfitting model, i.e. the true model is a sub-model of a candidate model. The following

lemmas ensures the the consistency in the Bayesian pairwise model comparisons in both

cases.

Lemma 2.1. LetM1 = {γ : γ ⊊ γ∗}. Under Assumption 2.1-2.3, for any given γ ∈M1, if

g grows with n, then

log
p(y|γ∗)
p(y|γ)

> c0n−
pγ∗ − pγ

2
log(1 + g)

as n→∞, where c0 is a positive constant.

Since the posterior model probability is proportional to the marginal likelihood. The

marginal likelihood ratio, namely the Bayes factor, is equivalent to the ratio of the posterior

11



model probability, that is,
p(y|γ∗)
p(y|γ)

=
pr(γ∗|y)
pr(γ|y)

.

Lemma 2.1 implies that as n→∞, we have pr(γ∗|y) > pr(γ|y) for any underfitting models

γ if g is chosen to increase with n but log g = o(n). The proof of 2.1 is given in Appendix

A.4

Lemma 2.2. LetM2 = {γ : γ∗ ⊊ γ, pγ ≤ K + pγ∗}. For any given γ ∈M2, if g grows with

n, we have

log
p(y|γ∗)
p(y|γ)

>
pγ − pγ∗

2
log(1 + g)− (pγ − pγ∗) log p{1 + op(1)}

as n→∞.

Similarly, Lemma 2.2 implies that pr(γ∗|y) > pr(γ|y) for any overfitting models γ under

our consideration if g is chosen to grow faster than p along with n. The proof of Lemma 2.2

is given in Appendix A.5.

Remark 2.1. Even though we already know g can not grow too fast, according to Lemma

2.2, g can not grow too slow either. The convergence rate of lower bound is dominated by

log g instead of n in M2. A possible issue could be a significant slower convergence of the

log ratio in M2 if g does not grow fast enough. Thus, in order to increase the convergence

rate, we recommend to choose g to grow faster than n but log g = o(n), in other words, g

should be large but not be too large.

Case 1 and Case 2 are two basic types of candidate models. Besides these two cases, there

is a third case which is the true model is compared with a misspecified candidate model. In

this case, neither a candidate model is a sub-model of true model nor the true model is the

sub-model of the candidate model. The following lemma shows that the Bayesian pairwise

comparison still holds in this case.

Lemma 2.3. LetM3 = {γ : γ ̸⊂ γ∗, γ∗ ̸⊂ γ, pγ ≤ K}. Under Assumptions 2.1-2.3, for any
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given γ ∈M3, if g grows with n, then

log
p(y|γ∗)
p(y|γ)

> c0n+
pγ − pγ∗

2
log(1 + g)− pγ log p{1 + op(1)}

as n→∞.

Lemma 2.3 implies, we have pr(γ∗) > pr(γ) for any γ ∈M3 for sufficiently large n if g is

chosen to increase with n but log g = o(n). The proof is shown in Appendix A.6.

The lemmas imply posterior probability of true model is consistent when comparing

to a given candidate model as sample size grows. However, pairwise model comparison

consistency does not always leads to consistency in posterior model probability. The following

theorem proposes sufficient conditions to achieve posterior model probability consistency.

Theorem 2.1. Under Assumptions 2.1-2.3, if g is chosen such that p4 < g and log g = o(n),

then the Bayesian model selection with the g-prior is consistent, that is,

pr (γ∗|y)→ 1,

in Y|βγ∗-probability as n→∞.

The proof of Theorem 2.1 is given in Appendix A.7. According to Theorem 2.1, g needs to

meet the conditions p4 < g and log g = o(n) in order to achieve model selection consistency.

The following corollary guarantees the existence of such g.

Corollary 2.1. If log p = o(n), there exists g satisfying the sufficient conditions in Theorem

2.1, that is, p4 < g and log g = o(n).

The proof of Corollary 2.1 is given in Appendix A.8. The sufficient condition log p = o(n)

in the corollary indicates p can grow with the sample size. As long as p does not grow too

fast, we can still find a g which satisfies the sufficient conditions in Theorem 2.1 and achieve

model selection consistency, even under the “large p small n” cases. It’s also not hard to

see, since p can be smaller than the sample size, Theorem 2.1 is valid in the low dimensional
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cases as well. To demonstrate our result, we perform a simulation study in the following

section.

Remark 2.2. The choice of g is crucial to achieve model selection consistency. Theorem

2.1 implies that g needs to grow with the sample size n, however, the growth rate needs to

be controlled. In model selection cases in which n and p are fixed, letting g grow to infinity

results in the Bayes factor favors the null model over any candidate models, which is known

as “Lindley-Barlett” paradox (Foster and George, 1994; Jeffreys, 1961; Liang et al., 2008).

In high dimensional analysis, n and p are most likely not fixed. They can be treated as fixed

when g increases at a much higher rate than n and p. Even though g should not grow too

fast, a g which does not grow fast enough leads to inconsistency in model selection, especially

when the sample size is not sufficiently large. Our sufficient conditions restrict g to grow

not too fast to trigger the “Lindley-Barlette” paradox while still large enough to establish the

model selection consistency.

The following are several examples of the choices of g value from existing literature:

Example 1. Kass and Wasserman (1995) suggest to choose priors according to the infor-

mation contained in a single observation which is referred as “ Unit information prior”. In

the normal regression analysis, for the Zellner’s g-priors, they recommended choosing g = n

which makes the BIC an asymptotically accurate approximation to Bayes factor. According

to our sufficient conditions, choosing g = n achieves posterior consistency in low dimen-

sional cases such that p < n−1/4. When p > n−1/4, we have g < p4 which violates the first

condition which leads to the inconsistent model selection.

Example 2. Foster and George (1994) propose risk inflation criterion(RIC) for variable

selection, they recommend to choose g = p2, which minimizes the RIC. According to the

sufficient conditions, choosing g = p2 violates the first condition, in this case, g does not grow

fast enough to allow the posterior model probability to achieve consistency asymptotically.

Example 3. Fernandez et al. (2001) suggest to use g = max(n, p2) which is referred as

“Benchmark prior”. In this case, the posterior model consistency can be achieved in low
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dimensional cases where n > p4. When p4 > n, the first sufficient condition is violated, thus,

the g is not large enough to yield posterior consistency.

2.4 Simulation study

In this section, we conduct simulation study to exam the performance of our theorem in

model selection. We generate our data from the following model

yi =

pn∑
j=1

βjxij + ϵi,

(xi1, . . . , xij)
⊤ iid∼ N(0,Σ)

ϵi
iid∼ N(0, 1)

with Σ = (σij)p×p and σij = 2ρ|i−j|, for i = 1, . . . , n. βj = 1 for j ≤ 4 and βj = 0 for j > 4.

Table 2.1 shows the scenarios we consider. By the setting of κ and ρ, we can see that

Scenario 1 is the low-dimensional case with uncorrelated predictor variables; Scenario 2 is the

low-dimensional case with correlated predictor variables; Scenario 3 is the high-dimensional

case with uncorrelated predictor variables; Scenario 4 is the high-dimensional case with

correlated predictor variables. To satisfy Assumption 2.3, we set K = n
2
3 . For the choices of

the g value, we consider 5 cases. Table 2.2 contains our choices of g values for each scenario.

We repeat the simulation 100 times with n = {100, 300, 500, 900} for each case.

Table 2.1: Simulation scenarios

Scenario κ ρ

1 0.6 0

2 0.6 0.5

3 1.1 0

4 1.1 0.5
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According to the sufficient conditions, the choices of g values in Case 1 and Case 2 violate

the condition p4 < g. The choice of g value in Case 5 violates the condition log g = o(n).

Case 3 and Case 4 satisfy both sufficient conditions.

Table 2.2: Choices of the g value

Case g

1 n

2 p2

3 p5

4 p6

5 exp(0.7n)

2.4.1 Gibbs sampler

The number of models in our candidate model set is
∑K

k=1

(
p
k

)
= O(pK). When n is suffi-

ciently large, it is computationally infeasible to compute posterior probabilities for all the

candidate models. To address this computational challenge, we use Gibbs sampler to explore

the candidate model space.

To evaluate the performance of Theorem 2.1 in the simulation, we use the Monte Carlo

estimator to estimate the posterior probability of the true model

P (γ∗|y) ≈
1

T

T∑
t=1

I{γ(t) = γ∗},

where {γ(t) : t = 1, . . . , T} is a Gibbs sequence generated from the posterior distribution of

pr(γ|y). We will run the Gibbs sample 6000 times with first 3000-iteration as the burning

period. We compute the posterior probability of the true model using the a sample generated

by resample very third iteration post the burn-in period. If Theorem 2.1 holds, we need to

observe the estimated pr(γ∗|y)→ 1 as the sample size increases. The Gibbs sampler can be

implemented by updating γ(t) as follows:
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Algorithm 1 The Gibbs sampler.

Set s = γ(t)

Repeat for j = 1, . . . , p:

Set s1 = s ∪ {j}

Set s0 = s \ {j}

Compute w = {p(y | s1)I(s1 ∈M)}/{p(y | s1) + p(y | s0)}

Sample z ∼ Bernoulli(w)

If z = 1 then s← s1;

else s← s0

Output γ(t+1) = s

2.4.2 Simulation results

Table 2.3 - Table 2.4 report the mean of the estimated pr(γ∗|y) and the corresponding

standard error over 100 Monte Carlo experiments of the four scenarios we consider.

Table 2.3 presents the results of model selection in the low-dimensional cases. For the

cases which violate the sufficient conditions, namely Case 1, Case 2 and Case 5, the posterior

probability of the true model fails to grow to one as sample size increases. For the cases

which satisfy the sufficient conditions, namely Case 3 and Case 4, the posterior probability of

the true model increases to one as sample size gets larger. The results are similar regardless

of the correlation among the predictor variables.
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Table 2.3: Simulation results based on 100 Monte Carlo experiments.

Scenario Case n=100 n=300 n=500 n=900

1 0.1430 (0.0076) 0.0544 (0.0038) 0.0393 (0.0028) 0.0211 (0.0016)

2 0.2584 (0.0107) 0.1535 (0.0084) 0.1440 (0.0075) 0.1164 (0.0060)

I 3 0.9587 (0.0066) 0.9794 (0.0035) 0.9891 (0.0007) 0.9936 (0.0004)

4 0.9896 (0.0019) 0.9963 (0.0008) 0.9982 (0.0002) 0.9992 (0.0001)

5 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)

1 0.1860 (0.0072) 0.0597 (0.0040) 0.0384 (0.0026) 0.0290 (0.0020)

2 0.2749 (0.0104) 0.1607 (0.0085) 0.1398 (0.0068) 0.1392 (0.0069)

II 3 0.9618 (0.0043) 0.9764 (0.0056) 0.9882 (0.0024) 0.9948 (0.0004)

4 0.9886 (0.0014) 0.9967 (0.0004) 0.9981 (0.0005) 0.9994 (0.0001)

5 0.0089 (0.0056) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)

Notes: (Case 1) g = n; (Case 2) g = p2; (Case 3) g = p5; (Case 4) g = p6; (Case 5)

g = exp(0.7n). p = 15, 30, 41, 59 for n = 100, 300, 500, 900.

Table 2.4 presents the results of model selection in the high-dimensional cases. For the

cases which violate the sufficient conditions, namely Case 1, Case 2 and Case 5, the posterior

probability of the true model fails to grow to one as sample size increases. For the cases

which satisfy the sufficient conditions, namely Case 3 and Case 4, the posterior probability of

the true model increases to one as sample size gets larger. The results are similar regardless

of the correlation among the predictor variables.

Figure 2.1 shows the trace of the p(γ∗|y) as the sample size increases. In the trace plots,

we only observe the trace increases along with the sample in Case 3 and 4, while it fails to

grow in Case 1, Case 2 and Case 5 in each scenario.
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Table 2.4: Simulation results based on 100 Monte Carlo experiments.

Scenario Case n=100 n=300 n=500 n=900

1 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)

2 0.0538 (0.0037) 0.0525 (0.0032) 0.0483 (0.0025) 0.0415 (0.0022)

III 3 0.9975 (0.0005) 0.9996 (0.0002) 0.9999 (0.0000) 1.0000 (0.0000)

4 0.9998 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000)

5 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)

1 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)

2 0.0665 (0.0048) 0.0526 (0.0033) 0.0554 (0.0029) 0.0429 (0.0024)

IV 3 0.9974 (0.0005) 0.9997 (0.0001) 0.9998 (0.0000) 0.9999 (0.0000)

4 0.9999 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000)

5 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)

Notes: (Case 1) g = n; (Case 2) g = p2; (Case 3) g = p5; (Case 4) g = p6; (Case 5)

g = exp(0.7n). p = 158, 530, 930, 1776 for n = 100, 300, 500, 900.
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Figure 2.1: The trace plots of the estimate of pr(γ∗ | y) as the sample size n increases.

2.5 Discussion

In this chapter, we find out that, when log p = o(n), we can achieve posterior model prob-

ability consistency with the Zellner’s g-priors by choosing the hyperparameter g such that

p <
√
g and log g = o(n). The two conditions propose useful guidelines for specifying the hy-
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perparameter g. Our study also implies that the model selection consistency can be achieved

in both low-dimensional and high-dimensional cases.

The Zellner’s g-prior’s ability to induce sparse solution makes it a popular prior choice

in Bayesian high-dimensional model selection. Besides the Zellner’s g-prior, there are other

distributions which are popular prior choices in model selection study, such as the Laplace

prior, Horseshoe prior, and scaled Student’s t prior, to name a few. In the Bayesian regression

analysis, prior specification is a challenging and important topic, thus an interesting direction

for future research is to extend our framework to a class of general priors. By exploring

variable selection consistency under the general prior settings, we expect to derive general

conditions which can be applied to a variety of priors to induce Bayesian model selection

consistency.
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Chapter 3

The consistency of Bayesian

high-dimensional model selection

under arbitrary priors

3.1 Introduction

Bayesian model selection has become a popular approach to model selection in regression

over the years. A few examples of Bayesian model selection are Zellner and Siow (1980),

Stewart and Davis (1986), George and McCulloch (1993), George and McCulloch (1997) and

Raftery et al. (1997) in linear regression; George et al. (1996) in general linear regression;

Smith and Kohn (1996), Hansen and Yu (2001) and Kohn et al. (2000) in nonparametric

regression. Under the Bayesian framework, we compute the posterior model probability

for each candidate model. The model which maximizes the posterior model probability

is selected as the true model. The model selection consistency means that the posterior

probability of the true model approaches one as we accumulate more data.

The prior of the model parameters plays a important role in determining the posterior

probability of the candidate model. The choice of the prior greatly affects the consistency

of Bayesian model selection. There are many studies attempting to address the issue of
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prior specification. For example, Moreno et al. (2015) prove that Bayesian model selection is

consistent under the intrinsic priors, g-priors with g = n, and the mixture of g-priors when

C1 ≤ pn < C2n
1/2 for some positive constants C1 and C2, where pn is the size of the full

model. Shang and Clayton (2011) show the consistency of model selection under point mass

spike and Gaussian flat priors. Liang et al. (2008) demonstrate model selection consistency

under a mixture of g-priors. These studies provide valuable insights into the consistency

of Bayesian model selection under a variety of priors. Nevertheless, prior specification still

remains a challenging issue in the Bayesian model selection.

Our main focus and contribution in this chapter is that we derive sufficient conditions

for the general prior of model parameters to achieve posterior model consistency in high-

dimensional model selection. The sufficient conditions propose general guidelines for hyper-

parameter specifications. The proposed guidelines are applicable to a variety of priors. Our

simulation study and real data study demonstrate the validity of the sufficient conditions in

high-dimensional model selection. It is worth noting that a unique feature of the study is

that we assume the size of the full model grows with the sample size, possibly at a faster

rate. Our main results hold in both low-dimensional and high-dimensional model selection.

3.2 Model set-up and assumptions

Consider a linear regression model,

y = Xβ + ϵ, (3.1)

where y = (y1, . . . , yn)
⊤ is the n-dimensional response vector, X = (x1, . . . , xpn) is the

n × pn design matrix, β = (β1, . . . , βpn)
⊤ is a pn-dimensional regression coefficient vector,

and ϵ = (ϵ1, . . . , ϵn)
⊤ is a n-dimensional random error vector with ϵi

iid∼ N(0, σ2). For now,

we assume σ2 is known and will discuss the case when σ2 is unknown later. Without loss of

generality, we assume both y and X are centered so that the intercept can be omitted.

In linear regression, model selection is performed by identifying predictor variables with
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non-zero coefficients. Let γ ⊂ {1, . . . , pn} be an index set representing a submodel of size

pγ. Given the submodel γ, the full model reduces to

y = Xγβγ + ϵ,

where Xγ is the n × pγ submatrix of X and βγ is the pγ-dimensional vector of non-zero

regression coefficients.

In this paper, we allow the size of the full model pn to grow with the sample size n.

Let Mn = {γ : pγ ≤ Kn = o(n)} be the set of candidate submodels under consideration,

where Kn is the upper bound of the size of the candidate models (Abramovich et al., 2010;

Martin et al., 2017; Wang, 2009). We believe it is necessary to impose such a restriction

on Kn for the following reasons. First, models which are larger than the sample size are

not identifiable. Second, the true model is usually a sparse model. Third, models with

numerous predictors are hard to interpret. Lastly, for some priors such as the g-prior, it

leads to improper posterior distributions for models that contain more predictors than the

sample size.

Under the Bayesian framework, the model which maximizes the posterior model proba-

bility is selected as the true model, that is,

γ̂ = arg max
γ∈Mn

pr(γ|y).

The Bayesian model selection consistency is understood as the posterior probability of the

true model approaches one as the sample size increases. Therefore, we formally define the

Bayesian model selection consistency as follows (Liang et al., 2008; Moreno et al., 2015;

Shang and Clayton, 2011):

Definition 3.1. Let γ∗ be the true model. When the observations, y, is generated by

Nn(Xγ∗β
0
γ∗ , σ

2
0In), where β0

γ∗ is the pγ∗ × 1 vector of the true non-zero coefficients and σ2
0
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is the true value of variance. The Bayesian model selection is consistent if

pr (γ∗|y)→ 1,

in Y|βγ∗-probability as n→∞.

To complete our Bayesian model set-up, we consider a uniform distribution for the can-

didate models which is given by

pr(γ) ∝ I(γ ∈Mn),

where I is an indicator function. For the prior of βγ, we consider a general form

p(βγ|γ) ∼ π(βγ),

which is the most distinctive difference of this chapter. Our objective is to derive general

sufficient conditions to achieve posterior model probability consistency while pn grows with

the sample size, including cases where pn grows at a faster rate than n. To accomplish our

goal, the following regularity conditions are required:

Assumption 3.1. The true data generating model is γ∗, and γ∗ ∈Mn.

Assumption 3.2. pn = O(nα) for α ∈ [0,∞).

Assumption 3.3. Kn = O(nb) for b ∈ [0, 1).

Assumption 3.4. pγ∗ = O(nc) for c ∈ [0, b).

Assumption 3.1 ensures the true model is contained in the set of the candidate models we

consider. Assumption 3.2 allows the total number of predictors pn to grow with the sample

size. Assumption 3.3 restricts the size of candidate models to be smaller than the sample

size. Assumption 3.4 controls the size of the true model.
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Remark 3.1. Under Assumption 3.2, the growth rate of pn depends on α. It grows faster

than n when α ∈ [1,∞), and it grows slower than n when α ∈ [0, 1). In cases where

pn < n, pn is the natural upper bound, thus Assumption 3.3 is no longer required in such

circumstances.

Assumption 3.5. Let λmin,γ and λmax,γ be the smallest and largest eigenvalues of 1
n
XT

γ Xγ

respectively. There exist λmin and λmax such that

0 < λmin < inf
γ:pγ≤2Kn

λmin,γ < sup
γ:pγ≤2Kn

λmax,γ < λmax <∞.

Assumption 3.6. For any γ such that pγ ≤ pγ∗ , let β̃γ be the probability limit of β̂γ where

β̂γ = (X⊤
γ Xγ)

−1X⊤
γ y. The Euclidean norm of β̃γ is bounded in the sense that ∥ β̃γ ∥2≤ c̃γpγ

for some constant c̃γ ∈ (0,∞).

Assumption 3.5 is referred as the sparse Riesz condition (Zhang et al., 2008) which is

a common assumption in high-dimensional regression (Huang et al., 2012; Wei and Huang,

2010; Zhang et al., 2010). Assumption 3.6 allows the magnitude of β̂γ to grow, however, it

is bounded by the size of the model, i.e. ∥β̂γ∥2 ≤ cγpγ for some constant cγ > 0. Under

Assumption 3.4 and Assumption 3.6, we have ∥β0
γ∗∥2 ≤ cγ∗pγ∗ = dγ∗n

c for some constant

dγ∗ > 0, where β0
γ∗ is the true coefficients vector of the true model. Note that we use the

same notation cγ to denote the constant, however, cγ is different for a different γ.

Assumption 3.7. Let BR be a ball such that BR(0) = {βγ ∈ Rpγ :∥ βγ ∥2≤ dγn
c + 1}, for

any β′
γ, βγ ∈ BR(0), we have

| log p(β′
γ|γ)− log p(βγ|γ)| ≤ F1 ∥ β′

γ − βγ ∥2,

for some constants F1 ∈ (0,∞) and dγ ∈ (0,∞).

Assumption 3.8. For any βγ ∈ Rpγ , we have

log p(βγ|γ)− log p(0|γ) ≤ F2,
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for some constant F2 ∈ (0,∞).

Assumption 3.7 and Assumption 3.8 require the prior of βγ to be log-Lipschtz with respect

to the radius R > 0 and the log-density ratios are bounded. Assumption 3.7 is a common

assumption in high-dimensional regression (Barber et al., 2016; Ghosal et al., 1999).

3.3 Main results

Since we do not assume any specific distribution of p(βγ|γ), the marginal likelihood can not

be expressed in a closed form. Hence, we employ the Laplace approximation to derive a

general closed form expression of the marginal likelihood. We propose a general form of

Laplace approximation for models with growing dimensions.

Lemma 3.1. Suppose that Assumption 3.2 to 3.8 hold. Then,

p(y|γ) = p(y|β̂γ)p(β̂γ|γ)|X⊤
γ Xγ|−1/2(2πσ2)pγ/2

{
1 +Op

(√
pγ log n

n

)}
,

for any γ ∈Mn, where β̂γ = (X⊤
γ Xγ)

−1X⊤
γ y.

The proof of Lemma 3.1 is given in Appendix B.3. Lemma 3.1 allows us to approximate

the marginal likelihood when the dimensional of the model expands with the sample size. The

result of Lemma 3.1 is similar to the result of Theorem 1 in Barber et al. (2016). However,

the approximation error in Lemma 3.1 is relatively smaller due to the normal likelihood

assumption.

Remark 3.2. Lemma 3.1 indicates that the Laplace approximation error is Op

(√
pγ logn

n

)
.

For any γ ∈Mn, by Assumption 3.3, we have
√

pγ log n/n ≤
√

c′′γn
b log n/n. As n increases,√

c′′γn
b log n/n decreases to 0 where c′′γ is some positive constant.

For the true model γ∗, by Assumption 3.4,
√
pγ∗ log n/n decreases to 0 as n increases

where c′′γ∗ is some positive constant. When the sample size is sufficiently large, the approxi-

mation error is negligible.
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Remark 3.3. We know that p(γ∗|y) = p(y|γ∗)p(γ∗)∑
p(y|γ)p(γ) =

1
1+

∑
γ ̸=γ∗ p(y|γ)p(γ)/p(y|γ∗)p(γ∗) , and we also

have
∑

γ ̸=γ∗
p(y|γ)p(γ)
p(y|γ∗)p(γ∗) ∝

∑
γ ̸=γ∗

p(y|γ)
p(y|γ∗) due to the uniform distribution assumption of model

prior. We then have p(γ∗|y) → 1 if
∑

γ ̸=γ∗
p(y|γ)/p(y|γ∗) → 0. Following Lemma 3.1, we

have p(y|γ)
p(y|γ∗) ∝

p(y|β̂γ)p(β̂γ |γ)
p(y|β̂γ∗ )p(β̂γ∗ |γ∗)

. It is not hard to see that the posterior probability of the true

model depends on the ratio of the likelihoods and the ratio of the priors of βγ.

We now focus our discussion on pairwise model comparisons. We first consider the case

in which the true model is compared with the overfitting models, i.e. models which contain

the true model.

Lemma 3.2. Under Assumption 3.2, for any γ such that γ∗ ⊊ γ and pγ = o(n), we have

−2 log

{
p(y | β̂γ∗)

p(y | β̂γ)

}
< rγΛn,

in probability as n→∞, where rγ = pγ − pγ∗ and Λn = 2(log pn + δn) +
√

2(log pn + δn) + 1

with δn = o(log pn).

The proof of Lemma 3.2 is given in Appendix B.4. Lemma 3.2 implies that, when the true

model is compared with the overfitting models, the likelihood fails to achieve consistency

in the sense that p(y|β̂γ∗) < p(y|β̂γ) in probability due to the negative lower bound of the

log-likelihood ratio which is −rγΛn/2.

Next, we consider the case in which the true model is compared with the underfitting

models, i.e. models which are nested in the true model.

Lemma 3.3. Under Assumptions 3.2-3.3, for any γ ⊊ γ∗ and pγ∗ = o(n), there exists a

positive constant b0 such that

min
γ⊊γ∗

2 log

{
p(y | β̂γ∗)

p(y | β̂γ)

}
> b0n.

The proof of Lemma 3.3 is given in Appendix B.5. Lemma 3.3 implies that, when the

true model is compared with any underfitting models, the likelihood achieves consistency in

the sense that p(y|β̂γ∗) > p(y|β̂γ) in probability as n→∞.
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Remark 3.4. In addition to the first two pairwise comparison cases, we have a third case

in which the competing models are neither underfitting nor overfitting to the data. Suppose

γ is a model such that γ ̸⊂ γ∗ and γ∗ ̸⊂ γ with pγ = o(n) and pγ∗ = o(n).

For any γ in the third case, let γ∗∗ = γ∪γ∗ be the smallest overfitting model that contains

both γ and γ∗, and γ∗∗ can be regarded as the true model with some zero coefficients. By

Lemma 2.2, we have

log{p(y|β̂γ∗)/p(y|β̂γ∗∗)} > −
r∗∗
2
Λn, (3.2)

where r∗∗ = pγ∗∗ − pγ∗ and Λn = 2(log pn + δn)+
√
2(log pn + δn)+ 1 with δn = o(log pn). By

Lemma 3.3, we have

log{p(y|β̂γ∗∗)/p(y|β̂γ)} >
1

2
b0n, (3.3)

for some positive constant b0. By (3.2) and (3.3), it follows that

log{p(y|β̂γ∗)/p(y|β̂γ)} >
1

2
b0n{1 + o(1)}.

Hence, we have p(y|β̂γ∗) > p(y|β̂γ) in probability as n → ∞ for any γ that is neither

underfitting nor overfitting to the sample data.

Under our model set-up, selecting the model with the greatest posterior model probability

is equivalent to selecting the model which maximizes the marginal likelihood, that is

γ̂ = argmax
γ∈Mn

pr(γ|y) = argmax
γ∈Mn

p(y|γ).

To achieve the model selection consistency stated in Definition 3.1, it suffices that

∑
γ∈Mn

p(y|γ)
p(y|γ∗)

→ 0

29



in probability as n→∞. The inconsistency in the likelihoods suggests that we need certain

conditions in order to achieve posterior model probability consistency. The following theorem

proposes such conditions.

Theorem 3.1. Under Assumptions 3.1 to 3.5, we have

∑
γ∈Mn

p(y|γ)
p(y|γ∗)

→ 0,

in probability as n→∞ if the following conditions hold:

Condition 1: pγ∗
pγ−pγ∗

log p(β̂γ∗ |γ∗)
p(β̂γ |γ)

= o(n) for any γ ∈Mn \ {γ∗},

Condition 2: 1
pγ−pγ∗

log p(β̂γ∗ |γ∗)
p(β̂γ |γ)

> log p2n√
n
for any γ ∈M1 = {γ ∈Mn : γ ⊋ γ∗}.

The proof of Theorem 3.1 is given in the Appendix B.6. Theorem 3.1 implies if the prior

of βγ satisfies the sufficient conditions, the posterior model probability of true model becomes

one while the posterior model probabilities of other models become zero as the sample size

increases. In other words, the posterior model probability distribution degenerates to a point

mass distribution concentrates at the true model asymptotically.

Remark 3.5. Theorem 3.1 proposes how non-informative the prior of βγ should be. Con-

dition 2 suggests that the prior should be non-informative to avoid the prior dominating the

model selection. Condition 1 suggests that the prior should not be too non-informative to

avoid the model selection favors the null model regardless of the information the data con-

tains. Theorem 3.1 implies that, to achieve posterior model selection consistency, the prior

of βγ needs to be flat but not too flat.

3.4 Examples of priors for model parameters

Theorem 3.1 proposes the general conditions for the prior of βγ to achieve posterior model

probability consistency. In this section, we explore model selection consistency under several

priors. The priors we consider are frequently adopted in Bayesian model selection studies.
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We establish model selection consistency under each prior by applying Theorem 3.1. The

results imply that the sufficient conditions also provide useful guidelines for hyperparameter

specification for a chosen prior.

3.4.1 Gaussian prior

As a conjugate prior, the Gaussian prior is the one of the most popular prior choices in the

Bayesian model selection (George and McCulloch, 1993; Ishwaran and Rao, 2005; Narisetty

et al., 2014) with Gaussian data. Suppose we assign the independent Gaussian prior to βγ

in the following way:

p(βγ | γ, s) =
∏
j∈γ

1

(2πs2)1/2
exp

(
− 1

2s2
β2
j

)
.

Under Assumption 3.2-3.4, the independent Gaussian prior yields consistent model selection

if s > p2n/
√
n and pγ∗ log s = o(n). The proof is given in Appendix B.8.

3.4.2 Laplace prior

As the prior of βγ in Bayesian lasso (Park and Casella, 2008), the Laplace prior is another

popular prior choice in Bayesian model selection (Casella et al., 2010; Hans, 2009, 2010).

Suppose we assign the Laplace prior to βγ in the following way:

p(βγ|γ, s) =
pγ∏
j=1

1

2s
exp

(
−|βj|

s

)
.

Under Assumption 3.2-3.4, the Laplace prior yields consistent model selection if s > p2n/
√
n

and pγ∗ log s = o(n). The proof is given in Appendix B.8.

3.4.3 Scaled Student’s t prior

The scaled Student’s t prior (West, 1987) concentrates at zero with relatively thicker tails,

which makes the scaled Student’s t prior an appealing prior choice for model selection (Ar-
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magan et al., 2011, 2013; Tipping, 2001). Suppose we assign scaled Student’s t prior to βγ

in the following way:

p(βγ|γ, s, d) =
pγ∏
j=1

[sd1/2B(d/2, 1/2)]−1(1 +
β2
j

sd
)−(d+1)/2

where s is the scale parameter and d is the degrees of freedom. Under Assumption 3.2-3.4,

the scaled Student’s t prior yields consistent model selection if s > p2n/
√
n, pγ∗ log s = o(n),

log d = o(n) and pγ∗ log d = o(n). The proof is given in Appendix B.8.

3.4.4 Generalized double Pareto prior

The generalized double Pareto prior proposed by Armagan et al. (2010) has some appealing

properties such as spike at zero and Student’s t-like tails which make it a frequent prior choice

in Bayesian model selection(Armagan et al., 2013; Pal et al., 2017). Suppose we assign the

generalized double Pareto prior to βγ in the following way:

p(βγ|γ, α, η) =
pγ∏
j=1

α

2η

(
1 +
|βj|
η

)−(α+1)

.

Under Assumption 3.2-3.4, the Generalized double Pareto prior yields consistent model se-

lection if η
α
> p2n/

√
n and pγ∗ log

η
α
= o(n). The proof is given in Appendix B.8.

3.4.5 Horseshoe prior

The Horseshoe prior has some fairly desirable properties, such as heavy tail, an infinite spike

at zero and so on. Due to such properties, it becomes a popular prior choice in Bayesian

regression (Armagan et al., 2013; Carvalho et al., 2010). Suppose we assign the Horseshoe

prior to βγ in the following way:

p(βγ|γ, τ) =
pγ∏
i=1

K0(τ
2)−1/2 exp(

β2
i

2τ 2
)E1(

β2
i

2τ 2
),
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whereK0 = 1/(2π3)1/2 and E1(·) is the exponential integral function. Under Assumption 3.2-

3.4, the Horseshoe prior yields consistent model selection if τ 2 > p4n/n and pγ∗ log τ
2 = o(n).

The proof is given in Appendix B.8.

3.5 Estimating unknown variance

It is worth noting that in deriving the main results, we assume the σ2 to be known which is

an assumption not always satisfied. In real practice, the σ2 is usually unknown and the best

solution is to replace it by its estimate. However, it is not clear how to estimate σ2 in model

selection study since we do not know the true model.

We use forward selection method to estimate σ2. The forward selection method is able

to estimate σ2 consistently under two following conditions.

Assumption 3.9. For any γ ∈ Mn, we have ∥β0
γ∗∥2 ≤ O(nc) and β0

min ≥ νβ0
γ∗
n−cmin, where

β0
min = min

j∈γ∗
|β0

j | and νβ0
γ∗

is a constant.

Assumption 3.10. There exists constants c0 and ν such that log pn ≤ νnc0, and c0 + 6c +

12cmin < 1.

Let γ(k) denote the selected model in the kth step of the forward selection. Theorem

3.2 ensures that a model which contains the true model will be selected within a number of

steps much smaller than the sample size.

Theorem 3.2. Under Assumptions 3.9 and 3.10, we have

p(γ∗ ⊂ γ(K′n4c+4cmin ))→ 1,

as n→∞, where K ′ = 2λmaxν
2λ−2

minν
−4
β .

The proof of Theorem 3.2 is given in Appendix B.10. By Theorem 3.2, if we set the

number of steps in the forward selection to be Kn, then we are able to select an overfitting

model consistently. Since an overfitting model can be consider as true model with some extra
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predictor variables with zero regression coefficients, Theorem 3.2 enables us to estimate σ2

consistently under an overfitting model.

3.6 Simulation study

In this section, we conduct the simulation study to exam the performance of Theorem 3.1.

We use the priors discussed in the last section and construct the model selection procedures

according to the sufficient conditions derived for each prior.

3.6.1 Simulation setting

First, we generate our data {(yi, xi) : i = 1, . . . , n} from the model yi = x⊤
i β + ϵi for

i = 1, . . . , n, where

xi
iid∼ Npn(0,Σ),

βγ∗ = (1, 1,−1,−1)⊤,

ϵi
iid∼ N (0, 1.3),

with Σ = (σij)pn×pn and σij = ρ|i−j|. The true model γ∗ is a randomly generated index set

with pγ∗ = 4. We consider two scenarios:(Scenario 1) pn = ⌊n1.1⌋ and ρ = 0.5;(Scenario 2)

pn = ⌊n1.1⌋ and ρ = 0. The predictor variables are correlated in Scenario 1, while the

predictor variables are uncorrelated in Scenario 2. By Assumption 3.3, we set Kn = n2/3.

To exam the limiting behavior of the Bayesian model selection as n increases, we run the

simulation with n = {100, 300, 500, 900} for each scenario.

For the specification of the hyperparameters, we consider 5 cases for each prior. Table

3.1 presents our choices for the values of the hyperparameters. By the sufficient conditions

we derived for the priors, the settings in Case 1 and Case 5 violate the sufficient conditions,

whereas the settings in Case 2, Case 3 and Case 4 satisfy the sufficient conditions. We expect

to observe model selection consistency only in Case2, Case 3 and Case 4 under each prior.
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Table 3.1: Choices of hyperparameters

Prior Case 1 Case 2 Case 3 Case4 Case5
Gaussian s = p s = p2 s = p3 s = p4 s = exp(0.6n)

Laplace s = p s = p2 s = p3 s = p4 s = exp(0.6n)

Scaled s = p, s = p2, s = p3, s = p4, s = exp(0.6n),
student′s t d = n d = n d = n d = n d = n

Pareto η
α
= p, η

α
= p2, η

α
= p3, η

α
= p4, η

α
= exp(0.6n),

α = n α = n α = n α = n α = n

Horseshoe τ = p τ = p2 τ = p3 τ = p4 τ = exp(0.6n)

To evaluate the performance of the model selection, we compute the posterior probability

of the true model using a Monte Carlo estimator:

pr(γ∗ | y) ≈ T−1

T∑
t=1

I(γ(t) = γ∗),

where {γ(t) : t = 1, . . . , T} is a Gibbs sequence generated from pr(γ | y). We totally generate

100 Monte Carlo experiments, and run the Gibbs sampler (see Section 3.6.2) 6, 000 times

with first 3, 000 iterations as the burn-in period. We use T = 1, 000 samples generated by

resampling every third iteration after the burn-in period for each Monte Carlo experiment.

3.6.2 Gibbs sampler

In this section, we introduce our simulation algorithm. For each Monte Carlo experiment,

we first run the forward selection to compute σ̂. We then run the Gibbs sampler to generate

the sample of selected models. The simulation algorithm can be implemented as follows:
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Algorithm 2 The Gibbs sampler.

Set γM = γ0, A1 = c(1, . . . , pn)

Repeat for h = 1, . . . , Kn:

Set sM = γ
(h)
M , C1 = A

(h)
1 ,SM = {Φ}

Repeat for i ∈ C1:

Set sMi
= sM ∪ {i}, SM = SM ∪ sMi

Compute:

sMi
= argmax

sMi
∈SM

p(y|β̂sMi
, sMi

)

sM ← sMi
, C1 ← C1 \ {i}

Output γ
(h+1)
M = sM , A

(h+1)
1 = C1

ν2 = 1
n−pγM

∥y −HγMy∥22

Repeat for t = 1, . . . , T :

Set s = γ(t)

Repeat for j = 1, . . . , pn:

Set s1 = s ∪ {j}

Set s0 = s \ {j}

Compute

p(y|s1) = p(y | β̂s1)p(β̂s1 |s1)|X⊤
s1
Xs1 |−1/2(2πν2)ps1/2

p(y|s0) = p(y | β̂s0)p(β̂s0 |s0)|X⊤
s0
Xs0|−1/2(2πν2)ps0/2

w = p(y|s1)I(s1 ∈Mn)/{p(y | s1) + p(y | s0)}

Sample z ∼ Bernoulli(w)

If z = 1 then s← s1;

else s← s0

Output γ(t+1) = s

36



3.6.3 Simulation results

Table 3.2 and Table 3.3 report the mean and standard deviation of the estimate of p(γ∗|y)

over the 100 Monte Carlo experiments of Scenario 1. Clearly, we observe a strong trend of

p(γ∗|y) increasing to one in Case 2, Case 3 and Case 4 under each prior. On the contrary,

we fail to observe p(γ∗|y) increasing to one in Case 1 and Case 5. The results match our

expectation.

Table 3.2: Simulation results based on 100 Monte Carlo experiments: Scenario 1.

Prior Case n=100 n=200 n=500 n=900

1 0.1575(0.1951) 0.1190(0.1721) 0.1924(0.1728) 0.1637(0.1915)

2 0.8307(0.2765) 0.9243(0.1595) 0.9305(0.2098) 0.9874(0.0650)

Gaussian 3 0.9656(0.1425) 0.9865(0.1017) 0.9958(0.0389) 0.9999(0.0001)

4 0.9719(0.1354) 0.9932(0.0515) 1.0000(0.0000) 1.0000(0.0000)

5 0.1497(0.3549) 0.0945(0.2859) 0.0076(0.0745) 0.0000(0.0000)

1 0.1064(0.1595) 0.0987(0.1372) 0.1441(0.1616) 0.1349(0.1695)

2 0.7923(0.3080) 0.8914(0.2178) 0.9594(0.1468) 0.9814(0.0917)

Laplace 3 0.9517(0.1746) 0.9959(0.0176) 0.9998(0.0022) 0.9999(0.0001)

4 0.9563(0.1800) 0.9999(0.2792) 1.0000(0.0000) 1.0000(0.0000)

5 0.1336(0.3346) 0.0918(0.2845) 0.0100(0.0986) 0.0000(0.0000)

1 0.1550(0.1962) 0.1120(0.1525) 0.1924(0.1729) 0.1638(0.1915)

Scaled 2 0.7964(0.2906) 0.8571(0.2562) 0.9305(0.2098) 0.9924(0.02520)

Student’s 3 0.9594(0.1535) 0.9865(0.1017) 0.9958(0.0389) 0.9999(0.0001)

t 4 0.9719(0.1355) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)

5 0.1497(0.3549) 0.1093(0.3070) 0.0076(0.07450) 0.0000(0.0000)
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Table 3.3: Simulation results based on 100 Monte Carlo experiments: Scenario 1.

Prior Case n=100 n=200 n=500 n=900

1 0.1200(0.1722) 0.0957(0.1402) 0.1685(0.1843) 0.1638(0.1916)

2 0.8038(0.2947) 0.9038(0.2146) 0.9638(0.1324) 0.9870(0.0694)

Pareto 3 0.9617(0.1660) 0.9968(0.0156) 0.9999(0.0002) 0.9999(0.0001)

4 0.9774(0.1210) 0.9999(0.0004) 1.0000(0.0000) 1.0000(0.0000)

5 0.1637(0.3556) 0.1343(0.3282) 0.0411(0.1970) 0.0000(0.0000)

1 0.2228(0.2644) 0.2487(0.25810) 0.3674(0.2709) 0.3518(0.2631)

2 0.8110(0.3148) 0.9070(0.2168) 0.9886(0.0579) 0.9945(0.0379)

Horseshoe 3 0.9558(0.1848) 0.9956(0.0354) 0.9999(0.0002) 0.9999(0.0001)

4 0.9580(0.1776) 0.9998(0.0018) 1.0000(0.0000) 1.0000(0.0000)

5 0.1230(0.3086) 0.1859(0.37770) 0.0400(0.1969) 0.0010(0.0707)

Table 3.4 and Table 3.5 report the mean and standard deviation of the estimate of

p(γ∗|y) over the 100 Monte Carlo experiments of Scenario 2. We only observe posterior

model probability of the true model tends to one in Case 2, Case 3 and Case 4 under each

prior which is similar to Scenario 1. The results match our expectation as well.

Figure 3.1 - Figure 3.5 are the trace plots of the estimated p(γ∗|y) as sample size increases

under each prior. The plots demonstrate that when the sufficient conditions are met, the

trace of p(γ∗|y) shows a strong trend of increasing to one as the sample size increases. When

the sufficient conditions are violated, the trace of p(γ∗|y) fails to show such a trend as the

sample size increases.

In general, the simulation results demonstrate that, when the priors satisfy the sufficient

conditions in Theorem 3.1, the model selection achieves consistency in the sense that the

posterior probability of the true model tends to one as the sample size increases. On the

contrary, when the sufficient conditions are violated, the model selection fails to be consis-

tent. The results imply that when the sufficient conditions are satisfied, the posterior model

probability distribution degenerates to a point mass distribution concentrates at the true
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model as the sample size increases.

Table 3.4: Simulation results based on 100 Monte Carlo experiments: Scenario II.

Prior Case n=100 n=200 n=500 n=900

1 0.1267(0.1854) 0.0624(0.1227) 0.1452(0.1657) 0.1374(0.1695)

2 0.7512(0.3358) 0.8570(0.2562) 0.9541(0.1507) 0.9871(0.0304)

Gaussian 3 0.9609(0.1417) 0.9873(0.0719) 0.9997(0.0018) 0.9999(0.0001)

4 0.9719(0.1391) 0.9999(0.0001) 1.0000(0.0000) 1.0000(0.0000)

5 0.1530(0.3376) 0.1285(0.3134) 0.0201(0.1407) 0.0099(0.0699)

1 0.0719(0.1374) 0.0677(0.1104) 0.1105(0.1397) 0.0949(0.1397)

2 0.7692(0.3168) 0.8265(0.2800) 0.9369(0.1734) 0.9842(0.0371)

Laplace 3 0.9480(0.1750) 0.9856(0.0783) 0.9998(0.0016) 0.9999(0.0001)

4 0.9619(0.1575) 0.9999(0.0001) 1.0000(0.0000) 1.0000(0.0000)

5 0.2475(0.4137) 0.0828(0.2644) 0.0310(0.1715) 0.0000(0.0000)

1 0.0986(0.1470) 0.0625(0.1229) 0.1453(0.1658) 0.1375(0.1453)

Scaled 2 0.7933(0.3072) 0.8571(0.2562) 0.9436(0.1643) 0.9871(0.0304)

Student’s 3 0.9615(0.1398) 0.9873 (0.0718) 0.9997(0.0018) 0.9999(0.0001)

t 4 0.9719(0.1391) 0.9999(0.0001) 1.0000(0.0000) 1.0000(0.0000)

5 0.1609(0.3619) 0.1285(0.3135) 0.0201(0.1407) 0.0099(0.0699)
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Table 3.5: Simulation results based on 100 Monte Carlo experiments: Scenario II.

Prior Case n=100 n=200 n=500 n=900

1 0.0850(0.1435) 0.0677(0.1104) 0.1105(0.1397) 0.1053(0.1453)

2 0.7102(0.3389) 0.8265(0.2800) 0.9491(0.1566) 0.9840(0.0370)

Pareto 3 0.9536(0.1589) 0.9873 (0.0713) 0.9995(0.0039) 0.9999(0.0001)

4 0.9914(0.0337) 0.9999(0.0001) 1.0000(0.0000) 1.0000(0.0000)

5 0.0000(0.0000) 0.0000(0.0000) 0.0000(0.0000) 0.0000(0.0000)

1 0.0104(0.0254) 0.0011(0.0037) 0.0005(0.0015) 0.0003(0.0013)

2 0.8314(0.2754) 0.8596(0.3031) 0.9672(0.1256) 0.9956(0.0103)

Horseshoe 3 0.9676(0.1478) 0.9954(0.0293) 0.9999(0.0005) 1.0000(0.0000)

4 0.9849(0.0973) 0.9999(0.0001) 1.0000(0.00000) 1.0000(0.0000)

5 0.0000(0.0000) 0.0000(0.0000) 0.0000(0.0000) 0.0000(0.0000)
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Figure 3.1: The trace plots of the estimate of pr(γ∗ | y) as the sample size n increases.
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Figure 3.2: The trace plots of the estimate of pr(γ∗ | y) as the sample size n increases.
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Figure 3.3: The trace plots of the estimate of pr(γ∗ | y) as the sample size n increases.
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Figure 3.4: The trace plots of the estimate of pr(γ∗ | y) as the sample size n increases.
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Figure 3.5: The trace plots of the estimate of pr(γ∗ | y) as the sample size n increases.

3.7 Real data study

3.7.1 Set-up

In this section, we examine the performance of Theorem 3.1 with real data. We use the

Bardet − Biedl syndrome gene expression data from Scheetz et al. (2006). The data set

contains information of the expression level of the TRIM 32 gene and 200 gene probes of

120 rats. There are totally 120 observations with one response variable and 200 predictor

variables in the data set. The goal of our study is to identify the genes that are highly

associated with the expression level of the TRIM 32 gene.

We conduct the model selection using the same algorithm from the simulation study. We

run the Gibbs sampler 6, 000 times with the first 3, 000 iterations as the burn-in period. We
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then compute the relative frequency of each selected model, and select the model with the

highest relative frequency as our estimate of the true model. We compute the Extended

Bayesian Information Criteria(Chen and Chen, 2008) for model evaluation.

Table 3.6 presents the settings of the hyperparameter values, which are the same as the

hyperparameter settings in the simulation study. We already know that only the settings in

Case 2, Case 3 and Case 4 satisfy the sufficient conditions. We also run Lasso and SCAD

regressions in comparison to our method.

Table 3.6: Choices of hyperparameters

Prior Case 1 Case 2 Case 3 Case4 Case5
Gaussian s = p s = p2 s = p3 s = p4 s = exp(0.6n)

Laplace s = p s = p2 s = p3 s = p4 s = exp(0.6n)

Scaled s = p, s = p2, s = p3, s = p4, s = exp(0.6n),
student′s t d = n d = n d = n d = n d = n

Pareto η
α
= p, η

α
= p2, η

α
= p3, η

α
= p4, η

α
= exp(0.6n),

α = n α = n α = n α = n α = n

Horseshoe τ = p τ = p2 τ = p3 τ = p4 τ 2 = exp(0.6n)

3.7.2 Results

Table 3.7 - Table 3.8 present the results of the real data study. There are several implications

of the results which are worth noting. First, when the specified values of hyperparameters

meet the sufficient conditions, the selected model is the best among all the selected models

in terms of EBIC. Second, despite of the differences in the simulation settings, the model

selection procedures unanimously select the same model when the priors satisfy the sufficient

conditions. Thirdly, the selected models are inferior in terms of EBIC when the priors fail to

meet the sufficient conditions. However, these models all contain the same genes selected by

the best model. Lastly, the Lasso regression tends to select models that are relatively larger.

The results in the SCAD regression resemble the results in Case 1 under each prior. The two

models selected by Lasso and SCAD regression have larger EBIC, nevertheless, they both
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select the 3 genes which are select by the best model.

Figure 3.6 is the heat map of the selected gene. The map shows that gene 153, 180 and

185 are selected by most of the models. The heat map indicates that gene 153, 180 and 185

have higher association with the expression level of the TRIM 32 gene.

In general, the real data study confirms our expectation. When the sufficient conditions

are satisfied, the model selection tends to select the model which shows superiority.

Table 3.7: Real data results.

Prior Case Selected Gene EBIC

1 {87,153,180,185} 226.4538

2 {153,180,185} 223.7867

Gaussian 3 {153,180,185} 223.7867

4 {153,180,185} 223.7867

5 {153} 251.5057

1 {55,76,87,153,180,185} 234.2658

2 {153,180,185} 223.7867

Laplace 3 {153,180,185} 223.7867

4 {153,180,185} 223.7867

5 {153} 251.5057

1 {55,71,76,110,153,180,185} 237.8742

Scaled 2 {153,180,185} 223.7867

Student’s 3 {153,180,185} 223.7867

t 4 {153,180,185} 223.7867

5 {153} 251.5057

Note:The numbers represent the selected genes, e.g. 31 means the 31th gene is selected.
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Table 3.8: Real data results.

Prior Case Selected Gene EBIC

1 {55,76,87,153,180,185} 234.2658

2 {153,180,185} 223.7867

Pareto 3 {153,180,185} 223.7867

4 {153,180,185} 223.7867

5 {153} 251.5057

1 {87,153,180,185} 226.4538

2 {153,180,185} 223.7867

Horseshoe 3 {153,180,185} 223.7867

4 {153,180,185} 223.7867

5 {153} 251.5057

Lasso λ = 0.0056 {11,50,54,62,76,87,90,96,. . . ,200} 365.7635

SCAD a = 3.7, λ = 0.0120 {87,153,180,181,185,200} 279.5519

Note:The numbers represent the selected genes, e.g. 31 means the 31th gene is selected.

Lasso:{11,50,54,62,76,87,90,102,110,127,134,136,140,146,153,155,161,164,180,184,185,187,188,200}
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Figure 3.6: Heat Map of Selected Genes

3.8 Discussion

Theorem 3.1 proposes general sufficient conditions for the p(βγ|y) to induce posterior model

probability consistency. We can establish model selection consistency under specific priors

by applying the sufficient conditions. The sufficient conditions also provide useful guidelines

for hyperparameter specifications. Even though we only demonstrate the consistency under

the high-dimensional settings, Theorem 3.1 holds in low-dimensional model selection as well.

It is worth noting that, we assume σ2 is known in our model set-up. We believe this

assumption is not essential for Theorem 3.1 to hold. In cases where σ2 is unknown, the

forward selection method offers a way to estimate σ2 consistently, which enables us to achieve

model selection consistency without knowing σ2.

While we consider the sufficient conditions in Theorem 3.1 as general conditions, the

analysis still relies on the normal likelihood assumption. Thus, another interesting direction
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for the future work is to extend the results to Bayesian generalized linear models by relaxing

the normal likelihood assumption, which is discussed in the following chapter.
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Chapter 4

The consistency of generalized

Bayesian high-dimensional variable

selection under arbitrary priors

4.1 Introduction

Bayesian model selection has enjoy increasingly popularity in the area of the generalized

linear models. A few examples of Bayesian model selection in generalized linear regression

are George and Foster (2000), Raftery (1996), Bernardo et al. (1999), Chen et al. (1999) and

Ntzoufras et al. (2003). Under the Bayesian framework, we assign priors to model parameters

and candidate models respectively, and compute the posterior probability for each candidate

the model. By the Bayes theorem, the posterior probability of model γ is

pr(γ|y) = p(y|γ)p(γ)∑
γ∈Mn

p(y|γ)p(γ)

where

p(y|γ) =
∫

p(y|βγ, γ)p(βγ|γ)dβγ,
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andMn is the set of candidate models under consideration. The true model is believed to

be the model which maximizes the posterior model probability. Therefore, the model with

the highest posterior model probability is usually selected as the true model.

In deriving the posterior model probability, p(βγ|y) plays a key role. For the Bayesian

model selection using the posterior model probability, the specification of p(βγ|y) can be chal-

lenging, especially in the high-dimensional regression where we have numerous variables. For

more discussion of prior specification, please refer to Moreno et al. (2015), Shang and Clay-

ton (2011) and Liang et al. (2008). Despite the large number of studies using the Bayesian

approach in high-dimensional model selection, the studies focus on the prior specification

are very limited. We do not have a clear picture of how the choice of priors affects the model

selection results in the generalized linear regression.

In this chapter, we extend our framework to Bayesian generalized linear regression models.

In this generalization, we do not impose any specific distribution on the data which is a

distinctive difference of the study in this chapter. Our approach to the model selection

consistency focuses on the marginal likelihood. If we consider uniform distribution for pr(γ),

then the model with the greatest marginal likelihood is equivalent to model which maximizes

the posterior model probability. Thus, if the model selection achieves marginal likelihood

consistency, the posterior probability of the true model should become greater than any

other candidate models asymptotically due to the equivalent.

In this chapter, we develop general conditions for p(βγ|γ) under which the true model

tends to maximize the marginal likelihood even when the number of predictors increases

with the sample size, in some cases, even faster than that of the sample size. The conditions

provide useful guidelines for the specification of priors as well as the hyperparameter in the

priors. Our simulation study demonstrates the validity of the our sufficient conditions for

Bayesian model selection consistency with non-Gaussian data.
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4.2 Model set-up

Consider a generalized linear regression model,

E(y|β) = g−1(Xβ), (4.1)

where y = (y1, . . . , yn)
⊤ is the n-dimensional response vector, X = (x1, . . . , xpn) is the n×pn

design matrix with xj = (x1j, . . . , xnj)
⊤, β = (β1, . . . , βpn)

⊤ is a pn-dimensional regression

coefficient vector, and g−1(·) is the inverse link function.

In the generalized linear regression, the model selection is performed by identifying a

subset of predictor variables that have non-zero regression coefficients. Let γ ⊂ {1, . . . , pn}

be an index set of size pγ corresponding to a reduced model such that

E(y|βγ, γ) = g−1(Xγβγ),

where Xγ is the n × pγ submatrix of X and βγ is the pγ-dimensional vector of non-zero

regression coefficients. The goal of the model selection is to identify the subset γ∗ which

contain all the predictor variables with non-zero regression coefficients, i.e., the true model.

LetMn = {γ : pγ ≤ Kn} be set of candidate models under our consideration, where pγ

is the size of the model γ and Kn is the upper bound of the candidate model size. Let pr(γ)

be the prior probability of γ being the true model, we consider a uniform distribution for

the candidate models which is given by

pr(γ) ∝ I(γ ∈Mn),

where I is an indicator function. It then follows that

pr(γ|y) ∝ p(y|γ)pr(γ) ∝ p(y|γ)

. Under this model set-up, we select the model with the greatest posterior model probability
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as the true model, which is equivalent to selecting the model which maximizes marginal

likelihood, that is,

γ̂ = argmax
γ∈Mn

pr(γ|y) = argmax
γ∈Mn

p(y|γ).

Thus, the consistency in the posterior model probability is equivalent to the consistency

in the marginal likelihood, which implies the marginal likelihood of true model becomes

greater than any other candidate models as the sample increases. Therefore, in this chapter,

we formally define the Bayesian model selection consistency as follows:

Definition 4.1. Let γ∗ be the true model. The Bayesian model selection is consistent if

p(y|γ∗) > sup
γ∈Mn\{γ∗}

p(y|γ),

in Y|βγ∗-probability as n→∞.

Our objective in this chapter is to derive sufficient conditions under which the true

model maximizes the marginal likelihood in the Bayesian generalized linear regression while

pn grows with the sample size, possibly at a faster rate than n. To achieve this goal, we

require the following regularity conditions.

Assumption 4.1. The true data generating model is γ∗, and γ∗ ∈Mn.

Assumption 4.2. Suppose that γ0 and γ1 are two candidate models such that γ0 ⊂ γ1. Let

γ∗ be the true model. If γ∗ ⊂ γ0, then as n→∞,

−2logp(y|Xβ̂γ0)

p(y|Xβ̂γ1)
→ χ2

pγ1−pγ0

in distribution, where β̂γ denotes the maximum likelihood estimator under model γ.

Assumption 4.1 ensures that the true model is contained in the set of the candidate models

we consider so that the model selection consistency can be properly defined. Assumption

4.2 requires the log likelihood ratio of two overfitting models (models which contain the true

model) converges to χ2 distribution with the degrees of freedom pγ1 − pγ0 asymptotically.
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Assumption 4.3. As n→∞, we have

−2 log p(y|γ) = −2 log p(y|Xβ̂γ)− 2 log p(β̂γ|γ) + pγ log n+ pγcγ,

where cγ is a constant, which depends on γ.

Since we do not impose any specific distribution on data and p(βγ|y), the marginal

likelihood is not available in the closed form. Assumption 4.3 enables us to analyze the

marginal likelihood without knowing the closed form expression of the marginal likelihood.

Assumption 4.4. For any models γ0 and γ1 such that γ∗ ̸⊂ γ0 but γ∗ ⊂ γ1, then as n→∞,

−2 log p(y|Xβ̂γ0)

p(y|Xβ̂γ1)
> aγ0,γ1n,

where aγ0,γ1 is a positive constant which depends on γ0 and γ1.

Assumption 4.4 requires the log likelihood ratio of overfitting model and misspecified

model to be bounded. The positive lower bound implies the pairwise comparison between

the overfitting model and misspecified model achieve consistency.

Assumption 4.5. pn = O(nα) for α ∈ [0,∞).

Assumption 4.6. Kn = O(nb) for b ∈ [0, 1).

Assumption 4.7. For any γ such that γ ∈Mn, there exists a positive constant d such that

∥β̂γ∥2 ≤ dnc in probability as n→∞, where constant c ∈ [0, b).

Assumption 4.5 allows the total number of predictors pn to grow with the sample size.

Assumption 4.6 restricts the size of the candidate models to be smaller than the sample size

by controlling the upper bound Kn. Assumption 4.7 allows the magnitude of β̂γ to grow,

but the growth of the magnitude is bounded by Kn, i.e. ∥β̂γ∥2 ≤ cγKn for some constant

cγ > 0.
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4.3 Main results

We begin our discussion of the model selection consistency with two cases of pairwise model

comparison. We first consider the pairwise comparisons between the true model and the

overfitting models, i.e. models which contain the true model.

Lemma 4.1. Define M1 = {γ : γ∗ ⊊ γ and γ ∈ Mn}. For any γ ∈ M1, by Assumption

4.2, 4.3 and 4.5, we have

p(y|γ∗) > sup
γ∈M1

p(y|γ),

as n→∞, if log p(β̂γ∗ |γ∗)
p(β̂γ |γ)

≥ (pγ − pγ∗) log
pn√
n
.

The proof of Lemma 4.1 is given in Appendix C.1. We assume that pr(γ) ∝ I(γ ∈ Mn)

in our model set-up. It follows that p(y|γ∗)/p(y|γ) = pr(γ∗|y)/pr(γ|y). Lemma 4.1 implies

that, if prior of the model parameters satisfies the condition log p(β̂γ∗ |γ∗)
p(β̂γ |γ)

≥ (pγ − pγ∗) log
pn√
n
,

we achieve the consistency in pairwise model comparison between the true model and the

overfitting models in the sense that pr(y|γ∗) > sup
γ∈M1

pr(γ|y).

The next case we consider is the pairwise comparison between the true model and the

non-overfitting models. Non-overfitting models include underfitting models and misspecified

models. The underfitting models refer to models which are submodels of the true model,

and the misspecified models refer to models which neither contain the true model nor are

submodels of the true model.

Lemma 4.2. Define M2 = {γ : γ∗ ̸⊂ γ and γ ∈ Mn}. For any γ ∈ M2, by Assumption

4.1, 4.3 - 4.6, we have

p(y|γ∗) > sup
γ∈M2

p(y|γ),

as n→∞, if log p(β̂γ∗ |γ∗)
p(β̂γ |γ)

= o(n).

The proof of Lemma 4.2 is given in Appendix C.2. Lemma 4.2 implies the pairwise

model comparison consistency holds in the comparisons between the true model and the

non-overfitting models in the sense that pr(γ∗|y) > sup
γ∈M2

pr(γ|y), under the condition that

log p(β̂γ∗ |γ∗)
p(β̂γ |γ)

= o(n).
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Theorem 4.1. Under Assumption 4.1 - 4.6, we have

p(y|γ∗) > sup
γ∈Mn\{γ∗}

p(y|γ),

in probability as n→∞ if

Condition 1: log p(β̂γ∗ |γ∗)
p(β̂γ |γ)

≥ (pγ − pγ∗) log
pn√
n
for any γ ∈M1;

Condition 2: log p(β̂γ∗ |γ∗)
p(β̂γ |γ)

= o(n) for any γ ∈M2.

Proof. See the proof of Lemma 1 and Lemma 2.

Theorem 4.1 ensures that if the prior of βγ meets the two sufficient conditions, the model

selection consistency can be achieve in the sense that pr(γ∗|y) > sup
γ∈Mn\{γ∗}

pr(γ|y) as sample

size increases.

4.4 Examples of priors for model parameters

Theorem 4.1 proposes two general conditions for the prior of βγ to yield model selection con-

sistency in the generalized linear regression. The sufficient conditions in Theorem 1 provide

useful guidelines for the specification of hyperparameters. In this section, we select several

priors from the shrinkage prior family. These priors are frequently adopted in Bayesian

model selection studies. We derive conditions for these priors to achieve model selection

consistency by applying Theorem 4.1.

4.4.1 Gaussian prior

The Gaussian prior is the one of the most popular prior choices in the Bayesian model

selection (George and McCulloch, 1993; Ishwaran and Rao, 2005; Narisetty et al., 2014).

Suppose we assign the independent Gaussian prior to βγ in the following way:

p(βγ | γ, s) =
∏
j∈γ

1

(2πs2)1/2
exp

(
− 1

2s2
β2
j

)
.
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Under Assumption 4.1, 4.5 - 4.7, the independent Gaussian prior yields consistent model

selection if s > pn/
√
n and (pγ − pγ∗) log s = o(n). The proof is given as follows.

Proof of Gaussian Prior. For γ ∈M1, by Assumption 4.7, we have

log
p(β̂γ∗|γ∗, s)
p(β̂γ|γ, s)

= log

∏pγ∗
i=1

1
(2πs2)1/2

exp
(
− 1

2s2
β2
i

)∏pγ
j=1

1
(2πs2)1/2

exp
(
− 1

2s2
β2
j

)
=

rγ
2
log(2πs2) +

1

2s2

(
pγ∑
j=1

β̂2
j −

pγ∗∑
i=1

β̂2
i

)

= rγ log s+
rγ
2
log(2π) +

Op(n
2c)

2s2
.

where rγ = pγ − pγ∗ . Hence, to satisfy Condition 1 for any γ ∈ M1, we need to choose

s > pn√
n
.

Similarly, for γ ∈M2, by Assumption 4.7, we have

log
p(β̂γ∗|γ∗, s)
p(β̂γ|γ, s)

= log

∏pγ∗
i=1

1
(2πs2)1/2

exp
(
− 1

2s2
β2
i

)∏pγ
j=1

1
(2πs2)1/2

exp
(
− 1

2s2
β2
j

)
=

rγ
2
log(2πs2) +

1

2s2

(
pγ∑
j=1

β̂2
j −

pγ∗∑
i=1

β̂2
i

)

= rγ log s+
rγ
2
log(2π) +

Op(n
2c)

2s2
,

where rγ = pγ − pγ∗ . To satisfy Condition 2 that log p(β̂γ∗ |γ∗)
p(β̂γ |γ)

= op(n) for any γ ∈ M2 , we

must choose rγ log s = o(n). There are many ways to set up s to satisfy both conditions. For

example, we can set s = p1+δ
n for an arbitrary constant δ ≥ 0. Then, by Assumptions 4.1,

4.5 and 4.6, we have s > pn/
√
n and (pγ − pγ∗) log s = o(n). Thus, according to Theorem

4.1, the model selection consistency holds for the independent Gaussian prior.

4.4.2 Laplace prior

Ever since Park and Casella (2008) introduced Bayesian lasso, the Laplace prior has become

a popular choice in Bayesian regression analysis (Casella et al., 2010; Hans, 2009, 2010).
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Suppose we assign the Laplace prior to βγ in the following way:

p(βγ|γ, s) =
pγ∏
j=1

1

2s
exp

(
−|βj|

s

)
.

Under Assumptions 4.1, 4.5 - 4.7, the Laplace prior yields consistent model selection if

s > pn/
√
n and (pγ − pγ∗) log s = o(n). The proof is as follows:

Proof. First, by Assumption 4.7, for γ ∈Mn, we have

log
p(β̂γ∗|γ∗, s)
p(β̂γ|γ, s)

= log

∏pγ∗
i=1

1
2s
exp

(
− |β̂i|

s

)
∏pγ

j=1
1
2s
exp

(
− |β̂j |

s

)
= rγ log 2s+

1

s

{
pγ∑
j=1

|β̂j| −
pγ∗∑
i=1

|β̂i|

}

= rγ log 2s+
Op(n

c)

s

where rγ = pγ − pγ∗ .

When s > pn/
√
n, for γ ∈M1, as n→∞, we have

log
p(β̂γ∗ |γ∗, s)
p(β̂γ|γ, s)

= rγ log 2 + rγ log s+
Op(n

c)

s

> rγ log s{1 + op(1)}

> rγ log
pn√
n
.

When rγ log s = o(n), for any γ ∈M2, as n→∞, we have

log
p(β̂γ∗ |γ∗, s)
p(β̂γ|γ, s)

= rγ log 2 + rγ log s+
Op(n

c)

s

= o(n).

There are many ways to set up s to satisfy both conditions. For example, we can set

s = p1+δ
n for some δ ≥ 0. Then, by Assumptions 4.1, 4.5 and 4.6, we have s > pn/

√
n and

(pγ − pγ∗) log s = o(n). Thus, according to Theorem 4.1, the model selection consistency
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holds for the Laplace prior.

4.4.3 Scaled Student’s t prior

As one of the shrinkage priors, the scaled Student’s t prior (West, 1987) concentrates at zero

with relatively thicker tails, such properties make the scaled Student’s t prior an appealing

prior choice in high-dimensional model selection (Armagan et al., 2011, 2013; Tipping, 2001).

Suppose we assign scaled Student’s t prior to βγ in the following way:

p(βγ|γ, s, d) =
pγ∏
j=1

[sd1/2B(d/2, 1/2)]−1(1 +
β2
j

sd
)−(d+1)/2

where s is the scale and d is the degrees of freedom. Under Assumptions 4.1, 4.5 - 4.7, the

scaled Student’s t prior yields consistent model selection if s > pn/
√
n, (pγ−pγ∗) log s = o(n)

and (pγ − pγ∗) log d = o(n). The proof is as follows:

Proof. For γ ∈M, if log d = o(n) , by Assumption 4.7, we then have

log
p(β̂γ∗|γ∗, s, d)
p(β̂γ|γ, s, d)

=

∏pγ∗
i=1[sd

1/2B(d/2, 1/2)]−1(1 +
β̂2
i

sd
)−(d+1)/2∏pγ

j=1[sd
1/2B(d/2, 1/2)]−1(1 +

β̂2
j

sd
)−(d+1)/2

= rγ log s+
rγ
2
log d+ rγ logB(d/2, 1/2)

+
d+ 1

2

[
pγ∑
j=1

log(1 +
β̂2
j

sd
)−

pγ∗∑
i=1

log(1 +
β̂2
i

sd
)

]

= rγ log s+
rγ
2
log d+ rγ logB(d/2, 1/2) +

(
pγ∑
j=1

β̂2
j

2s
−

pγ∗∑
i=1

β̂2
i

2s

)

= rγ log s+
rγ
2
log d+ rγ logO(1) +

Op(n
c)

2s

where rγ = pγ − pγ∗ .
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When s > pn/
√
n, for γ ∈M1, as n→∞, we have

log
p(β̂γ∗|γ∗, s, d)
p(β̂γ|γ, s, d)

= rγ log s+
rγ log d

2
+ rγ logOp(1) +

O(nc)

2s

> rγ log s{1 + o(1)}

> rγ log
pn√
n
.

When rγ log s = o(n) and rγ log d = o(n), for γ ∈M2, as n→∞, we have

log
p(β̂γ∗|γ∗, s, d)
p(β̂γ|γ, s, d)

= rγ log s+
rγ
2
log d+ rγ logO(1) +

Op(n
c)

2s

= o(n).

There are many ways to set up s to satisfy both conditions. For example, we set s =

p1+δ
n for some δ ≥ 0. Then, by Assumption 4.1, 4.5 and 4.6, we have s > pn/

√
n and

(pγ − pγ∗) log s = o(n). Thus, according to Theorem 4.1, the model selection consistency

holds for the Scaled Student’s t prior.

4.4.4 Generalized double Pareto prior

The generalized double Pareto prior proposed by Armagan et al. (2010) has some appealing

properties such as spike at zero and Student’s t-like tails which make it a popular choice of

Bayesian prior (Armagan et al., 2013; Pal et al., 2017). Suppose we assign the generalized

double Pareto prior to βγ in the following way:

p(βγ|γ, α, η) =
pγ∏
j=1

α

2η

(
1 +
|βj|
η

)−(α+1)

.

Under Assumptions 4.1, 4.5 - 4.7, the generalized double Pareto prior yields consistent model

selection if η
α
> pn/

√
n and (pγ − pγ∗) log

η
α
= o(n). The proof is as follows:

Proof. If α and η are chosen to grow with n, by Assumption 4.7, for γ ∈ Mn, as n → ∞,
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we have

log
p(β̂γ∗|γ∗, α, η)
p(β̂γ|γ, α, η)

= log

∏pγ∗
i=1

α
2η

(
1 + |β̂i|

η

)−(α+1)

∏pγ
j=1

α
2η

(
1 +

|β̂j |
η

)−(α+1)

= rγ log
α

2η
+ (α + 1)

[
pγ∑
j=1

log(1 +
|β̂j|
η

)−
pγ∗∑
i=1

log(1 +
|β̂i|
η

)

]

= rγ log
2η

α
+

[
pγ∑
j=1

α

η
|β̂j| −

pγ∗∑
i=1

α

η
|β̂i|

]

= rγ log 2 + rγ log
η

α
+

α

η

[
pγ∑
j=1

|β̂j| −
pγ∗∑
i=1

|β̂i|

]

= rγ log 2 + rγ log
η

α
+

Op(n
c)

η/α

where rγ = pγ − pγ∗ .

When η
α
> pn/

√
n, for γ ∈M1, as n→∞, we have

log
p(β̂γ∗|γ∗, α, η)
p(β̂γ|γ, α, η)

= rγ log 2 + rγ log
η

α
+ rγ

Op(n
c)

η/α

> rγ log
η

α
{1 + op(1)}

> rγ log
pn√
n
.

When rγ log
η
α
= o(n), for γ ∈M2, we have

log
p(β̂γ∗|γ∗, α, η)
p(β̂γ|γ, α, η)

= rγ log 2 + rγ log
η

α
+

Op(n
c)

η/α

= op(n).

There are many ways to set up η/α to satisfy both conditions. For example, we can set

η/α = p1+δ
n for some δ ≥ 0. Then, by Assumption 4.1, 4.5 and 4.6, we have η/α > pn/

√
n

and (pγ−pγ∗) log
η
α
= o(n). Thus, according to Theorem 4.1, the model selection consistency

holds for the generalized double Pareto prior.
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4.4.5 Horseshoe prior

The Horseshoe prior (Carvalho et al., 2010) has some fairly desirable properties, such as

heavy tail, an infinite spike at zero and so on. Due to such properties, it becomes a popular

prior choice in Bayesian regression (Armagan et al., 2013; Carvalho et al., 2010). Suppose

we assign the Horseshoe prior to βγ in the following way:

p(βγ|γ, τ) =
pγ∏
i=1

K0(τ
2)−1/2 exp(

β2
i

2τ 2
)E1(

β2
i

2τ 2
),

where K0 = 1/(2π3)1/2 and E1(·) is the exponential integral function. Under Assumptions

4.1, 4.5 and 4.6, the Horseshoe prior yields consistent model selection if τ 2 > p2n/n and

(pγ − pγ∗) log τ
2 = o(n). The proof is as follows:

Proof. First, by Lemma C.1 (see Appendix C.3), for any γ ∈Mn, we have

log
p(β̂γ∗ |γ∗, τ)
p(β̂γ|γ, τ)

= log

∏pγ∗
i=1K0(τ

2)−1/2 exp(
β̂2
i

2τ2
)E1(

β̂2
i

2τ2
)∏pγ

j=1 K0(τ 2)−1/2 exp(
β̂2
j

2τ2
)E1(

β̂2
j

2τ2
)

> log

∏pγ∗
i=1

K0

2
(τ 2)−1/2 log

(
1 + 4τ2

β̂2
i

)
∏pγ

j=1 K0(τ 2)−1/2 log

(
1 + 2τ2

β̂2
j

)
= rγ log

2

K0

− pγ log 2 +
rγ
2
log τ 2

+

pγ∗∑
i=1

log

[
log

(
1 +

4τ 2

β̂2
i

)]
−

pγ∑
j=1

log

[
log

(
1 +

2τ 2

β̂2
j

)]

where rγ = pγ − pγ∗ .
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We also have

log
p(β̂γ∗ |γ∗, τ)
p(β̂γ|γ, τ)

= log

∏pγ∗
i=1K0(τ

2)−1/2 exp(
β̂2
i

2τ2
)E1(

β̂2
i

2τ2
)∏pγ

j=1 K0(τ 2)−1/2 exp(
β̂2
j

2τ2
)E1(

β̂2
j

2τ2
)

< log

∏pγ∗
i=1 K0(τ

2)−1/2 log
(
1 + 2τ2

β̂2
i

)
∏pγ

j=1
K0

2
(τ 2)−1/2 log

(
1 + 4τ2

β̂2
j

)
= rγ log

2

K0

+ pγ∗ log 2 +
rγ
2
log τ 2

+

pγ∗∑
i=1

log

[
log

(
1 +

2τ 2

β̂2
i

)]
−

pγ∑
j=1

log

[
log

(
1 +

4τ 2

β̂2
j

)]

where rγ = pγ − pγ∗ .

For γ ∈M1, when τ 2 ≥ p2n/n, as n→∞, we have

1

pγ − pγ∗
log

p(β̂γ∗|γ∗, τ)
p(β̂γ|γ, τ)

> rγ log
2

K0

− pγ log 2 +
1

2
log τ 2

+

{
pγ∗∑
i=1

log

[
log

(
1 +

4τ 2

β̂2
i

)]
−

pγ∑
j=1

log

[
log

(
1 +

2τ 2

β̂2
j

)]}

= rγ log
2

K0

− pγ log 2 +
rγ
2
log τ 2 +

{
pγ∗ log

[
o(τ 2)

]
− pγ log

[
o(τ 2)

]}
= rγ log

2

K0

− pγ log 2 +
rγ
2
log τ 2 − rγ log

[
o(τ 2)

]
=

rγ
2
log τ 2{1 + o(n)}

≥ rγ log
pn√
n
,

For γ ∈M2, when τ 2 grows with n and rγ log τ
2 = o(n), as n→∞ we have
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log
p(β̂γ∗|γ∗, τ)
p(β̂γ|γ, τ)

> rγ log
2

K0

− pγ log 2 +
rγ
2
log τ 2

+

{
pγ∗∑
i=1

log

[
log

(
1 +

4τ 2

β̂2
i

)]
−

pγ∑
j=1

log

[
log

(
1 +

2τ 2

β̂2
j

)]}

= rγ log
2

K0

− pγ log 2 +
rγ
2
log τ 2 + [pγ∗ log o(τ

2)− pγ log o(τ
2)]

= rγ log
2

K0

− pγ log 2 +
rγ
2
log τ 2 − rγ log o(τ

2)

=
rγ
2
log τ 2{1 + o(n)}

= o(n).

And, we also have

log
p(β̂γ∗ |γ∗, τ)
p(β̂γ|γ, τ)

< rγ log
2

K0

+ pγ∗ log 2 +
rγ
2
log τ 2

+

{
pγ∗∑
i=1

log

[
log

(
1 +

2τ 2

β̂2
i

)]
−

pγ∑
j=1

log

[
log

(
1 +

4τ 2

β̂2
j

)]}

= rγ log
2

K0

+ pγ∗ log 2 +
rγ
2
log τ 2 + [pγ∗ log o(τ

2)− pγ log o(τ
2)]

= rγ log
2

K0

+ pγ∗ log 2 +
rγ
2
log τ 2 − rγ log o(τ

2)

=
rγ
2
log τ 2{1 + o(n)}

= o(n),

thus, we have log p(β̂γ∗ |γ∗,τ)
p(β̂γ |γ,τ)

= o(n) as n → ∞. There are many ways to set up τ 2. For

example, we set τ 2 = p2+δ
n for some δ ≥ 0. Then, by Assumptions 4.1, 4.5 and 4.6, we have

τ 2 > p2n/n and (pγ−pγ∗) log τ
2 = o(n). Thus, according to Theorem 4.1, the model selection

consistency holds for the Horseshoe prior.
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4.5 Simulation study

In this section, we conduct a simulation study to examine the performance of Theorem 4.1.

Since we already showed the model selection consistency with Gaussian data in Chapter 2

and Chapter 3, in this chapter we switch our focus to non-Gaussian data.

4.5.1 Simulation setting

We generate our data from the model yi ∼ Ber(pi), where

pi = ϕ

(
pn∑
j=1

βjxij

)
,

(xi1, . . . , xij)
⊤ iid∼ Npn(0,Σ),

βγ∗ = (1, 1,−1,−1)⊤,

where Σ = Ipn , γ∗ is the true model which is a randomly generated index set with pγ∗ = 4,

and ϕ(·) is the cdf of the standard normal distribution. Following Assumption 4.5, we set

Kn = n2/3. To exam the limiting behavior of the marginal likelihood of true model as sample

size increases, we run the simulation with n = {100, 200, 300}.

For the choice of priors, we assign all the five priors in Section 4.4 to βγ respectively. Table

4.1 shows our choices of the hyperparameters for each prior. According to the sufficient

conditions we derived for the prior, Case 1 and Case 3 violate the sufficient conditions,

whereas Case 2 satisfies the conditions.
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Table 4.1: Hyperparameter settings

Prior Case 1 Case 2 Case 3

Gaussian s = p0.2 s = p1.1 s = exp(0.1n)

Laplace s = p0.2 s = p1.1 s = exp(0.1n)

Scaled s = p0.2 s = p1.1 s = exp(0.1n)

student′s t d = n d = n d = n

Pareto η
α
= p0.2, η

α
= p1.1, η

α
= exp(0.1n),

α = n0.3 α = n α = n

Horseshoe τ = p0.2 τ = p1.1 τ = exp(0.1n)

4.5.2 Shotgun stochastic search

Since the number of candidate models is large, it is computationally challenging to compute

the marginal likelihood for all the candidate models. To address this challenge, we use

the idea of SSS (Shotgun Stochastic Search) which explores the model space using MCMC

(Markov Chain Monte Carlo) computation.

Let nbd(γ) = {γ+, γ, γ−} be a neighborhood of model γ, where γ+ is the set of models

obtained by adding one predictor variable to model γ, γ− is the set of models obtained by

deleting one predictor variable from γ. The SSS updates the model by searching for the best

candidate model in the nbd(γ). Let γ(t) be the current model, γ
(t)
max be current model with

the greatest marginal likelihood, γ0 be the initial model and γmax0 be the initial model with

the greatest marginal likelihood. The SSS can be implemented as in Algorithm 3.
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Algorithm 3 Shotgun Stochastic Search.

Set γ(1) = γ0, and γ
(1)
max = γmax0

Repeat for t = 1, . . . , T

Set s = γ(t), s∗ = γ
(t)
max

Repeat for j = 1, . . . , pn:

If sj = 0, set sj = s ∪ {j}

If sj = 1, set sj = s \ {j}

Compute p(y|sj) = p(y | β̂sj)p(β̂sj |sj)(n)
−psj /2

Compute s̃ = max
1≤j≤pn

p(y|sj) = p(y | β̂sj)p(β̂sj |sj)(n)
−psj /2

If p(y|s̃) > p(y|s∗), then s∗ ← s̃;

else s∗ ← s∗

Repeat for j = 1, . . . , pn:

Compute wj = p(y|sj)I(sj ∈Mn)/
∑pn+1

j=1 {p(y | sj)I(sj ∈Mn)}

Sample z ∼ Categorical(w1, w2, . . . , wpn), then s← sz

Update γ(t+1) = s, γ
(t+1)
max = s∗

Return γmax

We generate 100 Monte Carlo experiments, and run the simulation T = 500 times.

To evaluate the performance of our marginal likelihood approach, we compute the relative

frequency of the true model, which is

R.F.(γ∗) = N−1

N∑
i=1

I(γ(i) = γ∗),

where N is the number of Monte Carlo experiments and γ(i) is the selected model in ith

experiment. If Theorem 4.1 holds, we expect to observe the R.F.(γ∗) → 1 only under the

settings of Case 2 for each prior as sample size increases.
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4.5.3 Simulation results

Table 4.2 reports the relative frequency of the true model out of the 100 Monte Carlo

experiments.

We only observe a strong trend of the R.F.(γ∗) increasing to one in Case 2 under each

prior. In Case 1 and Case 3 which violate the sufficient conditions, the relative frequency

of true model fails to grow with the sample size. Most of the results are similar across all

the priors except for Case 1 under the Horseshoe prior. Compare to other priors, Horseshoe

prior shows better model selection results when the hyperparameter settings violate the first

sufficient condition. Nevertheless, we still do not observe a strong trend of R.F.(γ∗) growing

along with the sample size.

Figure 4.1 - Figure 4.5 are the trace plots of the R.F.(γ∗) as sample size increases under

each prior. The plots demonstrate that when the sufficient conditions are met, the trace of

R.F.(γ∗) shows a strong trend of increasing to one as the sample size increases. When the

sufficient conditions are violated, we do not observe the trend of R.F.(γ∗) increasing to one

as the sample size increases.

In general, the simulation results match our expectation. When the prior meets the

sufficient condition, the the true model becomes the model which maximizes the marginal

likelihood as the sample size increases. Since the model with the maximum marginal like-

lihood is equivalent to the model with the greatest posterior model probability under our

model set-up, therefore the marginal likelihood approach achieves model selection consis-

tency in the sense that

pr(γ∗|y) > max
γ∈Mn\{γ∗}

pr(γ|y)

as n→∞.
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Table 4.2: Simulation results based on 100 Monte Carlo experiments.

Prior Case n=100 n=300 n=500

1 0.40 0.40 0.37

Gaussian 2 0.33 0.99 1.00

3 0.00 0.02 0.01

1 0.43 0.32 0.32

Laplace 2 0.36 1.00 1.00

3 0.00 0.02 0.00

Scaled 1 0.52 0.48 0.43

Student’s 2 0.33 0.99 1.00

t 3 0.00 0.02 0.01

1 0.48 0.40 0.33

Pareto 2 0.36 1.00 1.00

3 0.00 0.02 0.01

1 0.66 0.87 0.69

Horseshoe 2 0.22 1.00 1.00

3 0.00 0.01 0.00
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Figure 4.1: The trace plots of the relative frequency of γ∗ under the Gaussian prior as the

sample size n increases.
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Figure 4.2: The trace plots of the relative frequency of γ∗ under the Laplace prior as the

sample size n increases.
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Figure 4.3: The trace plots of the relative frequency of γ∗ under the scaled Student’s t prior

as the sample size n increases.
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Figure 4.4: The trace plots of the relative frequency of γ∗ under the generalized double

Pareto prior as the sample size n increases.
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Figure 4.5: The trace plots of the relative frequency of γ∗ under the Horseshoe prior as the

sample size n increases.

4.6 Discussion

Theorem 4.1 proposes general sufficient conditions for p(βγ|y) under which the true model

maximizes the marginal likelihood in the Bayesian generalized linear regression. Theorem

4.1 holds for both Gaussian and non-Gaussian data. The general sufficient conditions also

provide useful guidelines for hyperparameter specifications under specific priors. Model

selection consistency can be achieved by applying Theorem 4.1 to the specification of the

prior for βγ in high-dimensional and low-dimensional model selection.

In our analysis of model selection consistency, we assume some common properties the

distribution of the likelihood should possess. Even though these properties are commonly

shared by many likelihood distributions, such as normal distribution and binomial distribu-
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tion, they do not cover all the likelihood distributions. An interesting direction for future

work is to expand the general properties to include more likelihood distribution, so that we

can derive more general sufficient conditions which will hold under a broader range of model

selection.
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Chapter 5

Summary and discussion

In this dissertation, we focus on obtaining posterior model probability consistency in the high-

dimensional model selection. We approach the model selection from a Bayesian perspective.

Our investigation mainly centers at deriving sufficient conditions for the p(βγ|y) to yield

posterior model probability consistency. A distinctive feature in our setting is that we allow

the size of the full model to increase with the sample size, even at a faster rate in some cases.

In Chapter 2, we begin our investigation of the asymptotic behavior of the posterior

model probability with a specific prior, namely the Zellner’s g-prior. It is well known that

the value of hyperparameter g greatly affects posterior model probability. Moreno et al.

(2015) point out:

Large g values induce the Lindley-Bartlett paradox, and a fixed value for g in-

duces inconsistency, which can be corrected if g were dependent on n.

The sufficient conditions we obtain require the g to grow with n. However, the growth rate

of g can not be too fast in order to avoid the model selection favors the null model, namely

the “Lindley-Bartlett” paradox. The sufficient conditions indicate that the value of g needs

to be large but not too large. A large g value induces a flat prior, i.e. noninformative prior

which is a desired property of the prior. However, a g value which is too large leads to the

exceedingly noninformative prior. Therefore, in order to achieve model selection consistency,

we need to control the informativeness of the prior. The sufficient conditions provide simple
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and intuitive guidelines for the specification of the hyperparameter g in the Zellner’s g-prior

which restricts the informativeness of the prior within a desired range.

In Chapter 3, we explore the model selection consistency under the general prior. Under

the general prior settings, we do not impose any specific distribution on the prior of βγ. The

general assumption for the prior allows us to derive general sufficient conditions for the prior

to achieve model selection consistency. From Chapter 2, we know that the g value needs to

be carefully chosen to control the informativeness of the prior. The sufficient conditions we

obtain in Chapter 3 confine the informativeness within a certain range so that the prior of βγ

will achieve posterior model probability consistency. The results in Chapter 2 and Chapter 3

are consistent albeit the results in Chapter 2 are more specific which can be considered as a

special case of the results in Chapter 3. The general sufficient conditions imply if we control

the informativeness of the prior by carefully choosing the hyperparameters we will achieve

posterior model probability consistency. Our study of a series of shrinkage priors demonstrate

that the satisfaction of the sufficient conditions lead to model selection consistency.

Following the study of the general prior, we extend our framework to model selection in

general linear regression in Chapter 4. Under the general framework, we relax our assumption

of the model likelihood. We do not impose any specific distribution on the data. The

sufficient conditions we derive under the general settings are consistent with the results from

Chapter 2 and Chapter 3, albeit the results in Chapter 4 are more general which contain

Chapter 2 and Chapter 3 as special cases. Our simulation study demonstrate that the

sufficient conditions are valid with non-Gaussian data.

There is one point which is worth of noting here, even though we consider the results of

Chapter 2 and Chapter 3 special cases of the Chapter 4, the three projects are not nested

within each other due the special settings of each project. Therefore, the projects from

Chapter 2 and Chapter 3 can not simply be treated as special cases of Chapter 4.

The results we obtain from the series of investigations are interesting and exciting, how-

ever, there are still several points which we see potential for improvements. The first point

is the way we handle σ2 in Chapter 2. We assume σ2 is known. We use Laplace approxi-

mation to compute the marginal likelihood, the value of σ2 needs to be known to compute
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the marginal likelihood. This assumption is normally not satisfied in the real data analysis,

even though there are ways to estimate σ2 consistently, such as the forward selection method

which we adopt in the simulation study. A better approach to address the unknown σ2 chal-

lenge is to assume σ2 is unknown and develop the theory under such assumption. Second,

our assumptions of the likelihood in Chapter 4. We do not assign any specific distributions

to the likelihood in our model set up, in order to have some control when deriving the con-

ditions, we assume the properties the likelihood possesses. Even though these properties are

commonly assumed for the likelihood, it would be better if we can prove the validity of these

properties first. The last, but not the least, is the real data study. We need to include more

real data, especially non-Gaussian data, to test the performance of our theories.

In the future, there are several directions we believe are worthy of further investigations.

First, we can extend our results to multivariate regression. In our setting, there is only

one response variable. In reality, a large portion of the data analysis cases contain more

than one response variable. Therefore, the multivariate regression is a natural extension of

our framework on model selection consistency. Second, our investigation so far is confined

in the linear regression regime. Real data often times exhibits nonlinear traits. Thus, the

second possible direction for future study is to expand our study to the nonlinear regression.

Thirdly, we can include more priors in our investigation of model selection consistency.

There is not a prior that fits all the model selection cases. The shrinkage priors are popular

in model selection study, however, people are also interested in other priors. There are priors

which possess properties that are preferred in high-dimensional variable selection, such as

the spike-and-slab prior. The expansion of our investigation to more priors will enhance the

validity of our theorem in a broader area. The next interesting direction is to investigate

the relationship between Bayesian approach and frequentist approach. For example, we can

investigate whether there is an connection between the sufficient conditions we derived for

the Laplace prior and the tuning parameter λ in Lasso regression. The last, we will include

more real data study to exam the performance of our theorems. Ultimately, we hope to

develop R packages based on our discoveries to facilitates the model selection in various real

cases of high-dimensional regression analysis.
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Appendix A

Chapter 2 Preliminaries

A.1 Sparse Riesz condition

Proof. The sparse Riesz condition requires that 1
n
X⊤

γ Xγ be uniformly positive definite for

any model γ of size 2K. For any model γ such that pγ < K, we have:

∥(In −Hγ)µ∗∥2 = ∥µ∗ −Hγµ∗∥2

= ∥Xγ∗−γβγ∗−γ −Xγa∥2

=
[
{β⊤

γ∗−γ,−a}{X⊤
γ∗∪γXγ∗∪γ}{β⊤

γ∗∪γ,−a}
⊤]

= n

[
{β⊤

γ∗−γ,−a}
1

n
{X⊤

γ∗∪γXγ∗∪γ}{β⊤
γ∗−γ,−a}⊤

]
≥ n

[
{β⊤

γ∗−γ,−a}λγ∗∪γ{β⊤
γ∗−γ,−a}⊤

]
≥ nλγ∗−γ∥βγ∗−γ∥2

which goes to infinity by the sparse Riezs condition, where λγ∗∪γ is the smallest eigenvalue

of 1
n
X⊤

γ∗∪γXγ∗∪γ.

Before proving Lemma 2.1, Lemma 2.2 and Lemma 2.3, we also need the following 2

lemmas.
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A.2 Lemma A1

Lemma A1. Under Assumption 2.1, for a given γ such that γ∗ ̸⊂ γ and pγ ≤ K + pγ∗, we

have
µ⊤
∗ (In −Hγ)ϵ

µ⊤
∗ (In −Hγ)µ∗

= op(1),

as n→∞.

Proof of Lemma A1. First, write

µ⊤
∗ (In −Hγ)ϵ/σ =

√
µ⊤
∗ (In −Hγ)µ∗Zγ,

where

Zγ =
µ⊤
∗ (In −Hγ)ϵ

σ
√

µ⊤
∗ (In −Hγ)µ∗

∼ N(0, 1).

According to Assumption 2.2, we have

µ⊤
∗ (In −Hγ)ϵ

µ⊤
∗ (In −Hγ)µ∗

=
σ
√

µ⊤
∗ (In −Hγ)µ∗Zγ

µ⊤
∗ (In −Hγ)µ∗

≤ σ

√
Z2

γ/n

µ⊤
∗ {In −Hγ}µ∗/n

< σ

√
Z2

γ

a0n
= op(1),

as n→∞. This completes our proof.

A.3 Lemma A2

Lemma A2. Under Assumption 2.1-2.2, for a given γ such that γ∗ ̸⊂ γ and pγ < K + pγ∗,

we have
ϵ⊤Hγϵ

µ⊤
∗ (In −Hγ)µ∗

= op (1) ,

as n→∞.
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Proof of Lemma A2. Note that ϵ⊤Hγϵ/σ
2 ∼ χ2

pγ and χ2
pγ = op(n). Under Assumption 2.1-

2.2, this implies that

ϵ⊤Hγϵ

µ⊤
∗ (In −Hγ)µ∗

=
σ2ϵHγϵ/nσ

2

µ⊤
∗ (In −Hγ)µ∗/n

<
σ2ϵHγϵ/nσ

2

a0
= op(1),

as n→∞. This completes our proof.

A.4 Proof of Lemma 2.1

Proof of Lemma 2.1. For a given γ ∈M1, we have

log
p(y|γ∗)
p(y|γ)

=
pγ − pγ∗

2
log(1 + g) +

n

2
log

{
y⊤(In − g

1+g
Hγ)y

y⊤(In − g
1+g

Hγ∗)y

}
.

From the condition that g grows with n, it follows that

log

{
y⊤(In − g

1+g
Hγ)y

y⊤(In − g
1+g

Hγ∗)y

}
− log

{
y⊤(In −Hγ)y

y⊤(In −Hγ∗)y

}
= op(1), (A.1)

as n→∞. According to Lemma A1 and Lemma A2, we have

log

{
y⊤(In −Hγ)y

y⊤(In −Hγ∗)y

}
= log

{
1 +

y⊤(In −Hγ)y − y⊤(In −Hγ∗)y

y⊤(In −Hγ∗)y

}
= log

{
1 +

µ⊤
∗ (In −Hγ)µ∗ + 2µ⊤

∗ (In −Hγ)ϵ+ ϵ⊤(Hγ∗ −Hγ)ϵ

ϵ⊤(In −Hγ∗)ϵ

}
= log

{
1 +

µ⊤
∗ (In −Hγ)µ∗

ϵ⊤(In −Hγ∗)ϵ
{1 + op(1)}

}
(A.2)

Note that if X ∼ χ2
n−c for a non-negative constant c, then X/n → 1 + op(1) as n → ∞,

because E(X/n) = n−c
n
→ 1 and V ar(X/n) = 2(n−c)

n2 → 0 as n → ∞. Since ϵ⊤(In −

Hγ∗)ϵ/σ
2 ∼ χ2

n−pγ∗
, under Assumption 2.2, Eq (A.2) leads to

log

{
y⊤(In −Hγ)y

y⊤(In −Hγ∗)y

}
> log

{
1 +

a0
σ2
{1 + op(1)}

}
.
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Hence, as n→∞, we have

log
p(y|γ∗)
p(y|γ)

> c0n−
pγ∗ − pγ

2
log(1 + g),

which completes the proof.

A.5 Proof of Lemma 2.2

Proof of Lemma 2.2. Note that y⊤ (Hγ −Hγ∗) y = ϵ⊤ (Hγ −Hγ∗) ϵ, when γ∗ ⊂ γ. Hence,

for a given γ ∈M2, we have

n

2
log

{
y⊤(In −Hγ)y

y⊤(In −Hγ∗)y

}
=

n

2
log

{
1 +

y⊤(In −Hγ)y − y⊤(In −Hγ∗)y

y⊤(In −Hγ∗)y

}
=

n

2
log

{
1 +

y⊤(Hγ∗ −Hγ)y

y⊤(In −Hγ∗)y

}
= log

{
1− ϵ⊤(Hγ −Hγ∗)ϵ

ϵ⊤(In −Hγ∗)ϵ

}n
2

. (A.3)

Since ϵ⊤(In−Hγ∗)ϵ/nσ
2 → 1+op(1) as n→∞, by Slutsky theorem and continuous mapping

theorem, Eq.(A.3) implies that

−n

2
log

{
y⊤(In −Hγ)y

y⊤(In −Hγ∗)y

}
→ 1

2
χ2
pγ−pγ∗

in distribution. It follows from (A.1) that

log
p(y|γ∗)
p(y|γ)

→ pγ − pγ∗
2

log(1 + g)− 1

2
χ2
pγ−pγ∗
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in distribution. Note that Pr{χ2
r ≥ 2x + 2(rx)1/2 + r} ≤ exp(−x) (Armagan et al., 2013;

Laurent and Massart, 2000). Letting rγ = pγ − pγ∗ , we have

pr
(
χ2
rγ ≥ 2rγmn + 2(mnr

2
γ)

1/2 + rγ, some 1 ≤ rγ ≤ K
)

≤
K∑
j=1

(
p

j

)
exp(−jmn)

≤
K∑
j=1

pj exp(−jmn)

=
K∑
j=1

exp(−j{mn − log p})

= exp(−{mn − log p})1− exp [−(K){mn − log p}]
1− exp(−{mn − log p})

,

which goes to 0 if we set mn = log p+ δn with δn →∞. Since the above result holds for an

arbitrary δn, we assume δn = o(log n). Hence, we have χ2
pγ−pγ∗

< 2(pγ − pγ∗) log p{1+ op(1)}

in probability as n→∞. Hence, we have

log
p(y|γ∗)
p(y|γ)

>
pγ − pγ∗

2
log(1 + g)− (pγ − pγ∗) log p{1 + op(1)}.

A.6 Proof of Lemma 2.3

Proof of Lemma 2.3. Let γ∗∗ = γ∗ ∪ γ. According to Lemma 2.1, for γ ∈M3, we have

log
p(y|γ∗∗)
p(y|γ)

> c0n−
pγ∗∗ − pγ

2
log(1 + g).
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Similarly, by Lemma 2.2, for γ ∈M3, we have

log
p(y|γ∗)
p(y|γ∗∗)

>
pγ∗∗ − pγ∗

2
log(1 + g)− (pγ∗∗ − pγ∗) log p{1 + op(1)}

>
pγ∗∗ − pγ∗

2
log(1 + g)− pγ log p{1 + op(1)}.

Hence, it concludes that

log
p(y|γ∗)
p(y|γ)

= log
p(y|γ∗∗)
p(y|γ)

+ log
p(y|γ∗)
p(y|γ∗∗)

> c0n+
pγ − pγ∗

2
log(1 + g)− pγ log p{1 + op(1)}.

A.7 Proof of Theorem 2.1

Proof of Theorem 2.1. Note that, by Bayes Theorem, we have

pr(γ∗|y) =
p(y|γ∗)pr(γ∗)∑
γ p(y|γ)pr(γ)

.

Hence, to complete the proof, it suffices to show that

∑
γ ̸=γ∗

p(y|γ)
p(y|γ∗)

→ 0,

in probability as n→∞.

DefineM′ =M\ {γ∗}. SinceM′ =M1 ∪M2 ∪M3, we have

∑
γ∈M′

p(y|γ)
p(y|γ∗)

=
∑
γ∈M1

p(y|γ)
p(y|γ∗)

+
∑
γ∈M2

p(y|γ)
p(y|γ∗)

+
∑
γ∈M3

p(y|γ)
p(y|γ∗)

.
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When γ ∈M1, according to Lemma 2.1, we have

∑
γ∈M1

p(y|γ)
p(y|γ∗)

=

pγ∗−1∑
j=0

 ∑
γ∈M1,pγ=j

p(y|γ)
p(y|γ∗)


<

pγ∗−1∑
j=0

(
pγ∗
j

)
exp

{
−c0n+

pγ∗ − j

2
log(1 + g)

}

≤ exp
{
−c0n+

pγ∗
2

log(1 + g)
} pγ∗∑

j=0

(
pγ∗
j

)
exp

{
−j

2
log(1 + g)

}
= exp

{
−c0n+

pγ∗
2

log(1 + g)
}{

1 + (1 + g)−
1
2

}pγ∗

= exp
[
−c0n+

pγ∗
2

log(1 + g) + pγ∗ log
{
1 + (1 + g)−

1
2

}]
,

which goes to 0 as n→∞ under the condition that log g = o(n).

When γ ∈M2, according to Lemma 2.2, we have

∑
γ∈M2

p(y|γ)
p(y|γ∗)

=
K∑

j=pγ∗+1

 ∑
γ∈M2,pγ=j

p(y|γ)
p(y|γ∗)


<

K∑
j=pγ∗+1

(
p− pγ∗
j − pγ∗

)
exp

[
−j − pγ∗

2
log(1 + g) + (j − pγ∗) log p{1 + op(1)}

]

≤
K∑

j=pγ∗+1

pj−pγ∗ exp

{
−j − pγ∗

2
log(1 + g) + (j − pγ∗) log p

}

=
K∑

j=pγ∗+1

exp

[
−(j − pγ∗)

{
log(1 + g)

2
− 2 log p

}]

= exp

[
−1

2

{
log(1 + g)− log p4

}] 1− exp
[
−K−pγ∗

2
{log(1 + g)− log p4}

]
1− exp

[
−1

2
{log(1 + g)− log p4}

] ,

which goes to 0 as n→∞, whenever p4 < g.
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When γ ∈M3, according to Lemma 2.3, we have

∑
γ∈M3

p(y|γ)
p(y|γ∗)

=
K∑
j=0

 ∑
γ∈M3,pγ=j

p(y|γ)
p(y|γ∗)


<

K∑
j=0

∑
γ∈M3,pγ=j

exp

{
−c0n−

pγ − pγ∗
2

log(1 + g) + pγ log p{1 + op(1)}
}

≤
K∑
j=0

(
p

j

)
exp

{
−c0n−

j − pγ∗
2

log(1 + g) + j log p{1 + op(1)}
}

≤
K∑
j=0

pj exp

[
−c0n−

j − pγ∗
2

log(1 + g) + j log p{1 + op(1)}
]

≤ exp
[
−c0n+

pγ∗
2

log(1 + g)
] K∑

j=0

exp

[
−j
{
log(1 + g)

2
− 2 log p{1 + op(1)}

}]

= exp
[
−c0n+

pγ∗
2

log(1 + g)
] 1− exp

[
−K+1

2
{log(1 + g)− log p4{1 + op(1)}}

]
1− exp

[
−1

2
{log(1 + g)− log p4{1 + op(1)}}

] ,

which goes to 0 as n → ∞ when p4 < g and log g = o(n). Hence, this completes our

proof.

A.8 Proof of Corollary 2.1

Proof of Corollary 2.1. First, consider the case when p→∞ as n→∞. Define

g = p4(1+δ0),

where δ0 is a positive constant. It follows that g > p4. By the assumption that log p = o(n),

we have

log g = 4(1 + δ0) log p = o(n).

Second, when p is fixed. Thus, define g = nδ′0 where δ′0 is a positive constant. Then, as

n→∞, we have g > p4 and log g = o(n). This completes our proof.
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Appendix B

Chapter 3 Preliminaries

B.1 Lemma B.1

Lemma B.1. Under Assumption 3.5, there exists a positive constant a0 such that

lim
n→∞

1

n
µ⊤
∗ (In −Hγ)µ∗ > a0

for any γ ∈ {γ : γ ̸⊃ γ∗, pγ < Kn}, where µ∗ = Xγ∗β
0
γ∗ and Hγ = Xγ(X

⊤
γ Xγ)

−1X⊤
γ .

Proof of Lemma B.1. Under Assumption 3.5, for any model γ such that pγ < Kn, we have

1

n
µ⊤
∗ (In −Hγ)µ∗ =

1

n
∥µ∗ −Hγµ∗∥2

=
1

n
∥Xγ∗\γβ

0
γ∗\γ −Xγbγ∥2

=
1

n

[
(β0

γ∗\γ
⊤
,−bγ⊤){Xγ∗∪γ

⊤Xγ∗∪γ}(β0
γ∗\γ

⊤
,−bγ⊤)⊤

]
=

[
(β0

γ∗\γ
⊤
,−bγ⊤){

1

n
Xγ∗∪γ

⊤Xγ∗∪γ}(β0
γ∗\γ

⊤
,−bγ⊤)⊤

]
> λmin∥βγ∗\γ

0∥2

> a0,

where a0 is a positive constant and bγ = (X⊤
γ Xγ)

−1X⊤
γ Xγ∗\γβ

0
γ∗\γ.

95



B.2 Lemma B.2

Lemma B.2. Under Assumptions 3.2, 3.4, 3.5 and 3.6, for any γ ∈ Mn, there exists a

positive constant d such that ∥β̂γ∥2 ≤ dnc in probability as n→∞.

Proof of Lemma B.2. Under Assumption 3.5, we first have

max
γ∈Mn

∥ β̂γ ∥2 = max
γ∈Mn

(
β̂⊤
γ β̂γ

)1/2
= max

γ∈Mn

{
y⊤Xγ(X

⊤
γ Xγ)

−1(X⊤
γ Xγ)

−1X⊤
γ y
}1/2

≤ max
γ∈Mn

{
y⊤Xγ(X

⊤
γ Xγ)

−1X⊤
γ y

nλmin

}1/2

= max
γ∈Mn

(
y⊤Hγy

nλmin

)1/2

= max
γ∈Mn

(
µ⊤
∗ Hγµ∗ + 2µ⊤

∗ Hγϵ+ ϵ⊤Hγϵ

nλmin

)1/2

.

Note that Pr{χ2
r ≥ 2x + 2(rx)1/2 + r} ≤ exp(−x) by Laurent and Massart (2000). We

define

aj = 2b′j + 2(jb′j)
1/2 + j and b′j = j log pn + j log log n.
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Then we have

pr(χ2
pγ ≥ apγ , for some γ ∈Mn) ≤

∑
γ∈Mn

pr
{
χ2
pγ ≥ apγ

}
≤

Kn∑
j=1

(
pn
j

)
pr
{
χ2
j ≥ aj

}
≤

Kn∑
j=1

(
pn
j

)
exp(−b′j)

≤
Kn∑
j=1

pjn exp(−b′j)

=
Kn∑
j=1

exp(j log pn − b′j)

=
Kn∑
j=1

(
1

log n

)j

=
1

log n


1−

(
1

logn

)Kn

1− 1
logn

 , (B.1)

which goes to 0 as n → ∞. This implies that χ2
pγ < 2pγ log pn{1 + op(1)} for any γ ∈ Mn.

Since Hγ is idempotent with rank pγ,

ϵ⊤Hγϵ

σ2
∼ χ2

pγ

for each γ ∈ Mn. By Assumption 3.2, we have log pn = o(n). As n → ∞, it follows from

Eq. (B.1) that

max
γ∈Mn

ϵ⊤Hγϵ

nσ2
= op(1).

Suppose γ∗ ⊂ γ. By Assumption 3.5, we have

1

n
µ⊤
∗ Hγµ∗ =

1

n
µ⊤
∗ µ∗ < λmax∥β0

γ∗∥
2.
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Suppose γ∗ ̸⊂ γ. From Lemma B.1, it follows that

1

n
µ⊤
∗ Hγµ∗ <

1

n
µ⊤
∗ µ∗ − a0 < λmax∥β0

γ∗∥
2.

By Cauchy-Schwarz inequality,

|n−1µ⊤
∗ Hγϵ| ≤

√
µ⊤
∗ µ∗/n

√
ϵ⊤Hγϵ/n <

√
λmax∥β0

γ∗∥2
√
ϵ⊤Hγϵ/n < λmax∥β0

γ∗∥
2,

in probability as n→∞.

Thus, as n→∞, exists d ∈ (0,∞) such that

max
γ∈Mn

[
µ⊤
∗ Hγµ∗ + 2µ⊤

∗ Hγϵ+ ϵ⊤Hγϵ

nλmin

]1/2
≤

{
3λmax

λmin

∥β0
γ∗∥

2 + op(1)

}1/2

≤ dnc,

where the last inequality is based on Assumption 3.4 and 3.6. This completes the proof.

B.3 Proof of Lemma 3.1

Proof of Lemma 3.1. Let Nγ = {βγ ∈ Rpγ : ∥Xγ(βγ − β̂γ)∥2 ≤
√
3pγ log n}. Then we divide

the integral as follows

p(y|γ) =

∫
Nγ

p(y|βγ)p(βγ|γ)dβγ +

∫
Rpγ /Nγ

p(y|βγ)p(βγ|γ)dβγ

= I1 + I2

First, we consider I1. Note that

log p(y|βγ) = log p(y|β̂γ)−
1

2σ2
(βγ − β̂γ)

⊤X⊤
γ Xγ(βγ − β̂γ). (B.2)
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Under Assumption 3.5, for βγ ∈ Nγ, we have

(nλmin)
1/2 ∥ βγ − β̂γ ∥2≤∥ Xγ(βγ − β̂γ) ∥2≤

√
3pγ log n,

which implies that

∥ βγ − β̂γ ∥2 ≤
√

3pγ log n

nλmin

. (B.3)

Thus, when n is sufficiently large, we have

∥βγ∥2 − ∥β̂γ∥2 ≤ ∥βγ − β̂γ∥2 ≤ 1

for any βγ ∈ Nγ. By Lemma B.2, it follows that

∥ βγ ∥2≤ dnc + 1.

Therefore, by Assumption 3.7 and Eq. (B.3), we have

log p(β̂γ|γ)− F1

√
3pγ log n

nλmin

< log p(βγ|γ) < log p(β̂γ|γ) + F1

√
3pγ log n

nλmin

. (B.4)

For notation simplicity, we denote Eq. (B.4) by log p(βγ|γ) = log p(β̂γ|γ)± F1

√
3pγ logn

nλmin
.

Using the singular value decomposition, we can write

Xγ = LγDγUγ
⊤,

where Lγ
⊤Lγ = Ipγ , Uγ

⊤Uγ = Ipγ and Dγ is a pγ × pγ diagonal matrix.
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From Eq. (B.2) and Eq. (B.4), it follows that

I1 = p(y|β̂γ)p(β̂γ|γ) exp

(
±F1

√
3pγ log n

nλmin

)
×
∫
Nγ

exp{− 1

2σ2
(βγ − β̂γ)

⊤X⊤
γ Xγ(βγ − β̂γ)}dβγ.

Let ξ = DγUγ
⊤

σ
(βγ− β̂γ). Note that ∥ξ∥2 =

√
1
σ2 (βγ − β̂γ)⊤Xγ

⊤Xγ(βγ − β̂γ), thus we have

∫
Nγ

exp{− 1

2σ2
(βγ − β̂γ)

⊤X⊤
γ Xγ(βγ − β̂γ)}dβγ

= |
X⊤

γ Xγ

σ2
|−

1
2

∫
∥ξ∥2≤
√

3pγ logn

exp(−1

2
ξ⊤ξ)dξ

=
(2πσ2)pγ/2

|X⊤
γ Xγ|1/2

pr(χ2
pγ ≤ 3pγ log n)

≥ (2πσ2)pγ/2

|X⊤
γ Xγ|1/2

{1− exp(−pγ log n)}.

This implies that

Il < I1 < Iu, (B.5)

where

Il = p(y|β̂γ)p(β̂γ|γ)
(2πσ2)pγ/2

|X⊤
γ Xγ|1/2

exp

(
−F1

√
3pγ log n

nλmin

)
{1− exp(−pγ log n)} ,

and

Iu = p(y|β̂γ)p(β̂γ|γ)
(2πσ2)pγ/2

|X⊤
γ Xγ|1/2

exp

(
F1

√
3pγ log n

nλmin

)
.

We now consider I2. Under Assumptions 3.7 and 3.8, it follows that

log p(βγ|γ) ≤ log p(0|γ) + F2 ≤ log p(β̂γ|γ) + F1 ∥ β̂γ ∥2 +F2.
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Hence, by Assumption 3.6 and Lemma B.2, we have

∥β̂γ∥2 ≤ min(cγpγ, dn
c)

in probability as n→∞, form some positive constants cγ. Hence, we have

I2 ≤ p(y|β̂γ)p(β̂γ|γ) exp(cpγ)

×
∫
Rpγ /Nγ

exp

{
− 1

2σ2
(βγ − β̂γ)

⊤X⊤
γ Xγ(βγ − β̂γ)

}
dβγ,

in probability as n→∞.

Let ξ = DγUγ
⊤

σ
(βγ − β̂γ), we have

∫
Rpγ /Nγ

exp

{
− 1

2σ2
(βγ − β̂γ)

⊤X⊤
γ Xγ(βγ − β̂γ)

}
dβγ

=

∣∣∣∣∣X⊤
γ Xγ

σ2

∣∣∣∣∣
−1/2 ∫

∥ξ∥2>
√

3pγ logn

exp

(
−1

2
ξ⊤ξ

)
dξ

=
(2πσ2)pγ/2

|X⊤
γ Xγ|1/2

pr(χ2
pγ > 3pγ log n)

≤ (2πσ2)pγ/2

|X⊤
γ Xγ|1/2

exp(−pγ log n).

Thus, we have

I2 < p(y|β̂γ)p(β̂γ|γ)|X⊤
γ Xγ|−1/2(2πσ2)pγ/2 exp (F1cγpγ + F2 − pγ log n) (B.6)

Note that ex ≤ 1 + 2x and e−x ≥ 1− 2x for 0 ≤ x ≤ 1. From Eq. (B.5), Eq. (B.6) and
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the fact that 0 ≤ I2, it follows that

p(y|γ) = I1 + I2

> p(y|β̂γ)p(β̂γ|γ)
(2πσ2)pγ/2

|X⊤
γ Xγ|1/2

exp

(
−F1

√
3pγ log n

nλmin

)(
1− 1

npγ

)

≥ p(y|β̂γ)p(β̂γ|γ)|X⊤
γ Xγ|−1/2(2πσ2)pγ/2

(
1− 2F1

√
3pγ log n

nλmin

)(
1− 1

npγ

)
. (B.7)

We also have

p(y|γ) = I1 + I2

≤ p(y|β̂γ)p(β̂γ|γ)
(2πσ2)pγ/2

|X⊤
γ Xγ|1/2

{
exp

(
F1

√
3pγ log n

nλmin

)
+ exp (cγpγ − pγ log n)

}

≤ p(y|β̂γ)p(β̂γ|γ)
(2π)pγ/2

|X⊤
γ Xγ|1/2

{
1 + 2F1

√
3pγ log n

nλmin

+ exp (cγpγ − pγ log n)

}
. (B.8)

By Eq. (B.7) and Eq. (B.8), we have

p(y|γ) = p(y|β̂γ)p(β̂γ|γ)|X⊤
γ Xγ|−1/2(2πσ2)pγ/2

{
1 +Op

(√
pγ log n

n

)}
.

This completes the proof.

B.4 Proof of Lemma 3.2

Proof of Lemma 3.2. For any γ such that γ∗ ⊊ γ, we have

−2 log

{
p(y | β̂γ∗)

p(y | β̂γ)

}
=

ϵ⊤(Hγ −Hγ∗)ϵ

σ2
. (B.9)

Since ϵ ∼ N(0, σ2), it follows that

ϵ⊤(Hγ −Hγ∗)ϵ

σ2
∼ χ2

pγ−pγ∗
.
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Recall that pr{χ2
r ≥ 2x+ 2(rx)1/2 + r} ≤ exp(−x). Let rγ = pγ − pγ∗ , we have

pr(χ2
rγ ≥ 2rγmn + 2(mnr

2
γ)

1/2 + rγ, some 1 ≤ rγ < n− pγ∗)

≤
n−pγ∗∑
j=1

(
pn
j

)
exp(−jmn)

≤
n∑

j=1

pjn exp(−jmn)

=
n∑

j=1

exp(−j{mn − log pn})

= exp [−{mn − log pn}]

×1− exp [−n{mn − log pn}]
1− exp [−{mn − log pn}]

,

which goes to 0 as n→∞, if mn = log pn + δn with δn →∞ as n increases.

Thus, Eq. (B.9) implies that, for any γ such that γ∗ ⊊ γ,

−2 log p(y|β̂γ∗)

p(y|β̂γ)
< 2rγ(log pn + δn) + 2

√
r2γ(log pn + δn) + rγ

≡ rγΛn,

in probability as n → ∞, where Λn = 2(log pn + δn) + 2
√
log pn + δn + 1. Since the above

result holds for an arbitrary δn, we assume δn = o(log n). The proof is thus completed.

B.5 Proof of Lemma 2.3

Proof of Lemma 2.3. For any γ such that γ ⊊ γ∗, we have

2 log

{
p(y | β̂γ∗)

p(y | β̂γ)

}
=

µ⊤
∗ (In −Hγ)µ∗ + 2µ⊤

∗ (In −Hγ)ϵ+ ϵ⊤Hγ∗ϵ− ϵ⊤Hγϵ

σ2
. (B.10)

First, since Hγ is idempotent for any γ, thus

ϵ⊤Hγϵ

σ2
∼ χ2

pγ .
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Recall that pr{χ2
r ≥ 2x+ 2(rx)1/2 + r} ≤ exp(−x). Define

aj = 2b′j + 2(jb′j)
1/2 + j and b′j = j log pn + j log log n.

It then follows that

pr(χ2
pγ ≥ apγ , for some 0 ≤ pγ < pγ∗) ≤

pγ∗∑
j=1

(
pn
j

)
exp(−b′j)

≤
pγ∗∑
j=1

pjn exp(−b′j)

=

pγ∗∑
j=1

exp(j log pn − b′j)

=

pγ∗∑
j=1

(
1

log n

)j

=
1

log n

1−
(

1
logn

)pγ∗
1− 1

logn

 ,

which goes to 0 as n→∞. Thus, we have χ2
pγ < 2pγ log pn{1+ op(1)} in probability for any

γ ⊊ γ∗ as n → ∞. pγ∗ = o(n) implies that ϵ⊤Hγϵ

nσ2 decreases to 0 in probability as n → 0 for

any γ ⊊ γ∗. Hence, following Assumption 3.2 and Lemma B.1, we have

max
γ⊊γ∗

ϵ⊤Hγϵ

µ⊤
∗ (In −Hγ)µ∗

= max
γ⊊γ∗

ϵ⊤Hγϵ/nσ
2

µ⊤
∗ (In −Hγ)µ∗/nσ2

<
2pγ log pn{1 + op(1)}/n

b0

= op(1). (B.11)

Similarly, we have
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max
γ⊊γ∗

ϵ⊤Hγ∗ϵ

µ⊤
∗ (In −Hγ)µ∗

= max
γ⊊γ∗

ϵ⊤Hγ∗ϵ/nσ
2

µ⊤
∗ (In −Hγ)µ∗/nσ2

<
2pγ∗ log pn{1 + op(1)}/n

b0

= op(1). (B.12)

Second, let

Zγ =
µ⊤
∗ (In −Hγ)ϵ

σ
√

µ⊤
∗ (In −Hγ)µ∗

,

which follows N (0, 1) for any γ ⊊ γ∗. We then have

max
γ⊊γ∗

∣∣∣∣ µ⊤
∗ (In −Hγ)ϵ

µ⊤
∗ (In −Hγ)µ∗

∣∣∣∣ = max
γ⊊γ∗

{
σ2Z2

γ

µ⊤
∗ (In −Hγ)µ∗

}1/2

<

{
2σ2 log pn{1 + op(1)}

b0n

}1/2

= op(1), (B.13)

as n→∞ by Assumption 3.2 and Lemma B.1.

Thus, by Eq. (B.11), Eq. (B.12), Eq. (B.13) and Lemma B.1, for any γ such that γ ⊊ γ∗

and pγ∗ = o(n), (B.10) implies that

min
γ⊊γ∗

2 log

{
p(y | β̂γ∗)

p(y | β̂γ)

}
=

µ⊤
∗ (In −Hγ)µ∗

σ2
{1 + op(1)}

> b0n,

for some positive constant b0. This completes our proof.

B.6 Proof of Theorem 3.1

Proof of Theorem 3.1. To complete the proof of Theorem 3.1, we consider two cases. The

high-dimensional case in which pn = O(nα) where α ∈ [1,∞), and the low-dimensional case
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in which pn = O(nα) where α ∈ (0, 1). We only show the proof of the high-dimensional case.

The low-dimensional case can be proved in a similar way with Kn replaced by pn.

First, define M1 = {γ : γ∗ ⊊ γ, γ ∈ Mn}. For any γ ∈ M1, under Assumption 3.5,

Lemma 3.1 and Lemma 3.2, by ignoring smaller order term of op(1), we have

−2 log
{
p(y | γ∗)
p(y | γ)

}
= −2 log

{
p(y|β̂γ∗ , γ∗)p(β̂γ∗ |γ∗)|X⊤

γ∗Xγ∗|−1/2(2πσ2)pγ∗/2

p(y|β̂γ, γ)p(β̂γ|γ)|X⊤
γ Xγ|−1/2(2πσ2)pγ/2

}

< rγΛn − 2 log

{
p(β̂γ∗|γ∗)
p(β̂γ|γ)

}
− log

(
|X⊤

γ Xγ|
|X⊤

γ∗Xγ∗|

)
− (pγ∗ − pγ) log 2πσ

2

< rγΛn − rγ log n− rγπn, (B.14)

in probability as n→∞, where rγ = pγ−pγ∗ , πn = 2
rγ
log p(β̂γ∗ |γ∗)

p(β̂γ |γ)
, and Λn = 2(log pn+ δn)+√

2(log pn + δn) + 1 with δn = o(log n). By Assumption 3.2, we have

Λn = 2 log pn + 2δn +
√
2(log pn + δn) + 1 = 2 log pn + o(log n).

By Eq. (B.14), it follows that

∑
γ∈M1

p(y|γ)
p(y|γ∗)

=

Kn−pγ∗∑
j=1

 ∑
γ∈M1,pγ−pγ∗=j

p(y|γ)
p(y|γ∗)


<

Kn−pγ∗∑
j=1

[(
pn − pγ∗

j

)
exp

{
−j

2
(log n+ πn − Λn)

}]

<

Kn∑
j=1

pjn exp

{
−j

2
(log n+ πn − Λn)

}

=
Kn∑
j=1

exp

{
−j

2
(log n+ πn − Λn − 2 log pn)

}

= exp

{
−1

2
(log n+ πn − Λn − 2 log pn)

}
1− exp

{
−Kn

2
(log n+ πn − Λn − 2 log pn)

}
1− exp

{
−1

2
(log n+ πn − Λn − 2 log pn)

}
= exp

[
−1

2
{log n+ πn − 4 log pn − o(log n)}

]
×
1− exp

[
−Kn

2
{log n+ πn − 4 log pn − o(log n)}

]
1− exp

[
−1

2
{log n+ πn − 4 log pn − o(log n)}

] ,
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which goes to 0 as n → ∞ under the condition that πn > 4 log pn, i.e.
1

pγ−pγ∗
log p(β̂γ∗ |γ∗)

p(β̂γ |γ)
>

log p2n√
n
.

Second, letM2 = {γ : γ ⊊ γ∗, γ ∈Mn}. For any γ ∈M2, according to Assumption 3.5,

Lemma 3.1 and Lemma 3.3, by ignoring the smaller order term of op(1), we obtain that

−2 log
{
p(y|γ∗)
p(y|γ)

}
= −2 log

{
p(y|β̂γ∗ , γ∗)p(β̂γ∗|γ∗)|X⊤

γ∗Xγ∗|−1/2(2πσ2)pγ∗/2

p(y|β̂γ, γ)p(β̂γ|γ)|X⊤
γ Xγ|−1/2(2πσ2)pγ/2

}

< −b0n− 2 log

{
p(β̂γ∗|γ∗)
p(β̂γ|γ)

}
− log

(
|X⊤

γ Xγ|
|X⊤

γ∗Xγ∗|

)
− (pγ∗ − pγ) log 2πσ

2

< −b0n+ (pγ∗ − pγ) log n+ (pγ∗ − pγ)πn, (B.15)

in probability as n → ∞, where πn = 2
pγ−pγ∗

log p(β̂γ∗ |γ∗)
p(β̂γ |γ)

. From Assumption 3.4 and Eq.

(B.15), it follows that

∑
γ∈M2

p(y|γ)
p(y|γ∗)

=

pγ∗−1∑
j=0

 ∑
γ∈M2:pγ=j

p(y|γ)
p(y|γ∗)


<

pγ∗−1∑
j=0

 ∑
γ∈M2:pγ=j

exp

{
−1

2
[b0n− (pγ∗ − pγ) log n− (pγ∗ − pγ)πn]

}
≤ exp

{
−1

2
(b0n− pγ∗ log n− pγ∗πn)

} pγ∗∑
j=0

(
pγ∗
j

)
exp

{
−j

2
(log n+ πn)

}
= exp

{
−1

2
(b0n− pγ∗ log n− pγ∗πn)

}[
1 + exp

{
− log n+ πn

2

}]pγ∗
,

which goes to 0 as n→∞ under the condition that pγ∗
pγ−pγ∗

log p(β̂γ∗ |γ∗)
p(β̂γ |γ)

= o(n).

The last, let M3 = {γ : γ ̸= γ∗, γ ̸∈ M1 ∪M2, γ ∈ Mn}. Suppose γ∗∗ = γ∗ ∪ γ for

γ ∈M3. By Lemma 3.2 and Lemma 3.3, we obtain that

−2 log

{
p(y|β̂γ∗)

p(y|β̂γ)

}
= −2 log

{
p(y|β̂γ∗)

p(y|β̂γ∗∗)

}
− 2 log

{
p(y|β̂γ∗∗)

p(y|β̂γ)

}
< (pγ∗∗ − pγ∗)Λn − c0n

< −c0
2
n (B.16)
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in probability for some positive constant c0 as n→∞, where the last inequality is obtained

by following the fact that (pγ∗∗ − pγ∗)Λn ≤ 2pγ log pn + pγo(log n) < c0n/2 for sufficiently

large n. By Assumption 3.5 and Eq. (B.16), it follows that

−2 log
{
p(y|γ∗)
p(y|γ)

}
= −2 log

{
p(y|β̂γ∗ , γ∗)p(β̂γ∗|γ∗)|X⊤

γ∗Xγ∗|−1/2(2πσ2)pγ∗/2

p(y|β̂γ, γ)p(β̂γ|γ)|X⊤
γ Xγ|−1/2(2πσ2)pγ/2

}
< −c0

2
n+ (pγ∗ − pγ) log n+ (pγ∗ − pγ)πn − (pγ∗ − pγ) log 2πσ

2

< −d0n, (B.17)

in probability as n → ∞, where d0 = c0/4 and the last inequality holds when pγ∗πn = o(n)

where πn = 2
pγ−pγ∗

log p(β̂γ∗ |γ∗)
p(β̂γ |γ)

. It then follows from Eq. (B.17) that

∑
γ∈M3

p(y|γ)
p(y|γ∗)

=
Kn∑
j=0

 ∑
γ∈M3:pγ=j

p(y|γ)
p(y|γ∗)


<

Kn∑
j=0

{(
pn
j

)
exp

(
−1

2
d0n

)}

< exp

(
−d0

2
n

) Kn∑
j=0

pjn

= exp

(
−d0

2
n

)
pKn
n {1 + o(1)}

= exp

(
−d0

2
n+Kn log pn

)
{1 + o(1)},

which goes to 0 as n→∞, since Kn log pn = o(n) under Assumptions 3.2 and 3.3.

Since,M1,M2 andM3 are disjoint, it follows that

∑
γ∈Mn

p(y|γ)
p(y|γ∗)

=
∑
γ∈M1

p(y|γ)
p(y|γ∗)

+
∑
γ∈M2

p(y|γ)
p(y|γ∗)

+
∑
γ∈M3

p(y|γ)
p(y|γ∗)

,

which goes to 0 in probability as n→∞. This completes the proof.
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B.7 Lemma B.3

Lemma B.3. For model γ ∈ Mn, the univariate horseshoe density p(βi|τ) satisfies the

following: (a) limβi→0 p(βi|τ) =∞. (b) For βi ̸= 0, we have

K0

2
(τ 2)−1/2 log

(
1 +

4τ 2

β2
i

)
< p(βi|τ) < K0(τ

2)−1/2 log

(
1 +

2τ 2

β2
i

)

where K0 = 1/(2π3)1/2 and i = 1, . . . , pγ.

Proof. First, for model γ, we have

p(βi|τ) =
∫ ∞

0

(2πλ2
i )

−1/2 exp
(
−β2

i /2λ
2
i

) 2

πτ [1 + (λi/τ)2]
dλi.

Let u = (τ/λi)
2, then we have

p(βi|τ) =

∫ ∞

0

(2πτ 2)−1/2u1/2 exp

(
− β2

i

2τ 2
u

)
u−3/2τ

πτ(1 + 1/u)
du

=
K0

(τ 2)1/2

∫ ∞

0

exp
(
− β2

i

2τ2
u
)

1 + u
du,

where K0 = 1/(2π3)1/2. Let z = u+ 1, it follows that

p(βi|τ) =
K0

(τ 2)1/2

∫ ∞

1

exp

[
− β2

i

2τ 2
(z − 1)

]
1

z
dz

=
K0

(τ 2)1/2
exp(

β2
i

2τ 2
)

∫ ∞

1

1

z
exp

[
− β2

i

2τ 2
z

]
dz

=
K0

(τ 2)1/2
exp(

β2
i

2τ 2
)E1(

β2
i

2τ 2
),

where E1(·) is the exponential integral function. This function satisfies tight upper and lower

bounds:
exp(−t)

2
log

(
1 +

2

t

)
< E1(t) < exp(−t) log

(
1 +

1

t

)
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for all t > 0. Thus we have

K0

2
(τ 2)−1/2 log

(
1 +

4τ 2

β2
i

)
< p(βi|τ) < K0(τ

2)−1/2 log

(
1 +

2τ 2

β2
i

)

which proves Part (b) and Part (a) then follows from the lower bound approaches ∞ as

βi → 0.

B.8 Examples of priors

Proof of Gaussian prior. First, by Lemma B.2, for γ ∈M1, we have

1

pγ − pγ∗
log

p(β̂γ∗|γ∗, s)
p(β̂γ|γ, s)

=
1

pγ − pγ∗
log

∏
k∈γ∗

1
(2πs2)1/2

exp
(
− 1

2s2
β2
k

)∏
j∈γ

1
(2πs2)1/2

exp
(
− 1

2s2
β2
j

)
=

1

2
log(2πs2) +

1

2(pγ − pγ∗)s
2

(∑
j∈γ

β̂2
j −

∑
k∈γ∗

β̂2
k

)

= log s+
1

2
log(2π) +

Op(n
c)

2(pγ − pγ∗)s
2

> log s.

When s > p2n/
√
n, the prior satisfies Condition 1 that 1

pγ−pγ∗
log p(β̂γ∗ |γ∗)

p(β̂γ |γ)
> log p2n/

√
n for

γ ∈M1.

Similarly, for γ ∈Mn \ γ∗, we have

pγ∗
pγ − pγ∗

log
p(β̂γ∗|γ∗, s)
p(β̂γ|γ, s)

=
pγ∗

pγ − pγ∗
log

∏pγ∗
i=1

1
(2πs2)1/2

exp
(
− 1

2s2
β2
k

)∏pγ
j=1

1
(2πs2)1/2

exp
(
− 1

2s2
β2
j

)
=

pγ∗
2

log(2πs2) +
pγ∗

2s2(pγ − pγ∗)

(∑
j∈γ

β̂2
j −

∑
k∈γ∗

β̂2
k

)

=
pγ∗
2

log(s2) +
pγ∗
2

log(2π) +
pγ∗Op(n

c)

2s2(pγ − pγ∗)

Hence, to satisfy pγ∗
pγ−pγ∗

log p(β̂γ∗ |γ∗)
p(β̂γ |γ)

= o(n), we must set pγ∗ log(s) = o(n). For example, we
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set s = p2+δ
n for an arbitrary positive constant δ > 0. We then have pγ∗ log(s) = o(n) and

s > p2n/
√
n. Thus, according to Theorem 3.1, the model selection consistency holds for the

independent Gaussian prior.

Proof of Laplace prior. First, by Lemma B.2, for γ ∈Mn, we have

log
p(β̂γ∗|γ∗, s)
p(β̂γ|γ, s)

= log

∏pγ∗
i=1

1
2s
exp

(
− |β̂i|

s

)
∏pγ

j=1
1
2s
exp

(
− |β̂j |

s

)
= (pγ − pγ∗) log 2s+

1

s

(
pγ∑
j=1

|β̂j| −
pγ∗∑
i=1

|β̂i|

)

= (pγ − pγ∗) log 2s+
Op(n

c)

s

When s > p2n/
√
n, for γ ∈M1, as n→∞, we have

1

pγ − pγ∗
log

p(β̂γ∗|γ∗, s)
p(β̂γ|γ, s)

= log 2 + log s+
Op(n

c)

(pγ − pγ∗)s

> log s{1 + op(1)}

> log p2n/
√
n,

which satisfies Condition 1 that 1
pγ−pγ∗

log p(β̂γ∗ |γ∗)
p(β̂γ |γ)

> log p2n/
√
n for γ ∈M1.

When pγ∗ log s = o(n), for any γ ∈Mn \ γ∗, as n→∞, we have

pγ∗
pγ − pγ∗

log
p(β̂γ∗|γ∗, s)
p(β̂γ|γ, s)

= pγ∗ log 2 + pγ∗ log s+
pγ∗Op(n

c)

(pγ − pγ∗)s

= o(n),

which satisfies Condition 2 that pγ∗
pγ−pγ∗

log p(β̂γ∗ |γ∗)
p(β̂γ |γ)

= o(n).

There are many ways to set up s to satisfy both conditions. For example, we can set

s = p2+δ
n for some δ > 0, we then have s > p2n/

√
n and pγ∗ log s = o(n). Thus, by Theorem

3.1, the model selection consistency holds for the Laplace prior.
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Proof of scaled Student’s t prior. For γ ∈M, if log d = op(n) , by Lemma B.2, we then have

log
p(β̂γ∗|γ∗, s, d)
p(β̂γ|γ, s, d)

=

∏pγ∗
i=1[sd

1/2B(d/2, 1/2)]−1(1 +
β̂2
i

sd
)−(d+1)/2∏pγ

j=1[sd
1/2B(d/2, 1/2)]−1(1 +

β̂2
j

sd
)−(d+1)/2

= (pγ − pγ∗) log s+
pγ − pγ∗

2
log d+ (pγ − pγ∗) logB(d/2, 1/2)

+
d+ 1

2

{
pγ∑
j=1

log(1 +
β̂2
j

sd
)−

pγ∗∑
i=1

log(1 +
β̂2
i

sd
)

}

= (pγ − pγ∗) log s+
pγ − pγ∗

2
log d+ (pγ − pγ∗) logB(d/2, 1/2)

+

(
pγ∑
j=1

β̂2
j

2s
−

pγ∗∑
i=1

β̂2
i

2s

)

= (pγ − pγ∗) log s+
pγ − pγ∗

2
log d+ (pγ − pγ∗) logOp(1) +

Op(n
c)

2s
.

When s > p2n/
√
n, for γ ∈M1, as n→∞, we have

1

pγ − pγ∗
log

p(β̂γ∗|γ∗, s, d)
p(β̂γ|γ, s, d)

= log s+
log d

2
+ logOp(1) +

Op(n
c)

2s(pγ − pγ∗)

> log s{1 + op(1)}

> log p2n/
√
n,

which satisfies Condition 1 that 1
pγ−pγ∗

log p(β̂γ∗ |γ∗)
p(β̂γ |γ)

> log p2n for γ ∈M1.

When pγ∗ log s = o(n) and pγ∗ log d = o(n), for γ∗ ∈Mn \ γ∗, as n→∞, we have

pγ∗
pγ − pγ∗

log
p(β̂γ∗|γ∗, s, d)
p(β̂γ|γ, s, d)

= pγ∗ log s+
pγ∗
2

log d+ pγ∗ logOp(1) +
pγ∗Op(n

c)

2s(pγ − pγ∗)

= o(n),

which satisfies Condition 2 that pγ∗
pγ−pγ∗

log p(β̂γ∗ |γ∗)
p(β̂γ |γ)

= o(n) for γ ∈Mn \ γ∗.

There are many ways to set up s to satisfy both conditions. For example, we set s = p2+δ
n

for some δ > 0, we then have s > p2n/
√
n and pγ∗ log s = o(n). Thus, according to Theorem

3.1, the model selection consistency holds for the Scaled Student’s t prior.

Proof of generalized double Pareto prior. If α and η are chosen to grow with n, by Lemma
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B.2, for γ ∈Mn, as n→∞, we have

log
p(β̂γ∗|γ∗, α, η)
p(β̂γ|γ, α, η)

= log

∏pγ∗
i=1

α
2η

(
1 + |β̂i|

η

)−(α+1)

∏pγ
j=1

α
2η

(
1 +

|β̂j |
η

)−(α+1)

= (pγ∗ − pγ) log
α

2η
+ (α + 1)

[
pγ∑
j=1

log(1 +
|β̂j|
η

)−
pγ∗∑
i=1

log(1 +
|β̂i|
η

)

]

= (pγ − pγ∗) log
2η

α
+

[
pγ∑
j=1

α

η
|β̂j| −

pγ∗∑
i=1

α

η
|β̂i|

]

= (pγ − pγ∗) log 2 + (pγ − pγ∗) log
η

α
+

α

η

[
pγ∑
j=1

|β̂j| −
pγ∗∑
i=1

|β̂i|

]

= (pγ − pγ∗) log 2 + (pγ − pγ∗) log
η

α
+

Op(n
c)

η/α
.

When η
α
> p2n/

√
n, for γ ∈M1, as n→∞, we have

1

pγ − pγ∗
log

p(β̂γ∗ |γ∗, α, η)
p(β̂γ|γ, α, η)

= log 2 + log
η

α
+

Op(n
c)

η/α

> log
η

α
{1 + op(1)}

> log p2n/
√
n,

which satisfies Condition 1 that 1
pγ−pγ∗

log p(β̂γ∗ |γ∗)
p(β̂γ |γ)

> log p2n for γ ∈M1.

When pγ∗ log
η
α
= o(n), for γ ∈Mn \ γ∗, we have

pγ∗
pγ − pγ∗

log
p(β̂γ∗|γ∗, α, η)
p(β̂γ|γ, α, η)

= pγ∗ log 2 + pγ∗ log
η

α
+

pγ∗Op(n
c)

(pγ − pγ∗)η/α

= o(n),

which satisfies Condition 2 that pγ∗
pγ−pγ∗

log p(β̂γ∗ |γ∗)
p(β̂γ |γ)

= o(n) for γ ∈Mn \ γ∗.

There are many ways to set up η/α to satisfy both conditions. For example, we can

set η/α = p2+δ
n for some δ > 0, we then have η/α > p2n/

√
n and pγ∗ log

η
α
= o(n). Thus,

according to Theorem 3.1, the model selection consistency holds for the generalized double

Pareto prior.

113



Proof of Horseshoe prior. By Lemma B.7, for any γ ∈Mn, we first have

log
p(β̂γ∗|γ∗, τ)
p(β̂γ|γ, τ)

= log

∏pγ∗
i=1 K0(τ

2)−1/2 exp(
β̂2
i

2τ2
)E1(

β̂2
i

2τ2
)∏pγ

j=1K0(τ 2)−1/2 exp(
β̂2
j

2τ2
)E1(

β̂2
j

2τ2
)

> log

∏pγ∗
i=1

K0

2
(τ 2)−1/2 log

(
1 + 4τ2

β̂2
i

)
∏pγ

j=1K0(τ 2)−1/2 log

(
1 + 2τ2

β̂2
j

)
= (pγ − pγ∗) log

2

K0

− pγ log 2 +
pγ − pγ∗

2
log τ 2 +

pγ∗∑
i=1

log

[
log

(
1 +

4τ 2

β̂2
i

)]

−
pγ∑
j=1

log

[
log

(
1 +

2τ 2

β̂2
j

)]
.

We also have

log
p(β̂γ∗ |γ∗, τ)
p(β̂γ|γ, τ)

= log

∏pγ∗
i=1K0(τ

2)−1/2 exp(
β̂2
i

2τ2
)E1(

β̂2
i

2τ2
)∏pγ

j=1 K0(τ 2)−1/2 exp(
β̂2
j

2τ2
)E1(

β̂2
j

2τ2
)

< log

∏pγ∗
i=1 K0(τ

2)−1/2 log
(
1 + 2τ2

β̂2
i

)
∏pγ

j=1
K0

2
(τ 2)−1/2 log

(
1 + 4τ2

β̂2
j

)
= (pγ − pγ∗) log

2

K0

+ pγ∗ log 2 +
pγ − pγ∗

2
log τ 2 +

pγ∗∑
i=1

log

[
log

(
1 +

2τ 2

β̂i

2

)]

−
pγ∑
j=1

log

[
log

(
1 +

4τ 2

β̂j

2

)]
.
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For γ ∈M1, when τ 2 ≥ p4n/n, as n→∞, we have

1

pγ − pγ∗
log

p(β̂γ∗|γ∗, τ)
p(β̂γ|γ, τ)

> log
2

K0

− pγ
pγ − pγ∗

log 2 +
1

2
log τ 2

+
1

pγ − pγ∗

{
pγ∗∑
i=1

log

[
log

(
1 +

4τ 2

β̂i

2

)]
−

pγ∑
j=1

log

[
log

(
1 +

2τ 2

β̂2
j

)]}

= log
2

K0

− pγ
pγ − pγ∗

log 2 +
1

2
log τ 2 +

1

pγ − pγ∗

{
pγ∗ log

[
o(τ 2)

]
− pγ log

[
o(τ 2))

]}
= log

2

K0

− pγ
pγ − pγ∗

log 2 +
1

2
log τ 2 − log

[
o(τ 2)

]
{1 + o(n)}

=
1

2
log τ 2{1 + o(n)}

≥ log p2n/
√
n,

which satisfies Condition 1 that 1
pγ−pγ∗

log p(β̂γ∗ |γ∗)
p(β̂γ |γ)

> log p2n/
√
n for γ ∈M1.

For γ ∈Mn \ γ∗, when τ 2 grows with n and pγ∗ log τ
2 = o(n), as n→∞ we have

pγ∗
pγ − pγ∗

log
p(β̂γ∗|γ∗, τ)
p(β̂γ|γ, τ)

> pγ∗ log
2

K0

− pγpγ∗
pγ − pγ∗

log 2 +
pγ∗
2

log τ 2

+
pγ∗

pγ − pγ∗

{
pγ∗∑
i=1

log

[
log

(
1 +

4τ 2

β̂2
i

)]
−

pγ∑
j=1

log

[
log

(
1 +

2τ 2

β̂2
j

)]}

= pγ∗ log
2

K0

− pγpγ∗
pγ − pγ∗

log 2 +
pγ∗
2

log τ 2 +
pγ∗

pγ − pγ∗
[pγ∗ log o(τ

2)− pγ log o(τ
2)]

= pγ∗ log
2

K0

− pγpγ∗
pγ − pγ∗

log 2 +
pγ∗
2

log τ 2 − pγ∗ log o(τ
2){1 + o(n)}

=
pγ∗
2

log τ 2{1 + o(n)}

= o(n),
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and we also have

pγ∗
pγ − pγ∗

log
p(β̂γ∗|γ∗, τ)
p(β̂γ|γ, τ)

< pγ∗ log
2

K0

+
p2γ∗

pγ − pγ∗
log 2 +

pγ∗
2

log τ 2

+
pγ∗

pγ − pγ∗

{
pγ∗∑
i=1

log

[
log

(
1 +

2τ 2

β̂2
i

)]
−

pγ∑
j=1

log

[
log

(
1 +

4τ 2

β̂2
j

)]}

= pγ∗ log
2

K0

+
p2γ∗

pγ − pγ∗
log 2 +

pγ∗
2

log τ 2 +
pγ∗

pγ − pγ∗
[pγ∗ log o(τ

2)− pγ log o(τ
2)]

= pγ∗ log
2

K0

+
p2γ∗

pγ − pγ∗
log 2 +

pγ∗
2

log τ 2 − pγ∗ log o(τ
2){1 + o(n)}

=
pγ∗
2

log τ 2{1 + o(n)}

= o(n),

which satisfies Condition 2 that pγ∗
pγ−pγ∗

log p(β̂γ∗ |γ∗)
p(β̂γ |γ)

= o(n) for γ ∈Mn \ γ∗.

There are many ways to set up τ 2. For example, we set τ 2 = p4+δ
n for some δ > 0. We

then have τ 2 > p4n/n and pγ∗ log τ
2 = o(n). Thus, according to Theorem 3.1, the model

selection consistency holds for the Horseshoe prior.

B.9

Under the sufficient condition of Assumption 3.7, for any γ ∈Mn, the Gaussian prior

p(βγ | γ) =
∏
j∈γ

1

(2πs2)1/2
exp

(
− 1

2s2
β2
j

)

satisfies Assumptions 3.7 and 3.8 if s2 ≥ d′γn
c for some constant d′γ > 0.
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Proof. First, by the sufficient condition of Assumption 3.7, we have

| log p(β′
γ|γ)− log p(βγ|γ)| = | log

p(β′
γ|γ)

p(βγ|γ)
|

= | log
∏

j∈γ
1

(2πs2)1/2
exp(− 1

2s2
β′2

j)∏
j∈γ

1
(2πs2)1/2

exp(− 1
2s2

β2
j )
|

= | 1
2s2

(
∑
j∈γ

β2
j −

∑
j∈γ

β′2
j)|

= | 1
2s2

(βγ + β′
γ)

⊤(βγ − β′
γ)|

≤ 1

2s2
∥βγ + β′

γ∥2∥βγ − β′
γ∥2

≤ 1

2s2
(∥βγ∥2 + ∥β′

γ∥2)∥βγ − β′
γ∥2

< |2(1 + dγn
c)

2s2
|∥β′

γ − βγ∥2

≤ |1 + dγn
c

d′γn
c
|∥β′

γ − βγ∥2

< F1∥β′
γ − βγ∥2,

for some constants F1 ∈ (0,∞).

Second, since the density of Gaussian prior maximizes at βγ = 0. Thus we have

log p(βγ|γ)− log p(0|γ) ≤ F2,

for some constant F2 ∈ (0,∞).

Under the Assumptions 3.3, the Laplace prior

p(βγ|s, γ) =
pγ∏
j=1

1

2s
exp

(
−|βj|

s

)

satisfies Assumptions 3.7 and 3.8, if s > d′γn
b/2 for some constant d′γ ∈ (0,∞).
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Proof. First, by Assumption 3.3, we have

| log p(β′
γ|γ)− log p(βγ|γ)| = | log

p(β′
γ|γ)

p(βγ|γ)
|

= | log

∏pγ
j=1

1
2s
exp

(
− |β′

j |
s

)
∏pγ

j=1
1
2s
exp

(
− |βj |

s

) |
=

1

s
|

pγ∑
j=1

(
|βj|
s
−
|β′

j|
s

)|

=
1

s
|(|β′

γ| − |βγ|)⊤Jpγ ,1|

≤ 1

s
∥β′

γ − βγ∥2∥Jpγ ,1∥2

=
p
1/2
γ

s
∥β′

γ − βγ∥2

≤ nb/2

d′γn
b/2
∥β′

γ − βγ∥2

≤ F1∥β′
γ − βγ∥2,

if s > d′γn
b/2 for some constant d′γ ∈ (0,∞), where J⊤

pγ ,1 = (1, 1, . . . , 1) and F1 is a positive

constant.

Second, since the density of Laplace prior maximizes at βγ = 0, we have

log p(βγ|γ)− log p(0|γ) ≤ F2,

for some constant F2 ∈ (0,∞).

Under the sufficient condition of Assumption 3.7, the Scaled Student’s t prior

p(βγ|s, d, γ) =
pγ∏
j=1

[sd1/2B(d/2, 1/2)]−1(1 +
β2
j

sd
)−(d+1)/2

satisfies Assumption 3.7 and Assumption 3.8, if d grows with n and s ≥ d′γn
c for some

constant d′γ > 0.
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Proof. First, by the sufficient condition of Assumption 3.7, when n is sufficiently large, we

have

| log p(β′
γ|γ)− log p(βγ|γ)| = | log

∏pγ
j=1[sd

1/2B(d/2, 1/2)]−1(1 +
β′
j
2

sd
)−(d+1)/2∏pγ

j=1[sd
1/2B(d/2, 1/2)]−1(1 +

β2
j

sd
)−(d+1)/2

|

= |d+ 1

2

[
pγ∑
j=1

log(1 +
β2
j

sd
)−

pγ∑
j=1

log(1 +
β′
j
2

sd
)

]
|

= | 1
2s

[
pγ∑
j=1

β2
j −

pγ∑
i=1

β′
j
2

]
|

=
1

2s
|(β′

γ − βγ)
⊤(β′

γ + βγ)|

≤ 1

2s
∥β′

γ − βγ∥2∥β′
γ + βγ∥2

≤ 1 + dγn
c

d′γn
c
∥β′

γ − βγ∥2

≤ F1∥β′
γ − βγ∥2,

if d grows with n and s ≥ d′γn
c for some constant d′γ > 0, where F1 is a positive constant.

Second, since the density of Scaled Student’s t prior maximizes at βγ = 0, thus we have

log p(βγ|γ)− log p(0|γ) ≤ F2,

for some constant F2 ∈ (0,∞).

Under Assumptions 3.3, the Generalized Double Pareto prior

p(βγ|s, γ) =
pγ∏
j=1

α

2η

(
1 +
|βj,γ|
η

)−(α+1)

satisfies Assumptions 3.7 and 3.8, if α, η grow with n, and we choose η/α > d′γn
b/2 for some

d′γ ∈ (0,∞).
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Proof. First, under Assumptions 3.3, when n is sufficiently large, we have

| log p(β′
γ|γ)− log p(βγ|γ)| = log

∏pγ
j=1

α
2η

(
1 +

|β′
j |

η

)−(α+1)

∏pγ
j=1

α
2η

(
1 +

|βj |
η

)−(α+1)

= |(α + 1)

[
pγ∑
j=1

log(1 +
|βj|
η

)−
pγ∑
j=1

log(1 +
|β′

j|
η

)

]
|

= |α
η

[
pγ∑
j=1

|βj| −
pγ∑
j=1

|β′
j|

]
|

=
α

η
|(|β′

γ| − |βγ|)⊤Jpγ ,1|

≤ α

η
∥β′

γ − βγ∥2∥Jpγ ,1∥2

=
p
1/2
γ

η/α
∥β′

γ − βγ∥2

≤ nb/2

d′γn
b/2
∥β′

γ − βγ∥2

≤ F1∥β′
γ − βγ∥2,

if α, η grow with n, and we choose η/α > d′γn
b/2 for some d′γ ∈ (0,∞), where Jpγ ,1 =

(1, 1, . . . , 1)⊤ and F1 is a positive constant.

Second, since the density of Generalized Double Pareto prior maximizes at βγ = 0, we

have

log p(βγ|γ)− log p(0|γ) ≤ F2,

for some constant F2 ∈ (0,∞).

Under the sufficient condition of Assumption 3.7, the Horseshoe prior

p(βγ|γ, τ) =
pγ∏
i=1

K(τ 2)−1/2 exp(
β2
i

2τ 2
)E1(

β2
i

2τ 2
),

satisfies Assumption 3.7 and 3.8 if τ 2 ≥ d′γn
c for some constant d′γ ∈ (0,∞).

Proof. First, when n is sufficiently large, by the sufficient conditions of Assumption 3.7, we
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have

| log p(β′
γ|γ, τ)− log p(βγ|γ, τ)| = | log

∏pγ
j=1K(τ 2)−1/2 exp(

β′
j
2

2τ2
)E1(

β′
j
2

2τ2
)∏pγ

j=1K(τ 2)−1/2 exp(
β2
j

2τ2
)E1(

β2
j

2τ2
)
|

= |
pγ∑
j=1

(
β′
j
2 − β2

j

2τ 2
+ log

E1(
β′
j
2

2τ2
)

E1(
β2
j

2τ2
)
)|

= |
pγ∑
j=1

(
β′
j
2 − β2

j

2τ 2
+ o(1))|

=
1

2τ 2
|(β′

γ − βγ)
⊤(β′

γ + βγ)|

≤ 1

2τ 2
∥β′

γ + βγ∥2∥β′
γ − βγ∥2

≤ 1 + dγn
c

d′γn
c
∥β′

γ − βγ∥2

≤ F1∥β′
γ − βγ∥2,

if τ 2 ≥ d′γn
c for some constant d′γ ∈ (0,∞), where F1 is a positive constant.

Second, it follows Lemma B.3 that p(βγ|γ, τ)→∞ if βγ → 0. Thus, we have

log p(βγ|γ, τ)− log p(0|γ, τ) = log
p(βγ|γ, τ)
p(0|γ, τ)

= −∞

< F2,

for some constant F2 ∈ (0,∞).

B.10 Proof of Theorem 3.2

Proof of Theorem 3.2. Without the lost of generality, we assume σ2 = 1, and we prove

that, for every step within Knc+4cmin steps, a predictor belongs to the true model will be

selected. Since the prove of each step is similar, we only prove the case starting from γ(0).

Assume the predictor selected by the k+1 step is still an irrelevant predictor variable, where
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k < Knc+4cmin . We have the following relationship

Ω(k) = RSS(γ(k))−RSS(γ(k+1))

= ∥H(k)
ak+1
{In −Hγ(k)}y∥2.

Since we assume ak+1 ̸∈ γ∗, we must have

Ω(k) ≥ max
j∈γ∗
∥H(k)

j {In −Hγ(k)}y∥2

≥ ∥H(k)
j {In −Hγ(k)}y∥2

≥ ∥H(k)
j {In −Hγ(k)}Xγ∗β

0
γ∗∥

2 − ∥H(k)
j {In −Hγ(k)}ϵ∥2

≥ max
j∈γ∗
∥H(k)

j {In −Hγ(k)}Xγ∗β
0
γ∗∥

2 −max
j∈γ∗
∥H(k)

j {In −Hγ(k)}ϵ∥2

= S1 + S2

We first consider S1, define Qγ(k) = In −Hγ(k) . Then we have

max
j∈γ∗
∥H(k)

j {In −Hγ(k)}Xγ∗β
0
γ∗∥

2 = max
j∈γ∗
∥H(k)

j Qγ(k)Xγ∗β
0
γ∗∥

2

= max
j∈γ∗

{
∥X(k)

j ∥−2|X(k)
j

⊤
Qγ(k)Xγ∗β

0
γ∗|

2
}

≥ ∥X(k)
j∗ ∥

−2|X(k)
j∗

⊤
Qγ(k)Xγ∗β

0
γ∗|

2

≥ min
j∈γ∗

{
∥X(k)

j∗ ∥
−2
}
|X(k)

j∗

⊤
Qγ(k)Xγ∗β

0
γ∗|

2

≥
{
max
j∈γ∗
∥X(k)

j∗ ∥
2

}−1{
max
j∈γ∗
|X(k)

j∗

⊤
Qγ(k)Xγ∗β

0
γ∗|

2

}
(B.18)
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Note that

∥Qγ(k)Xγ∗β
0
γ∗∥

2 = β0
γ∗

⊤
X⊤

γ∗Qγ(k)Xγ∗β
0
γ∗

=
∑
j∈γ∗

β0
jX

⊤
j Qγ(k)Xγ∗β

0
γ∗

≤

(∑
j∈γ∗

β2
j

)1/2{∑
j∈γ∗

(X⊤
j Qγ(k)Xγ∗β

0
γ∗)

2

}1/2

≤ ∥β0
γ∗∥max

j∈γ∗
|X⊤

j Qγ(k)Xγ∗β
0
γ∗|
√
pγ∗ (B.19)

Apply (B.19) to (B.18), and note that max
j∈γ∗
∥Xj∥2/n ≤ λmax with probability tending to

one, by Condition 9 and 10. The we have

max
j∈γ∗
∥H(k)

j Qγ(k)Xγ∗β
0
γ∗∥

2 ≥
∥Qγ(k)Xγ∗β

0
γ∗∥

4

nλmaxpγ∗∥β0
γ∗∥2

(B.20)

Defining ξγ(k) =
(
X⊤

γ(k)Xγ(k)

)−1

X⊤
γ(k)Xγ∗β

0
γ∗ , we obtain

∥Qγ(k)Xγ∗β
0
γ∗∥

2 = ∥Xγ∗βγ∗ −Xγ(k)ξγ(k)∥2.

Under the assumption that no additional relevant predictor has been identified by the

procedure. Then we have

∥Qγ(k)Xγ∗β
0
γ∗∥

2 ≥ nλminβ
2
min,

withe probability tending to one. We find that

max
j∈γ∗
∥H(k)

j Qγ(k)Xγ∗β
0
γ∗∥

2 ≥ nλ−1
maxp

−1
γ∗ ∥β

0
γ∗∥

−2λ2
minβ

4
min

≥ λ−1
maxν

−1C−2
β0
γ∗
λ2
minν

4
β0
γ∗
n1−c0−4cmin
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Next, we consider S2, we have

∥H(k)
j {In −Hγ(k)}ϵ∥2 = ∥X(k)

j ∥−2(X⊤
j ϵ−X⊤

j Hγ(k)ϵ)2

≤ λ−1
minn

−1(X⊤
j Qγ(k)ϵ)2

≤ λ−1
minn

−1max
j∈γ∗

max
pγ≤m∗

(X⊤
j Qγϵ)

2

where m∗ = Kνn2c0+4cmin . Note that X⊤
j Qγϵ is a normal random variable with mean 0 and

variance ∥QγXj∥2 ≤ ∥Xj∥2. Thus, we have

λ−1
minn

−1max
j∈γ∗

max
pγ≤m∗

(X⊤
j Qγϵ)

2 ≤ λ−1
minn

−1max
j∈γ∗
∥Xj∥2max

j∈γ∗
max
pγ≤m∗

χ2
1

where χ2
1 is a chi-square random variable with one degree of freedom. Then, we have

max
j∈γ∗

max
pγ≤m∗

χ2
1 ≤ 2m∗ log pn

≤ 3Kνn2c+4cminνnc0

= 3Kν2nc0+2c+4cmin

as n→∞.

Combing S1 and S2, we find

n−1Ω(k) ≥ λ−1
maxν

−1C−2
β0
γ∗
λ2
minν

4
β0
γ∗
n1−c0−4cmin − λ−1

minλmax3Kv2nc0+2c+4cmin−1

= λ−1
maxν

−1c−2
β0
γ∗
λ2
minv

4
γn

−c−4cmin{1− λ2
maxν

3c2β0
γ∗
λ−3
minν

−4
β0
γ∗
3Knc0+3c+8cmin−1}

uniformly for every k ≤ Knc+4cmin . We then have

n−1∥(In −Hγ(k))y∥2 ≥ n−1

Knc+4cmin∑
k=1

Ω(k)

≥ 2{1− λ2
maxν

3c2β0
γ∗
λ−3
minν

−4
β0
γ∗
3Knc0+5c+8cmin−1}

→ 2
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as n→∞. On the other hand, under the assumption σ2 = 1, we have n−1∥(In−Hγ(k))y∥2 →

1 in probability. Thus, it’s impossible to have γ(k)∪γ∗ = ∅ for every 1 ≤ k ≤ Knc+4cmin , which

implies that at least one relevant variable will be discovered within Knc+4cmin steps.
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Appendix C

Chapter 4 Preliminaries

C.1 Proof of Lemma 4.1

Proof of Lemma 4.1. For any γ ∈M1, by Assumption 4.2, we have

−2logp(y|Xβ̂γ∗)

p(y|Xβ̂γ)
→ χ2

pγ−pγ∗
,

as n→∞.

Let rγ = pγ − pγ∗ . Note that pr{χ2
r ≥ 2x + 2(rx)1/2 + r} ≤ exp(−x) by Laurent and

Massart (2000). Then, as n→∞, we have

pr(χ2
rγ ≥ 2rγmn + 2(mnr

2
γ)

1/2 + rγ, some 1 ≤ rγ < Kn − pγ∗)

≤
Kn−pγ∗∑

j=1

(
pn
j

)
exp(−jmn)

≤
Kn∑
j=1

pjn exp(−jmn)

=
Kn∑
j=1

exp{−j(mn − log pn)}

= exp{−(mn − log pn)}

×1− exp{−Kn(mn − log pn)}
1− exp{−(mn − log pn)}

,
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which goes to 0 if mn = log pn + δn with δn →∞ as n increases.

Thus, for any γ ∈M1, we have

−2 log p(y|β̂γ∗)

p(y|β̂γ)
< 2rγ(log pn + δn) + 2

√
r2γ(log pn + δn) + rγ

≡ rγΛn, (C.1)

in probability as n → ∞, where Λn = 2(log pn + δn) + 2
√
log pn + δn + 1. Since the above

result holds for an arbitrary δn, by Assumption 4.5, we let δn = o(log n).

By Assumption 4.3 and Eq.(C.1), for any γ ∈M1, as n→∞, we have

−2 log p(y|γ∗)
p(y|γ)

= −2 log p(y|β̂γ∗)

p(y|β̂γ)
− 2 log

p(β̂γ∗|γ∗)
p(β̂γ|γ)

− rγ log n+ pγ∗cγ∗ − pγcγ

≤ rγΛn − 2 log
p(β̂γ∗|γ∗)
p(β̂γ|γ)

− rγ log n− rγc0

= rγ

{
2 log pn + δn −

2

rγ
log

p(β̂γ∗ |γ∗)
p(β̂γ|γ)

− log n− c0

}
≤ −rγc0,

when log p(β̂γ∗ |γ∗)
p(β̂γ |γ)

≥ rγ log
pn√
n
for a constant c0 which depends on γ.

Therefore, as n→∞, we have

min
γ∈M1

log
p(y|γ∗)
p(y|γ)

≥ c0
2
rγ.

The proof is completed.
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C.2 Proof of Lemma 4.2

Proof of Lemma 4.2. For any γ ∈M2, by Assumption 4.3, we have

−2 log p(y|γ)
p(y|γ∗)

= −2 log p(y|β̂γ)

p(y|β̂γ∗)
− 2 log

p(β̂γ|γ)
p(β̂γ∗|γ∗)

+ rγ log n+ pγcγ − pγ∗cγ∗ ,

as n→∞.

Let γ′ be a model such that

γ′ = arg min
γ∈M2

− 2 log
p(y|β̂γ)

p(y|β̂γ∗)
.

It follows that, for any γ ∈M2, we have

min
γ∈M2

− 2 log
p(y|β̂γ)

p(y|β̂γ∗)
≥ −2 log p(y|β̂γ′)

p(y|β̂γ∗)
.

Let γ∗∗ = γ′ ∪ γ∗, we have

−2 log p(y|β̂γ′)

p(y|β̂γ∗)
= −2 log p(y|β̂γ′)

p(y|β̂γ∗∗)
− 2 log

p(y|β̂γ∗∗)

p(y|β̂γ∗)
.

By Assumption 4.4, we have

−2 log p(y|β̂γ′)

p(y|β̂γ∗∗)
> aγ′,γ∗n,

in probability, where aγ′,γ∗ is a positive constant depends on γ′ and γ∗.

Recall Eq. (C.1) in the proof of Lemma 1, we have

−2 log p(y|β̂γ∗∗)

p(y|β̂γ∗)
> −rγ∗∗Λn

≥ −pγ′Λn,

where rγ∗∗ = pγ∗∗ − pγ∗ ≤ pγ′ and Λn = 2(log pn + δn) + 2
√
log pn + δn + 1 with δn →∞, as
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n→∞.

Thus, for γ′, we have

−2 log p(y|β̂γ′)

p(y|β̂γ∗)
> aγ′,γ∗n− pγ′Λn

For any γ ∈M2, under Assumption 4.1, 4.3, 4.5 and 4.6, it follows that

−2 log p(y|γ)
p(y|γ∗)

= −2 log p(y|β̂γ)

p(y|β̂γ∗)
− 2 log

p(β̂γ|γ)
p(β̂γ∗|γ∗)

+ rγ log n+ pγcγ − pγ∗cγ∗

> aγ′,γ∗n− pγ′Λn − 2 log
p(β̂γ|γ)
p(β̂γ∗|γ∗)

+ rγ log n+ pγcγ − pγ∗cγ∗

= aγ′,γ∗n{1 + o(1)},

if log p(β̂γ∗ |γ∗)
p(β̂γ |γ)

= o(n), as n→∞.

Thus, we have min
γ∈M2

log p(y|γ∗)
p(y|γ) ≥ aγ′,γ∗n{1+o(1)} as n→∞. The proof is completed.

C.3 Lemma C.1

Lemma C.1. For model γ ∈ Mn, the univariate Horseshoe density p(βi|τ) satisfies the

following: (a) limβi→0 p(βi|τ) =∞. (b) For βi ̸= 0, we have

K0

2
(τ 2)−1/2 log

(
1 +

4τ 2

β2
i

)
< p(βi|τ) < K0(τ

2)−1/2 log

(
1 +

2τ 2

β2
i

)

where K0 = 1/(2π3)1/2 and i = 1, . . . , pγ.

Proof of Lemma C.1. First, for model γ, we have

p(βi|τ) =
∫ ∞

0

(2πλ2
i )

−1/2 exp
(
−β2

i /2λ
2
i

) 2

πτ [1 + (λi/τ)2]
dλi
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Let u = (τ/λi)
2, then we have

p(βi|τ) =

∫ ∞

0

(2πτ 2)−1/2u1/2 exp

(
− β2

i

2τ 2
u

)
u−3/2τ

πτ(1 + 1/u)
du

=
K0

(τ 2)1/2

∫ ∞

0

exp
(
− β2

i

2τ2
u
)

1 + u
du

where K0 = 1/(2π3)1/2. Let z = u+ 1, then we have

p(βi|τ) =
K0

(τ 2)1/2

∫ ∞

1

exp

[
− β2

i

2τ 2
(z − 1)

]
1

z
dz

=
K0

(τ 2)1/2
exp(

β2
i

2τ 2
)

∫ ∞

1

1

z
exp

[
− β2

i

2τ 2
z

]
dz

=
K0

(τ 2)1/2
exp(

β2
i

2τ 2
)E1(

β2
i

2τ 2
)

where E1(·) is the exponential integral function. This function satisfies tight upper and

lower bounds:
exp(−t)

2
log

(
1 +

2

t

)
< E1(t) < exp(−t) log

(
1 +

1

t

)
for all t > 0, thus we have

K0

2
(τ 2)−1/2 log

(
1 +

4τ 2

β2
i

)
< p(βi|τ) < K0(τ

2)−1/2 log

(
1 +

2τ 2

β2
i

)

which proves Part (b) and Part (a) then follows from the lower bound approaches ∞ as

βi → 0.
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