307

f/; COMPREHENSIVE SOFTWARE TEST STRATEGY -
by
STEPHEN LOUIS gAHﬂE

B. S., University of Missouri at Columbia, 1972

A MASTER'S REPORT
submitted in partial fulfillment of the
requirements for the degree
MASTER OF SCIENCE
Department of Computer Science-
KANSAS STATE UNIVERSITY

Manhattan, Kansas

1983

;wﬁ i All202 24u478ce
266)
K“/)

(178

23
£ e

I would like to acknowledge the support of NCR

X
\N

Acknowledgment

Corporation, which subsidized my continued education and
arranged this Masters Degree program with Kansas State
University. I wish to also express my thanks to my major
professor, David Gustafson, to whose sound advice I have
done my best to adhere, and to all others at KSU who have
been a part of the educational process.

A note of thanks goes to my wife, who has repetitively
typed this document, to the rest of my family for their
cooperation, and to my grandmother, whose interest in my

progress, helped to keep me motivated.

b

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPARED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.

Table of Contents

Chapter 1
Introduction .

1.1 Need fof Software Rellablllty.

1.2 Factors Adversely Affecting Rellablllty

1.3 Test Strategy Goals.
- 1.4 Test Characteristics .

Chapter 2
Current Testing Approaches . .
2.1 Test Methods .

2.2 Test Coverage. . .
2.3 Type of Testing.

2.4 Test Ordering. . .
2.5 Summary. -

" * @ = =
.

Chapter 3

Product Development Issues .
3.1 Development Life Cycle
3.2 Software Structure .

3.3 Testing Levels . . .

3.4 Test Planning.

3.5 Responsibility

Chapter 4
A Test Strategy.

L, ¥ % @
4.2 Design Phase Test. .

4.3 Coding/Debugging and Integration I
L.} Delivery Phase Test.
4.5 Maintenance Phase Test . . .
4.6 Test Responsibility. . 3
4.7 Summary. v ¥

Chapter 5

Implementation of Testing. . .
5.1 Test Definition. .
5.2 Test Environment Issues
5.3 Conclusion . .

Chapter 6
Concluding Remarks . . .

iid

1 Sp901flcatlon Phase Test.

Table of Contents (Cont.)

Appendices

Appendix A
GloSSary .« « + « 4 4 e e e

Appendix B

Comprehensive Test Strategy.
B.1 Specification Phase.
B.2 Design Phase . .
B.3 Coding/Debugging and
B.4 Delivery Phase .
B.5 Maintenance Phase. .

Appendix C

Implementation Documentation .

C.1 Test Plan. . .
Test Speclflcatlon .
Test Log .

aaoaoan
[0 ;N0 3 =y WV I} N]

Test Summary Report.

Bibliography. +» « + s

iv

Test Incident Report i %
Test Incident Resolution Report

Inteératioﬁ Phase .

. . . . 3 .

. 89

. 9u
95
96

- 99

.102

. .106
. 106
. .107
407
.108
.108
.109

.110

Pigure
1-1
1-2

1-4
Bt
2e2

3-2
b-1

4-3
4l

List of Illustrations
Title
Test Strategy Goals . . .
Testing Characteristics . . .

Goals vs. Characteristics .

Comprehensive Test Strategy Contents.

Testing Methods

Testing Orders. . . . +« + « + « &

Software Development Stages . . .

Testing Ievels. + + . .

Example Software Product Structure.

Example Specification . .

Example Development Organization.

Software Component Specification Test .

Implementation Documentation.

»

.

Chapter 1

Introduction

This paper presents a comprehensive strategy for testing
software throughout the development cycle which, it is hoped,
will increase the reliability of software. This strategy,
detailed in Appendix B, is a systematic plan for the appli-
cation of testing methods and techniques to a software
project. It is based on the increasing importance of reli-
ability in software. Techniques which best satisfy reliability
principles are selectively integrated into the strategy which
is comprehensive in two ways. In the small sense, it encom-
passes all phases of the product development cycle. In a
larger sense, it should be almost universally applicable to
any development environment on any type of software product.

Software reliability encompasses two traits: fidelity
and robustness. Fidelity is how well the product adheres
to the behavior expected of it (NCR, 1982). This means
that sofiware must produce expected results for inputs
and do so within specified performance constraints (for
example, within system resource limits with a maximum
response time)., Robustness is complementary to fidelity
and is the probability that the product will not misbehave

or fail. This means the product must be capable of

-1=-

detecting and handling invalid conditions. It may be
required to execute under harsh environmental conditions
detrimental to computing and, in the extreme case, be fault
tolerant or able to detect its own mistakes and correct

and adjust itself (Aviziensis, et al, 1971). Reliability
is measured through testing which detects erroneous be-
havior but does not necessarily guarantee correct behavior.
In order to yield the greatest reliability in the product,
a well planned and integrated test activity is a necessity,

80 that the greatest number of errors will be detected.

1.1 Need for Software Religbility

While the reliability of software has always been a
desirable goal in product development, it is now becoming
absolutely essential. There are a number of reasons for
this which arise from both the expansion of computer
applications and the economics of product development.

As computers are used for more and more tasks, they
are penetrating areas where public safety is affected.
They are used in design computation for construction where
a miscalulation could produce faulty buildings and endan-
ger the public. Specialized applications are being used
to control space flight where the lives of astronauts are

dependent on them. Another critial area of application is

.G,

nuclear power control (Geiger, et al, 1979), where large
numbers of people could be harmed in a failure situation.

Computers are also being used to handle large collec-
tions of sensitive data. 1In many cases, improper handling
of this data could jeopardize a business or be very embar-
rassing to an individual. As an example, consider an
incorrect business prediction algorithm which might generate
a much larger number of units for production than required
and would leave the manufacturer with an excessive inven-
tory. As another example, the unauthorized disclosure of
an individual's financial recdrds could cause personal
embarrassment. Iastly, 1f data transfers involving
electronic funds transfer fail, at the very least a great
deal of inconvenience may result. It can be seen from
these examples that it is necessary from the public welfare
point of view that software products be reliable.

Other factors which stimulate reliability concerns
are the economics of software development. Of obvious
concern is the fact that software failures result in user
problems which can lead to law suits against the producers.
These are costly_regardless of their settlement. To pro-
tect himself from liability, the software‘producer must do

everything within reason to insure reliability.

The actual value of the software to the user may
depend on its quality or fitness for use (NCR, 1981).

This means it must satisfy expectations as specified and
comply with applicable standards. This is a variation of
the reliability definition (adherence to expected behavior
and robustness); hence product value and salability are
enhanced through the demonstration of reliability. In
addition, if the performance of the product can be shown
to exceed that of the competition, a business advantage

is gained.

The cost of software production is also a considera-
tion which demands product reliability and emphasizes
techniques which produce reliability in the development
process. Errors (deviations from expected behavior) which
are detected and corrected early in the development process
are much less costly to fix than those allowed to propagate
into later stages (NCR, 1980). In order to keep debugging
costs to a minimum, each stage of development should
include testing (Myers, 1979). This will help find errors
and keep them from multiplying into extensive project
rework later on. 1In addition, as a by-~product of ongoing
reliability efforts, software should be more understandable

and better structured. This will not only help minimize

development costs but also help reduce maintenance and
enhancement costs which can exceed development costs
(Fairley, 1982). Thus by actively pursuing reliability
the producer protects his users and the public, improves
his product's image, and minimizes the resources he puts

into development.

1.2 Factors Adversely Affecting Reliability

Many factors in software development may be detri-
mental to reliability and cause the product's behavior
to deviate from that which is expected or desired. Among
these are lack of standards, insufficient planning, and
incomplete definition of requirements (Fairley, 1982).
All of these factors contribute to misunderstanding and
confusion in establishing an organized development which
fulfills the desired objectives, Use of systematic proces-
ses which formalize development and reduce ambiguities
tend to reduce errors resulting from this gap in under-
standing and thus may improve reliability.

Possibly the greatest enemies of reliability are,
however, software scale and complexity (Fairley, 1982).
Scale refers to the volume or size of the software pro-
duct. Complexity is the intricacy of software, or the

deviation from a simple flow and interface structure.

-5=-

These factors not only make programming more difficult but
hinder the entire development process with problems in
understanding and remembering complex software. Complexity
makes testing and debugging more difficult due to the
subtlety and covertness of errors which may occur. Com-
plexity also increases the potential for side effects,

such as the introduction of new errors when corrections are
made. Furthermore, simple probability predicts more
opportunities for errors in larger volumes of code with
more interfaces.

While scale and complexity can not be eliminated from
software, their impact can be minimized. Systematic
‘development techniques, such as structured programming, tend
to keep flow paths as simple as possible (Zelkowitz, 1978).
This.also tends to keep the software product broken into
component pieces of a more manageable size. Using a
planned method of testing, which not only detects errors
but also checks development techniques, is helpful to
insure that scale and complexity are controlled, This
not only allows error correction but also should help
reduce error occurrence. In the end this contributes to

reliability.

1.3 Test Strategy Goals
In order to establish a plan for testing which assures
software reliability, some goals for this comprehensive

strategy must be established. They are listed in figure 1-1.

TEST STRATEGY GOALS
. Detect Errors Early
. Detect All Errors

. Reveal Complex Structures

1

2

3

4. Encourage Good Structure and Understandability

5. Provide Error Localization

6. Provide Maintenance Capability

7. Provide Positive Visibility to the Product (User
Confidence (IEEE, 1981) and Performance)

8. Provide Data to Improve the Development Process

9. Be Compatible with Diverse Development Environments

Figure 1-1

The first goal is early error detection. The earlier
in development that an error is detected, the less costly
it is to correct, (NCR, 1980; Myers, 1979)., This is
because in early development stages changes may be made
with relatively little back tracking to make the implemen-

tation complete. For example, if a system feature is found

missing at the time the product is specified, it need only
be added to the specification; whereas, if it is not
discovered until coding has begun, the system design may
have to be altered affecting other parts of the system, in
addition to changing the original specification. Early
error detection not only exposes errors at a time when they
are most easily fixed but also protects the developer from
having errors propagate into later development stages which
could cause an extensive rework effort.

The second goal of detecting all errors concerns the
thoroughness of testing. To be thorough, a test must show
up all possible errors (Goodenough, Gerhart, 1975).
Thoroughness means that the test is reliable with respgct
to exposing errors; that is, if errors are present they
are exposed. Without a systematic test methed this would
require an impractically large set of test cases, which
include not only software inputs to the test environment,
but élso environmental conditions occurring in operation.
However, almost reliable testing is a more practical
approximation of thoroughness (Howden, 1976). Such testing
can - be performed using several of the test methods described
later. Knowledge about the software's behavior is used to

select test cases which cover all classes or groupings of

input types, thus testing all types of operation. The
closer testing is to thorough, the lesé chance exists of
errors going undetected.

A good test strategy should be a tool for detecting
structure problems and encouraging good software structure
and understandability, the third and fourth goals. It must
first illustrate where these characteristics are lacking.
There may be poorly structured areas which could be
restructured when detected, or areas which are necessarily
complex and need special attention in later testing.
Understandability problems should be corrected as an aid
to further development and maintenance. By revealing
understandability and structure problems, attention is
focused on these aspects of the product, and a feedback
path to the developer is established. He is put under peer
pressure to keep development as simple as possible. As
these are subtle goals, they require a certain amount of
subjective analysis and decision making but become tools
for encouraging good programming structure and design.

It is insufficient for a test process to merely
detect errors; hence the fifth goal of providing error
localization (tool for locating and correcting errors)

(Myers, 1979). The progression of the tests and methods

being used should help in locating errors. For instance,
if a failure occurs immediately after a new portion of
software is implemented, that portion may be suspect.
Certain test methods also may point to failing software
structures. In addition, the nature of the failure should
provide some insight as to what the failure may be. As an
example, if the software executes but produces an incorrect
result, then a computation error may be suspect; whereas,
if the program does not terminate, an error in flow may
have occurred. At this point some special tocls or pro-
cedures which will help pinpoint the error for correction
may be applicable. The correction must then be tested to
insure that it is indeed a correction and has no adverse
side effects.

Once a system is completed and placed in service, it
is probable that usage problems will arise or enhancements
will be desired; hence the need for a maintenance capability
in the strategy as a sixth goal. Software maintenance is
the implementation and retesting (regression testing) of
such changes. The test strategy should guide software
maintenance testing and, if possible, supply a means of
reusing previous tests so that the redundancy of regenera-

ting test cases may be avoided.

-10-

Product testing visibility is the seventh goal of
the strategy. Visibility of product reliability efforts
is achieved through formal documentation of the test
activity. This documentation illustrates measures taken
to insure product reliability and may be used as a selling
point. Documentation alsc provides evidence of performance
claims aboﬁt the product, an integral part of competitive
business. The strategy should indicate what testing
documentation is to be formalized and preserved.

The next goal is to improve the software development
process through feedback of data from testing on previous
products (Myers, 1979). Data such as the types and numbers
of errors detected in various development stages, as well
ag factors which may have contributed to error occurrence,
should be recorded. Information regarding error charac-
teristics is not only helpful in avoiding errors but also
in knowing how to test for them. It is also useful to know
when the greatest percentage of errors are likely to be
introduced, so that the intensiveness of testing may be
increased at that point, maximizing early error‘detection.
Furthermore, error gquantities or occurrence rates are
sometimes used in determining when to cease testing, making
information on error quantities essential for such a

completion criteria.

-11 -

Finally, the test strategy must provide for compat-
ibility with varying projects. It should be usable under
a variety of conditions, such as, with various levels of
language, on different hardware, under varying application
environments, and in the absence of automated tools. 1It,
therefore, should not dictate tests but should point out
appropriate test methods throughout the development cycle.

It is possible that special tools, such as flow path analyzers
or test case generators, may be available in some instances
and should be used. Tools must not be critical to the

success of the strategy, however, as this would limit its

use to environments where they are available.

If the nine goals described above are fulfilled, the
strategy should represent an approach to testing which is a
major asset to the development project. This approach shouid
be capable of increasing software reliability through thorough
testing in a wide variety of applications. In addition, it
should be an aid to product definition and design as well

as programming and maintenance.,

1.4 Test Characteristics
A number of test characteristics are required in order

to fulfill testing goals. These are listed in figure 1-2.

=12~

Some of these characteristics reflect test traits, while

others are characteristics of the test strategy.

TESTING CHARACTERISTICS
1. Thorough
2. Flexible
3. Specifiable
4, TUnderstandable
5. Measurable
6. Retainable

Figure 1-2

The first characteristic is thoroughness. This is the
measure of how well the test's expected behavior objective
of exposing as many software errors as possible is met (in
the ideal casze, all errors) (Howden, 1975). These errors
include both errors in executable and nonexecutable phases
of product develeopment. This characteristic is essential
to the goals of detecting and localizing all errors early;
therefore the test strategy should guide in creating thorough
tests. As structure and understandability problems can be
considered contributors to error, thoroughness also contri-

butes to the structure related goals.

sl S

In order to be of practical help in software develop-
ment, the tests, created through the strategy, must be flex-
ible. They must be usable under varied circumstances. The
gtrategy must outline what testing is to be done without
dictating any specifics of the actual test implementation,
This allows the strategy to be applicable throughout a variety
of development environments.

The test strategy must be specifiable. The process
outlined must be uniformly and clearly described with regard
to what each step in testing encompasses and accomplishes.
This description must be done in a manner which leaves
implementation of the tests to the testing activity (so that
the flexibility characteristic is not degraded). Test
progression paths and concepts must be well described to
insure proper usage under varying circumstances.

Understandability is also required, so that tests
implemented through the strategy will indeed meet the strategy
goals. The strategy must be logically structured, so that its
features and requirements are understood from its description.

Test visibility is provided through documentation which
requires that testing be measurable. That is, there must be
some manner of guantifying test results and coverage,

indicating the correctness of results and the effectiveness

-1l

of testing. It is important that the test strategy provide
a consistent means of test measurement and documentation at
each stage of development so that recorded results will
provide evidence of test effectiveness. Evidence of software
improvements, gained through testing, should be available
through systematic error tracking which records problems
encountered and their solutions. Another effect may be the
detection of holes in the strategy which must be corrected

to improve the overall testing process.

Finally, the tests must be retainable. This means they
must be usable with future developments of different projects
or in the maintenance mode of programming., The strategy,
through its flexibility, should be applicable to a wide
range of projects and thus allow some standardization of
the tests, the test process, and quantification of test
results.

If the testing activity generated from the test strategy
has these characteristics, the strategy is capable of
fulfilling its goals. Figure 1-3 lists the test strategy
goals and characteristics supporting them. The characteris-
tics of "specificable" and "understandable®™ do not apply
directly to the goals; rather they support the overall

strategy by making its correct usage clear.

-1 A~

GOALS vs. CHARACTERISTICS
Ma jor Supporting

Goals Characteristics
1. Detect Errors Early Thorough, Flexible
2. Detect All Errors Thorough
3. Reveal Complex Structures Thorough
4, Encourage Good Structure Thorough

and Understandability
5. Provide Error Localization Thorough
6. Provide Maintenance Capability Retainable

7. Provide Positive Visibility Measurable
to the Product

8. Provide Data to Improve the Measurable .
Development Process ’

9. Be Compatible with Diverse Flexible
Development Environments

Figure 1-3

Figure 1-4 presents an overview of the testing strategy.
This illustration provides quick reference to the location of
specific testing guides. Additional information describing
these guides is located in chapter 4. This strategy is divided
into sections covering each phase of the software development
cycle., Within each phase; subsections describe what test
methods are appropriate, at what level tests occur, the order
of test progression, the type of testing, the documentation
produced, where test responsibility lies, and what the overall

accomplishment of testing in that phase is.

-16-

COMPREHENSIVE TEST STRATEGY CONTENTS

Contents ' Page
Definition oL
B.1 Specification Phase 95

In the specification phase of product develop-
ment, static analysis methods are used to
determine that the product specification is
complete and unambiguous and that it satisfies
the customer's needs. This requires supplier/
customer agreement.

B.2 Design Phase 96
In testing the product design, static analysis
methods of testing are used by the product
developers to insure that the design provides
the features necessary to satisfy the product
specification and that the design is consistent.

B.3 Coding/Debugging and Integration Phase 99
Product developers and quality assurance
personnel work together in the phase to insure
that the implemented product accurately matches
the design and correctly performs the required
functions. Static analysis and executional
testing methods culminate in supplier certifica-
tion of the product.

B.4 Delivery Phase 102
The user, or his representatives, use func-
tional tests to ascertain whether or not the
product operates as required by the user's
needs defined 1n the product specification.

B.5 Maintenance Phase 103
Product changes are verified through static
analysis and testing. Verification begins
with analysis of the changes defined in the
product specification and terminates with
testing of the changes in the delivered
rroduct.

Figure 1-4

~4 B

Chapter 2

Current Testing Approaches

The comprehensive strategy for testing is to be built
from current testing approaches. These include generalized
test methods, as well as test generation techniques and
test progression schemes. An understanding of those testing
approaches as described in testing literature is necessary
to select and use them appropriately. This allows strategic
placement of tests within the developmént process in a

manner which provides the most effective testing.

2.1 Test Methods

Two general methods of testing are currently in use:
static analysis and dynamic analysis. 'Static analysis is
testing done to determine product properties without
execution, and dynamic analysis 1s testing done through
execution., As listed in figure 2-1, both are further
separated into specific test methods. These methods
exhibit features which may make them desirable for inclusion
in the test strategy. Their application at wvarious stages
of development and at various levels of the products'
structure contributes to the overall strategy character-

istics and, hence, to fulfilling the strategy goals.

-18-

TESTING METHODS
1. Static Analysis
Code Analysis
Program Proving
2, Dynamic Analysis
Function Testing
Structural Testing

Figure 2-1

Through static analysis the testing of nonexecutable
portions of the product may be accomplishéd. It requires
reading and examining documents and source code to verify
their correctness in terms of algorithms, structure,
understandability, and fidelity to desired functionality.
This provides an initial test method which can be used
prior to the availability of executable code. The two
most common static analysis methods are code analysis
and program proving.

Code analysis is a software verification method by
which the program code is read and statements are made
about its operation. This may be an inspection of software

structure and algorithmic flow by a single programmer, or a

i D

group of programmers may be assembled for a presentation of
the flow structure by its author (Myers, 1979). In such
cases, through having to analyze and present the actions of
the code, many errors become evident. Another code analysis
method is to actually simulate the code's operation for

real inputs, known as a walkthrough (Myers, 1979). Inter-
mediate and termingl variable values are calculated by the
analysis personnel and recorded. Gross errors in the soft-
ware are displayed, but due to the time required in analyzing
and computing results, only a few test cases are possible,
making the results incomplete.

A very sophisticated analysis method is program
proving (Myers, 1979). In proving code, the statements of
the algorithm are examined, and assertions are made about
their action. By inductively and deductively proving that
assertions are correct from preceding assertions, the
effect of the algorithm can be proven correct (Myers, 1979).
The assertions regarding these algorithms then prove the
function of software components, which, when combined, prove
the operation of the entire product. This is, however, a
very complex and time consuming process and is impractical
for all but simple strings of code (unless some form of

automated proving can be used). In addition, the proof

50,

depends on a strict definition of what the expected behavior
of the code will be and the use of accurate assertions. It
does, however, illustrate a building block approach to
verification through analysis.

To actually test the execution of program code,
dynamic analysis must be used. Inputs are selected and
the code executed; then the output values are checked for
suitability. To be absolutely thorough, exhaustive testing,
where all possible input combinations are utiligzed, is
necessary (Myers, 1979). This not only includes data
inputs but all environmental conditions of the system.
Even for small systems and programs this is such a large
number of inputs as to be impossible.

Functional testing (Howden, 1980) is a method by which
a reasonably thorough test of program execution may be
implemented. The criteria here is to execute the software
so that all possible functions, as described in the product
specification, are verified., Test cases are selected from
functionality specifications without considering software
structure. The test inputs must not only check to insure
that expected outputs are correlated to inputs, but also
that inappropriate inputs are handled properly. This is

actually a black box approach {Myers, 1979), where the

-21-~

operation of the software is defined, inputs are sent to
it, and the outputs are verified. '

Another use of functional testing is in measuring
product performance. When software has been found to
operate correctly, profile type tests (which characterize
execution) may be executed to determine how efficiently the
product performs various functions in terms of throughput
and resource (e.g. memory and peripheral) utilization,
Various performance related functions specified, such as
maximum execution time for an application or number of user
instructions executed per second, can then be demonstrated.

One technique of generating functional test cases
(the sets of inputs which exercise software functions)
is to simply use random data patterns. This technique is
practically useless (Myers, 1979), as it does nothing to
attempt to force errors, insure thoroughhess, or stress
the software., It is, however, fairly simple to use.

Another technique is to use a random sample of customer
data as test cases. Here again there is no attempt to
force errors or stress the system. This does, however,
simulate the software's operating environment well, and
if real time conditions are accurate, such a test might be

useful in determining whether or not a user's needs are

-2 -

satisfied and what level of performance is achieved. The
use of a mixture of customer data which has been determined
to accurately simulate a typical run of the application
gives a clearer view of average performance characteristiecs
of the product. An input mixture which simulates the worst
case conditions which the customer would experience will
indicate the product's worst case performance in that
environment.

In order to demonstrate the functional integrity of
the software product, several technigques may be used to
generate a reliable set of test cases. Such a set of‘test
cases implies the absence of errors when the entire set is
executed successfully (Goodenough, Gerhart, 1975). Boundary
value analysis, cause/effect graphing, and error guessing
are techniques which lend themselves to generating test
cases,

Boundary value analysis is a methodology which requires
a partitioning of input conditions into equivalence classes
(Myers, 1979). These are subdomains of the inputs for
which any element of the class is representative of the
entire class. By selecting elements of the sets which are
within the class, within the class but near its limits, on

its 1limits, and just beyond its limits, an effort is made

.

to force errors (it is theorized that these boundaries

are prone to errors). To extend this method the result's
ranges can also be partitioned and test cases selected |
which produce outputs around the edges of their ranges.
Test cases are generated until the desired level of testing
is realized. For functional tests the boundaries of the
equivalence classes-are based on functional software
characteristics.,

The major deficiency of boundary value analysis is
that test cases "Do not explore combinations of input
circumstances” (Myers, 1979, p. 56). No provision is
made to select input values from différent equivalence
classes which may conflict or produce inconsistent results.

Cause/effect graphing provides a systematic means of
selecting combinations of input conditions which produce
high-yield test cases {Myers, 1979). 1In this type of test
case generation, input conditions are mapped to output
results via graphic form. Many of these causes and effects
fall immediately out of the specifications, and this
process can be useful in detecting failures of the speci-
fications. The graph is then converted to a table of
decisions by tracing the graph back from effect to causes.

The decision table entries are then used to generate test

=24~

cases. Product specifications can be used to build func-
tional test cases, and in this way specification deficiencies
. may be revealed. The deficiencies of this technique are

that it does not address boundary conditions specifically,
and it involves a rather cumbersome task. It is a great

deal of work to build the graph and then convert 1t to test
cases.

A third test case generation technique is error guess-
ing (Myers, 1979). Experience in locating errors and
intuition are used to select test cases. Test values which
have been troublesome in past projects may be especially
helpful in testing, or special case values which have been
identified in other areas of the development process may be
useful. It would be difficult to generate a complete set
of tests through this technique, but it provides a good
supplement to tests generated by the other methods.

While these techniques primarily generate large sets
of test cases for executional testing, they may also be
helpful in static analysis. In performing walkthroughs and
code inspections, some type of data processing must be
simulated. Error guessing or boundary value analysis might
be a satisfactory means of selecting limited tests for this

purpose.

-25-

A method of generating test thoroughness through
checking its effectiveness uses mutation testing (Demillo,
Lipton, 1978). It is based on the assumption that any
software product has a finite (although possibly very large)
number of mutants or corrupted versions with a single error
and that programs are normally close to being correct.
Therefore the set of mutants represents an approximation
of all erroneous program conditions. By executing the test
cases on these mutants, only mutants which are equivalent
forms of the correct program should produce correct results.
This then indicates how thorough the test is. When a
mutant does execute properly it must be resolved as to
whether it is truly equivalent code {(e.g. the condition
A#B can be the same as B#A), or is the result of a
deficiency in the test data which does not detect the
error, If it is an erroneous version, test coverage can
be improved by writing a new test case; hence mutation
testing is a test generation technique, Mutation testing
involves a great deal of overhead, first, in producing a
complete set of mutants and, then, in executing the set of
test cases on all of them.,

An alternative to functional testing is structural

testing or path testing (Howden, 1976). This method

-26-

requires analysis of the product or component structure to
distinguish flow paths (strings of statements and decision
branches). By executing test inputs which selectively
execute the flow paths, and by checking results, as well
as intermediate variable values, and by tracing code flow,
the operation of each path may be tested. When all paths
in the structure have heen tested, structural testing is
completed. This type of testing is more cumbersome than
functional testing, because it has the extra burden of
analyzing flow-related errors; however, it may prove useful
in debugging, as information on where the error originated
is more visible from intermediate values.

In selecting test cases to execute structural tests,
input values are selected based on the selection of flow
paths to be traversed. Subdomains of input values or
combinations of subdomains which are representative of each
paths' traversal may be identified. Boundary values and
error sensitive inputs may be especially helpful in
ascertaining that the decisions which cause path selection
are correct and that the paths execute correctly. If care
is taken in selecting test cases, and functional results are
observed, an overlap between functional test cases and

structural test cases may occur.

P

The general consensus of most of the authors knowledg-
able about testing is that no one test method is itself
sufficient, Myers, Howden, Goodenough, and Gerhart all
indicate that static analysis, functional testing, and
structural testing are complementary and should be used

together to improve testing.

2.2 Test Coverage

In order to discern whether or not a set of test
cases is likely to be effective (thorough), test coverage
must be quantified. Coverage is the extent to which the
test cases exercise the software and is the basis for
satisfying test completion criteria.

One coverage measure is function coverage. This is
simply how much of the software's functional character is
tested. It might be explained as how close the input cases
come to producing all of the result effects possible; or
how close the test cases are to 100% detection of all the
mutants in mutation testing.

Structural tests are based on some form of path
coverage. One form of path coverage is statement coverage
which quantifies the total individual statements exercised.
Statement coverage is made more stringent by adding branch

coverage which quantifies the execution of decision outcomes.

P8

By including not only branches but the conditions or
combinations of conditions causing the branch decision, an
even stronger coverage results. The most complete type of
path coverage is one which, not only is based on statement
coverage, branch coverage, and condition coverage, but also
utilizes coverage of loops with varying iterations and
external entry points (Myers, 1979).

In an effort to standardize structural test coverage
measures, a set of levels has been defined for both modules
and systems (Software Research Associates, 1981). Module
test coverages start with CO coverage which is simply
execution of all statements within modules. With the
addition of the condition that all segments are executed,
path coverage designated'Cl, is attained. Ievels of string-
gency continue to build to Cik coverage which requires
execution of all module paths, including reiterative loops
up to k times. C1 coverage is the coverage level most
often advocated as minimum coverage level (Software
Research Associates, 1981).

System coverage measures are similar to module levels.
Coverage level S2 is similar to C1. It requires the invo-
cation of each module, within a system, at least once .-for .
each possible value of logical expression parameters. This

means that each path between modules must be exercised.

o

Various levels of stringency are used to define other
system levels. The S2 level combined with C1 coverage for
modules appears to providé a path coverage criteria
throughout the system.

Besides having a criteria for test coverage, a means
of measuring coverage is also needed. Any generation of a
set of test cases should ideally yield 100% coverage for
the criteria on which it is based. This is, however,
unlikely. Special tools, such as program tracers and flow
analyzers, can be used to check for structural types of
coverage. It is also possible, although cumbersome, to
insert flags and counters into flow paths which, when
dumped on test completion, indicate what statements and
branches were executed, but not under what conditions.
Without special tools structural coverage appears difficult
to quantify with certainty.

Test coverage can be used to determine satisfaction of
test completion criteria. Completion criteria are standards
which when met indicate that no more testing of a piece of
.8oftware is required. These criteria have many forms.

They may be based on achleving a given percentage of one
of the structural test coverages, such as reaching 90%

condition coverage or 100% statement coverage, or a

.-

combination of the two. Completion criteria may also be
based on functional test coverage (Howden, 1380).

Some slightly different completion criteria are based
on error detection (Bowen, 1979). One example of this is a
criteria which indicates that testing is finished when the
rate at which errors are detected falls below a certain
level. This level may be a ratioc of errors to time or
errors to test cases. Another criteria relies on errors
which have been detected per lines of code, or simply the
total number of errors found and corrected. A fhird
criteria is not as concerned with finding errors but is
based on reaching a period of execution time without
encountering failures.

Criteria which are based on minimizing error counts
may tend to dilute test stringency, while those which
require errors to be found have the reverse effect. On the
other hand, it is difficult to predict how many errors are
a suitable threshold, and it may be argued that errors which
seldom occur or are too difficult to produce are not valid
errors. In general, there seems to be a great deal of
doubt about how to apply error level related criteria, and

a great deal of experience and historical data are needed.

-31-~

2.3 Type of Testing

There are two general modes of testing: I1nhcremental
testing which progressively builds program structure and
tests simultaneously, and nonincremental testing which
tests all individual components separately and then
combines them for test all together (Myers, 1979).

Incremental testing through its building block nature
provides increasing levels of confidence as software compo-
nents are tested and added to the overall structure and
retested. This not only repetitively tests the components
through increasing usage, but also verifies interfaces
between them. It also provides a great deal of insight as
to the location of errors when they suddenly appear after
adding a new component and is helpful in debugging.

Nonincremental of "Big Bang" testing does not provide
the aid in debugging and confidence level of incremental
testing. It does, however, allow more parallelism of
testing and may use less machine time because of the elim-
inated test redundancy. This seems to be a poor excuse for
gacrificing a "superior" (Myers, 1979, p. 92) type of

testing which is a key to reliability.

P

2.4 Test Ordering

In addition to the selection of testing methods, a
test activity must alsoc have a logical testing order or
hierarchy. Several common testing orders are listed in
figure 2-2. One order may be used in one stage of deve-

lopment while another may be selected later.

TESTING ORDERS
1 Top Down
2., Bottom Up
3. Sequential
4, Parallel
5. Random
Figure 2-2

Top down testing order starts with the highest level
component in the product and tests it first; then succeed-
ingly lower levels are tested by adding them to the higher
components until the most basic block is reached (Myers,
1979). When a higher level block is under test, known
data may be fed to it from below by stubbing the lower
level blocks. This allows the block under test to be
Judged on its own merit and eliminates any possiblity of

an error from lower components propagating up at this time.

-33~

As a top down design flow is considered a good structured
design method (Zelkowitz, 1978), close coordination between
design and testing order is maintained. An early functional
product skeleton is produced giving management a tangible
accomplishment, However, "The production of stubs is not

a trivial task" (Myers, 1979, p. 94) as they may entail
logic to simulate the operation of the components they are
replacing.

The reverse order is bottom up testing. Here, the
basic functions are tested first, followed by higher level
structures {(Myers, 1979). Each time a higher level component
is applied and tested it utilizes lower level components,
providing additional testing of them. This may add to
test thoroughness. If, however, a lower component does
contain a latent error, isolating it may be more difficult,
and its correction may involve more extensive retesting
back up through the intervening blocks,.

The sequential order of testing is very simple in that
it merely tests components in the sequential order that the
software is structured (Myers, 1979). This is a simple
test order in that no parallelism is introduced in the

process of integrating components. Testing may follow one leg

~3l=

of the structure in a top down order or hottom up order to

its termination. TWhen one leg iscompleted the next leg_is

tested in a like manner. The difference between this and a
strict bottom up or top down test is that ohly one chain is
tested at a time.

Parallel testing also can follow a top down or bottom
up structure. As opposed to sequential testing, it allows
several chains of the program structure to be in test
simultaneously (Myers, 1979). This, of course, requires a
much larger test organization and more resources.

Random testing is a hit or miss selection of module
testing order. Modules are selected at random for test,
possibly in the order of code completion. The module itself
is tested, but no real building of confidence in the program
structure or of its interfaces is gained this way; conse-
quently a great deal of additional testing is needed when
integrating the modules. It may also be difficult to

schedule testing.

2.5 Summary

From these testing methods and techniques, the elements
of the test strategy must be selected. All stages of
product development must employ the most effective test

method, or combination of methods, and use the most cost

-35-

effective test generation techniques. Criteria used to
select and evaluate tests must not only be significant in
test satisfaction but must also be practically implement-

able.

~36-

Chapter 3

Product Development Issues

The general progression of software development must
also be defined before the test approaches from chapter 2
may be placed within the comprehensive test strategy. Such
factors as the level within‘the software structure undergoing
test, the point in the development cycle where the test is
occurring, and the purpose of the test are important in
determining how to test. In addition, there are management
issues such as test planning and test responsibility which

must be addressed.

3.1 Development Life Cycle

The software development process can be divided into
several phases, each of which encompasses related activities.
One such set of phases is listed in figure 3-1 (Metzger,
1973; Zelkowitz, 1978; NCR, 1980; Fairley, 1982). At each
stage certain sub strategies of testing may be required
(Myers, 1979). Early stages will require analysis methods
as there is no executable object to run. In later stages
emphasis shifts to exepution of the software as the

executable object develops.

-3?_

SOFTWARE DEVELOPMENT STAGES
1. Specification {Definition)
2.. Design
3. Coding/Debugging (Programming)
4., Integration (System Test)
5. Delivery (Installation)
6. Maintenance

Figure 3-1

The specification stage is critical to the usability
of the product (NCR, 1980). At this stage the user
requirements, including objectives and constraints, are
formally stated in a specification. The rest of product
development will be based on this specification; therefore,
if it is in error, the error will propagate through all of
the remaining stages and may result in extensive rework
or rejection of the product. It is, therefore, essential
that the specification be tested with respect to its
accuracy, comprehensiveness, understandability, and
exactness. It may be that specification testing will be
an ongoing process, with specification changes due to errors
or redefinitions requiring additional specification tests

in later development stages.

=38

In the design stage the software structure is defined.
The software components are established, the functions are
designated and the interfaces conceived (Metzger, 1973).

In effect, a number of lower level component specifications
are created, as well as a mapping between them. Here again
undetected errors will propagate into later stages, and
every effort must be made to insure that the basic design
is correct.

The coding/debugging stage of the development cycle
produces the building blocks of the product. The components
produced are debugged to at least an initially operational
degree. Further debugging will occur when the components
are integrated. Within this stage the individual programmers
create software components whicH: one, implement the |
functions designed, within the specified constraints;
two, match the required interfaces. They then test and
reiterate their code.

Integrétion is the process of connecting software
components together as designed, producing increasingly
complex software structures, until the product is formed.
Integration begins where coding/debugging terminates. At
this point éctivity is no longer that of individual pro-

grammers but becomes a combined effort. Testing at this

-3G-

stage most likely will reveal incompatabilities in interfaces
and functions, and debugging will be required to revise the
offending blocks of code. Integration is completed with
final approval of the product.

Before becoming usable the product must be made avail-
able to the user and installed. This is the delivery stage.
The user must test to determine that his needs are met and
that the product is operable. Although it is still possible
for specification errors to surface at this time, it is
hoped that all such errors have been detected long previously.
Consequently, all previous testing should be done with a
view towards satisfying the delivery stage requirements and
insuring that the desired objectives match those specified.

Once accepted and in operation any problems which
develop, or enhancements requested, are accomplished through
the maintenance stage of development. This stage continues
throughout the useful life of the product. Any maintenance
to be done begins with a specification stage and flows
through delivery; consequently, the other five stages of
the development cycle are included.

The nature of each stage in the development process

produces specific testing needs. These are needs which may

-4o-

be met through varying test methods and techniques. For
this reason a progression of testing approaches must follow
the software development cycle to make the comprehensive

test strategy effective.

3.2 Software Structure

Software components are often building blocks comprising
a software product. Considering components individually
rather than looking at the entire product often makes
development, including testing, much more manageable. Such
components include modules and units within a system. The
distinction between these structures is often not clear. A
module normally consists of one or more functional operations
which complete a specialized task in an independently compil-
able code segment. One or more modules are then combined
into a unit of a software system. A unit performs related
tasks which accomplish a product feature. The combination
of units completes the software system. As may be seen the
dividing line between modules and units may at times be
ambiguous, and a software product may bea module, unit, or
a system., What is important is that the total product may
consist of a hierarchy of component blocks, each of which

must be operational and reliable before the whole is reliable.

-1

3.3 Testing Levels
Theré are a number of hierarchical testing levels which
can be defined to fulfill specific purposes in testing.

These levels are listed in figure 3-2.

TESTING LEVELS

Level Purpose
Basic Component Levels Verify correctness of
Module individual product
Unit building blocks.
Integration Levels Verify correctness of
Module higher level system
Unit components through

combination of components.

Certification Level Verify overall product
functionality and
acceptability of testing.

Acceptance level Verify overall product
functionality for
contract and user
satisfaction.

Regression Level Reverification of product
and components following
the inclusion of modifi-
cation.

Figure 3-2

The first test level, basic component level testing,
verifies the functionality of individual ﬁroduct components;
consequently, it has two sublevels: +the module level and

unit level. In nonincremental testing éach module would be

oo

tested separately for correctness. When the modules
comprising a unit were all tested they would be combined
into the unit, and the unit tested for correctness. All
additional units would be tested in a like manner before
combining the units and testing the product. In an
incremental approach to testing however, after some initial
modules are verified, the combination process would begin
using the previously tested modules to test additional
modules. At various points module combinations into units
are completed allowing combinations in which units are
integrated and tested.

Integration level testing is the testing of various
stages in combining components and thus overlaps the module
and unit basic component levels of incremental testing.
The module basic component level of test is unique only as
long as single components are involved. The module inte-
gration level is entered concurrently when the structure
under test contains more than one module. TUnit level
integration testing involves the testing of unit combina-
tions and is concurrent with basic component unit level
testing after the initial units are completed. In the
context of nonincremental testing, the module level of

integration test assumes the connotation of testing modules

-

integrated into a unit, and unit integration testing
verifies the completed integration into systems.

Once a product is complete and approaching delivery,
a higher level of testing comes into play: testing for
certification (Sorkowitz, 1979). Certification is stating
that the software has been judged to conform to the speci-
fications describing and constraining it and is therefore
fit for use. This is like attaching the supplier's seal
of approval. Certification may be the result of successful
integration testing, or may be altogether another test
stage which again verifies that the product does in fact
meet its objectives properly. Since modules and units are
sometimes products and are made available to other designers
or systems, it is also possible that they may be individually
certified. This certification should not occur too early.
1f, for example, in certification testing of a using unit,
problems were detected in a certified component, diffi-
culties could result if the component was already installed
in other products. A good time for component certification
might be at certification of the product for which the
component was initially designed.

Acceptance testing is often done by or for the

receiver of the software, after installation. Its concern

Ly -

is with verifying the correct operation of the complete
product in its actual environment, on the data situations
to be processed. Testing should be based on the product
specification and objectives and determines whether the
product actually does what the receiver specified (Myers,
1979; NCR, 1980; Metzger, 1973). In many cases this testing
is referred to as installation testing and is a user moni-
tored extension of certification.

Once the software is accepted and operating, if
changes are made to fix problems or provide enhancements,
regression testing is required (Metzger, 1973). This tests
the changes which are made to a working product. The
concept implies repeat testing on previously tested software
and it does in fact involve some or all of the other levels
of testing. It may actually duplicate original tests or
may use new tests at the same levels. Regression testing

will be an ongoing process as a product is being maintained.

3.4 Test Planning

A plan of testing must be followed throughout testing.
The purpose of the comprehensive test strategy is to
provide a skeleton for implementing such a plan. A test
plan implements the details of testing through test

definition and ordering. It provides a master specification

=45

of the entire testing activity and should identify the items
to be tested, the goals in testing them, the tests to be
executed, resource requirements, requirements to complete
testing, testing organizational structure (perspnnel assign-
ment), and procedures for managing data (IEEE, 1981).

Tests identified in the test plan are implemented
through test specifications (IEEE, 1981). A good test
specification should designate what component is to be tested
and the testing to be done. To define the testing to be done,
a test method should be selected. This could be one of the
static analysis or execution techniques discussed previously.
This, in part, will also define what technique should be
utilized for generating test cases. 1In addition, some
supplemental test case generation may also be indicated.

The criteria for determining that the test is finished needs
to be specified. Finally, the meaning of completion of the
testing should be specified: for example, the module is
complete, the program is certified, or the system is accep-
table., The specifics of these items are all, of course,
dependent on the character of the test, but their application
is guided by the test strategy.

Subordinate to test specifications are test cases and

procedures., Test cases provide the test data referenced

L6

in the test specification, while procedures describe how to
execute the test. It is helpful if each test case includes
documentation on what it tests (e.g. what equivalence class
of boundary conditions), and special conditions it may use
or cause, as well as the input values and results expected.
Test procedures should describe how to recover from errors
and how to terminate.

Each test should have its own test specification. At
each stage of development and level of testing one or more
tests may be necessary to validate the component. This
may cause several test specifications to be grouped together
as a test. There should be a master test specification to
assoclate such a group of tests.

Test specifications can take many forms. They may be
written documents, automated computer files, or files that
produce documents. They may provide descriptions of opera-
tion which include a general algorithm for determining
whether errors are present. Equations may be used to
specify expected results for inputs.

As mentioned, a computer file may be used to implement
a specification, thus providing a media for utilizing auto-
matic testers and generators and for the retention of data

for regressive testing. These are very specialized tools

~47-

being developed for software engineering, which may bé a
part of a complex design automation system. Among automatic
test tools being developed are program analyzers, test
drivers for automated test beds, proving algorithms, flow
and path traces, debuggers, and even automated data gene-
rators. Use of tools such as these, however, would tend to
greatly restrict the application of the test strategy and
are more pertinent to the implementation of a test system
than to its overall strategy.

In addition to calling out the tests to be performed,
the test plan must also describe or reference standards and
procedures to managé the data generated by tests. Test
activity must be monitored. One means of doing this is
through test logs which keep a record of tests performed
and interesting events. Test incident reports and error
reports may be used to ﬁrovide visibiiity to failures of
the software or test mechanism and to the resolution or
corrections of errors. Information about tests must be
compiled into a summary report which not only evaluates the

software tested but also the test itself.

3.5 Responsibility
Testing must be done with the right attitude. Basically,

a program may be, and usually is, tested with the express

i

purpose of proving that it functions properly and does not
contain errors. Any errors which are discovered and cor-
~rected are in effect only by-products of testing. An
opposing attitude toward testing is to prove that a program
does have errors and is therefore incorrect (Myers, 1979).
In this case a valid software component is actually proven
by failure of the test. Conversely, test cases are only
successful if an error is uncovered. It is thought that
the second test attitude probably produces more stringent
testing, and it is under these circumstances that a possible
test completion criteria might be the detection of a pre-
determined number of errors.

A destructive attitude towards testing puts the tester
in the position of doing everything he can to crash the
software and consequently provides more potential for error
detection than with the tester who merely wishes to see a
correct output. This attitude is damaging to the ego of
the developer who constructed the software and may be a dif-
ficult task for him. Furthermore, any errors resulting from
his misunderstanding of the specifications or requirements
may go undetected. This leads to the statement that pro=

grammers should not test their own programs (Myers, 1979).

il

On the other hand, especially at lower levels of testing,
the programmer usually has insight into his design which
allows him to select error prone test cases better than
anather, even though he may not be as capable of destroying
his own creation through error proving. It appears that in
testing the purpose should be a compromise, such as demon-
stration that the program works satisfactorily through
examination of its operation for correctness, with a conscious
effort to flush out errors. This effort to find errors will
greatly influence the selection of the test sets used.

The gquestion of who is to perform testing is one with
differing opinions. As noted, it may be difficult for the
creator of software to deliberately cause it to fail, while
it may be difficult for a second party to become familiar
enough with the software to see its subtleties. This
situation may be improved if the code is well structured,
understandable, and well documented. It appears, however,
that the selection of the tester is at least in part
dependent on the expected accomplishment of the test. A
team approach seems to be a good compromise between the
two approaches, and some variation of this may be appropriate.
One such team would utilize the programmer to design test

cases and a second party to execute them. Another structure

B

might be for a developer to do the testing while being
audited by a guality representative. A third alternative
is that all tests be well documented and turned over to a
separate organization which will analyze the software, the
test cases, and the results to determine whether or not
testing has been sufficient (Sorkowitz, 1979). The team
structure may be dynamic so that in early stages developers
do the testing while in later stages, as certification time
approaches, independent gquality personnel become more

active.

Bl =

Chapter 4
A Test Strategy

A test strategy provides an overall tactical scheme
for the testing activity. To be complete it should nhot be
tied to only one set of testing principles; rather it should
select as many principleé as are useful and apply them in a
manner which maximizes the benefit of testing. The
comprehensive test strategy provides a skeletal guideline
from which a test plan for a specific product development
project can be developed. It provides guldes for when in
the development process testing is to be done, what should
be accomplished, what methods are aﬁpropriate, what test
case generation techniques are useful, how tests are to be
measured, and where test responsibility lies. All of this
information, as presented in chapters 2 and 3, 1s needed in
the planning process. It is included in the test plan and
in the descriptive test specifications referenced by the
test plan.

In an attempt to be as universal as possible, this
strategy is not concerned with details of implementation
which might be influenced by the language, hardware, deve-

lopment organization, or tool availability. Rather,

~52~

it provides a skeleton from which a test activity may be
built to suit a specific application. Appendix B outlines
a comprehensive strategy. The following pages will present

this test strategy.

Minimal Environment

Before describing the test strategy, some basic
assumptions about the product development environment must
be made. These assumptions provide a minimal capability of
testing and therefore should not limit the use of the
strategy.

First of all, it is assumed that some form'of program
tracing is available. This may be a sophisticated automated
tool, or a crude method whereby breakpoints are manually
inserted in the code. Any basic software debug tool should
provide at least a minimal capability of this, and without
it no real information about product performance can be
obtained.

It is also assumed that expected outputs of the product
can be predicted for given inputs (Howden, 1978), and
compared with actual outputs. Here again, this may be, at
the least, a manual means of calulating expected results

and comparing them to observed values, or it can be an

_53-

automated system which models expected behavior and auto-
matically compares results. It should be noted that the
second case may actually involve a second version of the
product which models expected behavior, and care should be
taken in such a case not to replicate the product, which

could cause replicated errors to occur in the tester.

Strategy Structure

. The test strategy is composed of components which
guide the sequence of testing. A component of the strategy
describes testing to be done in each phase of the develop-
ment process. The components for the phases include
information regarding what types of testing should be done,
to what level, and by whom, as well as how to document and
report activity. Through this information the strategy is
converted to a functioning test process described in the
test documents of appendix C.

The test plan of appendix C is the overall view of the
test activity and must call out all tests and their ordering.
It must schedule when tests are to occur and what resources
are needed. While this is basically a supervisory document,
it is the thread which ties the individual tests together

and minimizes roadblocks. Test specifications dictate what

skl

test methods are used, how test cases are generated, and
what goals or completion criteria apply to the individual
tests. The test cases generated, 'and procedures for exe-
cuting them, are also contained in the specifications. All
of this information is guided by the test strategy, and
actual form is dependent on the development organization.

Chapter 5 covers implementation issues in greater detail.

Project Example

Figures #4-1, 4-2, and 4-3 define an example of a
product devélopment project which is used in this chapter.
While it is a simplistic example it illustrates application
of the strategy without implying limitations to its usage.
Use of.this example in describing the test strategy will

clarify application of the strategy.

55

EXAMPIE SOFTWARE PRODUCT STRUCTURE

Unit 1

1/

Unit 2
[Mogule 1
I3 I4
Module 2 Module 3
1/ N\
Module &4 (Module 5

<D
quﬂa;Z P;T

I2

Unit 3

P1, P2, and P3 are logical flow paths in Module 4

selected by decisions D1 and D2. I1-I6 are inter-

faces between software components.

Figure 4-1

~Efe

EXAMPLE SPECIFICATION

The requirements of the product are expressed in

statements R1 and RZ.

1.

Product Specification: The product provides the
functionality expressed as Fl and F2.

Unit 1 Specification: This unit provides the function-
ality expressed as F1 and F2. It places an external
requirement of R3 on unit 2 through Interface Il17, and

a requirement of R4 on unit 3 through Interface 72°,

Unit 2 Specification: This unit proviges the function-
ality of F3 to unit 1 via interface 117, (The produc-
tion of F3 is the subject of detailed design within
Unit 2, items 5-9).

Unit 3 Specification: This unit proviges the function-
ality of F4 to unit 1 via interface I2%.

Module 1 Specification: This moduile proguces function-
ality F3 for unit 2 through interface I1~., It places
an external Bequirement for R5 on module 2 tgrough
interface I3~, and for R6 on module 3 via I4 .

Module 2 Specification: This modu%e produces F5
functignality through interface 13 It reqguires R7
via I5° from module 4 and R8 via I6 from module 5.

Module 3 Specification: _This module produces Fé6
functionality through I4~.

Module 4 Specificatign: This module provides F7
functionality via I5™.

Module 5 Specifica‘tioh:S This module produces function-
ality F8 through the I6" interface.

Note: Interfaces IX° and IX® indicate the opposite
sides (ordinate or calling and subordinate
or returning) of interface IX.

Figure 4-2

-57-

EXAMPLE DEVELOPMENT ORGANIZATION

GENERAL MANAGER

[1 |}
System Manager - - - - - - - QA Manager
) | !]
Unit 1 Unit 3 Unit 1 Unit 3
PL PL QA Rep. QA Rep.
Unit 2 Unit 2
Project Leader QA Rep.
H - T
Developer Developer
Module 4
Developer
- Figure 4-3

w58

4,1 Specification Phase Test

Testing begins at the specification stage of software
development, The specification is a concrete representation
of what the software is to be and, therefore, must be correct
before the product can be designed and built. The purpose
of specificatipn testing, therefore, is to insure agreement
between the customer and developer regarding the product's
nature. The proper application of an appropriate test

method is necessary to accomplish this.

Test Method

Since the specification is not an executable type object,
static analysis must be used to verify it through statements
relating functionality produced to that required by the user.
The difficulty of the analysis depends on the specification
structure. If the specification is well structured and
written in an unambiguous manner, the objectives it presents
will fall out clearly. They should closely match the user's
requirements, making the comparison almost trivial.

In the product specification of figure 4-2 there are
two functions documented as the overall functional product
definition. These functions might be performance levels

provided, human interface features, or descriptions of

59

results provided by the product. They define how the pro-
duct behaves and, as such, are basic statements about the
product (F1 and F2). To show that the spécification is
complete the user's requirements should be stated in similar
terms, (R1 and R2). There should then be a one to one
correspondence between the functions and requirements

(e.g. F1=R1, F2=R2), 1If the match is not perfect, for
example, if there are requirements without supporting
functions, or the equivalence of functions and requirements
is in doubt, the specification may be incomplete or contain
ambiguities. Both of these are product specification errors
which this test stage should detect. The other possibility
is that the requirements are incorrect, and this is also

the time to resolve such misunderstandings.

Test Level

Verification of the specification is actually an
acceptance level process. It involves verification that
the customer or user concurs with the requirements and
objectives before the development process continues. This
is nonincremental in nature and does not involve any ordering
of the process, other than that there may be some basic

functions which are required to support the system concepts.

-60-

This test level is not finished until all discrepancies
between the user requirements and the specification have

been resolved.

Testers

The customer plays an important role in verifying
the product specification. He must participate so that
his approval can be given when verification is complete,
signifying that the defined product is what he is prepared
to accept. In addition, the customer personnel are more
likely to see specification deficiencies or ambiguities, as
they know their requirements, which are not necessarily
what the developers perceive them to be, and they can
extract what the specification states rather than what the
author meant it to say. The developers' part in verifica-
tion is to support analysis of the gspecification and insure
that misunderstandings or dilscrepancies are corrected.

A suggested team approach includes the System Manager
from Figure 4-3 and an experienced project leader along with
their counterparts from the customer organization., The man-
agers provide the contractual authority necessary for approval,
while the technical level provides development and analysis
This keeps the team small enough to communicate and operate

effectively.

=61=

Documentation

Formal documents produced should include lists of
functions, inputs, outputs, performance levels, and con-
straints. -All items should be specified in a manner which
makes them guantifiable (IEEE, 1981). In addition, docu-
mentation of specification changes or areas of misunder-
standing is helpful to provide background for any problems
or controversies occurring at later stages. All of these
documents must carry the end user's approval. If, in later
stages, changes affecting the specification are desired, or
problems with the specification are found, they should be
documented and again submitted to analysis and acceptance
with the user. Changes which are the result of specifica-
tion error should not be combined with reguirements changes,

ag this would not provide an accurate error history.

Accomplishment

The result of this type of analysis will be a defini-
tive product specification from which the system can be
designed. It encourages a well written specification with
an accurate history of requirements and should insure that
the user is aware of what he will receive. It also provides

a basis for acceptance testing of the final product.

-62-

4,2 Design Phase Test

In the design stage of development the elements of the
product specification are broken down and used to generate
lower level specifications of the product's components.
These lower level specifications must define the functions
provided by each block and its interfaces and what perfor-
mance limits apply to each block (e.g. maximum execution
time allowed for a module). Before constructing the actual
blocks, these specifications must also be verified in order
to minimige false starts and code reiterations in the coding
stage of development. Here again the correct combination of

testing practices is necessary.

Test Method

Component specifications are still not executable
structures and static analysis must be used. A combination
of two techniques seems most appropriate. Functionality is
proven for each block from its specification. 1In addition,
the structure is walked through to verify interfaces and
the functionality of the product.

In proving the design of the individual components, the
elements of the product specification are compared to the
functions defined by the component specifications. The

product requirements have already been fulfilled in the

B3

functional analysis of the product specification; there-

fore, a set of required functions is available. As
additional functions are reguired during design, they are
added to this list. As the design progresses, the component
specifications provide fulfillment of these functions. This
list should also contain information about what component
(system level or another unit) requires the function and
in which component it is provided. This produces a map of
the designed functional pieces.

With respect to the example, a chart, such as figure
4-4, might be produced. The initial entries are the pro-
duct requirements and the defined functions of unit 1 which
satisfy them. Then the functions required by unit 1 from
hierarchically subordinate components are entered (R3 and
R4). F3 is supplied by unit 2 and F4 by unit 3 so they
are added. This process continues down the hierarchy in
a top down manner. As with product specification verifi-
cation, there should be a correspondence between functional
requirements and functions specified. If this match is
not perfect, design errors have been detected and must be

corrected.,

64—

COMPONENT /REQUIREMENT FUNCTION/COMPONENT

Product Ri1, R2 Fl, F2 Unit 1

Unit 1 R3 F3 Unit 2, Module 1
Unit 1 RY Fl Unit 3

Module 1 R5 F5 Module 2

Module 1 R6 Fé6 Module 3

Module 2 R7 P7 Module 4

Module 2 R8 F8 Module 5

Software Component Specification Test

Figure 4-4

As the components are defined the consistency of their
interfaces must also be verified. For example, the inter-
face definition of I1° in the unit 1 specification should
match the I1° definition in the unit 2 specification. If
the match is not perfect design errors have been detected,
and the interface must be resolved. It may be necessary
to build tables defining the interfaces which include data
items, their types, the direction they are being passed as
well as flow information on how control passes 1o the other
component. There would then be two matching definitions of
I1, one derived from the unit 1 specification and the other

from the unit 2 specification.

~65-

Test Flow

Design testing follows a top down flow. This closely
follows a top down structured design flow and allows testing
to overlap development. In fact, as functional requirements
are extracted they may be used in developing specifications
at the next lower level. When a component has been speci-
fied, verification of the next level above can be completed.
This provides early visibility to the product structure so
that project planning can be completed. If a design pro-
gression other than top down were used, top down verification
would still be applicable, but the benefits of closely
following design would not apply. |

In following the structural hierarchy for testing,
three levels of testing occur. An incremental integration
test of the mating of unit components is accomplished as
well as a test of the unit and module designs.

After the entire product is designed, a final inte-
gration test of the design is in order. This is done by
walking through the component specifications. For example,
a set of product flow scenarios would be selected from the
specifications. One scenario would be traversal of inter-
faces I1, I3, and I5 of figure 4-1. In this traversal

functional characteristics of unit 1, unit 2, module 1,

. BB~

module 2 and module 4 are reverified, as well as the con-
sistency of the interfaces. As this analysis is time
consuming the number of scenarios possible is limited;
however, all interfaces should be used at least once imply-
ing an S1 coverage of all module access paths. Design
testing is completed when all functional requirements and
interface matches are correct, and S1 walkthrough coverage

is satisfied.

Testers

A small team of technical personnel within the deve-
lopment organization, not including the actual designers,
should be used for design testing. These testers should
have the expertise to judge the merits of the product design,
while not being burdened with the details of implementation.
Use of the technical individuals from the specification
test team provides a knowledge base more closely coupled
to the overall product reguirements. Additional team mem-
bers from the quality assurance organization may be used to
help weed out ambiguities and to begin bringing the quality
group up to speed on the product structure. The actual |
designers should be available to the team for explanation

and resolution of design problems.

~67-

Documentation and Accomplishment

When the design is complete, a set of tested functional
specifications describing the system design are complete.
These probably include flow diagrams, function charts, and
interface definitions, as well as timing and resource
allocation tables. In addtion, there should be documenta-
tion similar to that in the specifications phase showing
functionality of the specifications. There should also be
records of the walkthroughs. Any structure or understand-
ability problems, as well as consistency gaps, should have
been detected in this process, especially if individuals
not intimate with the design were used to audit the walk-
throughs. The use of quality assurance personnel provides
this as well as allowing QA to start getting acquainted with
the software they must later certify.

As the inital part of the design process is exploratory,
changes made in progress need not be tracked. However,
beginning with the walkthrough all inconsistencies detected
should be treated as errors and so recorded. Differen-
tiation should be made between design errors and latent
specification errors detected. Changes made to correct
deficiencies must be documented and made available to

gveryone concerned.

-68-

In addition to the testing of the design, completion
of this stage provides a product structure from which the
test plan and, at least, the beginning of the test specifi-
cations can be generated. Project planning is dependent on

this design structure.

4.3 Coding/Debugging and Integration Phase Test

Testing in the coding/debugging stage of development
and in the integration stage are very simiiar. In fact,
testing of coded software components often requires some
degree of integration, and errors are often found and
corrected in the integration process. 1In actuality, this
appears to be one test process which extends through both
development stages and which produces c¢orrect functional

software.

Test Methods

In the coding/debugging stage of development, verifi-
cation begins with static analysis. During the initial coding,
walkthroughs should again be used to verify algorithms and
their interfaces. Code inspections should also be used to
insure that good program structure is maintained. 1In
addition, if the code inspections and walkthroughs are

participated in by those to be involved in testing, a basis

-69-

for the selection of test cases will be established through
this analysis. TFor example, the module 4 developer of
figure 4-3 should continually inspect his code structure to
maintain its understandability and simplicity where possible.
At periodic points the unit 2 project leader should inspect
module 4 code for the same things. As significant functional
parts of module 4 are developed a structured walkthrough
should be held. A small team consisting of the module 4
developer, the unit 2 project leader, and the QA repre-
sentative verify the functionality of the algorithms by
simulating their execution on sample data inputs.

As the coding of modules nears completion, executable
objects become available, and the developer begins testing
through execution. The functionality of the module must he
verified; therefore, test cases must be executed which
perform all the functions defined for the module. Also
the flow behavior must be tested to verify that it is as
expected, For this reason, both functional and structural
testing is done fhroughout this test stage.

Test cases are selected through boundary value analysis
and error guessing techniques. Functional test cases are
selected to demonstrate the correct performance of all
module functions with input values adjacent to and on the

boundarieg of their domains. Cases are also selected to

-70-

demonstrate the production of results adjacent to and on
theilr range boundaries. Once the boundaries are established,
inputs within their domains and results within ranges should
also be tested. To supplement these test cases, additional
cases should concern data which is especially critical or
sensitive. Funectional testing of module 4 in the example
would involve verification of function F7 under all of

these conditions.

Structural testing which may be combined with the
functional test activity by intelligent test case selection
indicates that the module structure is as expected. Here
again, test values should be within acceptable ranges,
approach limits from both sides, 'and lie outside the ranges.
In addition, all combinations of input condition types (sets
of conditions which cause a unique flow path to execute)
should be tested. In determining that the paths of the
module are indeed executed as expected, some form of program
trace must be available to illustrate that correct path
execution occurred. Path testing ideally is not complete
until all acceptable module flow paths, including simple
and reiterative loop cases, are executed, and unacceptable
paths are shown to be unexecutable. C1 coverage which

requires the execution of all code segments and decision

=P

branches is more attainable. In the example, this would
require the execution of paths P1, P2, and P3 through
decision branches D1 and D2. In the event that path veri-
fication is not possible extra attention should be given to
functional tests which would exercise the structure.

If certain flow paths can be identified as critical
to performance, such as the lengthiest possible path, or
one which utilizes a large number of resources, they should
be executed with a view toward insuring that overall per-
formance will be within limits. If performance goals can
not be met, the modules can be optimized at this time to
improve performance. In optimization, testing must be
repeated, not only to test performance, but to insure that

the flow paths and functionality are still valid.

Test Flow

Initially in coding/debugging, testing is at the module
level. This begins as a parallel process with a number of
modules under test simultaneously. Once the lower level
modules of a unit hierarchy are complete they may be used
to help test higher modules. At this point, testing becomes
an incremental, bottom up process, and a phase of integra-
tion is entered, even though coding and debugging are not

finished. 1In using lower level modules to test the higher

=

ones, the necessity for complex stubs to simulate subordi-
nate modules is eliminated (Myers, 1979). The only external
programming needed is a set of drivers to feed data to the
module under test. In addition, the lower level modules

are retested each time 3 higher one accesses them during test,
and the module interfaces are tested during integration.

From the example, a possible test order would be indivi-
dual testing of modules 3, 4, and 5 through test drivers
which replace modules 1 and 2. The next step would be the
integration of module 2 with modules 4 and 5. Testing
would then be done on module 2 through a test driver replac-
ing module 1. Integrating modules 1 and 3 and testing
module 1 then completes module testing in unit 2. Concur-~
rently module testing may be proceeding in the same manner
for modules in unit 3. The end result of module testing
then is units.

Throughout module testing both functional and struc-
tural tests are important, and boundary value analysis and
error guessing are appropriate for test case selection. Ci
test coverage is applied to internal module paths, but the
external flow paths are also important after integration
begins and S2 coverage may be applied. This requires the

execution of all the paths between modules. In the example

=73~

this would be the following paths for unit 2: module 1, 3;
module 1, 2, 4; and module 1, 2, 5.

As units are completed, integration continues combining
units into a system. Testing proceeds as with module test-
ing in a bottom up order with functional and structural tests.
S2 coverage is applied to the inter unit access paths and
the interfaces are tested. One problem occurs in higher
level units like unit 1. This problem is the testing of
modules within the unit, which require functions from outside
the unit. One solution to this is to delay the module test-
ing of this unit, or at least the modules affected, until the
subordinate units are complete. The other solution is to
go ahead and generate stubs to fill these gaps and permit
unit development to proceed. Whatever the method used, the
testing of coded components and the product is not finished
until the desired coverage levels are satisfied, and inte-

grated code is found to be functional.

Testers

The component developers perform module and unit testing
themselves., For example, module 4 is tested by the module
4 developer. As integration occurs the developer whose

module is entering the test receives responsibility

-4

(e.g. the module 2 developer becomes the tester when module
2 is integrated with modules 3 and 4). In addition, a QA
representative should work with the developers to promote
rigor in test case selection and provide support with test
tools, When unit testing begins it may be necessary to
include the project leaders and additional developers on
the team.

Certification completes module and unit testing and
integration. This is approval of the product and its
components by the QA organization. This i1s done either on
the basis of knowledge about the module and unit tests or
another functional type test. A technique found guite
satisfactory by HUD (Sorkowitz, 1979) is to provide QA
with the test cases and results for audit. QA then
determines whether or not test criteria are met and if the
testing was satisfactory, and then certifies or rejects
the component with noted deficiencies. This saves the
redundancy of retesting. One modification to this scheme
might be to delay certification of product components until
the product is certified, and to add a functional test of
the product for certification purpose. When certifying
the product or its components, quality assurance becomes
the governing organization. Any discrepancies not agreed

upon between the developers and the gquality group must be

75

resolved through upper level management before development

proceeds,

Documentation

When the integration development stage is complete,
the product 1s complete and ready for delivery. A number
of documents are now available. The test specifications
containing test cases and procedures are now complete.
There are additional documents of early code inspections
and walkthroughs. There should also be a number of test
summary reports which report the incidents and findings for
each module and unit test as well as certification. All
coding errors detected after a module enters module test
should be noted in the error records, as well as any design

or specification errors.

Accomplishment

In reaching product certification it may be necessary
at several points to go back several stages to make correc-
tions. When this happens all intervening tests must be
repeated with supplemental tests to verify the correction.
By the time the product is certified, while it still can

not be guaranteed correct, it has been tested and examined

s

S0 intensively that it should by now be quite reliable. It

also should perform as well or better than specified.

4.4 Delivery Phase Test

Once the user has the product available, his acceptance
team will functionally test it. Their test specification
will plan and outline procedures, test cases, and accep-
tance criteria for desighating the sy=stem acceptable.
Their tests should be concentrated on executing their
requirements on live data. However, instead of using results
in business, they are checked for fidelity to expected
execution. In the final stages of acceptance testing, the
system should actually be put in use for a period of time.
A careful analysis of what the system accomplishes, in what
time frame, and at what resource utilization level, should
be made and verified against the requirements desired,
because, once the product is accepted, the customer is
committed to it. Any problems which occur after delivery
must be proven to be development deficiencies or else
changes must be negotiated as enhancements. Any errors
detected at delivery should be given special attention to
determine why they were not detected earlier. This is not
to try and fix blame, but is an attempt to improve the test

plan or the strategy as reguired.

=77-

4.5 Maintenance Phase Test

Software maintenance testing is actually a repeat of
the process originally used in testing the product. It
starts with analysis of changes to the design specification
and culminates in the acceptance of the changes in the
system by the customer. While only the tests applicable
to areas of change need be repeated, even a small change
may affect an entire system, and its overall functionality
must be re-verified. This makes testing for program
maintenance almost as large a task as the original develop-
ment testing; ‘For this reason, the test specifications and
test case lists used originally are a big help in regression
testing. Of even greater help would be a testing environ-
ment which uses computer data files and automated drivers

to execute test cases.

L,6 Test Responsibility

This strategy utilizes a team approach to testing. 1In
the specification phase of development, responsibility for
verification rests with the customer and supplier, with
input on feasibility and special considerations from their
technical personnel. Iater development stages are more
developer intensive. In the design phase, the supplier,
developers and the specification test team verify component
design. This permits fast recovery as inconsistencies are

S

detected. When verifying the design of the overall unit,
the inclusion of quality assurance in the team adds rigidity
to conformance with the specification. Coding/debugging and
integration testing is also a highly developer oriented
activity allowing fast turn around of errors. In this phase,
however, quality assurance becomes more actively involved
and is, therefore, required on the team to insure thorough-
ness in testing and to give approval for certification.
Finally, in product delivery the test responsibility shifts
back to the customer whose technical personnel must evaluate
the product.

The use of teams provides é means of using several types
of experience to implement tests. The developers are there
to provide basic design details and, at early stages, test
their development step by step. Quality assurance provides
auditing and expertise in the logistics of testing. Iater,
quality assurance provides authority and rigidity in test-
ing, while developers give functional back up and analysis
support.

In order for this team approach to be most effective,
quality assurance personnel must be trained in testing.

They must have a thorough background in the various test

methods and tools. They must also be able to communicate

’79

with developers and take any pressure applied to them when
they become unpopular for finding faults. The developers,

on the other hand, should at least be aware of the techniques
of good testing and its purpose. They must be able to
analyze their work objectively and communicate their know-
ledge to others, Finally, they must be willing to cooperate
in a process which is designed to find hidden faults in

their work and be able to react as necessary.

L,7 Summary

While software tested in this manner could still have
flaws (absolute completeness in testing is not attainable),
it is hoped that a high degree of reliability has been
demonstrated and gquality greatly improved. Testing has
occurred throughout the products evolution, so that fixes
éould be installed early, reducing the effort and risk
involved in méking changes. Much test redundancy has been
provided, reduﬁing the risks of erroneous testing and
improving completeness (e.g. functional and structural
testing at several levels). Much descriptive documentation
has been produced to illustrate reliability measures and
provide assistance with maintenance. Overall, an effective

test activity should be the result of this strategy.

~80-

Chapter 5

Implementation of Testing

In order to implement a test activity from the compre-
hensive test strategy, a test plan must be generated. The
test plan applies the strategy test principles to a real
enviromment. The environment defines tool availability,
resource allocation, development scheduling and personnel
available, as well as product dependent characteristics,
such as reliability requirements, and complexity. Figure
5-1 lists the documents outlined in Appendix C which imple-
ment a test plan. In general the test activity can not be
fully defined until the product design stage is completed,
as the test plan and test specifications will call out
individual component tests. The test strategy is used to
guide the selection of tests and the means of managing test

data within the project.

5.1 Test Definition

An initial test plan should be generated at product
inception. This plan can define the administrative aspects
of testing and the product test goals. It also plans the
specification testing phase. The plan should be open ended,

80 that as design proceeds the tests to be used for design

-81-

and code verification can be included. In addition to
generating the tests mandated by the strategy, other tests
might also be incorporated. _As an example, mutation testing
might be specified as a requirement for determining test
coverage and generating additional test cases. Such
additions could be helpful if a particularly critical
product was being developed. This allows the application of

the strategy to be dynamic and comprehensive.

IMPLEMENTATION DOCUMENTATION
Test Plan
Test Specification
Test Logs
Test Incident Reports (Error Reports)
Test Incident Resolution Reports
Test Summary Report

Figure 5-1

Application of the test strategy requires the defini-
tion of tests for each software structure. Each mode of
testing on each structure must be described in a test
specification. These documents are generated at the begin-
ning of each components' development and later have appended

to them test cases which designate the inputs and outputs

-82-

which should occur, as well as provide an execution flow.
Test lists or scripts (NCR, 1980) are one acceptable means
of specifying tests.

While executing tests, the events that occur must be
recorded. A test log (IEEE, 1981) provides such a media.
Events include satisfactory test case completion, problems
or variances encountered in the test method, and software
bugs detected. As problems are encountered they must be
resolved, and any report of an incident, be it with the
test method or the software under test, should have an
associated resolution report. Upon completion, the execu-
tion documents provide a baslis for a summary of the test
which should report the findings of the test (the product
is acceptable or not, and if not, its disposition), and
analysis of the effectiveness of testing and recommenda-

tions regarding it.

5.2 Test Environment Issues

Rather than simply integrating a test activity based
on the cbmprehensive strategy into an existing development
process, some measures may be taken by management to optimize
development. Several steps may be taken to provide a
development environment which realizes the greatest bene-

fits from the strategy.

-83-

One important step is the establishment of QA indepen-
dence. While QA is still a part of product development, it
is detrimental to product gquality for the product developers
to control QA. This is often the case when QA reports to
the same manager as the developers. The tendency is often
for the manager who is concerned with getting a product on
the market to play down quality issues which delay his
schedule. If QA is managed separately and at the same level
as product development, gquality or testing issues which can
not be resolved must pass through a higher management level,
permitting a more objective evaluation of quality concerns
versus schedule concerns.

Another enhancement to development and testing is
automated tools. An investment in effective tools can be
very valuable in reducing the burden of testing, increasing
test effectiveness, and maintaining.tests. Automated test
case generators and verifiers would greatly reduce the time
required in these tasks and could be much more thorough
than a human. Special cases could still be inserted manually
as reguired. Automated test beds and data management
systems could be very useful for executing the tests and
reporting such things as test coverage, test results, and

test criteria satisfaction. An almost essential tool for

-84

structural‘test analysis is a flow tracer, which, coupled
with a flow analyzer, could automate the verification of
structural test results and test coverage. In addition,
automated tools could generate reports on the tests. The
problems with most tools at this time is that they are still
at the edge of computer technology. In many cases the use
of tools is still very theoretical, and if available at all,
application is very limited. In the future, however, it is
expected that some very powerful tools will be available.

Changes in the development process may also be desir-
able. In chapter 3, the design test was shown to follow a
top down order, while integration tests are bottom up. If
product design also follows a top down order, design veri-
fication can begin almost immediately and closely follows
design. The verification process can even help supply
information to lower levels of design. Use of the top down
flow here produces an early overall design which is needed +o
complete project planning and minimize the lag time until
the design is completely verified.

In integration, however, bottom up testing reduces the
complexity of external code used only for testing and pro-
vides a building block approach to integration. To minimize
the lag time of testing behind coding, a bottom up coding

order should be established in the project plan.

-85-

5.3 Conclusion

By utilizing a strategy which provides systematic
testing, the project development cycle and test activity
can merge. This produces an improved development eﬁviron—
ment and order, not only beneficial to product design, but
also to the production of high quality software.

In addition to test planning, associated software
administrative plans which are beyond the scope of the
test strategy, but relate to it, are also required. Admin-
istration includes such issues as project management
(resource allocation), product configuration control,

maintenance reporting, and release control (IEEE, 1980).

-86-

Chapter 6

Concluding Remarks

The characteristics of a test strategy required to
fulfill the goals of testing as defined in chapter 1 are
reliable, flexible, unambiguous, understandable, measure-
able, and retainable. This strategy provides for these
characteristics and, thus, meets the goals of early error
detection, complete error detection, complex structure
revelation, encouragement of good structure and understand-
ability, provision for debugging, maintenance capability,
user confidence, improvement of testing, and compatability
with diverse development environments. Although the ultimate
success of testing is dependent on test implementation, this
strategy provides guidelines for all the elements essential
to successful testing.

While many of the ideas presented in this test
strategy have been theorized or practiced by experts on
testing, the strategy as a whole is untried. A subsequent
step should be its application to a live development project.
In this way its applicability to generating a test activity
may be tried, and the merit of the testing principles
determined. Deficiencies in the strategy may be corrected,

and i1t is possible that some specialization of the strategy

-87-

towards specific environments may occur. This would make
the strategy less general in applicability but would add

to its detail for a given project, It is even possible that
a catalog of strategies, each geared toward a certain type

of project, could be developed.

-88-

Appendix A

Glossary

In order to add consistency to this report, the usage

of some standard terms is defined below. These are terms

having a generalized usage which may vary slightly in liter-

ature. The usage in this report is a composite of the varied
usages or is a referenced usage of the term.

Acceptance Testing - Testing to insure that the product
compares favorably with the initial regquirements and
needs of the user (Myers, 1979).

Certification - Approval by a supplier representative that
a product meets the supplier's guality standards and

is available for delivery.

Code - A pattern, or group of patterns, of programming
statements which are written to produce some behavior.

Code Segment - A sequential string of programming statements
which are always executed together and contain no branches.

Complete - Contains all the possibilities of interest.

Complexity - The deviation from simplicity. This refers to
understandability and size scale as well as the intricacy.

Domains - The sets of values acceptable as inputs of the
product.

Driver - "A small module that must be coded to drive or
transmit test cases through the module under test"

(Myers, 1979, p. 89).

Error - A deviation from desired or correct behavior.

Fidelity - Faithfulness to expected software behavior.

-B9g=

Flow Decision - A branch, based on a conditional clause,
which determines the flow path segments.

Flow Path - A chain of code segments which are sequentially
executable.

Incremental Testing - An approach to testing in which
components are combined in a step by step manner with
previously tested components for testing purposes
(Myers, 1979).

Interface - The mating portion of software components which
is used to give or receive information and control.

Module - A separately compilable group of flow paths which
produces a function or group of functions (NCR, 1978).

Module Testing - Testing of product modules to verify their
correctness.

Mutation Testing - Effectiveness verification and generation
of test cases through execution of test cases on soft-
ware versions in which errors have been inserted.

Program - A group of one or more modules which performs a
specific task or tasks.

Quality - The adherance of a product to its desired behavior
and standards.

Ranges - The sets of values acceptable as outputs of the
product.

Regression Testing - The retesting of portions of the product
previously completed for the purpose of determining
that changes have not caused unwanted side effects
(Metzger, 1973). :
Reliability - A measure of quality which determines how
faithfully and consistently the desired behavior is
produced.

Robustness - The ability of software to perform correctly
under varied conditions.

G e

Scale - The guantity or size of software objects. This
includes such characteristics as number of lines of
code, number of components, znd amount of documenta-
tion required.

Software Component - A substructure of a software product
which is uniquely identifiable, such as a module or
unit.

Software Volume - The gquantity of code in terms of state-
ment lines, object instructions, and documentation.

Specification - A description of the details and of require-
ments of an object (NCR, 1978),.
Specifications may apply to the following objects:

Requirements - Describes user needs and constraints.
Product - Describes characteristics of the product.

Components - Describes requirements and character-
istics of product modules and units.

Stub - A cbmponent which simulates the functions of another
component for the purpose of testing components
externally utilizing those functions,

System - A group of software components {normally units)
which cover the entire spectrum of an individual
computer's applications.

Test - A set of data inputs, executed in a certain set of
procedures, which determines correctness.

Test Activity - The overall process of testing which includes
the testers, tests, and the object of the test.

Test Case - A set of input conditions which hopefully will
expose an error when executed on by the product.

Several techniques may be used to generate test cases
such as follows:

Boundary Value Analysis - Selects test cases based
on input and output proximity to domain and
range limits.

Cause/Effect Graphing - Selects test cases based
on a functional mapping of inputs to outputs.

Error Guessing - Selects test cases based on
intuitive and historical error possibilities.

Test Coverage Measures - A criteria for determining the
extent to which a set of test cases exercise or test
the product. Some of the common measurement standards
defined by Software Research Associates are defined
below (Software Research Associates, 1981 pp. 3-5).

"CO Execute all statements in a program.”

"cl Execute all segments in a program."”

o2 Cl and also one exterior and an upper and
lower interior point."

"Cik Cl plus one test for each iteration
18] ,2, vk bimes,"

"S0 Invoke all modules at least once.”

"S1 All invocations to modules exercised at
least once."

"s2 All invocations to modules for each

possible value of logical expression
(actual) parameters.”

Test Level - A subset of 3 test activity which accomplishes
one stage of software verification.

Test Script - A procedural description of how to execute a
test. It contains iInformation as to what actions must
be taken, in what order and what the expectations are
(Metzger, 1973).

Thorough - The degree to which all applicable cases are
examined.

-92-

Unit - A grouping of software modules which perform a
specific task or group of related tasks.

Unit Testing - Testing of product units to verify their
correctness.

*93=

Appendix B

Comprehensive Test Strategy

Definition

This test strategy provides an integrated testing
approach which encompasses the entire product development
process. It outlines what testing is to be done, in what
manner, what general test standards must be met, what
records are required, where responsibility (the tester)
lies, and what the purpose of each stage of testing is
(IEEE, 1981).

In many stages of the plan, complimentary technigues
of testing (Myers, 1979) are specified and various test
levels are called for. Each level is to be carried out
with each test technique. For example, in the coding/
debugging phase, module, module integration, unit integra-
tion, and certification testing is to be carried out under
each of the test techniques: analysis, path testing, and
functional testing. This does not preclude combining tests
where applicable as long as all tests are still provided.
The levels puild upward. After path testing at the module
level, the unit level need not repeat the internal paths

of the modules comprising it. The unit test must only

-Gl —

check the paths to and from the modules to insure their
correctness. The same applies to the integration testing
at a later time and to the other techniques.

All test records are to be kept in a project library
section, so that test satisfaction records are available,
as well as test cases which may be reused as necessary.
Each test will have a detailed specification which imple-
ments the tests and specifies test cases and details of

execution.

B.1 Specification Phase
A, Test Methods.
1. Static Analysis
a. Proof that the product specification meets
user reguirements.
B. Test Levels.
1. Acceptanée (Customer/Supplier agreement).
C. Test Order.
1. N/A.
D. Test Type.

1. Nonincremental.

=95«

E. Documentation.
1. Descriptive record showing that assertions
about the specification fulfill product objectives.
2. Signed agreement on product definition between
supplier and customer (users).
3. Record of all changes and corrections following
signoff.
F. Responsibility.
1. Team of supplier and customer management and
technical personnel.
G. Accomplishment.
1. Clearly defined contractual product specifi-

cation.

B.2 Design Phase
A. Test Methods.
1. Static Analysis.
a. Verification that design specifications

fulfill the product specification.

i. Test Cases - each requirement and
constraint specified (including
performance). S1 logic coverage of

interfaces.

-96-

ii, Completion Criteria - verification
that each interface is correct; all
functions provided within constraints,

Test Levels.

1. Module.

2, Unit.

3. Integration.

Test Order.

1. Parallel at module level.

2. Top down at module integration level.

3. Top down at unit integration level.

Test Type.

1. Nonincremental at module level,

2. Incremental at module integration level.
3. Incremental at unit integration level.
Documentation,

1. Descriptive record showing that each requirement

and constraint is satisfied.

2. Descriptive record or chart (HIPO) showing the

meshing of interfaces and combination of lower
level functions to produce more complex functions
which satisfy specified requirements and

constraints.

-9?-9

3. Record of errors found in product specification
and corrections made.

L., Record of errors and corrections in design
following completion of component designs.

5. Test plan and test specifications (may not
include test cases and processes).

Responsibility.

1. Project leaders and developers at module level.

2. Project leaders, developers, guality assurance,
and management team at module and unit integra-
tion level.

Accomplishment.

1. Verification that design will satisfy specified
objectives,

2, Verification that design will fit teogether.

3. Verification that design structure is good.

L, Set of software component specifications
(deéign specifications).

5. Sub specification of each process and data item

to be implemented to produce overall objectives

of product.

B.3 Coding/Debugging and Integration Phase

A. Test Methods.

1. Static Analysis.

a.

Code Inspection - desk check of structure,

understandability and functionality.

Code Walkthrough - verify algorithms.

il

114

Test Cases - basic inputs which cause
normal execution of algorithms; special
inputs which algorithm treats as excep-
tions; special inputs under which
execution is doubtful (error guessing).
Completion Criteria - verification that
algorithms are correct in normal and
exception conditions and as many user

conditions as practical.

2., Path Testing.

a.,

Execution of every path through product

and component structure, as determined

from code structure.

Do

Test Cases - inputs to execute each
path (including repetitive loops). C1
coverage at module level, 52 coverage

at module and unit integration level.

-99-

ke

Inputs to execute modular paths through
each unit. Must select cases which are
at boundaries of input domains and
cases where results may be expected to
be more likely to fail. Also determine
paths which 1limit performance.
Completion Criteria - correct selection
and execution of every path. Execution
of paths critical to performance must

be within limits allowed by design.

3. Functional Testing.

a. Execution of every function provided by

software, as determined from design

specifications.

iI

Test Cases - inputs which cause all
functions of each component to be
exercised. Inputs which exercise com-
plex functions of units. Must include
inputs both within and outside of wvalid
input domain limits from both directions
(boundary value analysis). Also values
which execute in a manner which may be

particularly error prone (error guessing).

-100-

ii. Completion Criteria - successful veri-
fication of correct results for each
specified function.

B. Test Levels.
1. DModule.
2. Module Integration.
3. Unit Inteération.
L., Certification.
a. On completion, components and product are
certifiable as functionally correct.
C. Test Order.
1. Parallel at module level.
2. Bottom up at module integration level.
3. DBottom up at unit integration level.
4, Parallel at certification level.
D. Test Type.
1. Nonincremental at module level.
2. Incremental at module integration level,
3. Incremental at unit integration level.
4. Incremental at certification level.
E. Documentation.

1. Descriptive records of walkthrough.

-101-

2., Tables of test cases versus observed and ex-
pected results for path and functional tests,
and test procedures.

3. Record of all bugs found and corrected in
debugging. .

L4, Record of errors and corrections to product
specification.

5. Record of errors and corrections to design.

6. Record of errors and corrections to coded
components following debug completion.

F. Responsibility.

1. Module developers and QA representative at
module and module integration levels.

2. Module developers, rroject leaders, and QA
representative at unit integration level.

3. QA at certification level.

G. Accomplishment.
1. Certified product and components. Verification

of functional and operational correctness.

B.4 Delivery Phase
A, Test Methods.
1. Functional Testing.

a. Verification by user.

-102-

i. Test Cases - boundary value analysis.
Error guessing, sample data runs.
ii. Completion Criteria - satisfaction of
all objectives under constraints {(inclu-
ding performance) specified in Phase I.
X hours of error free operation.
B. Test Levels.
1. Acceptance.
C. Test Order.
1. N/A.
D. Test Type.
1. Nonincremental.
E. Documentation.
1. Acceptance approval by customer.
2. Record of latent errors found.
F. Responsibility.
1. User technical personnel.
G. Accomplishment.
1. Product delivery.

B.5 Maintenance Phase
A. Test Methods.
1. Static Analysis.

a. Proof of design and specification changes.

=107

b. Interface and algorithm change walkthroughs.
c. Code inspection to generate new test cases.
2, Path Testing.
a. Of modules and units changed.
b. Of completed system meodification.
¢. Test Cases - previous test cases as required
with appropriate changes to test alterations.
d. Completion Criteria - successful selection
and traversal of new and altered paths as
well as original paths.
3. Functional Testing.
a. Of module, unit, and system functionality.
b. Test Cases - previous test cases with changes
as required.
c. Completion Criteria - successful execution
of all functions affected.
B. Test Levels (Regression Levels).
« Module.
Module Integration.
Unit Integration.

Certification.

L L R e O S

Acceptance.

~104-

Test Order.

1. Same as other stages.

Test Type.

1. Same as other stages.

Documentation.

1. Same as other stages.

Responsibility.

1. Same as other stages.

Accomplishment.

1. Acceptance of change definitions, verification
of design changes, certification of changes,

and delivery of changes.

-105-

Appendix C

Implementation Documentation

Test Plan (IEEE, 1981; Myers, 1979)
A. TIdentification of Software Product.
B. Identification of Goals of Test Activity.
C. Identification of Tests to be Performed.
1. Components.
2. Levels.
3. Development stages where applicable.
D. Schedule of Tests.
1. Test ordering based on strategy.
E. Organizational Structure.
1. Controlling organization.
2, Assign test responsibility.
F. Criteria for Judging Testing Complete and Product
Acceptance.
G. Administrative Issues.
1. Change control and error tracking.
2., Resource requirements.
a. Equipment requirements.
b. Time requirements.

¢. Tool requirements.

-106-

3. Risk analysis and contingency plans.

4. Project management issues.

C.2 Test Specification

A, Identification
B. Identification
C. Identification

D. TIdentificztion

of Test Goal,
of Test Method (s).
of Test Coverage (s).

of Test Completion Criteria.

E. IListing of Test Cases.

Inputs.

Conditions.

1
2
3. Results and activities.
4

Identifications of features tested.

F. Execution Process.

1. Test set up.

2
3
I,
5

C.3 Test Log
A, TIdentification

1. Component.

., Test initiation.
. Test continuance.
Error recovery.

. Test termination.

of Test.

-107-

c.4

c.5

2. Level. .
3. Development stage.
B, Data & Time Event Occurred.
€. Event Description (Test Started, Error Logged,

Power Failure, etc.).

Test Incident Report
A. Identification of Test.
1. Component.
2. Tlevel.
3. Development stage.
B. Data & Time of Incident.
C. Identification of Incident.
1. Incident nature.
2. *Component effected.
3. #0rigin of incident - component and development
stage.
4, *#Cause of incident.

#May not be available until incident resolved.

Test Incident Resolution Report
A. Attached to Incident Report.
B. TIdentification as to Software Error, Equipment

Failure, Test Failure, or Operator Failure,

~108-

c.

D.

Identification of Cause of Error and when it Occurred.

Description of Error Correction or Resolution.

Test Summary Report

A,
B.
Cs

Identification of Software Product.

Summary of Results of Tests.

Evaluation of Tests.

1. Summary of errors detected (e.g. how many errors).

2. Summary of completeness (e.g. all completion
criteria satisfied or variances and justifica-
tion).

Evaluation of Product - Pass/Fail.

If Failed, Definition of Additional Requirements or

Final Disposition.

-.'-.109_

Bibliography

Fairley, R. E. (Colorade State University Software Engineer-
i Videotape Course. Ft. Collins, Colorado: Colorade
State University, 1982.

Metzger, Phillip W. Managing a Programming Project.
Englewood Cliffs, N.J.: Prentice-Hall, 1973.

Myers, Glenford J. The Art of Software Testing. New York,
N.Y.: Wiley and Sons, Inc., 1979.

NCR Customer & Support Education Corporate Education.
Programming Project Management Course. Dayton, Ohio:
NCR Corporation, 1980.

NCR Fundamental English Dictionary. Dayton, Ohio: NCR
Corporation, 1978.

Aviziensis, A.; Gilley, G. C.; Mathur, F. P.; Rennels, D. A.;
Rohr, J. A.; and Rubin, D. K. "The STAR (Self-Testing
and Repairing) Computer: An Investigation of the Theory
and Practice of Fault-Tolerant Computer Design", IEEE
Transaction on Computers, Vol. C-20, No. 11 (November,
19717, pp. 1312-1321,

Bowen, John B. "A Survey of Standards and Proposed Metrics8
for Software Quality Testing", Computer, Vol. 12, No.
(August, 1979), pp. 37-42.

Demillo, Richard A.; Lipton, Richard J.; and Sayward,
Frederick G. "Hints on Test Data Selection: Help
for the Practicing Programmer”, Computer, Vol., 11
No. 4 (April, 1978), pp. 34-41. ' '

Geiger, Werner; Gmeiner, Lothar; Trauboth, Heinz; and Voges,
Udo. "Program Testing Technigues for Nuclear Reactor
Protection Systems”, Computer, Vol. 12, No. 8 (August,
1979), pp. 10-18.

Goodenough, John B. and Gerhart, Susan L. "Toward a Theory

of Test Data Selection", IEEE Transactions on Software
Engineering, Vol. SE-1, No. 2 (June, 1975), pp. 156-173.

-110-

Howden, William E. "Functional Program Testing", IEEE
Transactions of Software Engineering, Vol. SE-6, No. 2
MarCh, 19 O » ppo 1 2—1 9|

. "Introduction to Software Validation", Tutorial:
Software Testing and Validation Technigues, (1978).

. "Introduction to the Theory of Testing", Tutorial:
Software Testing and Validation Techniques, (1978).

"Reliability of the Path Analysis Testing Strategy",
IEEE Transactions on Software Engineering, Vol. SE-2,
No. 3 (September, 1976), pp. 38-435.

Huang, J. C. "An Approach To Program Testing", Computing
Surveys, Vol. 7, No. 3 (September, 1975), pp. 113-128.

Miller, Edward. "Introduction to Software Testing Technology",
Tutorial: Software Testing and Validation Technigues,

(1978).

Sorkowitz, Alfred R. "Certification Testing: A Procedure
to Improve the Quality of Software Testing", Computer,
Vol. 12, No. 8 (August, 1979), pp. 20-24,

Zelkowitz, Marvin V. '"Perspectives on Software Engineering",
Computer Surveys, Vol. 10, No. 2 (June, 1978),
ppo 19?-21 .

NCR World Magazine, Vol. 17, No. 3 (June/July, 1982), NCR
Corporation.

Software Engineering Technical Committee of the IEEE Computer
Society. Draft American National Standard For Software

Quality Assurance Plans, ANSI/IEEE Std. 730 ZJanuary,
1980).

Draft Standard For Software Test Documentation, IEEE Inec.,
Revised October 15, 1981.

Technical Note Summary of Software Testing Measures, TN-843,
Software Research Associates, May 1, 1981.

IEEE - Software Reguirements Guideline, Rough Draft, IEEE
Ine., July 17, 1931.

-111-~

A COMPREHENSIVE SOFTWARE TEST STRATEGY

by

STEFHEN LOUIS KAHLE

B. 8., University of Missouri at Columbia, 1972

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCTENCE

Department of Computer Science

KEANSAS STATE UNIVERSITY
Manhattan, Kansas

1983

Abstract

This report introcduces a test strategy which is
applicable to testing in the generalized software develop-
ment process. It is comprehensive in that it is adaptable
to any product development project, and it covers all phases
of development. The strategy provides testing guidelines to
provide a standardized, systematic product test activity,
which should improve the quality of software produced.

Within the report &are presented some of the basic
foundational concepts from which the test strategy is con-
ceived, as well as the strategy itself. The motivation
behind high quality software is described in order to develop
a list of desirable strategy traits. A survey of testing
theories and methods is then presented to provide the
practices useful within the strategy. This is followed by
a discussion of pertinent aspects of product development.
The methods are then applied to the development process in
a manner which produces the desired strategy. In concluding
the report, some comments on how the strategy may be used to
implement testing are included.

The strategy, as presented, provides for testing over

the entire product life. If properly implemented, in

Ji

accordance with the strategy, this testing should be a
major contributor towards software reliability. This makes
the strategy valuable both in the areas of public welfare
and development economics, areas which are becoming

increasingly critical to software production.

144

