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Abstract

For the general parametric and nonparametric regression models with covariates contam-

inated with normal measurement errors, this dissertation proposes an accelerated version of

the classical simulation extrapolation algorithm to estimate the unknown parameters in the

parametric as well as the nonparametric regression functions. For the parametric regres-

sion model, the proposed algorithm successfully removes the simulation step of the classical

SIMEX algorithm by applying the conditional expectation directly to the target function

thereby generating an estimation equation either for immediate use or for extrapolating,

thus significantly reducing the computational time.

For the nonparametric regression models with covariates contaminated with normal mea-

surement errors, the regression functions are estimated by applying the conditional expecta-

tion directly to the kernel-weighted least squares of the deviations between the local linear

approximation and the observed responses, thereby successfully bypassing the simulation

step needed in the classical simulation extrapolation method, hence significantly increasing

the computational efficacy. It is noted that the proposed method also provides an exact form

of the extrapolation function, but the extrapolation estimate generally cannot be obtained by

simply setting the extrapolation variable to negative one in the fitted extrapolation function

if the bandwidth is less than the standard deviation of the measurement error.

Large sample properties of the proposed estimation procedures, including the consistency

and the asymptotic normality, are thoroughly discussed. Potential applications of the pro-

posed estimation procedures are illustrated by examples, simulation studies, as well as a real

data analysis.
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Chapter 1

Introduction

To make efficient statistical inferences in a regression analysis, it is imperative to estimate

the parameters in the regression function precisely. However, in real applications, it is often

the case that the explanatory variables cannot be observed directly. Instead, the covariates

observed are contaminated with measurement error. One might assume that measurement

error is the same as the ‘noise’ seen in the observed values (‘Y’) in a regression model.

However, measurement error is witnessed in the explanatory variables (‘X’), and therefore,

the observed quantities are not an accurate reflection of the true regressors. The source of

measurement error could be due to random errors (noise) or systematical errors (statistical

bias).

Errors-in-variables settings are common in disciplines such as biology, epidemiology, and

clinical assessments, to name a few. Various reasons can cause measurement error – the

most common being the inaccuracy introduced by instrumental apparatuses. Other causes

include bias from self-reported measures, inherent biological variability, and the exorbitant

costs of extracting exact information.

A decent example of the occurrence of measurement error is blood pressure readings of

individuals. Blood pressure has daily as well as seasonal variation, so the blood pressure

reading of an individual taken at one time would not only be different six months later but

could also be different six hours later. Therefore, any dataset that uses blood pressure as an
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independent/explanatory variable would need to account for these variations. Hence, models

fit to such datasets fall under the category of measurement error models.

Fitness trackers are a great example of where measurement errors are rife. Steps measured

using trackers of different brands usually yield different results. Furthermore, trackers from

the same brand would also result in mismatched observations demonstrating the variability

in the number of steps taken by an individual due to measurement error.

Another example is that of the measurement of soil nitrogen levels. Now soil nitrogen

varies not just by location but also by depth. So, for the same plot of land, not only would

the soil nitrogen fluctuate at different sites within the same field but would also be distinct

at various depths for the exact location. Furthermore, separate labs would yield distinct

levels of nitrogen for identical samples of soil and lab technicians would add to the source

of variability. Again, any model that uses nitrogen levels in soil as an explanatory variable

would then need to account for the errors in variables.

Dietary assessment using food frequency questionnaires is another example where mea-

surement error is rampant. For instance, using an FFQ to measure daily caloric intake results

in the logged calories not being an exact measure of the actual calories consumed. This could

be because, in general most people do not keep track of what they consume daily, and diets

generally change on a monthly if not weekly basis. Also, some people are embarrassed about

the amount of snacking they do, so they tend to underreport the calories they consume.

This leads to FFQs being laced with measurement error, which results in quantities such

as Vitamin D intake or protein consumption not being measured precisely. Hereafter, any

models based on dietary assessments using FFQs must adjust for errors-in-variables.

In standard regression models, the only errors accounted for are those in the dependent

variables, a.k.a responses. Regressors are understood to have been quantified precisely; that

is, they are assumed to be the true reflection of the variable of interest. Therefore, estima-

tions based on the conventional assumptions beget inconsistent parameter estimates. In the

case of simple linear regression, classical measurement error results in the coefficient being

under-estimated (this is also known as ‘attenuation bias’).

The reason why measurement error is dangerous is that not only does it cause biased
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parameter estimation but also leads to loss of power, thereby mitigating the chances of

detecting clinically meaningful relationships between variables. In the case of nonlinear

models, features of the data are masked; hence graphical representations of the data are not

a true reflection of how the response variable is distributed with respect to the explanatory

variable. This was referred to as the ‘triple whammy’ by Carroll et al. (2006). Besides causing

bias in parameter estimates and loss of power, measurement errors also lead to inaccurate

coverage of confidence intervals.

The classical error framework is the simplest of the errors-in-variables models. In the

measurement error context, we denoteX to be the unobserved, true explanatory variable and

Z to be the observed variable. In the classical error model Z is related to X by Z = X +U ,

where U is a mean zero random variable independent of X and variance equal to σ2
u. The

classical measurement error model is additive and unbiased with E[Z|X] = X.

Another type of error-in-variable is the Berkson error, which relates X with Z by X =

Z + U , where U is again a random variable independent of Z with a mean of zero and

variance equal to σ2
u. In the Berkson error model, Z is unbiased for X since E[X|Z] = Z.

Some frequently used procedures in measurement error modeling include Regression Cali-

bration (denoted RC for short) and Deconvolution density estimation. Because of the ease of

its applicability in current software, RC is most frequently used when adjusting for measure-

ment error in covariates. The idea behind RC is the estimation of X (the unobserved, true

variable) on Z (the observed, error-contaminated value). The resulting estimates are used

to replace the unknown values of X in the model, and standard analysis is then performed.

When using RC, some assumptions need to be met to achieve consistent or approximately

consistent estimators of the parameter of interest - two of them being that X and Z follow a

linear relationship that is also homoscedastic. If these conditions are not satisfied, then the

resulting estimate could be misleading.

To ensure the identifiability of parameters, some additional information is needed. This

could be, for example, more data that is beyond the original study sample. For instance,

a subgroup of subjects from the original study can be used to record observations from X.

This is called the internal validation data set. Another way would be to collect replicate
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observations of X, which would be in the same way observations on Z were recorded.

The deconvolution procedure entails estimating the density function of the unobserved

variable X. This can be done if the density function of U (the measurement error) is known

and its characteristic function is valid on the entire real line. Then the characteristic function

of X can be estimated by the ratio of the characteristic functions of Z and U, where the

characteristic function of Z is determined using the observations on Z. The deconvolution

kernel density estimate is then defined to be the inverse Fourier transform of the ratio of the

estimated characteristic function of Z with that of U.

The mathematical intricacy and complex technical details make the deconvolution pro-

cedure difficult to apprehend for applied researchers and cause it to appear redundant when

dealing with relatively uncomplicated models. In contrast, the SIMEX approach as proposed

by Cook and Stefanski (1994) provides a much easier simulation-based approach to lessen

the bias in parameter estimates of measurement error models.

In the original work of Cook and Stefanski (1994), the SIMEX method was introduced

to correct for the attenuation caused by measurement errors. The simulation method is

useful in cases when the measurement error variance is known or can be estimated in a

reasonable manner. It involves simulating errors in increments, adding them to the error-

contaminated data, and estimating parameters based on the new pseudo-data. A trend

of parameter estimates versus the increments in measurement error is established, and the

trend is extrapolated to the case of no measurement error.

Besides the ease of implementation of this method is the added advantage that a graph-

ical representation can be done whereby the effect of measurement error on the parameter

estimate can be seen. This is of great benefit for people who are not well-versed in the field

of the statistical theory of measurement error models but are otherwise knowledgeable of

standard statistical methods. Also, the fact that this method is quite general allows for its

wide applicability as well as in situations where a novel model is under consideration and

conventional methods have not been methodically examined.

The method was initially developed to fit error-contaminated data by using nonstandard

generalized linear models. The methods that existed prior to this procedure were not only
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complex and required specialized software but also entailed approximations, a fact that made

them inconvenient to authenticate intricate models.

Suppose Zi = Xi + Ui where Xi is a vector of model covariates and Ui is the measurement

error. Let Yi be the response variable with Yi depending on Xi through some unknown

parameter θ. Let (Zi, Yi), i = 1, ..., n, be the observed data and assume Ui to be multivariate

Gaussian with zero mean and covariance matrix Σu. Denote T to be the estimator of θ from

the observed data. Then θ̂true = T (Xi, Yi)i=1,...,n would be the true estimator had the true

covariates Xi been observed. Since Xi are not observed, we use the data with measurement

error to calculate the naive estimator, θ̂naive = T (Zi, Yi)i=1,...,n, treating Zi as if it contains no

measurement error. Naive estimators are usually not consistent nor unbiased for θ. SIMEX is

a popular method used to deal with any biases that result in models with errors-in-variables.

The intensity of the effect of measurement error on the parameter of interest is evaluated

through simulation, and the estimator is determined through extrapolation of the simulation

results. SIMEX is implemented as follows:

1. Simulation Step

(a) A grid of λ values is chosen such that λ = 0 < λ1 < ... < λM

(b) For each λm:

i. B sets of pseudodata are generated by adding a random error to Zi, i =

1, ..., n, that is,

Z
(b)
i (λm) = Zi +

√
λmU

(b)
i (1.0.1)

where b = 1, ..., B with U (b) ∼ Np(0,Σu).

(c) The naive estimator is calculated for each set of pseudodata, that is, θ(b)(λm) =

T (Zi
(b)(λm), Yi)i=1,...,n

(d) An average of the estimators is taken, that is, θ̂(λm) =
1
B

∑B
b=1 θ

(b)(λm)

2. Extrapolation Step:

5



(a) θ̂(λ) is modeled as a function of λ.

(b) The model is extrapolated back to λ = −1 to obtain θ̂simex.

Heuristically, Z
(b)
i (λm) is obtained by increasing the measurement error in Zi by adding a

new random error
√
λmU

(b)
i to Zi. The pseudodata (Z

(b)
i (λm), Yi), i = 1, ..., n, is then used to

calculate the naive estimator, that is, θ(b)(λm) = T (Z
(b)
i (λm), Yi)i=1,...,n. The variability due

to the simulated errors for a fixed value of λm is reduced by increasing the number of sets

of pseudodata generated and then averaging over the naive estimators from all the sets of

pseudodata to obtain θ̂(λm) =
1
B

∑B
b=1 θ

(b)(λm). The covariance matrix of the measurement

error component for each set of pseudodata is given by (1 + λ)σu and so extrapolating to

λ = −1 results in the case where there is no measurement error. This estimator is therefore

called θ̂simex.

Popular choices of extrapolation functions are:

� The linear function Γlin(λ) = γ0 + γ1λ

� The quadratic function Γ(λ) = γ0 + γ1λ+ γ2λ
2

� The nonlinear function Γnonlin(λ) = γ0 +
γ1

γ2+λ

It should be noted that the simulation component of SIMEX is computationally quite ex-

pensive, which renders the method inadequate, especially in situations where large datasets

are used to establish relationships between variables. Furthermore, SIMEX can only be used

when the measurement error is from a normal distribution (as noted by Koul and Song

(2014)), with its variance being either known or reasonably estimated. It is imperative to

note that the extrapolation step needs to be performed in a convincing manner. Cook and

Stefanski (1994) pointed out in their paper that the linear, quadratic and, nonlinear extrap-

olation functions are exact for certain estimators when the distribution of the measurement

error is normal with the asymptotic bias being of order O(σ6) when the quadratic and non-

linear extrapolation functions are used and O(σ4) when the extrapolation function is linear.

Koul and Song (2014) proved that the SIMEX procedure only works for the case of Nor-

mal measurement error and showed that when the parameter of interest involves the fourth
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moment of the data, then the SIMEX estimator is not robust when the measurement error

non-normally distributed. They introduced a method called the L-SIMEX, which was specif-

ically designed for the case when the measurement error follows a Laplace distribution and

provided theoretical and empirical evidence to justify the procedure. The L-SIMEX method

follows the original SIMEX methodology in the sense that it uses the ‘addition’ component of

the OG SIMEX approach in the simulation step and also follows the extrapolation step. It is

noted in the paper that unless the exact relationship between λ and θ̂(λ) is known, a scatter

plot of (λj, θ̂(λj)), j = 1, 2, . . . ,m can be used to determine the trend of θ̂(λ) with respect

to λ and a least squares procedure can be used to determine the case when λ = −1. Again,

it is noted that like the N-SIMEX, the L-SIMEX suffers from the same dilemma in that

extrapolation provides only an approximation since the true extrapolation function is not

really known for most cases. The accuracy of the approximation relies heavily on the Monte

Carlo error in the simulation step, but this can be improved by increasing the sample size

and the number of pseudo-datasets generated. However, this results in increased computa-

tional time. Like the N-SIMEX, the linear, quadratic, and nonlinear extrapolation functions

are also used in the L-SIMEX, with the quadratic and nonlinear extrapolants having an

asymptotic bias of the order O(σ6
u).

Carroll et al. (1999) considered the problem of estimating parameters in a non-parametric

regression function in the presence of errors in predictor variables. In the non-parametric

setup, the regression of a response Y on a covariate X is given by E(Y |X) = m(x). Again,

X is not observed but what is observed is an error-contaminated value called Z, related to

X by an additive error model, Z = X + U with U being from a normal distribution with a

mean of zero and a constant variance (assumed to be known). The problem here again lies in

estimating m(.), since observations on X are not known and the only available data is that

of Y and Z. Fan and Truong (1993) showed that when m(.) has k derivatives with the mea-

surement error coming from a normal distribution with a known variance, then for a sample

of size n, the fastest rate of convergence of a nonparametric estimator of m(.) is log(n−k).

However, most if not all practical progress in the field of measurement error for nonlinear

models has been through the implementation of approximately consistent estimators, that is,
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estimators that converge in probability to some constant that is approximately equal to the

parameter being estimated. When the measurement error variance is small, näıve estimators

have a bias of order O(σ2
u), whereas the approximately consistent estimators have a bias

of O(σ6
u) or less. In the nonparametric regression setup, B is chosen to be a large integer

that is also finite (usually chosen to be between 50 and 200). Estimation of E(Y |X) at x0

is then considered. For a λk > 0 and b = 1, . . . , B, a set of independent, normal random

variables Vi,b is generated from a Normal distribution with zero mean and variance σ2
u and

a new set of pseudo-data is generated by adding the errors to Zi and the result denoted

by Zi,b(λk). Therefore, Zi,b(λk) = Zi +
√
λkVi,b. This pseudo-data along with the Yi’s are

used to estimate m̂b,λ(x0). The average of all the estimates over b = 1, . . . , B is denoted by

m̂λ(x0). The non-parametric SIMEX estimator is then determined via a three-step process:

In the first step, a grid of λ′s is chosen so that λ = 0 < λ1 < λ2 < . . . < λk and m̂λ(x0)

is computed for each λ; for the second step, a function is fit to model m̂λ(x0) versus λ (one

can use either a linear, quadratic, or non-linear function); in the third step, the model is

extrapolated to λ = −1 to obtain the SIMEX estimate of m(x0).

As is obvious, the SIMEX procedure in the non-parametric setup is quite like in the

parametric setup, with the biggest difference being that the local linear estimator is used

to evaluate m(.), since an exact functional is not assumed. Even though the bias of the

approximately consistent estimator using the SIMEX method is small compared to methods

that ignore measurement error in the nonlinear setup, the computational intensity of the

SIMEX procedure renders the method inadequate in practice, specifically when large datasets

are at stake.

This dissertation consists of two major topics. In the second chapter, for the general para-

metric regression models with covariates contaminated with normal measurement errors, an

alternative method to the traditional simulation extrapolation algorithm is proposed to es-

timate the unknown parameters in the regression function. By applying the conditional

expectation directly to the target function, the proposed algorithm successfully removes the

simulation step, by generating an estimation equation either for immediate use or for extrap-

olating, thus providing a possibility of reducing the computational time or the Monte Carlo

8



simulation error. Large sample properties of the resulting estimator, including the consis-

tency and the asymptotic normality, are thoroughly discussed. Potential wide applications

of the proposed estimation procedure are illustrated by examples, simulation studies, as well

as a real data analysis. A manuscript based on this chapter is published as the journal paper

Ayub et al. (2022).

In the third chapter, for the nonparametric regression models with covariates contami-

nated with normal measurement errors, we proposes an extrapolation algorithm to estimate

the regression functions. By applying the conditional expectation directly to the kernel-

weighted least squares of the deviations between the local linear approximation and the

observed responses, the proposed algorithm successfully bypasses the simulation step in the

classical simulation extrapolation, thus significantly reducing the computational time. It is

noted that the proposed method also provides an exact form of the extrapolation function,

but the extrapolation estimate generally cannot be obtained by simply setting the extrap-

olation variable to negative one in the fitted extrapolation function, if the bandwidth is

less than the standard deviation of the measurement error. Large sample properties of the

proposed estimation procedure are discussed, as well as simulation studies and a real data

example being conducted to illustrate its applications.
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Chapter 2

Extrapolation Estimation for

Parametric Regression with Normal

Measurement Error

2.1 Introduction

As a simulation-based estimation method, the classical simulation-extrapolation (SIMEX)

algorithm has enjoyed much popularity among its peers in the measurement error literature.

Suppose a random variable X is generated from a population whose distribution is charac-

terized by an unknown parameter θ. Unfortunately, X cannot be directly measured, instead,

what we can observe is a surrogate variable Z. A commonly used structure in measurement

literature assumes that Z and X are related through Z = X + U , where U is called the

measurement error, and is independent of X. We further assume that U has a normal distri-

bution with mean 0 and variance σ2
u which is assumed to be known. If X can be observed,

suppose a statistic T (X) can be found to estimate θ based on a sample X = (X1, . . . , Xn)

of size n from X.

Now suppose we have the data Z = (Z1, . . . , Zn). A typical classical SIMEX procedure

for estimating θ consists of the following three steps. In the first step, n i.i.d. random
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numbers Vi’s are generated from N(0, σ2
u), and for a pre-specified nonnegative number λ,

Z̃i(λ) = Zi +
√
λVi, i = 1, 2, . . . , n are calculated, and based on these pseudo-data, T (Z̃(λ))

is calculated, where Z̃(λ) = {Z̃1(λ), . . . , Z̃n(λ)}. This operation is repeated for a large

number of times, say B. Denote the resulting T -values as Tb(Z̃(λ)), b = 1, 2, . . . , B. Finally,

averaging these B quantities concludes the first step, and we denote the resulting average by

T (λ); In the second step, repeating the first step for a sequence of nonnegative λ values, for

example, λ = λ1, . . . , λK , we obtain T (λ1), . . . , T (λK). In real applications, a rule-of-thumb

for choosing the sequence of values λ1, . . . , λK is to select K equally spaced values from [0, 2]

for K around 20. In the last step, a trend of T (λ) with respect to λ is identified, the trend is

then used to evaluate the value of T (λ) at λ = −1, and the extrapolated value T (−1) is the

SIMEX estimate of θ. For more information on the SIMEX procedure, see the seminal papers

of Cook and Stefanski (1994) and Stefanski and Cook (1995). The asymptotic properties of

the SIMEX procedure, when σ2 is small, is investigated in Carroll et al. (1996). Although we

briefly introduce the classical SIMEX procedure for the univariate X cases, the multivariate

scenarios are accommodated very well.

In all the literature involving applications of the SIMEX procedure, the three steps de-

scribed above are strictly followed. In particular, pseudo data are always generated to provide

the values of T (Z̃(λ)), and an average follows. It is well known that the simulation step in

the SIMEX procedure is notoriously time-consuming in the SIMEX procedure, in particular,

when the estimator T (X) has no closed-form and is determined inexplicit by an optimiza-

tion process. The other drawback in using the classical SIMEX approach is the choice of the

extrapolation function in the extrapolation step. Except for some very special cases, there

are no tractable extrapolation functions to use in general. In fact, in most applications,

the approximate ones, such as the linear, quadratic, and nonlinear forms, are taken as the

working extrapolation functions. In this paper, we will construct an estimation procedure

to avoid, or at least partially avoid, these drawbacks in the classical SIMEX procedure. Fi-

nally, it is also worth to mention that many papers indicate the classical SIMEX procedure

is robust to the distributional assumption on the measurement error, that is, even when the

measurement error is not normally distributed, the SIMEX procedure still provides reason-
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able estimates. However, Koul and Song (2014) theoretically proved that this is not true in

general. Nevertheless, throughout this paper, we shall assume U has a normal distribution.

This paper is organized as follows. Some examples that motivate our research, such

as the linear, quantile, and expectile regressions etc., are introduced in Section 2.2; the

proposed extrapolation estimation procedure for the general parametric regression model

is constructed in Section 2.3, together with an exploration on the large sample results. A

discussion on the extrapolation function can also be found in this section; numerical studies

are conducted in Section 2.4; Section 2.5 includes a discussion on the potential extension

of the proposed estimation procedure to some semi-parametric regression models, as well as

the robustness of the proposed estimation procedure to the normality assumption. All the

technical proofs of the theoretical results are deferred to Appendix A.

2.2 Motivating Examples

Before formulating our extrapolation estimation procedure for the general parametric re-

gression models, we start with a very simple example to see how our research idea has been

developed. Suppose we have a simple linear errors-in-variables regression model E(Y |X) =

α + βX, and Z = X + U . As discussed in Carroll et al. (1999), for any fixed λ > 0, after

repeatedly adding the extra normal measurement errors, and computing the ordinary least

squares (LS) slope, the averaged estimator consistently estimates g(λ) = βσ2
x/(σ

2
x+(1+λ)σ2

u),

where σ2
x is the variance of X. Obviously, extrapolating λ to −1 leads to g(−1) = β. This

clearly shows that the SIMEX method works really well for the linear regression model. In

fact, in the seminal paper of Cook and Stefanski (1994), the SIMEX estimators of α and β

are derived without the simulation step. Instead, the conditional expectation of the least

square estimates based on the pseudo-data given the observed data are calculated, and under

the NON-IID pseudo-errors, the following estimators of α and β are constructed:

α̂(λ) = Y − β̂(λ)Z, β̂(λ) =
SY Z

SZZ + λσ2
u

, (2.2.1)
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where Y ,X are the sample means of Y and Z, SY Z , SZZ are the sample covariance of Y

and Z, the sample variance of Z, respectively. Directly letting λ = −1 leads to the SIMEX

estimator. For more details regarding the NON-IID pseudo-errors, please refer to Cook and

Stefanski (1994) and Section 5.3.4.1 in Carroll et al. (2006). In the following, we would like

to show that the SIMEX estimators of α, β defined in (2.2.1) can be obtained from another

perspective, without using the so-called NON-IID pseudo-errors.

Consider a multiple linear regression model and the LS procedure. When X is observable,

the LS estimators of α and β can be estimated by minimizing the LS criterion
∑n

i=1(Yi−α−

βTXi)
2. Since Xi’s are not available, following the SIMEX idea, we generate the pseudo-data

Zi(λ) = Zi+
√
λVi, Vi ∼ N(0,Σu), i = 1, 2, . . . , n, where Σu denotes the covariance matrix of

U which is assumed to be known. However, before minimizing
∑n

i=1(Yi−α−βTZi(λ))
2 and

following the classcial SIMEX road map, we minimize the following conditional expectation

E

[
n∑

i=1

(Yi − α− βTZi(λ))
2|(Y ,Z)

]
, (2.2.2)

where Y = (Y1, . . . , Yn) and Z = (Z1, . . . , Zn). Since Vi’s are i.i.d. from N(0,Σu) and

independent of other random variables in the model, so the expectation (2.2.2) equals

n∑
i=1

(Yi − α− βTZi)
2 + nλβTΣUβ.

The minimizer of the above expression is simply

β̂(λ) = (SZZ + λΣU)
−1SY Z , α̂(λ) = Y − β̂T (λ)X, (2.2.3)

and by choosing λ = −1, we immediately have the commonly used bias-corrected estimators

or the SIMEX estimators derived using the NON-IID pseudo-errors. Note that here not only

do we not need the simulation step, but also the extrapolation step is unnecessary.

Encouraged by this simple example, we dive into some more complex regression models

to see if the above method can be applied to more general regression setups. In the following
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we use m(x) to denote a regression function, θ0 the true value of θ, and the regression error

is independent of the covariate X.

Example 1: Suppose m(x) = exp(xT θ). Then

E[(Y −m(Z(λ), θ))2|Y, Z] = E[(Y − exp(ZT θ +
√
λUT θ))2|Y, Z]

= Y 2 − 2Y exp(ZT θ)E exp(
√
λUT θ) + exp(2ZT θ)E exp(2

√
λUT θ)

= Y 2 − 2Y exp(ZT θ) exp(λθTΣuθ/2) + exp(2ZT θ) exp(2λθTΣuθ).

Therefore, we can estimate θ by the minimizer of the empirical version of the above condi-

tional expectation with λ replaced with −1,

Ln(θ) :=
1

n

n∑
i=1

[
Y 2
i − 2Yi exp(Z

T
i θ − θTΣuθ/2) + exp(2ZT

i θ − 2θTΣuθ)
]
.

To see why minimizing the above target function leads to a consistent estimator, we take

the derivative of Ln(θ) with respect to θ and set it to 0. That is

1

n

n∑
i=1

Yi(Zi − Σuθ) exp(Z
T
i θ)−

1

n

n∑
i=1

(Zi − 2Σuθ) exp(2Z
T
i θ − 3θTΣuθ/2) = 0. (2.2.4)

Note that, as n → ∞, almost surely,

1

n

n∑
i=1

YiZi exp(Z
T
i θ) → EY Z exp(ZT θ) = exp(θTΣuθ/2)E

[
(X + Σuθ) exp

(
(θ + θ0)

TX
)]

,

1

n

n∑
i=1

Yi exp(Z
T
i θ) → exp(θTΣuθ/2)E exp

(
(θ + θ0)

TX
)
,

1

n

n∑
i=1

exp(2ZT
i θ) → E exp

(
2θTX

)
exp(2θTΣuθ),

1

n

n∑
i=1

Zi exp(2Z
T
i θ) → E

[
(X + 2Σuθ) exp

(
2θTX

)]
exp(2θTΣuθ).
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Therefore, as n → ∞, almost surely,

L̇n(θ) →

exp(θTΣuθ/2)E(X + Σuθ) exp
(
(θ + θ0)

TX
)
− exp(θTΣuθ/2)E exp

(
(θ + θ0)

TX
)
Σuθ

− exp(θTΣuθ/2)E(X + 2Σuθ) exp
(
2θTX

)
+ 2 exp(θTΣuθ/2)E exp

(
2θTX

)
Σuθ.

Denote the limit as L̇(θ). Then L̇(θ) = 0 if and only if

EX exp
(
(θ + θ0)

TX
)
− EX exp

(
2θTX

)
= 0.

Obviously, θ0 is a solution.

Example 2: Suppose m(x) = sin(xT θ). Then

E[(Y −m(Z(λ), θ))2|Y, Z] = E[(Y − sin(ZT θ +
√
λUT θ))2|Y, Z]

= Y 2 − 2Y sin(ZT θ)E cos(
√
λUT θ)− 2Y cos(ZT θ)E sin(

√
λUT θ)

+ sin2(ZT θ)E cos2(
√
λUT θ) + cos2(ZT θ)E sin2(

√
λUT θ)

+2 sin(ZT θ) cos(ZT θ)E cos(
√
λUT θ) sin(

√
λUT θ)

= Y 2 − 2Y sin(ZT θ)E cos(
√
λUT θ)

+ sin2(ZT θ)E cos2(
√
λUT θ) + cos2(ZT θ)E sin2(

√
λUT θ).

Note that

E cos(
√
λUT θ) = E exp

(
i
√
λUT θ

)
= exp

(
−1

2
λθTΣuθ

)
,

and from the well known trigonometric identities sin2 u = (1 − cos(2u))/2 and cos2 u =

(1 + cos(2u))/2, we have

E cos2(
√
λUT θ) =

1

2
+

1

2
E cos(2

√
λUT θ) =

1

2
+

1

2
exp

(
−2λθTΣuθ

)
,
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E sin2(
√
λUT θ) =

1

2
− 1

2
E cos(2

√
λUT θ) =

1

2
− 1

2
exp

(
−2λθTΣuθ

)
.

Therefore, by cos2 u− sin2 u = cos(2u), we get

E[(Y −m(Z(λ), θ))2|Y, Z]

= Y 2 − 2Y sin(ZT θ) exp

(
−1

2
λθTΣuθ

)
− 1

2
cos(2ZT θ) exp

(
−2λθTΣuθ

)
+ 1,

and an estimator of θ can be obtained by minimizing

1

n

n∑
i=1

[
Y 2
i − 2Yi sin(Z

T
i θ) exp

(
1

2
θTΣuθ

)
− 1

2
cos(2ZT

i θ) exp
(
2θTΣuθ

)]
+ 1.

By a simple algebra, we can show that as n → ∞, the above average converges almost surely

to 1/2 + σ2
ε + E[sin(XT θ0)− sin(XT θ)]2, which is minimized at θ = θ0.

Example 3 (Poisson Regression): Given a p-dimensional covariate X, suppose a non-

negative integer-valued random variable Y has a Poisson distribution with mean exp(XT θ).

If a sample (Xi, Yi), i = 1, 2, . . . , n can be drawn from (X, Y ), then we can estimate θ by

maximizing the log-likelihood function
∑n

i=1[YiX
T
i θ − exp(XT

i θ)− log Yi!]. Note that

E[Y ZT (λ)θ − exp(ZT (λ)θ)|(Y, Z)] = Y ZT θ − exp(ZT θ)E(exp(
√
λV T θ))

= Y ZT θ − exp(ZT θ) exp(λθTΣuθ/2).

Thus, by directly extrapolating λ to −1, we can estimate θ using the maximizer of

n∑
i=1

[YiZ
T
i θ − exp(ZT

i θ − θTΣuθ/2)]

which coincides with the estimation procedure proposed in Guo and Li (2002).

The three examples discussed above demonstrate that in some cases, λ = −1 can be

directly plugged into the conditional expectations and an estimator of θ can be obtained by
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solving a standard nonlinear equation system. However, this nice property is not shared by

other models universally.

Example 4 (Logistic Regression): In logistic regression, a 0 - 1 random variable Y

depends on a p-dimensional covariate X via the probability distribution P (Y = 1) =

1 − P (Y = 0) = F (α + XTβ), where F (x) = 1/(1 + exp(−x)) is the logistic function.

The log-likelihood function of α, β based on a sample (Yi, Xi), i = 1, 2, . . . , n is given by∑n
i=1

{
Yi(α +XT

i β)− log[1 + exp(α +XT
i β)]

}
. With Z(λ) = Z +

√
λV , we have

E[Y (α + ZT (λ)β)|(Y, Z)]− E
{
log[1 + exp(α + ZT (λ)β)]|(Y, Z)

}
= Y (α + ZTβ)−

∫
log[1 + exp(α + ZTβ + u)]ϕ(u, 0;λβTΣuβ)du.

Note that λ = −1 can not be plugged into the integration.

Example 5: Consider the multiplicative regression model Y = exp(XT θ)ε, where ε is a

positive random variable, with E(ε|X) = 1. This model is often called the accelerated

failure time (AFT) model and is widely used in the survival analysis, econometrics and

finance areas. There are two methods in the literature to estimate θ when observations can

be made on (Y,X). The first one is the least absolute relative error (LARE) estimation

procedure which minimizes the following criterion

LARE(θ) =
n∑

i=1

[
Y −1
i |Yi − exp(XT

i θ)|+ exp(−XT
i θ)|Yi − exp(XT

i θ)|
]

proposed by Chen et al. (2010). The second method is called the least product relative error

(LPRE) estimation which minimizes the following expression

LPRE(θ) =
n∑

i=1

[
Yi exp(−XT

i θ) + Y −1
i exp(XT

i θ)
]

proposed in Chen et al. (2016).

In the case of X being contaminated with normal measurement errors, according to
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the previous arguments, for the LARE criterion, we may consider the following conditional

expectation:

E
{[

Y −1|Y − exp(ZT (λ)θ)|+ exp(−ZT (λ)θ)|Y − exp(ZT (λ)θ)|
] ∣∣∣(Y, Z)} (2.2.5)

and for the LPRE criterion, we will calculate

E
{[

Y exp(−ZT (λ)θ) + Y −1 exp(ZT (λ)θ)
] ∣∣∣(Y, Z)} . (2.2.6)

For (2.2.5), we have

E
{
Y −1|Y − exp(ZT (λ)θ)|

∣∣∣(Y, Z)} =

∫ {
Y −1|Y − exp(ZT θ + v)|

}
ϕ(v; 0, λθTΣuθ)dv

= 2Φ(log(Y exp(−ZT θ)); 0, λθTΣuθ)− 1

+Y −1 exp(ZT θ + λθTΣuθ/2)
[
1− 2Φ(log(Y exp(−ZT θ)) + λθTΣuθ, 0, λθ

TΣuθ)
]
,

and

E
{
exp(−ZT (λ)θ)|Y − exp(ZT (λ)θ)|

∣∣∣(Y, Z)}
=

∫ {
exp(−ZT θ + v)|Y − exp(ZT θ + v)|

}
ϕ(v; 0, λθTΣuθ)dv

= 1− 2Φ(log(Y exp(−ZT θ)); 0, λθTΣuθ)

+Y exp(−ZT θ + λθTΣuθ/2)
[
2Φ(log(Y exp(−ZT θ)) + λθTΣuθ, 0, λθ

TΣuθ)− 1
]
.

Therefore, we have

E
{[

Y −1|Y − exp(ZT (λ)θ)|+ exp(−ZT (λ)θ)|Y − exp(ZT (λ)θ)|
] ∣∣∣(Y, Z)}

= Y −1 exp(ZT θ + λθTΣuθ/2)
[
1− 2Φ(log(Y exp(−ZT θ)) + λθTΣuθ, 0, λθ

TΣuθ)
]

+Y exp(−ZT θ + λθTΣuθ/2)
[
2Φ(log(Y exp(−ZT θ)) + λθTΣuθ, 0, λθ

TΣuθ)− 1
]
.
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Note that we cannot directly plug λ = −1 into the above expectation, since λθTΣuθ serves

as the variance of a normal distribution. However, for (2.2.6), we have

E
[
Y exp(−ZT (λ)θ) + Y −1 exp(ZT (λ)θ)

∣∣∣(Y, Z)]
=
[
Y exp(−ZT θ) + Y −1 exp(ZT θ)

]
exp

(
λθTΣuθ/2

)
.

λ = −1 can be directly plugged in.

Example 6 (Quantile Regression): For a positive number τ ∈ (0, 1), let ρτ (x) =

x(τ − I(x < 0)). Then the quantile regression estimates the regression coefficients β by

the minimizer of
∑n

i=1 ρτ (Yi − XT
i β) when both Y and X are observable. In the measure-

ment error setup, similar to the previous examples, we may estimate β by maximizing the

conditional expectation
∑n

i=1E[ρτ (Yi − ZT
i (λ)β)|(Yi, Zi)]. Calculation shows that

E[ρτ (Y − ZT (λ)β)|(Y, Z)]

= E
[
(Y − ZTβ −

√
λV Tβ)(τ − I(Y − ZTβ −

√
λV Tβ < 0))|(Y, Z)

]
= τ(Y − ZTβ)− (Y − ZTβ)

∫ ∞

Y−ZT β

ϕ(v; 0, λβTΣuβ)dv +

∫ ∞

Y−ZT β

vϕ(v; 0, λβTΣuβ)dv

= (τ − 1)(Y − ZTβ) + (Y − ZTβ)Φ(Y − ZTβ; 0, λβTΣuβ) + λβTΣuβϕ(Y − ZTβ; 0, λβTΣuβ)].

Denote ξi(β) = Yi − ZT
i β. We can see that the target function has the form of

(τ − 1)
n∑

i=1

ξi(β) +
n∑

i=1

ξi(β)Φ(ξi(β); 0, λβ
TΣuβ) + λβTΣuβ

n∑
i=1

ϕ(ξi(β); 0, λβ
TΣuβ).

It is easy to see that the new target function is a nonlinear differentiable function of β, and

it can be readily minimized using standard algorithms.

Example 7 (Walsh Regression): Another robust estimation procedure is the Walsh-

average regression proposed in Feng et al. (2012). For a response variable Y and a covariate
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vector X, the Walsh-average regression estimates the regression coefficient β by minimizing

the following objective function,

1

2n(n+ 1)

∑
i≤j

|Yi −XT
i β + Yj −XT

j β| :=
1

2n(n+ 1)

∑
i≤j

L(Yi, Yj, Xi, Xj; β)

based on a sample (Yi, Xi), i = 1, . . . , n from (Y,X). When Xi’s are measured with nor-

mal measurement error Ui, then similar to the previous arguments, we may estimate β by

maximizing the conditional expectation

∑
i≤j

E[L(Yi, Yj, Z
T
i (λ), Z

T
i (λ); β)|(Yi, Yj, Zi, Zj)]

= 2
n∑

i=1

E[|Yi − ZT
i (λ)β||(Yi, Zi)] +

∑
i<j

E[|Yi + Yj − (Zi + Zj)
T (λ)β||(Yi, Yj, Zi, Zj)].

Based on the discussion on the quantile regression, taking τ = 1/2, the first term on the

right-hand side equals

2
n∑

i=1

ξi(β)[2Φ(ξi(β), 0, λβ
TΣuβ)− 1] + 4λβTΣuβ

n∑
i=1

ϕ(ξi(β), 0, λβ
TΣuβ),

and the second term on the right-side equals

∑
i<j

ξij(β)[2Φ(ξij(β), 0, 2λβ
TΣuβ)− 1] + 8λβTΣuβ

∑
i<j

ϕ(ξij(β), 0, 2λβ
TΣuβ),

where ξij(β) = Yi + Yj − (Zi + Zj)
Tβ. Again, this leads to a nonlinear target function to

implement the proposed estimation procedure.

Example 8 (Expectile Regression): For a positive number τ ∈ (0, 1), let ρτ (x) =

x2[τ − I(x < 0)]. Then the expectile regression estimates the parameter β by minimizing

the target function
∑n

i=1 ρτ (Yi − XT
i β) when both Y and X are observable. When X is
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contaminated with normal measurement error, β might be estimated by the maximizer of

the conditional expectation
∑n

i=1E[ρτ (Yi − ZT
i (λ)β)|(Yi, Zi)]. Calculation shows that

E[ρτ (Y − ZT (λ)β)|(Y, Z)]

= E
[
(Y − ZTβ −

√
λV Tβ)2[τ − I(Y − ZTβ −

√
λV Tβ < 0)]|(Y, Z)

]

=

∫
(Y − ZTβ − v)2|τ − I(Y − ZTβ − v < 0)|ϕ(v; 0, λβTΣuβ)dv

= τ

∫ Y−ZT β

−∞
[(Y − ZTβ)2 − 2v(Y − ZTβ) + v2]ϕ(v; 0, λβTΣuβ)dv

+(1− τ)

∫ ∞

Y−ZT β

[(Y − ZTβ)2 − 2v(Y − ZTβ) + v2]ϕ(v; 0, λβTΣuβ)dv

= τ(Y − ZTβ)2Φ(Y − ZTβ; 0, λβTΣuβ)− 2τ(Y − ZTβ)

∫ Y−ZT β

−∞
vϕ(v; 0, λβTΣuβ)dv

+τ

∫ Y−ZT β

−∞
v2ϕ(v; 0, λβTΣuβ)dv + (1− τ)(Y − ZTβ)2[1− Φ(Y − ZTβ; 0, λβTΣuβ)]

−2(1− τ)(Y − ZTβ)

∫ ∞

Y−ZT β

vϕ(v; 0, λβTΣuβ)dv + (1− τ)

∫ ∞

Y−ZT β

v2ϕ(v; 0, λβTΣuβ)dv

= τ(Y − ZTβ)2Φ(Y − ZTβ; 0, λβTΣuβ) + 2τλβTΣuβ(Y − ZTβ)ϕ(Y − ZTβ; 0, λβTΣuβ)

−τλβTΣuβ[(Y − ZTβ)ϕ(v; 0, λβTΣuβ)− Φ(v; 0, λβTΣuβ)]

+(1− τ)(Y − ZTβ)2[1− Φ(Y − ZTβ; 0, λβTΣuβ)]

−2(1− τ)λβTΣuβ(Y − ZTβ)ϕ(Y − ZTβ; 0, λβTΣuβ)

+(1− τ)λβTΣuβ[(Y − ZTβ)ϕ(Y − ZTβ; 0, λβTΣuβ) + 1− Φ(Y − ZTβ; 0, λβTΣuβ)]

= (2τ − 1)(Y − ZTβ)2Φ(Y − ZTβ; 0, λβTΣuβ)

+(2τ − 1)λβTΣuβ(Y − ZTβ)ϕ(Y − ZTβ; 0, λβTΣuβ)

+(2τ − 1)λβTΣuβΦ(Y − ZTβ; 0, λβTΣuβ) + (1− τ)[(Y − ZTβ)2 + λβTΣuβ].
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Recall the notations ξi(β), we can see that the target function takes the form of

(2τ − 1)
n∑

i=1

ξ2i (β)Φ(ξi(β); 0, λβ
TΣuβ) + (2τ − 1)λβTΣuβ

n∑
i=1

ξi(β)ϕ(ξi(β); 0, λβ
TΣuβ)

+ (2τ − 1)λβTΣuβ

n∑
i=1

Φ(ξi(β); 0, λβ
TΣuβ) + (1− τ)

n∑
i=1

[ξ2i (β) + λβTΣuβ].

Like the quantile regression in Example 6, the new target function for the expectile regression

is also a nonlinear differentiable function of β, and it can be readily minimized using standard

algorithms.

Most estimation procedures are built upon optimizing specific target functions or search-

ing for the solution of certain estimating equations. The above interesting findings may

suggest that, after replacing the true predictors with the pseudo-data in the target functions

or the estimating equations, one can simply optimize the conditional expectation or solve

the new estimating equations. This allows researchers to circumvent the computationally-

intensive simulation step of the classical SIMEX procedure. Also, if the process goes smoothly,

the conditional expectation can be directly extrapolated to λ = −1 and an estimate can be

obtained by solving a standard nonlinear equation, as shown in Examples 1, 2, 3, as well as

the LPRE procedure in Example 4. In cases such as those described in Examples 4-8, where

directly plugging λ = −1 into the resulting expectation is not feasible, one can proceed with

the extrapolation step to obtain an estimate for θ. In Section 2.3, we shall formulate the

extrapolation estimation procedure for the general parametric regression models, and discuss

its statistical properties.

2.3 Extrapolation Estimation in Parametric Regres-

sion

For a general parametric regression model Y = m(X; θ)+ε with Z = X+U , where X ∈ Rp,

ε, X, U are independent, θ ∈ Θ ⊂ Rq, and p, q are some positive integers, we may have
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different ways to estimate θ based on various assumptions on the model. In this section, the

least squares estimation (LSE) procedure will be used as an exemplary method to construct

the extrapolation estimation procedure. That is, the following conditional expectation

E

[
n∑

i=1

(Yi −m(Zi(λ); θ))
2|(Y ,Z)

]
=

n∑
i=1

∫
(Yi −m(Zi + u; θ))2ϕ(u, 0, λΣu)du

with respect to θ will be minimized. To see intuitively why extrapolating λ to−1 can result in

a reasonable estimate of θ0, the true value of θ, in this general setup as the sample size n → ∞,

we denote θ(λ) = argminθL(θ;λ), where L(θ;λ) = E
∫
(Y −m(Z+u; θ))2ϕ(u, 0, λΣu)du, and

Ln(θ;λ) =
1

n

n∑
i=1

∫
(Yi −m(Zi + u; θ))2ϕ(u, 0, λΣu)du. (2.3.1)

Under some regularity conditions, by the strong law of large numbers, Ln(θ;λ) =⇒ L(θ;λ)

almost surely as n → ∞. This, together with the fact

L(θ;λ) = E

∫
(Y −m(X + u; θ))2ϕ(u, 0, (λ+ 1)Σu)du =⇒ E(Y −m(X; θ))2 (2.3.2)

as λ → −1 if we assume thatm(x; θ) is continuous in x for each θ ∈ Θ, implies that θ(λ) → θ0

if the equation E(m(X; θ0)−m(X; θ))2 = 0 has a unique solution. This heuristic argument

leads to the following extrapolation algorithm for estimating θ:
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Extrapolation Estimation Algorithm

1. If Ln(θ;λ) can be directly extrapolated to λ = −1, then an estimate of θ0

is given by θ̂n = argminθLn(θ;−1), where Ln(θ;λ) is defined in (2.3.1).

2. If Ln(θ;λ) cannot be directly extrapolated to λ = −1, then pre-select

some grid points 0 = λ1 < λ2 < · · · < λK = c, for example, c = 2.

� For each λ ∈ {λ1, . . . , λK}, solving θ̂n(λ) = argminθLn(θ;λ).

� Fit a trend for the pairs (λk, θ̂n(λk)), k = 1, 2, . . . , K, and extrapo-

late this trend back to −1.

Take the extrapolated value θ̂n as an estimate of θ0.

In the following we shall explore the extrapolation estimation algorithm described above

in detail by presenting some theoretical results. For a generic parametric function g(x; θ)

with multidimensional x and θ, we denote ġ(x; θ) = ∂g(x; θ)/∂θ, g̈(x; θ) = ∂2g(x; θ)/∂θ∂θT ,

and g′(x; θ) = ∂g(x; θ)/∂x, g′′(x; θ) = ∂2g(x; θ)/∂x∂xT .

First we list some technical assumptions needed for presenting the theoretical arguments.

(C1). The parameter space Θ of θ is compact;

(C2). For each x ∈ Rp, the regression function m(x; θ) is twice continuously differen-

tiable for each θ ∈ Θ;

(C3). There exists a function K(x), not depending on θ, such that EK2(Z +V ) < ∞

and |m̈(x; θ)|+ |m(x; θ)| ≤ K(x) for all x in the domain of m;

(C4). For each λ ≥ 0, the minimizer of L(θ, λ) exists and is unique;

(C5). argminθ∈ΘE[m(X; θ)−m(X; θ0)]
2 is unique;

(C6). For each λ ≥ 0, E
[
ṁ(Z + V ; θ)ṁT (Z + V ; θ)

]
is positive definite, where V ∼

N(0, λΣu), Z and V are independent.
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Conditions(C1)-(C3) allow us to show the uniform convergence of Ln(θ) to L(θ) over

θ ∈ Θ using the uniform convergence theory discussed in Ferguson (1996), which, together

with the condition (C4), implies the convergence of θ̂n(λ) to θ(λ) as n → ∞ for each λ > 0,

and eventually to θ0 by letting λ → −1 by using (C5). In fact, if argminθL(θ;λ) is not

unique, then we can show that for any local minimizer, there is a sequence of minimizers of

Ln(θ;λ) that converges to the local minimizer in probability. However, to keep the argument

relatively simple, we shall adopt (C5) in the following discussion. Finally, using (C6), we

can show the asymptotic normality of the extrapolation estimator. The following theorem

summarizes the consistency of θ̂n(λ) to θ(λ) for each λ > 0, and the approximation of θ(λ)

to θ0 as λ is extrapolated to −1.

Theorem 1. Suppose that the conditions (C1), (C2), (C3), and (C4) hold. Then for each

λ > 0, θ̂n(λ) → θ(λ) in probability as n → ∞. If we further assume that (C5) holds, then as

λ → −1,

θ(λ) = θ0 − (λ+ 1)
[
Eṁ(X; θ0)ṁ

T (X; θ0)
]−1 ·[

Eṁ(X; θ0)trace(m
′′(X; θ0)Σ

2
u) + Eṁ′(X; θ0)Σ

2
um

′(X; θ0)
]
+ o((λ+ 1)).

Denote Λ = (λ1, . . . , λK)
T , θ̂n(Λ) = (θ̂n(λ1), . . . , θ̂n(λK)), θ(Λ) = (θ(λ1), . . . , θ(λK)). The

asymptotic joint normality of θ̂n(Λ) to θ(Λ) is described in the following theorem.

Theorem 2. In addition to the conditions in Theorem 1, suppose (C6) holds. Then we have

√
n[(θ̂n(λ1)− θ(λ1))

T , . . . , (θ̂n(λK)− θ(λK))
T ]T ∼ N(0,Ω−1

1 (Λ)Ω0(Λ)Ω
−1
1 (Λ)),

where

Ω0(Λ) = [Σ0(λj, λk)]K×K , Ω1(Λ) = Diag(Σ1(λ1), . . . ,Σ1(λK)),

Σ1(λ) = E

∫
ṁ(X + u; θ(λ))ṁT (X + u; θ(λ))ϕ(u, 0, (λ+ 1)Σu)du

−E

∫
[m(X; θ0)−m(X + u, θ(λ))]m̈(X + u; θ(λ))ϕ(u, 0, (λ+ 1)Σu)du

25



and Σ0(λj, λl), j, l = 1, 2, . . . , K is defined as

E

∫∫ {
σ2
ε + [m(X, θ0)−m(X + u, θ(λj))][m(X, θ0)−m(X + v, θ(λl))]

}
ṁ(X + u; θ(λj))

ṁT (X + v; θ(λl))ϕ(u, v, (λj + λl)Σu)ϕ

(
λjv + λlu

λj + λl

, 0,
λj + λl + λjλl

λj + λl

Σu

)
dudv

or

E

∫∫ {
σ2
ε + [m(X, θ0)−m(X + u, θ(λj))][m(X, θ0)−m(X + v, θ(λl))]

}
ṁ(X + u; θ(λj))

ṁT (X + v; θ(λl))ϕ(v, 0, (λl + 1)Σu)ϕ

(
u,

v

λl + 1
,
λ1 + λl + λjλl

λl + 1
Σu

)
dudv.

From Theorem 2, one can see that for each λ > 0,

√
n(θ̂n(λ)− θ(λ)) → N

(
0,Σ−1

1 (λ)Σ0(λ, λ)Σ
−1
1 (λ)

)
in distribution. In particular, for λ = 0, we have

√
n(θ̂n(0)− θ(0)) → N(0,Σ−1

1 (0)Σ0(0, 0)Σ
−1
1 (0)),

where θ(0) = argminθ∈ΘE[m(X; θ0)−m(Z; θ)]2, and

Σ0(0, 0) = E
{
σ2
ε + [m(X, θ0)−m(Z, θ(0))][m(X, θ0)−m(Z, θ(0))]

}
ṁ(Z; θ(0))ṁT (Z; θ(0)),

Σ1(0) = Eṁ(Z; θ(0))ṁT (Z; θ(0))− E[m(X; θ0)−m(Z, θ(0))]m̈(Z; θ(0)).

This recovers the asymptotic normality result for the naive estimator θ̂n(0) of θ0. It is in

our interest to know the limits of Σ1(λ) and Σ0(λ, λ) when λ → −1. The trend of Σ1(λ)

is easy to derive. In fact, from the expression Σ1(λ) in Theorem 2, we have Σ1(−1) =

Eṁ(X; θ0)ṁ
T (X; θ0). Let λj = λl = λ in the second expression of Σ0(λj, λl) in Theorem 2,
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we can rewrite Σ0(λ, λ) as

E

∫∫ {
σ2
ε + [m(X, θ0)−m(X + u, θ(λ))][m(X, θ0)−m(X + v, θ(λ))]

}
ṁ(X + u; θ(λ))

ṁT (X + v; θ(λ))ϕ(v, 0, (λ+ 1)Σu)ϕ

(
u,

v

λ+ 1
,
2λ+ λ2

λ+ 1
Σu

)
dudv.

However, Σ0(λ, λ) does not have an explicit limit when λ → −1, unless some strong condi-

tions are imposed on the regression function.

Following are two examples of Σ0(λ, λ) to further illustrate the above findings.

Example 1. Suppose m(x, θ) = x′θ, then we have ṁ(x, θ) = x. From the second expression

of Σ0(λ, λ), we have

Σ0(λ, λ) = σ2
εE

∫∫
(X + u)(X + v)Tϕ(v, 0, (λ+ 1)Σu)ϕ

(
u,

v

λ+ 1
,
λ(λ+ 2)

λ+ 1
Σu

)
dudv

+E

∫∫
[XT θ0 − (X + u)T θ(λ)][XT θ0 − (X + v)T θ(λ)] ·

(X + u)(X + v)Tϕ(v, 0, (λ+ 1)Σu)ϕ

(
u,

v

λ+ 1
,
λ(λ+ 2)

λ+ 1
Σu

)
dudv

= σ2
ε(EXXT + Σu) + E(θ0 − θ(λ))TXXT (θ0 − θ(λ))XXT

+(θ0 − θ(λ))TE(XXT )(θ0 − θ(λ))Σu + θ(λ)TΣuθ(λ)E(XXT )

−E(θ0 − θ(λ))TXXθ(λ)TΣu − (λ+ 1)E(θ0 − θ(λ))TXΣuθ(λ)X
T

+

∫
vT θ(λ)

[
vvT + λ(λ+ 2)Σu

]
θ(λ)vTϕ(v, 0,Σu)dv.

Extrapolating λ to −1, we see that Σ0(λ, λ) converges to

σ2
ε(EXXT + Σu) + θT0 Σuθ0EXXT +

∫
vT θ0vv

T θ0v
Tϕ(v, 0,Σu)dv − Σuθ0θ

T
0 Σu. (2.3.3)

(2.3.3) is exactly same as the asymptotic covariance matrix of the bias corrected estimator

β̂(λ) defined in (2.2.3) after taking λ = −1. Please refer to the Theorem 3.1 in Liang et al.

(1999) for a proof of the asymptotic normality of the bias corrected estimator, as well as its
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asymptotic covariance matrix (2.3.3).

Example 2: Consider the exponential regression function Y = exp(θX) + ε with a uni-

variate predictor X. Note that ṁ(x; θ) = x exp(θx). It is easy to see that Σ1(λ) →

EX2 exp(2Xθ0) = τ1 as λ → −1. From the second expression for Σ0(λ, λ) in Theorem

2, we can rewrite it as the sum of the following two terms:

S1(λ) = σ2
εE

∫∫
(X + u)(X + v) exp [(X + u)θ(λ)] exp [θ(λ)(X + v)] ·

ϕ(v, 0, (λ+ 1)σ2
u)ϕ

(
u,

v

λ+ 1
,
λ(λ+ 2)

λ+ 1
σ2
u

)
dudv,

S2(λ) = E

∫∫
{exp (θ0X)− exp [θ(λ)(X + u)]} · {exp (θ0X)− exp [θ(λ)(X + v)]} ·

(X + u)(X + v) exp [(X + u)θ(λ)] exp [θ(λ)(X + v)] ·

ϕ(v, 0, (λ+ 1)σ2
u)ϕ

(
u,

v

λ+ 1
,
λ(λ+ 2)

λ+ 1
σ2
u

)
dudv.

A tedious computation shows that

S1(λ) = σ2
εE
{
(σ2

u + [X + (λ+ 2)θ(λ)σ2
u]

2) exp[2Xθ(λ) + (λ+ 2)θ2(λ)σ2
u]
}
,

and

S2(λ) = EX2 exp[2X(θ0 + θ(λ)) + (λ+ 2)σ2
uθ

2(λ)]

−2EX2 exp[X(θ0 + 3θ(λ)) +
1

2
(5λ+ 9)σ2

uθ
2(λ)]

+EX2 exp[4Xθ(λ) + 4(λ+ 2)σ2
uθ

2(λ)]

+2(λ+ 2)σ2
uθ(λ)EX exp[2X(θ0 + θ(λ)) + (λ+ 2)σ2

uθ
2(λ)]

−6(λ+ 2)σ2
uθ(λ)EX exp[X(θ0 + 3θ(λ)) +

1

2
(5λ+ 9)σ2

uθ
2(λ)]

+4(λ+ 2)σ2
uθ(λ)EX exp[4Xθ(λ) + 4(λ+ 2)σ2

uθ
2(λ)]

+[σ2
u + (λ+ 2)2σ4

uθ
2(λ)]E exp[2X(θ0 + θ(λ)) + (λ+ 2)σ2

uθ
2(λ)]

−2[σ2
u + (2λ+ 3)(λ+ 3)σ4

uθ
2(λ)]E exp[X(θ0 + 3θ(λ)) +

1

2
(5λ+ 9)σ2

uθ
2(λ)]
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+[σ2
u + 4(λ+ 2)2σ4

uθ
2(λ)]E exp[4Xθ(λ) + 4(λ+ 2)σ2

uθ
2(λ)].

Extrapolating λ to −1, we see that Σ0(λ, λ) tends to

τ 20 = σ2
εE
{
(σ2

u + [X + θ0σ
2
u]

2) exp[2Xθ0 + θ20σ
2
u]
}

+E
{
(σ2

u + [X + θ0σ
2
u]

2) exp[4Xθ0 + θ20σ
2
u]
}

+E
{
[σ2

u + (X + 2θ0σ
2
u)

2] exp(4Xθ0 + 4θ20σ
2
u)
}

−2E
{
(σ2

u +X2 + 3Xθ0σ
2
u + 2θ20σ

4
u) exp(4Xθ0 + 2σ2

uθ
2
0)
}
.

In fact, we can verify that the asymptotic variance of the estimator defined by the solution

of (2.2.4) is exactly τ 20 /τ
2
1 .

It is noted that the exact extrapolation function θ(λ) is implicitly defined by the equation

L̇(θ;λ) = 0, where L(θ;λ) is defined by (2.3.2). In some special cases, such as the linear,

the exponential and the Poisson regressions discussed in Examples 1, 2 and 3, the exact

extrapolation function can be obtained by solving the above equation. However, the solution

generally has no closed-form.

For simplicity, we assume that θ is one-dimensional. By a Taylor expansion of m(x +
√
λ+ 1σuu, θ) and ṁ(x+

√
λ+ 1σuu, θ) at λ = −1 and θ at θ = θ0, and plugging these two

Taylor expansions in the expression of L̇(θ;λ), and after some algebra, the solution of the

equation L̇(θ;λ) = 0 has the form of

θ(λ) = θ0 +
a0(λ+ 1)

a1 + a2(λ+ 1) + a3(λ+ 1)2 + · · ·
,

where a0, a1, a2, a3, . . . are some model-dependent constants. The above exact extrapolation

function can be simplified to obtain several approximate simple functions to implement the

extrapolation. For example, by truncating the denominator to the first order of λ + 1, and

after some equivalent transformation, we obtain the commonly used nonlinear extrapolation

function a + b/(c + λ); or if we apply another Taylor expansion for the denominator at
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λ = −1 up to first order, second order etc., then we can also obtain the linear, quadratic

extrapolation function and so on.

Almost all literature involving SIMEX assumes that the true extrapolation function has

a known parametric form when discussing the asymptotic distributions of the SIMEX es-

timators. However, the true extrapolation function is generally unknown except for some

special cases, and this discouraging observation really nullifies all the relevant theoretical

developments based on known extrapolation functions. Unfortunately this is also true for

our proposed extrapolation method.

If we are fortunate to have a closed-form extrapolation function with a parametric form

G(λ,Γ), which is twice continuously differentiable with respect to the parameter Γ ∈ Rd for

some positive integer d, then assuming that the true value of the parameter is Γ0, that is

θ0 = G(−1,Γ0), we can estimate Γ0 by minimizing the least squares criterion

∥θ̂n(Λ)−G(Λ,Γ)∥22 =
K∑
j=1

∥G(λj,Γ)− θ̂n(λj)∥22, (2.3.4)

where G(Λ,Γ) = [GT (λ1,Γ), G
T (λ2,Γ), . . . , G

T (λK ,Γ)]
T
qK×1, or solving the equation

ĠT (Λ,Γ)(θ̂n(Λ)−G(Λ,Γ)) = 0,

where

Ġ(Λ,Γ) = [ĠT (λ1,Γ), Ġ
T (λ2,Γ), . . . , Ġ

T (λK ,Γ)]
T
qK×d,

and for j = 1, 2, . . . , K,

Ġ(λj,Γ) = (∂G(λj,Γ)/∂γl)q×d .

Denote the minimizer of (2.3.4) as Γ̂, then the resulting extrapolation estimator of θ0 will

be θ̂n = G(−1, Γ̂). Denote H(Λ) = ĠT (Λ,Γ0)Ġ(Λ,Γ0) and

Π(Λ) = H−1(Λ)ĠT (Λ,Γ0)Ω
−1
1 (Λ)Ω0(Λ)Ω

−1
1 (Λ)Ġ(Λ,Γ0)H

−1(Λ),
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We have the following ideal result.

Theorem 3. Assuming that conditions (C1)-C(6) hold, and the true extrapolation function

has a known parametric form G(λ,Γ) with nonsingular H(Λ), then

√
n(θ̂n − θ0) =⇒ N(0, Ġ(−1,Γ0)Π(Λ)Ġ

T (−1,Γ0)).

2.4 Numerical Studies

In this section, we conduct some simulation studies for two parametric models to evaluate the

finite sample performance of the proposed estimation procedure. For convenience, we label

the proposed estimation procedure as EX, emphasizing the lack of the simulation step. In

the first simulation study, we generated the data from a regression model with exponential

regression function as described in Example 1. In the second simulation study, the data

are generated from a bivariate quantile regression model as described in Example 6. Note

that we can directly plug λ = −1 in the target function from the exponential regression

model, but we cannot do the same in the quantile regression model, where an approximation

is needed by using extrapolation functions. We also analyze a dataset from the National

Health and Nutrition Examination Survey (NHANES) to illustrate the application of the

proposed estimation procedure.

2.4.1 Simulation Studies

Exponential Regression. Consider a univariate exponential regression model first. SupposeX

is a one-dimensional standard normal random variable. From Section 2.2, we know the true

value θ0 is a solution of the equation EX exp((θ + θ0)X)− EX exp(2θX) = 0. Calculation

shows that the equation can be rewritten as

(θ + θ0) exp((θ + θ0)
2/2)− 2θ exp(2θ2) = 0.
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It is easy to see that θ0 is a solution of the above equation. Moreover, the solution of the

above equation is also unique. Therefore, when the sample size is sufficiently large, the

minimizer of Ln(θ) is unique. We generate Z from Z = X + U with U ∼ N(0, σ2
u). To

see the effect of the measurement error variance on the estimation procedure, we choose

σ2 = 0.1, 0.25, 0.5. The true parameter values are chosen to be θ = 1, and the sample sizes

are chosen to be n = 200, 300, 500 and 800. For each setup, we repeat the simulation 500

times, and the mean squared errors (MSE) are calculated and used to evaluate the finite

sample performance of the EX. For comparison, the traditional SIMEX with B = 50 is also

applied to estimate the unknown parameter θ. Along with the MSE values, we also report

the computation time to obtain these MSE values.

Table 2.1: MSEs and Computation Time (minutes): univariate exponential regression

n=200 n=300 n=500 n=800
σ2
u 0.5 0.25 0.1 0.5 0.25 0.1 0.5 0.25 0.1 0.5 0.25 0.1

EX
MSE 0.029 0.017 0.005 0.019 0.012 0.003 0.010 0.007 0.003 0.008 0.005 0.002
Time 0.344 0.350 0.351 0.472 0.483 0.487 0.751 0.808 0.760 1.132 1.138 1.154
SIMEX
MSE 0.011 0.010 0.004 0.008 0.006 0.003 0.006 0.005 0.003 0.005 0.003 0.002
Time 4.818 4.681 4.632 5.068 5.053 4.997 5.920 5.869 5.799 7.223 7.154 7.020

Table 2.1 shows that when the sample size gets bigger, the performance of the EX esti-

mator becomes better, as evidenced by the decreasing MSEs. For a fixed sample size, it is

seen that the smaller the measurement error variance, the smaller the MSEs, as expected.

For comparison, we also conduct a simulation using the SIMEX procedure. The computa-

tion time (in minutes) for both estimation procedures is also reported in Table 2.1. From

Table 2.1, we can see that the EX and the SIMEX performs similarly, but the latter is more

computationally intensive than the former.

We also conducted a simulation study for an exponential regression with two predictors

X = (X1, X2), that is, m(x; θ) = exp(xT θ), Z1 = X1 +U1, Z2 = X2 +U2, where θ = (β1, β2).

We choose ε to be standard normal, (X1, X2) has a bivariate standard normal distribution,

the measurement error (U1, U2) is generated from a bivariate normal distribution with mean

vector of 0’s, equal variances σ2 and covariance 0.5σ2. To see the effect of the measurement
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variance on the estimation procedure, we choose σ2 = 0.25, 0.2, 0.1. The true parameter

values are chosen to be β1 = 0.5, β2 = 1, and the sample sizes are chosen to be n =

200, 300, 500 and 800. Similar to the one dimensional case, for each setup, we repeat the

simulation 500 times, and the MSEs are calculated and used to evaluate the finite sample

performance of the proposed EX procedure and the traditional SIMEX procedure.

Table 2.2: MSEs and Computation Time (minutes): bivariate exponential regression

n=200 n=300
σ2
u 0.25 0.2 0.1 0.25 0.2 0.1

EX
MSE 0.116 0.210 0.067 0.078 0.017 0.014 0.088 0.107 0.058 0.040 0.015 0.009
Time 7.124 7.124 7.124 7.124 7.168 7.168 9.410 9.410 9.460 9.460 9.407 9.407
SIMEX
MSE 0.033 0.036 0.024 0.029 0.013 0.012 0.029 0.033 0.024 0.027 0.012 0.010
Time 17.827 17.827 17.779 17.779 15.834 15.834 19.620 19.620 19.017 19.017 17.631 17.631

Table 2.3: MSEs and Computation Time (minutes): bivariate exponential regression

n=500 n=800
σ2
u 0.25 0.2 0.1 0.25 0.2 0.1

EX
MSE 0.060 0.079 0.037 0.026 0.011 0.006 0.045 0.033 0.025 0.015 0.006 0.004
Time 13.95 13.95 13.992 13.992 14.317 14.317 21.009 21.009 21.081 21.081 20.993 20.993
SIMEX
MSE 0.028 0.030 0.019 0.024 0.010 0.009 0.021 0.029 0.017 0.022 0.009 0.008
Time 24.418 24.418 23.105 23.105 21.531 21.531 31.46 31.46 30.552 30.552 27.249 27.249

From Table 2.2 and 2.3, we can see the EX has slightly larger MSE values than the

SIMEX procedure, but its computational time is much less than the SIMEX procedure.

Quantile Regression. In this simulation study, we consider a quantile regression model with

univariate predictor, as discussed in Example 6 in Section 2. The simulated data are gener-

ated from the linear regression model Y = β0 + β1X + ε, where X has a standard normal

distribution. For ε, we consider two distributions – the standard normal distribution and

(χ2
2 − 1.3863)/2, where χ2

2 denotes a χ2-distribution with degrees of freedom 2. Note that

1.3863 and 2 are the 50-th percentile and the standard deviation of the χ2-distribution, re-

spectively, so ε has a median of 0 and variance 1. In the simulation study, the sample size

is chosen to be n = 300, and n = 500, and two measurement error variances, 0.12 and 0.52,

33



are used to evaluate the effect of the measurement error on the quantile regression line. The

quadratic function is used for extrapolation.

Figure 2.1: Quantile Regression (Normal, σu = 0.1)
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The dashed line in the left plot on Figure 2.1 shows the fitted quantile regression lines

using the EX method when n = 300, σu = 0.1, and ε is normally distributed. From the

top to the bottom, the dashed lines are corresponding to the fitted 90, 75, 50, 25 and 10-th

quantiles lines. For comparison purposes, we also plot the quantile regression lines fitted

using the SIMEX method (dash-dotted lines), the naive method (the dotted lines), and as

a benchmark, the quantile regression lines fitted from the data on (Y,X) (solid lines) are

also plotted. These fitted quantile lines are well-matched to the benchmark lines. Except

for some slight deviations, all methods perform equally well, including the naive method.

The right plot on Figure 2.1 is for n = 500, similar patterns are observed. Figure 2.2 shows

the simulated quantile regression lines for σu = 0.5, and the superiority of the EX method

and the traditional SIMEX over the naive method is observed. We can also see that the

performance of the EX method and the traditional SIMEX is comparable.

The results from the simulation studies when ε follows (χ2
2− 1.3863)/2 are shown in Fig-
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Figure 2.2: Quantile Regression (Normal, σu = 0.5)
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ures 2.3 and 2.4. Note that in all scenarios except for σu = 0.1, it seems like the EX method

and the traditional SIMEX are not very satisfying when estimating the 90-th quantile. This

might be partially due to the fact that a right-skewed error distribution tends to generate

more large outliers. When σu is large, both the EX method and the traditional SIMEX

outperform the naive method in general.

2.4.2 Real Data Application

To investigate whether the serum 25-hydroxyvitamin D (25(OH)D) is influenced by the long

term vitamin D average intake or not, Curley (2017) analyzed a data set from the National

Health and Nutrition Examination Survey (NHANES), and used a nonlinear function to

model the regression mean of 25(OH)D on the long term vitamin D average intake. In this

section, we apply the proposed estimation procedure on a subset of the 2009-2010 NHANES

study. The selected data set contains dietary records of 806 Mexican American females. The

long term vitamin D average intake X is not measured directly, instead, two independent

daily observations of vitamin D intake are collected. Let Zji be the vitamin D intake from the
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Figure 2.3: Quantile Regression (χ2, σu = 0.1)
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Figure 2.4: Quantile Regression (χ2, σu = 0.5)
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i-th subject at the j-th time, and we assume that the additive structures Zji = Xi+Uji hold

for all i = 1, 2, . . . , 806, j = 1, 2. We use Zi = (Z1i+Z2i)/2 to represent the observed vitamin

intake, and by assuming that U1i and U2i are independently and identically distributed, we
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can estimate the standard deviation of the measurement error U by the sample standard

deviation of the differences (Z1i − Z2i)/2, i = 1, 2, . . . , n. Similar to Curley (2017), a square

root transformation of the 25(OH)D is used to achieve a more symmetric structure.

We adopt the S-shaped function β0+β1/(1+exp{β2(X−β3)}) as the regression function

of Y against X, which is also used in Curley (2017). 11 equally spaced values are chosen from

[0, 1] as the λ values. By checking the estimates of the parameters at various λ-values, as the

circles shown in Figure 2.5, we can see that the quadratic extrapolation function seems more

proper. The EX estimates using the quadratic extrapolation are β0 = 7.462, β1 = −1.598,

β2 = 0.742, β3 = −2.515 and the solid line in Figure 2.6 represents the fitted regression

function. For comparison purpose, we also fit the model using linear extrapolation function,

as the dashed line shown in Figure 2.6. Clearly, the fitted regression function based on the

quadratic extrapolation function seems to fit the data structure better than the one based

on the linear extrapolation function. We also applied the traditional SIMEX method with

B = 100 to fit the data, also using the quadratic extrapolation function, the result is shown

as the dotted line in Figure 2.6, and one can see that it behaves similarly to the EX fitted

lines using the quadratic extrapolation. Finally, we also fit the data using the naive method,

and the estimates are β0 = 8.077, β1 = −1.626, β2 = 0.322, β3 = 3.864. Note that the naive

estimate for β3 has a different sign from the EX estimate.
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Figure 2.5: Extrapolation plots using quadratic function
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Figure 2.6: Nonlinear regression for HNANES data. The solid line represents the fit from
the proposed method using quadratic extrapolation, the dashed line represents the fit from
the proposed method using linear extrapolation and the dotted line denotes the fit from the
SIMEX procedure.
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2.5 Discussion

The extrapolation estimation procedure proposed in this paper has a potential extension

to other more complicated regression models when some predictors are contaminated with

normal measurement errors, such as the partially linear regression models, the varying coef-

ficients regression models or other semi-parametric models, where the error-prone variables

appear as a linear component.

The extension to the partially linear regression model Y = XTβ + g(T ) + ε is straight-

forward, where X is a p-dimensional latent predictor, g is an unknown univariate func-

tion satisfying some smoothness conditions. Suppose Z = X + U , U ∼ N(0,Σu), and

T can be observed directly. Then, using the least squares procedure, and following the

protocol of the extrapolation algorithm described in Section 2.3, we can estimate β and

g by minimizing the conditional expectation E
[∑n

i=1[Yi − ZT
i (λ)β − g(Ti)]

2|Y ,Z,T
]
or∑n

i=1[Yi − ZT
i β − g(Ti)]

2 + λβTΣuβ, where Y = (Y1, . . . , Yn)
T , Z = (Z1, . . . , Zn)

T , and

T = (T1, . . . , Tn)
T . Note that λ = −1 can be directly plugged in. Applying the pro-

file least squares procedure, that is replacing g(Ti) by its pseudo-kernel estimate ĝ(t; β) =∑n
j=1 Lh(t−Tj)(Yj −ZT

j β)/
∑n

j=1 Lh(t−Tj), where Lh(·) = L(·/h)/h for a kernel function L

and a bandwidth h, we can estimate β by the minimizer of
∑n

i=1[Yi−ZT
i β− ĝ(Ti)]

2−βTΣuβ

and eventually estimate g(t) with ĝ(t; β̂). This is the same estimation procedure used in

Liang et al. (1999) when they discuss the variable selection for the partially linear models

with measurement errors.

The varying coefficient regression model assumes that a scalar response variable Y de-

pends on the explanatory vectors X and W via the relationship Y = XTg(W Tβ) + ε,

where X is a latent vector following the measurement error structure Z = X + U with

U ∼ N(0,Σu), and W is observable. The unknown vector function g and the parameter

β are the quantities of interest. Pretending g is known, then we can estimate β by min-

imizing the conditional expectation E
[∑n

i=1[Yi − ZT
i (λ)g(W

T
i β)]

2|Y ,Z,W
]
or
∑n

i=1[Yi −

ZT
i g(W

T
i β)]

2 + λgT (W T
i β)Σug(W

T
i β). Similar to the partially linear regression case, one

can apply the two-step profile least squares estimation procedure to estimate g and β after
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replacing λ with −1.

Another important question is the robustness of proposed extrapolation procedure against

the misspecification of the normality assumption on the measurement error. Many re-

searchers have claimed that the classcial SIMEX procedure is robust. However, Koul and

Song (2014) proved theoretically, along with some examples, that this statement is not true.

In fact, we can see that the procedure proposed in this paper is not robust either. To see this,

let us revisit the Poisson regression model discussed in Section 2.2 with a univariate predictor

X. Suppose the measurement error U is normally distributed and the true parameter value

is θ0, then by adding extra normal error, we have E[Y Zθ − exp(Zθ) exp(λθ2σ2
u/2)] equals

E[Y Xθ − exp(Xθ) exp((λ+ 1)θ2σ2
u/2)] = E[Xθ exp(Xθ0)− exp(Xθ) exp((λ+ 1)θ2σ2

u/2)].

Extrapolating λ → −1, one can see that θ0 is a maximizer of E[Xθ exp(Xθ0) − exp(Xθ)].

But if U has a Laplace distribution with mean 0 and variance σ2
u, and we still proceed by

adding extra normal errors, then, note that for such a Laplace random variable U , we have

E exp(Uθ) = (1− σ2
uθ

2)−1, so

E[Y Zθ − exp(Zθ) exp(λθ2σ2
u/2)] = E[Y Xθ − exp(Xθ)(1− σ2

uθ
2/2)−1 exp(λθ2σ2

u/2)].

If we also assume that X ∼ N(0, σ2
u), then extrapolating λ → −1, the above expectation

becomes θθ0σ
2
u exp(θ

2
0σ

2
u/2) − (1 − σ2

uθ
2/2)−1, and its maximum does not achieve at θ = θ0

in general.

To conclude this section, we would like to point out that the proposed method provides

an alternative way to look for the corrected score function defined in Nakamura (1990), if the

conditional expectation (2.3.1) can be directly extrapolated to λ = −1. Also, we must be

aware of the limitation of the proposed EX procedure. If the target conditional expectations,

such as the ones defined in, have a more complicated expression than the target functions

used in the traditional SIMEX, the efficiency of EX procedure gained from skipping the

simulation step in the traditional SIMEX might be compromised by a time-consuming step
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of optimization. Therefore, the proposed EX procedure should be viewed as a complement

to the SIMEX but not a replacement.
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Chapter 3

Extrapolation Estimation for

Nonparametric Regression

with Measurement Error

3.1 Introduction

Due to its conceptual simplicity and the capability to harness the modern computational

power, the simulation extrapolation estimation (SIMEX) procedure has been attracting sig-

nificant attention from practical data analysts as well as theoretical researchers. The sim-

plicity of the SIMEX lies in the fact that it allows us to directly use any standard estimates

based on the known data as the building block, and its simulation nature makes the esti-

mation process computer-dependent only. To be specific, suppose we want to estimate a

parameter θ, possibly multidimensional, in a statistical population X of dimension p, where

p ≥ 1. In certain situations where we cannot collect observations directly from X, what we

observe is a surrogate value Z of X. In measurement error literature, a classical assumption

on the relationship between X and Z is Z = X + U , where U is called the measurement

error, which is often assumed to be independent of X, and has a normal distribution with

mean 0 and known covariance matrix Σu. If there is an estimator T (X) of θ when a sample
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X = {X1, . . . , Xn} of size n from X is available, then when only Z can be observed, the

classical SIMEX procedure estimates θ, using sample Z = {Z1, . . . , Zn} from Z, by going

through the following three steps. First, we generate n i.i.d. random vectors Vi’s from

N(0,Σu), select a nonnegative number λ, calculate Z̃i(λ) = Zi +
√
λVi for i = 1, 2, . . . , n,

and compute T (Z̃(λ)) based on Z̃(λ) = {Z̃1(λ), . . . , Z̃n(λ)}. Second, we calculate the con-

ditional expectation of T (Z̃(λ)) given Z. If the conditional expectation has a closed form,

then it will be the estimate of θ, otherwise, we repeat the previous step B times to obtain

B values of Tb(Z̃(λ)), b = 1, 2, . . . , B, and the average T̄ (λ) of these B values of Tb(Z̃(λ))’s

is computed. Finally, we repeat the first step and second step for a sequence of nonnegative

λ values, for example, 0 = λ1 < . . . < λK for some K. We denote these K averages as

T̄ (λ1), . . . , T̄ (λK). To conclude, the trend of T̄ (λ) with respect to λ will be formulated as a

function of λ, and the extrapolated value of this function at λ = −1 is the desired SIMEX

estimate of θ. In real applications, K is suggested to be less than 20 and these K λ-values

are chosen equally spaced from [0, 2]. The early development of the classical SIMEX esti-

mation procedure can be found in Cook and Stefanski (1994), Stefanski and Cook (1995)

and Carroll et al. (1996), with extensive applications in Mallick et al. (2002) for cox regres-

sion, Sevilimedu et al. (2019) for Log-logistic accelerated failure time models, Gould et al.

(1999) for the catch-effort analysis, Hwang and Huang (2003), Stoklosa et al. (2016) for the

capture-recapture models, Lin and Carroll (1999) for the analysis of the Framingham heart

disease data using the logistic regression, Hardin et al. (2003) for generalized linear models,

and Ponzi et al. (2019) for some applications in ecology and evolution, to name a few.

However, the discussion of the classical SIMEX estimation procedure in the nonpara-

metric setup seems scant in the literature. Stefanski and Bay (1996) applied the simulation

extrapolation procedure to estimate the cumulative distribution function of a finite popu-

lation based on the Horvitz-Thompson estimator. Since the conditional expectation of the

Horvitz-Thompson estimator with the true variable replaced by the pseudo-data given the

observable surrogates has an explicit form, the simulation step can be bypassed. Also, the

quadratic function of λ is shown to be a reasonable extrapolation function. Carroll et al.

(1999) extended the classical SIMEX procedure to the nonparametric regression setup and
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it was implemented with the local linear estimator. In Carroll et al. (1999)’s work, the

three steps in the classical SIMEX procedure are strictly followed. To estimate the un-

known variance function in a general one-way analysis of variance model, Carroll and Wang

(2008) proposed a permutation SIMEX estimation procedure to completely remove the bias

after extrapolation. Wang et al. (2010) generalized Stefanski and Bay (1996)’s method to

estimate the smooth distribution function in the presence of heteroscedastic normal measure-

ment errors. Aiming at improving the SIMEX local linear estimator in Carroll et al. (1999),

Staudenmayer and Ruppert (2004) introduced a new local polynomial estimator with the

SIMEX algorithm. The improvement over the existing estimation procedure is made possi-

ble by using a bandwidth selection procedure. Again, Staudenmayer and Ruppert (2004)’s

method still strictly followed the three-steps in the classical SIMEX.

Compared to various applications in both the parametric and nonparametric statistical

models, the SIMEX procedure developed in Stefanski and Bay (1996) and Wang et al. (2010)

successfully dodged the simulation step, which is the most time-consuming part in the clas-

sical SIMEX algorithm. The very reason why their methods work is that the averaged naive

estimator from the pseudo-data, conditioning on the observed surrogates, has an explicit

limit ready for extrapolation, as the number of pseudo-data sets tends to infinity. Clearly,

the strategy used in both references cannot be directly extended to other scenarios where

such limits do not have user-friendly forms. In this paper, we will propose a new method,

which in spirit is a variant of the classical SIMEX procedure, for estimating the nonparamet-

ric regression. The new method can also successfully circumvent the simulation step, and

the applicable extrapolation functions can also be found, although still being approximated,

based on the true but not usable extrapolation functions derived from the theory.

3.2 Motivating Examples

In this section, we shall discuss two motivating examples which inspired our interest in

searching for a more efficient bias reduction estimation procedure in the nonparametric

setup. Our ambition is to keep the attractive feature of the extrapolation component in the
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classical SIMEX algorithm, while at the same time, significantly reducing the computational

burden.

3.2.1 Simple linear regression model

Let Y and X be two univariate random variables, which obey a simple linear relationship

E(Y |X) = α + βX. Suppose we cannot observe X but we have data on Z = X + U and

U ∼ N(0, σ2
u) with σ2

u being known. As discussed in Carroll et al. (1999), for any fixed λ > 0,

after repeatedly adding the extra measurement errors, and computing the ordinary least

squares slope, the averaged estimator consistently estimates g(λ) = βσ2
X/(σ

2
X + (1 + λ)σ2

u).

Obviously, extrapolating λ to −1, we have g(−1) = β. This clearly shows that SIMEX works

very well for linear regression model. In fact, in the seminal paper Cook and Stefanski (1994),

the SIMEX estimators of α and β can be derived without the simulation step. However, the

derivation relies on a notion of NON-IID pseudo-errors. More details about the NON-IID

pseudo-errors can be found in Cook and Stefanski (1994) and Section 5.3.4.1 in Carroll et al.

(2006). Here we would like to point out that the SIMEX estimators of α, β can be obtained

without using the NON-IID pseudo-errors.

Recall that the least squares (LS) estimator of α and β can be obtained by minimizing

the LS criterion
∑n

i=1(Yi − α − βXi)
2. Since Xi are not available, following the SIMEX

idea, we generate the pseudo-data Zi(λ) = Zi +
√
λVi, i = 1, 2, . . . , n. However, instead of

following the classical SIMEX road map to minimize the LS target function
∑n

i=1(Yi − α−

βZi(λ))
2, we minimize the conditional expectation E

[∑n
i=1(Yi − α− βZi(λ))

2
∣∣∣D], where

D = (Y ,Z), Y = (Y1, . . . , Yn) and Z = (Z1, . . . , Zn). Since Vi’s are i.i.d. from N(0, σ2
u)

and independent of other random variables in the model, so this conditional expectation

equals
∑n

i=1(Yi − α− βTZi)
2 + nλβTΣUβ. The minimizer of the above expression is simply

β̂(λ) = (SZZ+λΣU)
−1SY Z and α̂(λ) = Ȳ −β̂T (λ)X̄ and by choosing λ = −1, we immediately

have the commonly used bias-corrected estimators or the SIMEX estimators derived using

NON-IID pseudo-errors. Note that here not only do we not need the simulation step, but

also the extrapolation step is unnecessary.
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3.2.2 Kernel density estimation

Suppose we want to estimate the density function fx(x) of X in the measurement error

model Z = X + U . When observations can be made directly on X, the kernel density

estimation procedure is often called on for this purpose. Starting with the classical ker-

nel estimator, Wang et al. (2009) followed the classical SIMEX algorithm, constructed an

average of the kernel estimator f̂B,n(x) = B−1
∑B

b=1[n
−1
∑n

i=1Kh(x − Zi −
√
λVi,b)] with

B pseudo-data sets {Zi +
√
λVi,b}ni=1, b = 1, 2, . . . , B, where Kh(·) = h−1K(·/h). By

the law of large numbers, f̂B,n(x) → n−1
∑n

i=1

∫
Kh(x − Zi −

√
λσuu)ϕ(u)du = f̃n(x)

in probability. After some algebra, Wang et al. (2009) proposed to estimate fx(x) using

f̂n(x) = n−1
∑n

i=1(
√
λσu)

−1ϕ((x − Zi)/
√
λσu) which approximates the limit f̃n(x) for suf-

ficiently large n. In fact, before initiating the simulation step, Cook and Stefanski (1994)

suggested one should try to calculate the conditional expectation E[fB,n(x)|Z] first. If this

conditional expectation has a tractable form, then it will be chosen as the SIMEX esti-

mator. Clearly, the conditional expectation is simply f̃n(x). It is interesting to note that

if we deliberately choose the kernel function K to be standard norm, we can show that

f̃n(x) = (n
√

λσ2
u + h2)−1

∑n
i=1 ϕ((x − Zi)/

√
λσ2

u + h2) which can also be directly used for

extrapolation. Because there is no approximation done here, f̃n(x) should potentially per-

form better than the estimator f̂n(x) as proposed in Wang et al. (2009).

It is easy to see that the technique used in the kernel density estimation cannot be

extended to the regression setup, since the commonly used kernel regression estimators, either

the Nadaraya-Watson estimator, or the local linear estimator, often appear as a fraction

of kernel components, which fails to provide a tractable conditional expectation for direct

extrapolation. However, the observation of recovering the commonly used bias-corrected

estimators or the SIMEX estimators derived using NON-IID pseudo-errors in the linear

errors-in-variables regression indicates that we could have some interesting findings if we

can apply the conditional expectation argument directly on the target functions, instead of

computing the conditional expectation of the resulting naive estimator. In the next section,

we will implement this idea via estimating the nonparametric regression function using a
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local linear smoothing procedure.

3.3 Extrapolation Estimation Procedure via Local Lin-

ear Smoother

For the sake of simplicity, we restrict ourselves to the univariate predictor cases. The pro-

posed methodology can handle the multivariate predictor cases very well at the cost of

introducing more complex notations. To be specific, suppose that the random pair (X, Y )

obeys the following nonparametric regression model

Y = g(X) + ε, Z = X + U (3.3.1)

with the common assumption on ε, E(ε|X) = 0 and 0 < τ 2(X) = E(ε2|X) < ∞. X and

U are independent and U has a normal distribution N(0, σ2
u) with known σ2

u. If (X, Y ) are

available, the local linear estimator for g(x) at a fixed x-value in the domain of X is defined

as

ĝn(x) =
S2n(x)T0n(x)− S1n(x)T1n(x)

S2n(x)S0n(x)− S2
1n(x)

,

where Sjn(x) = n−1
∑n

i=1(Xi−x)jKh(Xi−x), Tjn(x) = n−1
∑n

i=1(Xi−x)jYiKh(Xi−x), and

j = 0, 1, 2 for Sjn(x), j = 0, 1 for Tjn(x), Kh(·) = h−1K(·/h), and K is a kernel function, h is

a sequence of positive numbers often called bandwidths. In the measurement error setup, a

classical SIMEX estimator of g can be obtained through three steps: simulation, estimation

and extrapolation. For the sake of completeness, the following algorithm provides a detailed

guideline for implementing the three steps in estimating g(x) from data on Y, Z.

48



SIMEX Algorithm of Local Linear Smoother

(1) Pre-select a sequence of positive numbers λ = λ1, . . . , λK .

(2) For λ = λ1, repeat the following steps B times. At the b-th repetition,

(i) Generate n i.i.d. random observations Vi,b’s from N(0,Σ), and cal-

culate Zi,b(λ) = Zi +
√
λ1Vi = Xi + Ui +

√
λ1Vi,b, i = 1, 2, . . . , n.

(ii) Compute

ĝn,b(x;λ1) =
S2nb(x)T0nb(x)− S1nb(x)T1nb(x)

S2nb(x)S0nb(x)− S2
1nb(x)

,

where

Sjnb(x) =
1

n

n∑
i=1

(Zi,b(λ)− x)jKh(Zi,b(λ)− x), j = 0, 1, 2,

Tlnb(x) =
1

n

n∑
i=1

(Zi,b(λ)− x)lYiKh(Zi,b(λ)− x), l = 0, 1.

(3) Calculate ĝn,B(x;λ1) = B−1
∑B

b=1 ĝn,b(x;λ1).

(4) Repeat (2)-(3) for λ = λ2, . . . , λK .

(5) Identify a parametric trend of the pairs (λk, ĝn,B(x;λk)), k = 1, 2, . . . , K

and denote the trend as a function Γ(x;λ). The SIMEX estimator of g

is defined as ĝSIMEX(x) = Γ(x;−1).

As a rough guideline, the λ values are often selected as a sequence of equally spaced grid

points from [0, 2], K is a positive integer as small as 5 or as large as 20, and B is often

chosen to be 100 or above. With such choices, one can see the classical SIMEX procedure

for implementing the local linear smoother is computationally intensive.

To introduce our estimation procedure, we start with the local linear procedure. If X
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can be observed, then based on a sample (Xi, Yi), i = 1, 2, . . . , n from model (3.3.1), the local

linear estimator of the regression function g, as well as its first order derivative at x, can be

obtained by minimizing the following target function L(β0, β1) =
∑n

i=1(Yi − β0 − β1(Xi −

x))2Kh(Xi − x) with respect to β0 and β1. In fact, the solution of β0 is the local linear

estimator of g(x) and β1 is the local linear estimator of g′(x).

For a positive constant λ, we replace Xi with the pesudo-data Zi(λ) = Zi +
√
λVi in the

weighted least squares L(β0, β1), and calculate its conditional expectation given (Zi, Yi), i =

1, 2, . . . , n. A straightforward calculation shows that the minimizer of

n∑
i=1

E
(
[Yi − β0 − β1(Zi(λ)− x)]2Kh(x− Zi(λ))|(Yi, Zi)

)
with respect to β0, β1 is given by the solution of the following equations



n∑
i=1

E ([Yi − β0 − β1(Zi(λ)− x)]Kh(Zi(λ)− x)|(Yi, Zi)) = 0,

n∑
i=1

E ([Yi − β0 − β1(Zi(λ)− x)](Zi(λ)− x)Kh(Zi(λ)− x)|(Yi, Zi)) = 0.

(3.3.2)

The choice of kernel function K is not critical in theory, but for the ease of computation,

choosing K to be standard normal can bring us extra benefits. In fact, with such a choice,

together with the normality of the measurement error, the conditional expectations in (3.3.2)

have explicit forms. Note that Vi’s are i.i.d. from N(0, σ2
u) and independent of (Zi, Yi),

routine calculation (see Appendix B) shows that

E[Kh(Z(λ)− x)|Y, Z] = ϕ(x;Z, h2 + λσ2
u), (3.3.3)

E[(Z(λ)− x)Kh(Z(λ)− x)|Y, Z] = h2

h2 + λσ2
u

(Z − x)ϕ(x;Z, h2 + λσ2
u), (3.3.4)

E[(Z(λ)− x)2Kh(Z(λ)− x)|Y, Z] = h4

(h2 + λσ2
u)

2
(Z − x)2ϕ(x;Z, h2 + λσ2

u)

+
λσ2

uh
2

h2 + λσ2
u

ϕ(x;Z, h2 + λσ2
u), (3.3.5)

here, also throughout this paper, ϕ(x;µ, σ2
u) denotes the normal density function with mean
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µ and variance σ2
u. Denote Anj(x) = n−1

∑n
i=1(Zi − x)jϕ(x;Zi, h

2 + λσ2
u) for j = 0, 1, 2, and

Bnl(x) = n−1
∑n

i=1 Yi(Zi − x)lϕ(x;Zi, h
2 + λσ2

u) for l = 0, 1. Then the solution of (β0, β1) of

equation (3.3.2), or (ĝn(x;λ), ĝ
′
n(x;λ)) has the form of

ĝn(x;λ)

ĝ′n(x;λ)

 =

 An0(x) r(λ, h)An1(x)

r(λ, h)An1(x) r(λ, h)[An2(x) + λσ2
uAn0(x)]


−1 Bn0(x)

r(λ, h)Bn1(x)

 ,

(3.3.6)

where r(λ, h) = h2/(h2 + λσ2
u).

Note that (3.3.6) itself can be used for extrapolation. However, unlike the estimator β̂(λ),

α̂(λ) derived in the example of the linear regression, λ = −1 cannot be plugged directly

into (3.3.6) to get the SIMEX estimator. In fact, when the sample size n gets bigger, the

bandwidth h decreases to 0. As a result, when λ = −1, h2+λσ2
u is negative for large sample

sizes. As the variance of a normal density function, h2 − σ2
u should not be negative, which

implies the extrapolation step is necessary.

Therefore, we propose the following two-step SIMEX procedure, or more appropriately,

the extrapolation (EX) procedure, to find an estimate of the regression function g.

EX Algorithm of The Local Linear Smoother

(1) For each λ from the pre-selected sequence λ = λ1, . . . , λK , calculate

ĝn(x;λ);

(2) Identify a trend of the pairs (λk, ĝn(x;λk)) and (λk, ĝ
′
n(x;λk)), k =

1, 2, . . . , K. Denote the trend as a function G(x;λ), respectively. Then,

the EX estimator of g and its derivative are defined by ĝEX(x) =

G(x;−1).

Obviously, the above EX algorithm is much more efficient than the classical three-step

SIMEX algorithm. Also,it is also easy to see that ĝn(x;λ) from the EX algorithm is not the
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limit of ĝn,B(x;λ) in the SIMEX algorithm as B → ∞. Given the observed data (Zi, Yi)
n
i=1,

by the law of large numbers, for a fixed λ, as B → ∞, ĝn,B(x;λ) = B−1
∑B

b=1 ĝn,b(x;λ)

converges to g̃n(x;λ) in probability, where

g̃n(x;λ) =

∫
S2n(x,v)T0n(x,v)− S1n(x,v)T1n(x,v)

S2n(x,v)S0n(x,v)− S2
1n(x,v)

ϕ(v; 0, λσ2
u)dv, (3.3.7)

where v = (v1, . . . , vn)
T , ϕ(v; 0, λσ2

u) =
∏n

i=1 ϕ(vi; 0, λσ
2
u), and

Sjn(x,v) =
1

n

n∑
i=1

(Zi + vi − x)jKh(Zi + vi − x), j = 0, 1, 2,

Tln(x,v) =
1

n

n∑
i=1

(Zi + vi − x)lYiKh(Zi + vi − x), l = 0, 1.

However, the estimator ĝn(x;λ) defined in (3.3.6) has the form of

ĝn(x;λ) =
S̃2n(x)T̃0n(x)− S̃1n(x)T̃1n(x)

S̃2n(x)S̃0n(x)− S̃2
1n(x)

=
An2(x)Bn0(x) + λσ2

uAn0(x)Bn0(x)− r(λ, h)An1(x)Bn1(x)

An2(x)An0(x) + λσ2
uA

2
n0(x)− r(λ, h)A2

n1(x)
, (3.3.8)

where

S̃jn(x) =

∫
Sjn(x,v)ϕ(v; 0, λσ

2
u)dv, T̃ln(x) =

∫
Tln(x,v)ϕ(v; 0, λσ

2
u)dv (3.3.9)

for j = 0, 1, 2 and l = 0, 1, respectively. Therefore, g̃n(x;λ) is different from ĝn(x;λ), which

indicates that ĝn(x;λ) from the SIMEX algorithm is not the limit of the EX algorithm as

B → ∞. In fact, ĝn(x;λ) can be viewed as the limit of ĝn,b(x;λ) with Sjnb(x) and Tlnb(x)

replaced by B−1
∑B

b=1 Sjnb(x) and B−1
∑B

b=1 Tlnb(x), j = 0, 1, 2, l = 0, 1, respectively, as

B → ∞.
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3.4 Asymptotic Theory of EX Algorithm

In this section, we shall investigate the large sample behaviours for the EX algorithm pro-

posed in the previous section. We will show that as n → ∞, ĝn(x;λ) indeed converges to a

function of both x and λ, but the latter can approximate the true regression function g(x) as

λ → −1, thus justifying the effectiveness of extrapolation. The asymptotic joint distribution

of ĝn(x;λ) at different λ values, including λ = 0 which corresponds to the naive estimator,

will be also discussed.

The following is a list of regularity conditions we need to justify all the theoretical deriva-

tions.

C1. fx(x), g(x) τ 2(x) = E(ε2|X = x), µ(x) = E(|ε|3|X = x) are twice continuously

differentiable; also for each x in the support of X, as a function of t, η′(t+x), η′′(t+x) ∈

L2(ϕ(t, 0, σ
2
u)), where η = fx, g, g

2, τ 2, τ 4, µ and µ2.

C2. The bandwidth h satisfies h → 0, nh → ∞ as n → ∞.

To proceed, for integers j ≥ 0, we denote

fj,λ(x) =

∫
ϕ(t;x, (λ+ 1)σ2

u)t
jfX(t)dt, gj,λ(x) =

∫
tjg(t)fX(t)ϕ(t, x, (1 + λ)σ2

u)dt,

Gj,λ(x) =

∫
tjg2(t)fX(t)ϕ(t, x, (1 + λ)σ2

u)dt, Hj,λ(x) =

∫
tjτ 2(t)fX(t)ϕ(t, x, (1 + λ)σ2

u)dt.

By a routine and tedious calculation, we can show the following result from which the

asymptotic bias of ĝn(x;λ) can be derived as n → ∞.

Theorem 4. Under conditions C1 and C2, for each λ ≥ 0, we have

ES̃n2(x) · ET̃n0(x)− ES̃n1(x) · ET̃n1(x)

ES̃n2(x) · ES̃n0(x)− [ES̃n1(x)]2
=

g0,λ(x)

f0,λ(x)
+ h2B(x;λ) + o(h2), (3.4.1)

where B(x;λ) equals

f0,λ(x)g
′′
0,λ(x)− f ′′

0,λ(x)g0,λ(x)

2f 2
0,λ(x)

+
(f1,λ(x)− xf0,λ(x))(g0,λ(x)f1,λ(x)− f0,λ(x)g1,λ(x))

(λ+ 1)2σ4
uf

3
0,λ(x)

,
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where S̃nj(x) and T̃nl(x) for j = 0, 1, 2 and l = 0, 1 are defined in (3.3.9).

Note that, as λ → −1, g0,λ(x) → g(x)fX(x), and f0,λ(x) → fX(x). For B(x;λ), we have

f1,λ(x)− xf0,λ(x) =

∫
(t− x)fX(t)ϕ(t;x, (λ+ 1)σ2

u)dt = (λ+ 1)σ2
uf

′
X(x) + o((λ+ 1)σ2

u),

and g1,λ(x)− xg0,λ(x) can be written as

∫
(t− x)g(t)fX(t)ϕ(t;x, (λ+ 1)σ2

u)dt = (λ+ 1)σ2
u[gfX ]

′(x) + o((λ+ 1)σ2
u)

as λ → −1. Then we can further show that

B(x;λ) =
f0,λ(x)g

′′
0,λ(x)− f ′′

0,λ(x)g0,λ(x)

2f 2
0,λ(x)

+
g0,λ(x)(f

′
X(x))

2

f 3
0,λ(x)

− f ′
X(x)[gfX ]

′(x)

f 2
0,λ(x)

+ o(1),(3.4.2)

where o(1) denotes that the corresponding terms converge to 0 as λ → −1. Therefore, we

have limλ→−1B(x;λ) = g′′(x)/2. Thus, from Theorem 4,

lim
λ→−1

[
ES̃n2(x) · ET̃n0(x)− ES̃n1(x) · ET̃n1(x)

ES̃n2(x) · ES̃n0(x)− [ES̃n1(x)]2

]
= g(x) +

g′′(x)h2

2
+ o(h2),

and this immediately leads to

lim
λ→−1

lim
h→0

[
ES̃n2(x) · ET̃n0(x)− ES̃n1(x) · ET̃n1(x)

ES̃n2(x) · ES̃n0(x)− [ES̃n1(x)]2

]
= g(x).

To investigate the asymptotic distribution of ĝn(x;λ), denote

Dn(x) = (S̃n2(x)S̃n0(x)− S̃2
n1(x))(ES̃n2(x)ES̃n0(x)− (ES̃n1(x))

2),

Cn0(x) = ES̃n2(x)[ES̃n1(x)ET̃n1(x)− ES̃n2(x)ET̃n0(x)],

Cn1(x) = 2ES̃n1(x)ES̃n2(x)ET̃n0(x)− (ES̃n1(x))
2ET̃n1(x)− ET̃n1(x)ES̃n2(x)ES̃n0(x),

Cn2(x) = ES̃n1(x) · [ES̃n0(x)ET̃n1(x)− ET̃n0(x)ES̃n1(x)],

Dn0(x) = ES̃n2(x)[ES̃n2(x)ES̃n0(x)− (ES̃n1(x))
2],
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Dn1(x) = ES̃n1(x)[(ES̃n1(x))
2 − ES̃n2(x)ES̃n0(x)].

From Theorem 4, we can write ĝn(x) as

ĝn(x;λ) =
g0,λ(x)

f0,λ(x)
+ h2B(x;λ) + o(h2)

+D−1
n (x)

[ 2∑
j=0

Cnj(x)(S̃nj − ES̃nj) +
1∑

l=0

Dnl(x)(T̃nl − ET̃nl)
]
. (3.4.3)

Denote

c0λ(x) = −g0,λ(x)

f 2
0,λ(x)

, c1λ(x) =
2[f1,λ(x)− xf0,λ(x)]g0,λ(x)− [g1,λ(x)− xg0,λ(x)]f0,λ(x)

(λ+ 1)σ2
uf

3
0,λ(x)

,

c2λ(x) =
[f1,λ(x)− xf0,λ(x)][g1,λ(x)− xg0,λ(x)]f0,λ(x)− [f1,λ(x)− xf0,λ(x)]

2g0,λ(x)

(λ+ 1)2σ4
uf

4
0,λ(x)

,

d0λ(x) =
1

f0,λ(x)
, d1λ(x) = −f1,λ(x)− xf0,λ(x)

(λ+ 1)σ2
uf

2
0,λ(x)

.

Then, from Lemma 9 - Lemma 13 in Appendix B, we can show that, for λ ≥ 0, D−1
n Cn =

cjλ(x) + op(1), for j = 0, 1, 2 and D−1
n Dnj = djλ(x) + op(1) for j = 0, 1. We further denote

ξ0λ,i(x) = ϕ(x, Zi, h
2 + λσ2

u)− Eϕ(x, Z, h2 + λσ2
u),

ξ1λ,i(x) =
h2

h2 + λσ2
u

[
(Zi − x)ϕ(x, Zi, h

2 + λσ2
u)− E(Z − x)ϕ(x, Z, h2 + λσ2

u)
]
,

ξ2λ,i(x) =
h4

(h2 + λσ2
u)

2

[
(Zi − x)2ϕ(x, Zi, h

2 + λσ2
u)− E(Z − x)2ϕ(x, Z, h2 + λσ2

u)
]

+
λσ2

uh
2

h2 + λσ2
u

[
ϕ(x, Zi, h

2 + λσ2
u)− Eϕ(x, Z, h2 + λσ2

u)
]
,

η0λ,i(x) = Yiϕ(x, Zi, h
2 + λσ2

u)− EY ϕ(x, Z, h2 + λσ2
u)

η1λ,i(x) =
h2

h2 + λσ2
u

[
Yi(Zi − x)ϕ(x, Zi, h

2 + λσ2
u)− EY (Z − x)ϕ(x, Z, h2 + λσ2

u)
]
.
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Then, from (3.4.3), we have

ĝn(x;λ) =
g0,λ(x)

f0,λ(x)
+ h2B(x;λ) + o(h2)

2∑
j=0

[cjλ(x) + o(1)](S̃nj − ES̃nj) +
1∑

k=0

[dkλ(x) + o(1)](T̃nk − ET̃nk).

Since the terms o(1) in the above expression does not affect the asymptotic distribution of

ĝn(x;λ), so we can safely neglect the o(1) terms from the sum, and therefore the two sums

can be written as an i.i.d. average n−1
∑n

i=1 viλ(x), where viλ(x) is defined by

c0λ(x)ξ0λ,i(x) + c1λ(x)ξ1λ,i(x) + c2λ(x)ξ2λ,i(x) + d0λ(x)η0λ,i(x) + d1λ(x)η1λ,i(x). (3.4.4)

By verifying the Lyapunov condition, we can show that for each λ > 0, n−1
∑n

i=1 viλ(x) is

asymptotically normal. This asymptotic normality is summarized in the following theorem.

Theorem 5. Under conditions C1 and C2, for each λ > 0,

√
n

{
ĝn(x;λ)−

g0,λ(x)

f0,λ(x)
− h2B(x;λ) + o(h2)

}
=⇒ N(0,∆λ,λ(x)),

and for λ = 0,

√
nh

{
ĝn(x; 0)−

g0,0(x)

f0,0(x)
− h2B(x; 0) + o(h2)

}
=⇒ N(0,∆0,0(x)),

where

∆λ,λ(x) = c20λ

[
f0,λ/2(x)

2
√

πλσ2
u

− f 2
0,λ(x)

]
+ d20λ

[
G0,λ/2(x) +H0,λ/2(x)

2
√

πλσ2
u

− g20,λ

]

+2c0λd0λ

[
g0,λ/2(x)

2
√

πλσ2
u

− g0,λ(x)f0,λ(x)

]
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and

∆0,0(x) =
1

2
√
π

[
G00(x) +H00(x)

f 2
00(x)

− g200(x)

f 3
00(x)

]
.

Note that when σ2
u = 0, that is, no measurement error in X, then one can easily see

that ∆0,0(x) = τ 2(x)/(2
√
πfX(x)), which is exactly the asymptotic variance in local linear

estimator of the regression function in the error-free cases. The theorem below states the

asymptotic joint normality of [ĝn(x; 0), ĝn(x;λ1), · · · , ĝn(x;λK)]
′.

Theorem 6. Under conditions C1 and C2, for 0 < λ1 < · · · < λK < ∞,



√
nh 0 · · · 0

0
√
n · · · 0

...
...

. . .
...

0 0 · · ·
√
n





ĝn(x; 0)− g0,0(x)/f0,0(x)− h2B(x; 0) + o(h2)

ĝn(x;λ1)− g0,λ1(x)/f0,λ1(x)− h2B(x;λ1) + o(h2)

...

ĝn(x;λK)− g0,λK
(x)/f0,λK

(x)− h2B(x;λK) + o(h2)


=⇒ N(0,∆(x)),

where B(x;λ) is defined in (3.4.2),

∆(x) =



∆0,0(x) 0 0 · · · 0

0 ∆λ1,λ1(x) ∆λ1λ2(x) · · · ∆λ1λK
(x)

0 ∆λ1λ2(x) ∆λ2,λ2(x) · · · ∆λ2λK
(x)

... ∆λ1λK
(x) ∆λ2λK

(x) · · · ∆λK ,λK
(x)


,

and ∆λiλj
(x), i = 0, 1, . . . , K, j = 1, 2, . . . , K, are given by

c0λi
(x)c0λj

(x)√
2π(λi + λj)σ2

u

∫
ϕ

(
t, x,

(
λiλj

λi + λj

+ 1

)
σ2
u

)
fX(t)dt− f0,λi

(x)f0,λj
(x)

+
c0λi

(x)d0λj
(x)√

2π(λi + λj)σ2
u

∫
g(t)ϕ

(
t, x,

(
λiλj

λi + λj

+ 1

)
σ2
u

)
fX(t)dt− f0,λi

(x)g0,λj
(x)

+
c0λj

(x)d0λi
(x)√

2π(λi + λj)σ2
u

∫
g(t)ϕ

(
t, x,

(
λiλj

λi + λj

+ 1

)
σ2
u

)
fX(t)dt− f0,λj

(x)g0,λi
(x)
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+
d0λi

(x)d0λj
(x)√

2π(λi + λj)σ2
u

∫
g2(t)ϕ

(
t, x,

(
λiλj

λi + λj

+ 1

)
σ2
u

)
fX(t)dt− g0,λi

(x)g0,λj
(x).

The proof of the joint normality is a straightforward application of the multivariate CLT

on the following random vector



√
nh [ĝn(x; 0)− g0,0(x)/f0,0(x)− h2B(x; 0) + o(h2)]

√
n [ĝn(x;λ1)− g0,λ1(x)/f0,λ1(x)− h2B(x;λ1) + o(h2)]

...

√
n [ĝn(x;λK)− g0,λK

(x)/f0,λK
(x)− h2B(x;λK) + o(h2)]


=

1√
n



√
h
∑n

i=1 vi0(x)∑n
i=1 viλ1(x)

...∑n
i=1 viλK

(x)


.

For the sake of brevity, the proof will be omitted. In addition to the condition C2, if we

further assume that nh4 → 0, then the asymptotic bias can be removed.

3.5 Extrapolation Function

From the discussion in the previous section, the extrapolation function can be derived from

g0,λ(x)/f0,λ(x). From the definitions of g0,λ and f0,λ(x), we know that

Γ(λ) :=
g0,λ(x)

f0,λ(x)
=

∫
g(t)fX(t)ϕ(t;x, (λ+ 1)σ2

u)dt∫
fX(t)ϕ(t;x, (λ+ 1)σ2

u)dt
. (3.5.1)

As a function of λ, Γ(λ) does not have a tractable form, and some approximation is needed

for extrapolating. By change of variable, we have

∫
g(t)fX(t)ϕ(t;x, (λ+ 1)σ2

u)dt =

∫
g(x+

√
λ+ 1σuv)fX(x+

√
λ+ 1σuv)ϕ(v)dv.

Denote α = (λ+ 1)σ2
u, and assume that g and fX are four times continuously differentiable.

Then we have

∫
g(t)fX(t)ϕ(t;x, (λ+ 1)σ2

u)dt = g(x)fX(x) +
[fX(x)g(x)]

′′

2
α +

[fX(x)g(x)]
(4)

4!
α2 + o(α2),
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where o(·) is understood as a negligible quantity when λ → −1. Similarly, we have

∫
fX(t)ϕ(x; t, (λ+ 1)σ2

u)dt = fX(x) +
f ′′
X(x)

2
α +

f
(4)
X (x)

4!
α2 + o(α2).

Therefore, after neglecting the o(λ+ 1) term, from (3.5.1), we obtain

Γ(λ) ≈ g(x)fX(x) + σ2
u(λ+ 1)[fX(x)g(x)]

′′/2

fX(x) + σ2
u(λ+ 1)f ′′

X(x)/2
.

It is easy to see that the right hand side approaches g(x) as λ → −1, and indeed, for fixed

x-value, it has the form of a+ b/(c+ λ), the nonlinear extrapolation function often used in

the classical SIMEX estimation procedure. If we further apply the approximation

1

fX(x) + σ2
u(λ+ 1)f ′′

X(x)/2
=

1

fX(x)

[
1− σ2

u(λ+ 1)f ′′
X(x)

2fX(x)
+ o((λ+ 1))

]

or the approximation with higher order expansions, then we can obtain the commonly used

quadratic extrapolation function a+ bλ+ cλ2 and the polynomial extrapolation functions.

Almost all literature involving the classical SIMEX method, mostly in the parametric

setups, assumes that the true extrapolation function has a known nonlinear form when

discussing the asymptotic distributions of the SIMEX estimators. However, based on the

above discussion, the true extrapolation function is never known. To see this point clearly,

we further assume that X ∼ N(0, σ2
x). Then from (3.5.1), for any x ∈ R,

Γ(λ) =

∫
g(t)ϕ

(
t,

xσ2
x

(λ+ 1)σ2
u + σ2

x

,
(λ+ 1)σ2

uσ
2
x

(λ+ 1)σ2
u + σ2

x

)
dt.

Since the normal distribution family is complete, so the above expression implies that Γ(λ)

and g(t) are uniquely determined by each other. Since g is unknown, so neither is Γ. This

discouraging finding really invalidates all the potential theoretical developments based on

known extrapolation functions.

59



3.6 Numerical Study

In this section, we conduct some simulation studies to evaluate the finite sample performance

of the proposed SIMEX procedure. We also analyze a dataset from the National Health

and Nutrition Examination Survey (NHANES) to illustrate the application of the proposed

estimation procedure.

3.6.1 Simulation Study

In this simulation study, the simulated data are generated from the regression model Y =

g(X) + ε, Z = X + U , where X has a standard normal distribution, U is generated from

N(0, σ2
u) and ε is generated from a standard normal distribution. Three choices of regression

function g(x) were considered, namely g(x) = x2, exp(x) and x sin(x). To see the effect

of the measurement error variance on the resulting estimate, we choose σ2
u = 0.1 and 0.25.

The sample sizes are chosen to be n = 100, 200, 500. In each scenario, the estimates are

calculated for 200 equally spaced x-values xj, j = 1, 2, . . . , 200, are chosen from [−3, 3].

To implement the extrapolation step, the grid of λ is taken from 0 to 2 separated by 0.2.

The mean squared errors (MSE) are used to evaluate the finite sample performance of the

proposed SIMEX procedure. The bandwidth h is chosen to be n−1/5, a theoretical optimal

order when estimating the regression function based on the error-free data. To get a stable

result, all simulations were performed for 10 independent datasets, and the average of the 10

estimates was taken to be the final estimate at each of 200 x-values, and the MSE defined by

200−1
∑200

j=1[ĝn(xj)−g(xj)]
2 is used for evaluate the finite sample performance of the proposed

EX estimate. For comparison, we also apply the classical SIMEX algorithm and the naive

method to estimate these three regression functions with B = 50, 100. Besides the report on

the MSEs from the three algorithms, we also record the computation time in seconds from

each procedure to evaluate the algorithm efficiency. All the simulations were conducted on

a desktop computer with Windows system running on Intel(R) Core(TM) i7-10700 CPU of

2.90GHz, and 16GB RAM. The quadratic extrapolation function is used for both the EX

and SIMEX procedures. The simulation results are summarized in Tables 3.1 - 3.3. In all the
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tables, we use the EX to denote the proposed Extrapolation algorithm, SIMEX to denote

the classical SIMEX method, and Naive for naive method.

Table 3.1: g(x) = x sin(x), X ∼ N(0, 1)

σ2
u Method n = 100 n = 200 n = 500

MSE Time(s) MSE Time(s) MSE Time(s)

SIMEX B = 50 0.066 71.001 0.065 122.568 0.023 285.839

0.1
B = 100 0.142 139.862 0.137 243.531 0.032 569.185

EX 0.367 2.264 0.079 3.120 0.051 5.853
Naive 0.197 0.180 0.101 0.274 0.066 0.569

SIMEX B = 50 0.075 71.053 0.047 123.463 0.077 287.537

0.25
B = 100 0.084 141.015 0.138 245.227 0.067 572.512

EX 0.335 2.202 0.118 2.948 0.065 5.334
Naive 0.221 0.176 0.139 0.273 0.119 0.574

Table 3.2: g(x) = x2, X ∼ N(0, 1)

σ2
u Method n = 100 n = 200 n = 500

MSE Time(s) MSE Time(s) MSE Time(s)

SIMEX B = 50 0.420 70.813 0.346 122.444 0.055 285.444

0.1
B = 100 0.165 139.648 0.192 243.118 0.154 568.681

EX 0.688 2.263 0.201 3.129 0.067 5.884
Naive 0.318 0.179 0.450 0.270 0.385 0.572

SIMEX B = 50 0.996 71.103 0.336 123.314 0.164 287.267

0.25
B = 100 0.711 140.884 0.070 245.532 0.196 573.299

EX 0.069 2.176 0.372 2.949 0.029 5.340
Naive 1.820 0.180 2.282 0.274 1.456 0.573

The simulation results clearly show that the proposed EX algorithm is more efficient than

the classical SIMEX method in terms of computational speed. The finite sample performance

of both methods SIMEX and EX, as measured by the MSE, are comparable. When sample

sizes get larger, and the measurement error variances get smaller, both procedures performs

better, as expected. The advantage of using EX or SIMEX over the naive method may not

be obvious when the sample size or the noise level σ2
u is small, but both methods outperform
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Table 3.3: g(x) = exp(x), X ∼ N(0, 1)

σ2
u Method n = 100 n = 200 n = 500

MSE Time(s) MSE Time(s) MSE Time(s)

SIMEX B = 50 1.542 70.906 1.654 122.614 0.060 285.777

0.1
B = 100 0.351 139.888 0.069 243.476 0.252 568.903

EX 1.144 2.250 0.125 3.157 0.149 5.826
Naive 0.637 0.175 1.282 0.273 0.798 0.557

SIMEX B = 50 2.241 71.761 1.707 123.365 0.898 287.329

0.25
B = 100 0.544 140.633 0.150 245.134 0.217 572.378

EX 0.208 2.176 0.436 2.950 0.070 5.342
Naive 3.772 0.176 3.785 0.274 2.749 0.570

the naive method when either the sample size or the noise level is increased. It is well known

in measurement error literature that the performance of the estimation procedure heavily

depends on the signal to noise ratio, or the ratio of σ2
x and σ2

u. The signal to noise ratios

in the previous simulation studies are 10 and 4. We also conducted some simulation studies

with signal to noise ratio changed to 40 and 16 This resulted in improved performance of all

three methods, with the naive method sometimes providing better results than the SIMEX

and EX methods, which was not unexpected, since such high signal to noise ratios imply the

effect of measurement error is nearly negligible.

As mentioned in the beginning, we used the average of the estimates from 10 independent

data sets as the final estimate of the regression function. For illustration purposes, in Figure

3.1 to Figure 3.9, for each simulation setup, we present the fitted the regression curves for

n = 200, σ2
u = 0.25, and B = 50 for SIMEX, from all three methods, with the true regression

function as the reference. For completeness, in each figure, the four small plots show the

fitted regression curves from four different data sets, and the large plot shows the fitted

regression curve based on the averages.
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Figure 3.1: Naive Estimate: g(x) = x sin(x)
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Figure 3.2: Naive Estimate: g(x) = x2
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3.6.2 Real Data Application: NHANES Data Set

To determine the relationship between the serum 25-hydroxyvitamin D (25(OH)D) and the

long term vitamin D average intake, Curley (2017) analyzed a data set from the National

Health and Nutrition Examination Survey (NHANES), and used a nonlinear function for

modeling the regression mean of 25(OH)D on the long term vitamin D average intake. In

this section, we apply the proposed estimation procedure on a subset of the 2009-2010

NHANES study. The selected data set contains dietary records of 806 Mexican-American

females. The long term vitamin D average intake (X) is not measured directly, instead, two
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Figure 3.3: Naive Estimate: g(x) = exp(x)
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Figure 3.4: SIMEX Estimate: g(x) = x sin(x)
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independent daily observations of vitamin D intake are collected. Let Wji be the vitamin D

intake from the i-th subject on the j-th time, and we assume that the additive structures

Wji = Xi + Uji hold for all i = 1, 2, . . . , 806, j = 1, 2. We use Wi = (W1i + W2i)/2 to

represent the observed vitamin intake, and by assuming that U1i and U2i are independently

and identically distributed, we can estimate the standard deviation of the measurement error

U by the sample standard deviation of the differences (W1i −W2i)/2, i = 1, 2, . . . , n. As in

Curley (2017), we also apply a square root transformation on the 25(OH)D which results in

a more symmetric structure, but the Shapiro normal test reports a p-value of 0.04, indicating

64



Figure 3.5: SIMEX Estimate: g(x) = x2
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Figure 3.6: SIMEX Estimate: g(x) = exp(x)
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that the transformed 25(OH)D values, denoted as Y , is still not normal.

We adopt the local linear estimator to fit the regression function of Y against X to

capture the mean regression function using the Naive, SIMEX (B = 200) and the proposed

EX methods. Three fitted regression functions with the bandwidth h = n−1/5, together with

the scatter plots of Y against W , are plotted in Figure 3.10. In Figure 3.10, the solid line is

the fitted EX regression function, the dashed line is the fitted regression function using the

classical SIMEX, and the dotted line is the fitted regression curve using the naive method.

Clearly the naive estimator captures the central structure of the raw data, as expected.
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Figure 3.7: EX Estimate: g(x) = x sin(x)
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Figure 3.8: EX Estimate: g(x) = x2
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The fitted regression function from the classical SIMEX nearly overlaps the proposed EX

estimator. Compared with the naive regression, the SIMEX and the EX procedures provide

relatively conservative fitted 25(OH)D values when the vitamin D intake values are small,

which might be interpreted as an evidence of the subjects under-reporting their vitamin D

intakes. Because fewer data points on the upper end, so we truncated the graph when the

observed vitamin D intake is bigger than 15, therefore more caution should be paid when

interpreting the trend on the right. More scientific explanations from the analysis need to

consult with experts on nutrition studies. The computation times for each of the three
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Figure 3.9: EX Estimate: g(x) = exp(x)
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methods are, 0.209 seconds for Naive, 0.839 seconds for the EX, and 209.58 seconds for the

classical SIMEX. Again, one can see that the proposed EX method is more efficient than the

classical SIMEX.

Figure 3.10: Naive, SIMEX and EX estimates
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3.7 Discussion

Instead of taking the conditional expectation of the estimator based on the pseudo-data

or following the three steps in the classical SIMEX algorithm, the proposed EX method

applies the conditional expectation directly to the target function to be optimized based

on the pseudo-data, thus successfully bypassing the simulation step. Both the simulation

studies and the real data applications indicate the EX algorithm is more effective than the

classical SIMEX, as evidenced by less computation time and smaller MSEs. In Section 3.3, we

discussed the main difference between ĝn(x;λ) and g̃n(x;λ), but a more detailed comparison

can be made by a heuristic argument as shown below. Define s = (s0, s1, s2, t0, t1)
T , and a

function

F (s) = F (s0, s1, s2, t0, t1) =
s2t0 − s1t1
s2s0 − s21

,

then a Taylor expansion at s̃ = (s̃0, s̃1, s̃2, t̃0, t̃1)
T up to order 2 leads to

F (s)=̇F (s̃) +
∂F (s)

∂s

∣∣∣T
s=s̃

(s− s̃) +
1

2
(s− s̃)T

∂2F (s)

∂s∂sT

∣∣∣
s=s̃

(s− s̃).

Let sj = Sjn(x,v), s̃j = S̃jn(x) for j = 0, 1, 2, and tj = Tjn(x,v), t̃j = T̃jn(x) for j = 0, 1.

Then it is easy to see that g̃n(x;λ) = E[F (s)|D], and ĝn(x;λ) = F (s̃). Therefore, from the

above Taylor expansion, we can see that g̃n(x;λ)− ĝn(x;λ) approximately equals

E

(
(s− s̃)T

∂2F (s)

∂s∂sT

∣∣∣
s=s̃

(s− s̃)

∣∣∣∣∣D
)

= trace

(
∂2F (s)

∂s∂sT

∣∣∣
s=s̃

E
(
(s− s̃)(s− s̃)T |D

))
.

Note that the matrix E
(
(s− s̃)(s− s̃)T |D

)
is nonnegative definite, so it is sufficient to

consider the expectation of each entry only in the matrix to determine its order. We can

show that all 25 terms are of the order O(1/nh) for λ ≥ 0. This implies that, for λ > 0, the

estimators ĝn(x;λ) and g̃n(x;λ) are equivalent, in the sense of having the same asymptotic

distribution, if nh4 → 0, and for λ = 0, they are equivalent if nh5 → 0. All the necessary

computations supporting these claims can be found in the supplement materials.
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3.7.1 On the extrapolation function

As we discussed in Section 5, theoretically it is impossible to specify the true form of the

extrapolation function in the nonparametric regression setups. However, if the regression

function g has a parametric form, then according to the above discussion, we can indeed

nail down the extrapolation function. To see this, consider the power function xp with some

p ≥ 1, with X still assumed to be N(0, σ2
x). Then some algebra leads to

∫
tpϕ

(
t,

xσ2
x

(λ+ 1)σ2
u + σ2

x

,
(λ+ 1)σ2

uσ
2
x

(λ+ 1)σ2
u + σ2

x

)
dt =

[p/2]∑
j=0

(
p

2j

)
(2j − 1)!!xp−2j σ2p

x σ4j
u (λ+ 1)2j

[(λ+ 1)σ2
u + σ2

x]
p
.

This implies that for a polynomial regression function g of order p, if X is normal, then the

extrapolation function can be taken as a polynomial function of order p. Without loss of

generality, assume that H(λ) = sT (λ)α, where s(λ) = (1, λ, λ2, · · · , λp)T . Then α can be

estimated by the minimizer of L(α) =
∑K

j=0[ĝλj
(x)− sT (λj)α]2. In fact, the minimizer α̂ =[∑K

j=0 s(λj)s
T (λj)

]−1∑K
j=0 ĝλj

(x)s(λj). Similar to Carroll et al. (1999), we have, for nh5 →

0,
√
nh(α̂−α) is asymptotically normal with mean µ(x, h) = h2B(x, 0)

[∑K
j=0 s(λj)s

T (λj)
]−1

s(0),

and covariance matrix

τ 2(x) = ∆0(x)

[
K∑
j=0

s(λj)s
T (λj)

]−1

s(0)sT (0)

[
K∑
j=0

s(λj)s
T (λj)

]−1

.

Thus, for the SIMEX estimator sT (−1)α̂, we have
√
nh(sT (−1)α̂ − g(x) − sT (−1)µ(x, h))

converges to N (0, τ 2(x)) in distribution. Of course, the discussion only has some theoretical

significance. If we knew in advance that g has a parametric form, we would not estimate it

using the nonparametric methods.
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Appendix A

Appendix for Chapter 2

Proof of Theorem 1: Under (C1) through (C3), from Lemma 2 of Jenrich (1969), we

know that for every λ ≥ 0, there exists a measurable function θ̂n such that θ̂n(λ) =

argminθ∈ΘLn(θ;λ). Moreover, based on Theorem 16(a) in Ferguson (1996), we can also

show that, supθ∈Θ |Ln(θ;λ)− L(θ;λ)| → 0 with probability 1. Finally, by (C4), we can show

that θ̂n(λ) → θ(λ) in probability. To see the approximation of θ(λ) to θ0 as λ → −1, we

note that

L(θ;λ) = E

∫
[Y −m(Z + u; θ)]2ϕ(u, 0, λΣu)

= E

∫ {
ε2 + [m(X; θ0)−m(X + u; θ)]2

}
ϕ(u, 0, (λ+ 1)Σu)du

= E

∫ {
ε2 + [m(X; θ0)−m(X +

√
(λ+ 1)Σ1/2

u u; θ)]2
}
ϕ(u, 0, I)du,

it is easy to see that as λ → −1,

sup
θ∈Θ

∣∣∣∣L(θ;λ)− σ2
ε −

∫
[m(x; θ)−m(x; θ0)]

2fX(x)dx

∣∣∣∣→ 0.

Then from (C4), we have θ(λ) → θ0 as λ → −1.
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Therefore, the derivative L̇(θ;λ) equals

∫∫
[m(x+

√
(λ+ 1)Σ1/2

u u; θ)−m(x; θ0)]ṁ(x+
√
(λ+ 1)Σ1/2

u u; θ)ϕ(u, 0, I)fX(x)dudx.

By Taylor expansion, we have

m(x+
√

(λ+ 1)Σ1/2
u u; θ) = m(x; θ)+

√
(λ+ 1)uTΣ1/2

u m′(x; θ)+
1

2
(λ+1)u′Σ1/2

u m′′(x̃; θ)Σ1/2
u u,

and

ṁ(x+
√

(λ+ 1)Σ1/2
u u; θ) = ṁ(x; θ) +

√
(λ+ 1)ṁ′(x; θ)Σ1/2

u u

+
1

2
(λ+ 1)(Iq×q ⊗ u′Σ1/2

u )diag
(
ṁ′′

j (x
∗; θ)

)
(Iq×q ⊗ Σ1/2

u u),

where ṁ′′
j (x; θ) = ∂m′′(x; θ)/∂θj, j = 1, 2, . . . , q. Therefore,

0 = L̇(θ(λ);λ)

=

∫
[m(x; θ(λ))−m(x; θ0)]ṁ(x; θ(λ))fX(x)dx

+
1

2
(λ+ 1)

∫∫
[m(x; θ(λ))−m(x; θ0)](Iq×q ⊗ u′Σ1/2

u )diag
(
ṁ′′

j (x
∗; θ)

)
(Iq×q ⊗ Σ1/2

u u)fX(x)ϕ(u, 0, I)dxdu

+
1

2
(λ+ 1)

∫∫
ṁ(x; θ(λ))uTΣ1/2

u m′′(x̃; θ(λ))Σ1/2
u ufX(x)ϕ(u, 0, I)dxdu

+(λ+ 1)

∫∫
uTΣ1/2

u m′(x; θ(λ))ṁ′(x̃; θ(λ))Σ1/2
u ufX(x)ϕ(u, 0, I)dxdu

+o((λ+ 1)).

Also we have m(x; θ(λ))−m(x; θ0) = ṁT (x; θ̃)(θ(λ)− θ0), this implies that,

[∫
ṁ(x; θ0)ṁ

T (x; θ0)fX(x)dx+ o(1)

]
(θ(λ)− θ0)

= −1

2
(λ+ 1)

∫∫
ṁ(x; θ0)u

TΣ1/2
u m′′(x; θ0)Σ

1/2
u ufX(x)ϕ(u, 0, I)dxdu
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−(λ+ 1)

∫∫
uTΣ1/2

u m′(x; θ0)ṁ
′(x; θ0)Σ

1/2
u ufX(x)ϕ(u, 0, I)dxdu+ o((λ+ 1))

= −1

2
(λ+ 1)

∫
ṁ(x; θ0)trace(m

′′(x; θ0)Σ
2
u)fX(x)dx

−(λ+ 1)

∫
ṁ′(x; θ0)Σ

2
um

′(x; θ0)fX(x)dx+ o((λ+ 1)).

Note that x̃ → x as λ → −1, then we obtain the approximate expansion of θ(λ) as λ → −1.

This concludes the proof of Theorem 1. 2

Proof of Theorem 2: Denote Q(y, z; θ) =
∫
[y −m(z + u; θ)]2ϕ(u, 0, λΣu)du. Note that θ̂n(λ)

satisfies n−1
∑n

i=1 Q̇(Yi, Zi; θ̂n(λ)) = 0. Taylor expansion of the left hand side at θ = θ(λ),

the solution of ĖQ(Y, Z; θ) = 0 leads to

0 =
1

n

n∑
i=1

Q̇(Yi, Zi; θ(λ)) +
1

n

n∑
i=1

Q̈(Yi, Zi; θ
∗
n(λ))

[
θ̂n(λ)− θ(λ)

]
,

where θ∗n(λ) is some value between θ̂n(λ) and θ(λ). For each λ > 0, note that θ̂n(λ) → θ(λ)

in probability implies that θ∗n(λ) → θ(λ) in probability as n → ∞, so

1

n

n∑
i=1

Q̈(Yi, Zi; θ
∗
n(λ)) → Σ1(λ)

in probability as n → ∞, where

Σ1(λ) = E

∫
ṁ(Z + u; θ(λ))ṁT (Z + u; θ(λ))ϕ(u, 0, λΣu)du

−E

∫
[Y −m(Z + u, θ(λ))]m̈(Z + u; θ(λ))ϕ(u, 0, λΣu)du.

The asymptotic joint normality of θ̂(Λ) is an application of the multivariate central

limit theorem on n−1/2
∑n

i=1 Q̇(Yi, Zi; θ(λj)), j = 1, 2, . . . , K. It is sufficient to check the

covariance matrix Σ0(λj, λl) of Q̇(Y, Z; θ(λj)) and Q̇(Y, Z; θ(λl)) has the specified form for

j, l = 1, 2, . . . , K. To see this, we need a general result for multivariate normal density

functions. Without loss of generality, let j = 1, l = 2. Denote ϕ(x;µ1,Σ1) and ϕ(x;µ2,Σ2)
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as two p-dimensional normal density functions. Then

ϕ(x;µ1,Σ1)ϕ(x;µ2,Σ2) = ϕ(µ1;µ2,Σ1 + Σ2)ϕ(x;µ,Σ), (A.0.1)

where Σ = (Σ−1
1 +Σ−1

2 )−1, µ = Σ(Σ−1
1 µ1+Σ−1

2 µ2). Thus the covariance matrix of Q̇(Y, Z; θ(λ1))

and Q̇(Y, Z; θ(λ2)) is

E

∫∫
[Y −m(Z + u, θ(λ1))][Y −m(Z + v, θ(λ2))]ṁ(Z + u; θ(λ1))ṁ

T (Z + v; θ(λ2))

ϕ(u, 0, λ1Σu)ϕ(v, 0, λ2Σu)dudv.

By changing variables, the above expectation equals

E

∫∫∫
[Y −m(X + w + u, θ(λ1))][Y −m(X + w + v, θ(λ2))]ṁ(X + w + u; θ(λ1))

ṁT (X + w + v; θ(λ2))ϕ(u, 0, λ1Σu)ϕ(v, 0, λ2Σu)ϕ(w, 0,Σu)dwdudv

=E

∫∫∫
[Y −m(X + u, θ(λ1))][Y −m(X + v, θ(λ2))]ṁ(X + u; θ(λ1))

ṁT (X + v; θ(λ2))ϕ(w, u, λ1Σu)ϕ(w, v, λ2Σu)ϕ(w, 0,Σu)dwdudv.

From (A.0.1), we can write ϕ(w, u, λ1Σu)ϕ(w, v, λ2Σu)ϕ(w, 0,Σu) as either

ϕ(u, v, (λ1 + λ2)Σu)ϕ

(
λ1v + λ2u

λ1 + λ2

, 0,
λ12

λ1 + λ2

Σu

)
ϕ

(
w,

λ1v + λ2u

λ12

,
λ1λ2

λ12

Σu

)

or

ϕ(v, 0, (λ2 + 1)Σu)ϕ

(
u,

v

λ2 + 1
,

λ12

λ2 + 1
Σu

)
ϕ

(
w,

λ1v + λ2u

λ12

,
λ1λ2

λ12

Σu

)
,

where λ12 = λ1 + λ2 + λ1λ2. This, together with Y = m(X; θ0) + ε, implies that the

covariance matrix of Q̇(Y, Z; θ(λ1)) and Q̇(Y, Z; θ(λ2)) can be written as Σ0(λ1, λ2) as defined

in Theorem 2. 2
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Proof of Theorem 3: Note that Γ̂ is the minimizer of (2.3.4), by a Taylor expansion, we have

0 = ĠT (Λ, Γ̂)(θ̂n(Λ)−G(Λ, Γ̂))

= ĠT (Λ,Γ0)(θ̂n(Λ)−G(Λ,Γ0)) +
[
T (Λ, Γ̃)− ĠT (Λ, Γ̃)Ġ(Λ, Γ̃)

]
(Γ̂− Γ0),

where Γ̃ is between Γ̂ and Γ0 and

T (Λ,Γ) =
M∑
j=1

q∑
k=1


∂Gk(λj ,Γ)

∂γ1∂ΓT (θ̂nk(λj)−Gk(λj,Γ))

...

∂Gk(λj ,Γ)

∂γd∂ΓT (θ̂nk(λj)−Gk(λj,Γ))


d×d

,

where θ̂nk(λ) is the j-th component of θ̂n(λ), j = 1, 2, . . . , q. The consistency of Γ̂ to Γ0

implies that

√
n
[
ĠT (Λ,Γ0)Ġ(Λ,Γ0)

]
(Γ̂− Γ0) =

√
nĠT (Λ,Γ0)(θ̂(Λ)− θ(Λ)) + op(1).

Recall the notations H(Λ) and Π(Λ) defined right before Theorem 3 in Section 2.3, the

asymptotic normality of θ̂n(Λ) implies that

√
n
[
Γ̂− Γ0

]
=⇒ N(0,Π(Λ)). (A.0.2)

Note that the EX estimate θ̂n is defined as θ̂n = G(−1, Γ̂), also note that G(−1,Γ0) = θ0, so

by Taylor expansion again, θ̂n − θ0 = Ġ(−1, Γ̃)(Γ̂− Γ0), together with the asymptotic result

(A.0.2), we prove Theorem 3. 2

Proof of Example 2: Consider m(x; θ) = exp(θx). Suppose m(x, θ) = exp(θx), then we have

ṁ(θx) = x exp(θx). Therefore, from either one of the above expression for Σ0(λ), we have

Σ0(λ) = σ2
ε + E

∫∫
[exp θ0X − exp θ(λ)(X + u)] · [exp θ0X − exp θ(λ)(X + v)] ·

[(X + u) exp (X + u)θ(λ)] · [(X + v) exp θ(λ)(X + v)] ·
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ϕ(v, 0, (λ+ 1)σ2
u)ϕ

(
u,

v

λ+ 1
,
λ(λ+ 2)

λ+ 1
σ2
u

)
dudv

= σ2
ε + E

∫∫
[exp 2θ0X − exp[X(θ0 + θ(λ)) + θ(λ)v]

− exp[X(θ0 + θ(λ)) + uθ(λ)] + exp[2Xθ(λ) + (u+ v)θ(λ)]] ·

[X2 exp[2Xθ(λ) + (v + u)θ(λ)] +Xv exp[2Xθ(λ) + (v + u)θ(λ)]

+Xu exp[2Xθ(λ) + (v + u)θ(λ)] + uv exp[2Xθ(λ) + (v + u)θ(λ)] ·

ϕ(v, 0, (λ+ 1)σ2
u)ϕ

(
u,

v

λ+ 1
,
λ(λ+ 2)

λ+ 1
σ2
u

)
dudv

= σ2
ε + E

∫∫
X2[exp (2X(θ0 + θ(λ)) + θ(λ)(u+ v))− exp (X(θ0 + 3θ(λ)) + (u+ 2v)θ(λ))

− exp (X(θ0 + 3θ(λ)) + (2u+ v)θ(λ)) + exp (4Xθ(λ) + (2u+ 2v)θ(λ))] ·

ϕ(v, 0, (λ+ 1)σ2
u)ϕ

(
u,

v

λ+ 1
,
λ(λ+ 2)

λ+ 1
σ2
u

)
dudv

+E

∫∫
Xv[exp (2X(θ0 + θ(λ)) + θ(λ)(u+ v))− exp (X(θ0 + 3θ(λ)) + (u+ 2v)θ(λ))

− exp (X(θ0 + 3θ(λ)) + (2u+ v)θ(λ)) + exp (4Xθ(λ) + (2u+ 2v)θ(λ))] ·

ϕ(v, 0, (λ+ 1)σ2
u)ϕ

(
u,

v

λ+ 1
,
λ(λ+ 2)

λ+ 1
σ2
u

)
dudv

+E

∫∫
Xu[exp (2X(θ0 + θ(λ)) + θ(λ)(u+ v))− exp (X(θ0 + 3θ(λ)) + (u+ 2v)θ(λ))

− exp (X(θ0 + 3θ(λ)) + (2u+ v)θ(λ)) + exp (4Xθ(λ) + (2u+ 2v)θ(λ))] ·

ϕ(v, 0, (λ+ 1)σ2
u)ϕ

(
u,

v

λ+ 1
,
λ(λ+ 2)

λ+ 1
σ2
u

)
dudv

+E

∫∫
uv[exp (2X(θ0 + θ(λ)) + θ(λ)(u+ v))− exp (X(θ0 + 3θ(λ)) + (u+ 2v)θ(λ))

− exp (X(θ0 + 3θ(λ)) + (2u+ v)θ(λ)) + exp (4Xθ(λ) + (2u+ 2v)θ(λ))] ·

ϕ(v, 0, (λ+ 1)σ2
u)ϕ

(
u,

v

λ+ 1
,
λ(λ+ 2)

λ+ 1
σ2
u

)
dudv

Looking at the X2−term, we have

∫∫
X2 exp(uθ(λ)) (exp (2X(θ0 + θ(λ)) + vθ(λ))− exp (X(θ0 + 3θ(λ)) + 2vθ(λ))) ·

ϕ(v, 0, (λ+ 1)σ2
u)ϕ

(
u,

v

λ+ 1
,
λ(λ+ 2)

λ+ 1
σ2
u

)
dudv

−
∫∫

X2 exp(2uθ(λ)) (exp (X(θ0 + 3θ(λ)) + vθ(λ))− exp (4Xθ(λ) + 2vθ(λ))) ·
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ϕ(v, 0, (λ+ 1)σ2
u)ϕ

(
u,

v

λ+ 1
,
λ(λ+ 2)

λ+ 1
σ2
u

)
dudv

=

∫
X2 exp

(
θ(λ)

λ+ 1
v +

λ(λ+ 2)

2(λ+ 1)
σ2
uθ

2(λ) + 2X(θ0 + θ(λ)) + vθ(λ)

)
ϕ(v, 0, (λ+ 1)σ2

u)dv

−
∫

X2 exp

(
θ(λ)

λ+ 1
v +

λ(λ+ 2)

2(λ+ 1)
σ2
uθ

2(λ) +X(θ0 + 3θ(λ)) + 2vθ(λ)

)
ϕ(v, 0, (λ+ 1)σ2

u)dv

−
∫

X2 exp

(
2θ(λ)

λ+ 1
v +

2λ(λ+ 2)

λ+ 1
σ2
uθ

2(λ) +X(θ0 + 3θ(λ)) + vθ(λ)

)
ϕ(v, 0, (λ+ 1)σ2

u)dv

+

∫
X2 exp

(
2θ(λ)

λ+ 1
v +

2λ(λ+ 2)

λ+ 1
σ2
uθ

2(λ) + 4Xθ(λ) + 2vθ(λ)

)
ϕ(v, 0, (λ+ 1)σ2

u)dv

=

∫
X2 exp

(
λ(λ+ 2)

2(λ+ 1)
σ2
uθ

2(λ) + 2X(θ0 + θ(λ)) +

(
1

λ+ 1
+ 1

)
vθ(λ)

)
ϕ(v, 0, (λ+ 1)σ2

u)dv

−
∫

X2 exp

(
λ(λ+ 2)

2(λ+ 1)
σ2
uθ

2(λ) +X(θ0 + 3θ(λ)) +

(
1

λ+ 1
+ 2

)
vθ(λ)

)
ϕ(v, 0, (λ+ 1)σ2

u)dv

−
∫

X2 exp

(
2λ(λ+ 2)

λ+ 1
σ2
uθ

2(λ) +X(θ0 + 3θ(λ)) +

(
2

λ+ 1
+ 1

)
vθ(λ)

)
ϕ(v, 0, (λ+ 1)σ2

u)dv

+

∫
X2 exp

(
2λ(λ+ 2)

λ+ 1
σ2
uθ

2(λ) + 4Xθ(λ) +

(
1

λ+ 1
+ 1

)
2vθ(λ)

)
ϕ(v, 0, (λ+ 1)σ2

u)dv

=

∫
X2 exp

(
λ(λ+ 2)

2(λ+ 1)
σ2
uθ

2(λ) + 2X(θ0 + θ(λ)) +
λ+ 2

λ+ 1
vθ(λ)

)
ϕ(v, 0, (λ+ 1)σ2

u)dv

−
∫

X2 exp

(
λ(λ+ 2)

2(λ+ 1)
σ2
uθ

2(λ) +X(θ0 + 3θ(λ)) +
2λ+ 3

λ+ 1
vθ(λ)

)
ϕ(v, 0, (λ+ 1)σ2

u)dv

−
∫

X2 exp

(
2λ(λ+ 2)

λ+ 1
σ2
uθ

2(λ) +X(θ0 + 3θ(λ)) +
λ+ 3

λ+ 1
vθ(λ)

)
ϕ(v, 0, (λ+ 1)σ2

u)dv

+

∫
X2 exp

(
2λ(λ+ 2)

λ+ 1
σ2
uθ

2(λ) + 4Xθ(λ) +
2(λ+ 2)

λ+ 1
vθ(λ)

)
ϕ(v, 0, (λ+ 1)σ2

u)dv

= X2 exp

(
λ(λ+ 2)

2(λ+ 1)
σ2
uθ

2(λ) + 2X(θ0 + θ(λ)) +
(λ+ 1)(λ+ 2)2

2(λ+ 1)2
σ2
uθ

2(λ)

)
−X2 exp

(
λ(λ+ 2)

2(λ+ 1)
σ2
uθ

2(λ) +X(θ0 + 3θ(λ)) +
1

2

(2λ+ 3)2

(λ+ 1)2
(λ+ 1)σ2

uθ
2(λ)

)
−X2 exp

(
2λ(λ+ 2)

λ+ 1
σ2
uθ

2(λ) +X(θ0 + 3θ(λ)) +
1

2

(λ+ 3)2

(λ+ 1)2
(λ+ 1)σ2

uθ
2(λ)

)
+X2 exp

(
2λ(λ+ 2)

λ+ 1
σ2
uθ

2(λ) + 4Xθ(λ) +
1

2

(λ+ 2)2

(λ+ 1)2
(λ+ 1)σ2

uθ
2(λ)

)
= X2 exp((λ+ 2)σ2

uθ
2(λ) + 2X(θ0 + θ(λ))

−X2 exp

(
λ2 + 2λ+ 4λ2 + 12λ+ 9)

2(λ+ 1)
σ2
uθ

2(λ) +X(θ0 + 3θ(λ))

)
−X2 exp

(
4λ2 + 8λ+ λ2 + 6λ+ 9)

2(λ+ 1)
σ2
uθ

2(λ) +X(θ0 + 3θ(λ))

)
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+X2 exp

(
2(λ+ 2)(λ+ 1)

λ+ 1
σ2
uθ

2(λ) + 4Xθ(λ)

)
= X2 exp[2X(θ0 + θ(λ)) + (λ+ 2)σ2

uθ
2(λ)]

−X2 exp[X(θ0 + 3θ(λ)) +
1

2
(5λ+ 9)σ2

uθ
2(λ)]

+X2 exp[4Xθ(λ) + 4(λ+ 2)σ2
uθ

2(λ)]

When λ → −1, we get

X2[exp(4Xθ0 + σ2
uθ

2
0)− 2 exp(4Xθ0 + 2σ2

uθ
2
0) + exp(4Xθ0 + 4σ2

uθ
2
0)]

Next, we look at the Xv−term

∫∫
Xv exp(uθ(λ)) (exp (2X(θ0 + θ(λ)) + vθ(λ))− exp (X(θ0 + 3θ(λ)) + 2vθ(λ))) ·

ϕ(v, 0, (λ+ 1)σ2
u)ϕ

(
u,

v

λ+ 1
,
λ(λ+ 2)

λ+ 1
σ2
u

)
dudv

−
∫∫

Xv exp(2uθ(λ)) (exp (X(θ0 + 3θ(λ)) + vθ(λ))− exp (4Xθ(λ) + 2vθ(λ))) ·

ϕ(v, 0, (λ+ 1)σ2
u)ϕ

(
u,

v

λ+ 1
,
λ(λ+ 2)

λ+ 1
σ2
u

)
dudv

=

∫
Xv exp

(
θ(λ)

λ+ 1
v +

λ(λ+ 2)

2(λ+ 1)
σ2
uθ

2(λ) + 2X(θ0 + θ(λ)) + vθ(λ)

)
ϕ(v, 0, (λ+ 1)σ2

u)dv

−
∫

Xv exp

(
θ(λ)

λ+ 1
v +

λ(λ+ 2)

2(λ+ 1)
σ2
uθ

2(λ) +X(θ0 + 3θ(λ)) + 2vθ(λ)

)
ϕ(v, 0, (λ+ 1)σ2

u)dv

−
∫

Xv exp

(
2θ(λ)

λ+ 1
v +

2λ(λ+ 2)

λ+ 1
σ2
uθ

2(λ) +X(θ0 + 3θ(λ)) + vθ(λ)

)
ϕ(v, 0, (λ+ 1)σ2

u)dv

+

∫
Xv exp

(
2θ(λ)

λ+ 1
v +

2λ(λ+ 2)

λ+ 1
σ2
uθ

2(λ) + 4Xθ(λ) + 2vθ(λ)

)
ϕ(v, 0, (λ+ 1)σ2

u)dv

=

∫
Xv exp

(
λ(λ+ 2)

2(λ+ 1)
σ2
uθ

2(λ) + 2X(θ0 + θ(λ)) +

(
1

λ+ 1
+ 1

)
vθ(λ)

)
ϕ(v, 0, (λ+ 1)σ2

u)dv

−
∫

Xv exp

(
λ(λ+ 2)

2(λ+ 1)
σ2
uθ

2(λ) +X(θ0 + 3θ(λ)) +

(
1

λ+ 1
+ 2

)
vθ(λ)

)
ϕ(v, 0, (λ+ 1)σ2

u)dv

−
∫

Xv exp

(
2λ(λ+ 2)

λ+ 1
σ2
uθ

2(λ) +X(θ0 + 3θ(λ)) +

(
2

λ+ 1
+ 1

)
vθ(λ)

)
ϕ(v, 0, (λ+ 1)σ2

u)dv

+

∫
Xv exp

(
2λ(λ+ 2)

λ+ 1
σ2
uθ

2(λ) + 4Xθ(λ) +

(
1

λ+ 1
+ 1

)
2vθ(λ)

)
ϕ(v, 0, (λ+ 1)σ2

u)dv

81



=

∫
Xv exp

(
λ(λ+ 2)

2(λ+ 1)
σ2
uθ

2(λ) + 2X(θ0 + θ(λ)) +
λ+ 2

λ+ 1
vθ(λ)

)
ϕ(v, 0, (λ+ 1)σ2

u)dv

−
∫

Xv exp

(
λ(λ+ 2)

2(λ+ 1)
σ2
uθ

2(λ) +X(θ0 + 3θ(λ)) +
2λ+ 3

λ+ 1
vθ(λ)

)
ϕ(v, 0, (λ+ 1)σ2

u)dv

−
∫

Xv exp

(
2λ(λ+ 2)

λ+ 1
σ2
uθ

2(λ) +X(θ0 + 3θ(λ)) +
λ+ 3

λ+ 1
vθ(λ)

)
ϕ(v, 0, (λ+ 1)σ2

u)dv

+

∫
Xv exp

(
2λ(λ+ 2)

λ+ 1
σ2
uθ

2(λ) + 4Xθ(λ) +
2(λ+ 2)

λ+ 1
vθ(λ)

)
ϕ(v, 0, (λ+ 1)σ2

u)dv

=
λ+ 1

λ+ 2
X exp

(
λ(λ+ 2)

2(λ+ 1)
σ2
uθ

2(λ) + 2X(θ0 + θ(λ))

)
∂

∂θ(λ)

∫
exp

(
λ+ 2

λ+ 1
vθ(λ)

)
ϕ(v, 0, (λ+ 1)σ2

u)dv

− λ+ 1

2λ+ 3
X exp

(
λ(λ+ 2)

2(λ+ 1)
σ2
uθ

2(λ) +X(θ0 + 3θ(λ))

)
∂

∂θ(λ)

∫
exp

(
2λ+ 3

λ+ 1
vθ(λ)

)
ϕ(v, 0, (λ+ 1)σ2

u)dv

−λ+ 1

λ+ 3
X exp

(
2λ(λ+ 2)

λ+ 1
σ2
uθ

2(λ) +X(θ0 + 3θ(λ))

)
∂

∂θ(λ)

∫ (
λ+ 3

λ+ 1
vθ(λ)

)
ϕ(v, 0, (λ+ 1)σ2

u)dv

+
λ+ 1

2(λ+ 2)
X exp

(
2λ(λ+ 2)

λ+ 1
σ2
uθ

2(λ) + 4Xθ(λ)

)
∂

∂θ(λ)

∫
exp

(
2(λ+ 2)

λ+ 1
vθ(λ)

)
ϕ(v, 0, (λ+ 1)σ2

u)dv

=
λ+ 1

λ+ 2
X exp

(
λ(λ+ 2)

2(λ+ 1)
σ2
uθ

2(λ) + 2X(θ0 + θ(λ))

)
· ∂

∂θ(λ)
exp

(
(λ+ 1)(λ+ 2)2

2(λ+ 1)2
σ2
uθ

2(λ)

)
− λ+ 1

2λ+ 3
X exp

(
λ(λ+ 2)

2(λ+ 1)
σ2
uθ

2(λ) +X(θ0 + 3θ(λ))

)
· ∂

∂θ(λ)
exp

(
1

2

(2λ+ 3)2

(λ+ 1)2
(λ+ 1)σ2

uθ
2(λ)

)
−λ+ 1

λ+ 3
X exp

(
2λ(λ+ 2)

λ+ 1
σ2
uθ

2(λ) +X(θ0 + 3θ(λ))

)
· ∂

∂θ(λ)
exp

(
1

2

(λ+ 3)2

(λ+ 1)2
(λ+ 1)σ2

uθ
2(λ)

)
+

λ+ 1

2(λ+ 2)
X exp

(
2λ(λ+ 2)

λ+ 1
σ2
uθ

2(λ) + 4Xθ(λ)

)
· ∂

∂θ(λ)
exp

(
2
(λ+ 2)2

(λ+ 1)2
(λ+ 1)σ2

uθ
2(λ)

)
=

λ+ 1

λ+ 2
X exp

(
λ(λ+ 2)

2(λ+ 1)
σ2
uθ

2(λ) + 2X(θ0 + θ(λ))

)
· ∂

∂θ(λ)
exp

(
(λ+ 2)2

2(λ+ 1)
σ2
uθ

2(λ)

)
− λ+ 1

2λ+ 3
X exp

(
λ(λ+ 2)

2(λ+ 1)
σ2
uθ

2(λ) +X(θ0 + 3θ(λ))

)
· ∂

∂θ(λ)
exp

(
1

2

(2λ+ 3)2

λ+ 1
σ2
uθ

2(λ)

)
−λ+ 1

λ+ 3
X exp

(
2λ(λ+ 2)

λ+ 1
σ2
uθ

2(λ) +X(θ0 + 3θ(λ))

)
· ∂

∂θ(λ)
exp

(
1

2

(λ+ 3)2

λ+ 1
σ2
uθ

2(λ)

)
+2

λ+ 1

2(λ+ 2)
X exp

(
2λ(λ+ 2)

λ+ 1
σ2
uθ

2(λ) + 4Xθ(λ)

)
· ∂

∂θ(λ)
exp

(
2
(λ+ 2)2

λ+ 1
σ2
uθ

2(λ)

)
=

λ+ 1

λ+ 2
· (λ+ 2)2

λ+ 1
σ2
uθ(λ)X exp

(
λ(λ+ 2)

2(λ+ 1)
σ2
uθ

2(λ) + 2X(θ0 + θ(λ)) +
(λ+ 2)2

2(λ+ 1)
σ2
uθ

2(λ)

)
− λ+ 1

2λ+ 3
· (2λ+ 3)2

λ+ 1
σ2
uθ(λ)X exp

(
λ(λ+ 2)

2(λ+ 1)
σ2
uθ

2(λ) +X(θ0 + 3θ(λ)) +
1

2

(2λ+ 3)2

λ+ 1
σ2
uθ

2(λ)

)
−λ+ 1

λ+ 3
· (λ+ 3)2

λ+ 1
σ2
uθ(λ)X exp

(
2λ(λ+ 2)

λ+ 1
σ2
uθ

2(λ) +X(θ0 + 3θ(λ)) +
1

2

(λ+ 3)2

λ+ 1
σ2
uθ

2(λ)

)
+2

λ+ 1

(λ+ 2)
· (λ+ 2)2

λ+ 1
σ2
uθ(λ)X exp

(
2λ(λ+ 2)

λ+ 1
σ2
uθ

2(λ) + 4Xθ(λ) + 2
(λ+ 2)2

λ+ 1
σ2
uθ

2(λ)

)
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= (λ+ 2)σ2
uθ(λ)X exp

(
2X(θ0 + θ(λ)) + (λ+ 2)σ2

uθ
2(λ)

)
−(2λ+ 3)σ2

uθ(λ)X exp

(
X(θ0 + 3θ(λ)) +

1

2
(5λ+ 9)σ2

uθ
2(λ)

)
−(λ+ 3)σ2

uθ(λ)X exp

(
X(θ0 + 3θ(λ)) +

1

2
(5λ+ 3)9σ2

uθ
2(λ)

)
+2(λ+ 2)σ2

uθ(λ)X exp
(
4Xθ(λ) + 4(λ+ 2)σ2

uθ
2(λ)

)
= (λ+ 2)σ2

uθ(λ)X exp
(
2X(θ0 + θ(λ)) + (λ+ 2)σ2

uθ
2(λ)

)
−3(λ+ 2)σ2

uθ(λ)X exp

(
X(θ0 + 3θ(λ)) +

1

2
(5λ+ 9)σ2

uθ
2(λ)

)
+2(λ+ 2)σ2

uθ(λ)X exp
(
4Xθ(λ) + 4(λ+ 2)σ2

uθ
2(λ)

)
When λ → −1, we get

σ2
uθ0X exp

(
4Xθ0 + σ2

uθ
2
0

)
− 3σ2

uθ0X exp
(
4Xθ0 + 2σ2

uθ
2
0

)
+ 2σ2

uθ0X exp
(
4Xθ0 + 4σ2

uθ
2
0

)
Next, we look at the Xu−term, i.e.,

∫∫
Xu exp(uθ(λ)) (exp (2X(θ0 + θ(λ)) + vθ(λ))− exp (X(θ0 + 3θ(λ)) + 2vθ(λ)))

·ϕ(v, 0, (λ+ 1)σ2
u)ϕ

(
u,

v

λ+ 1
,
λ(λ+ 2)

λ+ 1
σ2
u

)
dudv

−
∫∫

Xu exp(2uθ(λ)) (exp (X(θ0 + 3θ(λ)) + vθ(λ))− exp (4Xθ(λ) + 2vθ(λ)))

·ϕ(v, 0, (λ+ 1)σ2
u)ϕ

(
u,

v

λ+ 1
,
λ(λ+ 2)

λ+ 1
σ2
u

)
dudv

=

∫
X (exp (2X(θ0 + θ(λ)) + vθ(λ))− exp (X(θ0 + 3θ(λ)) + 2vθ(λ)))

·
[

∂

θ(λ)

∫
exp(uθ(λ))ϕ

(
u,

v

λ+ 1
,
λ(λ+ 2)

λ+ 1
σ2
u

)
du

]
ϕ(v, 0, (λ+ 1)σ2

u)dv

−
∫

1

2
X (exp (X(θ0 + 3θ(λ)) + vθ(λ))− exp (4Xθ(λ) + 2vθ(λ)))

·
[

∂

θ(λ)

∫
exp(2uθ(λ))ϕ

(
u,

v

λ+ 1
,
λ(λ+ 2)

λ+ 1
σ2
u

)
du

]
ϕ(v, 0, (λ+ 1)σ2

u)dv

=

∫
X (exp (2X(θ0 + θ(λ)) + vθ(λ))− exp (X(θ0 + 3θ(λ)) + 2vθ(λ)))

· ∂

θ(λ)

[
exp

(
θ(λ)

λ+ 1
v +

λ(λ+ 2)

2(λ+ 1)
σ2
uθ

2(λ)

)]
ϕ(v, 0, (λ+ 1)σ2

u)dv
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−
∫

1

2
X (exp (X(θ0 + 3θ(λ)) + vθ(λ))− exp (4Xθ(λ) + 2vθ(λ)))

· ∂

θ(λ)

[
exp

(
2θ(λ)

λ+ 1
v +

2λ(λ+ 2)

λ+ 1
σ2
uθ

2(λ)

)]
ϕ(v, 0, (λ+ 1)σ2

u)dv

=

∫
X (exp (2X(θ0 + θ(λ)) + vθ(λ))− exp (X(θ0 + 3θ(λ)) + 2vθ(λ)))

·
[

v

λ+ 1
+

λ(λ+ 2)

2(λ+ 1)
σ2
uθ(λ)

] [
exp

(
θ(λ)

λ+ 1
v +

λ(λ+ 2)

2(λ+ 1)
σ2
uθ

2(λ)

)]
ϕ(v, 0, (λ+ 1)σ2

u)dv

−1

2

∫
X (exp (X(θ0 + 3θ(λ)) + vθ(λ))− exp (4Xθ(λ) + 2vθ(λ)))

·
[

2v

λ+ 1
+

4λ(λ+ 2)

λ+ 1
σ2
uθ(λ)

] [
exp

(
2θ(λ)

λ+ 1
v +

2λ(λ+ 2)

λ+ 1
σ2
uθ

2(λ)

)]
ϕ(v, 0, (λ+ 1)σ2

u)dv

= X exp

(
2X(θ0 + θ(λ) +

λ(λ+ 2)

2(λ+ 1)
σ2
uθ

2(λ)

)
·
∫ (

v

λ+ 1
+

λ(λ+ 2)

(λ+ 1)
σ2
uθ(λ)

)
exp

(
vθ(λ)) +

vθ(λ)

λ+ 1

)
ϕ(v, 0, (λ+ 1)σ2

u)dv

−X exp

(
X(θ0 + 3θ(λ) +

λ(λ+ 2)

2(λ+ 1)
σ2
uθ

2(λ)

)
·
∫ (

v

λ+ 1
+

λ(λ+ 2)

(λ+ 1)
σ2
uθ(λ)

)
exp

(
2vθ(λ)) +

vθ(λ)

λ+ 1

)
ϕ(v, 0, (λ+ 1)σ2

u)dv

−1

2
X exp

(
X(θ0 + 3θ(λ) +

2λ(λ+ 2)

λ+ 1
σ2
uθ

2(λ)

)
·
∫ (

2v

λ+ 1
+

4λ(λ+ 2)

λ+ 1
σ2
uθ(λ)

)
exp

[
vθ(λ)

(
1 +

2

λ+ 1

)]
ϕ(v, 0, (λ+ 1)σ2

u)dv

+
1

2
X exp

(
4Xθ(λ) +

2λ(λ+ 2)

λ+ 1
σ2
uθ

2(λ)

)
·
∫ (

2v

λ+ 1
+

4λ(λ+ 2)

λ+ 1
σ2
uθ(λ)

)
exp

[
2vθ(λ)

(
1 +

1

λ+ 1

)]
ϕ(v, 0, (λ+ 1)σ2

u)dv

= Xe2X(θ0+θ(λ))+
λ(λ+2)
2(λ+1)

σ2
uθ

2(λ)

∫
v

(λ+ 1)
exp

(
λ+ 2

λ+ 1
vθ(λ)

)
ϕ(v, 0, (λ+ 1)σ2

u)dv

+X
λ(λ+ 2)

(λ+ 1)
σ2
uθ(λ)e

2X(θ0+θ(λ)+
λ(λ+2)
2(λ+1)

σ2
uθ

2(λ)

∫
exp

(
λ+ 2

λ+ 1
vθ(λ)

)
ϕ(v, 0, (λ+ 1)σ2

u)dv

−XeX(θ0+3θ(λ))+
λ(λ+2)
2(λ+1)

σ2
uθ

2(λ)

∫
v

(λ+ 1)
exp

(
2λ+ 3

λ+ 1
vθ(λ)

)
ϕ(v, 0, (λ+ 1)σ2

u)dv

−X
λ(λ+ 2)

(λ+ 1)
σ2
uθ(λ)e

X(θ0+3θ(λ)+
λ(λ+2)
2(λ+1)

σ2
uθ

2(λ)

∫
exp

(
2λ+ 3

λ+ 1
vθ(λ)

)
ϕ(v, 0, (λ+ 1)σ2

u)dv

−XeX(θ0+3θ(λ))+
2λ(λ+2)

λ+1
σ2
uθ

2(λ)

∫
v

(λ+ 1)
exp

(
λ+ 3

λ+ 1
vθ(λ)

)
ϕ(v, 0, (λ+ 1)σ2

u)dv

−X
2λ(λ+ 2)

λ+ 1
σ2
uθ(λ)e

X(θ0+3θ(λ)+
λ(λ+2)
2(λ+1)

σ2
uθ

2(λ)

∫
exp

(
λ+ 3

λ+ 1
vθ(λ)

)
ϕ(v, 0, (λ+ 1)σ2

u)dv
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+
1

2
Xe4Xθ(λ)+

2λ(λ+2)
λ+1

σ2
uθ

2(λ)

∫
2v

(λ+ 1)
exp

(
λ+ 2

λ+ 1
2vθ(λ)

)
ϕ(v, 0, (λ+ 1)σ2

u)dv

+
1

2
X
4λ(λ+ 2)

λ+ 1
σ2
uθ(λ)e

4Xθ(λ)+
2λ(λ+2)

λ+1
σ2
uθ

2(λ)

∫
exp

(
λ+ 2

λ+ 1
2vθ(λ)

)
ϕ(v, 0, (λ+ 1)σ2

u)dv

= Xe2X(θ0+θ(λ))+
λ(λ+2)
2(λ+1)

σ2
uθ

2(λ) 1

λ+ 2

[
∂

∂θ(λ)
exp

(
1

2

(λ+ 2)2

λ+ 1
θ2(λ)σ2

u

)]
+
λ(λ+ 2)

λ+ 1
σ2
uθ(λ)X exp

(
2X(θ0 + θ(λ)) +

λ(λ+ 2)

λ+ 1
σ2
uθ

2(λ) +
1

2

(λ+ 2)2

λ+ 1
θ2(λ)σ2

u

)
−XeX(θ0+3θ(λ))+

λ(λ+2)
2(λ+1)

σ2
uθ

2(λ) 1

2λ+ 3

[
∂

∂θ(λ)
exp

(
1

2

(2λ+ 3)2

λ+ 1
θ2(λ)σ2

u

)]
−λ(λ+ 2)

λ+ 1
σ2
uθ(λ)X exp

(
X(θ0 + 3θ(λ)) +

λ(λ+ 2)

λ+ 1
σ2
uθ

2(λ) +
1

2

(2λ+ 3)2

λ+ 1
θ2(λ)σ2

u

)
−XeX(θ0+3θ(λ))+

2λ(λ+2)
λ+1

σ2
uθ

2(λ) 1

λ+ 3

[
∂

∂θ(λ)
exp

(
1

2

(λ+ 3)2

λ+ 1
σ2
uθ

2(λ)

)]
−2λ(λ+ 2)

λ+ 1
σ2
uθ(λ)X exp

(
X(θ0 + 3θ(λ)) +

2λ(λ+ 2)

λ+ 1
σ2
uθ

2(λ) +
1

2

(λ+ 3)2

λ+ 1
σ2
uθ

2(λ)

)
+
1

2
Xe4Xθ(λ)+

2λ(λ+2)
λ+1

σ2
uθ

2(λ) 1

λ+ 2

[
∂

∂θ(λ)
exp

(
2
(λ+ 2)2

λ+ 1
σ2
uθ

2(λ)

)]
+
2λ(λ+ 2)

λ+ 1
σ2
uθ(λ)X exp

(
4Xθ(λ) +

2λ(λ+ 2)

λ+ 1
σ2
uθ

2(λ) + 2
(λ+ 2)2

λ+ 1
σ2
uθ

2(λ)

)
=

[
λ+ 2

λ+ 1
+

λ(λ+ 2)

λ+ 1

]
σ2
uθ(λ)X exp

(
2X(θ0 + θ(λ)) +

λ(λ+ 2)

λ+ 1
σ2
uθ

2(λ) +
1

2

(λ+ 2)2

λ+ 1
θ2(λ)σ2

u

)
−
[
2λ+ 3

λ+ 1
+

λ(λ+ 2)

λ+ 1

]
σ2
uθ(λ)X exp

(
X(θ0 + 3θ(λ)) +

λ(λ+ 2)

λ+ 1
σ2
uθ

2(λ) +
1

2

(2λ+ 3)2

λ+ 1
θ2(λ)σ2

u

)
−
[
λ+ 3

λ+ 1
+

2λ(λ+ 2)

λ+ 1

]
σ2
uθ(λ)X exp

(
X(θ0 + 3θ(λ)) +

2λ(λ+ 2)

λ+ 1
σ2
uθ

2(λ) +
1

2

(λ+ 3)2

λ+ 1
σ2
uθ

2(λ)

)
+

[
λ+ 2

λ+ 1
+

λ(λ+ 2)

λ+ 1

]
σ2
uθ(λ)X exp

(
4Xθ(λ) +

2λ(λ+ 2)

λ+ 1
σ2
uθ

2(λ) + 2
(λ+ 2)2

λ+ 1
σ2
uθ

2(λ)

)
= (λ+ 2)σ2

uθ(λ)X exp[2X(θ0 + θ(λ)) + (λ+ 2)σ2
uθ

2(λ)]

−(λ+ 3)σ2
uθ(λ)X exp[X(θ0 + 3θ(λ)) +

1

2
(5λ+ 9)σ2

uθ
2(λ)]

−(2λ+ 3)σ2
uθ(λ)X exp[X(θ0 + 3θ(λ)) +

1

2
(5λ+ 9)σ2

uθ
2(λ)]

+2(λ+ 2)σ2
uθ(λ)X exp[4Xθ(λ) + 4(λ+ 2)σ2

uθ
2(λ)]

When λ → −1, we get

σ2
uθ0X exp

(
4Xθ0 + σ2

uθ
2
0

)
− 3σ2

uθ0X exp
(
4Xθ0 + 2σ2

uθ
2
0

)
+ 2σ2

uθ0X exp
(
4Xθ0 + 4σ2

uθ
2
0

)
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Looking at the uv−term, we get

∫
v (exp (2X(θ0 + θ(λ)) + vθ(λ))− exp (X(θ0 + 3θ(λ)) + 2vθ(λ)))

·
[∫

u exp(uθ(λ))ϕ

(
u,

v

λ+ 1
,
λ(λ+ 2)

λ+ 1
σ2
u

)
du

]
ϕ(v, 0, (λ+ 1)σ2

u)dv

−
∫

v (exp (X(θ0 + 3θ(λ)) + vθ(λ))− exp (4Xθ(λ) + 2vθ(λ)))

·
[∫

u exp(2uθ(λ))ϕ

(
u,

v

λ+ 1
,
λ(λ+ 2)

λ+ 1
σ2
u

)
du

]
ϕ(v, 0, (λ+ 1)σ2

u)dv

=

∫
v (exp (2X(θ0 + θ(λ)) + vθ(λ))− exp (X(θ0 + 3θ(λ)) + 2vθ(λ)))

·
[

∂

∂θ(λ)

∫
exp(uθ(λ))ϕ

(
u,

v

λ+ 1
,
λ(λ+ 2)

λ+ 1
σ2
u

)
du

]
ϕ(v, 0, (λ+ 1)σ2

u)dv

−1

2

∫
v (exp (X(θ0 + 3θ(λ)) + vθ(λ))− exp (4Xθ(λ) + 2vθ(λ)))

·
[

∂

∂θ(λ)

∫
exp(2uθ(λ))ϕ

(
u,

v

λ+ 1
,
λ(λ+ 2)

λ+ 1
σ2
u

)
du

]
ϕ(v, 0, (λ+ 1)σ2

u)dv

=

∫
v (exp (2X(θ0 + θ(λ)) + vθ(λ))− exp (X(θ0 + 3θ(λ)) + 2vθ(λ)))

·
[

∂

∂θ(λ)
exp

(
v

λ+ 1
θ(λ) +

1

2

λ(λ+ 2)

λ+ 1
σ2
uθ

2(λ)

)]
ϕ(v, 0, (λ+ 1)σ2

u)dv

−1

2

∫
v (exp (X(θ0 + 3θ(λ)) + vθ(λ))− exp (4Xθ(λ) + 2vθ(λ)))

·
[

∂

∂θ(λ)
exp

(
2v

λ+ 1
θ(λ) +

1

2

4λ(λ+ 2)

λ+ 1
σ2
uθ

2(λ)

)]
ϕ(v, 0, (λ+ 1)σ2

u)dv

= e2X(θ0+θ(λ)+
λ(λ+2)
2(λ+1)

σ2
uθ

2(λ)

∫ (
v

λ+ 1
+

λ(λ+ 2)

(λ+ 1)
σ2
uθ(λ)

)
vevθ(λ))+

vθ(λ)
λ+1 ϕ(v, 0, (λ+ 1)σ2

u)dv

−eX(θ0+3θ(λ)+
λ(λ+2)
2(λ+1)

σ2
uθ

2(λ)

∫ (
v

λ+ 1
+

λ(λ+ 2)

(λ+ 1)
σ2
uθ(λ)

)
ve2vθ(λ))+

vθ(λ)
λ+1 ϕ(v, 0, (λ+ 1)σ2

u)dv

−1

2
eX(θ0+3θ(λ)+

2λ(λ+2)
λ+1

σ2
uθ

2(λ)

∫ (
2v

λ+ 1
+

4λ(λ+ 2)

λ+ 1
σ2
uθ(λ)

)
vevθ(λ)(1+

2
λ+1)ϕ(v, 0, (λ+ 1)σ2

u)dv

+
1

2
e4Xθ(λ)+

2λ(λ+2)
λ+1

σ2
uθ

2(λ)

∫ (
2v

λ+ 1
+

4λ(λ+ 2)

λ+ 1
σ2
uθ(λ)

)
ve2vθ(λ)(1+

1
λ+1)ϕ(v, 0, (λ+ 1)σ2

u)dv

= e2X(θ0+θ(λ)+
λ(λ+2)
2(λ+1)

σ2
uθ

2(λ)

∫
v2

λ+ 1
e

λ+2
λ+1

vθ(λ))ϕ(v, 0, (λ+ 1)σ2
u)dv

+
λ(λ+ 2)

(λ+ 1)
σ2
uθ(λ)e

2X(θ0+θ(λ)+
λ(λ+2)
2(λ+1)

σ2
uθ

2(λ)

∫
ve

λ+2
λ+1

vθ(λ))ϕ(v, 0, (λ+ 1)σ2
u)dv

−eX(θ0+3θ(λ)+
λ(λ+2)
2(λ+1)

σ2
uθ

2(λ)

∫
v2

λ+ 1
e

2λ+3
λ+1

vθ(λ))ϕ(v, 0, (λ+ 1)σ2
u)dv
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−λ(λ+ 2)

(λ+ 1)
σ2
uθ(λ)e

X(θ0+3θ(λ)+
λ(λ+2)
2(λ+1)

σ2
uθ

2(λ)

∫
ve

2λ+3
λ+1

vθ(λ))ϕ(v, 0, (λ+ 1)σ2
u)dv

−eX(θ0+3θ(λ)+
2λ(λ+2)

λ+1
σ2
uθ

2(λ)

∫
v2

λ+ 1
e

λ+3
λ+1

vθ(λ))ϕ(v, 0, (λ+ 1)σ2
u)dv

−2λ(λ+ 2)

λ+ 1
σ2
uθ(λ)e

X(θ0+3θ(λ)+
λ(λ+2)
2(λ+1)

σ2
uθ

2(λ)

∫
ve

λ+3
λ+1

vθ(λ))ϕ(v, 0, (λ+ 1)σ2
u)dv

+
1

2
e4Xθ(λ)+

2λ(λ+2)
λ+1

σ2
uθ

2(λ)

∫
2v2

λ+ 1
e2vθ(λ)

λ+2
λ+1ϕ(v, 0, (λ+ 1)σ2

u)dv

+
λ(λ+ 2)

λ+ 1
σ2
uθ(λ)e

4Xθ(λ)+
2λ(λ+2)

λ+1
σ2
uθ

2(λ)

∫
2ve2vθ(λ)

λ+2
λ+1ϕ(v, 0, (λ+ 1)σ2

u)dv

=
λ+ 1

(λ+ 2)2
e2X(θ0+θ(λ))+

λ(λ+2)
2(λ+1)

σ2
uθ

2(λ)

[
∂2

∂θ2(λ)
exp

(
1

2

(λ+ 2)2

λ+ 1
θ2(λ)σ2

u

)]
+λσ2

uθ(λ)e
2X(θ0+θ(λ))+

λ(λ+2)
2(λ+1)

σ2
uθ

2(λ)

[
∂

∂θ(λ)
exp

(
1

2

(λ+ 2)2

λ+ 1
θ2(λ)σ2

u

)]
− λ+ 1

(2λ+ 3)2
eX(θ0+3θ(λ))+

λ(λ+2)
2(λ+1)

σ2
uθ

2(λ)

[
∂2

∂θ2(λ)
exp

(
1

2

(2λ+ 3)2

λ+ 1
θ2(λ)σ2

u

)]
−λ(λ+ 2)

2λ+ 3
σ2
uθ(λ)e

X(θ0+3θ(λ))+ 1
2

λ(λ+2)
λ+1

σ2
uθ

2(λ)

[
∂

∂θ(λ)
exp

(
1

2

(2λ+ 3)2

λ+ 1
θ2(λ)σ2

u

)]
− λ+ 1

(λ+ 3)2
eX(θ0+3θ(λ))+

2λ(λ+2)
λ+1

σ2
uθ

2(λ)

[
∂2

∂θ2(λ)
exp

(
1

2

(λ+ 3)2

λ+ 1
σ2
uθ

2(λ)

)]
−2λ(λ+ 2)

λ+ 3
eX(θ0+3θ(λ))+

2λ(λ+2)
λ+1

σ2
uθ

2(λ)

[
∂

∂θ(λ)
exp

(
1

2

(λ+ 3)2

λ+ 1
σ2
uθ

2(λ)

)]
+
1

4

λ+ 1

(λ+ 2)2
e4Xθ(λ)+

2λ(λ+2)
λ+1

σ2
uθ

2(λ)

[
∂2

∂θ2(λ)
exp

(
2
(λ+ 2)2

λ+ 1
θ2(λ)σ2

u

)]
+λσ2

uθ(λ)e
4Xθ(λ)+

2λ(λ+2)
λ+1

σ2
uθ

2(λ)

[
∂

∂θ(λ)
exp

(
2
(λ+ 2)2

λ+ 1
θ2(λ)σ2

u

)]
=

[
(λ+ 2)2

λ+ 1
σ4
uθ

2(λ) +
λ(λ+ 2)2

λ+ 1
σ4
uθ

2(λ) + σ2
u

]
· exp

(
2X(θ0 + θ(λ)) +

λ(λ+ 2)

2(λ+ 1)
σ2
uθ

2(λ) +
1

2

(λ+ 2)2

λ+ 1
θ2(λ)σ2

u

)
−
[
(2λ+ 3)2

λ+ 1
σ4
uθ

2(λ) +
λ(λ+ 2)(2λ+ 3)

λ+ 1
σ4
uθ

2(λ) + σ2
u

]
· exp

(
X(θ0 + 3θ(λ)) +

λ(λ+ 2)

2(λ+ 1)
σ2
uθ

2(λ) +
1

2

(2λ+ 3)2

λ+ 1
θ2(λ)σ2

u

)
−
[
(λ+ 3)2

λ+ 1
σ4
uθ

2(λ) +
2λ(λ+ 2)(λ+ 3)

λ+ 1
σ4
uθ

2(λ) + σ2
u

]
· exp

(
X(θ0 + 3θ(λ)) +

2λ(λ+ 2)

λ+ 1
σ2
uθ

2(λ) +
1

2

(λ+ 3)2

λ+ 1
θ2(λ)σ2

u

)
+

[
4(λ+ 2)2

λ+ 1
σ4
uθ

2(λ) +
4λ(λ+ 2)2

λ+ 1
σ4
uθ

2(λ) + σ2
u

]

87



· exp
(
4Xθ(λ) +

2λ(λ+ 2)

λ+ 1
σ2
uθ

2(λ) + 2
(λ+ 2)2

λ+ 1
θ2(λ)σ2

u

)
=
[
σ2
u + (λ+ 2)2σ4

uθ
2(λ)

]
exp

(
2X(θ0 + θ(λ)) + (λ+ 2)σ2

uθ
2(λ)

)
−2
[
σ2
u + (2λ+ 3)(λ+ 3)σ4

uθ
2(λ)

]
exp

(
X(θ0 + 3θ(λ)) +

1

2
(5λ+ 9)σ2

uθ
2(λ)

)
+
[
σ2
u + 4(λ+ 2)2σ4

uθ
2(λ)

]
exp

(
4Xθ(λ) + 4(λ+ 2)σ2

uθ
2(λ)

)
when λ → −1, we get

[
σ2
u + σ4

uθ
2
0

]
e4Xθ0+σ2

uθ
2
0 − 2

[
σ2
u + 2σ4

uθ
2
0

]
e4Xθ0+2σ2

uθ
2
0 +

[
σ2
u + 4σ4

uθ
2
0

]
e4Xθ0+4σ2

uθ
2
0
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Appendix B

Appendix for Chapter 3

B.1 Appendix

To prove Theorem 4, we need find out the expectations and variances of each component

appearing in ĝn(x;λ) defined in (3.3.8). The calculation is facilitated by the following lemmas.

Lemma 7. Let a, c be any positive constants. Suppose that for any x in the support of fX ,

m′(t + x),m′′(t + x) ∈ L1(ϕ(·; 0, c)) and are continuous as functions of t. Then, as h → 0,

we have

∫
ϕ(t;x, ah2 + c)m(t)dt =

∫
ϕ(t;x, c)m(t)dt+

ah2

2

∫
m′′(t)ϕ(t;x, c)dt+ o(h2).

Furthermore, if

∂j
∫
m(t+ x)ϕ(t; 0, c)dt

∂xj
=

∫
∂jm(t+ x)

∂xj
ϕ(t; 0, c)dt, j = 1, 2,

then we have

∫
ϕ(t;x, ah2 + c)m(t)dt =

∫
ϕ(t− x; 0, c)m(t)dt+

ah2

2
·
∂2
∫
m(t)ϕ(t− x; 0, c)dt

∂x2
+ o(h2).
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In Lemma 7, if we take c = 0, then

∫
ϕ(t;x, ah2)m(t)dt = m(x) +

ah2

2
m′′(x) + o(h2).

The proof of Lemma 7. Note that

∂m(x+ u
√
ah2 + c)

∂h

∣∣∣
h=0

= 0,
∂2m(x+ u

√
ah2 + c)

∂h2

∣∣∣
h=0

= m′(x+ u
√
c)
au√
c
.

Therefore, using Taylor expansion,

∫
ϕ(t;x, ah2 + c)m(t)dt =

∫
ϕ(u; 0, 1)m(x+ u

√
ah2 + c)du

=

∫
ϕ(u; 0, 1)

[
m(x+ u

√
c) +m′(x+ u

√
c)
auh2

2
√
c

]
du+ o(h2)

=

∫
ϕ(t− x; 0, c)

[
m(t) +m′(t)

ah2(t− x)

2c

]
dt+ o(h2). (B.1.1)

Note that under the condition of m′(t+ x) ∈ L1(ϕ(·; 0, c)) for any x ∈ R, we can get

1

c

∫
ϕ(t− x; 0, c)m′(t)(t− x)dt =

∫
m′′(t)ϕ(t− x; 0, c)dt.

This, together with (B.1.1), implies the first expansion. For the second expansion, notice

that under the derivative-integration exchangeability condition, we have

∫
m′′(t)ϕ(t− x; 0, c)dt =

∫
∂2m(t+ x)

∂t2
ϕ(t; 0, c)dt =

∫
∂2m(t+ x)

∂x2
ϕ(t; 0, c)dt.

The following lemma lists some facts about normal density functions which are used often

in the proofs of our main results. For the sake of brevity, the proofs of these facts are omitted

since they can be found in standard statistics books.

90



Lemma 8. For normal density function ϕ(u;µ, σ2) with mean µ and variance σ2, we have

ϕ2(u;µ, σ2) =
1

2
√
πσ2

ϕ

(
u;µ,

σ2

2

)
, ϕ3(u;µ, σ2) =

1

2
√
3πσ2

ϕ

(
u;µ,

σ2

3

)
,

ϕ(u;µ1, σ
2
1)ϕ(u, µ2, σ

2
2) = ϕ(µ1 − µ2; 0, σ

2
1 + σ2

2)ϕ

(
u;

σ2
1µ2 + σ2

2µ1

σ2
1 + σ2

2

,
σ2
1σ

2
2

σ2
1 + σ2

2

)
,∫

ϕ(u;µ1, σ
2
1)ϕ(u;µ2, σ

2
2)du = ϕ(µ1 − µ2; 0, σ

2
1 + σ2

2),∫
uϕ(u;µ1, σ

2
1)ϕ(u;µ2, σ

2
2)du =

σ2
1µ2 + σ2

2µ1

σ2
1 + σ2

2

ϕ(µ1 − µ2; 0, σ
2
1 + σ2

2),∫
u2ϕ(u;µ1, σ

2
1)ϕ(u;µ2, σ

2
2)du =

[
σ2
1σ

2
2

σ2
1 + σ2

2

+

(
σ2
1µ2 + σ2

2µ1

σ2
1 + σ2

2

)2
]
ϕ(µ1 − µ2; 0, σ

2
1 + σ2

2).

Then using the above two lemmas, for the components S̃jn(x) or s̃j for j = 0, 1, 2, T̃ln(x)

for l = 0, 1, in the definition of ĝn(x) given in (3.3.8), we can get the following series of

results on the asymptotic expansions of their expectations and variances. For brevity, in the

proof, we denote δ2jh = h2 + (λ+ j)σ2
u for j = 0, 1, 2.

Lemma 9. For S̃n0(x), we have

E(S̃n0(x)) = f0,λ(x) + h2f ′′
0,λ(x)/2 + o(h2), λ ≥ 0,

Var(S̃n0(x)) =


f0,λ/2(x)

2n
√

πλσ2
u

−
f 2
0,λ(x)

n
+O

(
h2

n

)
, λ > 0,

f0,0(x)

2nh
√
π
−

f 2
0,0(x)

n
+O

(
h

n

)
, λ = 0.

Proof of Lemma 9. By the independence of X and U , and applying Lemma 7 with a = 1,

c = (λ+ 1)σ2
u and m(t) = fX(t), for S̃0n, we have

Eϕ(x, Z, δ20h) =

∫∫
ϕ(x; t+ u, δ20h)ϕ(u; 0, σ

2
u)fX(t)dudt

=

∫
ϕ(t− x; 0, (λ+ 1)σ2

u)fX(t)dt+
h2

2

∫
f ′′
X(t)ϕ(t− x; 0, (λ+ 1)σ2

u)dt+ o(h2)

= f0,λ(x) + h2f ′′
0,λ(x)/2 + o(h2).
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Also, applying Lemma (7) with a = 1/2, c = (λ+ 2)σ2
u/2, and m(t) = fX(t), we have

Eϕ2(x;Z, δ20h) =

∫∫
ϕ2(x; t+ u, δ20h)ϕ(u; 0, σ

2
u)fX(t)dudt

=
1

2
√

πδ20h

∫
ϕ

(
t;x,

δ22h
2

)
fX(t)dt =

f0,λ/2(x)

2
√
πδ20h

+
h2f ′′

0,λ/2(x)

8
√
πδ20h

+ o

(
h2

2
√

πδ20h

)
.(B.1.2)

Therefore, we have

var
[
S̃0n(x)

]
=

1

n

{
Eϕ2(x;Z, δ20h)− [Eϕ(x;Z, δ20h)]

2
}

=
4f0,λ/2(x) + h2f ′′

0,λ/2(x)

8n
√

πδ20h
−

f 2
0,λ(x) + f0,λ(x)f

′′
0,λ(x)h

2

n
+ o

(
h2

2n
√
πδ20h

)
.

This concludes the proof of Lemma 9.

Lemma 10. For S̃n1(x), we have

E(S̃n1(x)) =
h2

(λ+ 1)σ2
u

f1,λ(x)−
xh2

(λ+ 1)σ2
u

f0,λ(x) + o
(
h2
)
, λ ≥ 0,

Var(S̃n1(x)) =



h4

2n(λ+ 2)2σ4
u

√
πλσ2

u

[
f2,λ/2(x)− xf1,λ/2(x) + x2f0,λ/2(x)

]
+

h4

2nλ(λ+ 2)σ2
u

√
πλσ2

u

f0,λ/2(x)−
h4

n(λ+ 1)2σ4
u

[f1,λ(x)− xf0,λ(x)]
2, λ > 0

h

4n
√
π
f0,0(x) + o

(
h

n

)
, λ = 0.

Proof of Lemma 10. Applying Lemma 7 with a = 1, c = (λ+1)σ2
u, m(t) = fX(t) and tfX(t),

and Lemma 8, we have

E(Z − x)ϕ(x, Z, δ20h) =

∫∫
(t+ u− x)ϕ(x; t+ u, δ20h)ϕ(u; 0, σ

2
u)fX(t)dudt

=

∫
(t− x)

[∫
ϕ(u;x− t, δ20h)ϕ(u, 0, σ

2
u)du

]
fX(t)dt

+

∫ [∫
uϕ(u;x− t, λσ2

u)ϕ(u; 0, σ
2
u)du

]
fX(t)dt
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=

∫
ϕ(t− x; 0, δ21h)(t− x)fX(t)dt−

σ2
u

δ21h

∫
ϕ(t− x; 0, δ21h)(t− x)fX(t)dt

=
δ20h
δ21h

∫
ϕ(t− x; 0, δ21h)tfX(t)dt−

δ20hx

δ21h

∫
ϕ(t− x; 0, δ21h)fX(t)dt

=
δ20h
δ21h

[
f1,λ(x) +

h2

2
f ′′
1,λ(x)

]
− xδ20h

δ21h

[
f0,λ(x) +

h2

2
f ′′
0,λ(x)

]
+ o

(
δ20hh

2

2δ21h

)
.

We also have

E(Z − x)2ϕ2(x, Z, δ20h) =

∫∫
(t+ u− x)2ϕ2(x; t+ u, δ20h)ϕ(u; 0, σ

2
u)fX(t)dudt

=
1

2
√

πδ20h

∫∫
(t+ u− x)2ϕ

(
u;x− t,

δ20h
2

)
ϕ(u; 0, σ2

u)fX(t)dudt

=
1

2
√

πδ20h

∫∫
(t+ u− x)2ϕ

(
t, x,

δ22h
2

)
ϕ

(
u;

2σ2
u(x− t)

δ22h
,
σ2
uδ

2
0h

δ22h

)
fX(t)dudt

=

(
1

2
√

πδ20h
− 1√

πδ20h
· 2σ

2
u

δ22h

)∫
(t− x)2ϕ

(
t, x,

δ22h
2

)
fX(t)dt

+
1

2
√

πδ20h

∫ (
σ2
uδ

2
0h

δ22h
+

[
2σ2

u(x− t)

δ22h

]2)
ϕ

(
t, x,

δ22h
2

)
fX(t)dt

=
1

2
√

πδ20h

(
1− 2σ2

u

δ22h

)2 ∫
(t− x)2ϕ

(
t, x,

δ22h
2

)
fX(t)dt+

σ2
uδ0h

2δ22h
√
π

∫
ϕ

(
t, x,

δ22h
2

)
fX(t)dt

=
δ30h

2δ42h
√
π

∫
(t− x)2ϕ

(
t, x,

δ22h
2

)
fX(t)dt+

σ2
uδ

2
0h

2δ22h
√

πδ20h

∫
ϕ

(
t, x,

δ22h
2

)
fX(t)dt

=
δ30h

2δ42h
√
π

([
f2,λ/2(x) +

h2

4
f ′′
2,λ/2(x) + o(h2)

]
− x

[
f1,λ/2(x) +

h2

4
f ′′
1,λ/2(x) + o(h2)

])
+

(
x2δ30h
2δ42h

√
π
+

σ2
uδ0h

2δ22h
√
π

)[
f0,λ/2(x) +

h2

4
f ′′
0,λ/2(x) + o(h2)

]
.

Therefore, we have

var
[
S̃1n(x)

]
=

h4 {E(Z − x)2ϕ2(x;Z, δ20h)− [E(Z − x)ϕ(x;Z, δ20h)]
2}

nδ40h
=

h4

2nδ42h
√

πδ20h

([
f2,λ/2(x) +

h2

4
f ′′
2,λ/2(x) + o(h2)

]
− x

[
f1,λ/2(x) +

h2

4
f ′′
1,λ/2(x) + o(h2)

])
+

(
h4x2

2δ42hn
√

πδ20h
+

σ2
uh

4

2nδ22h
√
πδ30h

)[
f0,λ/2(x) +

h2

4
f ′′
0,λ/2(x) + o(h2)

]
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− 1

n

(
h2

δ21h

[
f1,λ(x) +

h2

2
f ′′
1,λ(x)

]
− xh2

δ21h

[
f0,λ(x) +

h2

2
f ′′
0,λ(x)

]
+ o

(
h2

2δ21h

))2

.

This concludes the proof of Lemma 10.

Lemma 11. For S̃n2(x), we have

E(S̃n2(x)) = h2f0,λ(x) + o(h2), λ ≥ 0,

Var(S̃n2(x)) =


h4

n

[
f0,λ/2(x)

2
√
πλσ2

u

− f 2
0,λ(x)

]
+ o

(
h4

n

)
, λ > 0,

3h3f0,0(x)

8n
√
π

+ o

(
h3

n

)
, λ = 0.

Proof of Lemma 11. Note that

E(Z − x)2ϕ(x, Z, δ20h) =

∫∫
(t+ u− x)2ϕ(x; t+ u, δ20h)ϕ(u; 0, σ

2
u)fX(t)dudt

=

∫∫
(t+ u− x)2ϕ

(
t, x, δ21h

)
ϕ

(
u;

σ2
u(x− t)

δ21h
,
σ2
uδ

2
0h

δ21h

)
fX(t)dudt

=

∫
(t− x)2ϕ

(
t, x, δ21h

)
fX(t)dt−

2σ2
u

δ21h

∫
(t− x)2ϕ

(
t, x, δ21h

)
fX(t)dt

+

∫ (
σ2
uδ

2
0h

δ21h
+

[
σ2
u(x− t)

δ21h

]2)
ϕ
(
t, x, δ21h

)
fX(t)dt

=
δ40h
δ41h

∫
(t− x)2ϕ

(
t, x, δ21h

)
fX(t)dt+

σ2
uδ

2
0h

δ21h

∫
ϕ
(
t, x, δ21h

)
fX(t)dt

=
δ40h
δ41h

[
f2,λ(x) +

h2

2
f ′′
2,λ(x) + o(h2)− 2x

(
f1,λ(x) +

h2

2
f ′′
1,λ(x) + o(h2)

)
+x2

(
f0,λ(x) +

h2

2
f ′′
0,λ(x) + o(h2)

)]
+

σ2
uδ

2
0h

δ21h

[
f0,λ(x) +

h2

2
f ′′
0,λ(x) + o(h2)

]
.

Therefore, we get

E[S̃2n(x)] =
h4

δ40h

([
δ20h
δ21h

]2 [
f2,λ(x) +

h2

2
f ′′
2,λ(x) + o(h2)− 2x

(
f1,λ(x) +

h2

2
f ′′
1,λ(x) + o(h2)

)

+x2

(
f0,λ(x) +

h2

2
f ′′
0,λ(x) + o(h2)

)]
+

σ2
uδ

2
0h

δ21h

[
f0,λ(x) +

h2

2
f ′′
0,λ(x) + o(h2)

])
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+
λσ2

uh
2

δ20h

[
f0,λ(x) +

h2

2
f ′′
0,λ(x) + o(h2)

]
.

Then we have to calculate E(Z − x)4ϕ2(x, Z, δ20h). Recall that for u ∼ N(µ, σ2
u), we have

Eu3 = 3µσ2
u + µ3, Eu4 = 3σ4 + 6µ2σ2

u + µ4. So,

E(Z − x)4ϕ2(x, Z, δ20h) =

∫∫
(t+ u− x)4ϕ2(u;x− t, δ20h)ϕ(u; 0, σ

2
u)fX(t)dudt

=
1

2
√

πδ20h

∫∫
(t+ u− x)4ϕ

(
u;x− t,

δ20h
2

)
ϕ(u; 0, σ2

u)fX(t)dudt

=
1

2
√

πδ20h

∫∫
(t+ u− x)4ϕ

(
t, x,

δ22h
2

)
ϕ

(
u;

2σ2
u(x− t)

δ22h
,
σ2
uδ

2
0h

δ22h

)
fX(t)dudt

=
1

2
√

πδ20h

∫
(t− x)4ϕ

(
t, x,

δ22h
2

)
fX(t)dt−

4σ2
u

δ22h
√

πδ20h

∫
(t− x)4ϕ

(
t, x,

δ22h
2

)
fX(t)dt

+
6

2
√

πδ20h

∫
(t− x)2ϕ

(
t, x,

δ22h
2

)[(
2σ2

u(x− t)

δ22h

)2

+
σ2
uδ

2
0h

δ22h

]
fX(t)dt

+
4

2
√

πδ20h

∫
(t− x)ϕ

(
t, x,

δ22h
2

)[
3
σ2
uδ

2
0h

δ22h

2σ2
u(x− t)

δ22h
+

[
2σ2

u(x− t)

δ22h

]3]
fX(t)dt

+
1

2
√

πδ20h

∫
ϕ

(
t, x,

δ22h
2

)3(σ2
uδ

2
0h

δ22h
+

(
2σ2

u(x− t)

δ22h

)2
)2

− 2

(
2σ2

u(x− t)

δ22h

)4
 dt

It can be further written as(
1

2
√

πδ20h
− 4σ2

u

δ22h
√

πδ20h

)∫
(t− x)4ϕ

(
t, x,

δ22h
2

)
fX(t)dt

+
6

2
√

πδ20h

∫
(t− x)2ϕ

(
t, x,

δ22h
2

)[(
2σ2

u(x− t)

δ22h

)2

+
σ2
uδ

2
0h

δ22h

]
fX(t)dt

+
4

2
√

πδ20h

∫
(t− x)ϕ

(
t, x,

δ22h
2

)[
3
σ2
uδ

2
0h

δ22h

2σ2
u(x− t)

δ22h
+

[
2σ2

u(x− t)

δ22h

]3]
fX(t)dt

+
1

2
√

πδ20h

∫
ϕ

(
t, x,

δ22h
2

)3(σ2
uδ

2
0h

δ22h
+

(
2σ2

u(x− t)

δ22h

)2
)2

− 2

(
2σ2

u(x− t)

δ22h

)4
 dt
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Let

A(h;λ) =
1

2
√

πδ20h

[
δ20h
δ22h

]4
, B(h;λ) =

3σ2
u

√
δ20h

δ22h

[
1− 4σ2

u

δ22h
+

4σ4
u

δ42h

]
=

3σ2
uδ

5
0h√

πδ62h
,

C(h;λ) =
3σ4

uδ
2
0h

√
δ20h

2
√
πδ42h

.

Then,

E(Z − x)4ϕ2(x, Z, δ20h) = A(h;λ)

∫
(t− x)4ϕ

(
t, x,

δ22h
2

)
fX(t)dt

+B(h;λ)

∫
(t− x)2ϕ

(
t, x,

δ22h
2

)
fX(t)dt+ C(h;λ)

∫
ϕ

(
t, x,

δ22h
2

)
fX(t)dt

= A(h;λ)

∫
t4ϕ

(
t, x,

δ22h
2

)
fX(t)dt− 4xA(h;λ)

∫
t3ϕ

(
t, x,

δ22h
2

)
fX(t)dt

+(6x2A(h;λ) +B(h;λ))

∫
t2ϕ

(
t, x,

δ22h
2

)
fX(t)dt

−(4x3A(h;λ) + 2xB(h;λ))

∫
tϕ

(
t, x,

δ22h
2

)
fX(t)dt

+[x4A(h;λ) + x2B(h;λ) + C(h;λ)]

∫
ϕ

(
t, x,

δ22h
2

)
fX(t)dt

= A(h;λ)

[
f4,λ/2(x) +

h2

4
f ′′
4,λ/2(x) + o(h2)

]
− 4xA(h;λ)

[
f3,λ/2(x) +

h2

4
f ′′
3,λ/2(x) + o(h2)

]
+(6x2A(h;λ) +B(h;λ))

[
f2,λ/2(x) +

h2

4
f ′′
2,λ/2(x) + o(h2)

]
−(4x3A(h;λ) + 2xB(h;λ))

[
f1,λ/2(x) +

h2

4
f ′′
1,λ/2(x) + o(h2)

]
+[x4A(h;λ) + x2B(h;λ) + C(h;λ)]

[
f0,λ/2(x) +

h2

4
f ′′
0,λ/2(x) + o(h2)

]
.

Summarizing above derivations eventually leads to

var[S̃2n(x)] =
h8

nδ80h

[
E(Z − x)4ϕ2(x;Z, δ20h)− (E(Z − x)2ϕ(x;Z, δ20h))

2
]

+
λ2σ4

uh
4

nδ40h

[
Eϕ2(x;Z, δ20h)− (Eϕ(x;Z, δ20h))

2
]
+

2λσ2
uh

6

nδ60h
·[

E(Z − x)2ϕ2(x;Z, δ20h)− E(Z − x)2ϕ(x;Z, δ20h)Eϕ(x;Z, δ20h)
]
.
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This concludes the proof of Lemma 11.

Lemma 12. For T̃n0(x), we have

E(T̃n0(x)) = g0,λ(x) +
h2

2
g′′0,λ(x) + o(h2), λ > 0,

Var(T̃n0(x)) =


1

n

[
1

2
√

λπσ2
u

[G0,λ/2(x) +H0,λ/2(x)]− g20,λ(x)

]
+O

(
h2

n

)
, λ > 0,

1

2nh
√
π
[G0,0(x) +H0,0(x)] + o

(
1

nh

)
, λ = 0.

Proof of Lemma 12. Note that

E[Y ϕ(x;Z, δ20h)] = E[(g(X) + ε)ϕ(x;Z, δ20h)]

= E
(
E[(g(X) + ε)ϕ(x;Z, δ20h)

∣∣∣X,U ]
)
= E[g(X)ϕ(x;Z, δ20h)]

=

∫
g(t)fX(t)ϕ(x− t; 0, (λ+ 1)σ2)dt+

h2

2

∂2

∂x2

∫
g(t)fX(t)ϕ(x− t; 0, (λ+ 1)σ2

u)dt+ o(h2).

Note that τ 2(X) = E(ε2|X), we also have

E[Y 2ϕ2(x;Z, δ20h)] = E
(
E[(g(X) + ε)2ϕ2(x;Z, δ20h)

∣∣∣X,U ]
)

= E[(g2(X) + τ 2(X))ϕ2(x;Z, δ20h)] =

∫
[g2(t) + τ 2(t)]ϕ2(u;x− t, δ20h)ϕ(u; 0, σ

2
u)fX(t)dt

=
1

2
√

πδ20h

∫
[g2(t) + τ 2(t)]ϕ(x− t; 0, (λ+ 2)σ2

u/2)fX(t)dt

+
h2

8
√

πδ20h

∂2

∂x2

∫
[g2(t) + τ 2(t)]ϕ(x− t; 0, (λ+ 2)σ2

u/2)fX(t)dt+ o

(
h2

2
√

πδ20h

)
.

Therefore,

var
[
T̃0n(x)

]
=

1

n

{
E[Y 2ϕ2(x;Z, δ20h)]− (E[Y ϕ(x;Z, δ20h)])

2
}

=
1

2n
√

πδ20h

∫
[g2(t) + τ 2(t)]ϕ(x− t; 0, (λ+ 2)σ2

u/2)fX(t)dt

+
h2

8n
√

πδ20h

∂2

∂x2

∫
[g2(t) + τ 2(t)]ϕ(x− t; 0, (λ+ 2)σ2

u/2)fX(t)dt
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+o

(
h2

2n
√

πδ20h

)
− 1

n

[ ∫
g(t)fX(t)ϕ(x− t; 0, (λ+ 1)σ2

u)dt

+
h2

2

∂2

∂x2

∫
g(t)fX(t)ϕ(x− t; 0, (λ+ 1)σ2

u)dt+ o(h2)

]2
.

This implies the result in Lemma 12.

Lemma 13. For T̃n1(x), we have

E(T̃n1(x)) =
h2

(λ+ 1)σ2
u

g1,λ(x)−
xh2

(λ+ 1)σ2
u

g0,λ(x) + o
(
h2
)
, λ ≥ 0,

Var(T̃n1(x)) =

h4

n(λ+ 2)2
√
λπσ5

u

[
1

2
[G2,λ/2(x) +H2,λ/2(x)]− x[G1,λ/2(x) +H1,λ/2(x)]

]
+

h4

n(λ+ 2)
√
λπσ3

u

[
x2

(λ+ 2)σ2
u

+
1

λ

]
[G0,λ/2(x) +H0,λ/2(x)]−

h4

n(λ+ 1)2σ4
u

[g1,λ(x)− xg0,λ(x)]
2, λ > 0,

h

4n
√
π
[G0,0(x) +H0,0(x)] + o

(
h

n

)
, λ = 0.

Proof of Lemma 13. Note that

E
[
Y (Z − x)ϕ(x;Z, δ20h)

]
= E

[
(g(X) + ε)(Z − x)ϕ(x;Z, δ20h)

]
= E

(
E[(g(X) + ε)(Z − x)ϕ(x;Z, δ20h)

∣∣∣X,U ]
)
= E

[
g(X)(Z − x)ϕ(x;Z, δ20h)

]
=

∫∫
g(t)(t+ u− x)ϕ(x; t+ u, δ20h)ϕ(u; 0, σ

2
u)fX(t)dudt

=

∫
g(t)(t− x)

[∫
ϕ(u;x− t, δ20h)ϕ(u, 0, σ

2
u)du

]
fX(t)dt

+

∫
g(t)

[∫
uϕ(u;x− t, λσ2

u)ϕ(u; 0, σ
2
u)du

]
fX(t)dt

=

∫
ϕ(t, x, δ21h)g(t)(t− x)fX(t)dt−

σ2
u

δ21h

∫
ϕ(t, x, δ21h)g(t)(t− x)fX(t)dt

=
δ20h
δ21h

∫
ϕ(t, x, δ21h)tg(t)fX(t)dt−

δ20hx

δ21h

∫
ϕ(t, x, δ21h)g(t)fX(t)dt
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=
δ20h
δ21h

[∫
tg(t)fX(t)ϕ(t;x, (λ+ 1)σ2

u)dt+
h2

2

∂2

∂x2

∫
tg(t)fX(t)ϕ(t;x, (λ+ 1)σ2

u)dt+ o(h2)

]

−δ20hx

δ21h

[∫
g(t)fX(t)ϕ(t;x, (λ+ 1)σ2

u)dt+
h2

2

∂2

∂x2

∫
g(t)fX(t)ϕ(t;x, (λ+ 1)σ2

u)dt+ o(h2)

]

Next, we see that

E[Y 2(Z − x)2ϕ2(x;Z, δ20h)] = E
(
E[(g(X) + ε)2(Z − x)2ϕ2(x;Z, δ20h)

∣∣∣X,U ]
)

= E[(g2(X) + τ 2(X))(Z − x)2ϕ2(x;Z, δ20h)]

=

∫
[g2(t) + τ 2(t)]

∫
(t+ u− x)2ϕ2(x; t+ u, δ20h)ϕ(u; 0, σ

2
u)fX(t)dudt

=
δ30h

2δ42h
√
π

[ ∫
[g2(t) + τ 2(t)]t2fX(t)ϕ(x− t; 0, (λ+ 2)σ2

u/2)dt+ o(h2)

]
+

h2δ30h
8δ42h

√
π

∂2

∂x2

∫
[g2(t) + τ 2(t)]t2fX(t)ϕ(x− t; 0, (λ+ 2)σ2

u/2)dt

− xδ30h
δ42h

√
π

[ ∫
[g2(t) + τ 2(t)]tfX(t)ϕ(x− t; 0, (λ+ 2)σ2

u/2)dt+ o(h2)

]
− xh2δ30h
4δ42h

√
π

∂2

∂x2

∫
[g2(t) + τ 2(t)]tfX(t)ϕ(x− t; 0, (λ+ 2)σ2

u/2)dt

+
x2δ30h
2δ42h

√
π

[ ∫
[g2(t) + τ 2(t)]fX(t)ϕ(x− t; 0, (λ+ 2)σ2

u/2)dt+ o(h2)

]
+
x2h2δ30h
8δ42h

√
π

∂2

∂x2

∫
[g2(t) + τ 2(t)]fX(t)ϕ(x− t; 0, (λ+ 2)σ2

u/2)dt

+
σ2
uδ0h

2δ22h
√
π

∫
[g2(t) + τ 2(t)]fX(t)ϕ(x− t; 0, (λ+ 2)σ2

u/2)dt

+
σ2
uh

2δ0h
8δ22h

√
π

∂2

∂x2

∫
[g2(t) + τ 2(t)]fX(t)ϕ(x− t; 0, (λ+ 2)σ2

u/2)dt+ o

(
h2δ0h
2δ22h

√
π

)

Therefore,

var
[
T̃1n(x)

]
=

h4

nδ40h

{
E[Y 2(Z − x)2ϕ2(x;Z, δ20h)]−

(
E[Y (Z − x)ϕ(x;Z, δ20h)]

)2
}

=
h4

2nδ42h
√
πδ20h

[ ∫
[g2(t) + τ 2(t)]t2fX(t)ϕ(x− t; 0, (λ+ 2)σ2

u/2)dt+ o(h2)

]
+

h6

8nδ42h
√

πδ20h

∂2

∂x2

∫
[g2(t) + τ 2(t)]t2fX(t)ϕ(x− t; 0, (λ+ 2)σ2

u/2)dt
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− xh4

nδ42h
√
πδ20h

[ ∫
[g2(t) + τ 2(t)]tfX(t)ϕ(x− t; 0, (λ+ 2)σ2

u/2)dt+ o(h2)

]
− xh6

4nδ42h
√

πδ20h

∂2

∂x2

∫
[g2(t) + τ 2(t)]tfX(t)ϕ(x− t; 0, (λ+ 2)σ2

u/2)dt

+
x2h4

2nδ42h
√

πδ20h

[ ∫
[g2(t) + τ 2(t)]fX(t)ϕ(x− t; 0, (λ+ 2)σ2

u/2)dt+ o(h2)

]
+

x2h6

8nδ42h
√

πδ20h

∂2

∂x2

∫
[g2(t) + τ 2(t)]fX(t)ϕ(x− t; 0, (λ+ 2)σ2

u/2)dt

+
σ2
uh

4

2nδ22hδ
3
0h

√
π

[ ∫
[g2(t) + τ 2(t)]fX(t)ϕ(x− t; 0, (λ+ 2)σ2

u/2)dt+ o(h2)

]
+

σ2
uh

6

8nδ22hδ
3
0h

√
π

∂2

∂x2

∫
[g2(t) + τ 2(t)]fX(t)ϕ(x− t; 0, (λ+ 2)σ2

u/2)dt

− h4

nδ41h

[∫
tg(t)fX(t)ϕ(x− t; 0, (λ+ 1)σ2

u)dt+
h2

2

∂2

∂x2

∫
tg(t)fX(t)ϕ(x− t; 0, (λ+ 1)σ2

u)dt

−x

∫
g(t)fX(t)ϕ(t;x, (λ+ 1)σ2

u)dt−
xh2

2

∂2

∂x2

∫
g(t)fX(t)ϕ(t;x, (λ+ 1)σ2

u)dt+ o(h2)

]2
.

This concludes the proof of Lemma 13.

Proof of Theorem 5. To verify the Lyapunov condition, we have to find out the asymptotic

expansions of Ev2(x), and an upper bound for E|v3(x)|. Note that

Ev2(x) = c20λEξ20λ(x) + c21λEξ21λ(x) + c22λEξ22λ(x) + d20λEη20λ(x) + d21λEη21λ(x)

+2c0λc1λE[ξ0λ(x)ξ1λ(x)] + 2c0λc2λE[ξ0λ(x)ξ2λ(x)] + 2c0λd0λE[ξ0λ(x)η0λ(x)]

+2c0λd1λE[ξ0λ(x)η1λ(x)] + 2c1λc2λE[ξ1λ(x)ξ2λ(x)] + 2c1λd0λE[ξ1λ(x)η0λ(x)]

+2c1λd1λE[ξ1λ(x)η1λ(x)] + 2c2λd0λE[ξ2λ(x)η0λ(x)] + 2c2λd1λE[ξ2λ(x)η1λ(x)]

+2d0λd1λE[η0λ(x)η1λ(x)].

Routine and tedious calculations show that when λ > 0, except for

E[ξ0λ(x)η0λ(x)] =
1

2
√

πλσ2
u

g0,λ/2(x)− g0,λ(x)f0,λ(x) +O(h2),

all other expectations of the cross products are of the order O(h2), which, together with the
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previous derivations with respect to Eξ20λ(x), Eξ21λ(x), Eξ22λ(x), Eη20λ(x), Eη21λ(x), we can

obtain

Ev2(x) = c20λ

[
1

2
√

πλσ2
u

f0,λ/2(x)− f 2
0,λ(x)

]
+ d20λ

[
1

2
√

πλσ2
u

{G0,λ/2(x) +H0,λ/2(x)} − g20,λ

]

+2c0λd0λ

[
1

2
√

πλσ2
u

g0,λ/2(x)− g0,λ(x)f0,λ(x)

]
+O(h2).

When λ = 0, except for E[ξ00(x)η00(x)] =
1

2h
√
π
g0,0(x) + O(h), all other expectations of

the cross products are of the order O(h), which, together with the previous derivations with

respect to Eξ200(x), Eξ210(x), Eξ220(x), Eη200(x), Eη210(x), leads to

Ev2(x) =
1

2h
√
π

[
c200f00(x) + d200{G00(x) +H00(x)}+ 2c00d00g00(x)

]
+O(h)

=
1

2h
√
π

[
G00(x) +H00(x)

f 2
00(x)

− g200(x)

f 3
00(x)

]
+O(h).

To find a proper order for E|v(x)|3, we have to find the orders for the expectations

E(Z − x)ϕ2(x, Z, δ20h), EY ϕ2(x, Z, δ20h), EY (Z − x)ϕ2(x, Z, δ20h),

EY (Z − x)2ϕ2(x, Z, δ20h), EY 2(Z − x)ϕ2(x, Z, δ20h),

Eϕ3(x, Z, δ20h), E|Z − x|3ϕ3(x, Z, δ20h), E|Z − x|6ϕ3(x, Z, δ20h),

E|Y |3ϕ3(x, Z, δ20h), E|Y |3|Z − x|3ϕ3(x, Z, δ20h).

More complicated calculations show that

Eϕ3(x, Z, δ20h) =
1

2πδ20h
√
3

[
f0,λ/3(x) +

h2

6
f ′′
0,λ/3(x) + o(h2)

]
,

which is O(1) when λ > 0 and O(1/h2) when λ = 0, and

E|Z − x|3ϕ3(x, Z, δ20h)
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≤ 2

π
√
3δ20h

· 8
√
2√
π

(
σ2
uδ

2
0h

h2 + (λ+ 3)σ2
u

) 3
2
∫

ϕ

(
t, x,

h2 + (λ+ 3)σ2
u

3

)
fX(t)dt

+
2

π
√
3δ20h

· 4
(

3σ2
u

h2 + (λ+ 3)σ2
u

)3 ∫
|x− t|3ϕ

(
t, x,

h2 + (λ+ 3)σ2
u

3

)
fX(t)dt

+
2

π
√
3δ20h

∫
|x− t|3ϕ

(
t, x,

h2 + (λ+ 3)σ2
u

3

)
fX(t)dt

which is O(1) when λ > 0 and O(1/h2) when λ = 0. We also have

E|Z − x|6ϕ3(x;Z, δ20h) ≤
7680σ6

u

π
√
3δ20h

(
σ2
uδ

2
0h

h2 + (λ+ 3)σ2
u

)3 ∫
ϕ

(
t, x,

h2 + (λ+ 3)σ2
u

3

)
fX(t)dt

+
512

π
√
3δ20h

(
3σ2

u

h2 + (λ+ 3)σ2
u

)6 ∫
|x− t|6ϕ

(
t, x,

h2 + (λ+ 3)σ2
u

3

)
fX(t)dt

+
16

π
√
3δ20h

∫
|x− t|6ϕ

(
t, x,

h2 + (λ+ 3)σ2
u

3

)
fX(t)dt

which is O(1) when λ > 0 and O(1/h2) when λ = 0. Denote δ(X) = E
(
|ϵ|3
∣∣∣X), then,

E|Y |3ϕ3(x;Z, δ20h) ≤ 4E|g(X)|3ϕ3(x;Z, δ20h) + 4Eδ(X)ϕ3(x;Z, δ20h).

Eventually, we can show that

E|Y |3ϕ3(x;Z, δ20h) ≤
2

π
√
3δ20h

∫ [
|g(t)|3 + δ(t)

]
ϕ

(
t;x,

h2 + (λ+ 3)σ2
u

3

)
fX(t)dt

which is O(1) for λ > 0 and O(1/h2) for λ = 0. Finally, for For E|Y |3|Z − x|3ϕ3(x;Z, δ20h),

we can show that

E|Y |3|Z − x|3ϕ3(x;Z, δ20h)

≤ 64
√
2

π
√
3πδ20h

(
σ2
uδ

2
0h

h2 + (λ+ 3)σ2
u

) 3
2
∫ [

|g(t)|3 + δ(t)
]
ϕ

(
t, x,

h2 + (λ+ 3)σ2
u

3

)
fX(t)dt

+

[
32

π
√
3δ20h

(
3σ2

u

h2 + (λ+ 3)σ2
u

)3

+
8

π
√
3δ20h

]
·∫ [

|g(t)|3 + δ(t)
]
|x− t|3ϕ

(
t, x,

h2 + (λ+ 3)σ2
u

3

)
fX(t)dt,
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which is O(1) when λ > 0 and O(1/h2) when λ = 0.

Therefore, when λ > 0,

∑n
i=1E|viλ(x)|3

(
∑n

i=1Ev2iλ(x))
3/2

=
O(n)

O(n3/2)
→ 0

as n → ∞, and when λ = 0,

∑n
i=1E|viλ(x)|3

(
∑n

i=1Ev2iλ(x))
3/2

=
O(n/h2)

O((n/h)3/2)
= O

(
1√
nh

)
→ 0.

So, by Lyapunov central limit theorem, we proved Theorem 5.

Proof of (3.3.3)-(3.3.5). By the normality assumption of V and its independence from other

random variables in the model, and the kernel function K being the standard normal density,

from Lemma 8, we have

E[Kh(Z(λ)− x)|Y, Z] =
∫

ϕ(v;x− Z, h2)ϕ(v; 0, λσ2
u)dv = ϕ(x;Z, δ20h),

which is (3.3.3). (3.3.4) can be derived from the following algebra,

E[(Z(λ)− x)Kh(Z(λ)− x)|Y, Z] =
∫
(Z + v − x)ϕ(v;x− Z, h2)ϕ(v; 0, λσ2

u)dv

= (Z − x)ϕ(x− Z; 0, δ20h) +
λσ2

u(x− Z)

δ20h
ϕ(x− Z; 0, δ20h).

Finally, note that

E[(Z(λ)− x)2Kh(Z(λ)− x)|Y, Z] =
∫

(Z + v − x)2ϕ(v;x− Z, h2)ϕ(v; 0, λσ2
u)dv

= (Z − x)2
∫

ϕ(v;x− Z, h2)ϕ(v; 0, λσ2
u)dv + 2(Z − x)

∫
vϕ(v;x− Z, h2)ϕ(v; 0, λσ2

u)dv

+

∫
v2ϕ(v;x− Z, h2)ϕ(v; 0, λσ2

u)dv

= (Z − x)2ϕ(x− Z; 0, δ20h)−
2λσ2

u(Z − x)2

δ20h
ϕ(x− Z; 0, δ20h)
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+

[
λσ2

uh
2

λσ2
u + h2

+

(
λσ2

u(x− Z)

λσ2
u + h2

)2
]
ϕ(x− Z; 0, δ20h),

this is exactly (3.3.5).

For the sake of brevity, denote δjh =
√

h2 + (λ+ j)σ2
u, j = 0, 1, 2, 3.

1. To calculate the asymptotic variance of viλ(x) defined in (3.4.4), i = 1, 2, . . . , n, and

compare the difference between ĝn(x;λ) and g̃n(x;λ).

E(Z − x)ϕ2(x, Z, δ20h) =

∫∫
(t+ u− x)ϕ2(x; t+ u, δ20h)ϕ(u; 0, σ

2
u)fX(t)dudt

=
1

2
√

πδ20h

∫∫
(t+ u− x)ϕ

(
u;x− t,

δ20h
2

)
ϕ(u; 0, σ2

u)fX(t)dudt

=
1

2
√

πδ20h

∫∫
(t+ u− x)ϕ

(
t, x,

δ22h
2

)
· ϕ
(
u;

2σ2
u(x− t)

δ22h
,
σ2
uδ

2
0h

δ22h

)
fX(t)dudt

=
1

2
√

πδ20h

∫
(t− x)ϕ

(
t, x,

δ22h
2

)
fX(t)dt−

1

2
√

πδ20h
· 2σ

2
u

δ22h

∫
(t− x)ϕ

(
t, x,

δ22h
2

)
fX(t)dt

=
1

2
√

πδ20h

(
1− 2σ2

u

δ22h

)∫
(t− x)ϕ

(
t, x,

δ22h
2

)
fX(t)dt

=
1

2
√

πδ20h

(
δ20h
δ22h

)∫
(t− x)ϕ

(
t, x,

δ22h
2

)
fX(t)dt

=
δ0h

2
√
πδ22h

[
f1,λ

2
(x) +

h2

4
f ′′
1,λ

2

(x)− xf0,λ
2
(x)− x

h2

4
f ′′
0,λ

2

(x) + o(h2)

]
.

Next, note that

E[Y ϕ2(x;Z, δ20h)] = E
(
E[(g(X) + ε)ϕ2(x;Z, δ20h)

∣∣∣X,U ]
)
= E[g(X)ϕ2(x;Z, δ20h)]

=

∫∫
g(t)ϕ2(x; t+ u, δ20h)ϕ(u; 0, σ

2
u)fX(t)dudt

=
1

2
√
πδ20h

∫∫
g(t)ϕ

(
u;x− t,

δ20h
2

)
ϕ(u; 0, σ2

u)fX(t)dudt

=
1

2
√
πδ20h

∫∫
g(t)ϕ

(
t, x,

δ22h
2

)
ϕ

(
u;

2σ2
u(x− t)

δ22h
,
σ2
uδ

2
0h

δ22h

)
fX(t)dudt

=
1

2
√
πδ20h

∫
g(t)ϕ

(
t, x,

δ22h
2

)
fX(t)dt =

1

2
√

πδ20h

[
g0,λ

2
(x) +

h2

4
g′′
0,λ

2

(x) + o(h2)

]
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Now, we have

E[Y (Z − x)ϕ2(x;Z, δ20h)] = E[(g(X) + ε)(Z − x)ϕ2(x;Z, δ20h)]

= E
(
(Z − x)ϕ2(x;Z, δ20h)E[(g(X) + ε)

∣∣∣X,U ]
)
= E[g(X)(Z − x)ϕ2(x;Z, δ20h)]

=

∫∫
g(t)(t+ u− x)ϕ2(x; t+ u, δ20h)ϕ(u; 0, σ

2
u)fX(t)dudt

=
1

2
√

πδ20h

∫∫
g(t)(t+ u− x)ϕ

(
u;x− t,

δ20h
2

)
ϕ(u; 0, σ2

u)fX(t)dudt

=
1

2
√

πδ20h

∫∫
g(t)(t+ u− x)ϕ

(
t, x,

δ22h
2

)
ϕ

(
u;

2σ2
u(x− t)

δ22h
,
σ2
uδ

2
0h

δ22h

)
fX(t)dudt

=
1

2
√

πδ20h

∫
g(t)(t− x)ϕ

(
t, x,

δ22h
2

)
fX(t)dt−

2σ2
u

δ22h
√

2πδ20h

∫
g(t)(t− x)ϕ

(
t, x,

δ22h
2

)
fX(t)dt

=
1

2
√

πδ20h

(
1− 2σ2

u

δ22h

)∫
g(t)(t− x)ϕ

(
t, x,

δ22h
2

)
fX(t)dt

=
1

2
√

πδ20h

(
δ20h
δ22h

)∫
g(t)(t− x)ϕ

(
t, x,

δ22h
2

)
fX(t)dt

=
δ0h

2
√
πδ22h

[
g1,λ

2
(x) +

h2

4
g′′
1,λ

2

(x)− xg0,λ
2
(x)− x

h2

4
g′′
0,λ

2

(x) + o(h2)

]

For the fourth one, note that

E[Y (Z − x)2ϕ2(x;Z, δ20h)] = E[(g(X) + ε)(Z − x)2ϕ2(x;Z, δ20h)]

= E
(
(Z − x)2ϕ2(x;Z, δ20h)E[(g(X) + ε)

∣∣∣X,U ]
)
= E[g(X)(Z − x)2ϕ2(x;Z, δ20h)]

=

∫∫
g(t)(t+ u− x)2ϕ2(x; t+ u, δ20h)ϕ(u; 0, σ

2
u)fX(t)dudt

=
1

2
√

πδ20h

∫∫
g(t)(t+ u− x)2ϕ

(
u;x− t,

δ20h
2

)
ϕ(u; 0, σ2

u)fX(t)dudt

=
1

2
√

πδ20h

∫∫
g(t)(t+ u− x)2ϕ

(
t, x,

δ22h
2

)
ϕ

(
u;

2σ2
u(x− t)

δ22h
,
σ2
uδ

2
0h

δ22h

)
fX(t)dudt

=
1

2
√

πδ20h

∫
g(t)(t− x)2ϕ

(
t, x,

δ22h
2

)
fX(t)dt−

σ2
u

δ22h
√
πδ20h

∫
g(t)(t− x)2ϕ

(
t, x,

δ22h
2

)
fX(t)dt

+
1

2
√

πδ20h

∫
g(t)

(
σ2
uδ

2
0h

δ22h
+

[
2σ2

u(x− t)

δ22h

]2)
ϕ

(
t, x,

δ22h
2

)
fX(t)dt

=
1

2
√

πδ20h

(
1− 4σ2

u

δ22h
+

4σ4

δ42h

)∫
g(t)(t− x)2ϕ

(
t, x,

δ22h
2

)
fX(t)dt
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+
1

2
√

πδ20h
· σ

2
uδ

2
0h

δ22h

∫
g(t)ϕ

(
t, x,

δ22h
2

)
fX(t)dt

=
1

2
√

πδ20h

(
1− 2σ2

u

δ22h

)2 ∫
g(t)(t− x)2ϕ

(
t, x,

δ22h
2

)
fX(t)dt

+
1

2
√

πδ20h
· σ

2
uδ

2
0h

δ22h

∫
g(t)ϕ

(
t, x,

δ22h
2

)
fX(t)dt

=
1

2
√

πδ20h

(
δ20h
δ22h

)2 ∫
g(t)(t− x)2ϕ

(
t, x,

δ22h
2

)
fX(t)dt

+
1

2
√

πδ20h
· σ

2
uδ

2
0h

δ22h

∫
g(t)ϕ

(
t, x,

δ22h
2

)
fX(t)dt

=
δ30h

2
√
πδ42h

[
g2,λ

2
(x) +

h2

4
g′′
2,λ

2

(x)− xg1,λ
2
(x)− x

h2

4
g′′
1,λ

2

(x) + x2g0,λ
2
(x) + x2h

2

4
g′′
0,λ

2

(x) + o(h2)

]
+

1

2
√

πδ20h
· σ

2
uδ

2
0h

δ22h

[
g0,λ

2
(x) +

h2

4
g′′
0,λ

2

(x) + o(h2)

]
.

For the fifth one, we have

E[Y 2(Z − x)ϕ2(x;Z, δ20h)] = E[(g(X) + ε)2(Z − x)ϕ2(x;Z, δ20h)]

= E[(g2(X) + τ 2(X))(Z − x)ϕ2(x;Z, δ20h)]

=

∫∫
(g2(t) + τ 2(t))(t+ u− x)ϕ2(x; t+ u, δ20h)ϕ(u; 0, σ

2
u)fX(t)dudt

=
1

2
√

πδ20h

∫∫
(g2(t) + τ 2(t))(t+ u− x)ϕ

(
u;x− t,

δ20h
2

)
ϕ(u; 0, σ2

u)fX(t)dudt

=
1

2
√

πδ20h

∫∫
(g2(t) + τ 2(t))(t+ u− x)ϕ

(
t, x,

δ22h
2

)
ϕ

(
u;

2σ2
u(x− t)

δ22h
,
σ2
uδ

2
0h

δ22h

)
fX(t)dudt

=
1

2
√

πδ20h

∫
(g2(t) + τ 2(t))(t− x)ϕ

(
t, x,

δ22h
2

)
fX(t)dt

− 1

2
√

πδ20h
· 2σ

2
u

δ22h

∫
(g2(t) + τ 2(t))(t− x)ϕ

(
t, x,

δ22h
2

)
fX(t)dt

=
1

2
√

πδ20h

(
1− 2σ2

u

δ22h

)∫
(g2(t) + τ 2(t))(t− x)ϕ

(
t, x,

δ22h
2

)
fX(t)dt

=
1

2
√

πδ20h

(
δ20h
δ22h

)∫
(g2(t) + τ 2(t))(t− x)ϕ

(
t, x,

δ22h
2

)
fX(t)dt

=
δ0h

2
√
πδ22h

∫
t(g2(t) + τ 2(t))ϕ

(
t, x,

δ22h
2

)
fX(t)dt−

δ0hx

2
√
πδ22h

∫
(g2(t) + τ 2(t))ϕ

(
t, x,

δ22h
2

)
fX(t)dt

=
δ0h

2
√
πδ22h

[
G1,λ

2
(x) +

h2

4
G′′

1,λ
2

(x)− xG0,λ
2
(x)− xh2

4
G′′

0,λ
2

(x) + o(h2)

]
106



+
δ0h

2
√
πδ22h

[
H1,λ

2
(x) +

h2

4
H ′′

1,λ
2

(x)− xH0,λ
2
(x)− xh2

4
H ′′

0,λ
2

(x) + o(h2)

]
.

Recall that for each i = 1, 2, . . . , n,

ξ0λ,i(x) = ϕ(x, Zi, δ
2
0h)− Eϕ(x, Z, δ20h),

ξ1λ,i(x) =
h2

δ20h

[
(Zi − x)ϕ(x, Zi, δ

2
0h)− E(Z − x)ϕ(x, Z, δ20h)

]
,

ξ2λ,i(x) =
h4

δ40h

[
(Zi − x)2ϕ(x, Zi, δ

2
0h)− E(Z − x)2ϕ(x, Z, δ20h)

]
+
λσ2

uh
2

δ20h

[
ϕ(x, Zi, δ

2
0h)− Eϕ(x, Z, δ20h)

]
,

η0λ,i(x) = Yiϕ(x, Zi, δ
2
0h)− EY ϕ(x, Z, δ20h)

η1λ,i(x) =
h2

δ20h

[
Yi(Zi − x)ϕ(x, Zi, δ

2
0h)− EY (Z − x)ϕ(x, Z, δ20h)

]
.

Then

Cov (ξ0,λ1(x), ξ0,λ2(x)) = E (ξ0,λ1(x) · ξ0,λ2(x))− Eξ0,λ1(x) · Eξ0,λ2(x)

= E
[
ϕ(x, Z, h2 + λ1σ

2
u) · Y ϕ(x, Z, h2 + λ2σ

2
u)
]
− Eϕ(x, Z, h2 + λ1σ

2
u) · EY ϕ(x, Z, h2 + λ2σ

2
u)

For the sake of brevity, in the following, we shall denote

α2
jh = h2 + λjσ

2
u, j = 1, 2, α2

12h =
α2
1hα

2
2h

α2
1h + α2

2h

, λ12 =
λ1 + λ2

λ1λ2

.

Note that

E
[
ϕ(x, Z, α2

1h) · ϕ(x, Z, α2
2h)
]
=

∫∫
ϕ(x, t+ u, α2

1h)ϕ(x, t+ u, α2
2h)ϕ(u, 0, σ

2
u)fX(t)dudt

=

∫∫
ϕ(u, x− t, α2

1h)ϕ(u, x− t, α2
2h)ϕ(u, 0, σ

2
u)fX(t)dudt

=

∫∫
ϕ
(
u, x− t, α2

12h

)
ϕ
(
0, 0, α2

1h + α2
2h

)
ϕ(u, 0, σ2

u)fX(t)dudt

=
1√

2π(α2
1h + α2

2h)

∫∫
ϕ
(
u, x− t, α2

12h

)
ϕ(u, 0, σ2

u)fX(t)dudt
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=
1√

2π(α2
1h + α2

2h)

∫∫
ϕ

(
u,

(x− t)σ2
u

α2
12h + σ2

u

,
α2
1hα

2
2hσ

2
u

α2
12h + σ2

u

)
·

ϕ
(
t;x, α2

12h + σ2
u

)
fX(t)dudt

=
1√

2π(α2
1h + α2

2h)

∫
ϕ
(
t;x, α2

12h + σ2
u

)
fX(t)dt

→ 1√
2π (λ1 + λ2)σ2

u

∫
ϕ
(
t;x, (λ12 + 1)σ2

u

)
fX(t)dt

as h → 0, so we have

Cov(ξ0,λ1 , ξ0,λ2) =
1√

2π (λ1 + λ2)σ2
u

∫
ϕ
(
t, x, (λ12 + 1)σ2

u

)
fX(t)dt− f0,λ1(x)f0,λ2(x) + o(1).

Next,

Cov (ξ0,λ1(x), η0,λ2(x)) = E (ξ0,λ1(x) · η0,λ2(x))− Eξ0,λ1(x) · Eη0,λ2(x)

= E
[
ϕ(x, Z, α2

1h) · Y ϕ(x, Z, α2
2h)
]
− Eϕ(x, Z, α2

1h) · EY ϕ(x, Z, α2
2h),

we have

E
[
ϕ(x, Zi, α

2
1h) · Y ϕ(x, Zi, α

2
2h)
]
=

∫∫
g(t)ϕ(x, t+ u, α2

1h)ϕ(x, t+ u, α2
2h)ϕ(u, 0, σ

2
u)fX(t)dudt

=

∫∫
g(t)ϕ(u, x− t, α2

1h)ϕ(u, x− t, α2
2h)ϕ(u, 0, σ

2
u)fX(t)dudt

=

∫∫
g(t)ϕ

(
u, x− t, α2

12h

)
ϕ
(
0, 0, α2

1h + α2
2h

)
ϕ(u, 0, σ2

u)fX(t)dudt

=
1√

2π(α2
1h + α2

2h)

∫∫
g(t)ϕ

(
u, x− t, α2

12h

)
ϕ(u, 0, σ2

u)fX(t)dudt

=
1√

2π(α2
1h + α2

2h)

∫∫
g(t)ϕ

(
u,

(x− t)σ2
u

α2
12h + σ2

u

,
α2
1hα

2
2hσ

2
u

α2
12h + σ2

u

)
·

ϕ
(
t;x, α2

12h + σ2
u

)
fX(t)dudt

=
1√

2π(α2
1h + α2

2h)

∫
g(t)ϕ

(
t, x, α2

12h + σ2
u

)
fX(t)dt

→ 1√
2π (λ1 + λ2)σ2

u

∫
g(t)ϕ

(
t, x, (λ12 + 1)σ2

u

)
fX(t)dt
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as h → 0. Hence,

Cov(ξ0,λ1 , η0,λ2) =
1√

2π (λ1 + λ2)σ2
u

∫
g(t)ϕ

(
t, x, σ2

u(λ12 + 1)
)
fX(t)dt− f0,λ1(x)g0,λ2(x) + o(1).

Next, we have

Cov (η0,λ1(x), η0,λ2(x)) = E (η0,λ1(x) · η0,λ2(x))− Eη0,λ1(x) · Eη0,λ2(x)

= E
[
Y ϕ(x, Z, α2

1h) · Y ϕ(x, Z, α2
2h)
]
− EY ϕ(x, Z, α2

1h) · EY ϕ(x, Z, α2
2h),

and

E
[
Y ϕ(x, Z, α2

1h) · Y ϕ(x, Z, α2
2h)
]

=

∫∫
g2(t)ϕ(x, t+ u, α2

1h)ϕ(x, t+ u, α2
2h)ϕ(u, 0, σ

2
u)fX(t)dudt

=

∫∫
g2(t)ϕ(u, x− t, α2

1h)ϕ(u, x− t, α2
2h)ϕ(u, 0, σ

2
u)fX(t)dudt

=

∫∫
g2(t)ϕ

(
u, x− t, α2

12h

)
ϕ
(
0, 0, α2

1h + α2
2h

)
ϕ(u, 0, σ2

u)fX(t)dudt

=
1√

2π(α2
1h + α2

2h)

∫∫
g2(t)ϕ

(
u, x− t, α2

12h

)
ϕ(u, 0, σ2

u)fX(t)dudt

=
1√

2π(α2
1h + α2

2h)

∫∫
ϕ

(
u,

(x− t)σ2
u

α2
12h + σ2

u

,
α2
1hα

2
2hσ

2
u

α2
12h + σ2

u

)
· ϕ
(
t, x, α2

12h + σ2
u

)
g2(t)fX(t)dudt

=
1√

2π(α2
1h + α2

2h)

∫
g2(t)ϕ

(
t, x, α2

12h + σ2
u

)
fX(t)dt

→ 1√
2π (λ1 + λ2)σ2

u

∫
g2(t)ϕ

(
t, x, (λ12 + 1)σ2

u

)
fX(t)dt

as h → 0. Hence

Cov(η0,λ1 , η0,λ2) =
1√

2π (λ1 + λ2)σ2
u

∫
g2(t)ϕ

(
t, x, (λ12 + 1)σ2

u

)
fX(t)dt− g0,λ1(x)g0,λ2(x) + o(1).

Next, we see

Cov (ξ0,λ1(x), ξ1,λ2(x)) = E (ξ0,λ1(x) · ξ1,λ2(x))− Eξ0,λ1(x) · Eξ1,λ2(x)
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= E

[
ϕ(x, Z, α2

1h) ·
h2

α2
2h

(Z − x)ϕ(x, Z, α2
2h)

]
− h2

α2
2h

· Eϕ(x, Z, α2
1h)E(Z − x)ϕ(x, Z, α2

2h).

Note that when λ2 ̸= 0, Cov (ξ0,λ1(x), ξ1,λ2(x)) = O(h2). When λ2 = 0, we have

E
[
ϕ(x, Z, α2

1h) · (Z − x)ϕ(x, Z, h2)
]

=

∫∫
(t+ u− x)ϕ(u, x− t, α2

1h)ϕ(u, x− t, h2)ϕ(u, 0, σ2
u)fX(t)dudt

=
1√

2π(h2 + α2
1h)

∫∫
(t+ u− x)ϕ

(
u, x− t,

h2α2
1h

h2 + α2
1h

)
ϕ(u, 0, σ2

u)fX(t)dudt

=
1√

2π(h2 + α2
1h)

∫∫
(t+ u− x)ϕ

(
t, x,

h2α2
1h

h2 + α2
1h

+ σ2
u

)
·

ϕ

u,
(x− t)σ2

u

h2α2
1h

h2+α2
1h

+ σ2
u

,
α2
1hh

2σ2
u

h2α2
1h

h2+α2
1h

+ σ2
u

 fX(t)dudt

=
1√

2π(h2 + α2
1h)

∫
(t− x)

1− σ2
u

h2α2
1h

h2+α2
1h

+ σ2
u

ϕ

(
t, x,

h2α2
1h

h2 + α2
1h

+ σ2
u

)
fX(t)dt

=
h2α2

1h

h2α2
1h + (h2 + α2

1h)σ
2
u

· 1√
2π(h2 + α2

1h)

∫
(t− x)ϕ

(
t, x,

h2α2
1h

h2 + α2
1h

+ σ2
u

)
fX(t)dt,

which is O(h2). Therefore, for all λ1 and λ2, Cov(ξ0,λ1 , ξ1,λ2) = O(h2). Next, we see

Cov (ξ0,λ1(x), η1,λ2(x)) = E (ξ0,λ1(x) · η1,λ2(x))− Eξ0,λ1(x) · Eη1,λ2(x)

= E

[
ϕ(x, Z, α2

1h) ·
h2

α2
2h

Y (Z − x)ϕ(x, Z, α2
2h)

]
− h2

α2
2h

· Eϕ(x, Z, α2
1h)EY (Z − x)ϕ(x, Z, α2

2h).

Note that when λ2 ̸= 0, Cov (ξ0,λ1(x), η1,λ2(x)) = O(h2). When λ2 = 0, we have

E
[
ϕ(x, Z, α2

1h) · Y (Z − x)ϕ(x, Z, h2)
]

=

∫∫
g(t)(t+ u− x)ϕ(u, x− t, α2

1h)ϕ(u, x− t, h2)ϕ(u, 0, σ2
u)fX(t)dudt

=
1√

2π(h2 + α2
1h)

∫∫
g(t)(t+ u− x)ϕ

(
u, x− t,

h2α2
1h

h2 + α2
1h

)
ϕ(u, 0, σ2

u)fX(t)dudt

=
1√

2π(h2 + α2
1h)

∫∫
g(t)(t+ u− x)ϕ

(
t, x,

h2α2
1h

h2 + α2
1h

+ σ2
u

)
·
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ϕ

u,
(x− t)σ2

u

h2α2
1h

h2+α2
1h

+ σ2
u

,
α2
1hh

2σ2
u

h2α2
1h

h2+α2
1h

+ σ2
u

 fX(t)dudt

=
1√

2π(h2 + α2
1h)

∫
g(t)(t− x)

1− σ2
u

h2α2
1h

h2+α2
1h

+ σ2
u

ϕ

(
t;x,

h2α2
1h

h2 + α2
1h

+ σ2
u

)
fX(t)dt

=
h2α2

1h

(h2α2
1h + σ2

u(h
2 + α2

1h))
√

2π(h2 + α2
1h)

∫
ϕ

(
t, x,

h2α2
1h

2α2
1h

+ σ2
u

)
g(t)(t− x)fX(t)dt,

which is O(h2). So, Cov(ξ0,λ1 , η1,λ2) = O(h2) for all λ1, λ2. Next, note that

Cov (ξ1,λ1(x), η0,λ2(x)) = E (ξ1,λ1(x) · η0,λ2(x))− Eξ1,λ1(x) · Eη0,λ2(x)

= E

[
h2

α2
1h

(Z − x)ϕ(x, Z, α2
1h) · Y ϕ(x, Z, α2

2h)

]
− h2

α2
1h

E(Z − x)ϕ(x, Z, α2
1h) · EY ϕ(x, Z, α2

2h).

Note that when λ1 ̸= 0, Cov (ξ0,λ1(x), η1,λ2(x)) = O(h2). When λ1 = 0, we have

E
[
(Z − x)ϕ(x, Z, h2) · Y ϕ(x, Z, α2

2h)
]

=

∫∫
g(t)(t+ u− x)ϕ(u, x− t, h2)ϕ(u, x− t, α2

2h)ϕ(u, 0, σ
2
u)fX(t)dudt

=
1√

2π(h2 + α2
2h)

∫∫
g(t)(t+ u− x)ϕ

(
u, x− t,

h2α2
2h

h2 + α2
2h

)
ϕ(u, 0, σ2

u)fX(t)dudt

=
1√

2π(h2 + α2
2h)

∫∫
g(t)(t+ u− x)ϕ

(
t;x,

h2α2
2h

h2 + α2
2h

+ σ2
u

)
·

ϕ

u,
(x− t)σ2

u

h2α2
2h

h2+α2
2h

+ σ2
u

,
α2
2hh

2σ2
u

h2α2
2h

h2+α2
2h

+ σ2
u

 fX(t)dudt

=
1√

2π(h2 + α2
2h)

∫
g(t)(t− x)

1− σ2
u

h2α2
2h

h2+α2
2h

+ σ2
u

ϕ

(
t, x,

h2α2
2h

h2 + α2
2h

+ σ2
u

)
fX(t)dt

=
h2α2

2h

(h2α2
2h + σ2

u(h
2 + α2

2h))
√

2π(h2 + α2
2h)

∫
ϕ

(
t, x,

h2α2
2h

h2 + α2
2h

+ σ2
u

)
g(t)(t− x)fX(t)dt

which is the order of O(h2). Therefore, Cov(ξ1,λ1 , η0,λ2) = O(h2) for all λ1, λ2. Next, note

that

Cov (η1,λ1(x), ξ0,λ2(x)) = E (η1,λ1(x) · ξ0,λ2(x))− Eη1,λ1(x) · Eξ0,λ2(x)
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= E

[
h2

α2
1h

Y (Z − x)ϕ(x, Zi, α
2
1h) · ϕ(x, Z, α2

2h)

]
− h2

α2
1h

EY (Z − x)ϕ(x, Z, α2
1h) · Eϕ(x, Z, α2

2h).

Note that when λ1 ̸= 0, Cov (η1,λ1(x), ξ0,λ2(x)) = O(h2). When λ1 = 0, we have

E
[
Y (Z − x)ϕ(x, Z, h2) · ϕ(x, Z, α2

2h)
]

=

∫∫
g(t)(t+ u− x)ϕ(u, x− t, h2)ϕ(u, x− t, α2

2h)ϕ(u, 0, σ
2
u)fX(t)dudt

=
1√

2π(h2 + α2
2h)

∫∫
g(t)(t+ u− x)ϕ

(
u, x− t,

h2α2
2h

h2 + α2
2h

)
ϕ(u, 0, σ2

u)fX(t)dudt

=
1√

2π(h2 + α2
2h)

∫∫
g(t)(t+ u− x)ϕ

(
t;x,

h2α2
2h

h2 + α2
2h

+ σ2
u

)
·

ϕ

u,
(x− t)σ2

u

h2α2
2h

h2+α2
2h

+ σ2
u

,
α2
2hh

2σ2
u

h2α2
2h

h2+α2
2h

+ σ2
u

 fX(t)dudt

=
1√

2π(h2 + α2
2h)

∫
g(t)(t− x)

1− σ2
u

h2α2
2h

h2+α2
2h

+ σ2
u

ϕ

(
t, x,

h2α2
2h

h2 + α2
2h

+ σ2
u

)
fX(t)dt

=
h2α2

2h

(h2α2
2h + σ2

u(h
2 + α2

2h)))
√
2π(h2 + α2

2h)

∫
ϕ

(
t, x,

h2α2
2h

h2 + α2
2h

+ σ2
u

)
· g(t)(t− x)fX(t)dt,

which is O(h2). Therefore, Cov(η1,λ1 , ξ0,λ2) = O(h2) for all λ1, λ2.

Next, note that

Cov (η0,λ1(x), ξ1,λ2(x)) = E (η0,λ1(x) · ξ1,λ2(x))− Eη0,λ1(x) · Eξ1,λ2(x)

= E

[
Y ϕ(x, Z, α2

1h) ·
h2

α2
2h

(Z − x)ϕ(x, Z, α2
2h)

]
− EY ϕ(x, Z, α2

1h) ·
h2

α2
2h

E(Z − x)ϕ(x, Z, α2
2h).

When λ2 ̸= 0, Cov (η1,λ1(x), ξ0,λ2(x)) = O(h2). When λ2 = 0, we have

E
[
Y ϕ(x, Z, α2

1h) · (Z − x)ϕ(x, Z, h2)
]

=

∫∫
g(t)(t+ u− x)ϕ(u, x− t, h2)ϕ(u, x− t, α2

1h)ϕ(u, 0, σ
2
u)fX(t)dudt

=
1√

2π(h2 + α2
1h)

∫∫
g(t)(t+ u− x)ϕ

(
u, x− t,

h2α2
1h

h2 + α2
1h

)
ϕ(u, 0, σ2

u)fX(t)dudt

=
1√

2π(h2 + α2
1h)

∫∫
g(t)(t+ u− x)ϕ

(
t;x,

h2α2
1h

h2 + α2
1h

+ σ2
u

)
·
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ϕ

u,
(x− t)σ2

u

h2α2
1h

h2+α2
1h

+ σ2
u

,
α2
1hh

2σ2
u

h2α2
1h

h2+α2
1h

+ σ2
u

 fX(t)dudt

=
h2α2

1h

(h2α2
1h + σ2

u(h
2 + α2

1h))
√

2π(h2 + α2
1h)

∫
ϕ

(
t, x,

h2α2
1h

h2 + α2
1h

+ σ2
u

)
g(t)(t− x)fX(t)dt,

which is O(h2). Therefore, we have Cov(η0,λ1 , ξ1,λ2) = O(h2) for all λ1, λ2. Next, we see

that

Cov (η0,λ1(x), η1,λ2(x)) = E (η0,λ1(x) · η1,λ2(x))− Eη0,λ1(x) · Eη1,λ2(x)

= E

[
Y ϕ(x, Z, α2

1h) ·
h2

α2
2h

Y (Z − x)ϕ(x, Z, α2
2h)

]
− EY ϕ(x, Z, α2

1h) ·
h2

α2
2h

EY (Z − x)ϕ(x, Z, α2
2h).

Note that when λ2 ̸= 0, Cov (η1,λ1(x), ξ0,λ2(x)) = O(h2). When λ2 = 0, we have

E
[
Y ϕ(x, Z, α2

1h) · Y (Z − x)ϕ(x, Z, h2)
]

=

∫∫
g2(t)(t+ u− x)ϕ(u, x− t, h2)ϕ(u, x− t, α2

1h)ϕ(u, 0, σ
2
u)fX(t)dudt

=
1√

2π(h2 + α2
1h)

∫∫
g2(t)(t+ u− x)ϕ

(
u, x− t,

h2α2
1h

h2 + α2
1h

)
ϕ(u, 0, σ2

u)fX(t)dudt

=
1√

2π(h2 + α2
1h)

∫∫
g2(t)(t+ u− x)ϕ

(
t;x,

h2α2
1h

h2 + α2
1h

+ σ2
u

)
·

ϕ

u,
(x− t)σ2

u

h2α2
1h

h2+α2
1h

+ σ2
u

,
α2
1hh

2σ2
u

h2α2
1h

h2+α2
1h

+ σ2
u

 fX(t)dudt

=
1√

2π(h2 + α2
1h)

∫
g2(t)(t− x)

1− σ2
u

h2α2
1h

h2+α2
1h

+ σ2
u

ϕ

(
t, x,

h2α2
1h

h2 + α2
1h

+ σ2
u

)
fX(t)dt

=
h2 + α2

1h

(h2α2
1h + σ2

u(h
2 + α2

1h))
√

2π(h2 + α2
1h)

∫
ϕ

(
t, x,

h2α2
1h

h2 + α2
1h

+ σ2
u

)
· g2(t)(t− x)fX(t)dt,

which is the order of O(h2). Since, when λ2 = 0, EY (Z − x)ϕ(x, Z, α2
2h) = O(h2), we have

Cov(η0,λ1 , η1,λ2) = O(h2) for all λ1, λ2. Next, we see that

Cov (ξ0,λ1(x), ξ2,λ2(x)) = E (ξ0,λ1(x) · ξ2,λ2(x))− Eξ0,λ1(x) · Eξ2,λ2(x)

= E

[
ϕ(x, Z, α2

1h) ·
h4

α4
2h

(Z − x)2ϕ(x, Z, α2
2h)

]
+ E

[
ϕ(x, Z, α2

1h) ·
λ2σ

2
uh

2

α2
2h

ϕ(x, Z, α2
2h)

]
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−Eϕ(x, Z, α2
1h) ·

h4

α4
2h

E(Z − x)2ϕ(x, Z, α2
2h)− Eϕ(x, Z, α2

1h) ·
λ2σ

2
uh

2

α2
2h

Eϕ(x, Z, α2
2h).

Note that when λ2 ̸= 0, Cov (ξ0,λ1(x), ξ2,λ2(x)) = O(h2). When λ2 = 0, we have

E
[
ϕ(x, Z, α2

1h) · (Z − x)2ϕ(x, Z, h2)
]

=

∫∫
(t+ u− x)2ϕ(u, x− t, h2)ϕ(u, x− t, α2

1h)ϕ(u, 0, σ
2
u)fX(t)dudt

=
1√

2π(h2 + α2
1h)

∫∫
(t+ u− x)2ϕ

(
u, x− t,

h2α2
1h

h2 + α2
1h

)
ϕ(u, 0, σ2

u)fX(t)dudt

=
1√

2π(h2 + α2
1h)

∫∫
(t+ u− x)2ϕ

(
t;x,

h2α2
1h

h2 + α2
1h

+ σ2
u

)
·

ϕ

u,
(x− t)σ2

u

h2α2
1h

h2+α2
1h

+ σ2
u

,
α2
1hh

2σ2
u

h2α2
1h

h2+α2
1h

+ σ2
u

 fX(t)dudt

=
1√

2π(h2 + α2
1h)

∫
(t− x)2

1− σ2
u

h2α2
1h

h2+α2
1h

+ σ2
u

2

ϕ

(
t;x,

h2α2
1h

h2 + α2
1h

+ σ2
u

)
fX(t)dt

+
1√

2π(h2 + α2
1h)

σ2
uh

2α2
1h

h2α2
1h + σ2

u(h
2 + α2

1h)

∫
ϕ

(
t;x,

h2α2
1h

h2 + α2
1h

+ σ2
u

)
fX(t)dt

=
(h2α2

1h)
2

(h2α2
1h + σ2

u(h
2 + α2

1h))
2
√

2π(h2 + α2
1h)

∫
(t− x)2fX(t)ϕ

(
t, x,

h2α2
1h

h2 + α2
1h

+ σ2
u

)
dt

+
1√

2π(h2 + α2
1h)

σ2
uh

2α2
1h

h2α2
1h + σ2

u(h
2 + α2

1h)

∫
ϕ

(
t, x,

h2α2
1h

h2 + α2
1h

+ σ2
u

)
fX(t)dt

= O(h2).

Since, when λ2 = 0, E(Z−x)2ϕ(x, Z, α2
2h) = O(h2), we have Cov(ξ0,λ1 , ξ2,λ2) = O(h2) for all

λ1, λ2. Next, note

Cov (ξ2,λ1(x), η0,λ2(x)) = E (ξ2,λ1(x) · η0,λ2(x))− Eξ2,λ1(x) · Eη0,λ2(x)

= E

[
h4

α4
1h

(Z − x)2ϕ(x, Z, α2
1h) · Y ϕ(x, Z, α2

2h)

]
+ E

[
λ1σ

2
uh

2

α2
1h

ϕ(x, Z, α2
1h) · Y ϕ(x, Z, α2

2h)

]
− h4

α4
1h

E(Z − x)2ϕ(x, Z, α2
1h) · EY ϕ(x, Z, α2

2h)−
λ1σ

2
uh

2

α2
2h

Eϕ(x, Z, α2
1h) · EY ϕ(x, Z, α2

2h).
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Note that when λ1 ̸= 0, Cov (ξ2,λ1(x), η0,λ2(x)) = O(h2). When λ1 = 0, we have

E
[
(Z − x)2ϕ(x, Z, h2) · Y ϕ(x, Z, α2

2h)
]

=

∫∫
g(t)(t+ u− x)2ϕ(u, x− t, h2)ϕ(u, x− t, α2

2h)ϕ(u, 0, σ
2
u)fX(t)dudt

=
1√

2π(h2 + α2
2h)

∫∫
g(t)(t+ u− x)2ϕ

(
u, x− t,

h2α2
2h

h2 + α2
2h

)
ϕ(u, 0, σ2

u)fX(t)dudt

=
1√

2π(h2 + α2
2h)

∫∫
g(t)(t+ u− x)2ϕ

(
t;x,

h2α2
2h

h2 + α2
2h

+ σ2
u

)
·

ϕ

u,
(x− t)σ2

u

h2α2
2h

h2+α2
2h

+ σ2
u

,
α2
2hh

2σ2
u

h2α2
2h

h2+α2
2h

+ σ2
u

 fX(t)dudt

=
1√

2π(h2 + α2
2h)

∫
g(t)(t− x)2

1− σ2
u

h2α2
2h

h2+α2
2h

+ σ2
u

2

ϕ

(
t;x,

h2α2
2h

h2 + α2
2h

+ σ2
u

)
fX(t)dt

+
1√

2π(h2 + α2
2h)

σ2
uh

2α2
2h

h2α2
2h + σ2

u(h
2 + α2

2h)

∫
g(t)ϕ

(
t, x,

h2α2
2h

h2 + α2
2h

+ σ2
u

)
fX(t)dt

=
(h2α2

2h)
2

(h2α2
2h + σ2

u(h
2 + α2

2h))
2

1√
2π(h2 + α2

2h)

∫
(t− x)2fX(t)ϕ

(
t, x,

h2α2
2h

h2 + α2
2h

+ σ2
u

)
dt

+
1√

2π(h2 + α2
2h)

σ2
uh

2α2
2h

h2α2
2h + σ2

u(h
2 + α2

2h)

∫
ϕ

(
t, x,

h2α2
2h

h2 + α2
2h

+ σ2
u

)
g(t)fX(t)dt

= O(h2).

Therefore, we have for all λ1, λ2, Cov(ξ2,λ1 , η0,λ2) = O(h2). Next, we look at

Cov(ξ1,λ1 , ξ1,λ2) = E(ξ1,λ1 · ξ1,λ2)− E(ξ1,λ1) · E(ξ1,λ2)

=
h4

α2
1hα

2
2h

(
E
[
(Z − x)2ϕ(x, Z, α2

1h)ϕ(x, Z, α
2
2h)
]
−
[
E(Z − x)ϕ(x, Z, α2

1h) · E(Z − x)ϕ(x, Z, α2
2h)
])

.

Note that when λ1 = 0 or λ2 = 0 , then Cov(ξ1,λ1 , ξ1,λ2) = O(h2). When λ1 ̸= 0 and

λ2 ̸= 0, then Cov(ξ1,λ1 , ξ1,λ2) = O(h4). Similarly, we can show that when λ1 = 0 or

λ2 = 0 , then Cov(ξ1,λ1 , η1,λ2), Cov(η1,λ1 , η1,λ2), Cov (ξ1,λ1(x), ξ2,λ2(x)), Cov(η1,λ1 , ξ2,λ2), and

Cov (ξ2,λ1(x), ξ2,λ2(x)) are all of the orders O(h2). and when λ1 ̸= 0 and λ2 ̸= 0, then they

are all of O(h4).
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2. The following is a list of the distinct entries in the matrix E
(
(s− s̃)(s− s̃)T |D

)
. Based

on the calculations we did in the previous section , we can derive the orders of the expec-

tations of these elements, thus leading to a better understanding of the difference between

ĝn(x;λ) and g̃n(x;λ).

Denote (i, j)-th element in the matrix E
(
(s− s̃)(s− s̃)T |D

)
as aij, i, j = 1, 2, . . . , 5.

Then we can show that

a11 =
1

2n2h
√
π

n∑
i=1

ϕ(x, Zi, δ
2
0h/2)−

1

n2

n∑
i=1

ϕ2(x, Zi, δ
2
0h).

a12 =
h

2n2
√
π(h2 + 2λσ2

u)

n∑
i=1

(Zi − x)ϕ(x, Zi, δ
2
0h/2)−

h2

n2δ20h

n∑
i=1

(Zi − x)ϕ2(x, Zi, δ
2
0h).

a13 =
λhσ2

u

2n2
√
π(h2 + 2λσ2

u)

n∑
i=1

ϕ(x, Zi, δ
2
0h/2)−

h4

n2δ40h

n∑
i=1

(x− Zi)
2ϕ2(x, Zi, δ

2
0h)

+
h3

2n2
√
π(h2 + 2λσ2

u)
2

n∑
i=1

(x− Zi)
2ϕ(x, Zi, δ

2
0h/2)−

λσ2
uh

2

n2δ20h

n∑
i=1

ϕ2(x, Zi, δ
2
0h).

a14 =
1

2n2h
√
π

n∑
i=1

Yiϕ(x, Zi, δ
2
0h/2)−

1

n2

n∑
i=1

Yiϕ
2(x, Zi, δ

2
0h).

a15 =
h

2n2
√
π(h2 + 2λσ2

u)

n∑
i=1

Yi(Zi − x)ϕ(x, Zi, δ
2
0h/2)−

h2

n2δ20h

n∑
i=1

Yi(Zi − x)ϕ2(x, Zi, δ
2
0h).

a22 =
λhσ2

u

2n2
√
π(h2 + 2λσ2

u)

n∑
i=1

ϕ(x, Zi, δ
2
0h/2)−

h4

n2δ40h

n∑
i=1

(Zi − x)2ϕ2(x, Zi, δ
2
0h)

+
h3

2n2
√
π(h2 + 2λσ2

u)
2

n∑
i=1

(x− Zi)
2ϕ(x, Zi, δ

2
0h/2).

a23 =
3λσ2

uh
3

2n2
√
πδ40h

n∑
i=1

(Zi − x)ϕ(x, Zi, δ
2
0h/2) +

h5

2n2
√
πδ60h

n∑
i=1

(Zi − x)3ϕ(x, Zi, δ
2
0h/2)

− h6

n2δ60h

n∑
i=1

(Zi − x)3ϕ2(x, Zi, δ
2
0h)−

λσ2
uh

4

n2δ40h

n∑
i=1

(Zi − x)ϕ2(x, Zi, δ
2
0h).

a24 =
h

2n2
√
π(h2 + 2λσ2

u)

n∑
i=1

Yi(Zi − x)ϕ(x, Zi, δ
2
0h/2)−

h2

n2δ20h

n∑
i=1

Yi(Zi − x)ϕ2(x, Zi, δ
2
0h).

a25 =
λhσ2

u

2n2
√
π(h2 + 2λσ2

u)

n∑
i=1

Yiϕ(x, Zi, δ
2
0h/2)−

h4

n2δ40h

n∑
i=1

Yi(Zi − x)2ϕ2(x, Zi, δ
2
0h)

+
h3

2n2
√
π(h2 + 2λσ2

u)
2

n∑
i=1

Yi(x− Zi)
2ϕ(x, Zi, δ

2
0h/2).
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a33 =
3λ2σ4

uh
3

2n2
√
π(h2 + 2λσ2

u)
2

n∑
i=1

ϕ(x, Zi, δ
2
0h/2)−

λ2σ4
uh

4

n2δ40h

n∑
i=1

ϕ2(x, Zi, δ
2
0h)

+
3λσ2

uh
5

n2
√
π(h2 + 2λσ2

u)
3

n∑
i=1

(Zi − x)2ϕ(x, Zi, δ
2
0h/2)−

h8

n2δ80h

n∑
i=1

(Zi − x)4ϕ2(x, Zi, δ
2
0h)

+
h7

2n2
√
π(h2 + 2λσ2

u)
4

n∑
i=1

(Zi − x)4ϕ(x, Zi, δ
2
0h/2)−

2λσ2
uh

6

n2δ60h

n∑
i=1

(Zi − x)2ϕ2(x, Zi, δ
2
0h).

a34 =
λhσ2

u

2n2
√
π(h2 + 2λσ2

u)

n∑
i=1

Yiϕ(x, Zi, δ
2
0h/2)−

h4

n2δ40h

n∑
i=1

Yi(x− Zi)
2ϕ2(x, Zi, δ

2
0h)

+
h3

2n2
√
π(h2 + 2λσ2

u)
2

n∑
i=1

Yi(x− Zi)
2ϕ(x, Zi, δ

2
0h/2)−

λσ2
uh

2

n2δ20h

n∑
i=1

Yiϕ
2(x, Zi, δ

2
0h).

a35 =
3λσ2

uh
3

2n2
√
πδ40h

n∑
i=1

Yi(Zi − x)ϕ(x, Zi, δ
2
0h/2)−

h6

n2δ60h

n∑
i=1

Yi(Zi − x)3ϕ2(x, Zi, δ
2
0h)

+
h5

2n2
√
πδ60h

n∑
i=1

Yi(Zi − x)3ϕ(x, Zi, δ
2
0h/2)−

λσ2
uh

4

n2δ40h

n∑
i=1

Yi(Zi − x)ϕ2(x, Zi, δ
2
0h).

a44 =
1

2n2h
√
π

n∑
i=1

Y 2
i ϕ(x, Zi, δ

2
0h/2)−

1

n2

n∑
i=1

Y 2
i ϕ

2(x, Zi, δ
2
0h).

a45 =
h

2n2
√
π(h2 + 2λσ2

u)

n∑
i=1

Y 2
i (Zi − x)ϕ(x, Zi, δ

2
0h/2)−

h2

n2δ20h

n∑
i=1

Y 2
i (Zi − x)ϕ2(x, Zi, δ

2
0h).

a55 =
λhσ2

u

2n2
√
π(h2 + 2λσ2

u)

n∑
i=1

Y 2
i ϕ(x, Zi, δ

2
0h/2)−

h4

n2δ40h

n∑
i=1

Y 2
i (Zi − x)2ϕ2(x, Zi, δ

2
0h)

+
h3

2n2
√
π(h2 + 2λσ2

u)
2

n∑
i=1

Y 2
i (x− Zi)

2ϕ(x, Zi, δ
2
0h/2).

3. To show the asymptotic normality of the proposed estimator, we have to check the

Lyapunov CLT condition. The following contains the derivations for the asymptotic order

of E|v1λ(x)|3.

Applying Lemma 7 with a = 1/3, c = (λ+3)σ2
u

3
, m(t) = fX(t), and Lemma 8, we have

Eϕ3(x;Z, δ20h) =

∫∫
ϕ3(x; t+ u, δ20h)ϕ(u; 0, σ

2
u)fX(t)dudt

=
1

δ20h
· 1

2π
√
3

∫∫
ϕ

(
x; t+ u,

δ20h
3

)
)ϕ(u; 0, σ2

u)fX(t)dudt

=
1

δ20h
· 1

2π
√
3

∫∫
ϕ

(
u;x− t,

δ20h
3

)
)ϕ(u; 0, σ2

u)fX(t)dudt
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=
1

2π
√
3δ20h

∫
ϕ

(
t;x,

δ20h
3

+ σ2
u

)
fX(t)dt =

1

2π
√
3δ20h

∫
ϕ

(
t;x,

δ23h
3

)
fX(t)dt

=
1

2π
√
3δ20h

[∫
ϕ

(
t;x,

(λ+ 3)σ2
u

3

)
fX(t)dt+

h2

6

∫
f ′′
X(t)ϕ

(
t− x; 0,

(λ+ 3)σ2
u

3

)
dt+ o(h2)

]
=

1

2π
√
3δ20h

[
f0,λ

3
(x) +

h2

6
f ′′
0,λ

3

(x) + o(h2)

]
.

For E|Z − x|3ϕ3(x;Z, δ20h), note that

E|Z − x|3ϕ3(x;Z, δ20h) =

∫∫
|t+ u− x|3ϕ3(x; t+ u, δ20h)ϕ(u; 0, σ

2
u)fX(t)dudt

=
1

δ20h
· 1

2π
√
3

∫∫
|t+ u− x|3ϕ

(
x; t+ u,

δ20h
3

)
)ϕ(u; 0, σ2

u)fX(t)dudt

=
1

δ20h
· 1

2π
√
3

∫∫
|u− (x− t)|3ϕ

(
u;x− t,

δ20h
3

)
)ϕ(u; 0, σ2

u)fX(t)dudt

≤ 4

2π
√
3δ20h

∫∫ (
|u|3 + |x− t|3

)
ϕ

(
u;x− t,

δ20h
3

)
ϕ(u; 0, σ2

u)fX(t)dudt

=
2

π
√
3δ20h

∫∫
|u|3ϕ

(
t;x,

δ23h
3

)
ϕ

(
u;

σ2
u(x− t)

σ2
u +

δ20h
3

,

σ2
uδ

2
0h

3

σ2
u +

δ20h
3

)
fX(t)dudt

+
2

π
√
3δ20h

∫
|x− t|3ϕ

(
t;x,

δ23h
3

)
fX(t)dt

=
2

π
√
3δ20h

∫∫
|u|3ϕ

(
t;x,

δ23h
3

)
ϕ

(
u;

3σ2
u(x− t)

δ23h
,
σ2
uδ

2
0h

δ23h

)
fX(t)dudt

+
2

π
√
3δ20h

∫
|x− t|3ϕ

(
t;x,

δ23h
3

)
fX(t)dt

≤ 2

π
√
3δ20h

∫
ϕ

(
t;x,

δ23h
3

)[
8
√
2√
π

(
σ2
uδ

2
0h

δ23h

) 3
2

+ 4

(
3σ2

u|x− t|
δ23h

)3
]
fX(t)dt

+
2

π
√
3δ20h

∫
|x− t|3ϕ

(
t;x,

δ23h
3

)
fX(t)dt

=
2

π
√
3δ20h

· 8
√
2√
π

(
σ2
uδ

2
0h

δ23h

) 3
2
∫

ϕ

(
t;x,

δ23h
3

)
fX(t)dt

+
2

π
√
3δ20h

· 4
(
3σ2

u

δ23h

)3 ∫
|x− t|3ϕ

(
t;x,

δ23h
3

)
fX(t)dt

+
2

π
√
3δ20h

∫
|x− t|3ϕ

(
t;x,

δ23h
3

)
fX(t)dt.
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Here, we used the fact that

∫
|u|3ϕ(u, µ, σ2)du =

∫
|u− µ+ µ|3ϕ(u, µ, σ2)du ≤ 4

∫
|u− µ|3ϕ(u, µ, σ2)du+ 4|µ|3

= 4σ3 · 2
3
2
Γ(3+1

2
)

√
π

+ 4|µ|3 = 8
√
2σ3

√
π

Γ(2) + 4|µ|3 = 8
√
2σ3

√
π

+ 4|µ|3.

For E|Z − x|6ϕ3(x;Z, δ20h), note that

E|Z − x|6ϕ3(x;Z, δ20h) =

∫∫
|t+ u− x|6ϕ3(x; t+ u, δ20h)ϕ(u; 0, σ

2
u)fX(t)dudt

=
1

δ20h
· 1

2π
√
3

∫∫
|t+ u− x|6ϕ

(
x; t+ u,

δ20h
3

)
)ϕ(u; 0, σ2

u)fX(t)dudt

=
1

δ20h
· 1

2π
√
3

∫∫
|u− (x− t)|6ϕ

(
u;x− t,

δ20h
3

)
)ϕ(u; 0, σ2

u)fX(t)dudt

≤ 32

2π
√
3δ20h

∫∫ (
|u|6 + |x− t|6

)
ϕ

(
u;x− t,

δ20h
3

)
ϕ(u; 0, σ2

u)fX(t)dudt

=
16

π
√
3δ20h

∫∫
|u|6ϕ

(
t;x,

δ23h
3

)
ϕ

(
u;

σ2
u(x− t)

σ2
u +

δ20h
3

,

σ2
uδ

2
0h

3

σ2
u +

δ20h
3

)
fX(t)dudt

+
16

π
√
3δ20h

∫
|x− t|6ϕ

(
t;x,

δ23h
3

)
fX(t)dt

=
16

π
√
3δ20h

∫∫
|u|6ϕ

(
t;x,

δ23h
3

)
ϕ

(
u;

3σ2
u(x− t)

δ23h
,
σ2
uδ

2
0h

δ23h

)
fX(t)dudt

+
16

π
√
3δ20h

∫
|x− t|6ϕ

(
t;x,

δ23h
3

)
fX(t)dt

≤ 16

π
√
3δ20h

· C ·
(
σ2
uδ

2
0h

δ23h

)3 ∫
ϕ

(
t;x,

δ23h
3

)
fX(t)dt

+
16

π
√
3δ20h

· 32 ·
(
3σ2

u

δ23h

)6 ∫
|x− t|6ϕ

(
t;x,

δ23h
3

)
fX(t)dt

+
16

π
√
3δ20h

∫
|x− t|6ϕ

(
t;x,

δ23h
3

)
fX(t)dt,

where C = 480σ6
u, since

∫
|u|6ϕ(u, µ, σ2)du =

∫
|u− µ + µ|6ϕ(u, µ, σ2)du is bounded above

by 32
∫
|u− µ|6ϕ(u, µ, σ2)du+ 32µ6 = Cσ6 + 32µ6. Define µ(X) = E

(
|ϵ|3
∣∣∣X). Then,

E|Y |3ϕ3(x;Z, δ20h) = E|g(X) + ϵ|3ϕ3(x;Z, δ20h) ≤ 4 · E|g(X)|3ϕ3(x;Z, δ20h) + 4 · E|ϵ|3ϕ3(x;Z, δ20h)
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= 4 · E|g(X)|3ϕ3(x;Z, δ20h) + 4 · Eδ(X)ϕ3(x;Z, δ20h).

Now,

E
[
|g(X)|3ϕ3(x;Z, δ20h)

]
=

∫∫
|g(t)|3ϕ3(x; t+ u, δ20h)ϕ(u; 0, σ

2
u)fX(t)dudt

=
1

δ20h
· 1

2π
√
3

∫∫
|g(t)|3ϕ

(
x; t+ u,

δ20h
3

)
)ϕ(u; 0, σ2

u)fX(t)dudt

=
1

δ20h
· 1

2π
√
3

∫∫
|g(t)|3ϕ

(
u;x− t,

δ20h
3

)
)ϕ(u; 0, σ2

u)fX(t)dudt

=
1

2π
√
3δ20h

∫
|g(t)|3ϕ

(
t;x,

δ23h
3

)
fX(t)dt,

therefore,

E|Y |3ϕ3(x;Z, δ20h) ≤
4

2π
√
3δ20h

∫ [
|g(t)|3 + µ(t)

]
ϕ

(
t;x,

δ23h
3

)
fX(t)dt.

For E|Y |3|Z − x|3ϕ3(x;Z, δ20h), note that

E|Y |3|Z − x|3ϕ3(x;Z, δ20h) ≤ 4E
[
|g(X)|3 + µ(X)

]
·
[
|Z − x|3ϕ3(x;Z, δ20h)

]
= 4

∫∫ [
|g(t)|3 + µ(t)

]
|t+ u− x|3ϕ3(x; t+ u, δ20h)ϕ(u; 0, σ

2
u)fX(t)dudt

≤ 16 · 1

2π
√
3δ20h

∫∫ [
|g(t)|3 + µ(t)

] (
|u|3 + |x− t|3

)
ϕ

(
u;x− t,

δ20h
3

)
ϕ(u; 0, σ2

u)fX(t)dudt

=
16

2π
√
3δ20h

∫∫ [
|g(t)|3 + µ(t)

]
|u|3ϕ

(
t;x,

δ23h
3

)
·

ϕ

(
u;

σ2
u(x− t)

σ2
u +

δ20h
3

,

σ2
uδ

2
0h

3

σ2
u +

δ20h
3

)
fX(t)dudt

+
16

2π
√
3δ20h

∫ [
|g(t)|3 + µ(t)

]
|x− t|3ϕ

(
t;x,

δ23h
3

)
fX(t)dt

=
16

2π
√
3δ20h

∫∫ [
|g(t)|3 + µ(t)

]
|u|3ϕ

(
t;x,

δ23h
3

)
·

ϕ

(
u;

3σ2
u(x− t)

δ23h
,
σ2
uδ

2
0h

δ23h

)
fX(t)dudt

+
16

2π
√
3δ20h

∫ [
|g(t)|3 + µ(t)

]
|x− t|3ϕ

(
t;x,

δ23h
3

)
fX(t)dt
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≤ 16

2π
√
3δ20h

∫ [
|g(t)|3 + µ(t)

]
ϕ

(
t;x,

δ23h
3

)
·[

8
√
2√
π

(
σ2
uδ

2
0h

δ23h

) 3
2

+ 4

(
3σ2

u|x− t|
δ23h

)3
]
fX(t)dt

+
16

2π
√
3δ20h

∫ [
|g(t)|3 + µ(t)

]
|x− t|3ϕ

(
t;x,

δ23h
3

)
fX(t)dt

=
16

2π
√
3δ20h

· 8
√
2√
π

(
σ2
uδ

2
0h

δ23h

) 3
2
∫ [

|g(t)|3 + µ(t)
]
ϕ

(
t;x,

δ23h
3

)
fX(t)dt

+
16

2π
√
3δ20h

· 4
(
3σ2

u

δ23h

)3 ∫ [
|g(t)|3 + µ(t)

]
|x− t|3ϕ

(
t;x,

δ23h
3

)
fX(t)dt

+
16

2π
√
3δ20h

∫ [
|g(t)|3 + µ(t)

]
|x− t|3ϕ

(
t;x,

δ23h
3

)
fX(t)dt.

Now, we have to calculate E(Z − x)3ϕ2(x, Z, δ20h). Recall that for u ∼ N(µ, σ2
u), we have

Eu3 = 3µσ2
u + µ3, Eu4 = 3σ4 + 6µ2σ2

u + µ4. Therefore,

E(Z − x)3ϕ2(x, Z, δ20h) =

∫∫
(t+ u− x)3ϕ2(u;x− t, δ20h)ϕ(u; 0, σ

2
u)fX(t)dudt

=
1

2
√

πδ20h

∫∫
(t+ u− x)3ϕ

(
u;x− t,

δ20h
2

)
ϕ(u; 0, σ2

u)fX(t)dudt

=
1

2
√

πδ20h

∫∫
(t+ u− x)3ϕ

(
t, x,
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2

)
ϕ

(
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2σ2
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σ2
uδ

2
0h
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=
1

2
√
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∫
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(
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2

)
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3

2
√
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(
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2

)
fX(t)dt

+
3

2
√
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∫
(t− x)ϕ

(
t, x,
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2

)
·
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2σ2
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)2

+
σ2
uδ

2
0h
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]
fX(t)dt

+
1

2
√

πδ20h
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3
σ2
uδ

2
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2σ2
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[
2σ2
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]3]
ϕ

(
t, x,
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2

)
fX(t)dt

=
1

2
√

πδ20h

[
1− 3

(
2σ2

u
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)
+ 3

(
2σ2

u
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)2

−
(
2σ2

u
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)3
]∫

(t− x)3fX(t)ϕ

(
t, x,
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2

)
dt

+
3

2
√

πδ20h
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]
σ2
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2
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(
t, x,
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2

)
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=
1

2
√

πδ20h

[
1− 2σ2

u

δ22h

]3 ∫
(t− x)3fX(t)ϕ

(
t;x,
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2

)
dt+

3σ2
u

2
√

πδ20h
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∫
(t− x)fX(t)ϕ

(
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2
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=
1

2
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=
δ50h

2
√
πδ62h

∫ [
t3 − 3t2x+ 3tx2 − x3

]
fX(t)ϕ

(
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δ22h
2

)
dt+
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3
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2
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πδ42h

∫
(t− x)fX(t)ϕ

(
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=
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2
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[
f3,λ

2
(x)− 3xf2,λ

2
(x) + 3x2f1,λ

2
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2
(x)
]

+
δ50h

2
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πδ62h
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4

(
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2

(x)− 3xf ′′
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2
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2
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2
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+

3σ2
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3
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2
√
πδ42h
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2
(x)− xf0,λ

2
(x) +

h2

4

(
f ′′
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2

(x)− xf ′′
0,λ

2

(x)
)
+ o(h2)

]
.

Similarly, for EY (Z − x)3ϕ2(x, Z, δ20h) we have,

E[Y (Z − x)3ϕ2(x;Z, δ20h)] = E
(
(Z − x)3ϕ2(x;Z, δ20h)E

[
(g(X) + ε)

∣∣∣X,U
])

= E
[
g(X)(Z − x)3ϕ2(x;Z, δ20h)

]
=

∫∫
g(t)(t+ u− x)3ϕ2(u;x− t, δ20h)ϕ(u; 0, σ

2
u)fX(t)dudt

=
1
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√

πδ20h
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=
1

2
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[
1− 3

(
2σ2

u

δ22h

)
+ 3

(
2σ2

u

δ22h

)2

−
(
2σ2

u

δ22h

)3
]∫

g(t)(t− x)3fX(t)ϕ

(
t;x,

δ22h
2

)
dt

+
3
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+
δ50h

2
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πδ62h

[
h2

4

(
g′′
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2

(x)− 3xg′′
2,λ

2
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1,λ

2
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0,λ

2

(x)
)
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+

3σ2
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2
√
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4

(
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0,λ

2

(x)
)
+ o(h2)
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.

4. It is well known that the performance of the estimation procedures for bias reduction in

the measurement error modelling heavily depends on the signal to noise ratio, or the ratio

of σ2
x and σ2

u. Here, we present some simulation results with signal to noise ratios being

changed to 40 and 16, that is, we keep σ2
u = 0.1 and 0.25, but change X ∼ N(0, 1) to

X ∼ N(0, 2). One can see that the performance of all three methods is greatly improved,

and sometimes, the naive method provides better results than the SIMEX and EX methods,

which is not beyond our expectation, in that such high signal to noise ratio implies the effect

of measurement error is nearly negligible.

Table B.1: g(x) = x sin(x), X ∼ N(0, 2)

σ2
u Method n = 100 n = 200 n = 500

MSE Time(s) MSE Time(s) MSE Time(s)

SIMEX B = 50 0.038 75.448 0.024 130.337 0.013 302.553

0.1
B = 100 0.025 147.632 0.023 258.059 0.005 600.734

EX 0.052 2.365 0.046 3.335 0.015 6.333
Naive 0.073 0.188 0.046 0.282 0.023 0.603

SIMEX B = 50 0.050 75.198 0.031 130.825 0.011 303.409

0.25
B = 100 0.027 148.447 0.030 259.758 0.008 604.552

EX 0.082 2.278 0.046 3.289 0.015 5.837
Naive 0.133 0.187 0.086 0.288 0.055 0.601
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Table B.2: g(x) = x2, X ∼ N(0, 2)

σ2
u Method n = 100 n = 200 n = 500

MSE Time(s) MSE Time(s) MSE Time(s)

SIMEX B = 50 0.076 75.079 0.012 130.611 0.023 305.085

0.1
B = 100 0.053 154.599 0.020 265.856 0.015 613.201

EX 0.032 2.360 0.093 3.340 0.023 6.326
Naive 0.060 0.185 0.023 0.295 0.021 0.601

SIMEX B = 50 0.129 75.778 0.054 134.026 0.041 310.691

0.25
B = 100 0.058 148.162 0.046 257.776 0.019 599.158

EX 0.063 2.281 0.101 3.158 0.019 5.848
Naive 0.195 0.184 0.080 0.289 0.114 0.608

Table B.3: g(x) = exp(x), X ∼ N(0, 2)

σ2
u Method n = 100 n = 200 n = 500

MSE Time(s) MSE Time(s) MSE Time(s)

SIMEX B = 50 0.517 75.002 0.029 129.973 0.130 301.813

0.1
B = 100 0.425 147.383 0.122 257.704 0.086 600.860

EX 0.165 2.363 1.204 3.331 0.220 6.330
Naive 0.072 0.186 0.358 0.288 0.032 0.606

SIMEX B = 50 0.738 75.285 0.151 130.792 0.184 303.586

0.25
B = 100 0.495 148.524 0.260 259.159 0.045 602.798

EX 0.116 2.270 0.116 2.281 0.151 5.829
Naive 0.308 0.193 0.368 0.290 0.038 0.608
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