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Abstract.  Grain kernels are finite and discrete materials. Although flowing grain can behave 26 

like a continuum fluid at times, the discontinuous behavior exhibited by grain kernels cannot be 27 

simulated solely with conventional continuum-based computer modeling such as finite-element 28 

or finite-difference methods. The discrete element method (DEM) is a proven numerical method 29 

that can model discrete particles like grain kernels by tracking the motion of individual particles. 30 

DEM has been used extensively in the field of rock mechanics. Its application is gaining 31 

popularity in grain postharvest operations, but it has not been applied widely. This paper reviews 32 

existing applications of DEM in grain postharvest operations. Published literature that uses DEM 33 

to simulate postharvest processing is reviewed, as are applications in handling and processing of 34 

grain such as soybean, corn, wheat, rice, rapeseed, and the grain coproduct distillers dried grains 35 

with solubles (DDGS). Simulations of grain drying that involve particles in both free-flowing 36 

and confined-flow conditions are also included. Review of existing literature indicates that DEM 37 

is a promising approach in the study of the behavior of deformable soft particulates such as grain 38 

and coproducts and it could benefit from the development of improved particle models for these 39 

complex-shaped particles. 40 

 41 

Keywords Discrete element method, grain handling, grain processing, free-flowing grain, 42 

confined grain  43 
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Introduction 44 

 Grain kernels are considered finite and discrete materials. At times, flowing grain can behave 45 

like a continuum fluid or a collection of individual interacting particles depending, in large part, 46 

on the energy imparted to the grain kernels (de Bruyn 2012). Granular materials such as cereal 47 

grains that exhibit discontinuous behavior cannot be simulated solely using conventional 48 

continuum-based modeling techniques such as finite-element or finite-difference methods. 49 

Examples of processes dominated by discontinuum behavior include flow of bulk solids in 50 

hoppers, feeders, chutes, screens, crushers, ball mills, mixers, and conveyor systems. Micro-51 

mechanical behavior of particular media, stability of underground mine openings, stability of 52 

rock slopes, and mineral processing are other solids handling or processing examples in which 53 

continuum theory may be inapplicable (Dewicki 2003).  54 

Williams et al. (1985) described the discrete element method (DEM) to numerically solve 55 

problems involving discrete elements like grain kernels. The DEM belongs to a family of 56 

numerical modeling techniques designed to solve problems in engineering and applied science 57 

that display gross discontinuous behavior (Hustrulid and Mustoe 1996; Hustrulid 1998; Dewicki 58 

2003). DEM can analyze multiple, interacting, deformable, discontinuous, or fractured bodies 59 

undergoing rotations and large displacements. The basic assumption in DEM is that every 60 

discrete element has distinct boundaries that physically separate it from every other element in 61 

the analysis. Basic equations of elasticity are written under an inertial frame then transferred to a 62 

non-inertial frame, which is translating and rotating. This is performed so that to an observer in 63 

the non-inertial frame, i.e., the new frame, the object exhibits no mean translation or rotation. 64 

The deformation can then be decoupled from the mean motion and written as the sum of the 65 

bodies’ normal modes, which in turn gives a newly derived set of decoupled modal equations. 66 
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These equations are applied on an element-by-element basis, and the elements communicate 67 

through boundary forces. The decoupled equations are then solved by an explicit central 68 

difference scheme, and the final solution is obtained by means of modal superposition (Williams 69 

et al. 1985). 70 

Cundall and Strack (1979), who were the first to publish this technique, defined DEM as a 71 

numerical model capable of describing the mechanical behavior of assemblies of discs and 72 

spheres. The model is based on an explicitly numerical scheme in which the particle interaction 73 

is monitored at each contact, and the particle motion is modeled particle by particle. Figure 1 74 

illustrates a schematic overview of the sequence of calculations involved in DEM simulation 75 

using the central difference, distinct element method proposed by Cundall and Strack (1979). In 76 

DEM modeling, particle interaction is treated as a dynamic process, which assumes that 77 

equilibrium states develop whenever internal forces in the system balance (Theuerkauf et al. 78 

2007). Contact forces and displacements of a stressed particle assembly are obtained by tracking 79 

the motion of individual particles. Motion results from disturbances that propagate through the 80 

assembly. The mechanical behavior of the system is described by the motion of each particle and 81 

the force and moment acting at each contact. Zhu et al. (2007) also mentioned that DEM 82 

simulations can provide dynamic information, such as trajectories of, and transient forces acting 83 

on, individual particles, which is extremely difficult or impossible to obtain by physical 84 

experimentation at this stage of development. Thus, DEM has been used increasingly to study 85 

the particle mechanics in solids handling and processing applications. A complete description of 86 

the DEM can be found in Williams et al. (1985), Cundall (1988b), Hart et al. (1988), and Cundall 87 

and Hart (1989).  88 

  89 
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DEM application is gaining popularity in postharvest processing of grain and food products 90 

because of its close characterization of actual conditions in predicting various processes. Unlike 91 

the field of mining and the chemical industry, however, DEM is not being widely applied 92 

because of various particle property issues arising from the biological origins of grain and food 93 

products.  The objective of this paper is to review existing published research that used DEM as 94 

the numerical modeling technique in postharvest grain handling and processing. The scope of 95 

this paper is limited to DEM applications on grain and its coproducts. 96 

Theoretical Background of DEM 97 

Approaches in DEM Modeling 98 

Two types of DEM techniques are most common: hard-sphere and soft-sphere approaches. 99 

These approaches are differentiated by how the deformation during collision or contact is 100 

represented. The hard-sphere approach does not allow deformation or interpenetration during 101 

impact (Hoomans et al. 1996), whereas the soft-sphere approach does (Zhu et al. 2007; 102 

O”Sullivan 2011a, 2011b). The hard-sphere approach is at the basis of the collisional or event-103 

driven (ED) models. The ED models are also categorized as non-smooth DEM, which models 104 

the shocks between particles by means of shock laws with restitution coefficient (Fortin et al. 105 

2004). The strategy with ED models is to start with equations governing momentum exchange, 106 

which contrasts with the soft-sphere approach that solve the equations governing the linear and 107 

angular motion of the colliding or contacting particles (O’Sullivan 2011b). With the hard-sphere 108 

approach the time step interval for the numerical solution varies with  the time between each 109 

collision. In contrast, the soft-sphere approach uses a constant time step interval in the solutions.  110 

The ED method is limited to circular or spherical particles, takes into account collisions or 111 

shocks between two colliding particles only, and does not consider multiple contacts (Fortin et 112 
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al. 2004). A sequence of instantaneous collisions is processed, one collision at a time, and the 113 

forces between particles often are not explicitly considered (Zhu et al. 2007); therefore, the hard-114 

sphere approach or the ED method is typically most useful in rapid granular flow simulations, 115 

where the granular material is not dense because it has been partially or completely fluidized 116 

(O’Sullivan 2011b). The hard-sphere approach is computationally cheap and, therefore, may be 117 

preferred for non-dense flow. However, Delaney et al. (2007) argued that this approach, although 118 

computationally faster, falls short in describing the details of the dense material’s response 119 

involving multiple simultaneous contacts. 120 

Fortin et al. (2004) developed an improved non-smooth DEM based on non-smooth contact 121 

dynamics (NSCD). The NSCD method models the contact between particles with the Coulomb 122 

unilateral contact law with dry friction and takes into account multiple contacts and shocks 123 

between particles (Jean and Moreau 1991). Fortin et al. (2004) improved the NSCD by 124 

overcoming the difficulties that arise in using the dry friction modeled by Coulomb’s law, which 125 

is typically non-associated (i.e., during the contact, the sliding vector is not normal to the friction 126 

cone). They used bi-potential theory, which leads to a fast predictor-corrector scheme involving 127 

just an orthogonal projection onto the friction cone and allows using a convergence criterion 128 

based on an error estimator in the constitutive law. According to O’Sullivan (2011b), the contact 129 

dynamics method is not strictly under the hard- or soft-sphere approaches; they are sometimes 130 

referred to as rigid body dynamics.  131 

Cundall and Strack (1979) originally developed the soft-sphere method, which was the first 132 

discrete numerical modeling technique published in the literature. Particles in the soft-sphere 133 

approach are also rigid but they are permitted to overlap at the contact points as a representation 134 

of the deformation that occurs at the contacts (Zhu et al. 2007; O’Sullivan 2011a, 2011b). These 135 
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deformations are used to calculate elastic, plastic, and frictional forces between particles; the 136 

motion of particles is described by Newton’s laws of motion. The major advantage of soft-sphere 137 

models is that they are capable of handling multiple particle contacts, which is important when 138 

modeling quasi-static systems (Zhu et al. 2007).  139 

Advantages of the soft-sphere approach in modeling dense-phase bulk granular materials were 140 

also highlighted by Campbell (2006). He emphasized that dense granular materials (as opposed 141 

to those fluidized or in dilute phase) in bulk are soft because their sound speed is approximately 142 

50 times slower than those of their constituent solid materials and the bulk has an apparent 143 

elastic modulus more than three orders of magnitude smaller than its constituent solid. He added 144 

that dense systems interact by force chains (which are quasi-liner structures that support the bulk 145 

of the internal stress within the material) and transmit force along the chain by elastically 146 

deforming the interparticle contacts. Modeling such systems as rigid spheres and any other 147 

model would miss essential physics (Campbell 2006). He also mentioned that particle surface 148 

friction is essential to modeling dense systems because removing it can cause transition between 149 

an elastic and inertial flow regime. Surface friction is important to the strength of the force 150 

chains and force chains are vital to the elastic flow regimes, thus, friction is also essential physics 151 

required in the simulation to avoid erroneous behavior.  152 

The soft-sphere approach, with the advantages listed above for describing the bulk material 153 

physics, is most commonly used in the grain and food-processing industries. Thus, soft-sphere 154 

DEM modeling is the focus of this review. 155 

Governing Equations of Motion 156 

In soft-sphere DEM, contact forces and displacements of the particle assembly are computed 157 

by tracking the motion of each individual particle using an explicit numerical scheme and a very 158 
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small time step (Cundall and Strack, 1979). The process uses Newton’s laws of motion that gives 159 

the relationship between the particle motion and forces acting on each particle. Translational and 160 

rotational motions of a particle are defined as (Remy et al. 2009): 161 
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where mi, Ri, vi, ωi, and Ii are the mass, radius, linear velocity, angular velocity, and moment of 164 

inertia of particle i, respectively; 
ijnF , 

ijtF , and 
ij  are the normal force, tangential force, and 165 

torque acting on particles i and j at contact points, respectively; g is the acceleration due to 166 

gravity; and t is the time. 167 

Modeling of Contact Forces 168 

Force-displacement laws at contact points can be represented by different contact models. The 169 

wide range of contact models and their corresponding equations are not discussed in detail in this 170 

review. Zhu et al.’s (2007) summarizes various contact force models as well as non-contact force 171 

models used in discrete particle simulations. O’Sullivan (2011b) also gives detailed discussions 172 

of contact models in her book.  173 

The simplest contact model commonly used is the linear spring-dashpot model (Cundall and 174 

Strack 1979), in which the spring stiffness is assumed to be constant (Mishra 2003). An 175 

improvement to the linear contact model employs the Hertz theory to obtain the force 176 

deformation relation for the contact (e.g., nonlinear-spring dashpot model). Unlike the linear 177 

contact model, the Hertzian contact law considers that normal stiffness varies with the amount of 178 

overlap. This approach has been extended to cases in which colliding bodies tend to deform 179 

(constrained plastic deformation). Numerical models of interaction at the contact involve the 180 
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force-deformation equation, which is augmented with a damping term to reflect dissipation in the 181 

contact area.  182 

One model to represent the force-displacement laws at the contacts is the Hertz-Mindlin 183 

contact model (Mindlin 1949; Mindlin and Deresiewicz 1953; Tsuji et al. 1992; Di Renzo and Di 184 

Maio 2004, 2005). This non-linear model features both the accuracy and simplicity derived from 185 

combining the Hertz theory in the normal direction and the Mindlin model in the tangential 186 

direction (Tsuji et al. 1992; Remy et al. 2009). Forces on the particles at contact points include 187 

contact force and viscous contact damping force (Zhou et al. 2001). These forces were calculated 188 

by assuming the presence of elastic springs and dashpots in the normal (n) and tangential (t) 189 

directions (Figure 2).  190 

The normal force, Fn, is given as follows (Tsuji et al. 1992; Remy et al. 2009): 191 

4
1

2
3

nnnnnn KF    (3) 192 

where Kn is the normal stiffness coefficient; δn is the normal overlap or displacement; 
n
 is the 193 

normal velocity; and ηn is the normal damping coefficient.  194 

The tangential force, Ft, is governed by the following equation (Tsuji et al. 1992; Remy et al. 195 

2009): 196 

4
1

nttttt KF    (4) 197 

where Kt is the tangential stiffness coefficient; δt is the tangential overlap; 
t
 is the tangential 198 

velocity; and ηt is the tangential damping coefficient. The tangential overlap is calculated by 199 

(Remy et al 2009): 200 

 dtvt

relt  (5) 201 
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where 
t

relv  is the relative tangential velocity of colliding particles and is defined by (Remy et al. 202 

2009):  203 

  jjiiji

t

rel RRsvvv    (6) 204 

where s is the tangential decomposition of the unit vector connecting the center of the particle. 205 

In addition, a tangential force is limited by Coulomb friction (μsFn), where μs is the coefficient 206 

of static friction. When necessary, rolling friction can be accounted for by applying a torque to 207 

contacting surfaces. The rolling friction torque, τi, is given by (DEM Solutions 2013; Remy et al. 208 

2009): 209 

00 RFnri   (7) 210 

where μr is the coefficient of rolling friction, R0 is the distance of the contact point from the 211 

center of the mass, and ω0 is the unit angular velocity vector of the object at the contact point 212 

(Tsuji et al. 1992; Di Renzo and Di Maio 2004; Li et al. 2005; DEM Solutions 2013; Remy et al. 213 

2009). 214 

Stiffness and Damping Coefficient 215 

After modeling the contact forces, the next step is to determine the values of stiffness, K, 216 

damping coefficient, η, and friction coefficient, μ. The friction coefficient is measurable and 217 

considered a parameter obtained empirically. The damping coefficient can be computed from 218 

stiffness. Thus, the stiffness is the parameter which must be determined first and can be 219 

computed by Hertzian contact theory when the physical properties such as Young’s modulus and 220 

Poisson ration are known (Tsuji et al. 1992).  221 

Following the Hertz-Mindlin contact model above, the normal stiffness and normal damping 222 

coefficients are (Tsuji et al. 1992; Remy et al. 2009): 223 
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where E
*
 is the equivalent Young’s modulus, R

*
 is the equivalent radius, m

*
 is the equivalent 226 

mass, and e is the coefficient of restitution. Equivalent properties (R
*
, m

*
, and E

*
) during 227 

collision of particles with different materials such as particles i and j are defined as (Di Renzo 228 

and Di Maio 2004; DEM Solutions 2013): 229 
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where ν is the Poisson’s ratio (Di Renzo and Di Maio 2004; DEM Solutions 2013). Similarly, for 233 

a collision of a sphere i with a wall j, the same relations apply for Young’s modulus E
*
, whereas 234 

R
*
 = Ri and m

*
 = mi. 235 

Tangential stiffness and tangential damping coefficients are defined as follows (Tsuji et al. 236 

1992; DEM Solutions 2013; Remy et al. 2009): 237 
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where G
*
 is the equivalent shear modulus defined by (Li et al. 2005):  240 
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Gi and Gj are shear moduli of particles i and j, respectively.  242 
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Critical Time Step 243 

For dynamic processes, important factors to consider are the propagation of elastic waves 244 

across the particles, the time for load transfer from one particle to adjacent contacting particles, 245 

and the energy transmission across a system that should not be faster than in nature (Li et al. 246 

2005). In the non-linear contact model (e.g., Hertzian), the critical time increment or critical time 247 

step cannot be calculated beforehand, unlike the linear contact model in which the critical time 248 

step is related to the ratio of contact stiffness to particle density. Miller and Pursey (1955), 249 

however, showed that Rayleigh waves or surface waves account for 67% of the radiated energy, 250 

whereas dilational or pressure waves and distortional or shear waves are 7% and 26%, 251 

respectively, of the radiated energy. Thus, it is assumed that all of the energy is transferred by the 252 

Rayleigh waves because the speed difference between the Rayleigh wave and the distortional 253 

wave is small, and the energy transferred by the dilational wave is negligible (Li et al. 2005). 254 

Moreover, the average time of arrival of the Rayleigh wave at any contact remains the same 255 

irrespective of the contact point location. For simplicity, the critical time step is based on the 256 

average particle size, and a fraction of this is used in the simulations (Li et al. 2005; DEM 257 

Solutions 2013). The critical time step is given by the following equation (Li et al. 2005; DEM 258 

Solutions 2013): 259 

G

R
t

p

c






  (16) 260 

where R is the average particle radius, ρp is the particle density, G is the particle shear modulus, 261 

and β can be approximated by (Li et al. 2005): 262 

 163.08766.0   (17) 263 

A major concern in using the DEM is the computational time because of the calculation of 264 

particle interactions and spatial movement at very small time steps. Boukouvala et al. (2013) 265 
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developed the Discrete Element- Reduced- Order Modeling (DE-ROM) approach to reduce 266 

computational time. The authors used principal component analysis (PCA) based on the data 267 

decomposition approach for discrete simulation and validated the new approach by studying a 268 

mixing process. Although this approach is encouraging, it requires data pre-processing to 269 

identify the optimal discretization based on the geometry and the state variable variability. This 270 

recently published work has not been adapted in grain postharvest operation modeling. 271 

Particle Models – Grain and its Coproducts 272 

The choice of shape representation for modeling particles is critical to the accuracy of real 273 

particle behavior during simulation, contact detection, and computation for contact forces 274 

determination (Hogue 1998; Favier et al. 1999). The earliest particle models were two-275 

dimensional (2-D) and of circular (Cundall and Strack 1979) or polygonal shapes (Walton 1983). 276 

Later developments extended representations to three-dimensional (3-D) shapes, using spheres 277 

(Cundall 1988a), polyhedra (Cundall 1988b; Hocking 1992), ellipses (Ting et al. 1993), 278 

ellipsoids (Lin and Ng 1997), superquadric functions (Williams and Pentland 1989; Hogue 279 

1998), multi-element axi-symmetrical non-spherical particles (Favier et al. 1999), and bonded 280 

particles (Potyondy and Cundall 2004; Metzger and Glasser 2013). Although contact detection 281 

and computation time are very important, the critical objective in DEM modeling is accurate 282 

simulation of the behavior of an assembly of real particles (Favier et al. 1999). Favier et al. 283 

(1999) also mentioned that the influence of particle shape on predicted behavior is less 284 

documented than the relationship between shape and the efficiency of contact detection, with the 285 

exception of particle models that used polyhedral shapes (Hart et al., 1988; Ghaboussi and 286 

Barbosa, 1990). In the following sections, the particle models developed and used for predicting 287 
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handling and processing behavior of cereal grains, oilseeds, and their coproducts are explored 288 

and summarized in Table 1.  289 

Soybeans 290 

Soybean is one of the major oilseeds produced around the world. Like any other agricultural 291 

grain, the physico-chemical properties of soybeans and their products depend on the place of 292 

origin and processing methods. Soybean-handling systems and processing operations have been 293 

simulated for the past 20 years in an effort to optimize processes. LoCurto et al. (1997) used a 294 

particle model for soybeans consisting of a cluster of four spheres of equal radius, with centers 295 

lying on a plane. This was similar to Favier et al.’s (1999) representation of non-spherical 296 

particles comprising overlapping spheres with centers fixed in a position relative to each other 297 

along the major axis of the particle’s symmetry. The 3-D four-sphere particle model was used to 298 

simulate the behavior of a single soybean kernel bouncing in aluminum, glass, and acrylic 299 

surfaces to measure the coefficient of restitution. The simulations predicted the coefficient of 300 

restitution with reasonable accuracy. Vu-Quoc et al. (2000) created a soybean particle model 301 

based on the multi-sphere method developed by Favier et al. (1999) to predict the dry granular 302 

flow of soybean in a chute. 303 

Soybean kernels resemble a sphere with high average sphericity values of above 0.8 (Isik 304 

2007); thus, to reduce computation times, single spheres were used by most researchers to 305 

simulate bulk soybean characteristics. Li et al. (2002) simulated the separation of soybeans and 306 

mustard seeds in a sieve using 2-D DEM and modeling soybeans as circular discs. They used a 307 

linear spring model and modified their codes by conducting trial runs to select the appropriate 308 

time step for the simulations. Both kernels (soybeans and mustard seeds) were assumed to have 309 

uniform particle size. The screen wire was also modeled in DEM using a group of circular 310 
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particles that had the properties of the screen wires, and these particles were vibrated to simulate 311 

the movement of a mechanically agitated screen. The authors found that the two spherical 312 

particle models representing soybeans and mustard seeds in a screening process were adequate 313 

and that the DEM simulation can provide the critical feeding rate for the most effective screening 314 

operation. Boac et al. (2010) used a single sphere particle model to simulate bulk soybean 315 

property testing using EDEM (DEM Solutions, Ltd., Edinburgh, UK), a commercial DEM code. 316 

The researchers used a no-slip Hertz-Mindlin contact to simulate and model the bulk density and 317 

angle of repose measurement tests. They conducted this simulation to develop a particle model 318 

with appropriate parameter combinations of coefficients of restitution, static friction, rolling 319 

friction, particle size distribution, and particle shear modulus that best matched the property 320 

values available in the literature. The developed soybean particle model was then used to 321 

simulate the commingling of two soybean lots, with different intrinsic properties, in a bucket-322 

type grain elevator boot system (Boac et al. 2012). 323 

Corn 324 

Corn is a cereal grain that is grown widely throughout the world and is a major food grain in 325 

Africa and Latin America, with the United States as its largest producer. In the U.S., almost 85% 326 

of corn produced is used as livestock feed and as a raw material for industrial products (FAO, 327 

2013). The design and development of processing and handling equipment for corn is a mature 328 

area, but because of the volume of grain handled and the new varieties that are being developed 329 

and to mitigate dust issues, particle modeling is being used to improve the design of equipment. 330 

Chung and Ooi (2006, 2008a, 2008b) modeled corn kernels using overlapping spheres to match 331 

the measured average major, intermediate, and minor dimensions. They used Particle Flow Code 332 

(PFC) 3D (Itasca Consulting Group, Inc., Minneapolis, MN), a commercial DEM code, to 333 
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simulate a confined compression and rod penetration in a dense granular medium (Chung and 334 

Ooi 2006; 2008a) and silo discharging (Chung and Ooi 2008b). The authors used a four-sphere 335 

particle representation for corn because increasing the number of spheres in a single particle 336 

leads to additional computational cost (Chung and Ooi 2006). Measured material properties 337 

(Chung et al. 2004) were used for simulation purposes.  338 

Modeling corn particles using overlapping discs called clumps in PFC 2D also has been 339 

employed in the development of particle models (Coetzee and Els (2009a, 2009b, 2009c). A 340 

clump is a single entity composed of two or more overlapping spheres (in 3-D) and discs (in 2-341 

D) to form one rigid particle. Internal contact forces between the overlapping spheres or discs are 342 

ignored in calculations (Lu and McDowell 2007). Clumps do not break during simulations 343 

regardless of the forces acting upon them (Itasca 2008; Ferellec and McDowell 2010). Coetzee 344 

and Els (2009a, 2009b, 2009c) used this 2-D-clump corn particle model to calibrate material 345 

parameters such as the particle internal friction angle using laboratory shear tests and particle 346 

stiffness using compression tests. They validated the calibration process by modeling silo 347 

discharge and bucket filling. Coetzee et al. (2010) extended these studies to DEM modeling of 348 

dragline bucket filling using particle models comprising two to four overlapping spheres that 349 

represent crushed rocks. 350 

The highest number of spheres used to develop a corn particle model was simulated by 351 

Gonzalez-Montellano et al. (2011, 2012a, 2012b). They modeled corn kernels consisting of six 352 

spheres using the multi-spheres method (Favier et al. 1999) and experimentally derived material 353 

property values (Gonzalez-Montellano et al. 2012c). The authors indicated that using more than 354 

six spheres to construct one corn particle would have slowed their simulation significantly, thus 355 

increasing computation time. The friction coefficients of this corn particle model were used to 356 
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predict the flow patterns of the discharging particles from a silo (Gonzalez-Montellano et al. 357 

2011). Then, they applied this modified corn particle model to study the pressure distributions, 358 

bulk density distributions, and flow properties during filling and emptying of silos (Gonzalez-359 

Montellano et al. 2012a, 2012b). 360 

Wheat 361 

Wheat is a highly irregularly shaped kernel whose shape representation for simulation 362 

purposes is challenging; the presence of a crease makes it difficult to develop a particle with 363 

identical spheres. Studies have reported using wheat kernels in 2-D to investigate the flow of 364 

wheat in a mixed-flow grain dryer (Iroba et al. 2011a; 2011b; Mellman et al. 2011; Weigler et al. 365 

2012). Monosized spherical particles were used to model the grain dryer in 2D using PFC 2D 366 

software. Iroba et al. (2011a) indicated that using multiple spheres would make the simulation 367 

time longer, whereas using non-spherical particles would be more difficult to model and would 368 

require more advanced algorithms. Because of the disc shape of the 2-D particles in the 369 

simulation, however, bridging between particles occurred at the bottom discharge device of the 370 

grain dryer, which did not happen during experiments. Iroba et al. (2011a, 2011b) explained that 371 

because the long and ellipsoidal shape of wheat kernels can orient in different directions during 372 

discharge, flow can be enhanced, and bridging did not occur in the experiment. Spherical 373 

particles (discs) tend to form bridges even though orientation is the same in all directions. To 374 

overcome bridging of particles during simulation, the fixed part of the discharge device was 375 

vibrated. In the subsequent simulations, the authors used non-spherical particles represented by a 376 

2-D ellipsoidal clump consisting of five circular elements (Weigler et al. 2012). The clumps were 377 

assumed to have the same material properties as wheat, which were adapted from Markauskas et 378 

al. (2010). The DEM model indicated that using non-spherical particles (2-D ellipsoidal clumps) 379 



18 

 

can predict the real flow pattern, but disc-shaped particles did not produce the expected dynamic 380 

angle of repose that typically formed under the air ducts.   381 

Keppler et al. (2012) predicted the velocity distribution of wheat kernels in a mixed-flow dryer 382 

with 3-D wheat kernels using EDEM software. The wheat particle was represented by a clump of 383 

three spheres. Although the particles used in EDEM were slightly bigger than actual particles, 384 

the velocity prediction was nearly accurate. To compare the performance of different particle 385 

models, Sarnavi et al. (2013) simulated 3-D wheat kernels using three types of particle models: 386 

(1) spherical, (2) 4-spheres, and (3) 8-spheres using the PFC3D software. They compared the 387 

performance of the particle models with two contact models (linear vs. nonlinear) in predicting 388 

the angle of internal friction and cohesion of wheat. They found that the single spherical particle 389 

model, using both linear and nonlinear contact models, performed better in the simulations than 390 

the multi-sphere models. Although different particle models have been used to simulate wheat 391 

kernels, the studies clearly demonstrate that 3-D particle models have higher accuracy in 392 

predicting the bulk behavior of wheat than a 2-D approach. The results do not, however, confirm 393 

the best number of spheres to use to represent a single wheat kernel. This could be because of the 394 

complicated shape of wheat kernels; the number of spheres should be approximated by trials 395 

depending on the computation time and prediction accuracy required. 396 

Rice 397 

Rice’s ellipsoidal shape is similar to wheat, but the absence of a crease in rice makes it easier 398 

to approximate the rice particle shape. A 2-D circular disc approach was used by Sakaguchi et al. 399 

(2001) to model rice kernels in the shaking separation process using their own DEM codes 400 

(Sakaguchi et al. 1994). The authors obtained good agreement between the simulation and 401 

experiment with respect to the wave-like behavior of the grain assembly and the macroscopic 402 
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separation behavior of rice. Markauskas and Kačianauskas (2011) modeled rice kernels by 403 

creating an ellipsoid using 11 spheres. They compared two rice particle models, with rolling 404 

friction coefficients of zero and 0.3, using their own DEM code (Kačianauskas et al. 2010). 405 

These particle models were used to simulate the filling and discharge flow and piling of the 406 

kernels. The particle model with rolling friction produced a pile shape that better corresponded to 407 

the actual pile. On the other hand, the particle model without rolling friction showed higher 408 

particle mobility, resulting in a spread of particles rather than a pile. A 7-sphere particle model 409 

was used by Jiang and Qiu (2011) to simulate the impact behavior of rice kernels. The rice 410 

particle modeled was an ellipsoid with a 3.5-mm half major axis and a 1.8-mm half minor axis. 411 

The authors implemented this rice model in EDEM software and studied the impact of rice 412 

particles on the impact board of an inclined elevator head. Simulations predicted the 413 

experimental results with high accuracy up to a certain mass of rice that impacts the board. A 3-414 

D rice model was also used by Li et al. (2012) to simulate the material motion in an air-and-415 

screen cleaning device. The authors separated rice kernels and straws using a coupled DEM and 416 

computational fluid dynamics (CFD) model. The rice grain was represented in EDEM by a 417 

spheroid that is 6 mm long with a 1.6-mm radius of rotation. The short straw was represented by 418 

a cylinder 30 mm long by 4 mm diameter. These models were used to study the effect of inlet 419 

airflow velocity in terms of the longitudinal velocity, vertical height, and cleaning loss of rice 420 

kernels and short straws. The coupled CFD-DEM model predicted the air-screen cleaning 421 

process by describing the movement of particles on the screen surface. Coupling CFD with DEM 422 

is a recent advancement in particle modeling that will be useful in the grain processing industry 423 

for prediction of various handling and processing operations.  424 
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Rapeseed 425 

Rapeseed is the second leading source of vegetable oil and protein meal in the world next to 426 

soybean (USDA ERS 2013); thus, its processing and handling optimization are important to the 427 

industry. Bulk compressive loading of rapeseeds was modeled by Raji and Favier (2004a) using 428 

a single sphere particle model. They found a slight difference in the initial particle positions 429 

between the experiment and simulation, although strain intervals were calculated at the same 430 

porosity values. This was an early attempt to model rapeseeds, and the authors extended the use 431 

of this single sphere particle model to simulate rapeseed, soybean, and palm-kernel for bulk 432 

compression (Raji and Favier 2004b). Later, other researchers also modeled rapeseed using a 433 

single sphere particle model to simulate the free fall and impact of rapeseeds against a flat 434 

surface (Wojtkowski et al. 2010). The authors used two different contact models, an elastoplastic 435 

contact model for dry seeds by Thornton and Ning (1998) and a viscoelastic contact model for 436 

wet seeds by Kuwabara and Kono (1987). Parafiniuk et al. (2013) simulated rapeseeds as single 437 

spheres to predict flow through a horizontal orifice. The experimental mean radii and standard 438 

deviation values were used to develop the single sphere model. The authors used EDEM 439 

software and applied the contact models used by Wojtkowski et al. (2010) for dry and wet 440 

rapeseeds. Parafiniuk et al. (2013) concluded that the contact models reproduced experimental 441 

results for slow particle flow but needed the improvement of including dissipation for higher 442 

particle flow rates. Wiącek and Molenda (2011) studied the influence of the moisture content of 443 

rapeseeds on the physical properties of grain bedding during uniaxial compression testing using 444 

single sphere particle models. Results indicated that the mechanical response of a granular 445 

assembly subjected to uniaxial compression is significantly affected by the moisture content of 446 

kernels. Both the simulations and experiments revealed differences in the elasticity and the stress 447 

transmission within rapeseed assemblies at various grain moisture contents.  448 
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The behavior of rapeseed during a direct shear test was modeled by Molenda et al. (2011) 449 

using 2-D circular discs. They used circular elements with size uniformly distributed between 1.8 450 

and 2.2 mm. Numerical simulations were performed using a non-commercial DEM code 451 

(Wassgren 1997) to determine the influence of three different levels of standard deviations in the 452 

coefficient of interparticle friction to the bulk behavior in a direct shear test. Particle interaction 453 

in the normal direction was simulated using a linear viscoelastic model, whereas the tangential 454 

direction was expanded to include a frictional element. Variability in the interparticle friction 455 

was found to influence markedly the stress-strain characteristic during the initiation of motion, 456 

whereas the strength of the assembly (or steady state value of stress) remained constant. 457 

Grain Coproducts 458 

Grain undergoes different processing methods during conversion into products and 459 

coproducts. The particle characteristics of products derived from grain are generally controlled; 460 

but particle characteristics are not uniform because the bulk contains particles with different 461 

sizes, shapes, and chemical compositions. The challenge in modeling coproduct is in shape 462 

representation using spheres. For example, distillers dried grains with solubles (DDGS), a 463 

coproduct from corn-to-ethanol processing, contains a mixture of fiber, starch, and protein 464 

components that vary in size and shape. Clementson (2010) modeled the flow and segregation of 465 

DDGS using single sphere particle model in EDEM with the Hertz-Mindlin (no-slip) contact 466 

model. The geometric mean diameter of actual DDGS ranged from 0.87 to 1.01 mm, but the 467 

researchers used bigger particles because small particles required longer simulation time in 468 

DEM; the log-normal bimodal distribution of these particles was kept similar to the actual 469 

particle size distribution. The author found that the magnitude of changes in discharge rates in 470 

the experiments were not the same as in the simulation, and the numerical simulation predicted 471 
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the same flow patterns as observed during funnel flow but not mass flow experiments. DEM has 472 

not been widely used to predict the bulk behavior of coproducts from the grain-based food and 473 

feed industry, partially because of the computational load from the higher number of spheres 474 

required to obtain accurate shape representation.  475 

Modeling Grain Handling Operations 476 

Bulk behavior of cereal grains, oilseeds, and their products vary based on the quantity, 477 

environmental factors, method of processing, and handling equipment used. The grain handling 478 

and processing operations that have been modeled using DEM were subdivided into processes 479 

dealing with free-flowing grain, such as filling and emptying of silos, and confined grain, such as 480 

storage and compression. 481 

GRAN POSTHARVEST OPERATIONS MODELED OR STUDIED USING DEM 482 

 Free-flowing grain 483 

o Filling and discharge of silo 484 

o Bulk behavior during grain conveying 485 

o Grain cleaning and separation 486 

o Impacting grain kernels 487 

 Confined grain 488 

o Silo probing 489 

o Compression 490 

o Shear testing 491 

 Grain drying 492 

 Table 2 summarizes the model and references associated with these postharvest processing.  493 
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MODELING FREE-FLOWING GRAIN 494 

Filling and Discharge of Silo 495 

Due to the complexity of physical and chemical parameters, hopper flow of grain and grain 496 

products usually encounters challenges such as ratholing, arching, caking, etc. Use of discharge 497 

aids in grain-based food and feed industries is a common practice to achieve uniform flow of 498 

material from hoppers and silos. DEM is increasingly applied to simulate bulk flow 499 

characteristics of grain and products for better bin design and process optimization.  500 

Different grain filling approaches have been used to simulate grain storage systems. 501 

Progressive filling is the more common method used in DEM simulation where particles are 502 

generated continuously, whereas in en masse filling, all particles are generated simultaneously, 503 

thus reducing computation time. In en masse filling, particles are allowed to fall under gravity 504 

until a static equilibrium is reached. Gonzalez-Montellano et al. (2012a) used the en masse filling 505 

approach for glass beads and corn kernels filling in a silo. Particles were deposited rapidly on top 506 

of each other, leading to many particles being trapped by the others without having dissipated 507 

their initial energy. During emptying, the movement of the material diluted these effects, and the 508 

observed pressures were similar to the expected pattern (Gonzalez-Montellano et al. 2012a). If 509 

the en masse method is used in simulations, prediction errors should be taken into account when 510 

studying pressures during filling of silos. 511 

Gonzalez-Montellano et al. (2012b) improved their simulations by using a modified particle 512 

model for corn (Gonzalez-Montellano et al. 2011) and the progressive method of filling a silo 513 

(Gonzalez-Montellano et al. 2012a) from their previous work. Results highlighted a difference in 514 

the vertical distributions of pressure between corn and glass beads. During both filling and 515 

discharge, the peak pressure at the silo-hopper transition was much higher for corn than for glass 516 

beads. Pressure values also fluctuated less for corn. For horizontal pressure distribution during 517 
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filling and at any time during the discharge of corn, maximum horizontal pressure was in the 518 

central region of the silo walls then slowly decreased toward the corners. This result was the 519 

same for glass beads, except that the distributions were less stable over time. In both models, the 520 

velocity profile at the center was greater than at the walls. For corn, the distribution of the bulk 521 

density in the vertical section was not as random as with glass beads. These researchers 522 

demonstrated DEM’s usefulness in studying the behavior of granular materials in silos and 523 

hoppers and the degree of detailed information that could be obtained from simulations. 524 

Chung and Ooi (2008b) simulated silo discharge by emptying corn through a circular orifice 525 

of a flat-bottom silo unloading onto a flat surface. Although the purpose of the study was to 526 

examine the influence of gravity on a granular solid, the terrestrial aspects of experiments closely 527 

simulated earth-bound processes using DEM. DEM simulation showed that the mass flow rate 528 

decreases as gravity decreases, with a corresponding increase in discharge time. The simulation 529 

also correlated with Beverloo’s relationship that the mass flow rate is proportional to the square 530 

root of the gravitational force. In addition to corn discharge parameters, DEM also predicted 531 

reasonably the angle of repose of corn discharged from the silo (Chung and Ooi 2008b).  532 

Mass flow rate and size of hopper outlet opening influence discharge of granular materials. 533 

Coetzee and Els (2009a) studied the discharge of corn kernels from a glass rectangular silo in 534 

two dimensions using PFC2D. Two silo openings were used in this study. The authors found that 535 

the corn particles modeled as clumps composed of two discs could reasonably predict the flow 536 

patterns observed during experiments. The results indicated that a 2-D clump particle model had 537 

higher accuracy in predicting the flow of corn through a larger silo opening where the flow was 538 

less restricted. Accuracy of DEM simulations depend on the particle models and the particle 539 
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parameter values used in the simulations. In this study, the two disc particle model could have 540 

influenced the prediction accuracy.  541 

Monitoring the density of material that flows from hoppers or bins is one method used to 542 

evaluate segregation. Clementson (2010) used DEM to predict the bulk density of DDGS 543 

particles during funnel flow and mass flow from hoppers. The hopper half angles used were 33 544 

degrees for the mass flow and 65 degrees for funnel flow. DEM predicted a funnel flow for 545 

DDGS that was observed during experiments. The results reported by Clementson (2010) 546 

supported the hypothesis that the heterogeneity of DDGS does not facilitate true mass flow, 547 

irrespective of the hopper design. 548 

DEM can be used to predict bulk density after filling a silo in addition to flow pattern and 549 

discharge rate. González-Montellano et al. (2011) used corn kernels and glass beads in EDEM 550 

simulations to model silo filling and discharge. For corn, three successive DEM models were 551 

tested to identify the coefficients of interparticle and particle-wall friction. High interparticle 552 

friction led to low bulk densities after the silo filling, which agreed with Boac et al.’s (2010) 553 

results in simulated bulk density tests. High interparticle friction also increased the discharge 554 

time. For glass beads, the velocity profile was qualitatively similar to corn but showed a more 555 

fluctuating velocity profile. This result may be explained by the development of crystalline 556 

packing configurations when single sphere particles were used (Chung and Ooi 2008a; 557 

Gonzalez-Montellano et al. 2011). For discharge rates, results for the glass beads showed wider 558 

fluctuation than those for corn kernels, which was a consequence of the relatively larger ratio 559 

between particle size and silo opening used for glass beads (0.24) than for corn (0.17). 560 

An axi-symmetric multi-sphere approach is a recent development that could be used to 561 

develop particle models for irregularly shaped cereal grains. Markauskas and Kačianauskas 562 
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(2011) used this approach to simulate the filling and discharge of rice from a small-plane wedge-563 

shaped hopper with a rectangular orifice. The authors simulated the angle of repose of the pile of 564 

rice after its discharge from the hopper and modeled friction effects on the flow of rice through 565 

an orifice. To model the friction effects, two rice particle models, with and without rolling 566 

friction, were used. The researchers found that rolling friction must be taken into account to 567 

avoid artificial local rotation of particles when using axi-symmetric multi-sphere particle models 568 

to represent elongated, irregularly shaped particles. Numerical results provided quantitative 569 

evidence of increased rolling friction owing to geometric deviations of the particle shape from 570 

the axi-symmetric geometry. Simulations with zero rolling friction in the model resulted in a 571 

lower angle of repose and discharge time compared with experimental values. The authors also 572 

investigated the rotational energy of particles inside the hopper using both models (Markauskas 573 

and Kačianauskas 2011). The rolling friction practically suppressed local spin, whereas the 574 

perpendicular rotation occurred because of the collective particle arrangement. The authors 575 

showed the effects of rolling friction to rotational behavior of the particles and that neglecting 576 

the rolling friction led to increased capability of particles to rotate by falling on the pile. 577 

The effect of moisture content on the mass flow rate of rapeseed from a silo was modeled by 578 

Parafiniuk et al. (2013), who verified the applicability of the elastoplastic model for dry seeds 579 

and the viscoelastic model for wet seeds adapted from Wojtkowski et al. (2010) in DEM 580 

simulations. Simulation results revealed that the proposed contact models reproduced the 581 

experimental results for slower rate of particle flow. At higher flow rates (or larger openings), 582 

however, the dissipation of energy led to higher noise in the force simulated on the silo bottom 583 

than indicated by experimental results. This discrepancy was higher in simulations where the 584 

elastoplastic contact model (for dry seeds) was used. In DEM simulations, mass flow rates of dry 585 
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and wet seeds did not differ if the mass flow rates were calculated as a sum of masses of particles 586 

falling into the receiving container per time unit, but differences in the mass flow rates of dry and 587 

wet rapeseeds were observed if calculated using the sum of vertical forces exerted by particles on 588 

walls and floor of receiving container. The authors did not include cohesion parameters in 589 

particle models, which resulted in the differences between predictions and experimental results.   590 

The major concern when using DEM to study bin pressures is that it assumes rigid silo walls 591 

in the simulations (Gonzalez-Montellano et al. 2012b). This results in overprediction of the 592 

horizontal distribution of normal pressure at the central positions on the walls. Gonzalez-593 

Montellano et al. (2012b), after continued efforts to simulate grain bins using DEM, 594 

recommended that hybrid models combine DEM and the finite element method (FEM) to 595 

compensate for DEM’s limitations. DEM allows a more accurate simulation of the dynamic 596 

behavior of the granular material itself, and FEM will allow flexible walls to be included, thus 597 

yielding a complete model.  598 

Bulk Behavior During Grain Conveying 599 

Shear zone theory was applied by Coetzee and Els (2009a) to simulate bucket filling using 600 

DEM. The authors used a rig geometry that resembled a dragline bucket, which was pulled in the 601 

drag direction by a set of ropes but with freedom of motion in all other directions, based on the 602 

Shear Zone Theory developed by Rowlands (1991). DEM can accurately predict the filling 603 

process of a bucket or scoop, the force acting on the bucket, and the fill rate. During the 604 

experiments, the flow regimes as predicted by the Shear Zone Theory (Rowlands, 1991) were 605 

also observed. DEM predicted these different flow zones (Coetzee 2009a, 2009c), and the 606 

authors recommended that knowledge of the flow zones can be used to optimize buckets in terms 607 

of fill rate, bucket force, and bucket wear. 608 
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Grain commingling is an unintentional introduction of a different grain type during typical 609 

handling operations that directly reduces the level of purity in grain that enters an elevator 610 

facility. Three approaches address commingling during grain handling: (1) ignore it, (2) identity-611 

preserve (IP) the grain in dedicated containers, and (3) segregate or handle the IP grain in non-612 

dedicated facilities. Due to limited scientific data on grain commingling in normal handling 613 

operations, it is not possible to predict the level of purity that could be achieved with the third, 614 

less expensive approach (Boac 2010). Boac et al. (2012) simulated grain commingling in a pilot-615 

scale grain elevator boot using DEM models and evaluated the tradeoffs of computational speed 616 

versus accuracy for 3D and quasi-2D boot models. Experimental data from the pilot-scale bucket 617 

elevator showed that the average cumulative commingling was comparable to the values for full-618 

size bucket elevator legs. To avoid overprediction, the 3D model was refined to account for the 619 

sudden surge of particles during entry and corrected for the effective dynamic gap between the 620 

bucket cups and the boot wall. Comparison of predicted average commingling of five quasi-2D 621 

boot models with reduced control volumes showed that the quasi-2D (5.6 times the particle 622 

diameter) model provided the best option in terms of computation time; it reduced computation 623 

time by 72% to 74% compared with the 3-D model. Results of this study are being applied to 624 

study the commingling of infested and sound kernels (wheat and corn) in bucket elevator boot 625 

systems. 626 

Grain Cleaning and Separation 627 

The macroscopic behavior of paddy and brown rice during shaking separation was modeled 628 

by Sakaguchi et al. (2001) on an oscillating inclined separation plate using a 2-D DEM model. 629 

The grain kernels were represented as circular elements using the model developed by Sakaguchi 630 

et al. (1994). In the DEM simulation, the indents on the separation plate were modeled using 631 
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virtual walls. Particle exit from an indent was modeled as removal of a virtual wall when the 632 

particle-wall contact exceeded a threshold value. There was good agreement between the results 633 

of the simulation and the experiment in terms of the macroscopic separation behavior of the rice. 634 

The experimental observations such as segregation caused by upward movement of paddy rice 635 

relative to brown rice and the shearing of the grain bed to accumulate paddy rice near the lower 636 

end of the shaker box were also predicted by the DEM simulation. The time required to achieve 637 

maximum separation of brown and paddy rice was the same in both experiment and simulation. 638 

In the simulation, the circular particles moved closer to the lower end of the shaker than in the 639 

experiment, which was due to the ease of rotation of the circular elements. However, the 640 

simulation showed the same wave-like behavior of the grain assembly as in the experiment.  The 641 

authors concluded that a simple DEM model using 2-D circular particles and virtual walls was 642 

effective and can be done with reasonable computation times. The model will allow further 643 

investigation of the separation mechanism and exploration of the effects of different physical and 644 

process parameters on the efficiency of grain separation in shaking separators. 645 

Separation mechanism of grain kernels on sieves is a dynamic process that requires 646 

consideration of various particle parameters such as size, shape, density, loading rate, and other 647 

factors. Li et al. (2002) used a 2-D transient model to calculate the motion of discrete soybean 648 

and mustard seed particles on sieves using DEM. The authors studied the influence of particle 649 

bed depth on undersize particle segregation in an inclined vibrating screen. In the DEM 650 

simulation, the sieving screen was modeled to be made of vibrating circular particles (smaller 651 

than the kernels) with properties of the sieving wires. The numerical simulation indicated that at 652 

a particle bed depth of about 5 times the size of the large particles and 12 times the size of the 653 

screen apertures, most undersize particles segregated to the screen surface. The undersize 654 
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particles also passed through the apertures within about 40% of the sieve length at the front 655 

section of the screen. For this particle bed depth, the screen length was long enough to ensure the 656 

highest screening efficiency, 100% separation, which means no undersize particle passed over 657 

and joined the overflow of large particles at the end of the screen. The authors concluded that for 658 

a screening system involving granular materials, the critical feeding rate needed to achieve the 659 

most efficient screening process can be determined using DEM simulation. Li et al. (2003) 660 

extended this study to mathematically investigate the particulate motion of polyethylene pellets 661 

on an inclined screening chute using DEM. 662 

The coupled DEM-CFD approach has been used recently to predict the solid interaction with 663 

fluids. Li et al. (2012) used a 3-D coupled DEM-CFD model to study the effects of inlet airflow 664 

velocity on the kernels and short straw’s longitudinal velocity and vertical height and the 665 

cleaning loss in an air-and-screen cleaning device. The rice grain represented by a spheroid and 666 

the short straw by a cylinder were generated in EDEM and allowed to fall on an inclined 667 

vibrating screen. The CFD portion of the coupling model used the Eulerian-Eulerian model in 668 

FLUENT (ANSYS Inc., Canonsburg, PA). The authors used Hertz-Mindlin contact model to 669 

simulate particle-particle and particle-screen (wall) collisions. Through the coupled DEM-CFD 670 

approach, the authors found that the length of the screen can be shortened if impurity content is 671 

lower. The coupled DEM-CFD modeling approach also could be used to improve the design of 672 

combine harvesters because the model accurately predicts the particle movement in air.    673 

Impacting of Grain 674 

The impact of grain as it falls on a flat surface influences breakage characteristics, friction, 675 

and coefficient of restitution. Wojtkowski et al. (2010) proposed that different models have to be 676 

used to predict the impact of grain kernels depending on moisture content. The researchers also 677 
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indicated that to determine a correct contact model, the ratio of the fall time to the rise time (TR) 678 

for the contact force-time characteristics should be considered. For TR>1, the authors 679 

recommended the viscoelastic model, whereas the elastoplastic model should be applied for 680 

TR<1.  681 

Another application of DEM in investigating the impact of grain kernel on a surface was 682 

reported by Jiang and Qiu (2011). The authors studied the effects of particle mass and the normal 683 

contact force between a rice particle and the impact board of an inclined elevator during flow of 684 

rice. Rice kernels were represented as ellipsoids composed of seven spheres in EDEM, and 685 

celluloid was used as the material for the impact board to study the effect of elevator belt speeds 686 

of 0.5 m/s to 1.0 m/s on bulk flow. The authors found that the normal contact force between the 687 

flowing rice particles and the impact board increased as the belt speed increased, but belt speed 688 

had no effect on tangential contact force. There was a good linear relationship between the rice 689 

particle mass and the normal contact force when the rice particle mass was from 0.18 to 0.54 kg. 690 

The authors also concluded that the retention stage (i.e., from the time when the normal contact 691 

force is less than 30% of the maximum normal force to when it became zero) during impact was 692 

not beneficial to grain mass flow measurement. Qiu et al. (2012) extended this study to include 693 

the elevator belt speed of 1.5 m/s and the effect of sliding during impact.  694 

MODELING CONFINED GRAIN 695 

Silo Probing  696 

Managing grain quality in a grain handling facility involves sampling the grain from the 697 

incoming truck and testing it for quality. To assess quality, incoming bulk grain in trucks or rail 698 

cars are probed using mechanical (vacuum) probes. Chung and Ooi (2006), using DEM, 699 

simulated the penetration of probes in a dense granular medium to evaluate the resistance of 700 
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granular bulk to penetration of a moving object and the dynamic force transmission to a contact 701 

surface. The setup the authors used was comparable to a confined compression arrangement with 702 

a probe to penetrate the bulk granular materials. Glass beads and corn kernels were used in the 703 

simulations for comparison purposes. The authors found that the measured and predicted forces 704 

fluctuated during penetration into each material. The average trend was repeatable, with corn 705 

kernels giving a larger resistance to penetration than glass beads.  706 

Compression  707 

Oil expression by compression is a major processing operation used by grain-based oil 708 

industries. Compression of cereal grains is a complicated process to model because it involves 709 

changes in density, inner porosity/voids due to oil removal, size, and shape. By incorporating the 710 

actual physical changes in the DEM model, Raji and Favier (2004a) developed a numerical 711 

model to predict compression behavior of rapeseeds. The model was based on the actual physical 712 

changes during loading of a low-modulus viscoelastic spherical particles and the resulting 713 

change in shape that are often neglected during DEM model development. The authors avoided 714 

errors in estimating the porosity by compressing beds of rapeseeds before the seedbeds reached 715 

the oil point so the void spaces were not filled with oil. The oil point is the state at which the 716 

bulk density of the seedbed approaches the seed kernel density. When the threshold pressure is 717 

reached, the oil emerges from a seed kernel during mechanical seed-oil expression. DEM 718 

predicted the mechanical compression of oilseeds within a standard error of estimate of 0.20, and 719 

the predicted stress-strain values were not significantly different from the experimental values. 720 

Extending the same modeling approach to canola, soybean, and palm-kernel, Raji and Favier 721 

(2004b) validated their approach of using low-modulus viscoelastic spherical particles for DEM 722 

simulations. Raji and Favier (2004a, b) concluded that DEM is a useful tool to study the behavior 723 
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of deformable soft particulates and the outputs from modeling could be used to design and 724 

modify oil expression process machinery. 725 

The effects of materials’ different shapes during compression were investigated by Chung and 726 

Ooi (2006, 2008a), who simulated the confined compression of spherical (glass beads) and non-727 

spherical (corn kernels) particles. The confined compression test simulation was designed to 728 

investigate the mechanical response of a granular material under confined compression and the 729 

load transfer to the containing walls. The applied vertical load, vertical displacement, vertical 730 

force transmitted to the bottom platen, and force transmitted to the walls were measured, and the 731 

material properties for silo design, the lateral pressure ratio, and the bulk wall friction were also 732 

evaluated. The findings from these studies indicated that accurate representation of particle shape 733 

may not be necessary for prediction of kernels under compression because capturing the key 734 

linear dimensions of a particle may be adequate. DEM results indicated that glass spheres, with 735 

their tendency to spin more than non-spherical particles, were more sensitive to initial packing 736 

arrangement as influenced by the particle generation method.  Irregular particles such as corn 737 

kernels were not sensitive to particle spacing as affected by the particle generation method. 738 

Interparticle friction affected the loading for the containing walls for corn kernels but not for 739 

glass beads; this result was attributed to the significant difference in particle stiffness between 740 

two particles. Reducing the contact friction allowed more contacts to reach limiting friction for 741 

corn, thus resulting in a larger lateral pressure ratio and a smaller load on the bottom platen than 742 

for glass beads. 743 

Moisture content is a principal factor that influences the compression, size reduction, and 744 

handling behavior of bulk cereal grains. Understanding the effects of moisture on compression 745 

through modeling was initiated by Wiącek and Molenda (2011). The authors used EDEM 746 
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software with rapeseeds represented as single spheres with 1.9 mm diameter and used the 747 

physical properties obtained from the literature (Wiącek, 2008). The load responses of rapeseed 748 

subjected to uniaxial confined compression quantified at moisture contents of 7.5%, 9%, and 749 

12% and were compared with experimental data. The authors observed that the DEM predicted a 750 

softer response for the spherical assembly of rapeseeds compared with the experimental 751 

observations.  Although the model responses deviated from the actual values, this study 752 

illustrated the possibility of using DEM to predict the mechanical behavior of granular materials 753 

of biological origin. 754 

Interparticle friction and particle stiffness also influenced the bulk response of grain kernels in 755 

DEM simulations under confined compression. Chung and Ooi (2008b) found that reduction of 756 

particle stiffness by a few orders can provide a huge computational advantage, with secondary 757 

effects on the load transmission in a quasi-static assembly. The researchers also found that 758 

interparticle friction has an effect on the loading of containing walls in simulating confined 759 

compression of corn kernels but not of glass beads. For corn kernels, reduced contact friction 760 

allowed more contacts to reach limiting friction, resulting in a larger lateral pressure ratio and a 761 

smaller load on the bottom of the confined structure.  762 

Modeling the compression of grain has been used to calibrate material properties for DEM 763 

simulations (Coetzee and Els 2009a, 2009b) and to determine parameter values of cohesionless 764 

corn kernels. Coetzee and Els (2009a) calibrated particle stiffness using confined compression 765 

tests (also called oedometer tests) by applying stress to corn kernels along the vertical axis at low 766 

compression rates (± 2 mm min
-1

). Numerical simulation of 2-D corn kernels indicated that the 767 

internal friction angle depended on particle stiffness and the particle friction coefficient. Results 768 

of the confined compression test showed that the simulated macro or bulk stiffness is a linear 769 
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function of the particle stiffness; thus, particle stiffness can be determined through the confined 770 

compression test. This study showed that DEM simulation could enable determination of particle 771 

properties to enhance understanding of the bulk behavior of cereal grains. 772 

Shear Testing  773 

DEM was used to examine the influence of the friction coefficient between two sliding 774 

particles on the shear behavior of an assembly of rapeseeds in 2-D systems (Molenda et al. 775 

2011). The authors first measured the interparticle friction coefficients for metal plates, pea, 776 

wheat, and rapeseeds. Then they simulated the direct shear test using 2-D DEM models. The 777 

authors found that the degree of variation of the coefficient of interparticle friction did not 778 

influence the final value of shear strength at steady state flow; however, the level of standard 779 

deviation of the coefficient of interparticle friction markedly influenced the shear path (or shear-780 

strain characteristics) at the initiation of motion.  781 

The effects of moisture content on shear testing were simulated by Sarnavi et al. (2013). They 782 

modeled the strength properties of stored wheat kernels at different moisture contents using the 783 

Jenike method of direct shear tests (ASTM 2006). The research group implemented linear and 784 

nonlinear models. Three types of particle models were used to create kernels by a multi-sphere 785 

approach: (1) spherical, (2) 4-spheres, and (3) 8-spheres. The simulation of bulk behavior was 786 

strongly affected by the interparticle interactions and particle shape representation in modeling. 787 

Linear models are more capable of representing the variation in strength properties with moisture 788 

content than nonlinear models. In general, both linear and nonlinear models have an equal 789 

chance of correctly predicting strength properties of the wheat assembly. Spherical grain models 790 

best simulated wheat kernels in bulk properties tests. Both the values of internal angle of friction 791 

and apparent cohesion have about a 70% chance of prediction by the DEM model.  792 
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GRAIN DRYING 793 

Although grain is considered free-flowing during grain drying, the dense arrangement of the 794 

particles inside the grain dryer make them behave like confined particles. Iroba et al. (2011a, b) 795 

examined the physical phenomena that control particle flow in mixed-flow dryers (MFDs). They 796 

investigated the residence time distribution (RTD), particle vertical velocity profiles, and particle 797 

trajectories using PFC2D. Simulation results were validated with experiments using a semi-798 

technical dryer test station with a transparent Plexiglas front wall. Experiments were conducted 799 

with moist wheat as a bed material, with an average moisture content of 18% wet basis (w.b.) 800 

and a bulk density of 783 kg m
-3

. Colored tracer particles were employed in the residence time 801 

analysis in the mixed-flow dryer (MFD) to detect particle flow inhomogeneity and design deficit. 802 

Simulation results showed that the DEM model adequately predicted particle flow during drying. 803 

Through DEM simulation, it was understood that two flow regimes exist in MFDs, the near-wall 804 

region and the central region. Particles at the near-wall region had lower particle velocity, 805 

whereas the central region had high particle velocity. Wall friction dominated the particle flow 806 

near-wall region and had a large effect on the bulk particle movement, whereas particle-particle 807 

forces were dominant in the central region. Kernels passing through the MFD have different 808 

vertical velocities, thus resulting in different residence times. The presence of two different flow 809 

regimes will affect overall dryer capacity and drying efficiency. Kernels flowing at lower 810 

velocities may be over-dried, while those moving at high velocities may be under-dried. The 811 

authors concluded that the present design of MFDs did not provide adequate cross-mixing, with 812 

the effect of the half air ducts dominant on the sidewalls. Consequently, the current design may 813 

lead to broad moisture content distribution at the outlet (inhomogeneous drying) with the risk of 814 

product quality deterioration during subsequent storage.  This study underlined the importance of 815 
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updated MFD design, such as the need to adjust the size and positions of the half air ducts. 816 

Although the 2-D DEM model predicted the residence time distributions and the flow patterns, 817 

improvements in the approach are needed to map velocity profiles. To depict the grain drying 818 

process accurately, numerical simulation should also account for the shrinkage of kernels during 819 

drying because this shrinkage alters the particle properties.   820 

To improve the prediction of drying process using DEM, Mellman et al. (2011) modeled the 821 

effects of design elements and air duct arrangements on MFDs.  The authors articulated the same 822 

findings as Iroba et al. (2011a, b) regarding the RTD in mixed-flow grain dryers. Simulation and 823 

experimental results showed that the DEM can adequately predict the main features of particle 824 

flow.  The half air ducts at the sidewalls obstructed the free flow of grain, resulting in the long 825 

tail of the RTD. The studies indicated that the diagonal duct arrangement showed a more even 826 

grain moisture and temperature distribution than the horizontal duct arrangement. The airflow 827 

distribution in the grain bed in the diagonal arrangement was considered degraded, however, 828 

because of the dead zones, which were not flushed by the drying air, in the MFD. The authors 829 

concluded that grain bulk and particle moisture content as well as grain temperature distributions 830 

fluctuate strongly over the cross-section of the dryer, resulting in inhomogeneous drying. The 831 

analysis displayed deficits in the present design of MFDs, namely the arrangement and allocation 832 

of the air ducts. 833 

Due to variations in grain properties, dryer design, and drying parameters, optimizing dryer 834 

design and understanding particle movement inside the dryer is of continued interest researchers 835 

as well as industry. The influence of dryer walls and air ducts on particle velocity distribution in 836 

an MFD was investigated by Keppler et al. (2012), who modeled the effects of particle-wall 837 

friction, air duct apex angle, and wall angle on the vertical direction of particle velocity 838 
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distribution. The effects of different construction modifications for more even vertical grain 839 

particle velocity distribution were analyzed using DEM. The authors found from experiments 840 

and simulations that the sidewalls have a strong impact on grain flow, causing segregation; these 841 

were similar to the findings by Iroba et al. (2011a). Both studies indicated that segregation 842 

caused big differences in the residence time of single grain portions and caused uneven drying.  843 

Weigler et al. (2012) extended the work of Iroba et al. (2011a, b) and Mellman et al. (2011) by 844 

investigating the particle and airflows in MFDs using DEM and CFD. The particle flow behavior 845 

of wheat in the traditional MFD was simulated using PFC2D. Two different particle 846 

representations of wheat, spherical and ellipsoidal, were studied and compared when simulating 847 

particle flow. A diagonal air duct arrangement led to dead zones in airflow. Airflow through the 848 

grain bed was simulated using CFD, applying the commercial software ANSYS CFX (Release 849 

14.0, ANSYS, Inc., Canonsburg, Penn.). The airflow domain in the dryer apparatus was 850 

discretized by generating a finite volume grid employing the software ANSYS ICEM (ANSYS, 851 

Inc., Canonsburg, Penn.). The authors found that over- and under-drying occurred in traditionally 852 

designed mixed-flow dryers because of unfavorable air duct arrangements; core flow of particles 853 

due to the wall friction effect and the half air ducts fixed at the sidewalls, characterized by 854 

retarded flow at the dryer walls and a fast flow region in the center; and dead zones in airflow, 855 

resulting in uneven airflow, grain flow, and drying conditions over the cross-section. They 856 

recommended a new dryer design with the airflow distribution adjusted to the particle flow 857 

distribution. In regions with higher particle velocities, higher air velocities should be provided. 858 

The sidewalls of the dryer should be inclined, and the half air ducts should be removed. 859 

Researchers also added that future design development would require a tool that couples the 860 
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airflow characteristics with the particle flow characteristics, including the heat and mass transfer, 861 

such as coupled CFD and DEM simulation.  862 

Weigler et al. (2013) used the model they developed for MFDs (Weigler et al. 2012) to study 863 

the flow of grain in the process of designing an efficient MFD using PFC2D. The particle flow 864 

was studied by tracing the differently colored kernels through the transparent sidewall of the 865 

dryer. Based on the observations, the authors developed a new MFD geometry that results in 866 

uniform drying of kernels. The greatest advantage of using DEM modeling techniques in grain 867 

drying is the ability to study the grain velocity distribution within the dryer as affected by 868 

constructional modifications. This will be of great interest to industry because understanding 869 

grain behavior within the dryer allows analysis of drying without requiring an expensive 870 

prototype. 871 

A Case Study 872 

In this case study, the commingling of two types of grain in a bucket-type grain elevator boot 873 

system is considered based on Boac et al. (2012). Previous research in commercial elevator 874 

equipment (Ingles, et al., 2003; 2006; Ingles, 2005) showed large variations between and within 875 

facilities for commingling of grain lots, which can greatly increase the number of experiments 876 

necessary to make widely-applicable inferences. However, DEM was used in this case study to 877 

model the commingling in a grain elevator boot system and avoid the time and expense of many 878 

more experiments.  879 

A 3-D computer-aided design (CAD) drawing (DS SolidWorks Corp., Concord, Mass.) of the 880 

pilot-scale bucket elevator leg and boot geometry (model B3, Universal Industries, Inc., Cedar 881 

Falls, Iowa) was imported in EDEM 2.3. Grain commingling in the pilot-scale boot was 882 

simulated using 3-D and quasi-2-D DEM models.  Simulations were performed at 20% Rayleigh 883 
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time step. The Hertz-Mindlin no-slip model (DEM Solutions, 2013) was implemented as the 884 

contact model for all simulations. 885 

Two types of soybeans with different intrinsic properties were colored red and yellow in the 886 

simulation to illustrate their difference. The particle model developed by Boac et al. (2010) for 887 

soybeans was used. Red soybeans were allowed to flow inside the grain elevator boot geometry. 888 

The grain elevator leg (composed of bucket cups) was allowed to run for 15 s of simulation time, 889 

until the red soybeans stabilized as the residual grain at the bottom of the boot. With red 890 

soybeans as the residual grain, yellow soybeans were generated in the simulation and allowed to 891 

accumulate in the left-hand side (LHS) hopper for 15 s before opening the slide gate. Yellow 892 

soybeans were then continuously run in the boot for approximately 8 min in simulation time 893 

(Figure 3a).  894 

The same simulation procedure was followed for a quasi-2-D DEM model using a periodic 895 

boundary and domain width equivalent to 5.6 times the particle diameter (Figure 3b). The total 896 

particle mass of red and yellow soybeans was determined from each bucket cup in all 897 

simulations. Predicted average commingling data were computed, plotted at each time interval, 898 

and compared with experimental data. Figure 4 shows that the predicted average commingling 899 

from 3-D and quasi-2-D DEM models of the boot closely matched the experimental data, 900 

especially after the flow has stabilized after 100 s. The quasi-2-D (5.6d) model reduced 901 

simulation run time by 72% to 74% compared to the 3-D model, with both models being run on 902 

the same workstation (Table 4). This case study showed that grain commingling in a bucket 903 

elevator boot system can be simulated with both 3-D and quasi-2-D DEM models, giving results 904 

that agreed with experimental data.   905 
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Application of DEM in Other Food Engineering Operations 906 

Postharvest operations in any food engineering applications are complex and modeling has 907 

proved to be effective for prediction, process calculation and process design purposes. Ho et al. 908 

(2013) suggested that parallel multiscale modeling, with a complete understanding of the 909 

structural aspect of food material, will be the best approach for analyzing and designing food 910 

processing systems.  911 

In specific, fresh horticultural crop produce are difficult to model due to their non-uniformity 912 

in size and shape and for their higher vulnerability to changes in surface and textural 913 

characteristics during handling and transport (Ambaw et al. 2013). Delele et al. (2010) developed 914 

a combined DEM and computational fluid dynamics (CFD) model to analyze the airflow during 915 

cooling through stacks of boxes with horticultural produce. DEM was used to generate random 916 

stacking of spheres in the box. Cooling was simulated at different heights of the stack with 917 

different diameter spheres. The results indicate that DEM helped identify that random filling has 918 

less influence on the air flow resistance than other factors such as confinement ratio, size, 919 

porosity, and box vent hole ratio. Through this coupled DEM-CFD approach, the flow profile in 920 

individual pores could be analyzed that could not be done through porous media approaches. 921 

Van Zeebroeck et al. (2006 ab) applied DEM to study impact damage in apples during 922 

transport and handling. The authors used the nonlinear Kuwbara and Kono contact force model 923 

and the parameters were derived experimentally. The model findings were validated using a 924 

shaking box approach of vibrating apples in an electro-hydraulic shaker. Though the authors 925 

predicted the bruising damage with reasonable accuracy, multi-impact bruise surfaces and the 926 

bruise volume could not be predicted. For vibration damage, the Kuwabara and Kona contact 927 

model predicted the condition of apple as influenced by fruit properties and mechanical 928 
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parameters such as vibration frequency and stack height. Further, the model accurately predicted 929 

the existence of damage chains within the apple stack. 930 

Summary and Conclusions 931 

Existing literature that used DEM to simulate postharvest handling and processing, limited to 932 

grain and its coproducts, was reviewed. The soft-sphere approach of DEM was commonly used 933 

to develop these grain and food processing industry process simulations. The advantage of soft-934 

sphere models was their capability of handling multiple particle contacts, which are of 935 

importance when modeling bulk grain systems. The deformations that a grain kernel undergoes 936 

during handling and processing were used to calculate elastic, plastic, and frictional forces 937 

between particles, and the motion of particles was described by Newton’s laws of motion.  938 

Particle models varied with the type of grain. For near-spherical kernels such as soybean and 939 

rapeseed, single sphere particle models predicted particle behavior with greater accuracy.  For 940 

non-spherical kernels such as rice, wheat, and corn, particle representation using a multi-sphere 941 

approach reduced specific simulation errors, but increased simulation time and computational 942 

load because of the higher number of contact points requiring force and deformation calculation 943 

at each contact point. To avoid this excess computation time problem, most researchers have 944 

used single sphere models and had reasonable success in predictions. Rotation of the single-945 

sphere particles must be properly described, however, because these particles rotate more easily 946 

in the simulation than observed in experiments. Thus, the rolling friction coefficient is an 947 

important component when using spherical particle models to simulate non-spherical kernels.  948 

Depending on the software used, both linear and non-linear (Hertz-Mindlin) contact models have 949 

been used effectively to study grain handling and processing operations.  950 
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DEM simulations have been used in different grain processing environments, such as those 951 

dealing with free-flowing grain and with confined grain, for optimizing processes and to improve 952 

equipment design. In general, DEM has adequately simulated postharvest processing of grain 953 

and grain coproducts. In some processes, such as the analysis of discharge from a silo and design 954 

of grain dryers, coupling DEM with computational fluid dynamics is recommended for better 955 

predictions. Although DEM has been increasingly used to study grain kernel processes, it has not 956 

been widely applied. The huge variation in particle characteristics such as size, shape, surface 957 

roughness, density, friction coefficients, composition, and other factors could be hindering the 958 

use of DEM. Computational cost also limits DEM application; specifically, most of the particles 959 

in grain-based food industries are smaller, which leads to higher computation time. Development 960 

of precision particle models could help spur adoption of this numerical modeling concept and 961 

optimize process and equipment design in the grain handling and processing industry.  962 
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