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Abstract

The study of molecular self-assembly has attracted considerable interest over the decades

due to its wide-ranging applications in chemistry, materials science, and biology. The chal-

lenge in studying molecular self-assembly is that it involves complex spatiotemporal scales

ranging from short-lived microscopic events to lifelong macroscopic architectures. This work

aims to investigate the molecular self-assembly in different systems to better understand the

macroscopic properties of microscopic activities. To overcome the complexity of time scale

and length scale, we employed a combination of computer simulations and simple analytic

theories to develop multi-scale models to study the systems of interest. We find that: (1) in

the slow growth regime of crystalline solids, impurity particles can speed up crystal growth

with minimal impact on the final product, (2) in the self-assembly of peptides into amyloid

fibrils the conformational entropy plays an important role in the transition from nucleation

to elongation, (3) in biomolecule condensates, the surface tension arises from the competi-

tion between binding energy and configurational entropy. These results highlight the power

of multi-scale models to interpret macroscopic physical observables in terms of fundamental

microscopic mechanisms in molecular self-assembly processes.
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Chapter 1

Introduction

1.1 Motivation

The term molecular self-assembly describes dynamical processes in which a collection of par-

ticles organize themselves, without external driving forces, into ordered patterns or struc-

tures1–5. Molecular self-assembly is the basic phenomena ranging from the construction of

nano-materials1 to the formation of large-scale functional structures to generate molecular

machinery of life6. There are several reasons for interest in studying molecular self-assembly.

First, self-assembly is an intriguing physics problem of obtaining order from disorder. Second,

understanding self-assembly of living cells is fundamental to understanding life on Earth and

the possibility of life elsewhere in the universe7–9. Third, self-assembly offers great potentials

for making new and useful materials. For example, on the molecular scale, DNA-mediated

interactions have been exploited to assemble a variety of ordered crystalline structures10–12.

On the colloidal scale, patchy particles with anisotropic interactions13–15 and particles with

controllable geometrical shapes16,17 also enable the assembly of novel structures. Finally, an

important class of molecular self-assembly in biology is protein aggregation of which the typ-

ical end-product is amyloid fibril, structurally dominated by cross-β sheet structures. The

aggregation process has been linked to over 50 human diseases18, most notably Alzheimer’s

and Parkinson’s diseases. Understanding mechanisms of protein aggregation will shed light
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on the development of therapeutic strategies for aggregation diseases.

The processes of molecular self-assembly span a wide range of spatial and temporal scales

and the choice of approach to study them depends on the question asked. In many cases

the best way is an experimental technique. However, a central problem in this approach is

how to interpret the macroscopic observables measured from the experiments in terms of

the microscopic mechanisms to reveal the dynamic behaviors of the system. To bridge the

gap between microscopic and macroscopic scales, theoretical methods together with model-

ing and simulation have made tremendous advances in the last few decades to complement

experimental molecular biology investigations. Molecular dynamics (MD) simulation, for ex-

ample, is an invaluable tool to study biomolecules in silico. MD simulations now can reach

the timescales of microseconds for systems having tens of thousands of atoms or even mil-

lisecond timescales for some systems with scalable codes19–21 and specialized computers22,23.

Although these simulations can provide microscopic details of the system and may seem both

large and long at the atomic scale, at the real scale of molecular self-assembly they are only

a small piece of the overall picture.

This dissertation is an attempt to use coarse-graining simulations together with analytic

theories to develop multi-scale models to access longer time scale and provide new physical

insights into different self-assembly systems. This combination helps us understand how

layer-by-layer growth of crystalline solids induced by impurities, explore the role of confor-

mational entropy in the transition from nucleation to elongation of amyloid aggregation and

investigate the entropic and energetic contributions to the surface tension of biomolecule

condensates.

1.2 Dissertation outline

The dissertation is structured as follows:

Chapter 2 introduces biological concepts relevant to this work. We start the discussion

with proteins and their classification as well as the interactions at the amino acid level. Next

we describe the hierarchical levels of protein structures and the Levinthal’s paradox and a

2



solution to the protein folding problem. Then, we briefly summarize the protein aggregation

processes and pathological relevance. Finally, we end the chapter with a short discussion on

the nucleation mechanisms, which are widely applied to many fields of science.

Chapter 3 summarizes the computational methods used in this work. We introduce

the classical molecular dynamics simulation, a powerful tool employed to study biomolecular

structure, dynamic and function. Next, we review the Monte Carlo method, another powerful

computer simulation technique used to study equilibrium properties of molecular systems.

We also describe the kinetic Monte Carlo technique, which is a solution to the “time-step”

problem in molecular dynamics simulations for some processes in nature.

Chapter 4 provides an in-depth description on the role of impurity particles in the growth

of crystalline solids. Impurities are known to hinder growth by poisoning the crystal surface.

Here we find a surprising result to the contrary: in the slow growth regime, impurities can

accelerate crystal growth, with minimal impact upon the final crystal quality. In this respect

they act almost as a catalyst. We demonstrate this effect using simulations, and present

scaling arguments that indicate the mechanism to be broadly applicable. For instance, the

mechanism is likely to play an important role in the crystallization of anisotropic particles

such as biomolecules.

Chapter 5 explores how conformational entropy limits the transition from nucleation to

elongation in amyloid aggregation. The formation of amyloid fibrils in Alzheimer’s disease

and other neurodegenerative disorders is limited by a slow nucleation step due to the entropic

cost to initiate the ordered cross-β structure. We find that the optimal degree of order in a

nucleus depends on protein concentration. Low concentration systems require more ordered

nuclei to capture infrequent monomer attachments. The nucleation phase transitions to the

elongation phase when the β-sheet core becomes large enough to overcome the initiation cost,

at which point further ordering becomes favorable and the nascent fibril efficiently captures

new molecules.

Chapter 6 investigates the entropic and energetic contributions to biomolecule condensate

surface tension. We study models ranging from a single component system that associates

by purely energetic nearest-neighbor interactions, to a two-component system that mimics

3



the entropy dominated mechanism. Between these limits is an intermediate case of a two-

component system with an energy-dominated attraction mechanism. We use lattice simula-

tions and analytic theory to understand how network connectivity affects the mechanism of

attraction and surface tension.

Chapter 7 provides a summary of what we have learned and of our potential future

directions.

References

[1] G. M. Whitesides, J. P. Mathias, and C. T. Seto, Science 254, 1312 (1991).

[2] M. F. Hagan and D. Chandler, Biophysical journal 91, 42 (2006).

[3] A. W. Wilber, J. P. Doye, A. A. Louis, E. G. Noya, M. A. Miller, and P. Wong, The

Journal of chemical physics 127, 08B618 (2007).

[4] B. Bozorgui, D. Meng, S. K. Kumar, C. Chakravarty, and A. Cacciuto, Nano letters 13,

2732 (2013).

[5] J. Madge and M. A. Miller, The Journal of chemical physics 143, 044905 (2015).

[6] F. Chiti and C. M. Dobson, Annu. Rev. Biochem. 75, 333 (2006).

[7] J. Cohen, Science 267, 1265 (1995).

[8] J. Trevors, Antonie van Leeuwenhoek 72, 251 (1997).

[9] C. De Duve and R. De Neufville, Blueprint for a cell: the nature and origin of life

(Carolina Biological Supply Company, 1991).

[10] K. T. Nam, S. A. Shelby, P. H. Choi, A. B. Marciel, R. Chen, L. Tan, T. K. Chu, R. A.

Mesch, B.-C. Lee, M. D. Connolly, et al., Nature materials 9, 454 (2010).

[11] T. Gibaud, E. Barry, M. J. Zakhary, M. Henglin, A. Ward, Y. Yang, C. Berciu, R. Old-

enbourg, M. F. Hagan, D. Nicastro, et al., Nature 481, 348 (2012).

4



[12] A. Stannard, J. C. Russell, M. O. Blunt, C. Salesiotis, M. del Carmen Giménez-López,
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Chapter 2

Background

2.1 Proteins

The term “protein” (Greek: proteios, primary) was coined by the Swedish chemist Jacob

Berzelius in 1838. Proteins are the most fundamental ingredient of a living organism. They

have remarkably structural diversity and catalytic activity1, which play a central role in

nearly all biological processes. Proteins are linear polymer molecules of amino acids, which

are linked into a peptide chain by forming peptide bonds, and their chemical properties are

determined by the interactions of the side chains and the peptide backbone. Amino acids

are the building blocks of proteins. All of the 20 natural common amino acids have a basic

structure consisting of a central carbon atom (Cα) linked to a hydrogen atom (H), a carboxyl

group (COOH), an amino group (NH2) and a side chain that distinguishes one amino acid

from the others (Gly – G lacks a side chain). Amino acids are classified into groups based

on the unique chemical nature of their side chains, which are hydrophobic, charged and

polar (Fig. 2.1). The first group comprises strictly hydrophobic side chains, which can be

subdevided into two categories: aliphatic with linear chains (Ala – A, Val – V, Leu – L, Ile

– I, and Met – M) and aromatic with ring structures (Phe – F, Tyr – Y, and Trp – W).

Proline (Pro – P) is often considered hydrophobic amino acid and shares many properties

with the aliphatic group. When proline is in a peptide bond, it does not have a hydrogen
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on the α amino group, so it cannot donate a hydrogen bond to stabilize an α-helix or a

β-sheet. The proline ring limits degrees of freedom around the dihedral angle, which may

lead to a reduction of conformational entropy of the polypeptide chains. Proline can also

form favourable stacking interactions with aromatic systems2,3. The four charged residues

Asp – D, Glu – E, Lys – K and Arg – R, form the second group. The third group consists

of polar side chains: Ser – S, Thr – T, Cys – C, His – H, Asn – N, and Gln – Q.

Figure 2.1: Schematic representations of twenty natural amino acids (hydrogen atoms are not

shown) with charge and aromaticity color-coded in blue/red and yellow, respectively. Adapted

from Ref. Martin and Holehouse 4 .

While chemical properties of amino acid side chains are key to understanding the large-

scale characteristic of proteins, the polypeptide backbones are vital to protein physical chem-

istry. The polypeptide backbones provide hydrogen bonding with donors and acceptors in

carbonyl oxygen and amide proton, respectively. Moreover, three backbone dihedral angles

defines the intrinsic flexibility of proteins. The peptide backbone can thus be regarded as a

flexible, polar homopolymer.
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The interactions between amino acids mainly stem from electrostatics:5,6

Covalent bond (∼ 100 kBT ): chemical bond due to the mutual sharing pairs of electron

between atoms.

Coulomb (∼ 1 – 10 kBT ): interaction between charged atoms. In biological environ-

ment, the ions are not in vacuum but in the presence of surrounding solvent involving large

gradients in the dielectric constant (≈ 80 in water compared to ≈ 5 in the interior pro-

tein). Hydrogen bond, a Coulombic interaction which are ubiquitous at the heart of several

biological phenomena, such as the formation of α-helix and β-sheet secondary structures in

protein (Section 2.2). It is attractive, highly-directional, non-bonded interaction between a

polar hydrogen atom (“donor”) and an electronegative atom (e.g., nitrogen, oxygen) with a

nonbonding orbital (“acceptor”); the hydrogen atom must be covalently bonded to another

electronegative atom to leave it with a partial positive charge5,7.

van der Waals (. 1 kBT ): interactions, which act between all pairs of atoms and do

not depend on charges, describe a strong repulsion when two atoms are too close together

and an attraction when they are a bit further apart.

Hydrophobic effect (. 1 kBT :) entropic driving force for self-association of non-polar

groups in water; the hydrophobic effect describes the tendency of water to minimize its

contacts with nonpolar substances due to a hydrophobic group which enforces constraints

on the hydrogen-bond network in its vicinity5,8.

Among these interactions, covalent bonds are the strongest, others are relatively weak

that are comparable with thermal fluctuation at room temperature. Therefore, thermal

fluctuations will have a central role in the protein structures and entropic effects are a major

driving force in protein folding and dynamics.

2.2 Levinthal’s paradox and protein folding funnels

Proteins are synthesized on ribosomes and often released as unstructured chains. Each

chain then folds into a specific three dimensional (3D) structure, which is encoded in the

amino acid sequence, either by itself or with the help from chaperone molecules. This 3D

9



Figure 2.2: (a) An example of primary structures or sequences (Aβ16−22). (b) The secondary

structures are the helices and sheets (β-strands are shown as arrows and the red dashed lines

indicate hydrogen bonds). (c) Tertiary structure of protein (2CGP). (d) Quaternary structure with

two chains (1CGP).

folded structure (also known as native state) is essential to the protein’s proper biological

function. Protein structure can be described in terms of four hierarchical levels, primary,

secondary, tertiary, and quaternary (Fig. 2.2). The primary structure is a linear amino

acid sequence of its polypeptide chain. The secondary structure refers to α-helices and β-

sheets, two main types of ordered substructures in proteins, which have particularly stable

hydrogen-bonded arrangements of amino acids. The tertiary structure includes all aspects

of the 3D arrangement of its secondary structures including its connecting turns, loops, or

coiled segments. The quaternary structure describes how various polypeptide chains come

together to form a multi-subunit complex.

Protein folding is a complex process in which a newly synthesized protein finds its way

to reach a unique stable conformation rather than one of countless alternatives. From a

statistical point of view, if a protein has 100 amino acid residues and each residue can adopt

two possible orientations for a trivial model, we obtain 2100 possible conformations. Let us

assume that the conversion from one configuration to another takes 100 picoseconds, then it

would take 5× 108 years to extensively search among all conformations for the native state.

Here is the central question, since the number of possible conformations for just a small

polypeptide chain is astronomically large, how can a given protein find its unique native

structure in an accessible time? Furthermore, it is quite surprising that real proteins fold

10



rapidly, often less than 1 second9. This puzzle is known as the Lavinthal’s paradox10.

Figure 2.3: (a) A ”golf-course” energy landscape, (b) an

ideal funnel landscape, and (c) a bumpy energy landscape.

The energy landscape figures are licensed under CC BY 4.0.

The solution to this paradox

involves the proposal of the fold-

ing energy landscape on which the

folding pathway occurs11–14. An

energy landscape is a mathemati-

cal function G(x1, x2, ..., xL) of in-

dependent variables x1, x2, ..., xL,

which are a chain conformational

degrees of freedom such as the geo-

metric features described by bond

lengths, bond angles, intermolecular distances, etc. In the protein folding problem, G is

a high-dimensional free energy surface. Levinthal’s paradox describes an extensive search

occurs on a “golf-course” free energy landscape (Fig. 2.3a), which is high-dimensional space,

flat everywhere except for the minimum of the native state. On this flat surface, any random

pathway to the localized well is equally probable which may lead to an almost infinite time.

Nevertheless, statistical mechanical theories derived in the 1980s and 1990s showed that fold-

ing landscapes do not look like golf courses, instead they prefer funnel-like shape15–17 (Fig.

2.3b). Folding funnels provide a “new view” and a simple way of understanding protein fold-

ing. In a funnel-like energy landscape, there is a competition between enthalpy and entropy

resulting in small free energy of just 1–10 kBT
11,18. The energetic requirements for folding

an unstructured protein into its native conformation, among other things, are the formation

of hydrophobic contacts and hydrogen bonds, which leads to a strong loss in entropy and

a big gain in energy. An ideal funnel landscape (Fig. 2.3b) is large and open on the top

and becomes small and confined at the bottom. When a protein starts folding it increases

the number of intramolecular contacts and lowers its internal free energy, which leads to a

reduction of conformational search. Fig. 2.3c shows a bumpy landscape with kinetic traps

and some narrow pathways to the native state, illustrating multi-state folding. In this funnel,

there is also a bottleneck region corresponding to an ensemble of conformations of transi-

11
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tion state19–21. To continue going down hill, the protein needs to overcome the transition

state by breaking different contacts for example. The folding process on a bumpy funnel is

fundamentally slower than on a smooth one due to kinetic traps and energy barriers.

2.3 Protein aggregation

In a cell, protein folding takes place in a complex and highly crowded environment, which

can dramatically affect folding and association between proteins when the conditions deviate

from the physiological optimum. Undoubtedly, chaperone molecules and folding catalysts

are able to mitigate the complex misbehavior of the folding to provide some protection for

incompletely folded protein22,23 and accelerate the slow steps in the folding process including

peptidyl-prolyl isomerases24,25. However, under the changes of temperature, pH in the cel-

lular environment or mutation, post translational modifications in the proteins, misfolding

events may occur during the search for the native conformation, and misfolded proteins may

further self-assemble into potentially toxic aggregate structures that may be harmful to the

cell26. When proteins aggregate, they may form insoluble dense supramolecular assemblies

known as amyloid fibrils, and once formed they are essentially indestructible under physio-

logical conditions. Intracellular and extracellular fibrillar aggregates in cells are a character-

istic feature of many common types of neurodegenerative diseases such as Alzheimer’s and

Parkinson’s diseases27–29. Yet, it is noteworthy that the protein aggregation is not always

problematic, amyloids have also been connected with biological functions26,30 and functional

amyloids are found in several organs26.

“Amyloid” (Greek, amylon, starch) was coined initially in a botanical context by Schlei-

den32, and later transferred into medicine to describe human-pathogenic deposits by Virchow

and others33. Amyloid fibrils can be described as a cross-β structure of polypeptide chains.

Cross-β structures represent intertwined layers of β-sheets extending in a direction parallel

to the fibril axis, with perpendicular hydrogen bonds34–36 (Fig. 2.4a). The discovery of

cross-β structures in all amyloid fibrils was initially shown in 1968 by X-ray diffraction mea-

surements37. More recently, studies of peptide microcrystals have revealed the interactions
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Figure 2.4: (a) Structure of cross-β spine and (b) side view of representative steric zipper struc-

ture of anti-parallel β-sheets of polyglutamine D2Q10K2 (each chain consists of 10 glutamine amino

acids and the two amino acids of aspartic acid (D) or lysine (K) amino acids are capped with each

end). Oxygen atoms and nitrogen atoms are in red and blue respectively, and the long fibril axis

is shown. (c, d) show Transmission Electron Microscopy (TEM) images of polyglutamine (Q10)

aggregates, which cluster into dense meshworks composed of small, thin fibrils (c) and long, ribbon-

like fibrils (d). Figures (c, d) reprinted with permission from Ref. Punihaole et al. 31 . Copyright

2016 American Chemical Society.

in cross-β sheets, so-called steric zippers35,38, which represent pairs of self-complementary

β-sheets that are interdigitated (Fig. 2.4b). Zippers have been suggested to constitute, in

the context of full-length polypeptide chains, the structural spine of amyloid fibril38 (Fig.

2.4c,d).

Experimental studies of protein aggregation typically show a sigmoidal curve of growth

kinetics40–44, where two relatively flat regions are connected by a steep transition zone (Fig.

2.5). The region before the transition zone is known as the lag phase or nucleation period,

in which partially folded monomers associate to form primary nuclei. The steep transition

zone is often called the growth phase or elongation phase as the nuclei reach the critical size

at which point small fibrils emerge and elongate. The final flat region is referred to as the

plateau phase and represents a steady state with an equilibrium monomer concentration.
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Figure 2.5: The sigmoidal growth profile of fibril nucleation mechanism, including secondary

nucleation and fragmentation processes. Adapted form Ref. Morriss-Andrews and Shea 39 .

This sigmoidal appearance is a characteristic of nucleated self-assembly reactions45. In the

growth phase, there are primary growth and secondary growth processes. The former is

attributed to fibril-end elongation by a dock-lock mechanism46–49, in which the monomer first

forms an initial contact with the fibril template (dock step), then it rearranges and changes

conformation until it fully aligns with the structure (lock step). The latter is associated with

a range of processes such as lateral growth, fragmentation, and association50–53.

Protein aggregation processes are not yet well understood but a few guiding principles

have been revealed over the years54.

� Charged proteins repel each other, thus proteins are more prone to aggregate when

their net charge is zero at the isoelectric point pI55.

� Adding salt can assist in shielding the charges and weakening the repulsion between

two proteins that have the net charge of the same sign, therefore it can promote the

aggregation process56.
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� Hydrophobic interactions are the major driving forces in sticking proteins to each other.

Aggregation is produced when hydrophobic regions of partially folded proteins, which

are expected to be buried in the native state, are exposed to the cellular environ-

ment57–59.

In neurodegenerative aggregation diseases, neuronal loss, neuroinflammation, synaptic

alterations are some typical features that occur in widely varying parts of the brain60–62.

Although affected regions of the brains vary among diseases63, protein misfolding and aggre-

gation are key events in each disorder. Therefore, a potential, comprehensive therapy should

focus on the casual protein misfolding events in the disease initiation or target disease-

modifying strategies that prevent the formation of protein aggregates. Fortunately, research

studies in aggregation diseases over the years have yielded the sweet fruits. In June 2021,

the first new drug for Alzheimer’s disease for nearly two decades was approved by the US

Food and Drug Administration. The approved therapy, which has the molecular name

aducanumab, targets the underlying cause of Alzheimer’s rather than its symptoms64–66.

Although many scientists are skeptical about the sufficient evidence of the effectiveness of

aducanumab for the disease, it gives hopes to patients and sheds light for other treatments

in the future.

2.4 Nucleation

The phenomenon of nucleation is ubiquitously observed in many different systems, from

everyday life examples such as Diet Coke and Mentos eruption, CO2 bubbles in a glass

of soda, formation of cloud and snow to science such as nanomaterials67, polymerization

processes68, protein and mineral crystallization69–71, and initiation of neurodegenerative dis-

eases72–77. Nucleation is the initial step in the formation of a new thermodynamic phase

from a high free energy parent phase to an ordered, well-organized structure or pattern with

lower free energy. Nucleation can be homogeneous78,79, in the same type of particles, or

heterogeneous80,81, in the presence of foreign species.
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Many theories have been developed to describe the homogeneous nucleation process.

They are based on phenomenological, kinetic, and microscopic approaches. In phenomeno-

logical theory, the free energy formation of clusters is calculated by using the macroscopic

quantities. In contrast, the kinetic theory avoids using the macroscopic surface tension

and exploits the molecular interactions instead82–84. The microscopic approaches including

Monte Carlo simulations and molecular dynamics simulations try to obtain nucleation rates

starting from the potential energy of interactions among particles85–87. Classical nucleation

theory (CNT), based on phenomenological approach, has been the standard theory used to

describe homogeneous nucleation for many decades since it successfully captures the qualita-

tive features of the nucleation phenomena and gives reasonable predictions of the nucleation

rates.

In CNT, the driving force required for nucleation is referred to as supersaturation and

is defined as the chemical potential difference between the two different phases (e.g. vapor-

liquid or liquid-solid). For crystallization from solution, we have

∆µ = µs − µc, (2.1)

where µs is the chemical potential of a molecule in solution and µc is the chemical potential

of the molecule in the bulk crystal, kB is the Boltzmann constant, and T is the absolute

temperature. When ∆µ > 0, the solution is said to be supersaturated, which means the

nucleation is possible, while ∆µ < 0 the solution is undersaturated and dissolution may

occur.

According to CNT, the work necessary to form a cluster of n monomers is the free energy

difference between the initial and final states (the bulk free energy) plus the energy required

to form an interface between the nucleus and the solution (the surface energy). Assuming a

spherical shape, this can be written as

∆G = −n∆µ+ 4πr2σ (2.2)

= −4

3
π
r3

ν
∆µ+ 4πr2σ,
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Figure 2.6: (a) Total free energy as a function

of nucleus size. (b) Nucleation versus supersatu-

ration (critical supersaturation is shown).

where r is the radius of the nucleus, ν is the

volume that each molecule occupies in the

crystal, and σ is the surface tension.

Fig. 2.6a shows a plot of ∆G as a func-

tion of nucleus size r; this represents the en-

ergetic barrier (∆G‡) that needs to be sur-

passed to achieve the nucleation. The value

of r at the free energy maxima (r‡) is the

critical nucleus size88,89. The formation of

a small nucleus is energetically unfavorable

due to the high entropic cost but when the nucleus reaches the critical size the further growth

is favorable due to the enthalpic gain. The critical nucleus size describes the balance between

entropic and energetic contributions to the nucleation, as nuclei with smaller size than the

critical size will easily dissolve back to the solution whereas larger nuclei can surpass the

fluctuations to form stable structures and undergo further growth.

In CNT, the central quantity is the nucleation rate, which describes the number of nuclei

formed per unit of time per unit of volume. It can be expressed by an Arrhenius-like equation,

J = A exp

(
−∆G‡

kBT

)
, (2.3)

where A is the pre-exponential factor and also depends on supersaturation. Fig. 2.6b

shows a typical plot of nucleation rate as a function of supersaturation. The nucleation

rate is almost zero until a critical supersaturation is obtained, after that the rate increases

exponentially. This critical supersaturation defines the metastable zone where the new phase

can proceed without nucleation. The CNT was originally developed by the work of Volmer

and Weber90, Becker and Doring91, and Frankel92 to describe the condensation of vapor into

a liquid, and later extended to other liquid-solid systems by employing the “analogy” such

as crystallization from melts and solutions as well as amyloid peptide condensation.

An important assumption in CNT described above is that the nuclei are formed directly
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in solution without precursors or intermediates. This single-step nucleation, however, may be

prohibited by strong energy barriers required to surmount the interfacial surface tension of

the nucleus93,94. Moreover, experiments of the crystallization process for several materials,

such as proteins95–97, minerals98 and colloids99, as well as computer simulations93,100–104

have shown that the nucleation process proceeds through a liquid-liquid phase transition to

provide oligomeric intermediates before reaching a thermodynamically stable state. In these

cases, non-classical nucleation or two-step nucleation suggests that the first step towards a

critical nucleus is the formation of a sufficient-sized cluster of solute molecules, followed by

reorganization or conformational change of that cluster into ordered structures or patterns.

Thorough reviews of the non-classical nucleation theory can be found in Erdemir et al. 105 ,

Karthika et al. 106 , Cubillas and Anderson 107 .
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Chapter 3

Computational Methods

Computer simulations provide a unified picture of the microscopic length and time scales

and the macroscopic properties of biological systems measured in the laboratory. For ex-

ample, given an interatomic interaction model from an experiment-based guess, simulations

can make “exact” predictions of bulk and detailed properties subject to limitations. We can

test and fine-tune the model by comparing various properties obtained from the simulations

with experimental results. Simulations can also act as a useful toolbox to test against ana-

lytic theories. Theoretical predictions usually rely on several assumptions that require the

input parameters which may be inaccessible through experiments. In these situations, we

can perform simulations on the computer to test the validity of the theory in conditions that

are difficult or impossible in the laboratory (for example, extremes of temperature or pres-

sure). However, powerful simulations will not magically provide valid results, one should use

this tool wisely and be aware of some potential pitfalls. The two most common simulation

techniques are Classical Molecular Dynamics (MD) and Monte Carlo (MC) Simulations. In

MD, atomic motion is simulated by solving Newton’s equations of motion simultaneously

for all atoms in the system. MD simulations can be used for both equilibrium and transport

properties of the system. MC simulations, on the other hand, do not rely on the equations

of motion. They mostly focus on the equilibrium states and thus do not provide direct

information about the dynamics of the system. In addition to equilibrium properties, MC
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idea can also be exploited to deal with dynamical properties, this method is called kinetic

Monte Carlo (kMC). KMC takes the known transition rates among states as input param-

eters to simulate the time evolution of natural processes. This chapter is devoted to brief

introductions of MD, MC simulations and kinetic MC simulations used in the dissertation.

3.1 Classical Molecular Dynamics Simulations

The basic idea behind an MD simulation is simple. Given the structure of a biomolecular

system (the relative coordinates of the constituent atoms), by calculating the net force

exerted on each atom by all of other atoms one can use the Newtonian laws to predict the

spatial position as a function of time.

mi
∂2ri
∂t2

= Fi, Fi = −∂U
∂ri

, (3.1)

where mi and ri are the mass and position of the ith atom of the system, respectively. For

this purpose, we need to calculate the net force Fi acting on the atoms. In classical MD

simulations where electrons are not treated explicitly, the forces rely on an empirically derived

force field U(rN), where rN represents the coordinates of N atoms. This potential energy is

a collection of mathematical functions and parameters that describe the interactions among

atoms in the system. All common force fields can be divided into bonded interactions and

nonbonded interactions (Fig. 3.1). The mathematical form1,2 can be written as

U(rN) =
∑
bonds

k`
2

(`i − `i,0)2 +
∑

angles

kθ
2

(θi − θi,0)2 +
∑

torsions

Vn
2

(1 + cos(nω − γ)) (3.2)

+
N∑
i=1

N∑
j 6=i

(
4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

+
qiqj

4πε0rij

)
.

In Eq. 3.2, the first three terms deal with the specific internal degrees of freedom within

the molecules, which are bond stretching, angle bending and bond rotating. The first term

is a harmonic potential between bonded atoms that gives the contribution to the energy

27



Figure 3.1: Schematic representation for bonded interactions including covalent bond-stretching,

angle-bending and torsion-rotating, and nonbonded interactions which are based on neighbor-lists

and consist of long-range van der Waals and Coulomb interactions. Example of interactions in

valine, a small amino acid residue.

when the bond length `i deviates from the equilibrium value `i,0. Similarly, the second term

is a harmonic potential in the valence angles of the molecules. The third term is a torsional

potential that models how the energy changes as a bond rotates. The last two terms represent

nonbonded interactions. The fourth contribution is a Lennard-Jones potential representing

the van der Waals interactions, and the last term is the Coulomb electrostatic potential.

Note that the first four terms deal with mainly short-ranged interactions, the last one refers

to long-ranged interaction. Parameters for the potential are usually obtained by fitting to

either ab initio calculations or experimental data.

Significant progress has recently been made in development of force fields that allow the

reliable modeling of biomolecules using MD simulations. Choosing a proper force field is the

vital step when carrying out MD simulations due to possible biases different force fields have

toward certain types of secondary structure3–6. For example, one force field may be fully
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validated with specific experimental data, but that is typically not possible for validation

against different structures and other physical properties from a large number of independent

and fully validated experiments because experiments have their own error sources. While it

is difficult to obtain a completely transferable force field, refinement and modification of the

existing ones have led to significant improvements in agreement with experimental data7–10.

Figure 3.2: A typical procedure of an

MD simulation (adapted from Ref. Lin-

dahl 1).

In MD simulations, solving Newton’s equations

of motions analytically is impossible task due to the

complex form of the potential energy function and the

large number of atoms in the system. Therefore, vari-

ous numerical integration algorithms have been devel-

oped to solve the equations of motion11,12. After each

integration, the updated coordinates are then used to

evaluate the potential energy again (as shown in the

flow chart Fig. 3.2). Repeatedly updating the coor-

dinates and velocities of atoms step-by-step through

the time results in a three dimensional trajectory de-

scribing the atomistic configuration of the system dur-

ing the simulated time interval. To ensure numerical

stability, the time steps in MD simulations must be

shorter than the system’s fastest motions, for example

bond vibrations in proteins’ motion take 1-2 femtosec-

onds (10−15 s). Otherwise, it violates the “small-step”

assumption in Taylor expansions of positions13, which

causes nonphysical energies and accelerations14.

In most situations, we need to simulate bulk sys-

tems such as a solid crystal or protein solution. The

presence of “walls” in a simulation box would cause a

profound effect on the properties of the system since

there are unwanted interactions with the boundary surfaces. Periodic boundary conditions
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(PBCs) are then used to minimize edge effects in a finite simulation box and allow us to

simulate bulk systems. In PBCs, particles have copies of themselves inside every periodic

repetition of the simulation box. In this way, the simulation box and its images will occupy

the whole space and thus mimic the bulk phase. Note that PBCs are simply an approxima-

tion to the bulk behavior and they are not effective to simulate an infinitely sized system. In

protein simulations, the box size needs to be sufficiently large to avoid interactions between

protein and its images. The cubic box is mostly widely used, however other simulation cell

geometries are possible: rectangular cuboid, hexagonal prism, truncated octahedron, etc.

All of these geometries will regularly tile space and thus can serve to replicate the infinite

number of periodic images.

At the end of an MD simulation, we obtain a trajectory, which is a time series of the sys-

tem’s coordinates. There may be profound fluctuations in the trajectory during the simulated

time interval. Proper calculations of averages and variances of conformational properties are

needed to identify important states of motion. To ensure sufficient and accurate statistics,

one should either generate multiple trajectories or long individual ones. A useful measure of

fluctuations for the entire group of atoms of interest, for example the whole protein molecule,

is the root-mean-square deviation (RMSD) in atomic coordinates as a function of time with

respect to the initial state,

RMSD(t) =

√√√√ 1

N

N∑
i=1

[~ri(t)− ~ri(0)]2 (3.3)

The convergence of RMSD during a simulation is determined by seeking a plateau in

RMSD(t). Another useful quantity is the RMSD between two conformations A and B,

RMSD(A,B) =

√√√√ 1

N

N∑
i=1

[~ri(A)− ~ri(B)]2 (3.4)

where ~ri(A) and ~ri(B) are the positions of atom i in the two respective conformations, after

their optimal superposition.
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Nowadays, improvements in computing hardware and in algorithms have allowed MD

simulations access to biologically meaningful timescales. Current software for MD simula-

tions, such as NAMD15, GROMACS16 and OPENMM17, utilizing efficient algorithms on

GPUs are highly efficient. Indeed, performing MD simulations is now relatively straightfor-

ward because simulation packages are usually open source and the computational resources

are increasingly accessible. Researchers now just focus on determining which questions can

be addressed by simulations, designing the systems, running simulations and interpreting

the results.

3.2 Monte Carlo Methods

Unlike MD, Monte Carlo methods are stochastic in nature - the time progression of the

atomic positions proceeds randomly and is not predictable given a set of initial conditions.

MC is an equilibrium method that aims for low free energy states and rigorously generates

correct thermodynamic properties within the constructive design. MC and MD approaches

are complementary. MD is a natural choice if kinetic properties are of interest. Otherwise,

MC methods have some attractive features: (1) MC methods are not limited to “small-

time” step approximations of equations of motion, (2) MC methods require only energy

calculations, which can handle continuous and discrete intermolecular potentials efficiently,

(3) MC methods can explore broadly conformational space by offering flexibility in choosing

random moves, (4) MC methods easily deal with different thermodynamics ensembles.

As we know, Monte Carlo simulations use random moves to explore the configuration

space to find out some information about the space. In 1953, Nicholas Metropolis and

coworkers18 proposed a new sampling procedure which incorporates a temperature of the

system to calculate the Boltzmann average of a property of the system. This MC method is

called Metropolis Monte Carlo (MMC) simulation. For more detailed descriptions of MMC

simulation the textbook by Frenkel and Smit19 is an excellent resource. Here, to keep the

math and the notations simple, let us consider a one dimensional free energy landscape
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U(x)14. The probability distribution is written as

p(x) = Z−1e−βU(x), (3.5)

where

Z =

∫
e−βU(x)dx (3.6)

is the partition function and β = 1/kBT . The average value of an observable A(x) is given

by

〈A〉 =

∫
A(x)p(x)dx =

∫
A(x)e−βU(x)dx∫
e−βU(x)dx

(3.7)

If we need to estimate this average based on a relatively small number of samples compared

to the large configuration space of x, we can define

〈A〉estimate =
N∑
i=1

A(xi)p(xi) ≈ 〈A〉 (3.8)

Figure 3.3: Uniformed sampling can

waste time in the regions of low popu-

lation instead of focusing on the impor-

tant ones.

To compute 〈A〉 over a probability distribution

p(x), uniform sampling will give an estimate of av-

erage according to Eq. 3.8. However, it is not usually

useful and efficient, because we easily miss the most

populated region of the distribution (for example re-

gion between x2 and x3 in Fig. 3.3).

MMC approach is to focus on sampling near states

that seemingly have the highest probabilities, which

avoids wasting much time in poorly populated re-

gions. The generation of configurations according to a

distribution is called importance sampling. The chal-

lenge question is how to generate configurations ran-

domly according to distribution p(x). It turns out that we can importance-sample configura-

tions using a statistical construct called a Markov chain of states. A Markov chain describes
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a stochastic process in which the state of a system changes randomly with time and has no

memory of previous states. At each step in time, the system can move randomly to another

state.

In the context of Monte Carlo simulation, let us consider the basic procedure to generate

a Markov chain. Start at step i, where the system is in configuration xi. This configuration

is randomly perturbed to generate a new atomic configuration. For example, the particle is

randomly picked and displaced its coordinates by small random amounts. In general, these

perturbations are termed MC moves. The new configuration is considered a proposed new

state of the system xj with a trial selection probability or rate αij. The configuration at the

next step is then either the proposed configuration if accepted with probability Paccij or the

original configuration if rejected with the probability 1−Paccij . The acceptance or rejection of

the proposed moves is performed in such a way that configurations are generated according

to p(x) in the long-time limit. The overall transition rate from state i to state j is thus

given by the transition matrix wij = αijPaccij . The process is repeated over and over again to

generate a trajectory of configurations. In this way, Monte Carlo moves can be propagated

in time according to pre-specified configurational probabilities.

The key point in this procedure is to decide how to accept or reject proposed configu-

rations in our simulations. We need to choose the acceptance criterion in such a way that

our long-time trajectory correctly generates configurations with the desired probability dis-

tribution p(x). We can do this if the overall transition probabilities wij satisfies the detailed

balance condition

wijPi = wjiPj, (3.9)

which implies that the desired distribution p(x) is a stationary state. This condition applies

a constraint to the transition and state probabilities for every pair of states. If we impose

the detailed balance condition, the acceptance probability should obey

Paccij

Paccji

=
αijPi
αjiPj

(3.10)
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This equation now gives us a starting point for correctly performing our Monte Carlo simula-

tion. Several possible forms for the acceptance probabilities Paccij satisfy the detailed balance

condition in Eq. 3.9. The simplest and most commonly used corresponds to the Metropolis

criterion20

Paccij = min

(
1,
Pj
Pi

)
, (3.11)

where the symmetric trial configuration selection rates are used, αij = αji. So-called sym-

metric Monte Carlo moves have move proposal probabilities that are equal in the forward

and reverse directions. Using Eq. 3.5, the acceptance probability Paccij for a transition from

state i to state j can be written as

Paccij = min
(
1, e−β(Uj−Ui)

)
. (3.12)

The min function is incorporated into this criterion. If Uj < Ui, the acceptance probability

is always one. Otherwise, it is less than one. Thus, this move specifies that we should always

move downhill in energy if we can, an aspect which helps reach equilibration faster in Monte

Carlo simulations than alternative criteria. The rule above must be applied equally to the

reverse move.

To summarize, a general approach to any MC simulation involves the following steps:

� Choose the system potential energy function, U(rN).

� Choose the statistical-mechanical ensemble of interest. This uniquely specifies the

probabilities Pi with which each microstate i should be sampled. In the canonical

ensemble, Pi ∝ e−βUi .

� Choose the MC move set, which is a collection of rules for how the system is allowed

to transition from state i to state j. These moves uniquely specify the move proposal

probabilities αij. For symmetric moves, αij = αji.

� Determine the appropriate acceptance criterion. Typically we use the Metropolis cri-
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terion. The acceptance criterion then follows directly from the relation,

Paccij = min

(
1,
αjiPji
αijPij

)
. (3.13)

� Carry out the simulation using the determined acceptance criterion. Equilibration

must first be achieved by propagating the system for several relaxation times.

� Ensemble property averages are computed from trajectory averages. The average value

of any configurational property in the ensemble of interest then follows from a simple

average over the “time”-progression of the production phase of the simulation

〈A〉 =
1

Ntot

Ntot∑
i=1

A(rNi ). (3.14)

3.3 Kinetic Monte Carlo

Although MC simulations are efficiently used to study equilibrium properties of physical

systems, non-equilibrium or “dynamic” MC simulations are also of interest. Researchers

began to study MC algorithms for evolving systems from state to state in the 1960s, but

the terminology kinetic Monte Carlo (kMC) was settled in the 1990s. Note that the kMC

method is fundamentally the same as the dynamic MC or Gillespie algorithm. As discussed

in Section 3.1, MD simulation is the premier tool to simulate dynamical evolution of atomic

systems by propagating Newton’s equations of motion forward in time. However, the “time-

step” problem limits the length of the MD trajectory and the total simulation time to the

timescales of microseconds to milliseconds due to the fact that accurate integration requires

time steps short enough (10−15 seconds) to resolve the atomic vibrations. KMC attempts to

conquer this limitation by exploiting the fact that long-time dynamics of the system generally

consists of diffusive jumps from one state to another. If these transitions are treated directly,

kMC can be used to efficiently model a wide range of dynamical processes at vastly longer

timescales.
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For many atomic systems, the dynamics can be characterized as a sequence of infrequent

transitions from one state (or potential basin) to another. Once a system is caught in a

certain basin, it stays there for a long time compared to the time of one vibrational period

and it loses the memory of the previous basin where it came from. A successful transition

from state i to state j is characterized by a rate constant kij, which depends only on the

shape of the potential basin i and is independent of history. This transition rate satisfies

the property of a Markov chain. Since the transition out of state i only depends on the

rate constants, we can propagate the system efficiently and correctly from state to state by

designing a simple stochastic procedure. If we can determine these transition rates for every

potential basin in the system, this state-to-state trajectory will be indistinguishable from a

vibrational trajectory generated from an MD simulation.

Given all the rate constants for escape from one state, the probability of the system stays

in this state (or the survival probability) can be written as

psurvival(t) = exp(−ktott), (3.15)

where ktot is the total of the rate constants. This survival probability can be used to obtain

the probability distribution p(t) for the time of first escape from the basin

∫ t′

0

p(t)dt = 1− psurvival(t′) (3.16)

Taking the time derivative of the right hand side of Eq. 3.16 gives the probability distribution

for of the first escape (also known as first-passage-time distribution in kMC procedure),

p(t) = ktot exp(−ktott). (3.17)

The average time for escape τ is

τ =

∫ ∞
0

tp(t)dt =
1

ktot
. (3.18)
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The total rate constant in Eq. 3.18 is the sum over the rates of all possible pathways to

escape out of the basin,

ktot =
∑
j

kij. (3.19)

For each pathway, we also have the exponential first-escape-time distribution

pij(t) = kij exp(−kijt), (3.20)

although only one of the pathways can be the first to drive the system out of the basin

potential. Given the above equations, we are ready to present the kMC algorithm.

The algorithm can briefly describes in two steps21,22: The first step is to choose the

transition among all possible ones, the second step is to determine the time it takes for

this transition. At each iteration, two random numbers in the interval [0, 1], R1 and R2,

are generated and used to determine which transition will occur and the amount of time

required. Given the rate k1, k2, ..., kn for all possible transitions from the current state and

the sum of these rates, ktot, transition i+ 1 is selected when

∑i−1
j=1 kj

ktot

< R1 <

∑i
j=1 kj

ktot

(3.21)

The second random number is set equal to the cumulative distribution function

R2 =

∫ t

0

P (t′)dt′ (3.22)

to determine the time that elapses before transition i+ 1 occurs. Given that the probability

function follows the single exponential distribution, the resulting explicit formula for this

time is

t = − 1

ktot

ln(1−R2) (3.23)

The chosen state and elapsed time are appended to the trajectory, at which point the new

set of accessible states is determined.
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Chapter 4

Catalyst-like role of impurities in

speeding layer-by-layer growth

Molecular self-assembly is usually done at low supersaturation, leading to low rates of growth,

in order to allow time for binding mistakes to anneal. However, such conditions can lead to

prohibitively long assembly times where growth proceeds by the slow nucleation of successive

layers. Here we use a lattice model of molecular self-assembly to show that growth in this

regime can be sped up by impurities, which lower the free-energy cost of layer nucleation.

Under certain conditions impurities behave almost as a catalyst in that they are present at

high concentration at the surface of the assembling structure, but at low concentration in

the bulk of the assembled structure. Extrapolation of our numerics using simple analytic

arguments suggests that this mechanism can reduce growth times by orders of magnitude in

parameter regimes applicable to molecular systems.

4.1 Introduction

The difficulty of achieving reliable self-assembly is one of controlling timescales1–5. While

it is relatively easy to design a system in which the desired product is the thermodynamic

ground state, it is more difficult to ensure that relaxation to equilibrium happens on observ-
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able timescales. If a structure grows more rapidly than its component pieces can sample their

positional and conformational degrees of freedom then these components become trapped in

non-optimal states. This is the case for simple components, such as colloids, and complex

components, such as biomolecules6–9. It is useful to arrange for the free-energy difference

between the desired structure and the starting solution to be small, so that structures grow

slowly enough that their constituent particles have time to relax to their preferred con-

figurations10–17. A small free-energy difference can be achieved under conditions of small

supercooling or low supersaturation. However, while such conditions help to avoid trapped

states composed of improperly bound molecules, they exacerbate another kinetic trap, the

long induction time associated with nucleation18–21. This kinetic trap can also impair growth

when growth occurs in a layer-by-layer fashion, because nucleation is the rate-determining

step for each stage of growth.

We use computer simulations of growing three-dimensional (3D) lattice-based structures

to show that impurity particles can dramatically speed up layer-by-layer growth at low su-

persaturation, with little effect on the purity of the grown structure. Impurities are generally

regarded as problematic, because they have the potential to arrest growth by “poisoning”

the growth front22,23. However, we find that impurities can speed nucleation in the layer-by-

layer growth regime, by lowering the free-energy cost of 2D layer nuclei and providing extra

nucleation sites24,25. Impurities appear in the final 3D structure in low concentration, and

in this respect behave almost as a catalyst.

Simple scaling results explain this catalyst-like mechanism, and suggest that it should

be relevant to a wide range of molecular and nanoscale systems. Let ∆ε be the energy

difference between a particle-particle bond and a particle-impurity bond, and let zb and

zs ≈ zb/2 be the bulk- and surface coordination numbers of the structure. If the time

intervals between successive nucleation events are long, then a fraction fs ≈ exp(−βzs∆ε) of

surface particles will be impurities [here β ≡ 1/(kBT )]. Impurities can be numerous enough

to lower the barrier to 2D nucleation, and therefore substantially increase the layer-by-layer

growth rate, which scales as the exponential of this barrier. Impurities near the growth

front can exchange with solution before the front moves away, leading to a bulk impurity
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fraction fb ≈ exp(−βzb∆ε) < fs. For large β∆ε this effect is akin to that of a catalyst,

in that impurities can be abundant at the growth front, substantially increase the growth

rate, and yet reside in the final structure in much smaller number. This speed-up of growth

is reminiscent of the nucleation enhancement of colloidal clusters by liquid-vapor critical

fluctuations26, in the sense that impurities serve as a source of fluctuations that promote a

desired ordering process.

4.2 Model

We demonstrate this effect using a lattice model of two-component growth introduced pre-

viously27,28. Lattice sites can be vacant (white), or occupied by blue or red particles; these

represent crystal and impurity particles, respectively. We refer to a blue structure as a crys-

tal. Contacts between nearest-neighbor blue particles contribute a favorable binding energy

−εb < 0, while blue-red and red-red contacts contribute a less favorable energy −εr < 0

(εb > εr). White sites carry an energy penalty of µ. The quantity ∆µ ≡ 3εb − µ, which we

call the supersaturation, is the bulk free-energy difference between an all-white state and an

all-blue state; when ∆µ > 0 there exists a thermodynamic driving force to grow a crystal

from solution. We carried out Monte Carlo simulations of this model on a 3D cubic lattice of

12× 12 sites in the xy plane. Periodic boundary conditions were applied in this plane, and

the crystal was seeded with 3 blue layers. The other direction, z, is the growth direction.

We evolved the model using the discrete-time Monte Carlo dynamics considered previ-

ously27,28 (reproduced for completeness in Appendix). To allow access to long timescales

we carried out an additional set of simulations in which we imposed a solid-on-solid (SOS)

restriction29,30: for sites with given values of (x, y) we proposed Monte Carlo moves only at

two sites, the occupied site with the largest value of z and its neighboring unoccupied site.

This restriction reduces the number of moves required to observe growth by a factor of order

the length of the system [Fig. 4.6(a)]. It also artificially prevents vacancies within the solid,

leading to a restricted equilibrium in which bulk vacancies do not exist a. However, in the

aThis restriction also prevents non-physical vacancy-catalyzed annealing in the interior of the solid31.
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regime studied here the equilibrium vacancy concentration is very small32 and, as a result,

the differences between our results in the presence and absence of the SOS constraint are

negligible [Fig. 4.6(b)]. Here we present results obtained with the constraint.

4.3 Impurities speed growth

Figure 4.1: (a) Layer addition time and representative snapshots and (b) impurity fraction for

εb = 2.55,∆µ = 0.25. The dashed line in (a) is the prediction of Eq. 4.1, and the dashed lines

in (b) and (c) are the predictions of Eq. 4.10 (red) and Eq. 4.11 (green). For impurity binding

energies εr < 1.9 (φr < 10−2) impurity relaxation is sufficiently fast that the solid composition

can be approximated by the equilibrium result (red), whereas for large binding energies additional

impurities become trapped by the advancing growth front (green). (c) Parametric plot of the data

in panels (a) and (b) showing the layer addition time as a function of impurity fraction.

In Fig. 4.1 we show the mean time to grow one layer of the crystal, and the impurity

fraction in the bulk, for various values of the impurity interaction εr (the impurity-free case

corresponds to the limit εr → −∞). Simulations were stopped when 20 layers were deposited

(we define a layer as an (x, y) plane in which at least half the sites are occupied by colored

particles). The growth time is defined as the average number of Monte Carlo moves required

to complete a layer. The impurity fraction is defined as the number of red particles divided

by the number of colored particles. We see that the growth time (eventually) decreases as the

impurity binding energy increases, and the grown structure contains an increasing number

of impurities. As we shall show, by varying conditions it is possible to have the growth time

decrease more rapidly than the impurity fraction increases.
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To estimate the growth time of the crystal we focus our discussion on the layer-by-layer

growth regime at low temperature, where growth is limited by the nucleation of new layers

on the crystal surface. When the time for 2D nucleation is much longer than the time for

the resulting postcritical cluster to grow to completion, the layer growth time τ scales as

τ ∼ exp(Gmax), (4.1)

where Gmax is the free energy of the critical 2D cluster (here and subsequently we work in

units such that kBT = 1). Eq. 4.1 is valid when the layer completion time is short compared

to the nucleation time, the regime on which we focus (more generally, see Ref. Saito 29). To

estimate Gmax we consider a k × k cluster on a flat blue surface b. Each particle incurs a

chemical potential cost µ, so the chemical potential cost of the cluster is k2µ = 3εbk
2−k2∆µ.

Each of the k2 particles in the cluster makes one bond with the layer below it, and there are

2k(k − 1) in-plane bonds. Thus the total bonding energy is (−εb)× (3k2 − 2k). Adding to

this the chemical potential cost gives the energy cost for making a k × k square:

G(k) = 2kεb − k2∆µ. (4.2)

For nonzero supersaturation this function has a maximum at k? = εb/∆µ. The critical

cluster therefore contains k2
? = (εb/∆µ)2 particles, and the corresponding energy barrier is

G(k?) = ε2b/∆µ.

To understand how this result changes in the presence of impurities (red particles), con-

sider the following simple argument. Let a lattice site be surrounded by z blue particles and

6−z white particles, and let p be the probability that an isolated particle is a crystalline one

as opposed to being an impurity (in simulations we model an equimolar mixture of crystal-

and impurity particles, and so set p = 1/2). At that lattice site, in a mean-field approxi-

mation, the thermal weight of a blue particle is pezεr ; the thermal weight of a red particle

bAn accurate expression for 2D nuclei of irregular shape can be found in Ref. Ryu and Cai 33 ; approxi-
mating nuclei as squares incurs numerical errors, but captures important trends of barrier height with model
parameters.
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is (1 − p)ezεb ; and the thermal weight of a vacancy is eµ. Thus the equilibrium fraction of

colored particles is

f1 =
(1− p)ezεr + pezεb

(1− p)ezεr + pezεb + eµ
=

Gpezεb
Gpezεb + eµ

, (4.3)

where G ≡ 1+(p−1−1)e−z∆ε and ∆ε ≡ εb− εr. The corresponding expression in the absence

of impurities is

f2 =
pezεb

pezεb + eµ
. (4.4)

Comparison of f1 and f2 indicates that G functions as an effective degeneracy for blue

particles. Alternatively, we can consider that the effective blue-particle interaction energy

in the presence of impurities is larger than in their absence, i.e. ezεeff = Gezεb , giving

εeff = εb +
1

z
ln
[
1 + (p−1 − 1)e−z∆ε

]
. (4.5)

The argument leading to Eq. 4.2 can now be modified, by replacement of εb with εeff in the

bond-energy reward term, to estimate the energy cost Geff(k) = G(k) + ∆G(k) required to

make a k × k cluster in a solution of particles and impurities:

∆G(k) =
k(2− 3k)

z
ln
[
1 + (p−1 − 1)e−z∆ε

]
. (4.6)

Figure 4.2: A square nucleus on a flat surface. Particles with 4 in-plain bonds, 3 in-plain bonds,

and 2 in-plain bonds at the 4 corners are in orange, green, and yellow, respectively.
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To estimate the mean coordination number z as a function of k, note that in a k × k

cluster we have (k − 2)2 particles with 4 in-plane bonds, 4(k − 2) particles with 3 in-plane

bonds, and 4 corner particles with 2 in-plane bonds (Fig. 4.2). Each particle makes one

extra bond with the substrate. Thus the average coordination number is z(k) = 5− 4/k.

Inserting z(k) into Eq. 4.6 gives

∆G(k) = −k
2(3k − 2)

5k − 4
ln
[
1 + (p−1 − 1)e−∆ε(5−4/k)

]
. (4.7)

Figure 4.3: Free energy barrier with

(red curve) and without (blue curve)

the presence of impurities (εb = 2.55,

εr = 0.2, and ∆µ = 0.25).

The right-hand side of Eq. 4.7 describes the impurity-

induced reduction in the energy cost of a k×k cluster

(we recover the no-impurity case in the limit ∆ε →

∞). For small ∆µ the function Geff(k) will take its

maximum at a value of k � 1. In this regime we can

expand Eq. 4.7 to get Geff(k) ≈ 2kεb − k2µeff , which

has the same form as the impurity-free expression Eq.

4.2 but with effective supersaturation

∆µeff = ∆µ+
3

5
ln
[
1 + (p−1 − 1)e−5∆ε

]
. (4.8)

The free-energy barrier to layer nucleation in the pres-

ence of impurities can then be estimated as

Gmax ≈
ε2b

∆µeff

. (4.9)

Note that the reduction to the nucleus free energy (Fig. 4.3) enters through the bulk term,

not the surface term as is typical in models of heterogeneous nucleation at a surface.

We next consider the fraction of impurities involved during growth (in the parameter

regime in which this fraction is small). For a lattice site surrounded by z blue particles, the

equilibrium fraction of red particles is
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φ(z) =
(1− p)ezεr

(1− p)ezεr + pezεb
=

1− p
1− p+ p ez∆ε

. (4.10)

This fraction is smaller in the interior of the crystal, where the impurity makes zb = 6

blue contacts, than at the surface.

Figure 4.4: Impurities are incorporated in each layer and gradually anneal to a more ordered

structure. Snapshots of the annealing of a representative layer (in that layer only, blue particles

are colored light blue, and red particles are colored yellow) (a) shortly after nucleation, (b) upon

completion of the layer, and (c) after the growth front has moved away. Subsequent layers have

been omitted for clarity. (d) Time progression of the impurity content in a layer (averaged over

10 simulations). The decay of the impurity fraction after reaching a peak value (at t = tmax)

approaches the estimate Eq. 4.11 (dashed line).

As the completed layer becomes covered by new particles, it will evolve toward the bulk

defect concentration. The timescale for this relaxation, τr, is the timescale for a fivefold-

coordinated particle at the surface to unbind, and so we estimate τr ∝ e5εr . Provided the

layer addition time τ is longer than this, we estimate the impurity fraction in a newly

completed layer as

φr ≈ φ(5)e−τ/τr + φ(6). (4.11)

This annealing process is illustrated in Fig. 4.4. The snapshots (a–c) and time-trace (d)

show that impurity particles are present at higher concentration at the growth front than in

the bulk of the structure. The relaxation of the impurity fraction from the surface- to the

bulk equilibrium concentration occurs in a manner consistent with Eq. 4.11; see panel (d).
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4.4 Identifying the parameter regime in which impuri-

ties are of most benefit

The preceding analysis confirms that impurities speed layer nucleation, via Eq. 4.1, Eq. 4.8,

and Eq. 4.9, and make the equilibrium solid less pure, via Eq. 4.10. Impurities are most

beneficial when the former effect is as large as possible, and the latter effect as small as

possible. To make the bulk equilibrium impurity concentration Eq. 4.10 small we want ∆ε

large; we then want ∆µ small, so that the second term in Eq. 4.8 remains significant.

Figure 4.5: Ratio of the growth time τ in the presence of impurities to that in the impurity-free

case, τ∞, as a function of (a) supersaturation and (b) binding energy. The beneficial effect of

impurities is most pronounced in the presence of small supersaturation and large binding energies.

In both panels, parameters are chosen so that the bulk equilibrium impurity fraction is always 1%.

The dashed lines are the predictions of Eq. 4.1.

In Fig. 4.5 we show that these predictions are consistent with our simulations: a crystal

of a certain impurity fraction grows more rapidly than its impurity-free counterpart, and

this effect is much enhanced as supersaturation is reduced. Our predictions also suggest

that impurities can be orders of magnitude more effective in parameter regimes that are

inaccessible to our simulations but which describe molecular systems.
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4.5 Conclusions

Impurities are often considered to be problematic when attempting to grow crystals, but we

have shown that layer-by-layer growth can be dramatically sped up by impurities with little

impact on the quality of the final structure. Our computer simulations and simple scaling

arguments suggest that this effect will be most pronounced under conditions of low super-

saturation and low temperature. Such conditions are often required for the crystallization of

highly anisotropic molecules, for which the probability of crystalline (or productive) binding

is small. For example, proteins must sample an ensemble of ' 104−105 states in order to find

the crystallographic state34–36. Given many ways of misbinding, growth must be slow (and

so supersaturation must be low) in order to allow time for error correction. Furthermore, a

large binding energy is needed to offset the entropic advantage of the disordered ensemble31.

This combination of large binding energies and low supersaturation leads to high surface

tension and long nucleation times, precisely the region in which impurities are expected to

be beneficial [Fig. 4.5(b)]. Indeed, this mechanism may provide an explanation for the utility

of non-specific binding enhancers in protein crystallization37–39, such as depletants, in the

layer-by-layer growth regime.

Appendix

Lattice model Monte Carlo simulations

The unrestricted Monte Carlo protocol proceeds as follows. At each step of the simulation a

site was chosen at random. If the chosen site was white then we proposed with probability p

(resp. 1− p) to make it blue (resp. red). If the chosen site was red or blue then we proposed

to make it white. No red-blue interchange was allowed. These proposals were accepted with

probabilities
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R→W : min(1, (1− p) exp(−∆E));

W→ R : min(1, (1− p)−1 exp(−∆E));

B→W : min(1, p exp(−∆E));

W→ B : min(1, p−1 exp(−∆E)),

(4.12)

where ∆E is the energy change resulting from the proposed move. This change was calculated

from the lattice energy function

E =
∑
〈i,j〉

εC(i)C(j) +
∑
i

µC(i). (4.13)

Figure 4.6: The growth time (a) and average fraction of vacancies (b) in the bulk as a function of

impurity binding energy. In (a), the SOS restriction (red) reduces the the number of moves required

to observe growth (by a factor of order the length of the system) compared with the unrestricted

Metropolis Monte Carlo simulation (blue). (b) shows the fraction of vacancies in the bulk, averaged

over 100 simulations, in the absence of the SOS restriction. These small vacancy fractions show

that the effect of imposing the SOS restriction (which eliminates vacancies) is slight.

The first sum runs over all distinct nearest-neighbor interactions. The second sum runs

over all sites. The index C(i) describes the color of site i and is W (white), B (blue), or R

(red); εC(i)C(j) is the interaction energy between colors C(i) and C(j) (this is zero if either

site is white); and the chemical potential µC(i) is µ, ln p and ln(1 − p) for W, B, and R,
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respectively. In the main text we set p = 1/2 in order to model an equimolar mixture of

crystal- and impurity particles.

In the main text we describe a solid-on-solid (SOS) restricted protocol in which Monte

Carlo moves are performed only at the growth front. This protocol, which does not allow

vacancies to become incorporated into the 3D structure, results in a different equilibrium

than the unrestricted protocol. However, in the parameter regime we probe the difference is

slight, because few vacancies appear in the unrestricted protocol (Fig. 4.6), and the presence

or absence of the restriction does not qualitatively affect our conclusions.
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Chapter 5

Conformational entropy limits the transition from nucleation to

elongation in amyloid aggregation

The formation of amyloid fibrils in Alzheimer’s disease and other neurodegenerative disorders

is limited by a slow nucleation step due to the entropic cost to initiate the ordered cross-β

structure. While the nucleation barrier can be lowered if the molecules maintain conforma-

tional disorder, clusters with little secondary structure provide a poor binding surface for

new molecules. To understand these opposing factors, we used all-atom simulations to pa-

rameterize a lattice model that treats each amino acid as a binary variable with β-sheet and

non-β states. We find that the optimal amount of secondary structure in a critical nucleus

depends on protein concentration. Low concentration systems require more ordered nuclei

to capture infrequent monomer attachments. Our model explains the transition from the

nucleation phase to elongation as the point where the β-sheet core becomes large enough to

overcome the initiation cost, at which point β-strand elongation becomes favorable and the

nascent fibril efficiently captures new molecules.

5.1 Introduction

The assembly of proteins into amyloid fibrils causes numerous neurodegenerative diseases,

such as Alzheimer’s disease, Parkinson’s disease, and prion disorders1. In vitro experiments

show that the conversion to the fibril state is limited by nucleation events, indicative of a free
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energy barrier to initiate the fibril state. In the case of isotropic particle condensation, the

nucleation barrier arises because particles at the periphery have sacrificed the translational

entropy of the dilute phase, but only form a fraction of the favorable interactions available to

interior particles2. This interaction deficit, usually described as a surface tension, becomes

a smaller fraction of the free energy as the cluster grows larger.

Surface tension does not limit 1D assemblies because the surface energy does not depend

on the cluster size3. Early attempts to explain amyloid nucleation identified β-sheet layering

as a second assembly dimension4–9. In Ref. Šarić et al. 10 , the authors show that the

conformational conversion also plays an important role in converting monomers to β-prone

state. We used all-atom simulations to observe the conformational change in two cases:

when the two disordered molecules initiate a β-structure and when a molecule joins an

established template Fig. 5.1(a, b). The simulation rates give rise to two kinds of bond

free energies, repulsion and attraction, corresponding to the two configurations, which is

consistent with the entropy interpretations11–13. The initiation of β-structure from the two

disordered monomers requires both molecules to loose conformational entropy, which leads

to net repulsive. However, for a molecule joining an established fibril the template is rigid

and the entropy loss is limited solely to the incoming molecule. This event is more favorable

and results in net attractive.

We used the free energy model and lattice simulations to explore the transition between

the disordered initiation and the retention of incoming molecules with a large β-sheet tem-

plate. To access nucleation timescales, we adopt a multi-scale approach in which all-atom

simulations are used to parameterize a lattice model. Nuclei consist of a β-sheet core sur-

rounded by disordered tails. The shape of the β-sheet core depends on both the strength of

attraction and the protein concentration, consistent with classical nucleation theory (CNT)

applied at the amino acid level. Concentrated solutions favor clusters with shorter β-strands,

while lower concentrations favor longer β-strands. The transition from transient binding

during nucleation to nearly irreversible binding during elongation is explained by the en-

largement of the β-core after it reaches a critical size, which provides a stronger binding

surface for incoming molecules.
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Figure 5.1: MD snapshots from the sampling of strong and weak H-bonds (side chains are not

shown for clarity). Kinetic parameters for strong bonds are sampled from the terminal molecules

on an established cluster (a), while weak bonds are sampled using a dimer that is harmonically

restrained at the central amino acids (b). (c) Schematic of the mapping between the lattice repre-

sentation and the atomistic representation.The lattice has a width given by the number of amino

acids per molecule and a height given by the current number of molecules in the cluster. Lattice

sites (represented by vertical lines) can be occupied, representing an H-bond between connected

amino acids, or empty, indicating that at least one of the adjacent amino acids is in the random

coil state. The alternating direction of H-bonds (seen in the atomistic view) means that only

every-other site can have a bond.

5.2 Model

We use two sets of bonding rate constants, depending on the position in the cluster. “Strong”

bonds form between a disordered amino acid and an established β-strand. “Weak” bonds

form between two disordered amino acids. These bonds result in the loss of conformational

entropy from both backbones, a greater penalty than bonds with a pre-existing strand11,12.

The free energy of a square cluster can be written in terms of the total bonds N , an energy

penalty coming from the conformational change, and the number of molecules M in the

cluster (see Appendix for derivation),

F = Nεs + γ`+ µM, (5.1)

where ` = N/(M − 1) is the average length of β-strands, µ and γ = εw − εs serve as

the line tensions in the vertical and horizontal directions, respectively. µ = −kBT ln c/c0

(c0 is a reference concentration) is the chemical potential and εw, εs are the free energy of

the weak bonds and strong bonds, respectively. Strong and weak bond kinetic parameters

were assessed using all-atom simulations of hexamer and dimer assemblies (Fig. 5.1a, b)
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with harmonic restraints applied to the non-sampled bonds (see SI). Here we present results

for the AMBER14SB force field, which has intermediate affinity of the three tested (see

SI). AMBER14SB weak bonds have free energy εw = 0.71 kBT , and the strong bonds,

εs = −0.93 kBT provide enough attraction to stabilize a single-layered β-sheet. The difference

εw − εs = 1.64 kBT is in good agreement with estimates for the entropic cost of secondary

structure13.

For fixed N , the optimal cluster dimensions are ` = (µN/γ)1/2 and M = (γN/µ)1/2,

which can be used to find the free energy maximum

F ‡ =
γµ

|εs|
, (5.2)

N ‡ =
γµ

ε2s
, (5.3)

at which point the cluster has dimensions

M ‡ =
γ

|εs|
+ 1, (5.4)

`‡ =
µ

|εs|
. (5.5)

Using the bond free energy from AMBER14SB gives M ‡ = 2.76. From Fig. 5.4a, we

obtain the reference concentration c0 = 44.34 µM by fitting the data to N ‡ in Eq. 5.3. This

value can be used in the expression for `‡ = kBT ln(c/c0)/(εs), which captures the change in

β-ordering as a function of concentration (Fig. 5.4b).

5.3 Results and Discussion

Lattice model captures molecule addition and β-sheet formation. Our lattice model

is based on a Markov State Model (MSM) developed to study fibril elongation14,15. In

those works the conformational search was discretized using two reaction coordinates: 1) the

alignment of an incoming molecule with the template and 2) the number of β-sheet H-bonds.

Here we remove the alignment complication by considering polyglutamine, motivated by the
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aggregation-prone region of huntingtin protein16–23.

The lattice model, illustrated in Fig. 5.1(c), evolves by the Gillespie algorithm24. Lattice

model monomers have 11 amino acids and form anti-parallel β-sheets, which is more stable

than parallel β-sheets for polyglutamine25. Each peptide unit is modeled as a binary variable

with states representing β-sheet and non-β conformations. Each amino acid can form a pair

of H-bonds, which are mapped to a single bond in the lattice model [Figs. 5.1(c)]. Peptide

units at the periphery of the β-core fluctuate between β-sheet and non-β states at rates

measured from the all-atom model. New molecules can add to either end of the β-sheet at a

concentration-dependent rate approximated by the Smoluchowski formula for an absorbing

sphere

kadd = 4πσDmc (5.6)

where c is the protein concentration, σ = 1.75 nm is the radius of the sphere, approximated by

half the length of an extended monomer, and Dm is the diffusion coefficient of the monomer,

1.79× 10−10m2/s26.

Figure 5.2: Probability of successful nucleation trajectories with parameters from the AM-

BER14SB force field as a function of the number of molecules and the total number of H-bonds in

the cluster. Increasing concentration shifts the transition surface (50%, red dotted line) to smaller

clusters and reduces the need for β-structure due to increased monomer deposition rate.

The committor is used to identify the transition state ensemble. The committor

is used to identify the transition state ensemble. The committor is defined as the probability

that a nucleus with a specified number of bonds reaches the cutoff size of 8 molecules before

58



completely dissolving. If a molecule breaks all bonds with the cluster it is considered to

return to free solution. Our model does not consider molecules that associate with the

cluster without backbone H-bonds. These non-β contacts are a negligible contribution to

the association time during elongation15. The lower β-content during nucleation will increase

the importance of non-β states, however, we expect the primary effect would be to enhance

the local concentration, thereby increasing the rate new molecules reach the ends of the β-

sheet. More pronounced effects will occur at high concentrations where disordered oligomers

are stable10,27,28.

Established β-structure helps capture new molecules. The assembly will grow

when the attachment rate is greater than the detachment rate and shrink when the detach-

ment rate is greater. While the attachment rate is a function of concentration (Eq. 5.6),

detachment is limited by the rupture of favorable interactions. To gain intuition, consider

an Arrhenius model in which the molecular detachment rate scales as e−n|εs|/kBT , where n is

the number of strong bonds between the cluster and the departing molecule. In the dimer

n = 0, so the detachment rate is large. In the elongation phase n is given by the molecule

length so the detachment rate is small.

Fibril nucleation is slow because it is unfavorable to form a template large enough to

capture new molecules. However, the attachment rate increases with concentration, reducing

the required template size. This is seen in Fig. 5.2 which shows the committor as a function

of the number of molecules M and the number of bonds N . At high concentration (Fig.

5.2c, 5.4a) nucleation is more likely than dissolution for a cluster containing M ' 3 and

N ' 3. But, at lower concentration (Fig. 5.2a, 5.4a) a 50% committor is not reached

until M ' 3 and N ' 6. The trend toward larger N at lower concentrations is consistent

with CNT. We refer the 50% committor surface as the transition state, whereas state at the

free energy saddle point are referred to as “critical” (Fig. 5.3b). The free energy contours

are plotted along with the lowest free energy path with the red dots showing the saddle

points. Increasing concentration has the effect of tipping the pathway with the saddle point

consisting the same critical molecules but fewer H-bonds.

Nucleation at low concentration requires highly ordered clusters. Fig. 5.4b
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Figure 5.3: (a) Average length of β-strands, `, on successful nucleation trajectories. β-strands

asymptotically approach the maximum length above the critical size M > 3, but remain short at

M = 2 where additional secondary structure is unfavorable. (inset) The capture probability, defined

as the probability a new molecule arrives before the previous one detaches, depends on the size of the

available template. Large templates allow the new molecule to form more bonds, which increases

their retention time. (b) Contour plot of cluster free energy, Eq. 5.1 as a function of the number of

molecules, M , and the number of intermolecular H-bonds, N . Increasing the concentration lower

the overall free energy, decreases the slope of the lowest free energy path (dotted lines), and shifts

the free energy saddle point (red dots) to lower values of N .

shows the number of H-bonds per molecule in clusters on the transition surface. We see

the trend that low c requires high secondary structure content (∼ 4 bonds per molecule) in

transition clusters, while poorly ordered clusters (∼ 2 bonds/molecule) are enough at high

c. Also, the concentration behavior depends on the intermolecular attraction strength. This

can be seen from the more aggregation-prone AMBER99SB-ILDN force field, which shows

high concentration behavior at 4 µM (Fig. 5.4b). In contrast, AMBER14SB has a larger

detachment rate and requires c ' 8 µM to nucleate from low order (N/M < 3) clusters.

Note that the concentration changes the line tensions, which controls the cluster shape. The

anisotropic line tensions are similar to many crystals.

The elongation phase begins when there are enough molecules that β-strand

extension is favorable. Eq. 5.1 provides an explanation for the transition from transient

binding during nucleation to efficient capture during elongation. For M < M ‡ lateral growth

of the β core is unfavorable, (∂F/∂N)M > 0. This keeps β-strands short, which limits their

ability to bind incoming molecules. However, for M > M ‡, increasing N is favorable.
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Figure 5.4: (a) Solution concentration determines the shape of the β-sheet core in critical nuclei

as seen by the number of H-bonds in transition clusters (defined by the 50% committor). Line shows

fit to Eq. 5.3. (inset left) Low concentration nuclei have extensive β-structure to provide a strong

binding surface for newly docked molecules. (inset right) Higher concentration nuclei have shorter

β-strands because the higher deposition rate places lower demands on retaining new additions. (b)

The number of H-bonds per molecule in the transition cluster. Line shows Eq. 5.5.

Therefore, adding molecules leads to an elongation of β-strands. This leads to an increase

in capture efficiency (Fig. 5.3a), which signifies the beginning of the elongation phase.

To understand the relationship between secondary structure and the retention of newly

added molecules, we computed the capture probability as a function of the template size.

For each template we conducted 10000 lattice simulations using parameters from the AM-

BER14SB force field. Each trial was initiated with a dimer containing 1-6 H-bonds. The

cluster was allowed to recruit a third molecule and the simulation was terminated when

either a forth molecule attached to the cluster or the third molecule broke all bonds. The

capture probability is given by the ratio of these two outcomes. To acquire sufficient statis-

tics, we performed 10 sets of simulations. The capture probability (Fig. 5.3, inset) increases

from 0.35 to 0.55 as the template size increases from 2 to 4, but increases in the template

size have a minimal effect of capture efficiency. The maximum value of 0.55 is due to the

fact that newly bonded molecules have nearly equal probabilities to either break the single

H-bond, or form additional bonds.

The increase in the capture probability is illuminating when compared to the extent of

β-sheet structure in nucleating clusters. Fig. 5.3a (main panel) shows the average β-strand

length, 〈N/M〉, as a function of M for successful trajectories. The β-strands are very short
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for M = 2, consistent with the unfavorable free energy to increase N (Eq. 5.1). It becomes

favorable for β-strands to elongate when M > 3. Accordingly, above this value there is only

an asymptotic increase in 〈N/M〉. Comparing the steep rise in 〈N/M〉 between M = 2 and

M = 4 to the inset of Fig. 5.3a, we see that this region of expanding secondary structure

will result in a corresponding increase in the capture probability.

Disorder in the nucleation phase allows promiscuity in cross-seeding. Aβ16−22

reduces the lag time of Aβ1−40 despite the fact that molecules are not mixed in the resulting

fibrils29. This is explained by our results showing that the β-core contains only a portion of

the aggregating molecules, so the nucleus will not be sensitive to molecule length (Fig. 5.5).

Therefore, the lag time reduction by protein mixtures will depend on c because at lower c

the ordered portion of the nucleus will be larger and more sensitive to mismatches. Impurity

molecules incorporated during nucleation will be sites susceptible to fragmentation, enabling

removal of the defect during elongation.

Figure 5.5: Small ordered nucleus can provide templates for other molecules to nucleate and

growth. This β-core is also a weak spot and is more prone to fragmentation and let the fibrils

continue to grow.

The nucleation mechanism in our simulations blurs the line between one-step nucleation,

where condensation and ordering coincide, and two-step nucleation, where condensation

precedes ordering2,30–32. We find β-sheet ordering occurs concurrently with initial cluster

formation and, in fact, is necessary for molecule retention. However, the molecules remain

mostly disordered. Previous simulations of fibril nucleation have shown a two-step mech-

anism for most cases10. However, the model in that work represented molecules using an
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all-or-nothing conversion between ordered and disordered states, hence high concentration or

non-specific attractions were necessary to surmount the conversion barrier. Our work shows

that a partial conversion to the β-state is an important mechanism to lower the nucleation

barrier.

Our coarse-grained representation only accounts for intermolecular backbone H-bonds,

allowing for analysis of secondary structure formation. However, sidechain and non-β back-

bone contacts are potentially significant in at least two ways. First, omitting non-β interac-

tions prevents completely disordered clusters. This is less of an issue at low concentrations

where disordered oligomers are unstable33–35. But, disordered binding will, in general, lower

the free energy of pre-nucleation clusters36. We suggest that in cases where β-sheets nucleate

from disordered clusters10,27 the alignment (rotational) entropy will play a similar role as µ

in Eq. 5.1. Second, our model does not include the stacking of β-sheets via steric zipper

interactions37. The absence of single-layer fibrils in experiments suggests that steric zippers

are necessary for fibril stability. This implies that the stability of single-layer sheets in our

simulations is a result of force fields that overly stabilize protein-protein interactions38–41.

Should this be a force field artifact, it is fortuitous for our study because it allows us to

study β-sheet initiation without the complication of multiple layers.

5.4 Conclusion

There are many different mechanisms for fibril nucleation, including homogenous nucleation,

secondary nucleation catalyzed by fibrils, and heterogeneous nucleation at impurities or

interfaces42–46. All of these pathways must surmount a free energy barrier that arises from

the fact that immature clusters lack the stabilizing interactions of established fibrils so the

entropic costs of condensing and ordering are incompletely compensated. Our work shows

that the conformational entropy contribution to the barrier is reduced by limiting the extent

of secondary structure in the cluster and that the optimal amount of structure depends on

the concentration of free protein. This finding should apply to heterogeneous and secondary

nucleation pathways as well.

63



Appendix

Molecular dynamics simulation details

To simulate strong bonds in the all-atom model we used a β-sheet consisting of six monomers.

The backbone atoms of the four internal molecules were harmonically restrained, along with

the central amino acid of the terminal molecules, using a force constant of 10 kcal/mol/Å
2
.

The system was heated to 900 K for 100 ps generating an ensemble of 10 initial states. We

then monitored H-bond transitions around the anchored amino acid (Fig. 5.1a).

Weak bonds were assessed using an anti-parallel dimer with harmonic restraints on the

central amino acids (Fig. 5.1b). We ran 10 replicas for each starting state lasting for 100 ns

each. H-bond transition rates were obtained as described in14.

H-bond transition rates depend on the sidechains and the length of the disordered chains

adjacent to the H-bond (the free chain length, FCL)14,15. We neglected the FCL effect here

due to the lack of alignment effects in the lattice model and the short length of the peptides

(Fig. 5.6).

Figure 5.6: The time distributions of the unbound (a) and bound state (b) of the two H-bond

pairs adjacent to the retrained bond with different free chain lengths highlighted on (c). They

generally follow single exponentials (solid lines).

All simulations were performed with OpenMM 7.3.147 using three common force fields,

CHARMM36m41, AMBER99SB-ILDN48 and AMBER14SB49, with the TIP3P50 water model.

These force fields are suggested candidates for amyloid peptide assembly based on the study

of Aβ16−22 dimer in51. For all simulations, long-range electrostatic interactions were treated
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with particle mesh Ewald (PME), with both direct-space PME and Lennard-Jones potentials

making use of a 10 Å cutoff; the Lennard-Jones potential was switched to zero at the cutoff

over a switch width of 1.5 Å to ensure continuity of potential and forces. PME used a relative

error tolerance of 104 at the cutoff to automatically select the α smoothing parameter, and

the default algorithm in OpenMM was used to select Fourier grid spacing (which selected

a grid spacing of 0.8 Å in each dimension). All bonds to hydrogen were constrained to a

within a fractional error of 10−8 of the bond distances using CCMA52,53, and waters were

rigidly constrained with SETTLE54. OpenMM’s long-range analytical dispersion correction

was used to avoid pressure artifacts from truncation of the Lennard-Jones potential. Sim-

ulations were run at 300 K with a Monte Carlo barostat with 1 atm external pressure and

Monte Carlo update interval of 25 steps. Langevin dynamics was used with a 2 fs time steps

and collision of 1 ps−1.

Figure 5.7: Average H-bond pair transtion times associated with three different force fields.

The open and closed markers represent the times of unbound and bound state of the H-bond pair

respectively. Red indicates strong bonds and green indicates weak bonds.

Coordinates were saved every 5 ps and the rate constants between two states, β-sheet and

non-β conformations, were measured using the method in14. A transition involves either the

formation or breakage of a pair of backbone H-bonds between two residues. The distances

between amide hydrogen and carbonyl oxygen pair dH−O were computed using pytraj55 and

monitored for transitions. A backbone H-bond is considered broken when dH−O exceeds 3.5
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Å and formed when dH−O is shorter than 2.5 Å. In addition to the 1 Å gap in formation and

breakage cutoff distances, a five-frame (25 ps) running average of dH−O and elimination of

fast transition less than 300 ps were used to suppress spurious high frequency fluctuations

in the detection of backbone H-bond transitions.

We used three force fields to measure the kinetic rate constants. To compare force fields,

it is convenient to compute the free energy of the H-bonds using the detailed balance relation

kon

koff

= e−|ε|/kBT . (5.7)

C36m A99SB-ILDN A14SB

strong bond −0.14 −1.05 −0.93

weak bond 1.51 −0.37 0.71

Table 5.1: Strong and weak bond free energies calculated from kinetic parameters usin Eq. 5.7.

Strong bonds have attractive free energies ranging from 0.14 to 1.05 kBT , while weak bonds range

from an attraction of 0.37 kBT to a repulsion of 1.51 kBT .

Despite the fact that each of these force fields has been favorably evaluated for simulations

of polyglutamine56–60, they yielded widely different results (Table S1). Rather than assess the

relative accuracy of these results, we use these different values as representatives of sequences

in different regimes of fibril stability. AMBER99SB-ILDN is the most attractive, and in fact,

even the weak bonds are net attractive by 0.37 kBT . In this case conformational entropy

cannot contribute to the barrier. The least attractive force field is CHARMM36m, which was

developed in response to overly compact ensembles in simulations of disordered proteins41.

CHARMM36m has a strong bond affinity 0.14 kBT , which is too low to observe nucleation

in our model and suggests that steric zipper interactions would be necessary to form stable

fibrils. AMBER14SB has an intermediate affinity with weak bonds εw = 0.71kBT that are

sufficiently repulsive to create a free energy barrier, yet the strong bonds εs = −0.93kBT

provide enough attraction to stabilize a single-layered β-sheet. Both the AMBER14SB and

CHARMM36m force fields are remarkably close to previous studies that estimated 1.86 kBT
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for the difference between strong and weak bonds11–13.

Lattice simulation details

We compute the committor as a function of the number of molecules and the total number

of H-bonds using 10000 lattice simulations at each monomer concentration. Each simulation

was initiated with a dimer with one H-bond and terminated when there were 15 molecules

in the cluster or all H-bonds were broken. The formation and breakage of H-bonds in the

dimer are described by weak bond rate constants since neither strand is previously in β-

conformation. The third molecule brings the possibility for the formation of strong bonds,

provided one of the peptides forming the new bond is previously in the β-conformation11.

A new molecule can attach to either end of the β-sheet when it has at least two backbone

H-bonds.

Cluster free energy derivation

The free energy of a nucleus contains three terms:

F = Ebonds −∆S + µM, (5.8)

the first term is the energy form all H-bonds formed in the nucleus, the second term is the

energy penalty from the loss of conformational entropy when forming new H-bonds (S is

energy coming from the conformational entropy), the last term is the energy required to

recruit new molecules (µ is the chemical potential and M is the number of molecules as

shown in Eq. 5.1).

Fig. 5.8 shows the number of H-bonds and conformational entropy units in a cluster. Red

lines are the H-bonds; one blue open circle represents the restrained region of the backbone

around the H-bond when it has another neighbor and two blue open circle is equivalent to

one unit of a conformational entropy. We starts form 2 molecules with one contact (one H-

bond), then increase the H-bonds with the fixed the number of molecules on the horizontal
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direction and add more molecules on the vertical one. By counting the number of H-bonds,

the number of chemical potentials and the conformational loss in each configuration of a

square nucleus, we can express Eq. 5.8 as

F = Nεbond − (2`+M − 2)S +M(µ+ 2S). (5.9)

Rearrange and absorbed the constant to the chemical potential term we can arrive at Eq.

5.1, where γ = −2S, which is the energy difference between a strong bond and a weak bond.

Figure 5.8: Free energy of square clusters with dimensions of M molecules and ` H-bonds per

molecule. Red lines are the H-bonds with energy b and blue open circles present a conformational

entropy unit in the regions stabilized by 2 H-bonds on 2 different rows.
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Chapter 6

Entropic and energetic contributions

to biomolecule condensate surface

tension

6.1 Introduction

Numerous cellular compartments form by the spontaneous condensation of biomolecules in

a process that resembles liquid-liquid phase separation (LLPS). Although these structures

may contain hundreds of molecular components, often only a few are needed to recapitulate

condensation in vitro. These “scaffolds” are usually multivalent, polymer-like molecules that

drive condensation by forming many weak intermolecular interactions1. While early work

focused on the utility of these condensed states as a compartmentalization mechanism, more

recently it has become apparent that these intermolecular interactions are responsible for

creating essential structure on the atomic2,3, network4–6, and organelle scales7,8. In partic-

ular, many liquid organelles have a multi-layered organization with separate compartments

maintained by a hierarchy of surface tension7.

The utility of surface tension in cellular organization highlights the need to understand

the mechanism of surface tension in multi-component phase-separated structures. A useful
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point of reference is the simplest case of attractive spheres. In this adhesion-driven, single-

component system the surface tension arises from the fact that particles on the surface

of a cluster have fewer attractive interactions to compensate for the translational entropy

penalty that comes from condensation. Thus, the surface tension can be considered the

result of unsatisfied bonds on the cluster surface.

A contrasting case is that of condensates formed from binary mixtures of SPOP and

DAXX5,9. Under conditions where SPOP is present at stoichiometric excess, DAXX drives

condensation by forming cross-links between rod-like SPOP assemblies. However, there

is minimal change in the interaction energy upon condensation because DAXX is flexible

enough to satisfy its binding sites on a single SPOP assembly when cross-linking partners

are not available5. Instead, the driving force for condensation arises from the configurational

entropy of binding. This is because the are many more ways for DAXX to satisfy its binding

sites in a dense SPOP condensate compared to a dilute solution. From this example, we

can extract two important lessons. First, when modeling the surface tension of biomolecule

condensates it is important to account for molecular entropy, not just binding energy. Second,

the balance between entropic and energetic driving forces, which is controlled by the network

connectivity, provides a complementary mechanism to hydrophobic/hydrophilic content to

establish discrete liquid compartments.

Here we employ a combination of lattice simulations and analytic theory to understand

how network connectivity affects the mechanism of attraction and the surface tension. We

study models ranging from a single component system that associates by purely energetic

nearest-neighbor interactions, to a two component system that mimics the entropy domi-

nated mechanism of SPOP/DAXX. Between these limits is an intermediate case of a two-

component system with an energy-dominated attraction mechanism. We find three contri-

butions to the surface tension. The first is an entropy dominated mechanism appearing in

all three systems that results from the reduced translational entropy of molecules near the

surface of the condensate. The second is an energy dominated mechanism, similar to the

missing bonds between attractive spheres, that appears only in the purely energy-driven

system. This mechanism is absent in the two component systems where it is replaced by
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a purely entropic mechanism resulting from the reduced number of binding partners at the

periphery of the condensate.

6.2 Model

We study the association of rigid rods on a lattice inspired by recent experimental results

on the SPOP/DAXX and actin/fibrilarin systems9,10. SPOP and actin both polymerize to

form rod-like assemblies that are rigid on the polymerization scale explored experimentally.

For our purposes the rod systems are convenient because they break the system symmetry,

which allows us to identify multiple contributions to the surface tension. We explore three

attraction mechanisms to drive condensation of the rods.

1) In the simplest version of the model the rods have attractive interactions of affinity εi

between adjacent sites on the lattice. This attraction mechanism does not include end-to-

end interactions. This model provides an easily calculated baseline and allows us to identify

effects arising solely from the rod geometry (Fig. 6.1a).

2) In the second model there is no direct interaction between the rods apart from hard-

core repulsion. Instead, interaction is mediated by cross-linking molecules. These molecules

occupy two adjacent sites on the lattice in the x, y, or z direction. Each lattice site can be in

one of three states: a dual occupancy state with both a rod and cross-linker subunit, which

is assigned an energy εs, and zero energy states where the site contains only a rod subunit,

only a cross-linker subunit, or is empty. To account for excluded volume, dual occupancy

by the same type of subunit is not allowed. This model is inspired by the SPOP/DAXX

system in which the DAXX cross-linkers have the flexibility to find binding partners in all

directions, including multiple sites on the same rod (Fig. 6.1b).

3) The third model is identical to the second except that cross-linker molecules are only

allowed to extend in the x and y directions, perpendicular to the rods which are oriented

in the z direction. This mimics a system with rigid cross-linkers that extend away from the

rods. We label the binding energy in this model εa, reflecting the actin system that inspired

it (Fig. 6.1c).
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Figure 6.1: Three attraction models to drive condensation of rods: (a) implicit cross-linking

model in which each rod orienting on the z direction contains ` yellow spheres, (b) SPOP/DAXX

model with the presence of cross-linking molecules in green, occupying two adjacent sites on the

lattice in the x, y, or z direction, and (c) Actin/Filamin model in which cross-linking molecules are

only allowed to extend in the x and y direction, perpendicular to the rods.

To model the assemblies of the simplest case, we compute the configuration entropy using

a lattice model with energy,
F

kBT
= εNLzρ− ln Ω, (6.1)

where ε is the attractive energy of each unit in a rod, z is a coordination number, N is the

number of rods, L is the length of of rods, ρ is the density of the assembly, and Ω is number

of ways to arrange N rods and m voids between the rods on a row (Fig. 6.2). The first term

is a mean field binding energy and the second term accounts for the configuration entropy.

ln Ω can be expressed as

ln Ω = ln
(N +m)!

N !m!
(6.2)

= ln(M +m)!− lnM !− lnm!

= (N +m) ln(N +m)−N lnN −m lnm

= N ln
(

1 +
m

N

)
+m ln

(
1 +

N

m

)
.

The surface tension of this solid assembly can be approximated by using the pinning

effect, which prevents the rods from protruding from the surface, and accounting for the
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missing bonds on the surface of the assembly. Eq. 6.1 can be rewritten as

F

kBT
= εNLzρ− (N − 2) ln

(
1 +

m

N

)
−m ln

(
1 +

N

m

)
− 2 ln

(
1 +

m

N

)
, (6.3)

The last term 2 ln(1 +m/N) in Eq. 6.3 accounts for the pinning effect by assuming the two

outermost rods are fixed at the tips of the assembly. This leads to the gain of translational

entropy of the pinned rod (red rod at each tip of the assembly in Fig. 6.2), ln(2δ+ 1) where

δ is overhang length (Fig. 6.3). Therefore, the contribution due to the pinning effect to the

surface tension is ln(1 + m/N) + ln(2δ + 1). Another contribution to the surface tension is

Figure 6.2: Schematic representative of missing bond mechanism at the surface boundary and

the pinning effect. In the middle is a snapshot of the spindle-like cluster from the simulation. On

the top illustrates the missing bond mechanism, in which the surface particles have one nearest

neighbor less than the bulk particles because they have one side exposed at the surface. At the

bottom shows the pinning effect, where the two outermost rods are stationary.

approximated by accounting for the missing bonds at the surface. A surface is defined as

the boundary between the condensed phase and a solution of vapor. Surface tension is the

energy cost of increasing the surface area of the system11. When the droplet changes shape,

its surface gets larger relative to its volume. Water tends to form spherical droplets because

deviations away from spherical shapes are opposed by the surface tension. Surface particles

have one nearest neighbor less than the bulk particles due to being exposed to a different

78



environment at the surface. To account for this, we use the energetic term εiρδ, where εi

(here and subsequently we work in the units such that kBT = 1) is a favorable binding

energy and ρ = N`/(N` +m) is the density of the assembly. With these contributions, the

surface energy per overhang per surface area, a
√
a2 + δ2 where a is dimension of a unit cell

in the lattice or the diameter of the yellow spheres in Fig. 6.1 (a = 1 for simplicity), can be

expressed as

σ(δ) =
δεiρ+ ln(1 +m/N) + ln(2δ + 1)√

1 + δ2
. (6.4)

The first and the second terms in the numerator account for the energetic and the entropic

contributions to the surface energy, respectively. The third term is the correction due to the

pinning effect. Eq. 6.4 can be rewritten in terms of assembly density ρ and the angle θ using

the geometry shown in Fig. 6.2, tan θ = 1/δ,

σ(θ) =
(
ερ tan−1 θ + ln[1 + `(ρ−1 − 1)] + ln(2 tan−1 θ + 1)

)
sin θ. (6.5)

This expression will be used to compare with the simulations.

6.3 Results and Discussion

6.3.1 Coarse-grained simulations

The analytic theory will be complimented with two sets of coarse-grained simulations. Lattice

simulations are conducted using the Monte Carlo algorithm. We consider each molecule as

a rod-like particle of length ` with each representing an occupied site in the lattice. The

first set of simulations treats the cross-linking interaction implicitly. Rods are treated in

the canonical ensemble, contacts between nearest neighbors contribute a favorable binding

energy −εi < 0. Fig. 6.3a shows an implicit cross-linking simulation box, where the rods

align along the z-direction and can move along all six directions. In the second set of

simulations, the cross-linking molecules are treated in the grand canonical ensemble, but

the number of rods are fixed. The cross-linkers can add to or leave the lattice satisfying
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the detail balance (discussed in section 3.2). The interactions between nearest neighbors are

only allowed when the two ends of the same cross-linker connect these sites (Figs. 6.1b,c).

These contacts contribute a favorable energy −εj < 0. The cross-linkers can orient in 6

directions and 4 directions in the SPOP/DAXX model (Fig. 6.1b) and Actin/Filamin model

(Fig. 6.1c), respectively. In the latter model, the cross-linkers are not allowed to orient in

the same direction of the alignment of the rod-like particles. Both simulations will employ

Monte Carlo (MC) sampling with rod-like particles treated in the canonical ensemble and

cross-linking particles treated in the grand canonical respectively.

Figure 6.3: (a) Implicit cross-linking simulation box. The rod-like particles orient in the z-

direction; they can translate in all six directions and interact with the nearest neighbors in the

simulation box (end-to-end interactions are not allowed). (b) Snapshot of the box in the ex-

plicit cross-linking simulation. A cross linker has two white ends, which can orient in 6 directions

(SPOP/DAXX) or 4 directions (Actin/Filamin). Rod-like particles are in green and they do not

interact with each other unless the cross-linkers connect them (the orange units show the sites of

the rods occupied by one end of the cross-linkers)

6.3.2 Implicit cross-linking simulations provide microscopic prop-

erties of equilibrium assembly

We carried out the implicit cross-linking simulations in a three dimensional (3D) cubic lat-

tice of 300× 300× 650 sites and periodic boundary conditions applied in all directions. Fig.

6.4a shows a snapshot of an equilibrium elongated assembly. The similarity to the shape in
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Figure 6.4: (a) Major and minor axis lengths of an aseembly in a snapshot taken from the implicit

cross-linking simulation. (b) The ratio of anisotropic to isotropic surface tension at various the

binding energies and rod lengths. Open circles with errorbars show the simulation data calculated

from Eq. 6.4 and dashed lines are the predictions from analytic theory.

Weirich et al. 10 suggests that the model has the physics necessary to replicate the experi-

ments. The equilibrium aspect ratios of the assemblies, L/r (Fig. 6.4a) where L and r are

the major and minor axes lengths respectively, were measured in the simulations. We can

use these ratios to extract the isotropic and anisotropic contributions to the surface tension

using the continuum theory in Refs. Weirich et al. 10 , Prinsen and van der Schoot 12 ,

L

r
=


2ω1/2, if ω ≥ 1

1 + ω, if 0 ≤ ω < 1

(6.6)

where ω is the ratio of the anisotropic to isotropic surface tension, γA/γI . The anisotropic

contribution arises from the elongated shape of the rods while the isotropic contribution

comes from the interactions. At a specific rod length, increasing binding energy helps the

system to nucleate and reach equilibrium faster. This leads to the decreasing of the aspect

ratio and the surface tension ratio while at lower binding affinity requires more binding

sites at the surface which leads to more elongated shape. Since implicit cross-linking is a

pure energy driven system, shorter rods require more binding energy per unit than longer
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rods in order to form the assemblies. These trends are shown in Fig. 6.4b, plotting the

surface tension ratio as a function of binding energy with differing rod lengths. For each

binding energy, at the end of the simulation we used the Hoshen-Kopelman algorithm13 (see

Appendix) to find the largest cluster and measure the the major and minor axes lengths.

To compare with the simulations, the ratio of anisotropic surface tension to the isotropic

surface tension in our analytic can be approximately written as

γA
γI
≈ σ(θm) + σ(θ0)

σ(θ0)
(6.7)

where θm ≈ π/2 and θ0 ≈ tan−1(1/`) are the angle near the tip (δ � 1) and the small angle

at the side (δ ' `) of the assembly, respectively. This approximation is in good agreement

with the simulation data for elongated assemblies with sharp tips. For assemblies with more

rounded tips, we need a more rigorous calculation, involving functional minimization of Eq.

6.1.

6.3.3 Contribution of cross-linking entropy to the surface tension

Figure 6.5: (a, b) show double bound molecules in SPOP/DAXX model in vapor-like phase and

condensed phase and (c) presents the connectivity in Actin/Filamin model.

Accounting for the “missing bond” mechanism on the surface gives good approximation

for the surface tension of many solid assemblies. However, a recent study5 shows that this

approach will not work for biomolecular condensates whose the driving force for condensation

82



is driven by the binding configuration entropy, with only a small change in the binding

energy. Here we use two explicit cross-linking models to study the entropic contributions

to the surface tension. The resulting structures in Actin/Filamin system studied in Weirich

et al. 10 are morphologically similar to the SPOP/DAXX gel. However, they fundamentally

have different driving force mechanisms. The latter is dominated by an entropy-driven

mechanism since the cross-linkers can orient in all directions while the former is energy-

driven as the cross-linkers are only allowed to extend in the directions perpendicular to the

rods to connect with nearby neighbors (Fig. 6.5c). Fig. 6.5a,b show the double bound rods

in vapor-like phase and in condensed phase. There is no change in binding energy in these

two phases. The driving force, thus, comes from the number of ways of arranging cross-

linkers on the rods. According to a recent study5, the minimized free energy of the system

with respect to the site occupancies is

f(z) = ln(n0) + n2 (6.8)

where z is the coordinate number describing the nearby binding sites that a cross-linker can

reach, n0 is the number of free binding sites and n2 is the number of double bound molecules,

n0 =
−(ceεj + 1) +

√
(ceεj + 1)2 + 8zce2εj

4zce2εj
, (6.9)

n2 = zce2εjn2
0. (6.10)

Both n0 and n2 depend on the binding energy εj (j = s for SPOP/DAXX and j = a for

Actin/Filamin) and concentration c of the cross-linkers. The free energy difference between

condensed and gas phases comes from the increase entropy of organizing cross-linkers on the

binding sites of rods and can be written (from Eq. 6.8) as

∆f = f(zc)− f(zv) = ln
n0(zc)

n0(zv)
+ n2(zc)− n2(zv), (6.11)

where (zc, zv) are the number of nearby binding sites in the condensed phase and the va-
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por phase respectively; (zg, zv) = (6, 2) for SPOP/DAXX model and (zg, zv) = (4, 0) for

Actin/Filamin model. This free energy change from the increased entropy is equivalent to

the bond density in the implicit cross-linking model.

∆f ≈ (zc − zv)ρ
εi
2

(6.12)

Eqs. 6.11, 6.12 can be used to find the binding energies εs and εa in the SPOP/DAXX and

Actin/Filamin models, respectively, at a specific cross-linker concentration that corresponds

to a particular implicit binding energy. Note that in Actin/Filamin model, the cross-linkers

are not allowed to align along the orientation of the rods and thus the double bound molecules

are excluded in Eq. 6.11 (n2 = 0) in vapor phase. At a fixed corresponding implicit binding

energy, the binding entropy in SPOP/DAXX model is larger than then binding energy in

the Actin/Filamin model due to the extra entropy as shown in Fig. 6.6a. In explicit cross-

linking models, the pinning effect contributes to the surface tension in the same way as in

the implicit cross-linking model while the missing bonds on the surface boundary does not

work the same. Instead, it depends on the arrangement of cross-linkers on the rods to make

fully bound bonds with neighboring rods. In other words, the missing bond mechanism is

replaced by the cross-linker binding entropy. Thus, the free energy can be either energy or

entropy dominated.

Fig. 6.6b shows comparison of the aspect ratio, L/r, measured in the implicit and explicit

cross-linking simulations at various implicit binding energies. The simulation box and the

number of rods are the same for all simulations. In the explicit cross-linking simulations, the

binding energies εs, εa are computed from the corresponding εi using Eqs. 6.11 and 6.12 at

cross-linker concentration c = 0.018. Each data point was averaged from 10 replicas in the

implicit simulation and 5 replicas in the explicit simulation since it is more expensive. There

is a good correlation between the aspect ratios in the SPOP/DAXX and implicit cross-linking

simulations. The Actin/Filamin model has weaker bind energies (Fig. 6.6a) and thus there

are more binding sites on the surface, which leads to more elongated assemblies and longer

aspect ratios.
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Figure 6.6: (a) Plot from Eqs. 6.11 and 6.12 showing the mapping of binding energies from

implicit model to SPOP/DAXX (εs) and Actin/Filamin (εa) models. (b) Comparison of aspect

ration, L/r, among all three models. All simulations were performed in the 3D cubic box of

200× 200× 500 with the same rod length ` = 10. The binding energies used in the implicit cross-

linking simulations are 0.295, 0.3, 0.31, 0.32, 0.33, 0.34, which were used to computed the binding

energies for the explict cross-linking models at cross-linker concentration c = 0.018 via Eqs. 6.11

and 6.12

6.4 Conclusion

Figure 6.7: A summary shows the contributions to the surface tension in three model systems

with different driving forces. All three models have the same pinning effect at the end of the

assembly. For the side surface tension (at the surface boundary), in implicit cross-linking model

the contribution is purely energetic (coming from the missing bonds) while in the explcit cross-

linking models this contribution is dominated by the cofiguration entropy.

Our results highlight two contributions to the surface tension: (1) the missing bonds,

which is an energy dominated mechanism appearing in purely energy-driven systems, (2) the

entropy dominated mechanism arising from the reduced translational entropy of molecules

at the surface boundary. We also find that these contributions do not depend on the driving

force of the system as shown in the summary in Fig. 6.7.
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Appendix

The Hoshen – Kopelman algorithm

In order to measure the major and minor axes lengths of the assembly, we need to identify

the clusters and determine the largest cluster in the system. The Hoshen – Kopelman (HK)

algorithm13,14 is simple and very fast ‘single-pass’ routine for labeling cluster on a grid, which

is a network of cells where each cell maybe either “occupied” or “unoccupied”. The basic

idea of this algorithm is scan through the grid looking for occupied cells and label them. If

the cell is occupied, it needs to be labeled with a cluster label, which depends on its left

and top neighbors. If the cell has no occupied neighbors, a new label is then assigned to it.

If the cell has one occupied neighbor, then it is assigned to the same label as its occupied

neighbor’s. If the cell has more than one occupied neighbors, then we choose the lowest-

numbered cluster label of the occupied neighbors to assign to the current cell. Because these

neighboring cells have different labels, we add a note to ensure these labels correspond to the

same cluster. For example, in Fig. 6.8 after the scanning on the third row has completed,

the site with the question mark should be assigned to label 1, and label 1 and 2 belong to

the same cluster. The HK algorithm is a special application of the well-known Union-Find

algorithm15 used in computer science.

Figure 6.8: Labeling of cluster on a square lattice. The question mark shows the “conflict” when

two occupied neighboring cells have different labels.
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Chapter 7

Conclusions and Future Directions

This dissertation has revealed that computer simulation together with analytic theory can

serve a role as a microscope to explore the spatiotemporal resolution of biomolecular systems

that is often difficult to access experimentally. In chapters 4 and 5, we also showed that

the self-assembly processes often share a fundamental characteristic, an energy barrier that

the system needs to surmount to enter the thermodynamically favorable regime. Classical

nucleation theory (CNT) has successfully captured the behaviors of these processes although

it has some shortcomings as shown in Section 2.4. In chapter 4, our computer simulations and

simple scaling arguments based on CNT described a good aspect of impurities in accelerating

the growth layer-by-layer under conditions of low supersaturation and low temperature. This

mechanism may provide a good explanation for protein crystallization using non-specific

binding enhancers1–3. In chapter 5, we applied CNT to the nucleus that has anisotropic line

tensions and used simple lattice simulations to show that the contribution of conformational

entropy to the energy barrier can be reduced by limiting the extent of secondary structure

in the cluster, which is highly dependent on the concentration of free protein. In chapter 6,

we focused on the contributions of both energy and entropy to the surface tension, one of

the two important terms in the free energy in CNT, in biomolecule condensates. We showed

that the missing bond mechanism is dominated in energy-driven systems but it is replaced

by an entropy-dominated mechanism when the system is mainly driven by binding entropy
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and that these mechanisms do not depend on the driving force of the system.

There are also other directions that we can continue to explore the problems considered

in this dissertation. In chapter 4, we consider proteins to sample just two states (binding

and misbinding) but in protein crystal growth protein must sample an ensemble of 104 to 105

states to find a crystallographic state. Our simple scaling argument can easily apply to this

regime but the simulations are expensive and may require longer CPU runtime to access the

growth regimes. Pilot runs are needed to explore the parameter windows in which impurities

are beneficial. In chapter 5, we generated the nucleation trajectories using a lattice Markov

State Model developed on a single layer of β-sheet (2D). However, amyloid-like fibrils of

different proteins have a common 3D structural cross-β spine4. In order to extend our current

model to 3D model, we need the side chain interactions between beta-sheets. This can be

achieved by adding another β-sheet layer to our current configurations (Figs. 5.1a,b) when

measuring the rate constants of beta-sheet formation. The free energy difference between

the two cases describe the effect of sidechain interactions in the 3D model. In chapter 6, the

agreement when comparing the ratio γA/γI in the simulations to our analytic theory using

the approximation in Eq. 6.1 (Section 6.3.2) is just applied for elongated assemblies with

sharp tips. For general shapes, we need a more rigorous calculation involving functional free

energy minimization with respect to the aspect ratio of assembly.
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