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I. INTRODUCTION

The vibration and stability of elastic systems involving follower
forces has attractad much attention during the last few decades. The
need for such a study arises from the fact that many practical engineer-
ing problems can be classified under this category. For example, fol=
lower forces play an important role in the study of pod-mounted jet
engines [1], vertical take-off and landing aircrafts [2,3,4], aerodynamic
flutter of panels [5], thermally loaded spacecraft antennas [6,7], and
cantileéer pipes con@eying fluid Eﬂ. Under certain conditions, chemical
or electromagnetic energy can also induce follower type forces into a
system [9],

A11 these systems are subjected to forces which follow the motion of
the system in some prescribed manner. Since the work dore on the system
by these forces is dependent on the loading path, the presence of follower
forces causes the system to be nonconserVative.

In general, a nonconservative system has two modes of instability,
static and dynamic, in contrast to conservative systems which only have
static instabilities. Static instability in elastic systems (also called
buckling or di&ergence) occurs when the system assumes a new equilibrium
position close to the original equilibrium configuration of the sysiem.
Dynemic instability, or flutter, results when a small disturbance about
an equilibrium position causes oscillations which increase without bound,
With either type of instability, ob#iousTy a system fails to operate in
its designed configuration, Although the static method yields stability

conditions for conserﬁati&e systems, it fails to predict the dynamic
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instabilities of nonconservative systems, Therefore, nonconservative
elastic systems, in general, require a dynamic stability analysis.

In order to understand the fundamental characteristics of these
engineering problems, inﬁestigators have suggested various models which
involve follower forces. Beck [10] was the first to obtain the correct
solution of the linear elastic cantilevered column under the action of a
concentrated tangential force. The stability investigation of this spe~
cial nenconservative system is now referred to as Beck's problem., He
used the dynamic approach to solve the equation of motion and found the
flutter load and freguency. This basic solution generated much interest
among scientists and engineers working in the field of dynamic stability.

Beck's result was verified by many authors and extended to explore
the effects of shear and rotary inertia, internal and external viscous
damping, different boundary conditions imposed on the cantilever's free
end, as well as elastic and viscoelastic support., Excellent reviews of
vibration and stability studies related to elastic systems subjected to
follower forces have been presented by Herrmann [11] and Sundararajan [17].
Nemat-Nasser [13] used the Timoshenko beam theory to deQe!op the equation
of motion., He found the resulting critical load to be less than that
based on the Euler-Bernoulli beam theory. Using a cantilever column made
of a viscoelastic material, Ziegler (14] found the unexpected result that
under certain conditions small internal viscous damping destabilized the
otherwise stable system. Nemat-Nasser and Herrmann [15], Prasad and
Herrmann[16], and Bolotin and Zhinzher [17] have shown that the flutter
load found for an undamped elastic system subjected to Tollower forces is
the upper bound for systems with slight internal damping. Other dissipa-

tive mechanisms besides viscous damping have also been considered. Huang
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and Shieh [18] found thermal-mechanical coupling to have a pronounced
destabilizing effect on Beck's column while Jong [197] showed that bilin-
ear hysteretic damping can also cause destabilization,

Studies considering the effect of external viscous damping also
yielded rather unusual results. Plaut and Infante [20], Anderson [217,
and Pedersen [22] found that external viscous damping increases the
flutter load but only to an asymptotic Qalue. As a result of these
studies and those mentioned preﬁious]y by Ziegler and others, damping
plays an uncertain role in the stability of nonconservative systems,
Hence, each system must be considered independently with no general state-
ment available to describe the effect of damping,

Baesides these studies, some investigators have considered the effect
of boundary conditions imposed on the free end. Barta [23] and Sundararajan
[24] found that rigid or elastic end supports can have a destabilizing
effect, Pedersen [22] extended the problem to include a concentrated tip
mass, a linear elastic spring, and a partial follower force. He described
the effect of these boundary parameters on the flutter load and the lowest
natural frequency.

Designing adequate support for elastic systems in order to pre?ent
failures in flutter is a current engineering challenge. Some progress
has been made to this end by authors who studied the stability charac-
teristics of Beck's column supported with elastic and Qiscoelastic foun=-
dations. Peterson [25], Smith and Herrmann [26], and Sundararajan [27]
found that adding a continuous elastic support does not change the flut-
ter Toad, but only increases the flutter frequency. Anderson [?3] con-
sidered the effect of an elastic foundation on the stability of canti-

1e§er columns subjected to uniformly and linearly distributed tangential
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forces. Wahed [29] considered supporting the cantilever with an elastic
foundation in the presence of external viscous damping and found that the
flutter load depends on the damping coefficient as well as the foundation
stiffness. Kar [30] considered a linearly tapered cantilever of rectangu-
lar cross section made of viscoelastic material and supported by a Kelvin-
Voigt viscoelastic foundation. He formulated an appropriate variational
principle to determine the approximate critical flutter load for ﬁarious
combinations of taper and internal damping parameters of the beam and
viscous damping and stiffness parameters of the foundation.

Although these studies which consider Beck's problem with a foundation
have giQen some insight, they possess several limitations. [In most cases,
either an approximate analytical technigque, such as the Galerkin's method,
or a numerical scheme was used in the analysis, These techniques are
limited in that it is usually difficult to determine general behavior pat-
terns and the exact dependence of the solution on the system paraméters.
In particular, for the case of numerical computation it is necessary to
obtain data for a large number of cases and even then it may be difficult
to ascertain whether some phenomenon or characteristic is being over-
looked or concealed., For these reasons, most of the preﬁious studies do
not include results for a complete range of system parameters. In addi-
tion, the viscoelastic foundation models are primarily restricted to the
Ke?ﬁin-Voigt type. This foundation is probably selected since it can be
shown that a Maxwell type viscoelastic foundation has no effect on the
critical Tcad for conservative systems, The important question regarding
the effect of Maxwell foundations on the stability of nonconservative
systems, therefore, remains unanswered.

The purpose of the present study is to eliminate these limitations
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through an exact analysis of this special nonconservative elastic system,
The system consists of a slender elastic column, fixed at one end and
axially Toaded with a constant force at its free end, supported with a
Standard Linear viscoelastic foundation. This foundation has as special
cases the well known Ke1§in-Voigt model and the Maxwell, or relaxation
model, This system is analyzed using the dynamic theory of stability.

The equation of motion for each foundation model is de#e]oped in
Chapter II and written in terms of the appropriate nondimensional con-
stants, A separable solution is then assumed and the associated eigen-
value problem is formulated. A numerical scheme is devised to obtain
the real and complex eigenﬁa1ues of the characteristic equation. In
Chapter III, the effect of the eigenQaTues on the time dependent part
of the solution is considered. To inﬁestigate the stability character-
istics, a modified Routh=-Hurwitz criteria is deQeloped. Then, for each
foundation model, the stability constraints are derived for the full
range of foundation parameters. The primary results and recommendations

for further study are giﬁen in Chapter IV.



I1, EQUATION OF MOTION AND GENERAL SOLUTION

2.1 Equation of Motion

Consider small transverse motion about the undisturbed equilibrium
position of a uniform elastic column, of length &, supported with a visco-
elastic foundation and subjected to a constant compressive axial load p
as shown in figure 2.1, Let y be the lateral displacement, x the distance
along the beam, and g(x,t) the total reaction pressure from the founda-
tion. Note that the supporting foundation is assumed to be continuously
connected to the beam so it opposes motion regardless of the direction.
The flexural rigidity EI and the density per unit length p are assumed
to be constant,

Using Euler<Bernoulli beam theory and Hamilton's principle [}I], the

dynamic equation of motion for the system is

L 2 2
B &L+ p &L v & 2 g(x,t). (2.1)
axk ax? at?

To obtain a realistic effect of the foundation on the motion, its
"in-phase" mass " must be included in the inertia term of equation (2.1},
Following the suggestion of Veletsos [?2], the total foundation reaction

*l
a 1s

2
¢ =q-M 2, (2.2)
at?
Consequently, equation (2.1) becomes

L 2 2
El .3_..)1 % ‘B .@.i + (p + M*)u = -q* P (2.3)
ax" ax? at?
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The right hand side of equation (2.3) depends on the type of model used
for the foundation. In the following, various viscoelastic models are

discussed and the corresponding eguations of motion are derived.

2.1.1 Standard Linear Solid Foundation

Freudenthal and Lorsch @3] reported that a viscoelastic medium
reproduces actual foundation behavior better than an elastic medium
since its force-deformation relations are time dependent. Following this
suggestion, the foundation is represented by a Standard Linear Solid,
which has the capacity to both store and dissipate energy. For analysis,
the continuum is represented by independent viscoelastic elements, each
supporting a differential beam element. The Standard Linear model, shown
in figure 2.2(a), consists of an effective mass M supported by a series
combination of an elastic spring kl and viscous dashpot c connected in
parallel with another elastic spring k2' Special cases of this general
model can be used to represent two other models, viz., the Kelvin=Voigt
and the Maxwell foundation models shown in figures 2.2(b) and (c), respec-
ti§e1y. The first results when k1 approaches infinity and the second
when k2 is identically zero., These models are further discussed later.
The equation of motion for the Standard Linear model is developed in the
following.

Following Lin [34], let q; and g, be the pressure acting on springs
k1 and k2 such that

*
TR ra,, (2.4)

Referring to fiqure 2.2(a), let " be the displacement of the node con-

necting k1 and ¢, The force a4 is transmitted through both the spring
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and the dashpot so the following relatianships hold., First, note that
a; = kyly = ¥p) . (2.5)

Di@iding by k1 and At, an increment of time, yields

—| == (y = ¥) . (2.6)

1“1]_1
At kl

In the limit At approaches zero and equation (2.6) takes the form

aql s (2.7)
at

From the force in the dashpot,

L g == (2.8)

Using equations (2.7) and (2.8),

§l=..1_3?_1.+ff_];=_1_33i+}. . (2.9)
9t k., 3t ot ky 9t c E
1 1
The force in spring k, is
qy = kzy (2.10)
Combining equations (2.4) and (2.9) and also noting that
*
aq 9q
0 1,22 (2.11)

at at at

ql can be eliminated to aobtain

* 39
. Llfag %2 +l(q*-q2). (2.12)
itk



11

Substituting from equation (2,10) for a5 in equation (2.12) yields,

sy . 1 ad X239 1 x Kpy
l:_...._.....-—..-l + = = =——— (2-13)
at  ky At ky at c c

Differentiating with respect to t, equation (2.3) becomes

-nl 3 3
39 .. |:E{il-+p 9 + (p+M*)LY] . (2.14)
3t atax® atax? at?

Substituting equations (2.3) and (2.14) into equation (2.13) yields the
following partial differential equation of motion for the Standard Linear

foundation.

.E..I...._a_sL+..E..I._a..:¥.+£. 2%y ¥ [p+r’1*}aaj+9-a_il+
ky atax* ¢ ax*  k; atax? k, Jat*  coax?

i " ) (2.15)
+ [B_:_ﬂn.ﬁ_l + [1 + 23y 4 2 y=0,

c jat? kpjat ¢

Introducing nondimensional parameters

KI T e Kz S —— (2.16)

]
P=.E£i’c=c_._.£¥___ "
El (p + M )EI

the above equaticn can be rewritten in the nondimensional form

L o3%W 4 3%, C o ady

L adw 32w
o S P A+
4 u
K1 amag® Bg* k. arag? Ky at 3g?

2 K (2,17)
# 20y (1 P 0.
art? K1jat 2



12

Notice that if C = 0, the equation of motion for a column supported by

an elastic foundation is recovered as

2 2
a""+P3""+3"‘+K2w='0, (2.18)
ag" 3g2 3t

which is the same as obtained by Smith and Herrmann[26].

2alu Kel@in-Voigt Foundation

In the Timit when k1 approaches infinity, the Standard Linear model
becomes the well-known Kelvin-Voigt model (figure 2.2(b)). This model
consists of an elastic spring and viscous dashpot combined in parallel,

It has been shown that this foundation model represents delayed elasticity
or after effect. Upon removal of a force on the element the deformation
is gradually recovered,

The equation of motion for the Kel&in-Voigt model can be obtained by

taking the limit of equation (2.15) as k1 approaches infinity. This

yields
L]
3 QAP AR L N b+ M*)Eil +c Yy kpy = O. (2.19)
ax* ax? 3t? at

Using equation (2.16), the nondimensional form becomes

3W , p AW, M, AW, Kow = 0, (2.20)
ag" a?  oar? at
This equation also describes the motion of a column when supported by an
elastic foundation in the presence of external damping [29]. Also observe
that viscous damping is a special case of the Kelvin-Voigt model, If KZ
is identically zero, then the nondimensional equation of motion for a

column in the presence of viscous damping is
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L] 2 2
3w 9w BW_PCEW:O. (2.21)

gy p EX s BN L

ag® g at? o1
This is identical to the equation reported by Plaut and Infante [20].

2.1.3 Maxwell Foundation

If spring k2 is absent from the Standard Linear model, it takes the
form of the Maxwell model as shown in figure 2.2(c). This model consists
of an elastic spring and viscous dashpot combined in series, and repre-
sents the characteristics of creep and relaxation, For a constant force

applied to the element, the deformation increases linearly with time, The

equation of motion is easily found by letting kz = 0 in equation (2.15)

to yield

*
El 3% L EL 3%y, p 3y [oM 3%,
kq atax* ¢ ax* Ky atox? ky at?

5 *y s (2.22)
+ RV, fotH ]a‘y + 8 =g,
¢ ax? c jat? a3t
Consequently, the nondimensional eguation becomes
L 3% 3w, C o 3% . C 3%
Ky atag*  ag* Ky areg? Ky ar?
(2.23)

+p A2W L 3%, Mo
3t arl aT

?

with the constants defined by equation (2.16).

2.2 Separable Solution

As shown in figure 2.1, the column is fixed at one end and subjected

to a constant follower force p on the free end, The entire length is
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supported by a viscoelastic foundation., The loading is a function of the
follower parameter n to allow for a subtangential force. When n is zero,
the force is horizontal and corresponds to Euler-type conservative load-
ing. When n is one, the force is totally tangential. The complete bound-
ary-value problem is given by the equation of motion (2.15) about the

undisturbed equilibrium position and the following boundary conditions,

y(0,t) = 0, y'(0,t) =0,

(2.24)
y''(e,t) =0, y''"'(&,t) + p(l-n)y'(2,t) = O,
These can be rewritten in terms of the nondimensional variables as
w(0,t) = 0, w'(0,t) = 0,
(2.25)
w''(l,7) = 0, w'''(l,7) + P(l-n)w'(1l,1) = O,
Consider a solution of the form
w(E,t) = ¢(5)T(1). (2.26)
Substituting this into equation (2.17) yields
(CT + Kk Tot vt + p(CT + K T)o' ! +
(2.27)
+(CT + KT + C(Ky + Kz)f + KKoT)e = 0.
Dividing by @+(CT + KIT), equation (2.27) can be rearranged as
o ' . - .
¢ + P! _ -(CT + KIT + C(Kl e KZ)T + KIKZT) V5.8

6 cT + KyT
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If equation (2,28) is to hold for all values of £ and T, both sides must

equal a constant. Let this constant be denoted by AZ2.

now separates into the two ordinary differential equations.

LS T LI }\zq’ =0

LT * KlT + C(p2 + Kl # KE)T + Kl(xz # K2)T = 0,

The boundary conditions in terms of & become
$(0) = 0, $'(0) = 0,

¢''(1) =0, ¢'*'(1) + (1-n)Pe'(1) = 0.

It is observed that the boundary value problem defined by equations
(2.29) and (2.31) must be solved for A% in order to define equation

(2.30), which determines the temporal part of the solution.

Equation (2.28)

(2.29)

(2.30)

(2.31)

The linear

differential operator in equation (2.29), in general, is not self-adjoint

due to the boundary conditions given by equation (2.31) and therefore,

the eigenvalue A? is not always real, As a result, the constant A% is

complex and can be defined as
M o=asig, i=(-1)%
Let the solution of equation (2.30) be of the form
T(r) = Ae®T,

where

s=g+ iw.

Substituting equation (2.33) into equation (2.30) yields

(2.32)

(2.33)

(2.34)
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Cs? + Kls2 + C(A\2 + Ky + K5)s + KI(AZ *+K,) = 0. (2.35)

Since, in general, A% is complex,the above polynomial has complex coeffi-
cients. From equation (2.33), it is seen that the roots of this.comp1ex
polynomial play the key role in determining the stability criteria for the
system, From equation (2.34), it is obvious that the necessary and suf-
ficient condition for the solution to remain bounded is 0 < 0. If o > 0,
the solution is unbounded and instability prevails. Thus, it is clear
that the stability conditions for the system are functions of the founda-
tion parameters Kl, KZ’ C, and A% which depends on the loading parameters

P and n.

2.3 Eigenvalue Problem

First, the eigenvalue problem given by equations (2.29) and (2.31)
is considered., It is known that the general solution of equation (2.29)

can be expressed as

o(g) = C1 sin ag + C, cos af + C3 sinh b + C, cosh bg. (2.36)

4
By substituting this general solution in equation {(2.29), one obtains
(a* - Pa? - ;\2)(01 sin ag + C, cos ag) +
+ (b* + Pb? - Az)(C3 sinh bg + C, cosh bg) = 0, (2,37)

For this to be zero for all £, since the C's are arbitrary, the following

conditions must hold,
a* - Pa? =A% =10, b*+Pb?-2r%=0. (2.38)

These produce the following relationships among a, b, P, and A%,



(2.39)

Imposing the boundary conditions (2.31) on the general solution
(2.36) creates a set of four linear algebraic equations in the four con-
stants C1 through C4. For a nontrivial solution, the determinant of the

coefficients of the C's must vanish, i.e.,

0 1 0 1
a 0 b 0
= OI
-a%sina -a%cosa b2sinhb b2Zcoshb
]Il-n)P-aﬂa cosa ,[az-(l-n)ﬂa sina , El-n)PHﬂb coshbsﬁa“(l-n)ﬂb sinhb

(2.40)
Evaluating the determinant leads to the transcendental equation
ab[2(1-n)P + b? - a*Jsina sinh b= (l-n)P(b*® - a%) +
‘ (2.41)

+[(1-n)P{b? - a?) - 2a*b?]cosa coshb - (a* + b*) = 0,

Substituting equations {2.38) and (2.39) into equation (2.41) simplifies

the transcendental equation to the form

232 + nP? +Px(2n-1)sina sinhb + [2)% + P2(l-n)]cosa coshb = 0. (2.42)
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2.4 Instability Mechanisms

For a given set of loading parameters P and n, equation (2.42) can
be solved numerically to obtain the roots A: . These roots may be real
or complex. Before discussing the solution of this transcendental equa-
tion, first, the instability mechanism and its dependence on the eigen-
values A% must be clearly understood. A discussion of this nature is
also necessary in order to realize the need for viscoelastic support
rather than an elastic support. Therefore, a review of the instability

phenomena under various conditions, as reported by past investigators,

is presented in the following.

2.4.1 Divergence

First, consider the motion of the column about the equilibrium posi-
tion under the action of a conservative force (n = 0) with no supporting
foundation. By setting the foundation parameters C and K2 and the load
parameter n equal to zero in equation (2.17), the nondimensional equation

of motion is casily obtained as

2 2
W 9w , 3w _ (2.43)

Assuming a separable solution in the form of equation (2.26) leads to the

differential equation (2.29) with the transformed boundary conditions

$(0) = 0, $'(0) = 0,

(2.44)
$''(1) =0, o™(1) +Pe'(1) =0,

and the temporal equation
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T+ AT = 0. (2.45)

The eigenvalue problem given by equations (2.29) and (2.44) yields the

transcendental equation
(2a% + P?)cosa coshb + 2)* - PAsina sinhb = 0, (2.46)

where a and b are defined by equation (2.39).
Static instability, or divergence, occurs when A? = 0, since the tem-

poral equation (2.45) would become
T=o, (2.47)

which has an unbounded solution. By letting A% = 0 in equation (2.46),

it is seen that
2 3
P2cos(P?) = 0 (2.48)

gives possible static solutions. For nonzero divergence loads, equation

(2.48) requires that
cos(P%) = {J, (2.49)
which gives the condition
T[z
P={2n-1)2 — . (2.50)
4

The lowest nondimensional load P, corresponding to n = 1, is the familiar

Euler buckling load for a cantilever column,
1,[2
P F—= 2947 [} (2051)
4

Now, consider the effect of an elastic foundation on the static buckling
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load. THe equation of motion was obtained in equation (2.18). A sepa-

rable solution leads to equation (2.29) and
T+ (A2 +K)T =0, (2.52)

with the boundary conditions given again by equation (2.44). Notice from
equation (2.52) that the stiffness parameter shifts the characteristic
exponent by an amount K2. Because of the elastic foundation, possible
budk1ing loads now occur when the quantity K2 + A% becomes zero, leading
to an unbounded solution. It can be shown that these buckling loads are
higher than the corresponding buckling loads for an unsupported column.
Thus, an elastic foundation does stabilize the conservative system which
fails in divergence. Note that since the load is conservative, a static
approach would also yield the same result,

At this point, consider the motion of the column in the presence of
external viscous damping, described by equation (2.21), A separable solu-

tion once again leads to the spatial equation (2.29) and the eguation
T+CT+ A% =0, (2.53)

For stability of the second order differential equatiom (2.53), it is
necessary and sufficient that all the coefficients remain positive,

Since only positive demping is considered, this stability condition
restricts A% to be greater than zero. Thus, the stability boundary occcurs
when A% = 0, which defines the critical buckling load. From this it is
seen that damping has no effect on the buckling load of this conservative

system.
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2.4.2 Flutter

First, consider the motion of a cantilever column under the action
of a nonconservative (n = 1) force, commonly referred to as Beck's column,
The motion is again described by equation (2.43) from which a separable
solution leads to equations (2.29) and (2.45). The boundary conditions

are now given as
8(0) = ¢'(0) = &" (1) = @' (1) = O, (2.54)

since the tangential end load has no shear component. Substituting these
boundary conditions and the general solution (2.36) in equation (2.29)

leads to the transcendental equation

P2 + Prsina sinh b + 2A%(1 + cosa cosh b) = 0, (2.55)

as reported by Beck [10], Bolotin BS] and others. Equation (2.55) has
an infinite set of eigenvalues A: for each value of P. These eigenvalues
occur in pairs such that as load P increases from zero, each pair of
eigenvalues approach each other. After merging, they become a pair of
complex conjugates, It can be seen from equation (2.55) that no possible
static solutions (?tz = 0) exist, in contrast to the conservative problem
when N = 0, The stability of the system is now determined from the solu-
tion of the temporal equation (2.45), which is affected by the eigenvalues
of the transcendental equation (2.55). To observe their effect on stabil-
ity, let equation (2.45) have a solution of the form {2.33), which leads
to

s2 + )2 =0, (2.56)



22

or

s = i)\ . {2.57)

As seen from the assumed exponential solution, for stability, it is neces-
sary and sufficient that the s roots (2.57) have zero or negative real
parts, This requires that the imaginary part of the complex A be non-
negative. However, if A is complex, a conjugate pair would satisfy equa-
tion (2.55) with one having a negative imaginary part. Realizing this,
the critical load occurs when A becomes complex since higher loads would
cause one s root to have a positive real part, inducing flutter instabil-
ity. Beck [1Q] found that the two lowest eigenvalues become equal at the
critical load of 20.05. The higher pairs of eigenvalues demonstrate this
same trend with successively higher critical load values, The flutter
load corresponding to the lowest eigenvalues is of primary engineering
interest and will hereafter be denoted by Pf. Beck's column is only stable

for real eigenvalues corresponding to lopads less than P. = 20.05.

f
If Beck's column was supported by an elastic foundation, the separated

solution consists of the eigenvalue problem defined by equation (2.29)

with the boundary conditions (2.54) and the temporal equation (2.52). By

assuming an exponential solution of the form (2.33), equation (2.52)

becomes
s+ (A% + Ky) =0 . (2.58)

Usirg an argument similar to that given after equation (2.57) the quantity
A2 * K, must remain real for stability. This restricts A% to be real,
which leads to the critical flutter load of P¢. As shown by Smith and

Herrmann [26] and others, an elastic foundation has no effect on the critical
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flutter load, and instead only increases the flutter frequency. Flutter
instability still occurs if P > Pf.

Now, consider the effect of external viscous damping on Beck's col-
umn, Again a separable solution Jeads to the spatial equation (2.29)
with boundary conditions (2.54) and the equation for T given by (2.53).
Letting the solution for T have the form of equation (2.33), yields the

quadratic in s

s?+Cs+r=0, (2.59)
which has the roots
S [E’- \els (2.60)
Expressing A? as the complex constant (2.32), yields
c CZ ‘17".
§9 o = == 2 < (a2 ig)| . (2.61)
Lz 57 |4

Leipholz [35] has shown that the real part of each s root remains nega-

tive as long as the inequality
2
a> B (2.62)

2
is satisfied, Since the smallest value of BY¢c2 s zero, o must remain
positive for stability. Rearranging inegquality (2.62), the stability

boundary becomes
2
c2 = %. . (2.63)

When A2 is real (g = 0) zero damping is required, but when )2 becomes com-

plex (8 > 0) damping must be present which satisfies inequality (2.62)

The 1imiting value of a = 0 requires infinite damping. Plaut and
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Infante [20] and others have shown that the critical load corresponding
to a = 0 is 37.7. By adding external viscous damping to Beck's column,
the critical load increases with increasing damping from Pf at zero damp-
ing to the limiting value of 37.7 for very large damping. At loads higher
than 37.7 the system fails in flutter, regardless of the damping value.

In summary, the conservative problem (n = 0) fails in divergence at
a nondimensional buckling load of 2.,47. The addition of a continuous
elastic support increases this critical buckling load, but external vis-
cous damping has no effect. The nonconservative problem {n = 1), with or
without an elastic foundation, fails in flutter when the eigenvalues of
equation (2.55) become complex, This corresponds to a load of 20.085.
External viscous damping stabilizes the system up to the limiting case
when the real part becomes zero. This occurs for the load 37.7.

It is anticipated that a viscoelastic foundation can further increase
the flutter load. This suggests that eigenvalues for loads greater than
37.7 will be necessary for a complete stability amalysis. With an under=
standing of the effect of the eigenvalues on the stability of the system
and the range of values needed, a numerical procedure for solving the
general transcendental equation (2.42) with respect to the real and com-

plex eigenvalues A% qs presented in the following section,

2.5 Numerical Solution of Eigenvalues

Because of the complicated nature of transcendental equation (2.42),
few techniques are available to solve for the exact eigenvalues. As a
result, several approximate methods have been suggested. Plaut and
Infante [20] used a Galerkin approach to develop an approximate frequency

equation and found expressions for o and B as functions of load P,
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Herrmann and others [37] discretized the continuous nonconservative prob-
lem to a two degrees of freedom model, Routh-Hurwitz criteria gave the
necessary and sufficient conditions for stability of this lumped param-
eter system.

The most direct method for solving the exact eigenvalue problem
substitutes the compiex form of A% in equation (2.42) and separates the
real and the imaginary parts to form two simultaneous transcendental
equations in @ and B [?0], Although this technique gives implicit expres-
sions for the exact solution, the form is very complicated and extremely
difficult to solve.

As an alternative to this approach, Pedersen [22] offers a more tract-
able method of solution., By transforming the transcendental equation into
an easily differentiable form, the Newton-Raphson method [38] is used to
solve for the reai or complex eigenvalues corresponding to a particular
load. Since this approach is most suitable for the exact analysis, it is
used to proceed with the solution of the eigenvalue problem.

The characteristic equation (2.42) can be rewritten as

D(PaA) = €1y + 65f5 (2.64)
where
€ = 232 + (1-n)P2 ,
c, = (2n-1)P, (2.65)
and

f1(Pya) = fi(a,b) = 1 + cosa coshb

fz(P,A) = fy(a,b) = (a® - b2) + absinasinhb , (2.66)
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with a and b given by equation (2.39). Now the following complex quanti-

ties can be definead,

g=a+ib, ¢* =P+ i2r,

(2.67)
g=a-1ib, g*=P «i2r.
Then, fl and f2 of equation (2.66) become the complex functions
1 -
fi=1+ -é—[cos(g) + cos (g]]
fy = P + i3[tos(g) - cos(3)] . (2.68)

Using these complex functions, equation (2.64) can be easily differentiated

to yield
of of
A oA EDY
where

_?il_ s u _.‘L_[sinjg) ) sin(é):l
A 2L B 5 '

(2.70)
af

2 .5 l-[:cos(g) - cos (g)] + l& sin(g) , 51f(q) .
) 4 21 g g

The Newton-Raphson method is used to solve equation {2.64) to yield
real or complex values of A for a given set of parameters n and load P.

The iteration procedure is given by

ln+1 = An + Aln . (2.71)
where
“U(Pak)
M = T———— . (2.72)

E
P,
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A FORTRAN program in complex variables, which uses this procedure to solve
for the eigenvalues is given in Appendix A. Because of the availability
of a Hewlett-Packard 9845 desktop computer, a Muller subroutine in BASIC
language (given in Appendix B) was used to verify the real eigenvalues
obtained from the FORTRAN program. The complex eigenvalues for n = 1
corresponding to load values ranging from 20.1 to 100 are included in
Appendix C. These were compared with the partial listing given by Plaut
and Infante [20]. Interactive graphics capabilities using an HP9872A
plotter produced the results,

The real eigenvalues for several values of follower parameter n are
plotted in figure 2.3. Observe that each n curve intersects the X axis
at the first two natural frequencies of the unsupported column (Al = 3.516,

Ay = 22,034). These follow from equation (2.42) with P = 0, i.e.,

2x2[1 + cos a coshb] = 0, (2.73)

which is independent of n. As P increases, these frequencies approach each
other, up to a maximum value of Pf where they become equal. For P greater
than this value, the frequencies become a complex conjugate pair and flut-
ter occurs for the unsupported column,

This system also has possible divergence configurations, where the
lowest frequency becomes zero. Static failure conditions can be found

from (2.42) by setting A = 0 as
P2[n + (1-n)cos a coshb] = 0. (2.74)
Recall that, from equation (2.39) when A = O,

a2 =P and b2= 0, (2.75)
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This reduces equation (2.74) to
1
P2[n + (1-n)cos{P?)] = 0. (2.76)
Then for a nonzero P, possible critical static loads are given by
2
p= E:os“ .8 (2.77)
n=1
For example, substituting n= 0 yields P = I°, the familiar Euler buck~
ling load.

It also follows from equation (2.77) that divergence instability is

not possible with positive P for n > 0.5. Since the argument of cos'l( )

is bounded such that

"1< J‘-‘ < 1 9 (2-78)
n-1
the two relationships
-(n-1) >n and n>n -1, (2.79)

yield the necessary condition for divergence as
n < 0.5 . (2080)

Thus, n < 0.5 is the constraint on n for possible divergence configura-
tions.

Notice that for n = 0.5 in figure 2.3, the lowest eigenvalue decreases
with increasing load to zero and then increases with a further increase of
load. Divergence occurs when A becomes zero (P = 2, from equation (2.77)}),
then with increasing load the first and second roots merge and become
complex causing flutter. Pedersen [22] has shown that the possibility of

both divergence and flutter failures exists for n between 0.354 and 0.5,
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Strictly divergence failure occurs for 0 < n < 0.354,

The complex eigenvalues for n =1 are plotted in figure 2.4. Note
that o and B are the real and the imaginary parts of A2, respectively.
Points Py through Pg mark the complex roots corresponding to loads of
special interest. The first two real natural frequencies corresponding
to P =0 in figure 2.3, are shown at points Pge The roots move toward
each other on the real axis, with increasing P, until the load becomes
Pf at point Py- Complex roots exist for loads higher than Pf. At point
Py the real parts become zero, which corresponds to a load P = 37.7.
This is the allowable load for the system in the presence of infinite
external viscous damping, as shown by several investigators. [?0,21,22]
Higher loads yield eigenvalues with negative real parts, This is demon=-
strated with points P3 and Py which represent loads of 50 and 75, respec-
tively.

In the next chapter, the stability criteria for various foundation
models are developed., The discussion is restricted to the case of n =1

which corresponds to a totally tangential follower force.



IIT, STABILITY ANALYSIS AND RESULTS

The time dependent part of the assumed solution governed by equation
(2.30) determines the stability criteria of the system. If following a
small disturbance, the motion about the equilibrium configuration remains
bounded, then this equilibrium position is considered stable; otherwise
it is unstable, Furthermore, if the steady state motion returns to the
original equilibrium configuration, this equilibrium position is considered
asymptotically stable,

By assuming a solution in the form of equation (2.33), the temporal
equation becomes a third order characteristic equation in s with complex
coefficients, as seen from equation (2.35). Because of the assumed expo~
nential solution, the condition that the real parts of the roots of this
polynomial remain negative, insures asymptotic stability. The problem
then reduces to the analysis of a characteristic equation with complex coef-

ficients,

3,1 Characteristic Equations with Complex Coefficients

A review of past investigations shows that only a few techniques
exist for such analyses. If the numerical values of the characteristic

roots are desired then the complex form of the roots can be substituted

into the nth order characteristic polynomial and the equation separated

into its real and imaginary parts. Setting both parts equal to zero

th

yields two n™" order polynomials with real coefficients which must be

solved simultaneously for the real and the imaginary parts of the roots.
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By requiring the real parts of the roots to remain negative, stability
conditions can be derived. However, this approach may beccme very tedious
for higher order systems, It also fails to give closed form expressions
relating the effect of the various system parameters on the stability

of the system. Another method, which does not require explicit solutions
for the roots, has been suggested by Chebotarev and Meiman, as indicated
by Bolotin [35]. In this approach the coefficients of the complex poly-
nomial are arranged in an array similar to the well-known Routh=-Hurwitz
matrix. The stability criteria are then determined from the requirement
that the principle minors remain positive. The resulting conditions show
what effect the system's parameters have on the stability of the system,
Although this seems to be a reasonably good approach, yet another tech-

th order complex

nigue can be developed by realizing the fact that the n
polynomial can always be transformed into a polynomial of order 2n with
real coefficients [3@]. The traditional Routh-Hurwitz or similar criteria
can then be used to provide the stability conditions involving the system
parameters.

First, a description of this method for an arbitrary polynomial with
complex coefficients is presented. Then this technique is applied to the
characteristic equation (2.35).

th

Consider an n~ order characteristic equation represented by

n-1, +ec =0, (3.1)

- n
P(s) = CuS * CqS & % . n

where the coefficients c, Cys » « « » €, are,in general ,complex. Let

the polynomial R(s) be defined by

R(s) = Es" + &s" e L L4 E =0, (3.2)
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where the bars denote the complex conjugates of the quantities., Since
both P{s) and R(s) are independently zero their product will also be

zero. Multiplying equations (3.1) and (3.2) results in a polynomial
Q(s) = P(s)R(s) = a052" + alszn'l +.,..%+va, =0, (3.3)

where the real coefficients dgs gy o o 4y B ATE given by

;= €Cq * Gty

ay = cOE2 + clﬁl + CZEO . (3.4)

The 2n roots of the equation (3.3) are the n roets of polynomial P(s) and
the n roots of polynomial R(s). If the roots of P(s) are real or complex
conjugate pairs then the 2n roots will occur as n roots of multiplicity
two [39].

Now, the above procedure is applied to the characteristic equation
{2.35). Since the eigenvalue A? can be expressed as A% = a & ig, the

equations P(s) and R(s) corresponding to equation (2.35) take the forms

P(s) = Cs® + Kys? + C[(a+K1+ Ky) + i8]s + K1[:(a+1<2) +i8] = 0, (3.5)

R(s)

Cs? + Kys? + C[(0+K1+K2) - i€]s + K [(ark,) - 18] = 0, (3.6)

Since equations (3.5) and (3.9) are independently zero, their product is
also zero., After multiplying these and combihing like terms the following

sixth order equation with real coefficients is obtained
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C%s® + 2K4Cs® + [@f + 202 ¥ Ky + Kz)]s“ +

* CE’f(aH(?)Kl +2K12:]53 + [21(12 (a+Ky) + C2(arky*K,) 2 + c28%]s2,
(3.7)
+ zklc[(a+xzj(a+}(1 +1(2) +8%]s +

+ Ky [(ark,5)? + 8%] = 0.

The Hurwitz criteria may now be used to analyze the roots of this equiva-
lent sixth order system,

Before establishing the stability conditions for each foundation
model, it is helpful to review the Hurwitz criteria for an nth order sys=

tem and present an extension of this method proposed by Mikhailov [40].

3.2 Routh-Hurwitz-Mikhailov (RHM) Criteria

Independent of the work done by Routh [41], Hurwitz [42] developed an
algebraic criteria in 1895 to determine the stability of systems described
by an ordinary differential equation of arbitrary order. The characteris-

tic equation for such a system is given by

n=1

Q(s) = aosn +ays too ot gsta =0, (3.8)

n

where gy gy « o o 4 3, AT real constants. For the system to be asymp=-
totically stable, the n roots must have negative real parts. Hurwitz
showed that for this to be true, it is necessary and sufficient that the

principle minors of the square matrix
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=
51 63 as a7 & L] @
ao 32 a4 aG e o @
0 3 33 3 .+ .

(] <o o < l

o o O O
o o o o

0 3y Ay 3y .+ . . (3.9)

L ] L] - L] L] * a * L] - L [ ] £ ] L} L *

0000 ...a_3 3,4 0

0000 ...a_, 3., 2, |

iz

involving the coefficients of equation (3.8), be positive. The conditions

can be written as

AI = al > 0, (3.10)
3 23
AZ = > 0, (3.11)
3y a,
a3y a3 g
by = [ 3y a, 3, | >0, (3.12)
0 3 2

and so on up to A“, which is simply the determinant of the entire matrix

{3.9). If expanded about the last column, A, can also be expressed as

Ay = php 1 s (3.13)
which reduces the positive definiteness condition on An to
a > 0. (3.14)

n

The "stability limit" is determined by
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= 0, (3.15)

with the appearance of a pair of purely imaginary roots of equation (3.8},
or by
a_ =0, (3.16)

with the appearance of a zero root, provided all the remaining determi-
nants are positive,

An equivalent but useful technique for determining the conditions
for the stability 1imit for linear systems of finite order has also been
developed by Aleksandr Vasil'evich Mikhailov [40]. Since the criteria
suggested by Mikhailov is more convenient for the present investigation,
a brief description of his method follows. A more detailed discussion
is given by Popov [43].

th order characteristic equation of a linear system

Consider the n
given by equation (3.8). For the real roots to be negative it is neces-
sary and sufficient that all the coefficients be positive, but this alone
does not insure that the roots have negative real parts if they are com-
plex. To quarantee this, additional conditions, analogous to the Hurwitz
determinants, must be satisfied. Substituting s = iw in equation (3.8)

and separating the real and imaginary parts, yields

Qliw) = X({w) + i¥(w), (3:17)
where
X(w) = 3 - an_zwz + an_4m“- R (3.18)
and

Y(w) = a _y0-a g0 +a ... (3.19)
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Following Popov [43], Q(iw) can be represented in the complex plane (X,iY)
as a vector for a given value of w. As g varies between zero and infinity,
the tip of the vector traces a curve in the complex plane. Mikhailov

found that this configuration reveals the number of roots having negative
(or positive) real parts., For all roots to have negative real parts, it

is necessary and sufficient that the vector Q(iw) representing the nth

order linear system rotate through an angie of
=pX
¢=n 3 (3.20)

radians as w varies from zero to infinity. This is equivalent to requir-
ing the curve to pass through n guadrants of the complex plane in succes-
sion, The limit of stability occurs when the expression for the Mikhailov
curve, equation (3.17), becomes zero. Graphically, this happens when the
curve passes through the origin for some value of w. Analytically, the

stability boundary is represented by

X{w)

il
(=)

(3.21)

and

Y(w) = 0, (3.22)

which become simultaneous equations in w. A solution of equations (3.21)
and (3.22) yields the required stability condition in terms of the coef-
ficients of the characteristic equation (3.8).

For higher order systems this method becomes more tedious and the
Hurwitz criteria would give cleaner results, Comparing these methods,
Popov [43] found that they produce equivalent conditions for the stability
limit, For the stability of a finite order system the Hurwitz criteria

require that all the principle minors of matrix (3.9) be positive with the
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determinant M-1 giving the stability boundary. This is exactly equiva-
lent to the Mikhailov requirement that all the coefficients be positive
and that the Mikhailov curve rotate through nlg radians with the stability
boundary occurring when the curve passes through the origin.

For systems of order less than seven, Mikhailov's criteria provide
stability conditions without the tedious evaluation of the determinants
required by the Hurwitz criteria. Since the present study deals with
systems of at most sixth order, this criteria is used for convenience.

Hereafter, this criteria will be referred to as the Routh-Hurwitz-
Mikhailov (RHM) criteria. In the following, the stability conditions
for the sixth order characteristic equation (3.7) are derived through
an application of the RHM criteria. Recall that equation (3.7) represents
the Standard Linear foundation from which the special results for Kelvin-
Voigt and Maxwell foundations can also be obtained. First, the Kelvin-

Voigt model is considered.

3.3 Kelvin-Voigt Foundation

The motion of the column supported by a Kelvin-Voigt foundation
(fiqure 2.2{b)) is governed by equation (2.20). A separable solution

leads to eguation (2,29) in the space variable £ and the equation for T as
T+ CT+ (K, +A%) = 0, (3.23)

Assuming a solution in the form of equation (2.33), the following charac=-

teristic aquation is obtained.
s2 + Cs + (Ky + A2) = 0, (3.24)

where A? is complex as described by equaticn (2.32). As shown in section
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(3.1), this second order polynomial with complex coefficients can be

transformed into a fourth order polynomial with real coefficients

Qls) = ags* + a153 + 2,5 + 255 + 3, = 0, (3.25)
where
a5 = 1
a = 2L
ay = 2(a + K,y) + C?, (3.26)
ay = 2C{a + KZ),

a4 = (Q. + Kz)z + 62.

NMotice that this same result could have been obtained from equation (3.7)
in the limit as K1 approaches infinity.

The RHM criteria developed in the last Qection yield conditions
which insure negative real parts of the roots of equation (3.25). Fol=
lowing the development of Popov [@3] for fourth order systems, the poly-
nomial Q(iw) separates into a real part X(w) and an imaginary part Y(w)

such that
X(w) = aom“ - a2m2 *ay, Yw) =-a1m3 * aqu. (3.27)
The value of w necessary for stability is found by setting Y(w) = 0 as

23
w?= = (3.28)

S
Substituting for we in X() and requiring the expression to be less than
zero yields the condition for stability

2 2

a a ~d,(2y8, = 3and,) + a,a

X(w.) = ag 2. 3, I a, = 3'71°2 073 41
2
4

<0 (3.29)

S 2

4 8
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Then for necessary and sufficient conditions for stability, the RHM cri-
teria requires that all coefficients of equation (3.25) be positive and

that the inequality
2

be satisfied., The stability 1imit occurs when inequality (3.30) becomes
an equality with all the coefficients remaining positive,

To find the limiting values of the system parameters for stability,
first consider the condition that all coefficients be positive. From the
expressions (3.26), it is seen that 3 and a, are always positive, a4y is
positive for positive damping, and that a5 and ay are positive if the

inequalities

C2
o + K2 > - 3 {3.31)

and

a+K, >0 (2.32)

are satisfied., It is clear that if inequality (3.32) is satisfied then
inequality (3.31) also holds. Therefore, with positive damping, all the
coefficients are positive if o + K2 > 0, MNow, consider inequality (3.30).
Substituting for the coefficients from expressions (3.26) yields

o+ Ky > iz-; ; (3.33)
Since inequality (3.33) is more restrictive than (3.32), the required
condition for stability is given by (3.33). MNotice that if K2 = 0, the
Kelvin-Voigt model reduces to a viscous damper, Setting K2 to zero in

inequality (3.33), the stability condition for this case can be recovered

as
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o (3.34)

which was reported by Leipholz [36], Plaut and Infante [20], Pedersen
[22] and others., These studies found that external viscous damping
increases the flutter load only to a limiting value, which can be con-
cluded from inequality (3.34). If the damping constant C was to approach
infinity, then the critical load would only increase to the load corres-
ponding to @ = 0. This a value is represented on figure 2.4 by point Pos
which corresponds to a load of 37.7. The effect of external viscous
damping is shown in figure 3,1 when Ko = 0.

With the presence of stiffness K2 it is seen from inequality (3.33)
that the critical load increases to the limiting value corresponding to

a + K2 = (), as C approaches infinity. The stability limit occurs when
a + Kz B —, (3035)

Thus, loads corresponding to eigenvalues with negative real parts up to
the magnitude of stiffness K2 can be allowed for a stable configuration,
The results are shown in figure 3.1 for several values of KZ’ For a given
stiffness parameter Kz, the critical load increases with increasing damp-
ing to the limiting value where the quantity a + KZ becomes zero., Wahed
[29] and Kar [30] have reported the same trend. However, since their
studies were limited to a much smaller range of damping values, the results
failed to show that for a given K2, the critical load increases only to
a limiting value, even if the damping is very large.

Recall from Smith and Herrmann [?@] that an elastic foundation alone
has no effect on the critical load for Beck's column. However, as seen

from figure 3.1, the combined influence of elasticity and damping,
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provided by a Kelvin-Voigt foundation, does result in higher critical

loads.

3,4 Maxwell Foundation

The nondimensional equation (2.23) describes the motion of Beck's
column when supported by a Maxwell type foundation (figure 2.2(c)). As
before, a separable solution leads to the equation (2.29) and the temporal

equation

cT + K.T + C(K, + kz)f + K AT = a, (3.36)
1 1

1

which yields the characteristic equation

Cs3+ K 52+ C(Ky +A%)s + KIA’ = 0, (3.37)

i

The roots of this equation govern the stability of the motion about the
equilibrium position. Since A? is complex, the method presentad in Sec-
tion 3.1 can be used to form an equivalent sixth order charcteristic

equation

with real coefficients

ay = €2,

3 = ZKIC,

a, = Kf + 2C*(a + Kl)'

B3 % 2K (20 + K, (3.39)
3y = 2K{ + C*[(a + Ky)* + 87,

ag = ZKIC[ﬁa + Kl)a + 8%,

K2 (o + 82).
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Since the Maxwell model is a special case of the Standard Linear
model, this result could have been obtained from (3.7) by setting K,
equal to zero.

The RHM criteria, given in Section 3.2, is used to determine the
conditions for a bounded solution. Following the development of Popov
@3] for sixth order systems, substituting iw for s in equation (3.38)

describes the Mikhailov curve, For stability, the trajectory must pass

through six successive quadrants of the complex plane. The real and imagi=

nary parts of Q(iw) are

X(w) = a - a4w2 + azm“ - an‘,

g (3.40)

Y(w) = (a5 - aqwt + alm“)m .

To insure that the curve passes through six quadrants as w varies from
zero to infinity, it is necessary to observe the values of X(w) where
the trajectory crosses the X axis. Setting Y(w) equal to zero gives the

required values of w for these critical X values.

2 | z h
(63); , = E-;——[a3: (a2 - 4aya;) ] (3.41)
1
Substituting these values of w, into the X{w) expression and combining

like terms yields the following expressions for X,
- 3 2
Xy = == {2a1a6 *+ (2] - 23;35) (252, - 353,) - a1a3(a1a4 - a53;) -
(3.42)
- i
= [a3(a.1a2 bt aoa3) e 51(3134 - aoas)] (323 - 431&5) 2}
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and
Xy = -é—i-;{Zaias + (24%- 2a;35)(2y3, - 3535) = aj25(a18, = ajag) +
1 (3.43)
+ [a:,‘(a.lal2 - ag3;) - a(aga, - aoasj_'](a32 - 4ala5)%}.
Therefore, to insure stability it is required that X1 be negative and Xz

be positive. This requirement Teads to the inequalities

and

3 2
2a1 ag + (a3 - 23135)(51132 - a0a3) - 3133(3134 - aoas[[

(3.45)
< ':33{6132 - a0a3) - altala4 - ac,as)](a3”-_a'rallas)}i :
The last inequality can be rewritten as [33]
(a2, - aoa3)[a5(a4a3 - a535) + 35(23,3; - aé)] +
+ (aya, - aoas)[ala3a5 - aglaya, - aoas):[ (3.46)

3.2
'alas >Oo

Thus for asymptotic stability, it is necessary and sufficient that all
coefficients of equation (3.38) be positive and that inequalities (3.44)
and (3.46) be satisfied simultaneously., At the stability boundary, ine-
quality (3.46) becomes an equality [44]. Substituting for the coeffi-
cients in terms of the system parameters from (3.39) and performing some

simple but rather lengthy manipulaticns yield the following expressions,
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(ala2 - aoa3) = 2KfC(K1 +C2%) ,
(3434 = 253) = ZKlzC(ZuKI +aC? + chz),

a5(a424 = 2535) + 35(23;2g - a§) = 4C*K13[IK1 +(C2)g" + (3C2K, + 2Ky Ja® +
+ (3K12C~2+2K132)a2+ (K;C282+KPC2 - 2Kp%a +
* (Ky - C2)g* + K (C* - Ky)8%], (3.47)
31233 - 35(2)2y - 2525) =
-éc’xl’ [C2a? +K, (Ky +2C2)a® + C3(K? +8%)a - Ky (K, - C2)87],
af a2 = BCK{ (a2 + 8%)2,

With further calculations the stability boundary is then obtained from

(3.46) as
dlc" + dzc2 +dq = 0, (3.48)

where

dy = aB?(a + K,) + B",
d, = aKf (28* - Kf) - Kf 8% , (3.49)

= K, B2,

By = &y

Equation (3.48) is quadratic in C2 with the roots

d 1
€], = —%=—(d - 4d,d )%, (3.50)

For real damping constant C, the discriminant
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(dy - 4d;d,)* (3.51)

as well as the entire right hand side of equation (3.50) must be non-
negative. In terms of the system parameters given by definitions (3.49),

the condition on the discriminant (3.51) becomes

2

{a + ﬁ._] (kg - 482)% > O (3.52)
&

From equation (3.50), if the inequality

4dyds > 0 (3.53)

is satisfied, then the entire right hand side is non-negative, provided
the discriminant (3.51) remains non-negative. In terms of the system

parameters, this requires that
a® + oK, + B2 >0, {3.54)

Therefore, to insure real damping C, inequalities (3.52) and (3.54) place

bounds on Kl as

82
28 g_Klg o (3.55)
and
2 2
K, < E=E-, (3.56)
respectively,

A simple computer program was written in BASIC language in order
to find the roots of equation (3.48) for a given set of ¢ and g corre-
sponding to a unique load P (Appendix D). The condition that the
coefficients defined in equation (3.39) remain positive and the inequal-

ity (3.44) hold was also incorporated in the computer program to determine
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the stability boundary. The two roots of equation (3.48) satisfying

these conditions, were then obtained for sets of a and B corresponding

to increasing values of load P. This computation was performed to gen-

erate the stability boundaries for variocus values of the stiffness param-

eter Kl' An HP9845 desktop computer and a HP9872 plotter system was

used to produce the graphical results shown in figures 3.2 through 3.11.
For a fixed KI’ the two roots of the damping constant C approach

each other as the load is increased to a maximum value where the two

roots become equal. As seen from equation (3.50), the roots become equal

when the discriminant (3.52) is zero. For the values of Kl shown in fig-

ure 3,2, the discriminant is zero when
Kl = 28. (3.57)

Thus the maximum load occurs when 8 equals K1/2. At this maximum load

value, equation (3.50) reduces to

g5
C2= - e— 3 (3-58)
2d1
which, in terms of the system parameters, defines the damping value at

the peak load as

{3.59)

Beyond this value of load, the roots of equation (3.48) become complex.

However, this does not happen for stiffness values greater than
. a i *®
Kl = 579,58, which will be designated as K , For Kl values greater than

* . \ ; i
K s the discriminant again becomes zero if

a+&==9, (3.60)
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At this point the roots are again equal. With increasing loads the damp-
ing values remain real since inequality (3.55) also remains satisfied.
This is shown in figure 3.3 for two arbitrary values of stiffness param-
eter K1 greater than K*. As the load increases, the two roots of C

approach each other and become equal when

Substituting equation (3.61) in equation (3.50) yields the value of

damping constant for this load as

2= -

(3.62)

Q,m
w F

The stable regions of figure 3.3 {for typical Kl values greater than K*)
are shown separately in figures 3.4 and 3.5 for clarity. Figure 3.4
shows the stability boundary for K1 = 700, As the load is increased from
Pf = 20,05, the roots of C approach each other and become equal when
equation (3.61) is satisfied. Beyond this load, the roots diverge and
then become equal again when K1 = 28, forming a loop. For higher loads,
the roots become complex. Although equation (3.48) is satisfied at every
point on the curve shown in figure 3.4, inequality (3.44) is violated for
loads higher than that which satisfies equation (3.61). This happens when
the two roots of C first become eaual., The stability region is shown by
the crosshatched area in figure 3.4. Al1 other regions are unstable.

Now consider the behavior for yet higher values of the stiffness

parameter Kl depicted in figure 3.5. The value of K1 is arbitrarily

selected as K{ = 1000. The roots of the damping constant C again approach
each other as load increases from Pf and become equal when equation (3.61)

15 satisfied. For higher loads the roots do not form a loop such as the
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one shown in figqure 3.4, Instead, the roots form an open curve shown

in the figure. For this case, real values of damping are obtained until
the condition in (3.56) becomes an equality. Recall that a can be nega-
tive or positive and B always remains positive.

Since (3.56) is a quadratic in g and 8, there are two values of load
P for which (3.56) becomes an equality. The first occurs when the lowest
root approaches infinity at P = 42.9 (o = -39.42, g = 218.54). A higher
load yields a complex lower root and causes the higher root to first
decrease and then increase and finally approach infinigy. At this point,
P =288,5(a¢= -800.73, B = 599,89) and the equality is again satisfied.
Beyond this load, both roots become complex. Similar to the case of Kl =
= 700, inequality {3.44) s violated when the load is increased beyond
the point where the roots are equal, As shown in figure'(B.S), the sta-
bility region is bounded by the Toad vs. damping curves up to this maxi-
mum load, A1l regions outside the crosshatched area are unstable,

The stability characteristics for 0 < K1< « can be summarized as
follows: For K1 <« the peak load occurs when equation (3.57) is
satisfied, while for Ky > K" the peak load is attained when equation
(3.61) is satisfied, At K* both constraints on the stiffness parameter

K1 are met simultaneously, i.e.,

2g = B2 3.6
B :'&"! (‘3)
ar

g = ~2a . (3.64)

This relationship is satisfied at a unique load value of approximately

54,9 (4 = - 145,45, g = 289.79)., The value of the stiffness parameter
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for this load is
*
K =28 = 579.58, (3.65)
and the required damping constant is given by
¢ = 28(a + 8)™F = K"(a + 8)"% = 48.24. (3.66)

The stability boundaries for a wide range of Kl is represented in
figure 3.6. Notice that the combination of K*and ¢ allow the optimum
load P*. Stiffness values other than K* yield critical loads which are
less than P*. As Kl is increased from zero to K*, peak  loads increase
from P.(= 20.05) to P" (= 54.9). For values of K, > K, the peak
loads decrease while the corresponding damping values increase. This
behavior is expected, since the Maxwell model (figure 2.2(c)) becomes a
viscous dashpot as the value of kl approaches infinity. Taking the limit
of equation (3.48) as Kl approaches infinity reduces the expression for

the stability limit to

- C%a + 8% = 0, (3.67)
or
2
ast (3.68)
¥

which is identical to the stability condition obtained from (3.34). As
shown in Section 3.3, the critical load for Beck's column in the presence
of infinite viscous damping is 37.7. It is seen from figure 3.6, that as
K1 becomes large, the allowable peak load approaches 37.7 and the corre-
sponding damping value approaches infinity, This verifies the results

of the viscous damping case.

A plot of the peak loads for 0 < Ky < = is shown in figure 3.7.
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For a stiffness less than K* the peak load is along the curve described
by equation (3.59), while for a stiffness greater than K* the peak load
is along the curve obtained from equation (3.62). The intersection
occurs at K1 = K*. Therefore, the peak loads follow the path represented
by the solid line,

In summary, the critical load for Beck's column supported by a
Maxwell foundation increases from Pf(20.05) to P*(54.9) when Kl < K* and
decreases to P = 37.7, as Kl approaches infinity, when appropriate damp-

ing is present.

3.5 Standard Linear Foundation

The motion of Beck's column supported by a Standard Linear founda-
tion (figure 2.2(a)) is modeled by equation (2.17), The temporal part of
the solution depends on the equivalent sixth order characteristic equation
(3.7), developed in Section 3.1. According to the RHM criteria, intro-
duced in Section 3.2, for this sixth order system to be asymptotically
stable, it is necessary and sufficient for all the coefficients, 3y
through ag, to be positive and the inequalities (3.44) and (3.46) be satis-
fied simultaneously. In terms of the system parameters, inequality (3.44)

becomes
Kyla +K,) + 82> 0 (3.69)

and inequality (3.46) is

& 2 :
dlc *d,C o+ d3 <0,
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where . 2
dy = B2[(a + K,)? + Ky{a + Ky) + 87],
d, = Kf [(a + K2)(282 - Kf ) - Klszj, (3.70)
= ¢ 42
dy = Ky 8%,

Inequality (3.70) becomes an equality at the stability boundary and can
be solved to obtain the damping values. The two roots of C? are once
again given by equation (3.50), where the d's are now defined by (3.70).

Although this foundation model can be reduced to the Kelvin-Voigt
and the Maxwell model as special cases, the analysis is more closely
related to that of the Maxwell model. MNotice that replacing a in equa=-
tion (3.38) for the Maxwell foundation by the gquantity a + Kz yields the
characteristic equation (3.7) for the Standard Linear foundation. As a
result, the analysis follows the same pattern as in Section 3.4 with
a+ K2 replacing a throughout the development.

For real damping constant C in equation (3.70), the inequalities

(3.52) and (3.54) become
(@ + Ky + B2/K ) (K - 48?)7 > 0, (3.71)

and

(a + K5)% + (a + Ky)Ky + 8% > 0, (3.72)
respectively. These inequalities place bounds on K1 as

23 <K <__8 (3.73)

. '(G+K2)

and
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(@ + Ky)2 + g2
Kl <

i - (a + |(2) . (3-74)

Analogous to K* in the Maxwell analysis, the Standard Linear foundation
also has an optimal combination of parameters when the upper and lower
bounds of (3.73) become equal, i.e., when

-2 + K2) = 8. (3.75)
For this condition, each value of K2 has a unique peak load and a critical
K1 value of

Kl = 2B. (3.76)

if Kl is less than this critical value, the damping corresponding to the

peak load is given from (3.59) as

2
cz= A8 (3.77)
a+K2+B

and if Kl is greater than this critical value, then from (3.62)

il
(c:+K2)3

£* (3.78)

Although the analysis for this model is similar to that of the Maxwell
model, the presence of the additional stiffness parameter K2 does modify
the stability characteristics. The stability boundaries for the Standard
Linear foundation model are shown in figures 3.8 and 3.9 for a wide range
of parameters K; and K,. First, consider the case when 0 < K, S.K*

(figure 3.8). Observe that the peak loads for this range of Kl corresponds
to g = Xy/2, which is independent of K,. Therefore, the addition of Ko

only shifts the damping values at which peaks occur, This is also indi-

cated by eguation (3.77). For loads higher than the peak load, the roots
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of damping constant C become complex. The results are shown for K1 = 400
and Kl = K* = 579.58, Increasing K2 decreases the amount of damping
necessary for stability.

Now, consider the case when Kl > k¥ (figure 3.9). As the load is
increased from Pf, the two roots of damping approach each other., They
become equal at the peak load corresponding to

6w (3.79)

(k)

For higher loads, inequality (3.69) is violated. As K2 is increased
the peak load increases to the value where equation (3.79) is satisfied,
and the corresponding damping coefficient decreases according to equa-
tion (3.78). As K2 is increased further, the upper and lower bounds on
Kl given by (3.73) become equal at the critical load corresponding to
B = K1/2. This condition defines the optimal combination of foundation
parameters. Still higher values of K2 only decreases the amoung of dampe-
ing for the peak load with no increase in the peak load itself,

The effect of an increase in K2 on the peak loads is shown in figure
310, If K1 is less than the optimal value of 28 , where g is defined by
equation (3.75), the peak load is along the curve described by equation
(3.77)., For Kl greater than this value, the peak laod is along the curve
described by equation (3.78)., The shift of the peak laod curve for several
values of K2 is shown in figure 3.11.

Notice, from figure 3.11, that the Standard Linear foundation com-
bines the characteristics of both the Maxwell and Kelvin-Voigt founda-
tions., For a given K2, there exists an optimal combination of foundation

parameter, which is similar to the behavior of the Maxwell model (figure
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3.6). Also, the presence of K2 increases the flutter load for a

given damping, as exhibited by the Kelvin-Voigt model (figure 3.1).
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[V. DISCUSSION AND CONCLUSIONS

The present investigation deals with the special class of non-
conservative elastic stability problems which contain follower forces.
More specifically, the problem considers the effect of various visco-
elastic foundations on the dynamic stability of a tangentially loaded
column.

The equation of motion for a cantilever column continuously sup-
ported by the Standard Linear foundation is derived in Chapter II,
including the "in-phase" mass M* of the foundation in the inertia term.
This foundation has as special cases the Kelvin-Voigt and the Maxwell
foundations. The equation of motion for the column when supported by
a Winkler (elastic) foundation [26,27,28] and when in the presence of
external viscous damping [20,21,22] are also degenerate cases of the
general equation of motion.

[t is shown that a separable solution exists and allows an exact
dynamic analysis to be performed. The boundary-value problem thus ob-
tained is the same as the original Beck's column [10]. The resulting
transcendental equation is transfcrmed into a complex form and a simple
Newton-Raphson iteration scheme is used to solve for the real and complex
eigenvalues corresponding to a given load. Since the eigenvalues are
complex and appear in the coefficients of the characteristic equation,
a general method is given in Chapter III for converting an nth order
polynomial with complex coefficients to a poiynomial of order 2n with
real coefficients. Instead of solving for the roots of the characteristic

equation, the Routh-Hurwitz-Mikhailov (RHM) criteria, developed in Sec-
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tion 3.2, is used to yield exact closed form expressions which reveal

the effect of the foundation parameters on the stability of the column.

First, the Kelvin-VYoigt model is presented. The second order tem-
poral equation transforms into a fourth order characteristic poiynomial.
The RHM criteria yield stability conditions, involving the system para-
meters. Unlike the approximate analyses of Wahed [29] and Kar [30],
these expressions are not restricted to a small range of parameters. The
RHM conditions show the effect of the full range of foundation parameters
on the stability of the column. For a given stiffness parameter KZ’ the
critical flutter load increases with increasing damping to the limiting
value where the real part of the corresponding eigenvalue is of the
same magnitude as Ko . Since the Kelvin-Voigt model with infinite stiff-
ness reduces to a viscous dashpot, the stability condition for the column
in the presence of external viscous damping is recovered.

The analysis also reveals the effect of a Maxwell foundation on
elastic systems which fail in flutter. Such studies have not been under-
taken in the past, possibly due to the fact that a Maxwell foundation
has no stabilizing effect on conservative elastic systems. In contrast
to the case of conservative loading, it is found that the Maxwell found-
ation does have pronounced stabilizing effect on the column under tan-
gential loading. Furthermore, there exists an optimal combination of
the stiffness value K; = K = 579.58 and the damping parameter ¢" = 28.29
which yields the maximum flutter load of P = 54.9. A1l other combina-
tions of stiffness K1 and damping C lead to flutter loads which are less
than this cptimum value. The flutter load increases from Pf = 20.05
to P* = 54.9 when 0 g_K]_i K* and then decreases to P = 37.7 as K] ap-

proaches infinity when appropriate damping is present.
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As expected, the Standard Linear foundation combines the char-

acteristics of both the Kelvin-Voigt and the Maxwell foundations.
Each K2 value has a specific combination of foundation parameters K1
and C which result in the optimal flutter load, similiar to the be-
havior of the Maxwell model. Also, the presence of I<2 increases the
flutter load for a given damping as shown by the Kelvin-Yoigt model.

In summary, an exact analysis has been presented to investigate
the stability of a cantilever column supported by a Standard Linear
viscoelastic foundation under the action of a constant tangential
follower force. This study also resulted in the development of a
direct approach to study the stability of systems described by ordin-
ary differential equations with complex coefficients. Instead of
employing a numerical procedure , exact closed form stability condi-
tions are derived for the entire range of foundation parameters. From
the results, it is found that the Standard Linear foundation has a pos-
itive influence on the stability of this special nonconservative prob-
lem. Any combination of foundation parameters increases the flutter
load beyond that of the unsupported cantilever column subjected to a
tangential follower force. Perhaps, the most important contribution
of this study is the discovery that a Maxwell support may stabilize
some nonconservative systems. It is anticipated that the results of
the present investigation should be very helpful and serve as the
starting point for understanding the behavior of more general non-
conservative probiems.

With an understanding of the behavior of the Standard Linear
foundation, and in particular the Maxwell foundation, many extensions

and applications can be proposed from this problem. A few suggest-
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Study the effect of viscoelastic foundation on the stability

of a column loaded by a distributed tangential follower forces.

Investigate the effect of supporting the continuous column at

discrete points with a single Standard Linear element.

. Consider the viscoelastic support of discrete systems.

Investigate the effect of a Standard Linear foundation con the

dynamic instability of pipes conveying fluid.

. Apply these results to related dynamic stability problems

outside the Solid Mechanics area.

»
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APPENDIX A

FORTRAN PROGRAM [N COMPLEX VARIABLES TO 3CLVE
TRAMSCENLENTAL EJUATION {(2.42) USING MEWTSN=RAPHSON
METHCD DESCRISED [N SECTIOMN 2.5

[NPUT REQUIRED

£TA= FOLLCWER P2ARAMETER

ALPHAZ= STARTING LOAC VALUE

STEP= LCAD INCREMENT S[IS

L= NUMBER UF LUAD I[NCREMENTS

EPSI= TOLERANMCE FOR SUCCESSIVE RCCTS

LAHDA= COMPLEX FCRM (REAL,IMAGS) CF INITIAL GUESS

QUTPUT FUR EACH LCAD INCREMENT

LCAD, LAMAOA SIJUARED [(ALPHALZHBETA), LAMCA (REAL,IMA D)
FEAL®H ALPHAZ,ETA, [GUESS,RGUESS
COMPLEX*3 LAMDA, CCML yCOM2,LuM3,(CHe
COMPLEX®1& COSIN,CICCS ) CO3ARTHICMPLA yGi0R,GD S ARG G0 AR
COMPLEX*1o CL,C24FlyFZpRARFL,PARFZ D
COMPLEX*16 PARD, JEL,LAMDAZ
25 FORMAT ("1, 5Xy "ETA=! s F5,.2,38K ) "ALPRAZ Y, 28, 1L AMDAZY 20X
2y LAMDAY }
5Q FCRMAT('11)
TS FORMAT{Y ', 32X F S sl " (1) ELOLTy  yclaaTs Py 1%,
1 Yt ELlGaTe 'y 4 ELO. Ty 1Y)
READ ETAyALPHAZ,STEP,LLEPSI
PRINT 254+ETA
READ ,LAMCA
09 29 [=1l,L
Del=a
CALL MEWTIN{LAMDALALPHAZWETA,JELEPS )
LAMDAZ = AMDAx=®?2
PRINT 79 ALPHAZ LAALAZ  LAMDA
2099 ALPHAZ=ALPHA2+3TEP
PRINT 50
sTCP
END
SUBRCUTIME MNEWTON{LAMOAp ALPHAZ, ETALJEL,JEPS T
REAL*3 ALPHAZ,ETA
CUMPLE X%8 LAMDAPCCHLCTM2,C5M43,(CH4s
COMPLEX=16 COSIN COCOS,COLIRTyOCHPLAPGIIH,y GE ST, Gy odAr
COMPLEX*1s CL,C2,FLyF2,PAFFL ,3ARF2,D
COMPLEX=16 PARU, DEL
ITHMAX=2)7
DO 132 I=L,1THAX
GIAR=DCHALA L ALPHAZ =2 =DBL E(AIMAGILAMDA) ),
22€0ALER ZTALILAMOAN))
GESRR=CCMPLA(ALPHAZ# 2= COLE(A[HAS(LAMDA LY,
3-2=0QLE(FSAL{LAMDA)Y) )
G=CD SGRTIIGSWER Y}
GRARSLICSGRTISBS5GR)
Fl=sle 3= (CR0LS L) *COCLS(G3AR)]
COM2=, 5= (Ca53 NI /G=COSINIG3AR Y /GBAF )
PARFL=CCAPLX{Cal E(ALAAGICIY2 )y =120 Li(REALIC2A2 M)
IF (aLpHAL,.
CL=DLMFLALZ:

cET A S s
LT 22w

S (RC AL LA Y I 2=0r (e A I AG I LatDa) 1 wsl)
2e4RcGLT(RIALILEMTA NI FIRLE A MauiLad0a)

1)



C2={(2%ETA=-1)*®ALPHAZ
CCMAL=, 5% LAMDA®(CDCCS (L)-LOCUSIGEARY)
F2=0CARL X (ALPHAZ=DBL E(A]MAGICUML) ) yuBLEIREALICCHL) )}
CLM3= 8% (CACLSLGI=COCCS{GRAR Y
COMa=, S LAMDA®ILOSIN G ) /G+COSINIGBAR ) /SBAR]
PARF2=CCMPLX{SBLE(REALICCMS) J=DBLECAIMAGICCHI) ),
ZO0BLE{REAL(COM3))+DBLECAIMAGICEMA ) )
C=Cl*Fl+C2=F2
PARD=4® AMCA®Fl+CLl*P ARF1+C2*PARF2
DEL==1*0/PARD
GC TG 275
280 DEL=-1*F1/PaRF1
275 IF(CCABSIOEL ) LLELEPSI)oU TC )
13) LAYDA=LAMDA+UEL
wW3J RETURN
END
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APPENDIX B

1a ! Program file: "Rroots"

29 !

38 ! Language! BRSIC

48 !

1) ! Purpose: To salvz for first two 2igenvalues of 2q.(2.420
1) ! far given follower parametar Eta a3 load i3

7 ! incremented from zero.

39 !

L] ! Method: Mullar s method is uzed 19 2earch for golutions of
198 ! the transcéndental #gquation given in the fungtion
113 L subprogranm,

129 !

139 ! Input:

149 ! Eta= foliowsr force parameter

159 ! Input prompts provided as nesded during 2xecution
L5 !

179 P Dutputs: First two real ergenvalugs for fach load incremnent
139 ! is displaved on ZRT. WHhen roots became #gual, the
199 t critical load is displaved. Plotting optian giuen,
289 !

2149 !

229 DIM Root(2),Lamdal2, +9@>

229 IHPUT "What value of Era?",Eta

249 INPUT “Staep 3ize for load <(Rlpha2?)?",Staep

250 Nrogts=2

289 ! PRIMTER 15 4

279 PRINT "Root(Mroot,Alphaz,Erad" ,LINC2Y

239 Plot=a

299 PRINTER [3 (5

300 Alphad==-Step

310 FOR L= TQ 499

320 Alphai=Alpha2+step

330 IF RAlohal2=8 THEM 250

349 GATO 138

254 Roat (i2=%

363 Roat (20228

379 GOTQ 339

388 CALL MullerldHroats,Alphad,EvaReori#), Lamdad+s,L]
394 IF ABS(Ront (2)~-Roat{1224,9001 THEN 414

484@ GOTQ 438

414@ Crlcad=Rliphal=-3Step

429 Lmax=s=1

439 | PRINTZR I3 a

449 PRIMT JSING 480;Eta,Crlioadq

458 PRINTER I3 1§

454 IMAGE 3x,"CRITICAL LUARD FOR Eta=",0,2D," [3',DDD.L0D
47Q FRIMT LIMCZS

488 GOTO 324

438 MEXT L

304 IMPUT "DQ YAU WANT A GRAFKT (Y- M)",05

310 IF (GF=a"M") QR (GE="n"1 THEN S0TO 143@

S29 IF C(GF="Y") OR (Sa"yu") THEM GOTO S44

338 G0TO 528

548 INPUT "MARIMUM ¥ AND % CQORDIMATES? (X,Y¥2",Mdmax,Ymnax
bt INPUT "N=fAKXIS MINOR TICK?",Htm,Xet

E11:] INPUT "Y-RXI3 MINOR TICK?",¥tm,'r2t

578 INPUT "NUMBER OF DECIMAL PLRCES FIWED AFTER IECIMAL POIMTY“,F
sz PLOTTER [5 13, "GRAPHICS"

598 GRAPHILS

5id@ LIMIT 2,134.47,9,133

518 LOCATE 15,1398,12,38

829 SCALE 3,xmax,d,Ymax

53R [F Plotx1 THEM GJTOQ &Z@

Sk AXES Xtm,Ytm, 8,8, Her,rat



650
850
670
=1
890
798
719
729
738
740
7Se
76Q
e
730
79@
38a
214
324d
336
348
35a
354a
374
384
3949
J9@
314
324
330
948
358
350
370
388
3948
1009
1910
1028
1938
1948a
1959
1850
1av7a
1es2
1999
1192
1118
1120
1139
1148
11%8
1168
1178
11389
11989
1288
1219
1220
1238
1248
1224
1263
1278
128d
1298
1389

LINE TY¥PE 1

CSIZE 4,.6

MOVE Lamda(l,98,8

Alphaz=~-Step

FOR L=d TO Lmax

AlphaZ=Rtphag+3tep

DRAW Lamdadl,L>,Rlpha2

MEXT L

Alpha2=Cricad+Step

FOR L=Lmax TO 4 STEP =1
Alphaz2=fAlphaz-Step

DRAW Lamdac<a,L>,Alpha2

HEXKT L

IF Plot»] THEM 53TO 18Se

LINE TYPE 1

UNCLLP

DEG

LDIR B

LORG 8

FOR R®_label=0 TO Hmax STEP Hetsiim
FIKED 7

MOYE X_labasl,=-1

LRBEL ¥_label

MEXT X_label

LIIR @

LORG 8

FOR Y_label=d TO Ymax STEP Yets#'tm
FIXED =

MOYE 3,Y_label

LABEL Y_label

MEXT Y_Tabe)

SETGU

LDIR 39

MOVE 1, 5%

LABEL "Load,P"

LDIR &

MQYE 39,3

LABEL "Lambda"

WAIT 1309w

PEN B
INPUT
IF ¢(DFa"M") QR (D$a'n"l
IF (D¥="Y"> DR {DF="u")
GOTO 1358
EXIT GRAFWICS
PRINT "Labxsl
PEN 1

LETTER

PEN B

THEM (i@@
THEM 548

Eigencurve, then press

PRIMT LINCLY,"D0 YOU WANT A COPY 2N THERMAL PRPER™

FRINT LINCLY,"00 YOU WAMT A COPY AM
PRINT LIMCLO,"IF MEITHER, FRESS N"
IHPUT T$

IF (T¥a*H") OR (TEs"n">
IF (TF=“T") QR (TE="t")
IF (T¥$="P"*) DR (T#="p"}
GOTO 1148

PRIMTER 13 @

PRINT 28GE;

DUMP GRAPKICS

PRINTER IS 18

GATD 1148
PLOTTER I3
Plot=Plat+l
FEM 3
PRINTER I3 7,5

THEN 1499
THEM 1229
THEM 1278

7,3, "9872R"

"D0 YOU WAMT T CHAMNGE TIMEMSIONS OF

SRAPH?

CONT to sxite

THE PLOTTER?

[ T

e
TRres

&
3

ST

[~

LETTER mode”

T

79



1318 PRINT "ws1"

1328 PRINTER I3 18

1338 PRINT LINCLD,"GRAPH IS PLACED OH S8-1-2 by 11 PAGE WITH LONGEST EDGE OM THE
VYERTICAL,"

134@ PRINT LIM(1),"GRAPH POSITION? UPPER HALFIU),LOWER HALFILY, GEMTER.CH®
135@ [NMPUT uU#

138@ IF <US$="U") QR (UF="y") THEM 1489

137@ IF <Us="L") QR (U$="1") THEW 1439

138@ IF (U$="C") QR (UF=“"c") THEN 1488

1398 GOTO 1349

1480 LIMIT 28,132,148,225

1418 PEM 1

1428 GOTO si@

1430 LIMIT 28,182,285, 144

{448 PEM L

1450 GQTO s18

1482 LIMIT 28,132,32,137

1478 PEN 1

1488 GOTO 518

14349 LINPUT "De wou want to change Eta (Y-HI?",C$

1589 [F (CH="y"> QR (CE="yu") THEM 298

1919 [F (C¥="N") QR (CF="n")> THEM !S5zZ8

1529 END

1539 SUB Mulleri(Mroots,Alphal,Era,Rooti#), Landal+,L)

1549 [tmax=58 IMaximum number of itegrations

1559 Talfa, 390993688401 ITolerance far function

15488 Eps=,0098981 lZpread tolerance for multiple rootz
1878 Et=.988491 Restart value fFor multiple roorns
1538 Digits=6 IHumber of significant digits in roots
1599 CALL MullercRooti#i,Hroots, [tmax,Talf,Eps,Er,Digits,Alphal,Era;
168@ | PRINTER I3 9@

1&§1@ FOR I=!{ TD HMroots

1528 PRINT USING 1839;1,R8!phaZ,Eta,Rootcll

1638 IMAGE "Roow¢",D,*,",0D0.00,",",0,0D,")=" MZ.5DE

1548 Lamda(I,LysRont (I

1550 NEXT 1

1568 PRINT LINC2)

167@ PRINTER I3 16

1630 3UBERIT

1538 3UBEND

1798 SUB MullercRooti+),Hroots, [tnax, Talf,Eps,Et,Digits,Alphal, Ena2
1719 Baddta=cHroorsd=a) OR (ltmax<ag) QR <Tolf- =91 OF (Digirs =8
1720 IF Baddta=@ THEM 1734

173@ PRINT LIMC2), "ERROR [N SUBPROIGRAM Mullsr,”

1748 PRINT "HROOTSa"Hroata;" Itmaxs"]Itmax

1758 PRINMT "Tolf=";Tolf;" DIGITS=";0igits,LINCZl

1750 PRUSE

1770 5070 1718

1788 Digivz=18~C~Digitsy

1790 P=-1L

1388 P1=1

1819 P2=4

18209 H=a

1838 FOR I=! TO Nroots

1348 IF [=! THEN 382

1359 IF Root(l=-1>=3,939933E29 THEMN 2344

1868 J=2 ’

18789 IF Rootil)=@ THEM (3149

1830 P=,9%Root I

1398 Pl=l,|#RoatCll

1308 F2=2Root (]2

1918 R 3P

1928 GOTO 2329

1338 IF JO»L THEN 1370

19449 Rt=pi

1358 wEIFart
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1960 GOTO 2320,
1978 IF J<>2 THEN 2919

1988 Rt=p2

199@ HlzFprt

2909 GOTO 2320

2819 IF J<>3 THEN 2239

2029 H2=Fort

2939 D=2-,5

2948 IF Root<I>a@ THEN 2879
2858 Ha=, 1#Root<])

2060 GOTO 2080

2879 Hs=-|

2@8a Dd=D+1

2@989 BiaXd#D%D-X1+4Dd#Dd+X2#{Dd+D

2108 Den=Bi#Bi=d#X2%«0a#0d%{@#D=-K1l%Dd+<22
2112 IF Den>d THEMN Den=SuR(Den’

2128 IF Dan<{=4 THEMN Den=d
2138 Dn=Bi+Dlen

2148 Dm=Bi-Dan

2158 IF RBSCON)(=RES(Dm> THEM Dan=Dm
2158 IF AB3(Dn) »RABS<(Dm) THEN Den=0n
2178 IF De#n=@ THEN Den=1

21328 Di==Dgd#2%X2-Den
2198 H=Di #H

2298 Rt=Rt+H

2219 [F (ABS(H)<{ABSCRt *Digits: AND tH«<>3) THEM 2528
2229 GATO 232@

223@ [F ABS(Fprei>=ARS(K2#13) THEM 22%4

2249 Kg=x!

22%54 Ki=®2

2258 %2aFprt '

27e D=Di

2284 GOTO 2e3a

2294 Di=Di#.5

2399 H=H#*,5

2319 Rt 2Rt =H

2329 J=J+1

2329 IF J<Itmax THEN 2298

23449 PRIMT LINC2), "ERROR IM SUBPROGRAM Mullsgr.™
23359 PRINT UBING 236431

2388 IMAGE "MAXIMUM # OF I[TERATICHS EXCEEDED oM Raoe ", DL, 2", -
2378 Rogt sl 2=3,3999999E99%

2338 GOTO 2539

2399 FreaFNF IRy, Alphal,Eta)

2499 FprvsFr

2418 IF 12 THEHN 2478

242¢ FOR Ii1=2 TO I

2439 TempaRL=Root(ILl=-112

2449 I ABS(Templ)<Eps THEH Z4%4a

2454@ FortafFprt/ Temp

2454 MEXKT 11

2472 IF (ABS(FrtI<Tol¢f) AMD (RBS¢Fprn <Tolf: THEM 2329
24349 GO0TO 1330

2494 RraRt+£1

%04 J=J=1

2519 GOTO 23239

2528 Roqt (I2aRt

2530 NEXT I

28948 Twmax=l]

2533 SUBEXIT

2568 SUBEND

2370 DEF FHNCoshu@l
2538 E=EAP XD

2599 Coshs(E+1-€:r2
2899 RETURMN Cosh
2519 FHMEMD



2620
2630Q
2640
25838
26809
2879
2530
2638
2799
2714
2729

DEF FHStnh{X)

IF ®o@
IF K<@
IF XK=9
IF X=@

THEN Flg=@

THEN Flgmi

THEN Sinh=@
THEM Qut

R=ABS(X?
[F X>18 THEN 23l@¢

IF %X>1

THEN 27398

I[F X>¢35 THEN 2748

X2=X¥X

Sinh=X#(((,a001337I1TAB1I#X2+. 30333311 342443) %42+, 18

99317
GOTO Qute
EmEXP (XY

2739
2740
2r3e
2759
rirad-]
2vse
2790
2399
2819
2828
28349
2348
2358
1360
2579
2239
289¢
1599
2319
2929
2934
2944
2954
2968

eI

Sinh=,S#(D+D/E2
GATO Qut
EaEXP(R)
Sinns(E-1-,E) -2
GATY Due
Sinh=EXFIK 72

Qut: IF Flg=1 THEN Sinh=-3inh

IF Flgsi THEN X=-%

RETURN
FHEND

LEF FMF{%,Alphal,Etas
IF Alpna2=4 THEN 23449
BetalaSaR(, S#¥A phaZ+SARC. 25#R 1 ohal~2+X~2)
Bat 32330R(~-.5#A pha2+30RC(,Z5#R I phal 2+¥~21)

Sinh

1

BEBETTS

Fl=Rlphal+X%(24Eta-12#3INiBeral ) #FH3inh(Bstad +EtasAlphad-2
Fom2#X~2+/2%K 2+Alpha2 2% 1=ELa))#C0ScPeral 0sFHCozh { Barad)
FaF1+F2
RO0TO 29%@

Fel+C0S¢SARCSAR(KA2) 11 sFHCosn(SRARCSRRIKA2I 2

RETURN
FHEND

F

82
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APPENDIX C

ALPHA EETA
121.2z289 19.51837
120,388 18.4363
119,729 23.88528
119.833 23,2641
113.3988% 32.04398
117.7397 35.41714
117.83827 38.49972
116.4253 41.33151
115.7673 43.98477
1189.11at 35,4827
114,452 43,9491
113.7937 Si.lez29
113.135¢ $3.32565
112.4763 S$5.32385
111.8t72 S7.31274
111.1378 $3.231%
11a,.4931 £1.48777
199,333 52.498589
183.1779 £4,83116
188.5174 55,3277
187.3358 87.97%22
187.13%¢ £3.938%
188, 5342 71.159%3
185.372% 72.89388
18%5.2106 74.194
(B4, 3434 75.56298
1R3.88%3 77.99%82
183,223 73.50998
182.36 79.33117
1@1.836¢ 31,4753
191.233 32.57977
109,353 33,3387
99,349474 35,1795
29,24317 36, 44113
98,3733 A7 . 5865
97,91 38.31279
37,2448 Q. 1203
38.57828 21.3¢
33. 9127 92,4829
39,2483 33.83%:2
34,5795 EL Mt g
33,3125 35,995
33,2451 37.8133
92,5775 35.112
$1.5895 39,1946
3124124 1498, 254
30, 37259 1a1.32
89.9923% 192,363
29,2343 193,397
38,3847 194,447
37,3347 195,427
37.22445 186,429
36.5523¢6 137,413
35.8823 138.39
25.3118 189,357
34,5399 113,313
33,383 111.283
33,1938 112,282
32.5229 113.132
31,385 114.953
31.1785 114,353

39,3323 115.387%



3.4
39,5
39.8
29,7
29.8
39,9
31

1.1
31.2
31.3
1.4
1.5
31.5
3.7
31.3
31.73
32

32.1
2.2
32.3
32.4
e d
32.%
22.7

32.3

79.82883
79,1943
78,4798
77,3044
77.12894
76,453
75,7767
73.1
74,42322
73.7438
73.868
72.339%
71.71144
71.8325
78,3333
59.673483
58,9935
58,3131
57.6323
56.9%5128
56,259
35.3874
54,9949
64,222
53.5338
52,8332
g2.171
61.4358%
50,3916
80.1182%5
$9.43847
S8.74428
58,4578
57,327@3
S56.633
$5.99%
%E8,306873
54.61783
33,9238
$3.2387
32,5415
51,8873
Sl.18832
58.47522
49%.7383173
49,33887
48,3978
47.7942
47.8192
45,3158
45,6299
44,923532
44, 22951
43,33322
4+2.33823
42.1339
41,441
48,7428
4@, 8437
39.34433
33,6443
37.3439
37,249
35.3413
3%.23%3
35,1387

118.76855%
117,853
118.8383
11%.40¢
128.271%
121.13
l21.381
122.325
123,6828
124,493
125.318
126. 136
126, %48
127.754
123,554
129,348
138,138
138.319%
131.897
132.469
133,238
133,793
134,754
135.5a8
136,253
136,996
137.733
133,466
139,195
129.%192
149,839
141.3545
142,068
142.773
143,475
144,178
144,371
145.%63
145,25}
145,935
147.818
148.233
143,985
143,838
158,383
129,387
191.827
152,284
152,938
153,589
194,237
154,382
155, 8239
135, 1827
156,799
157,432
188.863
153.8%1
159,318
159,939
158,539
181,177
1sl.732
162,485
183,915

182.822

84



LT IR B TR Y )
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G =8~ =44

38.1
33.2
38,3
38.4
38.5
38.8
33.7
33.3
38.3
29

33,1
39.2
33.3
3%9.4
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549,23

543,341
558,481
550,338
551,513
552.966
552.817
533,165
B33.712
554,256
534,799
535,333
555.378
BI5.414
555,949
557.431
5%8.811
533,54

539,368
559,39

588,113
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989,95
939
9%.1
3%.2
93,3
99,4
39.5
39.8
99.7
9.8
33,9
1o

-1123.9

-1127.18
-1139.438
~1133.77
-1137.87
=114@.37
-1143.88
~1146,.59
-11%@.3

=1133.52
~1156.93
-1164.38

584,221
564,725
665,229
553,731
566,23

666,727
667,223
667.716
568,208
568.598
669.136
669,67

95
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-
-

39
49
32
1)
?

L

el

149
1L
129
138
143
159
15@
178
139
139
2909
2198
229
239
240
239
258
279
234
299
209
319
329
338
4R
356

3re
339
330
499
414
429
439
448
4356
4548
4783
4389
498
59
Sy
S29
530
S48
359
35608
sTa
T30
599
598
519
229
538
543
554
£53

APPENDIX D

Pragram file: "RHMplt"
Language!: BASIC

Purposei To determine 3TABILITY BOUMDARY for
Standard Linear, Keluin-Yoigt, ar
Maxwell viscowlastic foundation wusing
Routh=Hurwitz=Mikhailou (RHM) Critaria
developed in 3Sections 3.3 through 3.5

Mathod: Uses 5iljak”s method to zoluve stability
limit condition for real and complex C
reots for increasing load values.

Checks for positive caefficients of
characteristic gguation,

Checks additional caondition, 1§ anu,

Foundation Descriptions!
Svandard Linear (SLJ)=- Saries combination of
Kl and C in paralle!l with K2.
Kelwin=¥Yaigt (K¥)= Paralle!l combination or
K2 and o
Maxwell (MAX)= S2rizs simbination 2f K1 and o

Data File Required: "Etalrt®
This data file must be supplied by ap2rator
With indexed pairs of real and inaginary parts
of eigenvalues of =2g.¢2.42) corresponding 22 load
values grezater than P=23,.3%, fallowing the format
“Tyloadd]),Alphall)),Betact)"  uhers | iz the index.

Input! Belect foundation tupe, a3z deacribed abows, ans ths
appropiats parangtars, Input srompts provided asg
needed Juring executton,

1
]
1
]
1
!
b
I
1
1
1
1
1
I
|
|
I
I
]
]
]
I
]
]
]
1
1
1
1
|
1
1
i
|
|
|
1
I Qutput! Syitsm parameter walues of Load, Kl, K2 a3 wsil az
! damping rosgts C are dizplaved orn CRT faor zach Lcad
1

! is given.

ODPTION BR3E |

DIM Reorfc@i20,lcoef (R, Aroatidi2), [roatdld )

DIM C10309),C24309>,L0ad(399),Alphaldad), Seral30dr, 03390
AS3ICGH #1 TO "Eralrt™

READ #1iJ,Loadi+) , Alphal*),Batals)

PRINTER I3 9

PRIMT "LOAD", "ALFPHR",“BETA"

FOR Jal TQ 3904

PRINT Load<J),Alphall),Betact)

MEXT J

IHPUT "Kelwin=Yaigt ok¥>, Maxwel ) (MAXY, ar 3tandard Linsaroil

IF Ms=a'KV" THEM Kvaigt
IF mMsa"MAKXK" THEMN Mxwuell
IF mg=a"sL" THEM 3tdlin
GaTO 529

Kuzigti INPUT "Kelwin-=-Yoigt zniffress (KIIT",K2

FRIMTER I35 18

PRINT LIMCZ>

FRINT "kK2",K2

PRIMT _IMC13

PRIMT “"N", "Load(M)","CoHO"

FOR I=1 TGO 389

IF Alpradl:+K2>»3 THEN 30T2 798

PRIMTER I3 2

PRINT "Alpha~xX2=d@ at Load of ",Laoad I

incrament . Hhen peakload is reached, platting cpt:

96

ar

o) T M

-z



578
5388
698
7de
Tig
720
738
744
754
768
7749
788
798
384
318
3ze
338
349
338
368
arg
EEA]
398
288
318
329
338
349
3549
288
7y
9388
98
1889
1819
1328
1938
1949
1059
1469
1ava
1988
1398
1198
11ie
1129
1138
1148
11354
1168
1178
1139
113a@
1299
121@
1228
1239
1248
12%8
1259
=]
L1238
1299
133w
1319
1328

9

PRINTER 1S 16
Imax=]~-1
GQTQ 1560
CCI)=3ARCBatalId~2-R1phalli+k2)
PRIMTER IS L&
PRIMT I,Load<I), <D
! CHECK FOR PCSITIVE DEFIMNITE COEFFICIENTS
Ald={
Al=2%CCD)
A2=CCl)~2+24<R1phacli+K2)
A3=2#CCIo=CAlphall>»+K2)
A4=(ATphall)+K2)~2+Bata(lr~2
PRINTER I35 @
IF AG<=d THEN FRINT *A@ YIOLRTED FOR LORD ", Loxd{I’
IF Ri1<3@ THEHW PRINT "Al YIOLATED FOR LOARD ", Laaddl:
IF R2<=9 THEN FRINT "AZ YIOQLATED FOR LOARD ",Load(l
IF A3<=H THEN PRINT "A3 YIOLATED FOR LORD ", Load(ly
IF A4< =3 THEN PRINT "A4 YIOLATED FOR LGAD ",LoadcIr
PRINTER I3 18
MEAT I
GOTD 1568

Stdling IMPUT “"Meluin=Voligt stiffness: (K2)?2",K2
PRINTER [3 18
GOTC 928

Mxueili K2a8

INFUT "Maxwel! stiffrness (K137?v K1
FOR I=t TO 399
A=Betadl’ 2% (R1phalli+K2)~2+K1#Bervall 2 (Alpha. [2+KI0+Bar g 14
== (ATphalli+R2Y# (KL ~4=2+K1~2%Beralli 20 +K | ~3#Batal[i~2:
Cmi]~34#Barac]lir~2
H=2
Reogf(di=C
lcoer(d)=8
Rcoef?l1=3
Icoefcih=0
Reoef (2)=R
lcoefi23=9
Tola=.481
Tolf=,4881
Itmax=284@
Err=9
CALL Si'jak(M,Rooefis), looesfis) Tala, Talf, Itmax,Rroon i), [roae a0 Erpe
IF Err=al THEN !5358
| PRIYTER I35 2
PRINTER I5 L&
FIXED 19
FRIMNT LINCL)
PRIMT “LOAD",Loadc¢ld
FRINT “Ki","x2"
PRINT <1,K2
FRIMT "3iljak Roots L and 2"
PRINT Rrootdllylroonily
PRINT Rproatd2),lroor(2)
0112 =3AR(ABE(Rrant 2
C2¢)=SARCAES (Rraat<liil
PRIMT "“Damping Constants",Cld]>,C02(12
IF Clela=C2¢10=ad THEN GATO 14%g
! CHECK FiOR PUSITIVE DEFIMITE CCUEFFICIENTS
Agl=Cicla~2
AQ2=C2(I3~2
All=24C1 (1o %KL
RiZ2=2#C2C( 1) #K!
RE1=K1~2+22C1 0l s~2% Al phac I I +K2+K )
R22=2K 1 ~2+2C2 0 [~ 2% Alphalli+kI+K12
AFL=24C1C 104K+ 2+RATphatli+K3+K1D
A32=24C20 104K« 2%ATphadc [ +K2+k 1
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1330 A41=CLl{I)~24 (Al phall)+K1+K22~2+Bata(l ) 20+2* (Rlpmat [ +EJ05K1~2
12348 R42=C2C 1) 2#((R1phadl ) +K1+K23"2+Retal ) 20 +2=(Alphal I +k2osK1~2
1350 RAS1=2%C1{I)+Ki#<CAlphalli+K I +{ATphall)+Ki+X2)*Bata I ~2>
1288 RAS2=2#C2(1)*K1s{(Alphadli+K204Rlphall i+l +K2i+Bar gl ~2"
1378 RAB=K1~2#C(CAlphacli+K2>~2+Betallr~2)

1338 RPI=CL(I)~2*{Aiphacl)+K2D+K1~2

1398 RATZIN2{DIA2*(Alphalli+K2d+K1~2

1488 IF RAB1{=9 THEN PRINMT "RO1:a VYIJLBTED"

1418 [F AP2<=29 THEN PRINT "AG2,3 VIQLATED"

1420 IF ALl<=0 THEN PRINT "ALl.d WIOLATED"

1430 IF ALZ2<{=9 THEN PRINT “RL12:0 VIOLATEDL"

144@ IF A21{=9 THEW PRINT "A21>9 VIQLATED"

1458 IF A22<¢=8 THEN PRIMT "R22>9 VYIOLATED"

145@ IF A31¢=0 THEM PRIMT "R231.4 VIOQLATED"

147@ IF A32<=9 THENM PRINT "A22)% VYIQLATED"

1438 IF A41<=9 THEM PRINT "R<41:2 VIOLATED"

1498 IF A42<=0 THEN PRIMT "A42>3 YIJLATED"

1508 IF ASL<{=3 THEM PRINT "RELlxd YIGLATED"

185tad IF AS2<=0 THEN 507D 1559

1529 IF AS<{=8 THEN PRINT "A6>3 YIOLATED"

1839 IF A71<=@ THEN PRINT "RA?l:3@ YIOLATED"

1549 [F A72{=9 THEN 1548

1559 GOTO 1598

1560 I[maxisI-|i

1§78  FRINT "AS2>@ YIOQLATED"

1538 GOTQ 1359@

13290 PRINTER [5 1§

1509 IF C20I0-C1¢124,0% THEN Imaxlsa]

1818 MEXT I

1628 Imaxlsl

1639 GQTO 1s8&8

1648 PRINT "A72:9 WIOLATED"

1659 Imaxl=l-1

1688 INPUT "DO ¥YOU WAMT A SRAPH 7 (Y NO", 38

1678 IF (G¥="N"D> OR (G¥="n"1 THEM 2820

1628 IF (G¥=2"Y") QR (GF="p') THEN L7880

1898 GCOTO 1358

1788  INFUT "Maximum % and Y coardinates? (,73", 8¥max, Thax

1718 INPUT "W=Axis MIMOR tick? AMD H-Axis MAJOR tick zuery __ minoe ticks?" Hea
s het

1728  INPUT "Y=fAxts MIMOR tick? AND Y-Axiz MRJOR tick zuery __ mingr trokz?® em
sree

738 INPUT "MNumb2r of decimal placss fixed aftzr d2cimal poinn™",F
L7493 PLOTTER IS 13,"SRAPHICS"

L7588 GRAPHICS

1753 LIMIT 3,134.47,9,139

1?79 LOCATE 25,139,23%,3%7

1788 SCALE 3, Xmax,d,vmax

L7989 AXES Him,Yim,Q,9, et,¥et,2

1389 INPUT "Lind tupe JInteger Betwgaen | and 142", Line

1319 [F ME="KY" THEM 1932

1329 IF (MF3"MAK") JR (MFa"3L"> THEM 1348

1339 GOTQ 1318

1848 LIHE TYPE Line

13%8 MOVE Cidl),Loadc<i>»~18

1268 FOR I=1 TO [maxl

1278 DRAW C1{Il>,Loadcl)=-14

1380 NEXT [

1398 FOR JsImaxl TQ § STEP -1

1388 JRAW C2(J3,Lpaacl>=-149

1318 HEXT J

1389 GQTO 1338

1330 LIHE TYPE Line

1343 MOYE 9,29.885-19

19% FOR I=1 TO Imax

1968 DRAW C(lJ,LoadiI»-18



1970
198a
1998
2008a
201@
2828
2039
Z048
2058
2060
2ar9
2980
20994
2100
21189
2128
2138
2148
2154
215@
2174
2138
21998
2209
2219
2220
2230
22409
2258
2260
2278
2238
2290
2398
2319
2329
2330
2348
2359
2350
23743
2338
2330
2408
2419
2429
2428
2448
2458
2468
2478
2438
2498
2508
2519
2529

99

NEXT 1
LINE TYPE |
UNMCLIP
DEG
LDIR B
LORG 3
CSIZE 3,.5
FOR X_label=3 TQ Xmax STEP Xet#Xwm
FIXED F
MOVE X_Tabel,-3
LABEL %_label
NEXT %_labe)
LDIR 8
LORG S
FOR ¥_label=10 T0 Ymax+19 3TEP Tatsrim
FIXED F
MOYE -1(2,¥_labal-19d
LABEL v _1label
HEXT Y _label
FLIAED 5
SETGU
LDIR 93
MAOVE 13,68
LABEL “"Load,P"
LDIR @
MOVE 79,19
LABEL "Damping,C"
PEN 2
WRIT 53849
INPUT “Do wou want to change dimenzions af Jraph? (Y-M)",D¥
IF (Ds=a"¥"y QR (DF="v®) THEW G0TO 1739 :
IF ¢D$="N"> QR (Ds='n"> THEM 2070 2389
GCTO 2268
EXIT GRAPHICS
PRINT "Label graph the2n 2xit by pressing COMT®
INPUT "Lettaring Angle, from positive WK-axiz in Jegresz",Ldir
LDIR Ldir
PEN 1
LETTER
PEN 9
PRINT LINCL2,"Do you want & copy on THERMAL FAPERT rnew Ti"
PRIMNT CIHC1),"Do vou want & copy from the FPLITTERT rhaw P2
PRINT LIMCLY,"If neither, kgy H"
INPUT T$
[F (THa*H ) QR (T$3"n"3 THEM 2629
IF (T#=°T"> QR (Ts="+"2 THEN 2454
IF (TE=z"P") QR (TH=2"n") THEM 23¢Q
33TD 2378
PRINTER IS5 @
PRIMT PRGE;
DUMP GRRAPHICS
PRINTER [$ (3
GOTO 2378
EXIT GRAPHICS
PRIMTER IS 18
PRINT LINC22,"Graph i3 placed an 9=1-2 oy L1 zhasr with longest adge on

e hortzontal,”

2524
2548
2359
jed=1-1
2379
2538
2994
2524
2618

PRINT LIMCLl),"BE SURE PLOTTER 13 amM!irie
PRINT LIM(1},"Press COMT wnem 2heet {3 in slace ang plastar 135 JH"
FRAUSE
PLOTTER I3 7,%,"3872RA"
PRINTER IZ 72,85
PEIH? iI!JSIII
PRINTER I3 18
LIMIT 93,225,0,163
GeTR 1779
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2628 INPUT "Do you want to changs parameters?’,CS$
2639 IF <Cga"y") DR (CH="yu") THEN GATO 528

26489 IF (CFa"N")> QR <(C#¥="n"> THEN GATO 28&8

26350 GOTQ 2620

2658 END

2678 3UB Siljak(N,Rcoef(#1,Icozf(#2,Tola,Tolr,Itmax,Rrooti+), rcotis1 ,Errd
2639 Baddta=(M<=0) 0OR <Tola<=@) IR (Toif{=9) IR {ltmax<=3)
2699 IF Baddta=@ THEH 2768

2789 PRINT LINC2),"ERROR IN SUBPRQGRAM 341 jak."
271@ PRINT "H="jN,"Tola=";Tola

2728 PRINT "Tolf=";Tolf,"Itmax=";Itmax,LIN{2)

2739 PRAUSE

2749 GOTQ 2530

2750 DIM Ksiljakd(@iNd,Ysiljak(@iMD

2758 MART Rroot=(9.399993E39)

2779 MAT I[root=(3,399999E3%>

2729 Nn=N

2799 IF N=1 THEM 3419

2808 Y=¥siljakd{ld=¥sil jaktdi=1

2819 X=dsiljak(iya.l

2828 Ys3i1ljak¢@oaL=9

2838 GOSWUB 3i1ak

. 2849 G3F

2858 M=Q=P=9

2960 L=L+|

2878 FOR K={ TO N

2839 PaP+<{#(RcoefcK)#Xsiljak K=1li=lcoaf KI%73i] jak K=,
2899 A=Q+<# (Reaef (K * 31| jak (K=10+lcoaf (Ki#®3il jakikK=1,.
2988 NEWT K

2919 Z2=P*P+R#q)

2329 Deltax=-(U#P+V#Q5-2

2939 DeltayaiU#Q-v#P)-Z

2948 M=an+] '

2938 Hs11jakd{losK+Deltax

29680 Ysiljak<ls=Y+Daltay

2978 GOSUEB 351 jak *

2988 [F F>=G THEN 3948

2990 [F (ABS(Deltax2<Talar AMD CABS(Deltay)<Tolas THEH 3214
3099 IF L:I[twmax THEM 3188

30190 KX=xXs11jakdly

3828 Y=¥siljakdl)

3939 GOTO 2349

3848 [F M>28 THEN 3988

39%0 Deltax=Deltax 4

3268 DeltavaDeitay-4

2979 GOTO 2949

39388 [F C(ABSCUL<{=Talf) AMD (ABS:Y.,<=Talf) THEM 2229

2@9¢ PRINT LINC2),"ERROR I[H SUBFROGRAM 3ijak."

3198 FRINT “THE INTERYAL IIIE HARS BEEN QUARTEIRED 29 TIMEEZ &nD
3119 PRINT "THE TOLERAMCE FOR FUMCTIOMAL EWALUATIONS [3 STILL HOT MET.,!
3129 PRINT "Tolf=";Tols, "U="jU, "YW= 1Y, LINLZ)

3138 Err=1

3149 GATO 3339

3150 PAUSE

3188 PRINT LINC2)Y,"ERRNR IM SUBROUTIME Siljak."

3179 PRINT "MAXIMUM 3 OF ITERATIOWS HAS BEEM EXCEEDED."

2189 PRINT “_="j;L,"Itmax=";Iltmax,LIMNc2>

3199 PARUSE

3298 Errs=i

3219 GOTO 2439

3229 Rroot(NI=Xsiljak(ls

3238 lroot(Nl=Yailjakely

3249 RA=Rcaef(N:

3259 B=lcoef (M

3288 Rcoef(Nialcowf (H =49

3270 H=Msiljakdlo
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3288 YmYsiljakcl)
3298 FOR K=nN=-1 7O B STEP =1

3308 C=Reoef (KD

3318 Dalcoef (K>

332@ U=Rcoef (K+1)

3338 Valcoef(K+l>

3348 ReoefF ek ImA+R R =Y %Y
33%@ IcoefCK)aB+XaV+Yxl)
33580 RaC

3379 Bap

3388 NEXT K

3398 N=H=i

34908 [F N(>! THENM 2800
3410 FA=Recoef (@)

2420 UsRcgafrilD

3438 B=lcoef(@)

3440 Vs=lcoefil)

3450 T=UsU+vay

3480 Rroot{l)a=(A%U+Bey1-T
3478 [root(l)a(R*Y=U*B)~T
3438 N=Nn

3490 SUBEXIT

208 Siljak:! 2=Hsiljakdlosdzrl jakolo+¥srljakollsvstl jaudlo
3518 T=2+Xsiljak(l)

3520 FOR K=9 TO N=-2

3838 X3l jaktK+2)=TeRey ljak (R+12=2#K2i) jak (K>
3748 Y3il jak(K+20aT#Ys10 jak (Ke10~Z%Y21i1 jak (K]
3558 MEKT K

3560 U=vy=0

3570 FOR K=¢g TO N

3580 Usll+Reoef(Ki#Keil jak (K =Teoef o o#rsil jak (K
3598 WEbW+Acoet (KisYsil jak(Kd+lcoef (Ki*Xailjak K>

3888 MEXT K
3818 Faysll+vey
3528 RETURN
3639 SUBEND
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ABSTRACT

The present study investigates the effect of various viscoelastic
foundatiohs on-the stability of a cantilever column under the action of
a constant tangential follower force at the free end. The equation of
motion is derived for the column when supported by the Standard Linear
foundation, which has as special cases the Kelvin-Voigt and the Maxwell
foundations.

[t is shown that a separable solution exists and allows an exact
dynamic analysis to be performed. The transcendental equation resulting
from the boundary-value problem is transformed into a complex form and
a simple Newton-Raphson iteration scheme is used tc solve for the real
and complex eigenvalues. A general procedure is developed for analyzing
systems described by ordinary differential equations with complex coef-
ficients.

A stability analysis of each foundation model is presented involving
the entire range of foundation parameters. From the results, it is found
that the Standard Linear foundation has a positive influence on the stab-
i1ity of this nonconservative problem. Any combination of foundaticn para-
meters increases the flutter load beyond that of the unsupported cantilever
column. By supporting the column with the Maxwell foundation, there exists

an optimum combination of parameters which allows the maximum flutter lcad.





