
  

The spatiotemporal dynamics of visual attention during real-world event perception 

 

 

by 

 

 

Ryan Ringer 

 

 

M.S., Kansas State University, 2016 

 

 

 

AN ABSTRACT OF A DISSERTATION 

 

 

 

submitted in partial fulfillment of the requirements for the degree 

 

 

 

DOCTOR OF PHILOSOPHY 

 

 

 

Department of Psychological Sciences 

College of Arts and Sciences 

 

 

 

KANSAS STATE UNIVERSITY 

Manhattan, Kansas 

 

 

2018 

 

 

 

 

 

 



  

 

Abstract 

Everyday event perception requires us to perceive a nearly constant stream of dynamic 

information.   Although we perceive these events as being continuous, there is ample evidence 

that we “chunk” our experiences into manageable bits (Zacks & Swallow, 2007).  These chunks 

can occur at fine and coarse grains, with fine event segments being nested within coarse-grained 

segments.  Individual differences in boundary detection are important predictors for subsequent 

memory encoding and retrieval and are relevant to both normative and pathological spectra of 

cognition.  However, the nature of attention in relation to event structure is not yet well 

understood.  Attention is the process which suppresses irrelevant information while facilitating 

the extraction of relevant information.  Though attentional changes are known to occur around 

event boundaries, it is still not well understood when and where these changes occur.  A newly 

developed method for measuring attention, the Gaze-Contingent Useful Field of View Task (GC-

UFOV; Gaspar et al., 2016; Ringer, Throneburg, Johnson, Kramer, & Loschky, 2016; Ward et 

al., 2018) provides a means of measuring attention across the visual field (a) in simulated real-

world environments and (b) independent of eccentricity-dependent visual constraints.  To 

measure attention, participants performed the GC-UFOV task while watching pre-segmented 

videos of everyday activities (Eisenberg & Zacks, 2016; Sargent et al., 2013).  Attention was 

probed from 4 seconds prior to 6 seconds after coarse, fine, and non-event boundaries. 

Afterward, participants’ memories for objects and event order were tested, followed by event 

segmentation.  Attention was predicted to either become impaired (attentional impairment 

hypothesis), or it was predicted to be broadly distributed at event boundaries and narrowed at 

event middles (the ambient-to-focal shift hypothesis).  The results showed marginal evidence for 



  

both attentional impairment and ambient-to-focal shift hypotheses, however model fitness was 

equal for both models.  The results of this study were then used to develop a proposed program 

of research to further explore the nature of attention during event perception, as well as the 

ability of these two hypotheses to explain the relationship between attention and memory during 

real-world event perception.   
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Abstract 

Everyday event perception requires us to perceive a nearly constant stream of dynamic 

information.   Although we perceive these events as being continuous, there is ample evidence 

that we “chunk” our experiences into manageable bits (Zacks & Swallow, 2007).  These chunks 

can occur at fine and coarse grains, with fine event segments being nested within coarse-grained 

segments.  Individual differences in boundary detection are important predictors for subsequent 

memory encoding and retrieval and are relevant to both normative and pathological spectra of 

cognition.  However, the nature of attention in relation to event structure is not yet well 

understood.  Attention is the process which suppresses irrelevant information while facilitating 

the extraction of relevant information.  Though attentional changes are known to occur around 

event boundaries, it is still not well understood when and where these changes occur.  A newly 

developed method for measuring attention, the Gaze-Contingent Useful Field of View Task (GC-

UFOV; Gaspar et al., 2016; Ringer et al., 2016; Ward et al., 2018) provides a means of 

measuring attention across the visual field (a) in simulated real-world environments and (b) 

independent of eccentricity-dependent visual constraints.  To measure attention, participants 

performed the GC-UFOV task while watching pre-segmented videos of everyday activities 

(Eisenberg & Zacks, 2016; Sargent et al., 2013).  Attention was probed from 4 seconds prior to 6 

seconds after coarse, fine, and non-event boundaries. Afterward, participants’ memories for 

objects and event order were tested, followed by event segmentation.  Attention was predicted to 

either become impaired (attentional impairment hypothesis), or it was predicted to be broadly 

distributed at event boundaries and narrowed at event middles (the ambient-to-focal shift 

hypothesis).  The results showed marginal evidence for both attentional impairment and ambient-

to-focal shift hypotheses, however model fitness was equal for both models.  The results of this 



  

study were then used to develop a proposed program of research to further explore the nature of 

attention during event perception, as well as the ability of these two hypotheses to explain the 

relationship between attention and memory during real-world event perception.   
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Chapter 1 - Introduction 

The reality which we perceive on a daily basis can be seen as somewhat of a façade, 

despite being rooted in the real world.  While online conscious processing of the environment 

seems as if it is a continuous, unbroken, and information-rich experience, the observer is often 

missing a great deal of information due to cognitive and perceptual limitations.  Despite the loss 5 

of information at both early and late stages of processing, our subjective experiences maintain a 

certain degree of coherence with the objective world.  We are able to use attention to narrow the 

scope of information in the external environment, and prior experiences (i.e., memory) can be 

used heuristically to infer unknown information.     

For instance, imagine watching a baseball game, where each moment can be broken 10 

down into a sequence of steps.  As the batter steps to the plate, the pitcher prepares to throw the 

ball from the mound.  The pitcher winds his arm back, lifts his leg, and throws the ball.  At this 

point, several things can happen.  The batter could swing or they could abstain.  They could hit 

the ball, or they could miss and get a strike.  At each event leading up to this period of 

uncertainty, the observer is able to guide attention to regions of the field that are relevant to the 15 

game’s progression.  Furthermore, the viewer’s understanding of the game provides additional 

assistance to constrain the degree of uncertainty for the future and may guide attention prior to 

any changes occurring.  But for now, those who are watching the game are less able to predict 

what will happen next.     

The fact that such a complex interaction between perception, attention, and memory can 20 

occur is an incredible feat.  However, the integration of old and new information allows us to 

efficiently comprehend a seemingly endless stream of familiar information with very little effort.  

Meanwhile, event representations in working memory (called an event model) guide the 



 

2 

detection and extraction of new information so the observer may adapt to novel variations of a 

familiar situation (Kurby & Zacks, 2008).  According to Event Segmentation Theory (EST; 25 

Zacks & Tversky, 2001), the moment at which a threshold for unpredictability (e.g., prediction 

error) is reached, an event boundary is created, marking a potential turning point in the narrative.  

However, the spatial and temporal changes of attention during these points of uncertainty remain 

an elusive and important question.   

1.1 Attention 30 

Attention is a varied subject, spanning much of the history of psychological science.  It is 

an essential function which allows us to limit information processing to only useful information1.  

Over the extensive development of attentional research, many models have been proposed, 

including the attentional spotlight (Posner, 1980), the zoom-lens model (Eriksen & St. James, 

1986; Eriksen & Yeh, 1985), the donut model of attention (M. M. Müller & Hübner, 2002), the 35 

multi-focal lens model (McMains & Somers, 2004; Somers & Sheremata, 2013), and the 

surround-suppression model of attention (de Haas, Schwarzkopf, Anderson, & Rees, 2014; 

Schwartz et al., 2005).  A common theme of all these models of spatial attention is they assume 

that attention enhances a range of space (both in physical and cortical space) to be preferentially 

processed, while preventing capture by irrelevant or interfering information in surrounding 40 

locations.  The mechanisms which guide attention can vary, however, depending on where and 

when useful information can provide an optimal answer on where to move the eyes next.   

                                                 

1 While attention can be attributed to multiple elements of perception (e.g., feature and object-based attention), this 

literature review will focus on spatial attentional selection since this is the basis of the study in this dissertation. For 

an extensive review on feature and object-based attention and its relationship with spatial attention, see Treisman 

(2006). 
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The degree of attentional gain, namely the strength of the attentional boost, afforded to a 

target location is dependent upon a number of factors, including the strength of association 

between the cue and the target (Geng & Behrmann, 2005; Posner, 1980), task experience 45 

(Crundall, Underwood, & Chapman, 1999, 2002), the nature of the cue type (Posner, 1980), the 

amount of time between the attentional cue and the target (Nakayama & Mackeben, 1989), and 

the attentional capacity and processing speed of the individual (Ball, Beard, Roenker, Miller, & 

Griggs, 1988; Ball, Owsley, Sloane, Roenker, & Bruni, 1993).  Allocating attention to a stimulus 

or space can result in shorter response latencies, improved contrast and orientation sensitivity, 50 

and improved memory for attended items (for review, see; Carrasco, 2011).  However, cognitive 

and perceptual resources have limited capacity for how much information can be processed at a 

given moment in time (Wickens, 2001).  Thus, the amount of attentional gain that can be devoted 

to a given stimulus is affected by dividing attention in space (Eriksen & St. James, 1986; Eriksen 

& Yeh, 1985; N. G. Müller, Bartelt, Donner, Villringer, & Brandt, 2003; Ringer et al., 2016; 55 

Williams, 1988, 1989) or among multiple tasks (Pashler, 1994).  Additionally, dividing the 

central executive resources that are critical for maintaining information in working memory (e.g., 

inhibition) can also adversely affect attention (Logan & Gordon, 2001; Reimer, 2009).   

However, this effect is indirect, and results in general interference with attention 

equivalently across the visual field and rather than affecting the spatial distribution of attention 60 

(Ringer et al., 2016).  Nevertheless, sustained dual-task interference at the level of the central 

executive does seem to be more likely to result in impaired memory encoding between working 

memory and long-term memory (Ringer et al., 2016).  Therefore, it may be the case that the 

broadening and narrowing of attention has a unique relationship with the amount of control being 

exerted over focal attention.  However, it has not yet been verified if the shape of the window of 65 
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attention is a direct consequence of executive control, or if it is mediated through the 

maintenance of working memory content. 

1.2 Ambient versus Focal Processing Modes 

Ambient processing typically relates to the broadened capture of general information for 

purposes of localization and orientation of one’s self (or other objects) in the environment, 70 

whereas focal attention relates to the extraction of detailed identity information (Leibowitz & 

Post, 1982; Trevarthen, 1968).  These contrasting processing systems are similar to the zoom-

lens account of attention where, given a constant level of attentional resources, one can either 

attend broadly, with attentional resources sparsely distributed, or one can attend narrowly with 

attentional resources focused within a narrower range of space (Eriksen & Yeh, 1986; Eriksen & 75 

St. James, 1985).  Ambient and focal processing are also mostly associated with peripheral 

versus central vision, respectively (Liebowitz & Post, 1982).  However, these differences in 

attentional processing begin at the sensory level (i.e., the retina), whose central and peripheral 

projections extend into functional differences in the visual cortex.  Visual acuity is best in central 

vision, with receptive field sizes in the fovea (the central 1o of vision) being quite small and able 80 

to discriminate between fine details (≈ 44 cycles/degree; Loschky, McConkie, Yang, & Miller, 

2005) during natural scene viewing.  As retinal eccentricity increases, sensitivity to detailed 

information decreases exponentially until beginning to stabilize at approximately 10-15 degrees 

of vision, where only coarse details are identifiable (4 cycles/degree; Loschky et al., 2005).   

Later in visual processing, central and peripheral vision generally project into the ventral 85 

(what) and dorsal (where/how) paths, respectively, which are two well-established 

neurophysiological structures that are critical for perception and working memory (Goodale & 

Milner, 1992).  The fine-detailed ventral path and has been implicated with object recognition 
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character and objects (Livingstone & Hubel, 1988), as well as face perception (Kanwisher, 

McDermott, & Chun, 1997).  Conversely, peripheral vision feeds into the dorsal stream of visual 90 

processing and contributes to spatial orientation, motion detection (Livingstone & Hubel, 1988), 

and action perception (Goodale & Milner, 1992)2.  However, these two separate information 

pathways operate together, in parallel.  One important function of the central executive to 

connect these systems so that the spatially-dependent contextual information in the dorsal stream 

can constrain spatially-invariant information in the ventral stream.  When frontal executive 95 

control is weakened or overridden by strong bottom-up features, the connection between dorsal 

and ventral stream information is weakened and potentially disrupted (Schulman et al., 2002).  

Thus, salient information previously outside of focal attention can be quickly encoded as the 

dorsal-ventral stream connection is reestablished.  An important consideration is what 

connections are made, and when.  100 

1.3 Coarse-to-Fine Processing in Real-World Situations   

Coarse-to-fine processing entails that, during naturalistic viewing conditions, early 

perceptual processes sample from a broad range of space before narrowing to a more localized 

region in which useful information is likely to exist (Hegdé, 2008).  Not surprisingly, this 

strategy for information extraction requires intricate coordination between ventral and dorsal 105 

stream systems optimize the deployment of attention.  While the ventral and dorsal visual 

                                                 

2 While there tends to be a consistent relationship between central versus peripheral vision and ventral versus dorsal 

visual streams, processing of global (i.e., central and peripheral) information does occur in specific areas of the 

ventral stream.  Specifically, the parahippocampal place area processes the spatial relationships among scene global 

content (Aminoff, Kveraga, & Bar, 2013) while the superior medial temporal cortex (MT+) processes optic flow 

(Duffy & Wurz, 1997), as well as viewpoint-dependent relationships among scene objects (Shelton & McNamara, 

2001).  
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streams seem to operate in parallel, they are by no means fully independent of each other.  In 

fact, converging fMRI research seems to suggest that the top-down and bottom-up control of 

ventral stream activity is constrained by dorsal stream network activity (for review, see Corbetta 

& Schulman, 2002).  These two pathways converge with frontocortical connections to provide an 110 

integrated, representation of the search space that includes both what and where.  For instance, a 

number of studies have found evidence of a coarse-to-fine movement of spatial processing in 

natural scene recognition, with abstract “superordinate” categorization (e.g., indoor vs. outdoor) 

preceding basic level categorization (e.g., beach vs. desert)(Loschky & Larson, 2010).  Such an 

integrated whole is known as the gist, or the earliest semantic representation of the scene as a 115 

whole that is achievable within the first fixation of an image.  The gist of a scene activates a rich 

network of semantic information about the potential contents of the scene (and their likely 

locations) which can improve performance on tasks that require later focal processing, such as 

visual search (Eckstein, Drescher, & Shimozaki, 2006; Torralba, Oliva, Castelhano, & 

Henderson, 2006; Zelinsky & Schmidt, 2009) and object identification (Henderson, 1992).  120 

Although attentional cues can be utilized to improve both spatial and featural selectivity, there 

seems to be an earlier and stronger benefit for cuing spatial information (Liu, Stevens, & 

Carrasco, 2007).  Thus, it is unsurprising that early scene gist information provides a cue for 

localizing where important information might be.  For instance, when scenes were presented for 

a memory task, participants’ first eye movements were often to regions that were rated as highly 125 

informative for the scene (Mackworth & Morandi, 1967).  Later research manipulated the objects 

within these informative regions to be either consistent or inconsistent with the scene, finding 

that participants’ eye movements were no more likely to land on the consistent versus 

inconsistent objects in the scene (Henderson, Weeks, & Hollingworth, 1999).  However, when 
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participants were asked to identify whether a specific object was present or absent, they fixated 130 

the consistent item faster than the scene inconsistent object.  The authors concluded that the 

speed of finding these objects was a product of the relationship between the featural properties of 

that object and the likely location of that object within the scene (Henderson, Weeks, & 

Hollingworth, 1999).  Thus, the gist of the scene guided attention at the earliest stages of 

processing when the nuances of that scene were relatively unknown.  135 

Scene processing does not cease after the first fixation, however.  Visual search often 

extends over several fixations and has a very stereotypical progression from ambient to focal 

processing.  Early in scene processing, during ambient mode, fixations are short in duration 

while saccades are typically relatively long (Unema, Pannasch, Joos, & Velichkovsky, 2005).  

As the search progresses, viewers transition into the focal mode, fixation duration increases 140 

while saccade length decreases.  The ambient mode of processing provides a cheap, coarse 

sample of the scene, whereas focal processing utilizes only a narrow subset of the scene space 

for more detailed (and costly) information extraction.  The importance of the scene context in 

reducing the cost of focal processing cannot be overstated.  Search behavior indicative of 

ambient-to-focal processing phases has been observed in macaques, but removing background 145 

scene information resulted in increases in fixation durations and decreases in saccade amplitude 

(Ito et al., 2017).  Additionally, sudden changes to the scene in the middle of a visual search can 

cause temporary increases in fixation durations as the mind resets to ambient mode to reassess 

the global scenescape (Pannasch, Dornhoefer, Unema, & Velichkovsky, 2001).  Likewise, the 

presence of a scene background shows some benefit to categorizing actions by an agent (Larson, 150 

Hendry, & Loschky, 2012).  The fact that this ambient-to-focal pattern of information processing 
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is so embedded in visual cognition for still images over the course of several fixations might also 

suggest that it is an inherent component to dynamic event perception.   

During real-world event perception, a great deal of information is redundant regarding 

both perceptual and semantic characteristics.  However, dynamic events are unique in that, while 155 

there is redundancy in some aspects of the scene from moment to moment (e.g., layout, objects, 

people, etc.) changes in these scene components require monitoring and updating.  Furthermore, 

events contain a wide variety of changing types of information that may or may not be relevant 

to the event being perceived.  Therefore, a theoretical framework for event structure will be a 

prerequisite for modeling changes in attention.   160 

1.4 Event Segmentation Theory 

Event Segmentation Theory (Zacks & Swallow, 2007) posits that in the midst of the 

constant flow of information during every-day experience, the ability to efficiently comprehend 

and remember our experiences hinges on breaking down the continuous stream of information 

into manageable “chunks” of information.  These chunks can be fine-grained, meaning they are 165 

composed of small meaningful bits of information over a brief amount of time, or they can be 

coarse-grained, meaning that they reflect large bits of meaningful information over a longer 

period of time.  Furthermore, these chunks are organized hierarchically, such that fine grained 

event segments are encapsulated in coarse grained events (Hard, Tversky, & Lang, 2006; Zacks 

& Tversky, 2001).  By segmenting events, these bits of information can be isolated from 170 

semantically, perceptually, and temporally distinct bits of information, while also maintaining a 

sense of continuity from one event to the next.  Thus, the uncertainty for what will happen next 

when a given fine-event ends is now limited to a small number of possibilities that are congruent 

with the coarse event.  Limiting one’s expectations from one event to the next makes it possible 
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to establish a temporal relationship between fine and coarse grained event segments, providing 175 

the means for guiding attention to relevant information (Zacks & Tversky, 2001).  

The typical protocol for segmenting events (e.g., film or text) is for participants to make a 

response when a meaningful change in the event has ended and another has begun (Newtson, 

1973) or when “a meaningful unit of event information has ended” (Eisenberg & Zacks, 2016, 

pg. 4).  For fine event segments, participants are told to “respond to the smallest meaningful unit 180 

of change in the event has ended, and another has begun.”  Likewise, for coarse segmentation, 

participants are told to respond to the largest units that are natural and meaningful to them 

(Speer, Swallow, & Zacks, 2003).  Importantly, there seems to be a relationship between 

segmentation agreement and event memory.  Participants who were more likely to segment at 

normed times (i.e., if they segment where others are more likely to segment) generally have 185 

better memory for those events tended to be more accurate with regard to free-recall of events, as 

well as new/old discrimination of still pictures of events (Sargent et al., 2013).   

 At the heart of event segmentation is the validity of the event model’s ability to predict 

event information (Reynolds, Zacks, & Braver, 2007; Zacks, Kurby, Eisenberg, & Haroutunian, 

2011) which reduces as the number of aspects of the event that change increases (Huff, Meitz, & 190 

Papenmeier, 2014; Magliano, Kopp, McNerney, Radvansky, & Zacks, 2012; Zacks, Speer, 

Swallow, & Maley, 2010; Zwaan & Radvansky, 1998).  When the assumptions or predictions for 

an event model are violated to a significant degree, error monitoring processes signal that the 

current event model is no longer adequate and must be updated to match the current situation 

(Kurby & Zacks, 2008; Reynolds et al., 2007; Zacks et al., 2011).  Specifically, the event 195 

boundary is a time in which the gate between sensory information and the event model opens.  

Thus, the update to the event model will be a reflection of what is perceptually available (Kurby 
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& Zacks, 2008).  Therefore, the perceptual information present at the boundary acts as a snapshot 

of the critical moment that distinguishes one event grain from the next.  

The newly updated event model elicited at the boundary is not random, but dependent 200 

upon sensory information at the moment of the event boundary and prior experiences that predict 

what should occur next (Kurby & Zacks, 2008). Thus the breadth of predictions generated from 

long-term memory is limited (Hard et al., 2006) and the ability to narrow attention to quickly and 

efficiently represent sensory information can be improved.  

 205 

1.5 Event Comprehension and Attention 

Just as event models constrain information in working memory—they can also help to 

constrain what information is being captured from the environment.  Evidence for the effects of 

expertise on segmentation have been shown with expert versus novice comparisons between 

novice and expert dancers (Blasing, 2015).  The results showed that novices tended to segment 210 

more frequently and with less between-subject agreement, whereas experts tended to segment 

less often, but with a higher degree of agreement.  Thus, if all event boundaries occur due to an 

error in predicting the event, then an observer with no event schema would constantly fail to 

predict future event information and would constantly be updating their event model 

(Gernsbacher, 1990).    215 

Likewise, eye-movements of skilled athletes (i.e., tennis and soccer players) tend to fixate 

on the face and chest of other athletes in play, where shifts in behavior would be less frequent 

but more meaningful, requiring fewer shifts in attention (Piras, Lobeietti, & Squatrito, 2010).  

Thus, top-down influences of attention suppress the capture of repetitive (and likely less-

meaningful) perceptual changes.  Meanwhile, novices focused on the location and movement of 220 
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the ball, again showing that novices’ attention, guided by sparse representations of the event in 

memory, may be limited in their ability to determine what is meaningful for the event (Piras et 

al., 2010).  Thus, a lack of event knowledge would likely produce constant updates to the event 

model, as is the case of novices segmenting much more frequently than experts (Blasing, 2015).  

However, poor executive control of working memory or attention could result in a number of 225 

problems, despite memory hierarchies being intact in long-term memory (Kurby & Zacks, 2008).  

Nevertheless, Event Segmentation Theory is but one framework for describing the mechanisms 

that allow for comprehension of dynamic events in real-time.  

 Hierarchical memory schemas provide a flexible template to on to which subtle 

variations for each unique episode can be integrated within the global event model (Hard et al., 230 

2006).  Inhibitory processes are necessary to reduce the activation of irrelevant information in 

working memory, while error monitoring processes are necessary to identify when an event 

model is no longer useful in predicting incoming event information.  Likewise, selective 

attention is critical for inhibiting the capture of irrelevant information in working memory during 

narrative comprehension.  The role of inhibition of sensory processing was originally suggested 235 

by the Structure Building Framework (Gernsbacher, 1990), however attention also serves a 

critical function in EST, where a sensory gate remains closed in the event middle, but opens at 

the event boundary (Kurby & Zacks, 2008; Reynolds et al., 2007).  But, if sensory input is not 

optimally gated (either by what passes through the gate, or when the gate is opened or closed), it 

could translate into difficulties with maintaining information in working memory.   240 

For instance, in one study, recognition memory and event order memory were tested 

between young and old adults (Kurby & Zacks, 2011).  Older adults have a wealth of experience 

to guide attention, but younger adults tend to perform better in terms of alertness and processing 
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speed.  The results showed that although older adults showed more deficits in memory for event 

order compared to younger adults, fine segmentation agreement was the best predictor for event 245 

order memory regardless of age (Kurby & Zacks, 2011).  Conversely, no main effect of coarse 

event segmentation agreement was found for event order, but it did interact with age, such that 

age related deficits in event comprehension may be rooted in an inability to integrate smaller 

(fine) units into the larger context of the coarse units of information (Kurby & Zacks, 2011).  

Long-term memory could be used to infer missing information (Graesser, Singer, & Trabasso, 250 

1994), however such a heuristic approach risks creating false memories (Magliano, Kopp, Higgs, 

& Rapp, 2017) and in extreme cases may stagnate the ability to adapt to new situations.  For 

accurate event comprehension, new perceptual input must be monitored to determine whether the 

event is compatible with the event model in working memory (Zacks & Swallow, 2007). and can 

be integrated with the current event structure.  However, if prediction error outweighs the 255 

usefulness of the active event model in working memory, the event model must be updated 

(Reynolds et al., 2007).  

Whether event boundaries cause a complete reset to the event model (i.e., a global 

update) or if only the event indices which changed are updated at the event boundary (i.e., an 

incremental update) is still a matter of debate.  Currently, EST allows for only global updates to 260 

event models, and the only time in which perceptual input is able to be integrated with the 

current event model is when the sensory gate between new information and LTM is temporarily 

opened.  However, there are several other models which allow incremental updating (e.g., Event 

Index Theory; Huff et al., 2014; Zwaan & Radvansky, 1998) or mapping of new information 

directly on to foundational event information (Gernsbacher, 1990).  At first glance, the notion 265 

that event updates could be made incrementally seems a more intuitive and a more efficient 
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process.  Updating only the information that has changed during the event would maintain 

continuity over the course of the event and would be less taxing on brain areas responsible for 

processing unique event indices.  Furthermore, evidence from Huff et al. (2014) has found that 

event updates operate on a continuum, with the number of situation changes predicting both the 270 

likelihood of segmentation at that moment in time and the number of prediction errors for what 

will occur next in the narrative.  At the same time, requiring executive processes to maintain 

individualized control over multiple event domains is exceedingly complex, whereas perceiving 

the event holistically would be a much simpler process.  Furthermore, computational models of 

event segmentation have found that events can spontaneously arise from simple prediction error 275 

detection to reset the event model based on perceptual input (Reynolds et al., 2007).  Thus, if 

changes in the tuning of perceptual input at event boundaries are the critical factor behind 

transitioning from one event to the next, then more specific predictions about event perception 

can be made by integrating the rich bodies of knowledge of event perception and visual attention.  

One model for event perception has begun to integrate several accounts of dynamic event 280 

perception, namely the Scene Perception and Event Comprehension Theory (SPECT; Loschky, 

Hutson, Smith, Smith, & Magliano, 2018).  SPECT has been effective in explaining some 

limitations of several event perception theories, including Event Segmentation Theory (Zacks & 

Swallow, 2007), the Event Indexing model (Zwaan & Radvansky, 1998), and the Structure 

Building Framework (Gernsbacher, 1990).  SPECT’s advantage is its ability to connect low-level 285 

attentional selection and scene perception to higher order event and narrative comprehension.  

SPECT argues that front-end perceptual processes extract information on a fixation-by-fixation 

basis to generate complex information representations that can be utilized by back-end processes 

in working and long-term memory.  Attention during each eye fixation modulates the way in 
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which information is extracted from the environment.  When broadly attending, attention 290 

captures the gist of the scene for coarse representations of information, which lays the foundation 

of the event (Gernsbacher, 1990; Loschky et al., 2018).  Attending narrowly extracts specific 

features of the event, like characters or objects.  Once the foundation has been laid, back-end 

processes maintain an ongoing representation of the event in working memory, onto which new 

information can be mapped.  However the presence of an event model guides attention in a way 295 

that suppresses irrelevant or redundant information, limiting the degree to which working 

memory is affected by new information over time (Gernsbacher & Faust, 1991).  SPECT, EST, 

Event Indexing Theory, and the Structure Building Framework all provide a mechanism for 

selectively integrating new information with existing event models.  However,  however unlike 

the theories listed above, SPECT makes explicit predictions for how the current event model in 300 

WM (back-end processes) influences attentional selection during eye fixations (front-end 

processes; Hutson, Smith, Magliano, & Loschky, 2017; Loschky et al., 2018; Loschky, Larson, 

Magliano, & Smith, 2015). 

An important next step for event perception research is to observe and model the changes 

in covert attention in response to boundary and non-boundary time periods during event 305 

perception, since changes in covert attention can provide insights into internal cognitive and 

perceptual processing states.  Specifically, it will be important to determine where, how, and 

when attention changes in response to an event boundary.  Where and how attention is affected 

by an event boundary is of critical importance because differences in the distribution of attention 

over space may reflect unique effects of perceptual and cognitive loads (Ringer et al., 2016).  310 

Additionally, changes in attention that occur as a function of the temporal proximity to an event 

boundary may be uniquely affected by coarse and fine event boundaries.  Different time courses 
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for coarse versus fine events might also help to determine if changes in attention are discrete, as 

argued by EST (Kurby & Zacks, 2008) or incremental, as argued by the Event Indexing Model 

(Zwaan & Radvansky, 1998), or either discrete or incremental as is the case with the Structure 315 

Building Framework during mapping and shifting, respectively (Gernsbacher, 1990).   

Overt attentional measures of attention during event perception have shown evidence of 

systematic fluctuations in visual attention as a function of temporal proximity to event 

boundaries (Eisenberg & Zacks, 2016).  During passive viewing of events, saccade amplitudes 

increased prior to coarse event boundaries, and decreased following coarse event boundaries, 320 

while fixation duration decreased leading up to coarse event boundaries.  This would suggest a 

shift from focal to ambient processing before the event boundary, meaning that attention 

broadens in anticipation of an event boundary and broadens immediately afterward.  Therefore, 

the switch between broad and narrow spans of attention between respective boundary and non-

boundary event components would suggest that attention is able to narrow in on specific 325 

information within the event but must sample broadly around the time at which the event model 

is updated.  However, this effect was not consistent across experiments, with differences in 

groups or videos driving the lack of consistency between experiments.  Nevertheless, estimating 

the span of covert attention through overt attentional measures comes with an important caveat: 

the absence of overt attention (e.g., an eye movement) is not necessarily the absence of covert 330 

attention, and the presence of an eye movement made to one location does not mean that 

attention was absent elsewhere. With these cautions in mind, it is now important to reevaluate 

the status of covert attention research within the context of event structure. 

1.6 Measuring Covert Attention in Dynamic Environments 
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A number of measures of covert attention have been in use for decades—often relying on 335 

detection and discrimination tasks, where the observer is required to respond to the presence of a 

particular stimulus.  Research from Karlene Ball (Ball et al., 1988; Ball, Edwards, & Ross, 2007; 

Ball et al., 1993) has utilized the effect of a foveal load on the expansion of the window of 

attention in time with the Useful Field of View (UFOV) task.  Nevertheless, the UFOV task’s 

design prevents it from being implemented in real-world contexts and so UFOV performance can 340 

only be correlated with attentional performance in other tasks (Ball et al., 2007).   

In contrast to the UFOV’s precise stimulus control, but inability to detect real-time 

changes in attention, the Peripheral Detection Task (PDT) was an early, but widely used method 

for measuring covert attention in simulated real-world environments. The PDT (Crundall et al., 

1999, 2002; Jahn, Oehme, Krems, & Gelau, 2005; Patten, Kircher, Ostlund, & Nilsson, 2004) 345 

requires participants to watch a video of driving down a road, while using a brake pedal to avoid 

traffic hazards.  To measure attention, participants must also respond when they detect a 

peripheral attentional probe, often times an LED or specified positioned in the margins of the 

video display.  In one study (Crundall et al, 2002) measuring the effect of experience on the 

ability to detect road hazards, the results showed a decrease in the attentional probe detection rate 350 

as driving difficulty increased. However, this effect did not change as a function of eccentricity 

for either the experienced or novice driving group, thus ruling out tunnel vision (Crundall et al., 

2002).  The authors concluded that rapidly changing environments resulted in a general 

interference of attention.  Although they manipulated the difficulty of the task with a visual load, 

the lack of a tunnel vision effect was attributed to the fact that hazards can appear at any 355 

eccentricity and therefore do not qualify as a foveal load that would bias attention to a narrow 

range of space. Thus, the fact that dual-task interference occurs at the perceptual stage is not 
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sufficient to cause attentional tunneling (e.g., a sustained focal processing mode).  The critical 

aspect (as per Williams, 1988; Williams, 1989) is that attention is preoccupied with foveal 

processing. Conversely, the unpredictability of the driving environment may have reduced 360 

viewers’ ability to allocate attention to a particular region of the driving environment.  

The above conclusion has been further solidified with later research by Ringer et al. 

(2016), which measured changes in attention that occur in the presence of an auditory or foveal 

load.  This measure, called the Gaze-Contingent Useful Field of View (GC-UFOV) task required 

participants to discriminate the orientation of Gabor patches that were presented at different 365 

eccentricities from the fovea.  Gabor patch discrimination served as a measure of attentional 

breadth by assuming that if a participant was able to discriminate between different Gabor 

orientations, then attention was likely allocated to that location.  As the Gabor patches mimic the 

response properties of receptive fields in the visual cortex, attention increases contrast sensitivity 

of those receptive fields, thus improving the signal quality throughout the visual stream 370 

(Carrasco, Penpeci-Talgar, & Eckstein, 2000).  By thresholding the amount of time needed to 

process the Gabor patches (a) at each retinal eccentricity, and (b) in single-task conditions before 

the onset of a filtered Gaussian noise mask, a baseline level of performance can be equalized 

across the visual field.  Furthermore, the Gabor patches were size-scaled to become larger with 

increasing eccentricity to disentangle eccentricity-dependent, low-level visual resolution 375 

differences (e.g., cortical magnification; Daniel & Whitteridge, 1961; Rovamo & Virsu, 1979; 

Rovamo, Virsu, & Naesaenen, 1978; Virsu & Rovamo, 1979) from eccentricity-dependent 

changes in attention.  Therefore, any changes in Gabor discrimination that exist between single 

and dual-task conditions can be attributed purely to changes in attention.   
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When the effects of a foveal (L vs. T discrimination) perceptual load and an auditory (N-380 

Back) working memory load were compared, there was clear evidence that the foveal load 

produced both general interference of attention and attentional tunneling, whereas the auditory 

working memory load produced only general interference.  An additional driving simulator study 

by Gaspar et al. (2016) found similar evidence of general interference on Gabor orientation 

discrimination with the auditory N-Back task in a driving simulator study.  Therefore, the critical 385 

distinction between these two changes in attentional breadth came from different sources.  For 

the foveal load, the participants’ instructions were to prioritize the foveal L vs. T task over the 

peripheral Gabor task.  Alternatively, the general interference effect brought on by the N-back 

task related to reduced control of central executive processing (e.g., inhibition; Kane, Conway, 

Miura, & Colflesh, 2007) over visual attention.  Thus, the degree of attentional focus (i.e., 390 

whether an observer is attending narrowly or broadly) may be related to the connections between 

visuospatial bias (i.e., whether it is useful to attend narrowly or broadly) rather than overall 

attentional resources.   

Since this new method of measuring covert attentional breadth has been validated for its 

sensitivity to perceptual and cognitive (WM) dual-task loads, it is clearly well-suited to address 395 

changes in attention that are specific only to attention, and not low-level changes in visual 

sensitivity due to cortical magnification.  Furthermore, it is also sensitive to global fluctuations in 

attentional gain (i.e., global attentional facilitation or attentional impairment) that relate to 

available WM resources.  Therefore, the GC-UFOV is well suited to measuring the cognitive and 

perceptual underpinnings of real-world event perception while participants view everyday 400 

events.  

1.7 Hypotheses 
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Changes in attentional breadth can change in two primary ways: as a global attentional 

effect, where the overall level of attention in the visual field fluctuates, and as a change in the 

shape of the attentional window, by either broadening or tunneling.  With the wealth of literature 405 

finding that memory for event details tends to be best around event boundaries (Huff et al., 2014; 

Zacks & Swallow, 2007), it seems as though it would be safe to assume that attention improves 

around event boundaries.  Reynolds et al. (2007) originally argued that during event perception, 

the sensory gate remains closed, whereas at event boundaries the gate opens, allowing perceptual 

information to be incorporated into the event model in WM. At first glance, EST would predict 410 

attentional facilitation at event boundaries.  However, this assumption has so far been 

empirically denied.  The current empirical literature supports two categories of hypotheses 

regarding the effects of event boundaries on attention—a hypothesis which suggests that 

attention becomes impaired around event boundaries (Crundall et al., 2002; Huff, Papenmeier, & 

Zacks, 2012), and one in which attention shifts to an ambient mode of processing prior to the 415 

event boundary, while non-boundary periods facilitate focal visual processing (Eisenberg & 

Zacks, 2016; Smith, Whitwell, & Lee, 2006).  

An attentional impairment effect would replicate two previous findings measuring covert 

attention at event boundaries from Crundall et al. (2002) and Huff et al. (2012), both of which 

used a Peripheral Detection Task (PDT).  If attention is impaired at event boundaries, then a 420 

main effect of boundary type should find that coarse and fine boundary periods produce lower 

overall Gabor accuracy than non-boundaries.  Furthermore, if attention becomes impaired at 

event boundaries, this effect should increase with temporal proximity to the boundary (Huff, 

Papenmeier, & Zacks, 2012). Therefore, an interaction between boundary type and the time 

around the event boundary would be expected, such that Gabor accuracy is worse as the temporal 425 
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offset around the event boundary approaches zero. For non-boundaries, the opposite effect could 

occur, with Gabor accuracy improving as time around the event middle approaches zero. 

However, it is also possible that, if event models are stable at non-boundary periods, Gabor 

accuracy should be relatively flat except for the brief moment at which the event model is 

updated.  430 

Conversely, if attentional breadth is controlled by the specificity of event representations 

in working memory, then changes in attention might be explained by a shift from ambient to 

focal processing modes. An interaction with eccentricity is the critical distinction between the 

attentional impairment hypothesis and the ambient-to-focal hypothesis, whether the interaction is 

with boundary type (fine and coarse vs. non-boundary) or boundary offset time.  The point is that 435 

attention (operationalized as Gabor accuracy) changes as a function of eccentricity.  When 

attention is narrowed, the Gabor accuracy slope by eccentricity would be negative (i.e., higher 

accuracy with smaller eccentricities) and when attention is broadened, the eccentricity slope will 

be neutral (or more positive, relative to a narrowed focus of attention).  Changes in the size of 

attentional breadth would also suggest that there is likely no main effect of boundary time on 440 

Gabor accuracy since attention would be constant resource.  Thus, the event model update would 

only affect where attention is allocated; not how much attention can be allocated.   

The ambient-to-focal hypothesis would predict broadened attention in response to event 

boundaries, and narrowed attention at non-boundaries.  Event models become less useful in 

predicting event information as the event boundary approaches, and thus the event model must 445 

be updated to increase accuracy in predicting future information (Huff et al., 2014; Reynolds et 

al., 2007).  However, contrary to the attentional impairment hypothesis, the means of opening 

the sensory gate is to allow event information in from the entire visual field, rather than limiting 
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information input to central vision. This explanation of the gating mechanism would also be in 

line with one of the critical aspects of SPECT (Scene Perception and Event Comprehension 450 

Theory; Loschky et al., 2018): that scene gist helps to guide the shift from one event to the next.  

Thus, if the event boundary represents a full reset of the event model, then broadening attention 

would capture the global features of the scene space to aid in that transition.  

Ambient-to-focal processing of scenes suggests that the ambient mode is useful in 

extracting a coarse layout of the scene to provide contextual information before narrowing into 455 

specific regions of the visual field for more detailed information about objects (Pannasch, 

Helmert, Roth, Herbold, & Walter, 2008) and actions (Larson et al., 2012).  Thus, support for the 

ambient-to-focal hypothesis will be found if the interaction between boundary offset time and 

eccentricity is such that Gabor discrimination accuracy differs least between foveal, parafoveal, 

and peripheral presentations when presented closest to the event boundary, while with increasing 460 

temporal distance from the boundary, Gabor discrimination decreases with increasing retinal 

eccentricity.   

The ambient-to-focal hypothesis has been given some support through changes in overt 

attention (i.e., eye-movements) during dynamic event perception, but this effect seemed to differ 

as a function of the participants and/or event stimuli used.  For instance, Eisenberg and Zacks 465 

(2016) found systematic increases in saccade amplitude and decreases in fixation duration (e.g., 

ambient attentional processing) at event boundaries for one set of stimuli but did not replicate it 

for another.  The difficulty with finding consistency between these two studies illustrates the 

influence of stimulus-based factors in controlling eye-movements in a way that is not necessarily 

true for covert attention.  Importantly, the GC-UFOV task is quite sensitive in distinguishing 470 
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between perceptual loads and cognitive loads, when compared to eye-movements, and thus may 

be able to detect attentional changes where eye-movements could not (Ringer et al., 2016).  

In contrast to the ambient-to-focal shift hypothesis, the tunnel vision hypothesis is also 

viable, though its support has been found in contexts outside of event perception.  An interaction 

where information that falls further away from central vision is suppressed at the event boundary 475 

could still support an attentional impairment hypothesis.  In this case, event boundaries would 

represent periods of uncertainty for future information (i.e., a foveal, perceptual load), and 

attentional impairment would be greatest in the periphery when Gabors appeared closer to the 

event boundary.  Tunnel vision has typically been observed in reading, and is attributed to 

difficult, infrequent words or crowded spacing (for review, see Rayner, 1998).  It has been 480 

previously argued that attention during natural scene viewing begins foveally and then expands 

globally within the first 150 ms (Rayner, Smith, Malcolm, & Henderson, 2009).  If attention is 

constrained by a particularly difficult bit of information in the fovea, the viewer is unable to shift 

covert attention to the next peripheral target location (Nuthmann, Smith, Engbert, & Henderson, 

2010).  Not only does the foveal load reduce information extraction efficiency for the currently 485 

fixated target—it prevents peripheral pre-processing of the to-be-fixated target, as well.  Thus, 

there is an additional working memory load for later information (Engbert, Nuthmann, Richter, 

& Kliegl, 2005). 

An additional factor to consider is whether there are differences in attention between 

coarse and fine boundaries.  Several studies have found a number of neurophysiological, 490 

cognitive, and behavioral differences between the two segmentation grains as they relate to the 

magnitude of responses to coarse versus fine event boundaries.  Prior fMRI data has shown 

stronger overall BOLD (Blood-Oxygen Level Differences) signal changes for fine boundaries 
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than coarse boundaries, while specific areas of the brain critical for error monitoring (e.g., the 

right anterior cingulate cortex) and spatial attentional selection (e.g., left intraparietal sulcus) 495 

showed stronger effects for coarse boundaries (Zacks et al., 2010).   

Nevertheless, these effects have not been consistently found across studies, and thus may 

represent effects that are specific to different types of stimuli, rather than event perception as a 

whole.  In a more recent study investigating changes in brain activity while viewing everyday 

tasks, stronger effects for coarse boundaries were found across the cortex, but especially in the 500 

cuneus, precuneus, and lingual gyrus (Kurby & Zacks, 2018). Another inconsistency between the 

Zacks et al. (2010) study and the majority of other neuroimaging results for event perception was 

the lack of was that motion sensitive areas of the cortex (e.g., MT+) were not found to be 

affected at event boundaries.  For instance, one study using multiple object tracking found that, 

for fine boundaries, activity in bilateral MT+ increased prior to the event boundary and 505 

decreased after the boundary (Zacks, Swallow, Vettel, & McAvoy, 2006), whereas for coarse 

boundaries the opposite effect was found.  Although this study did not measure the effects of 

naturalistic events, other studies have founding converging evidence on the importance of 

motion in the detection of event boundaries (Speer, Swallow, & Zacks, 2003; Zacks, Braver, & 

Sheridan, 2001).  Taken together, these studies suggest that, by using videos of natural, everyday 510 

events, stronger attentional effects should occur at coarse boundaries.   

Finally, it will be important to consider whether the effects of time, eccentricity, or 

boundary type are useful as random effects across subjects. Such random effects are useful in 

determining if a particular effect is consistent across all participants, or if additional flexibility is 

necessary to capture individual differences (Baayen, Davidson, & Bates, 2008).  For instance, a 515 

random effect of boundary offset time (i.e., the temporal distance from the boundary) would 
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suggest that there is indeed variability in terms of when people detect event boundaries.  

Likewise, a random effect of boundary type would indicate the degree of consistency in which 

individuals’ attention was affected by a given boundary type.  Likewise, in the event that random 

effect of the interaction between boundary offset time and eccentricity significantly improves 520 

model fitness, then it would suggest that there are important differences across individuals in the 

spatiotemporal dynamics of attention at event boundaries.  Conversely, if a by-subject random 

effect interaction between boundary offset time and eccentricity does not improve model fitness, 

then it would suggest that the spatiotemporal dynamics of attention at event boundaries are 

relatively uniform across individuals.  525 
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Chapter 2 - Methods 

2.1 Overview 

The methodology for this experiment contained four phases (Fig. 1): (1) threshold 530 

estimation of Gabor target-to-mask stimulus onset asynchrony (SOA; i.e., processing time), (2) 

measures of Gabor discrimination accuracy while watching videos of real-world events, (3) 

measures of video memory, and (4) measures of event segmentation.  In phase 1, each 

participant’s SOA threshold was estimated for each of three Gabor eccentricities on a 

meaningless neutral image background (i.e., 1/f noise).  The initial thresholding phase was 535 

critical for equalizing Gabor difficulty across the visual field when fully attended since phase 2 

measured changes in attention due to perception of event content in the videos.  In phase 2, 

Gabors were presented while participants viewed videos of real-world events.  The times in the 

videos at which Gabors were presented focused on sampling around the times of coarse 

boundary, fine boundary, and non-boundary time periods, which were empirically derived by 540 

prior research (Eisenberg & Zacks, 2016; Sargent et al., 2013).  In phase 3, participants’ memory 

for objects and events were tested to determine if changes in visual attention predicted later 

memory for the contents of the videos.  In phase 4, participants segmented events at coarse and 

fine grains to determine if changes in attention were well predicted by individual, conscious, 

subjective experience with the videos or if changes in attention were predicted better by the 545 

empirically derived, normative boundaries from prior research (Sargent et al., 2013).   
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Figure 1.  Experiment overview showing four separate phases: Phase 1: Gabor processing 

time thresholding; Phase 2: the GC-UFOV task during event perception; Phase 3: object 

and event memory testing; and Phase 4: event segmentation at fine and coarse boundaries.  550 

Note, however, that event segmentation grains were counterbalanced across participants.  

 

2.2 Participants   

A total of 107 undergraduate general psychology students, aged 18-25 years old (M = 

19.5 years, SD = 1.33, 50 females) participated in a 2-hour study for course credit.  Thirteen 555 

participants did not complete the study and were not included in the final analyses.  Participants 

were screened for normal or corrected to normal vision (< 20/30 Snellen acuity) using the 

Frieberg Acuity and Contrast Sensitivity Test (Bach, 2006).  A preliminary examination of 

Gabor accuracy revealed that two participants’ overall Gabor accuracy was at or less than chance 
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(< 50% correct), while another participant showed 100% accuracy.  These subjects were 560 

removed from the data prior to additional analyses3.    

2.3 Materials 

2.3.1 Apparatus.   

The experiment was conducted on two custom PC computers, running Microsoft 

Windows 7, with an Intel Core i7 970 processor (3.2 GHz), 24 GB DDR3 RAM, a 256 GB 565 

Samsung 840 Pro series solid state hard drive (SSD), and a 2GB Radeon HD6950 video card.  

All tasks will be presented on a 19” ViewSonic CRT Monitor (model (G90fb) at 60 Hz, at a 

pixel resolution of 1024x768.  Viewing angle was maintained at 65 cm from the monitor using a 

chin and forehead rest, providing a viewing angle of 31.4 x 23.89 of visual angle.  

Gaze-position was measured monocularly by either an EyeLink 1000 or an EyeLink 570 

1000+ eye-tracker (SR Research, Ontario, CA) at a sampling rate of 1000Hz.  All manual 

responses were recorded by an 8-button Cedrus RB-844 response box having millisecond 

resolution.  

2.3.2 Stimuli. 

2.3.2.1 Gabor Stimuli.  Gabor patches were generated in MatLab (version 2017a).  The 575 

Gabor patches were adapted from Ringer et al. (2016). Patch sizes had been previously scaled in 

size using an adaptive threshold estimation algorithm that changed the size of the Gabor patches 

                                                 

3 The two participants removed for below-threshold accuracy showed SOA thresholds were at floor-level (i.e., 

fastest possible) processing times, whereas the subject removed for having perfect accuracy showed SOAs that were 

at the maximum allowed processing speed (SOA = 500 ms).  Thus, it is likely that thresholds for these participants 

were not effectively equalized across Gabor eccentricities during Phase 2 of the experiment. However, there was no 

meaningful effect of removing the three outliers on the subsequent results.  



 

28 

to adjust the difficulty of the task with unlimited processing time4. Thus, Gabor patch size 

increased with retinal eccentricity, such that the ability of participants to resolve the Gabor 

patches at each eccentricity would not be affected by low-level visual acuity or cortical 580 

magnification (for review, see Strasburger, Rentschler, & Jüttner, 2011).  The Gabor patches 

were presented at 0, 4.5, and 9 eccentricity (Fig. 2) subtended 2.1, 4.8, and 8.4 degrees of 

visual angle, respectively.  The Gabor discrimination task was a go-no-go task, in which 

participants had to determine whether the briefly presented Gabor patches were tilted to the right, 

with the target patches having been rotated 15 degrees clockwise (off-vertical) for valid trials, or 585 

counter-clockwise for catch trials.  To respond to the Gabor discrimination task, participants 

were instructed to press a button marked “Patch” with their right thumb.  To limit processing 

time, the Gabor patches were followed by a filtered Gaussian white noise mask (matching the 

mean spatial frequency, mean luminance, and mean Michelson contrast of the particular Gabors) 

after an SOA previously thresholded for that participant to yield 75% accuracy in Phase 1.  The 590 

Gabor patches and masks were also surrounded by a neutral gray annulus (whose width = 10% of 

the Gabor radius) to ensure that the luminance and contrast variability of the Gabor patches 

relative to the scene background information did not laterally mask the patches (Ringer et al., 

2016; Saylor & Olzack, 2006).  

                                                 

4 The experiments in Ringer et al (2016) used Gabor patches at 0o, 3o, 6o, and 9o degrees, whereas this study 

presented patches at 0o, 4.5o, and 9o.  Given that m-scaling follows a linear function (Strasburger et al., 2011) Gabor 

patch sizes for 3o and 6o were averaged to determine the 4.5o size.  
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 595 

Figure 2. Gabor patches (middle and bottom rows) and masks (top row) used in the Gabor 

discrimination task.  Participants were instructed to respond to the right-tilted (target) 

patches, and to not respond to the left-tilted (distractor) patches.  Task difficulty was 

manipulated by a backward mask which covered the Gabor patches immediately following 

a pre-specified duration which produced 75% accuracy for the participant.  600 

 

For Gabor presentations at 0o, only one patch was displayed.  The Gabor patches 

presented at 4.5o and 9o from central vision contained four patches presented equidistant from 

each other.  The reason for presenting multiple Gabor patches at 4.5o and 9o was that if only one 

patch were presented, it is possible that the Gabor patch would be presented outside of the 605 

viewable portion of the display if the participant were looking at the edge of the image.  

Therefore, the inclusion of four patches ensured that at least one patch would be visible during a 

fixation in which there was a Gabor presentation.  The configuration of the patches also 

randomly rotated between 0o and 45o to prevent participants from anticipating the precise 

location of the Gabor patches across Gabor presentations.  610 
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Gabor patches were presented on two different types of image backgrounds: a 1/f noise 

background (Fig. 3) during Phase 1 SOA thresholding, and the real-world event video 

backgrounds during Phase 2 real-world event video viewing.  During the SOA thresholding 

phase, the patches appeared in a neutral 1/f noise background while the Gabor presentation time 

and mask duration were manipulated using the Single Interval Adjustment Matrix (SIAM; 615 

Kaernbach, 1990).  The 1/f noise background was used to emulate the power spectrum slope 

common to natural images, as well as the contrast sensitivity of the primary visual cortex (Field, 

1987).  Thus, the background of the training images was similar to the low-level features that 

would be present in any number of visual backgrounds without the presence of any objects on 

which to narrow the focus attention.  To create relatively strong masking, a 2:1 mask-to-target 620 

duration ratio was used.  

 

 

Figure 3. Sample 1/f noise image used as the background for Gabor SOA thresholding in 

Phase 1.  While this image contains no recognizable objects or scene information, it’s 625 

distribution of spatial frequencies is similar to that of natural scenes.  
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2.3.3.2 Event Perception and Segmentation Stimuli. While previous versions of the GC-

UFOV task have utilized an artificial task to manipulate attention (e.g., the N-Back task; Gaspar 

et al., 2016; Ringer et al., 2014; Ringer et al., 2016; Ward et al., 2018), this experiment sought to 630 

use the structure of real world events to manipulate attention.  In this study, critical moments in 

the event sequences (i.e., the event boundaries) were used as the attentional manipulation.  In the 

second and fourth phases of the experiment, participants viewed one practice event video 

(folding laundry), followed by three experimental videos previously used by Sargent et al. (2013) 

and Eisenberg and Zacks (2016), each of which portrays an actor carrying out a specific task: 635 

making breakfast, setting up a dining room for a party, and transplanting garden plants into new 

containers.  The event segmentation data from Sargent et al. (2013) were used to create triggers 

for the onset of Gabor patches for both fine and coarse events at time points that were above a 

threshold (probability density > 0.6) for an event boundary.  Likewise, moments in the video 

which the normative event segmentation data suggested were very unlikely to be considered 640 

events (i.e., below the 0.6 threshold for an event boundary) were also included as non-event-

boundary times.  Events for which the inter-event interval was less than 12 seconds were not be 

used for the Gabor discrimination task to reduce the likelihood that a delay in a Gabor 

presentation would overlap in time with the next Gabor presentation.  

 645 

Table 1 

Number of Event Boundaries by Video 

 Coarse Fine Non-Boundary 

Breakfast 10 12 4 

Garden 6 15 5 

Party 6 17 3 

Total number of event boundaries used for Gabor presentations in each video.   
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2.3.3.3 Object Memory Test Items.  The object memory task consisted of a conceptual 650 

(verbal) recognition task, since this type of object memory has been shown to be better for 

objects which appear at event boundaries, and poorer for objects appearing at non-boundaries 

(Swallow, Zacks, & Abrams, 2009).  Object memory was tested for all three videos, after which 

event order memory for all three videos was tested.  The order for each block of memory tests 

matched the order in which they viewed each video.  Items for the object recognition memory 655 

task consisted of names of objects which were either present or absent from each video.  

“Boundary” objects were objects which appeared or were manipulated at an event boundary, 

whereas the “non-boundary” objects were background objects that were identifiable but not 

relevant to the events5.  The “absent” objects were foils, namely objects consistent with the scene 

or event but which were not actually present in the event videos.  For example, in the making 660 

breakfast event video, “butter” and “spice rack” were both “present” objects, however only 

butter was coded as an event object because it was actively manipulated during an event 

boundary.  Conversely, “whisk” was a foil object because it was not present in the video, though 

it was consistent with what one would expect in a video about making breakfast.   

Both the present and absent objects were selected based on pilot surveys given to thirteen 665 

lab assistants who were naïve to the event videos.  The objects selected for the memory task were 

those which matched the event or scene schemas for a portion of the surveys but were neither 

entirely present nor entirely absent from the survey responses.  In other words, if an object was 

reported by all participants, it was not included as foil object.  This was intended to include foil 

                                                 

5 On average, boundary objects were manipulated by the actor 4.5 times, however non-boundary objects were 

interacted with an average of .33 times.  
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objects with a moderate degree of likelihood for being present in the event video.  In total, there 670 

were 27 items per video, with nine objects for each of the absent, event, and non-event 

categories.   

2.3.3.4 Event Order Memory Test Items.  Event order memory was tested because 

previous research with Event Segmentation Theory has posited that segmentation ability is 

related to accurate memory for the temporal ordering of events.  Therefore, event order memory 675 

was tested by providing participants with descriptions two event actions from which the 

participants selected the action which occurred first in the video.  In the “Making Breakfast” 

video, for instance, participants were instructed to choose between “Putting the pan on the stove” 

and “Getting eggs from the refrigerator.”  The actions used in the task were derived from verbal 

recall data used by Sargent et al. (2013), which provided correlation scores between the ground-680 

truth event order and participants’ verbal recall for the actions.  Thus, participants with high 

memory correlations were more consistent with the actual action sequences, whereas participants 

with low memory correlations were less accurate in recalling action order.  The free-recall 

memories reported from the upper decile and not reported by the lower decile of the 234 

participants were then used to target the action pairings that were most likely to discriminate 685 

between high and low event memory participants. 9 pairs per video were used.  

2.4 Procedure 

2.4.1 Precursory Information.   

All participants gave their informed consent to participate in this study.  Afterward, 

demographic information was collected, followed by Snellen acuity, and Weber contrast 690 

sensitivity.  

2.4.2 Phase 1: Gabor SOA Thresholding.  
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In phase 1 of the experiment, Gabor thresholding consisted of 288 trials of the Gabor 

orientation discrimination task.  Participants were first calibrated with the eye-tracker using a 9-

point calibration grid.  Calibrations were validated by having an average and maximum error of 695 

no more than 0.5o and 1o visual angle, respectively.  Following calibration, participants were 

given instructions for the Gabor discrimination task, as well as the need to maintain fixation until 

the white noise mask appeared.  

Trials began when participants focused their gaze on a centrally located small bull’s eye 

pattern and pressed a button to present a fixation fail-safe dot in the same location.  If gaze was 700 

still centered in the middle of the screen, the trial began.  The trial began with a 1/f noise 

background image, followed by the immediate appearance of a set of Gabors at one of the three 

eccentricities (0o, 4.5o, 9o), and then a mask.  For the first 36 trials, the Gabor patches and masks 

appeared at a fixed duration of 150 and 300 ms, respectively, with no manipulation of the 

thresholding algorithm.  After the first 36 trials, participants were provided accuracy feedback on 705 

their performance for each eccentricity.  This first block of trials served as practice for the Gabor 

discrimination task and could alert the experimenter to correct any confusion on the part of the 

participant before the SOA was adjusted.  After the practice set of 36 trials, the Gabor SOA was 

manipulated by a thresholding algorithm (SIAM; Kaernbach, 1991) to determine the processing 

time threshold needed to achieve 75% accuracy for each Gabor eccentricity.  Feedback was 710 

given to the participant after every 36 trials to ensure they were not biasing attention to any 

particular retinal eccentricity.  For instance, if a participant was scoring 100% accuracy in central 

vision, but was scoring 50% in the periphery, they could adjust their strategy to improve their 

performance in the periphery so that accuracy would be equalized across the visual field.  
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Trials in which the participant moved their eyes before the mask could appear 715 

(henceforth referred to as nil patches) did not affect the SIAM thresholding algorithm, nor were 

those trials included in the participants’ accuracy feedback, since the duration of the retinal 

image activated by the Gabor could not be limited by the mask.  After the 288 trials were 

completed, the SOA thresholds for each eccentricity were calculated and carried over to the GC-

UFOV task in phase 2 of the experiment.  720 

2.4.3 Phase 2: GC-UFOV Task and Event Perception.   

In phase 2 of the experiment, participants were told that they would watch four videos of 

everyday events in preparation for a later memory task.  They were also informed that they 

would be completing the same Gabor discrimination task as they did in the previous thresholding 

task.  First, participants watched a 90 second practice video of a person folding laundry.  The 725 

next three videos were recorded experimental trials in which Gabor patches were triggered to 

appear either before, during, or after an event boundary, or non-boundaries, namely times in 

which prior data from Sargent et al. (2013) suggested that participants would be least likely to 

detect an event boundary.  However, the Gabors did not appear until the next fixation following 

the Gabor trigger (Fig. 4).  After the Gabors appeared, the filtered Gaussian noise masks 730 

appeared on top of the Gabor locations to interrupt further processing of the patches.  

Participants had up until the next Gabor presentation to respond, thus reaction time was not 

measured in the results, rather processing time was limited through the backward masks.  

The aim of this phase of the study was to measure changes in attention around event 

boundaries, and to determine if there is a distinct attentional effect for coarse versus fine 735 

boundaries and non-boundary locations.  However, the GC-UFOV methodological framework 

recommends that attention probes be presented at the onset of a fixation, during post-saccadic 
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suppression (Loschky & McConkie, 2002; Shioiri, 1993) to prevent attentional capture by the 

sudden onset of the gaze-contingent stimuli (Theeuwes, Kramer, Hahn, Irwin, & Zelinsky, 

1999), and to ensure that the Gabor patches did not appear toward the end of a fixation, when an 740 

eye-movement is likely to occur (Matin, 1974).  Therefore, Gabor presentations occurred at the 

onset of a fixation, with a maximally acceptable lag between the beginning of the fixation and 

the onset of the Gabors not exceeding 80 ms (Loschky & Wolverton, 2007).     

 

 745 

Figure 4. Gabor presentation schematic for the GC-UFOV task while viewing videos of 

events.  Each Gabor presentation is time-locked to a time around an event boundary (i.e., 

E1, E2, E3, E4).  Note that in this illustration, the fixation prior to the Gabor trigger extends 

past the trigger time, and so the presentation of the Gabor and mask must wait until the 

onset of the next fixation. Meanwhile, the time in which the participant may respond to a 750 

Gabor extends until near the next Gabor trigger time.  
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This method created a situation in which the minimum trigger-presentation offset in time 

between the critical video frame at which the Gabor could be presented and the video frame in 

which the Gabor was actually presented could be no less than zero, while the maximum trigger-755 

presentation delay between the Gabor presentation trigger frame and the actual Gabor 

presentation could extend up to the next Gabor presentation frame6.  Therefore, the non-negative 

lower boundary for Gabor presentation times from the Gabor trigger frame was likely to produce 

a certain degree of positive skew in the distribution of boundary offset times, or the difference in 

time between the Gabor presentation time and the event boundary. This was confirmed by pilot 760 

data (Fig. 5), with the mean shift in mean presentation times occurring 1 second after the event 

boundary.  Thus, the Gabor trigger time offsets used to control the presentations of Gabor 

patches was subtracted by 1 sec from the desired target boundary times, such that the trigger 

times were -4 s, -2.5 s, -.5 s, 1 s, and 2.5 s from the event boundary.  Additionally, combinations 

of boundary type, boundary offset trigger times, and Gabor eccentricity, Gabor identity (valid vs. 765 

catch trial) were counterbalanced to ensure even sampling across participants and videos.   

  

                                                 

6 It is also important to note that the maximum lag between the critical frame in the video and the presentation of the 

Gabor must also include the presentation time of the Gabor, the mask, and an appropriate time to respond.  Thus, the 

current program allowed for the maximum Gabor presentation offset to be up to two times the sum of the Gabor and 

mask presentation times before the critical frame of the next Gabor presentation.  
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Figure 5.  Pilot results from four subjects showing the distribution of actual Gabor 770 

presentation offset times in relation to the trigger times (i.e., the earliest times at which the 

Gabors could be presented).  The positive skew in presentation distributions required that 

the Gabor trigger times be shifted 1 second to improve the symmetry of Gabor patch 

presentations before and after the event boundary during the main experiment.  

 775 

2.4.4 Phase 3: Memory Tests.   

In Phase 3, participants completed memory probes for object and event memory tests, 

each using a 2-alternative forced choice (2-AFC) recognition task.  Participants first completed 

the object memory task for all videos, followed by the event order memory task.  Memory probes 

were blocked by video, and order for the memory task matched the order of the videos in Phase 780 

2.  Thus, memory for each video was probed in the same order that the videos were originally 

viewed. 

2.4.4.1 Object Memory.  

Trials began when participants focused on a fixation dot and pressed a button on the 

response box.  This caused a neutral gray screen to appear for 750 ms, followed by a screen 785 
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containing a label for an object (Fig. 6).  Participants responded by pressing a button to indicate 

whether the object was present or absent from the video, with the “present” and “absent” 

responses appearing on the left and right sides of the screen respectively, which corresponded 

with the button mapping of the response box.   

  790 

Figure 6. Trial schematic for object memory task.  

 

2.4.4.2 Event Order Memory.  Event order memory (Fig. 7) was probed with a two-

alternative forced-choice task, where participants were given two different actions appearing on 

the right and left side of the screen.  Participants responded by pressing a button to indicate 795 

which action occurred first in the video, with the button mapping for each response appearing in 

the lower corners of the screen.   
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Figure 7. Trial schematic for event order memory task.  Participants began the trial by 800 

focusing on a grey drift-check dot, which brings a neutral gray image, followed by the 

memory probes.  Participants were instructed to indicate which of the two actions occurred 

first in the event video.  

 

 805 

2.4.5 Phase 4: Event Segmentation.  In Phase 4 of the experiment, participants watched 

the event videos from the GC-UFOV portion of the experiment and identified event boundaries 

in them.  For coarse-grained segmentation, participants were instructed to “Press a button any 

time a large meaningful unit of information has ended,” and for fine-grained segmentation, they 

were instructed to “Press a button any time that a small meaningful unit of information has 810 

ended” (Eisenberg & Zacks, 2016, pg. 4).  Practice for event segmentation was performed on the 
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“Folding Laundry” video before continuing to the experimental event videos.  After each video, 

including the practice, participants were given feedback on the number of events they detected.  

Trials were blocked between coarse and fine-grained event segmentation, and coarse and fine-

grained segmentation was counter-balanced across participants.  Video order within each coarse 815 

and fine block matched the original viewing order from Phase 2. 
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Chapter 3 - Results 

3.1 Event Segmentation 820 

Event segmentation results were analyzed to determine the location of normed event 

boundaries, as well as determining the degree of segmentation agreement among participants, 

namely how consistent the detection of these boundaries was across subjects (Hard et al., 2006; 

Zacks et al., 2010).  Furthermore, it was important to determine whether the high degrees of 

boundary alignment between coarse and fine boundaries observed in previous studies (Hard et 825 

al., 2006; Kurby & Zacks, 2011; Zacks, Braver, et al., 2001; Zacks et al., 2010) occurred for the 

current experiment.   

Analysis of event segmentation data was performed using a method adapted from 

Papenmeier (2016), which fits a probability density function to keypresses around clusters of 

frames from the event segmentation task to find the moments in the videos that were most likely 830 

to be considered event boundaries.  Segmentation was analyzed separately for coarse and fine 

levels using a kernel gaussian smoothing algorithm (R, version 3.5.0).  Consistent with Sargent et 

al. (2013) and Eisenberg and Zacks (2016), temporal bandwidths for the kernel smoother were 

set to 3 seconds, and cutoff values for the Gaussian smoother were set to a probability of .5. 

Furthermore, two participants did not complete all trials in the event segmentation task and were 835 

omitted from the results.  

3.1.1 Segmentation Alignment.  Alignment of event segmentation data between coarse 

and fine boundaries was assessed by creating two general linear models where the probability 

density for coarse event boundaries was predicted by the probability density for fine boundaries.  

In one model, the intercept for the probability density of a coarse boundary for each video was 840 

included as a by-item random effect, whereas a second model allowed fine boundary probability 
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density to vary as a function of video.  The results show that the second model demonstrated 

significantly better fit (BIC = -91484) compared to the first, simpler model (BIC = -91063).  

Thus, there was sufficient evidence to suggest that segmentation agreement differed as a function 

of video (Fig. 8).  This model was then selected for fixed-effects evaluation.  Fixed effects tests 845 

revealed significant agreement between coarse and fine segmentation (B = 0.576, SEM = 0.039, 

t(64997) = 14.70, p < .001).  When the inverse of the model was assessed (i.e., when coarse 

segmentation probability was used to predict fine segmentation probability), a similar result was 

found, with coarse segmentation probability significantly predicting fine segmentation 

probability (B = 0.777, SEM = 0.024, t(64997) = 32.28, p < .001).  Thus, overall fine boundary 850 

segmentation probability significantly predicted coarse segmentation probability, however coarse 

segmentation ability predicted fine segmentation to a stronger degree. 
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 855 

Figure 8. (Left) Probability density plots of segmentation responses for the three videos of 

everyday events.  Green vertical bars indicate normed event boundaries, where the 

probability of a participant making a segmentation response exceeded .50 within a 3-

second temporal bandwidth. Note the high degree of alignment between coarse and fine 

boundaries.  860 

 

3.1.2 Segmentation Agreement.  Afterward, individual subjects’ response probabilities were 

correlated with the normed segmentation data (i.e. group average) to determine the range of 

individual variability in segmentation ability in the current study.  This provided the basis for 

determining how closely an individual’s segmentation performance matched with the group 865 

mean.  Then, four general linear mixed models were generated with segmentation agreement 

being predicted by segmentation grain (i.e., fine versus coarse).  The models varied in terms of 

their random-effects structures.  Two models included only subject intercepts for segmentation 

agreement as the by-subject random effect, and two models included segmentation grain as a by-

subject random effect slope.  Additionally, half of the models varied by including video as a by-870 
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item random effect, while the other two did not include video as a by-item random effect.  This 

test was critical for determining whether the segmentation agreement between fine and coarse 

segmentation differed with regard to each video, and whether such variability was sufficient to 

warrant additional flexibility in the overall model.  Model fitness indices demonstrated that the 

more complex model (Grain|Subject and 1|Video) showed better model fitness (BIC = -429.23) 875 

than the next best model (1|Subject and 1|Video, BIC = -428.99).  Thus, the data suggested that 

the trends in segmentation agreement did differ by video and that segmentation agreement 

among participants differed as a function of segmentation grain.   

 Segmentation agreement among participants was well above chance for coarse-grained 

segmentation (B = 0.35, SEM = 0.031, t(87) = 11.42, p < .001), suggesting that overall trends in 880 

segmentation agreement were more-or-less consistent across participants. However, fine-grained 

segmentation agreement was slightly (but significantly) lower than coarse grained segmentation 

(B = -0.032, SEM = 0.014, t(87) = 2.20, p = 0.036).  This is counter to previous results which 

have found better segmentation agreement for fine grained events (Kurby & Zacks, 2011; 

Sargent et al., 2013), but suggests that there was significantly more variability in the way that 885 

participants segmented based upon smaller, stimulus-driven changes in the event.   

3.1.3 Segmentation Agreement Across Event Videos.  Additional analyses probing 

differences in coarse versus fine-grained segmentation agreement as a function of video were 

consistent with trends in object and event order memory.  While segmentation agreement was 

generally lower for the breakfast video compared to the garden and party videos, the most 890 

interesting result is that the breakfast video was the only one in which coarse segmentation 

agreement (Mean = 0.26, 95% CI = [0.22, 0.30]) trended lower than fine segmentation 

agreement (Mean = 0.30, 95% CI = [0.27, 0.34]).  In contrast, coarse segmentation tended to be 
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higher than fine segmentation agreement for both the garden (coarse: Mean = 0.40, 95% CI[0.36, 

0.44]; fine: Mean = 0.31, 95% CI[0.28, 0.36]) and party (coarse: Mean = 0.39, 95% CI[0.35, 895 

0.43]; fine: Mean = 0.31, 95% CI[0.30, 0.38]) videos (Fig. 9).  Thus, it is likely that the 

perception of event structure differs substantially between the breakfast video and the garden 

and party videos.  

One source of this difference may reside in amount of motion occurring between the two 

videos.  Motion is perhaps one of the most replicated cues for event boundaries (Kurby & Zacks, 900 

2008; Zacks et al., 2001; Zacks et al., 2006) and facilitates segmentation agreement better at fine 

grains than coarse grains (Hard, Tversky, & Lang, 2006).  In the garden and party videos, 

motion is fairly localized, and large movements typically coincided with changes in intention or 

goal completion.  Conversely, the breakfast video contained a large range of motion changes 

within coarse grains as the actor moved from different parts of the kitchen, completing several 905 

tasks in parallel.  Therefore, effects of multiple points of motion may have been less predictive of 

coarse boundaries for the breakfast video as they were for the garden and party videos (Zacks et 

al., 2010).   
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Figure 9. Boxplots of individual subjects’ segmentation agreement with the normed 910 

segmentation data. Mean diamonds represent a 95% confidence interval around the mean, 

and the horizontal bars around the midsections represent median segmentation agreement.   

 

3.1.4 Segmentation Agreement Across Studies 

In addition to assessing segmentation agreement for participants within the current study, 915 

it was also useful to determine whether segmentation performance in this study agreed with 

segmentation data from Sargent et al (2013).  Segmentation performance for participants from 

Sargent et al.’s (2013) was calculated using the same kernel density smoothing algorithm 

adapted from Papenmeier (2016).  Temporal bandwidths were kept at 3 s, and the probability 

density distributions over time were correlated between the two studies (Table 2).  As can be 920 

seen in Figure 10, participants segmentation performance showed a high degree of agreement 

with the participants from Sargent et al. (2013).  However, there did seem to be greater 
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agreement for fine segmentation than for coarse grained segmentation, however there seemed to 

be a more conservative (i.e., less frequent) response frequency in the current study than in the 

study by Sargent et al (2013).  Nevertheless, the fact that participants between studies appeared 925 

to segment similarly would suggest that both groups’ perceptions of what was meaningful for 

each video was interpreted similarly, as well.  Additionally, the strong agreement in 

segmentation data between the two studies suggests that the empirically derived times selected 

for use in the Gabor discrimination task (Phase 2) were at times in which participants perceived 

meaningful changes in the event.    930 
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Figure 10. Probability density plots for event segmentation for the current study and from 

Sargent et al. (2013).  Segmentation performance is presented as a function of video and 935 

segmentation grain. Note that, although boundaries were identified similarly across the two 

studies, the data from the current experiment typically showed slightly lower peaks for 

segmentation probability (especially coarse-grains).   
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Table 2.  940 

Segmentation Correlations Between the Current Study and Sargent et al. (2013) 

Video Coarse Fine 

Breakfast 0.59 0.82 

Garden 0.68 0.88 

Party 0.86 0.88 

Pearson correlations between the normed segmentation data in Sargent et al. (2013) and the 

current study. Fine-grained segmentation agreement was consistently high across all three 

videos, while coarse-grained segmentation agreement was less consistent across the three videos.   

 945 

3.2 Memory Tasks 

Memory for objects and events was also assessed for several important purposes.  The 

first purpose was to ensure that participants were, in fact, attending to the content of the videos 

and not just devoting all of their attention to the Gabor discrimination task.  The second purpose 

of the memory tasks was to determine if SOA thresholding data served as a useful individual 950 

differences predictor for later object memory (Kreitz, Furley, Memmert, & Simons, 2015).  A 

third goal was to determine whether segmentation agreement was a useful predictor for event 

order memory (DuBrow & Davachi, 2016; Sargent et al., 2013).       

3.2.1 Object Memory.  Object memory was analyzed by means of a probit mixed-model, 

evaluating the likelihood of reporting that an object was present.  Fixed-effects predictors 955 

included object type (e.g, absent, boundary, and non-boundary objects).  By-subject random 

effect structures varied  between two models, where one model contained only subject intercepts 

as a random effects (i.e., 1| Subject), and a second which included object type across subjects 
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(i.e., Object Type | Subject).  Finally, another set of models included video as a by-item random 

effect.  960 

Better model fitness was found when the by-item random effect of video was included 

(BIC1|Subject+1|Video = 4712.9, BICObject Type|Subject+1|Video = 4754.5) when compared to a model which 

did not include the by-item random effect (BIC1|Subject = 4860.8, BICObject Type|Subject = 4902.4).  

However, the model that included object type as a by-subject random effect (i.e., Object Type | 

Subject + 1|Video) did not demonstrate better fit than the model which contained only subject 965 

and video intercepts as random effects.  Therefore, the simpler model, which contained only 

subject and video intercepts as random effects was selected for fixed-effect evaluation.  

The fixed effects tests for object memory reveal that participants’ memory was sensitive 

to boundary objects (d’ = 1.62, SEM = 0.22) but not non-boundary objects (d’ = 0.10, SEM = 

0.01), with the two object types differing significantly from each other (z = 18.10, p < .001; Fig. 970 

11).  Thus, participants were engaged in attending to and remembering the content related to the 

event, rather than free-viewing the background information in the scene.  This result was also 

consistent with previous data showing that boundary objects are remembered better than non-

boundary objects (Swallow et al., 2009).  However, it could be that the simple act of interacting 

with objects more frequently made these objects more salient than the non-boundary objects, 975 

which were interacted with much less frequently.  
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Figure 11.  Object memory sensitivity for each video.  In all cases, boundary objects were 

significantly more likely to be correctly recalled compared to non-boundary objects.  Error 

Bars = 95% CI.    980 

 

3.2.2 Event Order Memory.  Like object memory, event order memory was evaluated 

through a probit mixed-model.  The criterion variable was the likelihood of responding that the 

left-sided event action occurred first, the validity of the left sided action being the only predictor 

in the regression.  The random effects structure varied with four models.  Two models included 985 

only the subject intercept as a by-subject random effect, and two other models included validity 

as a by-subject random effect.  One of each of the above models also included video type as a 

by-item random effect.  Model fitness was evaluated by BIC values, with the model which 

included subject intercept as a by-subject random effect and video as a by-item random effect 

showing the best model fitness (BIC = 3188.5) relative to the next best model, which included 990 

target validity|Subject as a by-subject random effect and video as a by item random effect (BIC = 

3203.9).   
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As expected, there was no significant bias to select the right or left action (B = -0.028, 

SEM = 0.09, z = -0.304, p = 0.761).  Furthermore, the results show that participants were 

minimally but significantly sensitive to event order (d’ = 0.307, SEM = 0.053, z = 5.80, p < 995 

.001).  Thus, as indicated by the object memory task results, the order memory results show that 

participants were somewhat actively engaged with encoding the content of the videos during the 

event perception and Gabor discrimination portion of the experiment.  More importantly, there 

was little chance that the sensitivity to event order could be explained by guessing, since the 

memory probes were generated from action pairs that discriminated between individuals with 1000 

high versus low memory performance.   

These results agree with order memory results from Sargent et al (2013), though the 

stimuli in that study were pictures, whereas this study presented descriptions of actions.  Given 

that the videos constituted a meaningful random effect for the results, a subsequent analysis of 

memory sensitivity for each video found that the event order memory for the breakfast video was 1005 

slightly negatively sensitive (d’ = -.241, 95% CI[-.49,0.01]), whereas event order memory was 

positively sensitive for the garden video (d’ = .244, 95% CI[-.01,0.49]) and even more so for the 

party video (d’ = .986, 95% CI[.72,1.25])(Fig. 12).  It is interesting that order memory sensitivity 

was below chance for the breakfast video, and near chance for the garden video, when 

segmentation agreement for these two videos was also lower for coarse grains—especially in 1010 

comparison to fine segmentation agreement for these two videos.  Meanwhile, event memory 

remained highest for the party video, which also showed high (and similar) segmentation 

agreement for both coarse and fine grains.  Thus, it was necessary to compare whether individual 

subjects segmentation agreement at coarse and fine grains predicted subsequent order memory.    
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 1015 

Figure 12. Event memory sensitivity across three videos.  Segmentation agreement as a 

function of video demonstrates clear differences for memory as a function of each video, 

with the breakfast video showing nearly at-chance memory performance, while the party 

video shows a relatively high degree of event order memory.  Error Bars = 95% 

Confidence Interval.  1020 

 

Prior research has established that there has been an established relationship between 

event segmentation agreement and event memory (Sargent et al., 2013, Kurby & Zacks, 2011), 

and therefore it was important to determine if participants’ segmentation agreement predicted 

later event order memory for the current experiment.  For this, three additional models with 1025 

segmentation agreement as an interacting parameter (Coarse, Fine, Coarse x Fine) were 

generated to be compared with the above model, which did not include segmentation agreement 

as a parameter.  Model fitness indices for all four models were compared and showed the 

inclusion of segmentation agreement did improve the goodness of fit in predicting event order 

memory.  Specifically, coarse segmentation agreement positively predicted event order memory 1030 

(Δd’ = 0.893, SEM = 0.267, z = 3.34, p < .001), significantly improving model fitness over the 
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model which did not include any segmentation agreement (χ2 (2) = 12.01, p = .002).  Thus, 

recognizing the dramatic shifts in one’s event model results in the accurate ordering of event 

information during long-term memory encoding.   

 1035 

3.3 Gabor SOA Thresholds 

In Phase 1 of the experiment, Gabor SOA thresholds on a 1/f noise background were 

estimated for all participants to determine the baseline speed of processing at different retinal 

eccentricities (0o, 4.5o, and 9o) and to equalize Gabor accuracy across the visual field prior to 

manipulating attention in Phase 2.  Previous research using the GC-UFOV has only used small (n 1040 

= 13) sample sizes, and therefore a larger sample would provide a more complete estimate of 

individual differences in processing times across the visual field.  Gabor SOA thresholds were 

recorded for the 92 participants who completed the entire study, and were analyzed using general 

linear mixed-modeling, with the log-transformed Gabor SOA being the criterion variable, and 

Gabor eccentricity being the sole fixed effect.  Two models with varying random effects 1045 

structures were generated; one which included subject intercepts as a random effects variable, 

and another which included variability across eccentricity by each subject as a random effects 

variable.  The model which included Gabor eccentricity was shown to have a better model fit 

compared to the model which included only subject intercepts (χ2 = 6.30, p = .043), and thus it 

was selected for evaluation of its fixed effects.  1050 

Fixed effects tests show that mean SOA was approximately 105 ms (B = 4.65, SEM = 

0.05, t = 92.74, p < .001).  While there was no fixed effect of eccentricity on processing speeds 

(B = 0.001, SEM = 0.008, t(93) = 0.15, p = 0.88), as might be expected due to using size-scaled 

Gabors for each eccentricity, participants did show individual differences in Gabor SOAs from 
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central to peripheral vision.  Interestingly, there was a significant positive correlation between 1055 

subject intercepts and eccentricity slopes (r(92) = 0.22, p = .03), where participants with lower 

overall SOAs generally obtained lower SOAs (i.e., faster processing speeds) from central to 

peripheral vision, and participants with higher overall SOAs obtained higher SOAs (i.e., slower 

processing speeds) from central to peripheral vision (Fig. 13).   

 1060 

Figure 13. Figure demonstrating the observed Gabor SOAs across retinal eccentricity for 

each participant.  Panels represent three participant groupings, separated by residual 

scores for Gabor SOA (Low, Medium, and High processing times).  Note the slight negative 

slope for the low SOA group compared to the generally positive slope for the high SOA 

group.  1065 

 

An additional factor to consider is whether individual differences in processing speed 

across the visual field (as per the UFOV task) affected the encoding of objects into long-term 

memory (Kreitz, Furley, Simons, & Memmert, 2015).  The models predicting object memory 

between boundary and non-boundary objects were augmented to include processing time speeds 1070 

across the visual field.  The factors of mean SOA and SOA eccentricity slope were included as 

parameters to interact with object type in three different models (mean SOA threshold, 

eccentricity SOA slope, and mean SOA x eccentricity slope).  Model fitness indices were 

compared, however there was no improvement in model fitness for any of the additional models 
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(mean SOA: χ2 (3) = 0.89, p = .826; Eccentricity SOA slope: χ2 (3) = 0.84, p = .839; mean SOA 1075 

x eccentricity SOA slope: χ2 (9) = 4.76, p = .85). Therefore, processing time differences across 

the visual field did not influence object information encoding with regard to event perception.  

3.4 Gabor Discrimination During Event Perception 

This experiment tested several hypotheses concerning spatial and temporal changes in 

attention in relation to different event boundaries.  To recap, the two competing hypotheses 1080 

regarding the breadth of attention around event boundaries over time are decomposable into two 

clusters of outcomes: an attentional impairment hypothesis and an ambient-to-focal shift 

hypothesis.  

All Gabor analyses were performed on a custom PC with an AMD Ryzen 1800x 

processor (3.7 GHz), a Mushkin Reactor 1 TB Solid State Drive (SSD), and 16 GB of DDR4 1085 

RAM (2400 MHz).  The Bayesian mixed models were generated through Hamiltonian Markov 

Chain Monte Carlo (MCMC) simulation using the brms package in R (version 2.3.1; Burkner, 

2017).  Posterior distributions were generated by eight sampling chains, distributed over eight 

processing cores, with 3,000 warm-up iterations and 6,000 iterations, with a total of 24,000 final 

samples included in the final model7.   1090 

3.4.1 Omnibus Model Structure.  Gabor accuracy was used as the criterion variable and 

coded as 1 or 0 for correct versus incorrect responses, with a Bernoulli distribution being 

specified. Fixed effects variables included Boundary Type (coarse, fine, non-boundary), 

boundary offset time (ranging from -4 s to +6 s from the boundary), and Gabor eccentricity (0o, 

                                                 

7 Flat priors for all regression weights were a t-distribution with 3 df, mean of 0, and sd of 10 for the intercept, and a 

half-t distribution derived from a t-distribution with 3 df, mean of 0, and sd of 10 for all standard deviations of 

intercepts (across subjects and videos) and within-subject predictor slopes (across subjects). 
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4.5o, and 9o) as predictors8.  Video type was included as a by-item random effect in all models.  1095 

From the available data, two models with differing fixed effects structures were generated.   

The model structure of the attentional impairment hypothesis (Equation 1) included the 

interaction of boundary type and boundary offset time and the additive effect of Gabor 

eccentricity.  Thus, if attention is differentially impaired by different boundary types, then Gabor 

accuracy should be lower at boundaries (fine and/or coarse) compared to non-boundaries.  1100 

Furthermore, if the time course of attention differs around each boundary, then the boundary 

offset time (i.e., the time prior-to or after the boundary) should interact with boundary type.  

However, the attentional impairment hypothesis assumes that attention should be equally 

affected across the visual field, rather than systematically broadening or narrowing, as is the case 

in the ambient-to-focal shift hypothesis.  Thus, the ambient to focal shift hypothesis (Equation 2) 1105 

differed only in the three-way interaction of event boundary type, boundary offset time, and 

Gabor eccentricity to measure fluctuations in attentional breadth across time as they differ 

among each event boundary type.   

                                                 

8 All continuous predictors were centered to have a mean of 0 when constructing the model. 
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Equation 1: Fixed-effects structure for the Attentional Impairment hypothesis. 1110 

Y = Boundary Type x Time + Eccentricity 

Equation 2: Fixed-effects structure for the Ambient to Focal Shift hypothesis.  

Y = Boundary Type x Time x Eccentricity 

 

Random effects structures were both by-subject and by-item to uncorrelate the effects 1115 

contributed by each subject with each manipulation in the experiment.  Nine permutations of 

each model class (i.e., attentional impairment versus ambient to focal shift) were generated 

beginning with simple random effect structures with subject intercepts, then singular effects of 

each fixed effect (e.g., Eccentricity | Subject), additive effects of each fixed effect (i.e., 

Eccentricity + Boundary Offset Time | Subject), and then the interactive effects of each fixed 1120 

effect.  Model fitness and stability were evaluated by Watanabe-Akaike Information Criterion 

(WAIC; Vehtari, Gelman, & Gabry, 2015) and additional variance explained between prior and 

posterior distributions was evaluated by Bayesian R2 (Gelman, Goodrich, Gabry, & Ali, 2017).  

Additionally, Bayes factors for the two best fit models by WAIC and Bayesian R2 were 

compared to determine the evidence ratio in favor of either of the two hypotheses (Kass & 1125 

Rafferty, 1995).  

3.4.2 Data Filtering.  Because participants could respond to the Gabor patches any time 

prior to the appearance of the next Gabor presentation trigger, the variable which coded accuracy 

was not reset until the onset of the next Gabor presentation sequence.  Thus, the Gabor data were 

filtered to include only the final data frame prior to the next Gabor trigger.  This resulted in a 1130 

total of 6,210 observations.  Additionally, any Gabor presentations in which no mask appeared 

(i.e., nil patches) were removed from the data, resulting in a loss of 1,100 observations, or 

roughly 17.8% of the overall data.  Finally, two subjects were removed for having accuracy at 
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less than chance (< 50%) accuracy, and another was removed for having perfect accuracy (114 

observations).  Lastly, the distribution of times around the event boundary showed a substantial 1135 

positive skew, and therefore the data were truncated to include boundary offset times which 

extended to a maximum of six seconds (44 observations).  This resulted in a total of 4,774 

observations across 89 participants (See Table 1 for mean Gabor accuracy across eccentricity 

and boundary type). 

The high proportion of nil patches was evaluated for potential causes, the most likely 1140 

cause being long Gabor presentation durations set during the thresholding task.  A hierarchical 

logistic regression was created to determine whether Gabor SOAs9 predicted the probability of 

nil patch presentation.  As can be seem in Figure 14, the probability of a nil patch increased 

significantly with longer SOAs (β = 1.374, SEM = 0.089, z = 15.46, p < .001).  Gabor 

eccentricity was included as a factor to determine if this effect varied across eccentricity however 1145 

there were neither a main effect of eccentricity (β = -0.117, SEM = 0.096, z = -1.21, p = 0.23), 

nor was there an interaction between eccentricity and Gabor SOA (β = 0.020, SEM = 0.020, z = 

1.01, p = .313).  Thus, the nil patch effect seemed to be driven primarily by the amount of time 

needed for the Gabor to be present before the mask appeared.  Therefore, future implementations 

of the Gabor discrimination task should set lower limits for Gabor SOA times to ensure that the 1150 

SOA thresholds do not exceed typical fixation durations.   

                                                 

9 Gabor SOA was log transformed to reduce the degree of positive skew present in the SOA distributions.  
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Figure 14.  Fitted probabilities of nil patch presentations, or Gabor presentations in which 

the participant moved their eyes prior to the appearance of the mask.  The plot 

demonstrates that, as the Gabor SOA threshold time increases, the probability of a nil 1155 

patch also increases. The figure also demonstrates that nil patch presentations were not 

affected by Gabor eccentricity.   

 

Table 3.   

Observed Gabor Discrimination Accuracy Across Eccentricity and Event Boundary Type 1160 

 0o 4.5o 9o 

Coarse .78 (.22) .84 (.21) .70 (.24) 

Fine .82 (.15) .80 (.19) .75 (.16) 

Non-Boundary .89 (.19) .76 (.29) .72 (.31) 

Mean Gabor accuracy (proportion correct) and standard deviations (in parentheses) across 89 

participants. In general, accuracy was within the range of the accuracy target for the SOA 

thresholding task (Phase 1), however there was a tendency for accuracy to be highest at the fovea 

(0o).  
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A maximum of 76 observations were possible throughout the recorded trials, however 1165 

data loss due to nil patches (i.e., Gabor presentations where a saccade terminated the gaze-

contingent stimuli before a mask presentation) or other possible presentation errors led to 

differences in the number of observations for each participant.  For the 89 participants whose 

data were included in the Gabor results, roughly 2/3 of the maximum number of observations 

were recorded (Mean = 54.3, SD = 10).  Only four subjects (4.5%) provided less than half of the 1170 

maximum possible observations.  

3.4.3 Linear Omnibus Model Results.  All parameter estimates successfully converged 

(R = 1.00).  WAIC’s for all models were compared, revealing that Gabor eccentricity was the 

only by-subject random effect that appeared to be stable between both the attentional impairment 

and ambient to focal shift models.  The WAIC values were lower for the attentional impairment 1175 

model (WAIC = 4742.98) compared to the ambient to focal shift (WAIC = 4745.06) model.  

However, the difference in goodness of fit between the two models was roughly equal to the 

standard error (ΔWAIC = -2.08, SEM = 5.38).  Bayesian R2 values for each of the models were 

compared, revealing similar results, however the ambient to focal model accounted for a slightly 

greater degree of variance (R2 = .092, 95% CI = [.075, .11]) than the attentional impairment 1180 

model (R2 = .088, 95% CI = [.072, .10]).  Nevertheless, the models did not meaningfully differ 

from each other.  Furthermore, Bayesian R2 values do not account for the inherent benefit of 

capturing more explained variance through additional model complexity, as is the case with the 

additional interaction of eccentricity between boundary type and boundary offset time.  Instead, a 

more appropriate model comparison should be made with Bayes factors (Kass & Raferty, 1995; 1185 

Kruschke, 2016).  When the attentional impairment and ambient to focal models are compared, 

an extremely high Bayes factor was found in favor of the attentional impairment hypothesis 
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(Bayes Factor = 931,090).  Though at first glance such a result would suggest strong evidence in 

favor of the attentional impairment hypothesis, the more likely explanation for such a large 

difference between the two models could have to do with poor overall fit of the models by the 1190 

specification of the parameters of the model, or by improperly specified prior distributions 

(Burkner, 2017; Kass & Rafferty, 1995)).  To identify sources of error in the structure of the 

model, the population-level fixed effects for both models were evaluated.   

  



 

64 

 1195 

Table 4.   

Gabor Discrimination Parameter Estimates for Attentional Impairment Model Across Event 

Grain, Boundary Offset Time, and Eccentricity (Base = Coarse Boundary at Time = 0, 

Eccentricity = 4.5o) 

 Event Boundary Grain  Grain x Time Interaction 

 Estimate SEM 95% CI  Estimate SEM 95% CI 

Coarse 

(Intercept) 

1.328 .530 0.17, 2.39  -0.018 0.030 -0.08, 0.04 

Fine 

(Slope) 

0.122 0.085 -0.04, 0.287  0.037 0.037 -0.04, 0.11 

Non-

Boundary 

(Slope) 

0.211 0.119 -0.02, 0.45  0.037 0.052 -0.07, 0.14 

        

Note.  Table showing the regression estimates for the attentional impairment model (Coarse = 1200 

Base).  These parameter estimates model changes in mean Gabor accuracy across time for each 

boundary type.  Slope differences for the fine and non-boundaries assume the Coarse boundary 

as the intercept point.  Thus, the slope values for each condition for overall Gabor accuracy and 

the interaction between boundary gain and time are relative to the coarse boundary.  All 

parameter estimates converged with Ř < 1.01. 1205 

 

Mean Gabor accuracy (see Table 3) for the coarse boundary (see Fig. 15) was well above 

chance (Mean = 79.1%; β = 1.33, SEM = 0.53, 95% CI = [0.05, 2.63]), whereas accuracy was 

slightly higher for fine boundaries (Mean = 80.9%; β = 0.12, SEM = 0.09, 95% CI = [-0.04, 

0.29]).  However, non-boundaries showed a higher accuracy relative to coarse boundaries (Mean 1210 
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= 82.3%, β = 0.21, SEM = 0.12, 95% CI = [-0.02, 0.45]).  As can be seen in Figure 16, attention 

remained narrowed, with Gabor accuracy decreasing with increasing eccentricity (β = -0.07, 

SEM = 0.01, 95% CI = [-0.09, -0.04]).  This occurred despite the fact that both size-scaling of 

the Gabors and processing time thresholds were designed to equalize Gabor accuracy across the 

visual field.  Thus, the presence of objects in the scene likely caused a greater degree of foveal 1215 

attentional bias, compared to the 1/f noise backgrounds during the thresholding phase of the 

experiment.  Finally, Gabor accuracy did not change as a function of boundary offset time (Fig. 

13) for the coarse boundaries (β = -0.02, SEM = 0.03, 95% CI = [-0.08, 0.04]), fine boundaries 

(β = 0.04, SEM = 0.04, 95% CI = [-0.04, 0.11), or non-boundaries (β = 0.04, SEM = 0.05, 95% 

CI = [-0.06, 0.14]).  Therefore, the only major finding in the attentional impairment model was 1220 

that Gabor accuracy decreased slightly among event grains, with the highest accuracy being 

found for non-boundaries, slightly lower for fine boundaries, and lowest for the coarse 

boundaries.   
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 1225 

 

Figure 15. Gabor discrimination overall accuracy means for the coarse, fine, and non-

boundaries sampling periods for the attentional impairment and ambient to focal shift 

models.  Note that each of the models shows the poorest accuracy occurring for the coarse 

boundaries, however there was a great degree of variability for the coarse boundary, which 1230 

was also the base category.  Error Bars = 1 SEM.  
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Figure 16. Plotted marginal effects of the attentional impairment model, which fits Gabor 

accuracy as a function of event boundary grain (including non-boundary times), Gabor 1235 

eccentricity, and boundary offset time (in seconds).  Note that Gabor accuracy is higher for 

the non-boundary period, whereas accuracy is slightly lower for both boundary types.  

Error bars = 1 SEM.  

 

In contrast to the attentional impairment model (see Table 3), the ambient to focal shift 1240 

model (Fig. 17) attempted to determine if attention shifts to an ambient state of processing during 

event boundaries, while non-boundary periods should show narrowing of attention.  Like the 

attentional impairment model, the ambient to focal shift model (Fig. 17) Gabor accuracy was 

marginally above chance for coarse boundaries (Mean = 78.8%; β = 1.318, SEM = 0.682, 95% 

CI = [-0.17, 2.60]), and accuracy was slightly higher for fine boundaries (Mean = 80.7%; β = 1245 

0.112, SEM = 0.085, 95% CI = [-0.01, 0.46]). Also, relative to coarse boundaries, non-

boundaries showed relatively higher Gabor discrimination accuracy (non-boundary: Mean = 

82.4%; β = 0.227, SEM = 0.120, 95% CI = [-0.01, 0.47]).  Similar to the attentional impairment 

model, the ambient to focal shift model showed no main effect of boundary offset time for the 

coarse boundary (β = -0.01, SEM = 0.03, 95% CI = [-0.07, 0.05]), with no difference from the 1250 
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fine boundaries (β = 0.03, SEM = 0.05, 95% CI = [-0.07, 0.13]) or non-boundaries (β = 0.03, 

SEM = 0.04, 95% CI = [-0.05, 0.10]) being observed.  

One important factor that differs between the attentional impairment and ambient to focal 

shift models is the interaction of Gabor eccentricity with boundary grain, where positive slopes 

depict broadened attention (i.e., ambient processing), while negative slopes depict narrowed 1255 

attention (i.e., focal processing).  The degree of attentional tunneling for the coarse boundaries 

was similar to the attentional impairment model, with a significant negative slope being 

observed for the coarse boundary (β = -0.07, SEM = 0.02, 95% CI = [-0.11, -0.03]).  Also similar 

to the attentional impairment model, attention was broadened for fine boundaries (β = 0.01, SEM 

= 0.02, 95% CI = [-0.03, 0.06]), and slightly narrowed for non-boundaries (β = -0.04, SEM = 1260 

0.03, 95% CI = [-0.10, 0.02]).  Furthermore, Figure 17 shows that there was a robust difference 

in attentional breadth between fine and non-boundaries, with slopes for Gabor accuracy across 

eccentricity being more positive (and thus more broadened) across retinal eccentricity than non-

boundaries (β = 0.12, SEM = 0.023, 95% CI = [0.08, 0.17]).  Thus, there is some evidence that 

non-boundaries remain slightly more tunneled than coarse boundaries and are dramatically more 1265 

tunneled compared to fine boundaries.   
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Figure 17.  Plotted marginal effects of the ambient to focal shift model, which fits Gabor 

accuracy as an interactive function of event boundary type (including non-boundaries), 

Gabor eccentricity, and boundary offset time.  This model shows distinct interactions 1270 

between boundary offset time and eccentricity for each boundary grain.  The coarse 

boundaries show broadened attention prior to event boundaries (with Gabor accuracy 

being equal for 0o, 4.5o, and 9o eccentricities), with attention narrowing as time moves past 

the normed event boundary (with Gabor accuracy being greater for 0o than 9o).  Fine 

boundaries show prolonged broadening of attention, whereas non-boundaries show that 1275 

attention stays narrowed.  Error bars = 1 SEM. 
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Table 5.   

Gabor Discrimination Parameter Estimates for Ambient-to-Focal Shift Model Across Event 1280 

Grain, Boundary Offset Time, and Eccentricity (Base = Coarse Boundary at Time = 0, 

Eccentricity = 4.5o) 

A) Event Boundary Grain  Grain x Time Interaction 

 Estimate SEM 95% CI  Estimate SEM 95% 

CI 

Coarse 

(Intercept) 

1.318 .682 -0.17, 

2.60 

 -0.010 0.030 -0.07, 

0.05 

Fine 

(Slope) 

0.112 0.085 -0.06, 

0.28 

 0.027 0.037 -0.05, 

0.10 

Non-

Boundary 

(Slope) 

0.277 0.120 -0.02, 

0.46 

 0.028 0.053 -0.08, 

0.13 

 

B) Event Boundary Grain x 

Eccentricity 

 Event Boundary Grain x 

Time x Eccentricity 

 Estimate SEM 95% CI  Estimate SEM 95% CI 

Coarse 

(Intercept) 

-0.069 0.021 -0.11, -

0.03 

 -0.013 0.008 -0.03, 

0.00 

Fine 

(Slope) 

0.014 0.023 -0.03, 

0.06 

 0.018 0.010 0.00, 

0.04 

 

Non-

Boundary  

(Slope) 

-0.040 0.032 -0.10, 

0.02 

 0.005 0.014 -0.02, 

0.03 
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A) (Left)This table shows logit mean Gabor accuracy as a function of boundary offset time for 1285 

each boundary type, as well as (right) the interaction between each boundary type with boundary 

offset time. All parameter estimates assume the Coarse boundary as the intercept point.  Thus, 

the slope values for each coarse condition are relative to the coarse boundary, and interactions 

between grain and time assume that the slope differences are in comparison to the coarse 

boundary slope over time. B) (Left) Table showing the effect of eccentricity on Gabor accuracy 1290 

with each event boundary grain.  Each comparison is being made to the two-way interaction of 

the event boundary grain and eccentricity at the coarse boundary.  Negative slopes indicate better 

Gabor accuracy with smaller eccentricities (i.e., tunnel vision) and positive slopes indicate 

broadened attention. (Right) Slopes of the 3-way interaction between event boundary grain, 

boundary offset time, and Gabor eccentricity on Gabor accuracy.  Each comparison is being 1295 

made to the three-way interaction event boundary grain, boundary offset time, and eccentricity at 

the coarse boundary. 

 

However, another crucial difference between the model structures of the two hypotheses 

is that the ambient to focal shift model contains a three-way interaction between boundary type, 1300 

boundary offset time, and Gabor eccentricity (see Table 5B, right panel).  As seen in Figure 17, 

Coarse boundaries showed a minimally negative interaction between time and eccentricity (β = -

0.013, SEM = 0.008, 95% CI = [-0.03, 0.00]), suggesting that attention may start broadened prior 

to coarse boundaries, and narrows as time passes the event boundary.  However, it must be 

emphasized how slight the effect seems to be, especially when considering the strong degree of 1305 

error for the parameter estimate.  Meanwhile, the fine boundary differed from coarse boundaries 

substantially, with a positive interaction between boundary time and eccentricity (β = 0.018, 
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SEM = 0.010, 95% CI = [0.00, 0.04]), suggesting that attention became broader as the boundary 

passed in time.  Finally, the non-boundary condition showed no difference in its interaction 

between time and eccentricity compared to the coarse boundaries (β = 0.005, SEM = 0.014, 95% 1310 

CI = [-0.02, 0.03]), though Figure 17 gives the appearance of less of a difference between Gabor 

eccentricities over time.  Therefore, the three-way interaction in the ambient-to-focal shift model 

suggests that the coarse boundaries produce the strongest change in eccentricity over time, 

whereas attentional breadth during non-boundary and fine boundary periods is relatively stable 

over time.  1315 

Given that the differences between the two competing models (e.g., attentional 

impairment vs. ambient to focal shift) were not discriminable using WAIC values and showed 

only marginal gains in explained variance, an additional exploratory analysis of the data was 

conducted to determine where sources of error variance might exist, and how they might be 

modeled.  Furthermore, all models showed difficulties in generating posterior distributions, with 1320 

large numbers of divergent chains after the warmup period, and other models showing that all 

samples drawn after the warmup period exceeded the maximum tree depth for the Markov chain.  

This occurred despite increasing the number of pre- and post-warmup samples, as well as 

increasing the acceptability of extreme samples in the chain (delta = 0.99) from the default 

settings (Burkner, 2017).   1325 

Additional consideration was given to the data itself to determine the sources of extreme 

noise.  Therefore, several exploratory analyses were conducted.  The first set of exploratory 

analyses assessed curvilinearity that may exist for Gabor accuracy over time.  The second set of 

exploratory analyses determined whether the addition of the non-boundary condition introduced 

excessive noise and evaluate model fitness in its absence.  The third set of exploratory analyses 1330 
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determined if the introduction of the by-item random effects structure created an overly complex 

model.  Models with and without the by-item random effects structures were created, while also 

specifying weakly informative prior distributions on the basis of the target accuracy thresholds.   

3.4.4 Examination of Curvilinearity of Gabor Accuracy Using Categorical Time 

Bins.  Previous data from both Crundall, Underwood, and Chapman (2002) and Huff, 1335 

Papenmeier, and Zacks (2012) suggests that attentional shifts in time do not occur 

monotonically, and instead show a shift around the boundary time and resume to a baseline level.  

Therefore, the first step will be to determine if Gabor accuracy demonstrates such a shift over 

time.  Raw natural spline fits of the data (Fig. 18) shows that Gabor accuracy does seem to show 

very different interactions between Gabor eccentricity and boundary offset time for each 1340 

boundary type.  While there seems to be only minimal nonlinearity among both the coarse and 

fine-grained boundaries, there were noticeable bends in the shape of the non-boundary (control) 

periods, where the 0o and 4.5o eccentricities were relatively flat, whereas Gabor accuracy at the 

9o eccentricity showed a positive bend after the event middle (0 s), or the point in time where the 

normed segmentation data indicated that a boundary was unlikely to be detected. This is in 1345 

contrast to the interactive model fit which shows very little difference between time and 

eccentricity for the coarse and non-boundary grains. Nevertheless, the LOESS spline fits do not 

provide specification for when the bends in Gabor accuracy occur, nor do they provide estimates 

for the degree of magnitude for the changes in Gabor accuracy.  Furthermore, the Loess natural 

splines may also be susceptible to over-regularization, or forced linearity despite sharp, curves 1350 

that would be indicative of a sudden shift in an otherwise linear function (Knowles & Renka, 

2012; Rice & Rosenblatt, 1983).  Therefore, it was important to specify the knots necessary to 

measure the data.  
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Figure 18. Raw fits of Gabor accuracy as a function of boundary offset time and 1355 

eccentricity, for each segmentation grain.  The raw fit of the data strongly resembles the 

ambient-to-focal shift model.  Notice that for the coarse-grained boundaries (left) attention 

is broadened prior to the event boundary (0 s) and narrows with increasing time, whereas 

attention at the fine-grained boundary remains broadened over time.  The primary 

difference in the raw and fitted data is that the control condition seems to show some 1360 

curvilinearity following the event middle (0 s), though this could be due to some outlying 

observations.  

 

To determine where the bends in Gabor accuracy occur, a two-step process was applied.  

In the first step, boundary offset times were binned into six categorical levels, and analyzed 1365 

using the Bayesian hierarchical regression.  In the second step, the resulting number of bends in 

Gabor accuracy over time were used to inform the number of knots to be included in a fitted 

natural spline, where time was once again coded as a continuous variable. 

For the first step in modeling the bends in Gabor accuracy over time, a phase-shift time 

series analysis was conducted.  For this analysis, boundary offset time was divided into 6 1370 

separate bins (-4 s – -2.5s, -2.5 s – -1 s, -1s – 0.5 s, 0.5 s – 2s, 2 s – 3.5s, 3.5 s – 6s), which 

corresponded to the intervals for the Gabor presentation trigger times.  Like the original 

Bayesian hierarchical regression, two different models were generated using the additive and 
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interactive structures which corresponded to the attentional impairment and ambient-to-focal 

shift hypotheses, respectively.  The number of warmup and post-warm up samples taken were 1375 

identical to the original omnibus analysis.   

 

Figure 19. Fitted marginal effects of the attentional impairment model where boundary 

offset time has been binned into six levels: level 1 (-4 s – -2.5 s), level 2 (-2.5 s – -1 s), level 3 

(-1 s – 0.5 s), level 4 (0.5 s – 2 s), level 5 (2 s – 3.5 s), and level 6 (3.5 s – 6 s).  Note that both 1380 

the coarse and non-boundary times both show the maximum number of knots in Gabor 

accuracy over time (3), which suggests that this level of flexibility will be necessary to 

capture the shape of attentional changes over time. Error Bars = 1 SEM.  
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 1385 

Table 6. 

Gabor Discrimination Parameter Estimates For Attentional Impairment Model Using 

Categorical Time Bins (Base = Coarse Boundary at Bin 1) 

 Bin 1          

(-4s – -2.5s) 

Bin 2          

(-2.5s – -1s) 

Bin 3         

(-1s – 0.5s) 

Bin 4    

(0.5s – 2s) 

Bin 5     

(2s – 3.5s) 

Bin 6   

(3.5s – 6s) 

Coarse 

(Intercept) 

2.054 

(0.619) 

-0.693     

(0.286) 

-0.750     

(0.292) 

-0.361     

(0.291) 

-0.751     

(0.284) 

-0.178     

(0.383) 

Fine -0.174     

(0.292) 

0.183     

(0.355) 

0.637     

(0.363) 

0.169     

(0.359) 

0.516     

(0.356) 

-0.090     

(0.455) 

Non-

Boundary 

-0.407     

(0.365) 

0.485     

(0.476) 

0.767     

(0.476) 

0.628     

(0.466) 

0.849     

(0.461) 

0.486     

(0.624) 

Note. Table showing the changes in mean Gabor accuracy across six time bins for each boundary 

type.  All differences assume the Coarse boundary as the intercept point.  Thus, the slope values 1390 

for each coarse condition are relative to the coarse boundary at the first time bin and each 

comparison for the fine and non-boundary conditions are being made with the coarse boundary 

for its respective time bin.  

For the attentional impairment model (Table 6), Gabor accuracy for the coarse boundary 

(Fig. 19, left panel) was well above chance in the 1st time bin (-4s – -2.5 s; β = 2.05, SEM = 0.70, 1395 

95% CI = [0.57, 3.44]).  Following the 1st time bin, accuracy dropped substantially for bins 2 (-

2.5 s – -1 s; β = -0.69, SEM = 0.29, 95% CI = [-1.27, -0.13]) and 3 (-1 s – .5 s; β = -0.75, SEM = 

0.30, 95% CI = [-1.34, -0.17]).  Gabor accuracy briefly returned to near baseline accuracy in the 

4th time bin (0.5 s – 2 s; β = -0.36, SEM = 0.30, 95% CI = [-0.96, 0.22]), before it dropped again 

in the 5th time bin (2 s – 3.5 s; β = -0.75, SEM = 0.30, 95% CI = [-1.33, -0.19]), and then 1400 
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returned to baseline in the final (6th) time bin (3.5s – 6 s; β = -0.18, SEM = 0.39, 95% CI = [-

0.93, 0.59]).  In total, three bends were observed for the coarse boundaries.  The first bend 

occurred prior to the event boundary, keeping accuracy relatively low until the 4th time bin, 

where accuracy momentarily increased, and fluctuated again between the 5th and 6th time bins.   

Relative to the coarse boundary, the fine boundary (Fig. 19, right panel) did not differ 1405 

substantially from the coarse boundary at the 1st time bin (-4 s – 2.5 s; β = -0.17, SEM = 0.30, 

95% CI = [-0.77, 0.41]), nor did it differ from the coarse boundary at the 2nd time bin (-2.5 s – -1 

s; β = 0.18, SEM = 0.36, 95% CI = [-0.52, 0.88]).  In the 3rd time bin, Gabor accuracy increased 

slightly, relative to the coarse boundary (-1 s – 0.5 s; β = 0.633, SEM = 0.37, 95% CI = [-0.09, 

1.37]), but did not differ significantly from the coarse boundary relative to 4th bin (0.5 s -- 2 s; β 1410 

= .17, SEM = 0.36, 95% CI = [-0.55, 0.88]), 5th bin (2 s – 3.5 s; β = 0.51, SEM = 0.36, 95% CI = 

[-0.93, 1.23]), or 6th bin (3.5s – 6 s; β = -0.09, SEM = 0.46, 95% CI = [-0.99, 0.80]).  Thus, like 

the coarse grain boundaries, Gabor accuracy dropped prior to the event boundary.  However, 

unlike the coarse-grained boundary, Gabor accuracy around fine-grained boundaries remained 

relatively high and flat across time after the boundary had passed, requiring only one knot to fit 1415 

nonlinearity in Gabor accuracy over time.   

The non-boundary condition (Fig. 16, center panel) produced Gabor accuracy that was, 

again, quite similar to the coarse boundaries, with accuracy being slightly (though not reliably) 

lower in the 1st time bin (-4 s – -2.5 s; β = -.398, SEM = 0.37, 95% CI = [-1.12, 0.32]). Again, the 

2nd time bin showed a drop in Gabor accuracy similar to the coarse boundary, though muted in 1420 

comparison (-2.5 s – -1 s; β = 0.758, SEM = 0.48, 95% CI = [-0.47, 1.41]).  This refractory 

period was also short-lived in comparison to the coarse boundary, with Gabor accuracy being 

noticeably higher in the 3rd (-1 s – 0.5 s; β = 0.76, SEM = 0.49, 95% CI = [-0.21, 1.71]) and 4th 
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(0.5 s – 2 s; β = .62, SEM = 0.47, 95% CI = [-0.31, 1.54]) time bins.  Gabor accuracy was similar 

to the coarse boundary in the 5th (2 s – 3.5 s; β = 0.83, SEM = 0.46, 95% CI = [-0.08, 1.75]) and 1425 

6th time bin (3.5s – 6 s; β = -0.48, SEM = 0.46, 95% CI = [-0.51, 0.61]).  Given the similarities 

between coarse and non-boundaries regarding Gabor accuracy over time, it appears that the non-

boundary period would also need three knots to appropriately fit the data.  

  

Figure 20. Fitted marginal effects of the ambient-to-focal model where boundary offset time 1430 

has been binned into six levels beginning with bin 1 (-4 s – -2.5 s), bin 2 (-2.5 s – -1 s), bin 3 

(-1 s – 0.5 s), bin 4 (0.5 s – 2 s), bin 5 (2 s – 3.5 s), and bin 6 (3.5 s – 6 s).  Note that both the 

coarse and non-boundaries remain tunneled across time, except for brief moments in bin 2 

(-2.5s – -1s) where attention broadens.  Conversely, attention remains broadened for the 

majority of the fine boundary time.  Error bars = 1 SEM. 1435 
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Table 7. 

Gabor Discrimination Parameter Estimates for Ambient-to-Focal Shift Model Using Categorical 

Time Bins (Base = Coarse Boundary at Bin 1) 

A) Boundary Type x Time Bin (Base = Coarse Grain at Bin 1) 1440 

 Bin 1          

(-4s – -2.5s) 

Bin 2         

(-2.5s – -1s) 

Bin 3      

(-1s –  .5s) 

Bin 4    

(0.5s – 2s) 

Bin 5     

(2s – 3.5s) 

Bin 6  

(3.5s – 6s) 

Coarse 

(Intercept) 

2.184 

(0.711) 

-0.851     

(0.314) 

-0.811     

(0.326) 

-0.470     

(0.319) 

-0.845     

(0.316) 

-0.253     

(0.415) 

Fine -0.281     

(0.322) 

0.323     

(0.379) 

0.834     

(0.536) 

0.716     

(0.520) 

0.818     

(0.504) 

0.522     

(0.686) 

Non-

Boundary 

-0.399     

(0.416) 

0.480     

(0.516) 

0.688     

(0.393) 

0.252     

(0.385) 

0.582     

(0.384) 

-0.024     

(0.483) 

 

B) Grain x Eccentricity x Time Bin (Base = Coarse Grain at Bin 1, Eccentricity = 4.5o) 

 Bin 1          

(-4s – -2.5s) 

Bin 2 

(-2.5s – -1s) 

Bin 3 

(-1s –  .5s) 

Bin 4 

(.5s – 2s) 

Bin 5 

(2s – 3.5s) 

Bin 6 

(3.5s – 6s) 

Coarse x 

Eccentricity 

-0.156 

(.071) 

0.193  

(.082) 

0.009     

(0.085) 

0.076     

(0.319) 

0.052     

(0.083) 

0.054     

(0.110) 

Fine x 

Eccentricity 

-0.070     

(0.085) 

-0.174     

(0.100) 

0.006     

(0.103) 

-0.022     

(0.102) 

-0.015     

(0.102) 

0.007     

(0.686) 

Non-

Boundary x 

Eccentricity 

-0.005     

(0.108) 

0.047     

(0.134) 

-0.070     

(0.137) 

-0.060     

(0.137) 

0.027     

(0.133) 

-0.093     

(0.179) 

 

  Note. A) Mean Gabor accuracy as a function of boundary offset time for each boundary type.  

All differences assume the Coarse boundary at time bin 1 as the intercept point.  Thus, the slope 1445 
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values for each coarse condition are relative to the coarse boundary at the 1st time bin and each 

comparison for the fine and non-boundary conditions are being made with the coarse boundary 

for its respective time bin. B) This table demonstrates the interaction with boundary offset time 

and Gabor eccentricity for each boundary type, with each comparison for being made to the 

Coarse boundary at the first time bin.  Negative slopes indicating better Gabor accuracy with 1450 

smaller eccentricities (i.e., tunnel vision) and positive slopes indicating broadened attention.  

 

For the ambient-to-focal shift model (Fig. 20, Table 7), the same six time bins were 

generated, however the model structure utilized the three-way interaction between boundary 

type, boundary offset time, and Gabor eccentricity.  Mean Gabor accuracy for the Coarse 1455 

boundaries in the 1st time bin was also relatively high, and well-above chance (-4 s – -2.5 s; β = 

2.18, SEM = 0.71, 95% CI = [0.72, 3.49]) before dropping substantially in the 2nd (-2.5 s – -1 s; β 

= -0.811, SEM = 0.31, 95% CI = [-1.49, -0.26]) and 3rd (-1 s – 0.5 s; β = -0.811, SEM = 0.33, 

95% CI = [-1.47, -0.19]) time bins.  In the 4th time bin, attentional impairment from the baseline 

level was slight (0.5 s – 2 s; β = -.470, SEM = 0.32, 95% CI = [-1.11, 0.14]), but less than for the 1460 

2nd and 3rd time bins.  Gabor accuracy decreased again in the 5th time bin (2 s – 3.5 s; β = -0.845, 

SEM = 0.32, 95% CI = [-1.49, -0.25]), before reaching the same level of accuracy as the first 

pre-boundary time bin (3.5s – 6 s; β = -0.253, SEM = 0.41, 95% CI = [-1.06, 0.57]).  Thus, there 

were three critical bends in overall Gabor accuracy, with one longer decrease in overall attention 

occurring prior and at the event boundary, before increasing slightly immediately following the 1465 

boundary then dropping briefly dipping at roughly 2 – 3.5 s after the event boundary.  

Nevertheless, additional bends were needed to fit the interaction between Gabor offset time and 

eccentricity for each boundary type.  
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In terms of the interaction between time and eccentricity, attention was tunneled in the 1st 

bin of the coarse boundary condition (-4 s – -2.5 s; β = -0.156, SEM = 0.07, 95% CI = [-0.30, -1470 

.02]), before the trend completely reversed, showing a bias for peripheral information in the 2nd 

bin (-2.5 s – -1 s; β = 0.193, SEM = 0.08, 95% CI = [.04, 0.36]).  In the 3rd bin, attention shifted 

to become tunneled (-1 s – 0.5 s; β = 0.009, SEM = 0.09, 95% CI = [-0.21, 1.71], to a similar 

degree as the 1st time bin, which was the case for all other times (see Table PhaseShiftAmb2Foc 

for full regression reports).  Differences in the time by eccentricity interaction were minimal 1475 

between coarse and non-boundary conditions, with trends being in the same direction over the 

entire duration of the sampling period (i.e., bins 1-6).  Conversely, the fine boundary remained 

substantially broadened for the entirety of the sampling period and failed to show the vista vision 

effect, where attention is better in the periphery than the fovea, at the 2nd time bin (-2.5 s – -1 s; β 

= -0.174, SEM = 0.10, 95% CI = [.38, 0.17]).  Thus, approximately five knots were necessary to 1480 

capture the complex interaction between eccentricity and time for each boundary type.  

The fact that Gabor accuracy was more stable for the fine boundaries that it was at non-

boundaries is a surprising result, considering that event models in WM should be stable at this 

time, as well (Kurby & Zacks, 2008; Reynolds, Zacks, & Braver, 2007).  However, behavioral 

and EEG data for central and peripheral cueing tasks demonstrates that, while sustained attention 1485 

can be used to improve target recognition at a validly cued location, spatial and object-based 

attention seem to cycle in antiphase with each other, routinely switching between cued and 

uncued locations.  Although the cycling rate between object and space-based attention (3-5 Hz) 

occur at a faster rate than the cycles for the attentional shifts in this study (3-5 seconds), it is 

possible that the shift from broad to narrow attention in dynamic environments is a normal state 1490 

of affairs for attentional processing, whereas the prolonged broadened attention is indicative of a 
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disruption of this system.  However, further electrophysiological data would be necessary to 

confirm or reject this hypothesis.  

Based upon the results from the above analyses, it is possible that a range of knots will be 

needed to capture the curvilinearity of Gabor accuracy across time and space.  However, there 1495 

are several caveats inherent to changing continuous variables into nominal variables that must be 

considered when interpreting the above analyses, which emphasizes why the above results are 

better interpreted as a guide for generating future models, and not being used as a true model.  

First, the binning of time reduces power by creating discrete cut-off points in which the 

continuous extremes of one bin may be more closely related to the mean of their neighbor than 1500 

their own, thereby increasing the amount of residual error in each parameter estimate (Irwin & 

McClelland, 2003).  To combat such residual error, the range of each time bin was determined 

by the Gabor trigger times, which did seem to correspond with the modes in which the 

presentation times occurred.  However, creating a fixed number of time bins may have also 

hidden further bends in the timeseries, which could not be quantified by either model.  Therefore, 1505 

the results from the categorical timeseries analysis was used to inform the structure of four 

models in which boundary offset time was again coded as a continuous variable, while 

curvilinearity in the data was fit using natural splines with prespecified degrees of freedom. 

3.4.5 Examination of Curvilinearity of Gabor Accuracy Using Natural Splines.  Four 

additional models were generated to determine whether model fitness for the linear models from 1510 

Section 3.4.3 could be improved upon with added flexibility in the form of a natural spline fit.  

The results from section 3.4.4 suggested that there were potentially three or five shifts in Gabor 

accuracy around event boundaries, for the attentional impairment and ambient-to-focal shift 

hypotheses, respectively.  For each of the attentional impairment and ambient-to-focal shift 
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models, time was fitted by two different spline fits (Bates & Venables, 2014)(splines library, 1515 

v3.5.0; Venables & Bates, 2018): one in which time was fitted with three degrees of freedom and 

another in which time was fitted with 5 degrees of freedom (based on the results from section 

3.4.4).  By including equal numbers of knots in the linear function for both model types, each 

hypothesis could be evaluated with the same number of bends model fitness.  These models were 

then compared with the two models in which no curvilinearity was assumed.10  After models 1520 

were generated, comparisons of model fitness were made on the basis of WAIC and Bayesian R2 

values.  

The best-fit model was still the linear attentional impairment model (WAIC = 4743.5), 

the simplest model of the six tested (for full spline fit results, see Table 8).  The next best model 

fits were all roughly equal and included the linear ambient-to-focal shift model (WAIC = 4746.1, 1525 

ΔWAIC = -2.63, SEM = 5.38), and the attentional impairment models fitted with three degrees of 

freedom (WAIC = 4748.8, ΔWAIC = -5.52, SEM = 5.25). Thus, on the basis of WAIC values, the 

addition of splines did not outweigh the benefit that the more simple, linear models had in 

predicting the data.  Conversely, the Bayesian R2 values show that, within their respective 

curvilinear structure, the ambient-to-focal models generally outperform the attentional 1530 

impairment models (Table 9).  However, with spline degrees of freedom being equal between 

each hypothesis, the increase in explained variance was still smaller than the standard error.  

Thus, the question of which hypothesis provides a truly better fit has not yet been resolved, 

however given two models with equivalent fitness, the simpler (attentional impairment) model 

should be reserved.   1535 

                                                 

10 Model convergence for spline fits failed with R-hat exceeding 1.1.  Post burn-in samples were increased from 

24,000 to 32,000. This resulted in stable model fits with R-hat being near 1.00 for all parameters.  
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Table 8.   

WAIC Values for Natural Spline Fits Across Attentional Impairment and Ambient-to-Focal Shift 

Models. 

 Attentional Impairment  Ambient-to-Focal Shift 

Linear 4743.47 (74.54)  4746.10 (74.72) 

D.F. = 3 4748.98 (74.79)  4760.14 (75.29) 

D.F. = 5 4756.68 (75.09)  4765.17 75.98 

 1540 

Note.  WAIC values for the linear and natural spline fits for Gabor offset time.  Each row 

represents different numbers of degrees of freedom and each column represents its effect on the 

models representing each hypothesis.  Parenthesis contain SEM of the WAIC value.  Note that 

model complexity increases monotonically between both the increasingly complex interactions 

in the fixed effects structure (i.e., attentional impairment versus ambient-to-focal shift) and with 1545 

increasing degrees of freedom, which provides added flexibility for changes in Gabor accuracy 

over time.  
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Table 9.  

Bayesian R2 Values for Natural Spline Fits Across Attentional Impairment and Ambient-to-Focal 

Shift Models. 

 Attentional Impairment  Ambient-to-Focal Shift 

Linear 0.089 (.072, 0.107)  0.092 (0.075, 0.110) 

D.F. = 3 0.092 (0.075, 0.109)  0.096 (0.079, 0.114) 

D.F. = 5 0.094 (0.077, 0.112)  0.103 (0.086, 0.121) 

Note.  Bayesian R2 values (and 95% Confidence Intervals) for the six models, which include the 

original linear models for each hypothesis, as well as the spline-fitted models.  Though the 

proportion of variance explained by the posterior distributions for each parameter tended to 

increase with model complexity, the confidence intervals for all models tended to overlap.  

 

The previous two attempts to improve model fitness have been in terms of the fixed 

effects structure.  Thus, the problem may lie in the random effects structure or from the use of 

flat, uninformed prior distributions in generating the posterior distribution, as WAICs (Gelman, 

2006; Vehtari et al., 2015) and Bayes factors (Kass & Rafferty, 1995) sensitive to both of these 

issues.  Regarding the random-effects structure, one issue in sampling efficiency is from a low 

number of observations within each condition, with sparse numbers of observations in each 

condition causing model fitness indices to underestimate how accurately a model can predict 

data from a posterior distribution (Vehtari et al., 2015).  This problem is exacerbated when 

models become more complex, where parameters (and their interactions) are less likely to have 

sufficient data from each participant at each level of the model’s hierarchy.   

As mentioned in section 3.4.3, there were several subjects with less than half of the 

maximum possible number of observations.  With the additional complexity of a by-subject and 
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by-item random-effects structure, it becomes increasingly less likely for a sufficient quantity of 

data to be modeled for each condition.  One solution to this problem is to remove these 

participants, however this option would leave open the possibility that participants with a high 

number of nil patches may be indicative of poor inhibitory control (Nieuwenhuis, Ridderinkhof, 

Blom, Band, & Kok, 2001) and working memory capacity (Unsworth, Schrock, & Engle, 2004).  

Removing these participants would therefore underestimate the degree of variability in 

attentional changes that are inherent in the population, and any subsequent models may not 

generalize to future populations.  Instead, it may be more beneficial to reduce the complexity of 

the random effects structure to remove any random effects which demonstrate a poor fit.  While 

by-subject random effects structures showed good fits for the intercept and eccentricity in both 

the attentional impairment (intercept: σ = 0.707, SEM = 0.074, 95% CI = [0.58, 0.86]; 

eccentricity: σ = 0.075, SEM = 0.018, 95% CI = [0.038, 0.11]) and ambient-to-focal shift 

(intercept: σ = 0.710, SEM = 0.074, 95% CI = [0.58, 0.87]; eccentricity: σ = 0.077, SEM = 

0.018, 95% CI = [0.04, 0.11]) models, this was not the case for video type.  The parameter 

estimates for the standard deviation demonstrated a poor fit for the linear attentional impairment 

(σ = 0.678, SEM = 0.918, 95% CI = [0.10, 3.33]) and ambient-to-focal shift (σ = 0.791, SEM = 

1.185, 95% CI = [0.11, 4.15]) models.  Thus, the random effect for video failed to effectively 

capture a reliable degree of variance, and it would be of greater benefit to remove it from the 

model.  An additional analysis was conducted, with the by-item random effect omitted, while 

weakly informative prior distributions were used to limit the sampling range for the posterior 

distribution.  
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3.4.6 Model Optimization for Gabor Discrimination During Event Perception Through 

Informed Prior Distributions and Simplified Random Effects 

To reduce the computational demands inherent in the previous analyses, six models were 

constructed, with two versions being created for each of the attentional impairment and ambient-

to-focal shift hypotheses: a set of models in which boundary offset time was fitted to a linear 

function, a set of models fit to a natural spline with three degrees of freedom, and a set of models 

fit to a natural spline with five degrees of freedom.  While the by-subject random effect of 

eccentricity was maintained from the previous models, the by-item random effect of video was 

omitted to reduce the impact of participants with low numbers of observations for a given video.  

Furthermore, weakly informative priors for the population intercept were included to constrain 

the sampling range of the prior distribution.  The intercept mean of the prior distribution was set 

to the target Gabor threshold (logit(0.75) = 1.1) with a standard deviation of .7, and prior 

distributions for slopes were set to a mean of 0 (SD = 1), as suggested by (Gelman, Jakulin, 

Pittau, & Su, 2008). 

Contrary to all other Gabor discrimination task models, no transitions in the MCMC 

simulation diverged beyond the acceptable distance from the predicted path.  However, the 

WAIC values for all models did not appear to change meaningfully compared to the previous 

models (see Table 10), and in fact increased slightly (i.e., the new models showed a slightly 

poorer fit).  Nevertheless, the trend from previous models showing a better (though not 

significant) fit for the attentional impairment model versus the ambient-to-focal shift model was 

also true for the models which did not include video as a by-item random effect but did include 

weakly informative priors.  But again, the WAICs for two best models, the linear attentional 

impairment model (WAIC = 4758.13, SEM = 74.30) and the linear attentional impairment model 
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(WAIC = 4761.56, SEM = 74.50), were less than one standard error of measurement from each 

other (ΔWAIC = -3.42, SEM = 5.08). Thus, in terms of overall model fitness, the two models seem 

to show similar goodness of fit, but the overall standard error for population level parameter 

estimates was slightly smaller compared to all previous models.  Bayes factors between the two 

linear models were generated, and found an abnormally large value in favor the attentional 

impairment model (Bayes factor = 81,197,357), which, like the results in section 3.4.3, is should 

not be considered reliable. 

 

Table 10. 

WAIC Values for the Linear and Natural Spline Fits for Gabor Offset Time. 

 Attentional Impairment  Ambient-to-Focal 

Shift 

Linear 4758.14 (74.30)  4761.56 (74.50) 

D.F. = 3 4764.13 (74.58)  4776.33 (75.07) 

D.F. = 5 4771.23 (74.87)  4781.66 (75.82) 

Note. For these models, the by-item random effect of video had been removed and a weakly 

informative prior had been specified to be equal to the target Gabor accuracy mean during SOA 

thresholding in Phase 1. Each row represents different numbers of degrees of freedom and each 

column represents its effect on the models representing each hypothesis.  Parenthesis contain 

SEM of the WAIC value.  Note that model complexity increases monotonically between both the 

increasingly complex interactions in the fixed effects structure (i.e., attentional impairment 

versus ambient-to-focal shift) and with increasing degrees of freedom, which provides added 

flexibility for changes in Gabor accuracy over time. 
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Regarding the proportion of variance explained between the prior and posterior 

distributions, the Bayesian R2 again showed that the ambient-to-focal shift models predicted a 

marginally higher proportion of variance compared to the attentional impairment models (see 

Table 11).  However, the most noticeable difference between in variance explained occurred 

with the ambient-to-focal shift model with five degrees of freedom (Bayes R2 = 0.099, SEM = 

0.009), though its attentional impairment counterpart was still roughly 1% lower and within the 

95% confidence interval of the ambient-to-focal shift model.  

 

Table 11. 

Bayesian R2 Values for the Linear and Natural Spline Fits for Gabor Offset Time. 

 Attentional Impairment   Ambient-to-focal shift 

Linear 0.085 (0.068, 0.102)  0.088 (0.071, 0.105) 

D.F. = 3 0.088 (0.071, 0.105)  0.092 (0.075, 0.109) 

D.F. = 5 0.090 (0.073, 0.107)  0.099 (0.082, 0.116) 

Note. Bayesian R2 values (and 95% Confidence Intervals) for the six models, which include the 

original linear models for each hypothesis, as well as the spline-fitted models.  Though the 

proportion of variance explained by the posterior distributions for each parameter tended to 

increase with model complexity, the confidence intervals for all models tended to overlap. 

 

3.4.7 Gabor Discrimination At Event Boundaries As a Function of Boundary 

Strength.  The fact that segmentation agreement differed as a function of video also suggests 

attention was differentially affected by the videos, despite the computational difficulties brought 

by the by-item random effects structure in section 3.4.  Furthermore, the clear differences across 

the videos as a whole and in terms of the boundary strength at each moment in time would 
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suggest that a finer grained assessment of the attentional analyses is necessary. In other words, 

the degree to which attention is affected at a particular boundary may be dependent upon the 

salience of that boundary.  Finally, the high degree of segmentation alignment between coarse 

and fine boundaries suggests that both grains play a role in affecting attention, despite 

boundaries being previously labeled as fine or coarse.  Therefore, an additional analysis of the 

Gabor discrimination data was conducted to determine the unique effects of Gabor boundary 

salience on attention. 

To again test the competing attentional impairment and ambient-to-focal shift 

hypotheses, five Bayesian hierarchical mixed models were generated for each hypothesis.  

Weakly informative priors for accuracy (intercept) were set at a mean of 1.1 (SD = .7), the 

inverse logit of which matched the target threshold for Gabor accuracy), and slopes were set to a 

mean of 0 (SD = 1). All models had a fixed effects structure where boundary type interacted with 

boundary offset time.  For the attentional impairment model, Gabor eccentricity was included as 

an additive effect whereas the ambient-to-focal shift model included Gabor eccentricity as an 

interaction.  To test the effects of boundary strength, the probability density value for coarse 

and/or fine boundaries was included for four models (e.g., coarse, fine, coarse + fine, coarse * 

fine)11.  These models were compared to a simpler model, which did not include the probability 

density values for coarse or fine-grained segmentation.  In keeping with the trends from the 

previous Gabor discrimination task results in section 3.4, eccentricity was included as the only 

by-subject random effect.  Given that the by-item random effect of video caused substantial 

computational problems, and that the segmentation data provides information unique to each 

                                                 

11 The non-negative nature of the event boundaries required a root transformation to satisfy assumptions of 

normality.  
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video, no by-item random effects were included.  Model selections were made on the basis of 

WAIC and Bayesian R2 values.   

Comparisons of WAIC values again demonstrated that the models supporting the 

attentional impairment hypothesis provided a more parsimonious fit of the data, though not 

significantly so.  Among the attentional impairment models, the best fit came from the model 

which included the interaction between boundary type, boundary offset time, and the probability 

density for fine boundaries (WAIC = 4745.72), however this did not differ substantially from the 

next best attentional impairment model, which included additive effects of coarse and fine 

boundaries (WAIC = 4753.31, ΔWAIC = -7.59, SEM = 8.15).  However, the model which included 

fine boundary probability density did fit marginally better than the model which included no 

boundary information at all (WAIC = 4761.12, ΔWAIC = -15.40, SEM = 10.87).  Additionally, 

model fitness indices for the best ambient to focal model (which included the additive effects of 

coarse and fine boundaries (WAIC = 4754.46, ΔWAIC = -8.75, SEM = 8.28).  Bayes factors for 

the two models were generated, and again found an exceedingly large Bayes factor (Bayes factor 

= 1.8 x 1010).  Therefore, again, neither model could be reliably selected.  

With regard to Bayesian R2 values, the ambient-to-focal shift model which included the 

interaction between coarse and fine boundary density accounted for the greatest proportion of 

variance explained (Bayesian R2 = 0.105, SEM = 0.009, 95% CI = [.089, .122]), however 

showed virtually no difference from the best attentional impairment model, which also included 

the interaction between coarse and fine boundary probability density (Bayesian R2 = 0.097, SEM 

= 0.009, 95% CI = [.088, .114]). Therefore, the inclusion of boundary strength among the fine 

and coarse boundaries did not show sufficient evidence to tease apart the differences between the 

two competing hypotheses.   
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3.4.8 Gabor Discrimination During Event Perception as a Function of Individual 

Segmentation Agreement.  Individual segmentation agreement has been shown to affect later 

memory for event information in both young and aging individuals.  Given the intimate 

connection between attention and memory, it was critical to determine if individual segmentation 

agreement would be useful in providing improved model fitness in predicting attentional changes 

around event boundaries.  Specifically, stronger attentional changes might be observed by 

participants who were attending normatively to the event structure, whereas weaker attentional 

changes would be predicted for participants who segmented atypically. Furthermore, differences 

in segmentation agreement as a function of grain might provide an additional degree of precision 

in predicting event order memory.  In particular, previous research has suggested that fine event 

segmentation ability is better at predicting later event memory (Sargent et al., 2013; Kurby & 

Zacks, 2012). However, the current data has found that coarse segmentation agreement seemed 

to be better in predicting event order memory, and therefore the models generated from this data 

may predict that coarse segmentation would be more efficient in predicting attentional changes at 

the event boundary.  

To test these hypotheses, individual participants’ segmentation agreement for each video 

and segmentation grain was included as a predictor for the Gabor discrimination task, with five 

Bayesian generalized linear mixed models being constructed for each of the attentional 

impairment and ambient to focal shift hypotheses, which maintained the same fixed-effects 

structure of the previous models.  These models included one in which there were no effects of 

segmentation agreement, a model with additive effects of fine event segmentation, a model with 

additive effects of coarse segmentation agreement, a model with additive effects of fine and 

coarse segmentation agreement, and a model with interactive effects of fine and coarse 
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segmentation.  No by-item random effects were included to maintain a simple model structure, 

and because the segmentation agreement values were specific to each video. 

The results again found that the best model fitness by WAIC was found for the models 

that did not contain segmentation agreement information (see Table 12).  This was the case for 

both the attentional impairment (WAIC = 4186.03) and ambient-to-focal shift (4189.80) 

hypotheses, which again, did not differ from each other (ΔWAIC = -3.78, SEM = 5.07).  However, 

on the basis of Bayesian R2 values (Table 13), the ambient-to-focal shift model which included 

the interaction of coarse and fine segmentation agreement was marginally better (Bayesian R2 = 

0.101, SEM = 0.009, 95% CI = [0.08, 0.12]) than the attentional impairment counterpart 

(Bayesian R2 = 0.091, SEM = 0.009, 95% CI = [0.07, 0.11]).  Nevertheless, because the Bayes 

factors for the two models were extremely large (Bayes factor = 8.6 x 107), the results again 

show very little reliable support for a difference between the attentional impairment and 

ambient-to-focal shift hypotheses.   

  



 

94 

 

Table 12. 

WAIC Values for Gabor Discrimination Ability for the Attentional Impairment and Ambient-to-

Focal Models with the Inclusion of Segmentation Agreement for Fine and Coarse Boundaries. 

Segmentation Agreement Attentional Impairment  Ambient-to-Focal 

Absent 4186.03 (69.90)  4189.80 (70.15) 

Fine 4196.96 (70.17)  4208.63 (70.71) 

Coarse 4195.70 (70.23)  4209.93 (70.75) 

Fine + Coarse 4197.22 (70.20)  4227.64 (71.32) 

Fine x Coarse 4213.76 (70.93)  4243.46 (72.02) 

Note. WAIC values and their standard errors (in parenthesis) in relation their inclusion with the 

Attentional Impairment and Ambient to Focal Shift Models each model.  Fixed effects of 

segmentation agreement are in addition to the fixed effects of the models used in previous linear 

equations for the attentional impairment and ambient-to-focal shift models.  
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Table 13. 

Bayesian R2 Values for Gabor Discrimination Ability for the Attentional Impairment and 

Ambient-to-Focal Models with the Inclusion of Segmentation Agreement for Fine and Coarse 

Boundaries. 

Segmentation Agreement Attentional Impairment  Ambient-to-Focal 

Absent 0.085 (.009)  0.088 (.009) 

Fine 0.087 (.009)  0.092 (.009) 

Coarse 0.087 (.009)  0.091 (.009) 

Fine + Coarse 0.087 (.009)  0.096 (.009) 

Fine x Coarse 0.091 (.009)  0.101 (.009) 

Note. Bayesian R2 values and their standard errors (in parenthesis) in relation their inclusion with 

the Attentional Impairment and Ambient-to-Focal Shift Models each model.  Fixed effects of 

segmentation agreement are in addition to the fixed effects of the models used in previous linear 

equations for the attentional impairment and ambient-to-focal shift models. 

 

3.4.9 Gabor Discrimination Task Modeling Summary 

Despite the difficulty in establishing robust effects of event boundaries on attention, there 

are several consistent effects that were observed across the majority of models that were run.  

The first clear finding is that there is a consistent tradeoff in model complexity and parsimony 

between the ambient to focal and attentional impairment models, respectively.  Models testing 

both hypotheses tend to show that the coarse boundaries display a stronger degree of attentional 

impairment, replicating previous results from Crundall, Underwood, and Chapman (2002) and 

Huff, Papenmeir and Zacks (2012).  In contrast, the attentional impairment effect for the fine 

boundaries was substantially weaker, with the difference in Gabor accuracy between fine and 
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non-boundaries only being half of the difference of the coarse versus non-boundary comparison.  

Thus, it seems that coarse boundaries represent a greater degree of cognitive load compared to 

fine boundaries.  

The second important contribution of this study is that it is the first to systematically 

compare differences between attention across the visual field during real-world event perception.  

Perhaps the most robust effect from all the models was the main effect of eccentricity, which 

showed a negative slope for Gabor accuracy (i.e., attention was biased to central vision).  This is 

important to note because both Gabor size-scaling and Gabor processing time thresholds were 

devised to hold Gabor accuracy equal across the visual field when attention was not biased to 

any particular location.  By thresholding processing time in the 1/f noise backgrounds and testing 

attention in real-world scenes, attention was able to narrow to focus on objects present within the 

scene.  Therefore, the main effect of eccentricity is not at all surprising.  The critical question, 

then, is whether the interactions between eccentricity and boundary offset time provide 

meaningful and reliable effects that generalize to event perception as a whole, since this is the 

crux of the ambient-to-focal shift hypothesis.   

Attentional tunneling results from the presence of a foveal perceptual load (Williams, 

1988; 1989), and in the context of the ambient to focal processing model (Unema et al., 2005) 

attentional tunneling represents a period in which scene context determines top-down salience of 

an object within that scene, and thus the need for fine-detailed processing of that object arises.  

While the model fitness indices of the WAICs show that both the simple attentional impairment 

models and more complex ambient-to-focal shift models provide equal goodness of fit, the 

ambient-to-focal shift models tend to provide marginally improved explained variance from the 

prior to posterior distributions.  Furthermore, there is a dramatically different effect between 
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coarse and fine boundaries, where coarse boundaries are in a brief state of broadened attention 

before narrowing into focal mode after the event boundary.  Conversely, the fine boundaries 

remain in ambient mode throughout the sampling period (-4s – 6 s).  If there is a difference 

between coarse and fine boundaries beyond slightly greater attentional impairment at coarse 

boundaries, it could be that fine boundaries exhibit a less efficient transition between one event 

model to the next, whereas coarse boundaries facilitate a more rapid shift in time from one model 

to the next.  However, these interpretations must be tempered with the fact that model fitness 

indices failed to discriminate between the ambient to focal and attentional impairment models.  

And although the ambient to focal model shows that Gabor accuracy dropped 15% from 4 

seconds before to 6 seconds after the event boundary, the residual error was quite high, making 

this finding unreliable.  Therefore, further investigation will be needed to confirm such if such an 

effect is real.  
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Chapter 4 - Discussion 

4.1 Overview 

The purpose of this experiment was to determine the spatiotemporal dynamics of visual 

attention during real-world event perception.  This was the first experiment of its kind to estimate 

attentional dynamics of real world events in a way that disentangled effects of visual attention 

from sensory limitations, by utilizing the Gaze-Contingent Useful Field of View methodology 

(Ringer et al., 2014).  Furthermore, this study utilized the framework of Event Segmentation 

Theory (Zacks, Tversky, & Iyer, 2001; Zacks & Swallow, 2007) to operationalize the varied and 

dynamic structure of real-world events to predict when critical changes in attention might occur.  

Nevertheless, the current study was unable to find sufficient support for either the attentional 

interference (Crundall et al., 2002; Huff et al., 2012) or the ambient-to-focal shift (Unema, et al., 

2005; Velichovsky, et al., 2005) explanations of attention at event boundaries.  This study also 

utilized cutting edge techniques in hypothesis testing through the use of Bayesian hierarchical 

modeling to determine the viability of one hypothesis over another, rather than the null 

hypothesis testing that is common with traditional statistical approaches.  This is important to 

note given that productive scientific research should be systematic and incremental, and the 

ability of Bayesian hierarchical modeling allows for the use of prior distributions to more 

efficiently estimate population level effects that will generalize to future populations.   

4.2 Hypothesis Evaluation Summary: Attentional Impairment versus Ambient-to-focal 

shifts 

Although the model clusters generated to test the two competing hypotheses were not 

completely discriminable, there were parameter estimates consistent with both hypotheses.  For 

both the attentional impairment and ambient-to-focal shift hypotheses, Gabor accuracy for coarse 
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boundaries was generally lower than non-boundaries.  Both models demonstrated that accuracy 

at the coarse boundary (≈ 79% correct) was slightly, but consistently lower in comparison to 

non-boundaries (≈ 83% correct).  Meanwhile, Gabor accuracy at the fine boundaries (≈ 81%) 

was between coarse and non-boundaries, but did not differ from either.  Therefore, there seems 

to be reliable evidence for attentional impairment (Crundall et al., 2002) at coarse boundaries.  

However, what has not been ruled out is the presence of changes in the size of the useful field of 

view at event boundaries.    

The critical difference between the two hypotheses is in terms of the interaction of Gabor 

eccentricity with boundary offset time among the three boundary types (i.e., coarse, fine, and 

non-boundary).  In many ways, the attentional impairment versus ambient-to-focal shift 

hypothesis distinction is similar to comparisons between general interference of attention 

(Crundall et al., 2001; 2002; Huff, Papenmeier, & Zacks, 2012) and attentional tunneling (i.e., 

tunnel vision; Williams, 1988; 1989).  In a previous version of the Gabor discrimination task, 

these two attentional states were not mutually exclusive (Ringer et al., 2016).  While an auditory 

working memory dual-task load was found to only produce general interference, a foveal dual-

task load resulted in tunnel vision and general interference (Ringer et al., 2016).  Additionally, 

the foveal load produced stronger general interference (Δd’ = 3.23 between single and dual-task 

sensitivity) compared to the auditory load (Δd’ = 0.733 between single and dual-task sensitivity).  

In terms of multiple resource theory (Wickens, 2002), this difference between the two types of 

loads (perceptual versus cognitive processing) suggests that interfering with information at 

earlier stages of processing produces a stronger degree of interference as the same perceptual 

channels are occupied.  Conversely, the working memory load occurs at a later stage, during the 

cognitive processing stage, which results in more information being preserved from the earlier 
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perceptual channels (Wickens, 2002).  Since, the degree of general interference of attention that 

occurs at event boundaries is relatively weak, this would support the idea that event boundaries 

represent a working memory load and not a perceptual load.  Furthermore, the perceptual load 

hypothesis predicted that attention would have narrowed at event boundaries, since prediction 

error would have made it more difficult to extract meaning from the event.  In actuality, if event 

boundaries do show fluctuations in attentional breadth, they are in the opposite direction, where 

the event boundary results in broadened attention and the event middles result in narrowed 

attention.  Thus, it is likely that event boundaries represent a change in attentional control and 

not overexertion of attention.  Thus, the effects of event boundaries on attention are more likely 

to be at a higher cognitive level (e.g., WM), rather than at a perceptual level. 

If the ambient-to-focal shift model is accurate in describing effects of event boundaries 

on attention, a working-memory explanation for changes in attention would still be able to 

explain changes in attentional breadth in response to event boundaries, despite the shift from 

ambient to focal mode.  In the case of the current data, coarse boundaries showed evidence of an 

interaction between boundary offset time and eccentricity, such that attention was broadly 

distributed prior to the boundary and narrowed after the boundary, while fine boundaries 

remained broadly distributed over the course of the ten-second duration around the boundary.  

Meanwhile, event middles showed prolonged narrowed attention.  Interestingly, the effect of 

coarse boundaries on attention was more discrete, Gabor accuracy being nearly identical for all 

eccentricities prior to the boundary, and quickly narrowing in the seconds that followed.  Thus, it 

seems that attention would be more strongly affected by coarse boundaries, which would support 

multiple neuroimaging studies evaluating brain activity at event boundaries (Kurby & Zacks, 

2018; Speer et al., 2003; Zacks et al., 2001; Zacks et al., 2006).  This would also make a unique 
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prediction for SPECT (Loschky et al., 2018) where global shifts occur at a faster rate than the 

mapping stage, where new information is gradually incorporated into the event model.    

In terms of the temporal aspects of attention, if the effect of event boundaries is to cause 

momentary broadening of attentional breadth to aid in the updating of the event model then the 

effect of fine boundaries is stronger than coarse boundaries because the attentional effect is 

sustained over a longer period of time.  Thus, if the ambient-to-focal shift account of attention at 

event boundaries is true, then coarse boundaries would represent a stronger, faster attentional 

shift, whereas fine boundaries do not broaden as much as coarse boundaries and require more 

time to transition from one event grain to the next.  Because attention remained in ambient mode 

longer around fine boundaries than at coarse boundaries, front-end perceptual input provided 

scene-level information to WM over a longer period of time (Loschky et al., 2018).  At the same 

time, less inhibitory control was exerted over attentional selection in the absence of an 

appropriate event framework (Gernsbacher et al., 1995) and the information provided to update 

the working memory model was at a coarser level than it would be in the event middle.     

4.3 Event Perception and the Dual-Task Framework 

An assumption motivating this study was the notion that changes in attention could be 

described with a dual-task framework.  In the case of dual-task interference, two unrelated tasks 

require one to divide mental resources at perceptual, cognitive processing, and behavioral/motor 

output levels (Wickens, 2002).  Thus, the strain on cognition comes from the discontinuity 

between the two tasks, which requires one to serially switch from one task to a second task when 

the needs of the second task arise (Pashler, 1994).  In the case of dynamic event perception, 

SPECT proposes that during an event model shift, event information is recalled from episodic 

memory, while event information in working memory is encoded into episodic memory.  Thus, 
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the strain on cognitive resources may come from the need to simultaneously encode and 

consolidate new information to LTM while also retrieving accurate event information from LTM 

to update one’s event model (Loschky et al., 2018).  However, these three tasks are not 

completely independent from each other—in fact, they depend very much on one another.  

Therefore, it is perhaps the case that updates in event models are not analogous to dual-task 

interference in the traditional sense, where cognitive resources are allocated between multiple 

opponent tasks.  Nevertheless, the statistical models for both the attentional impairment and 

ambient-to-focal models show support for subtle changes in attentional gain across the visual 

field, as do several other studies that have measured covert attention around critical changes in 

dynamic events (Crundall, Underwood, & Chapman, 2002; Huff, Papenmeier, & Zacks, 2012).  

However, the reasons for predicting changes in the shape of attentional breadth (i.e., tunneling or 

broadening) must be reconciled with the theoretical underpinnings of event perception in 

addition to needing further empirical evidence before it can be validated.  The traditional dual 

task framework assumes that tunneling is a result of strained attentional demands (Williams, 

1988), however these methods make the importance of the central (e.g., foveal) visual task an 

explicit priority.  During naturalistic event perception, the predicted importance of specific object 

or location is implicit and controlled by the accuracy of the event model (Huff, Meitz, & 

Papenmeier, 2014).   

The evidence for ambient-to-focal shifting of attention around the event boundary is 

currently tenuous, though the available data does reject one hypothesis regarding the shape of 

attention around the event boundary.  It was previously suggested that attention might begin to 

tunnel around event boundaries.  This was because, as the event becomes more uncertain, 

information regarding objects or agents within the event becomes more difficult to extract and 
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requires a greater degree of attentional focus to shift from one event grain to the next 

(Nuthmann, Smith, Engbert, & Henderson, 2010).  However, if changes in the size of attentional 

breadth were at all present, it seems that the opposite effect occurred: attention broadened at 

event boundaries and narrowed toward the event middle.  This effect is consistent with SPECT 

(Loschky et al., 2018) which suggests that, since event boundaries represent moments of 

uncertainty, it is advantageous to expand attention over the entire scene, which will help to 

facilitate the transition from one event to the next.  The simultaneous drop in attention suggests 

that attention was not only expanding, but that there is a lack of control from central executive 

resources in constraining the focus of attention as event information in WM is encoded and 

consolidated into LTM (Rayner, Sereno, Morris, Schmauder, & Clifton, 1989).  

Furthermore, the reduction in attention at the event boundary puts into question how 

EST’s gating mechanism works.  Event Segmentation Theory suggests that the gating 

mechanism is opens at the onset of the event boundary and directly connects sensory input to 

event model information in WM (Zacks et al., 2007; Zacks & Sargent, 2010; Kurby & Zacks, 

2008).  This argument predicts that attention should be better at event boundaries since the 

circuit between early perception and working memory has been completed.  However, the 

empirical evidence by this study and the results from Crundall et al. (2002) and Huff et al. (2012) 

consistently find impairment of attention, rather than facilitation. Huff, Papenmeier, & Zacks 

(2012) further argue that the decrease in attention is due to a complete reorienting of top-down 

attentional resources, given that their multiple object tracking paradigm did not correlate with 

low-level perceptual bottle-necks (e.g., crowding of the soccer players), and thus later cognitive 

processing constraints are necessary to explain attentional impairment.  Instead, their explanation 

of attentional impairment is akin to the attentional blink where attentional processing for an 
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earlier stimulus interferes with the processing of a later (but temporally close) second stimulus 

(Raymond, Shapiro, & Arnell, 1992).  Thus, event boundaries could be a real-world example of 

the attentional blink where the recognition of event information immediately following the 

boundary is not detected because event information prior to the boundary is still being encoded 

(Crundall et al., 2002; Huff et al., 2012).  Even more interesting is that the attentional blink peaks 

at approximately 200-300 ms (Chun & Potter, 1995) or roughly the average duration of a single 

eye-fixation (Rayner, 1998).  According to SPECT, would mean that an event model update 

results in the loss of front-end information for one fixation.  However, the brief suppression of 

new perceptual input following the event boundary could help facilitate the encoding of 

information at the event boundary.  

Neuroimaging research has also been able to demonstrate some of the physiological 

underpinnings of the enhancement of event information at the beginning of the event model, by 

suggesting that cognitive processing is temporarily alleviated from interference between new 

sensory input and the storage of recent episodic information to LTM.  In one study, hippocampal 

activation was monitored during the free-viewing of short film clips, which were followed by 

either a film clip, a pixel-scrambled film clip, or nothing (Ben-Yakov, Eshel, & Dudai, 2013).  

Anterior hippocampal activation that immediately followed viewing the videos was strongest 

when only one video was displayed, and with slightly less strong activation for the noise videos.  

The weakest anterior hippocampal activation occurred when participants were required to watch 

two normal film clips.  The results from Ben-Yakov et al. (2013) also found that there were 

distinctive spikes in anterior hippocampal activation that occurred at the end of each video, 

regardless of whether it was followed by another video.  Thus, even during event perception in 

which the event stimuli contain multiple continuous events, it is likely that the hippocampus 
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undergoes periodic offloading of event information into long-term storage.  However, this ability 

to encode new information can be impaired through interference from new, incoming sensory 

information.  Therefore, the suppression of new sensory information at the event boundary via 

attention would be useful in reducing the degree of interference during memory encoding. 

Ben-Yakov et al. (2013) also found that stronger anterior hippocampal activation that 

occurred when videos were followed by a blank screen also  produced stronger posterior 

hippocampal activation during memory recall.  The increase in posterior hippocampal activation 

during memory recall resulted in better subsequent memory.  Therefore, it could be possible that 

stronger attentional suppression at coarse boundaries results in faster event model update 

because there is less interference by sensory input during retrieval from LTM.  Meanwhile, fine 

event boundaries show weaker attentional impairment in space and slower shifting in time.  

Therefore, the spatial effects and the extended temporal effects of fine event boundaries could be 

explained by less suppression of sensory input, which could reduce the speed and accuracy at 

which the new event model can be updated.   

Although a dual-task paradigm framework explanation of event model updating is quite 

distinct from the traditional context of an individual attempting to complete two distinct tasks, its 

basic principles are still relevant.  Consciousness is supported by processes with limited 

resources—both in perception and memory—however we have adapted strategies that streamline 

the process and optimize performance.   

4.4 Attention, Event Models, and Global versus Incremental Updating 

In addition to the concurrent encoding and retrieval of information necessary during 

dynamic event perception, another question remains for how, when, and what information is 

updated between working and long-term memory.  When a global event model shift occurs when 
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an entirely event model is generated from sensory information (Kurby & Zacks, 2012; Zacks & 

Swallow, 2007).  However, according to event indexing theory, event models can be updated 

incrementally when only a small portion of the event model is updated (Huff et al., 2014; Zwaan, 

Langston, & Graesser, 1995).  Whether one updates incrementally or globally may depend on the 

number of event index changes (Huff, Meitz, & Papenmeier, 2014), or the types of index 

changes that occur (Zacks et al., 2010).   

The current results have some trouble reconciling with the traditional assumptions behind 

the sensory gating mechanisms proposed by Event Segmentation Theory, which argues that the 

event model affects the selective filtering of information at later sensory processing stages, but 

sensory information does not affect the event model until the event boundary (Reynolds, Zacks, 

& Braver, 2007; Kurby & Zacks, 2011).  The results from this study show that Gabor accuracy at 

coarse boundaries (79%) and fine boundaries (81%) is only slightly lower compared to non-

boundary times (82%), so if a global sensory gate does exist, it is very weak.  However, it is 

possible that the strength of the attentional manipulation (namely the event videos) were not 

sufficient to precipitate a strong enough change in attention.  Thus, more arousing or salient 

video stimuli may be more effective in enhancing the effect of the events on attention.  Likewise, 

manipulating the Gabor patches to appear for less than the window of the attentional blink might 

also provide greater sensitivity to attentional changes during event perception, especially when 

determining the difference in attentional impairment between coarse and fine boundaries.  

If the sensory gating mechanism relatively weak, an alternative to EST’s sensory-event 

model gate would be for a gating mechanism to exist between working memory and long-term 

memory, with constant communication occurring between the event model in WM and new 

sensory input.  Only when new sensory input sufficiently deviates from the event model is the 
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connection between sensory information and WM (i.e., attention) broken, and the connection 

between LTM and WM reestablished so that novel event information can be incorporated with 

prior knowledge in LTM.  Some models do suggest that this relationship exists.  The Structure 

Building Theory (Gernsbacher, 1990) and SPECT (Loschky et al, 2018) both argue that after the 

foundation for the event model has been laid, new information is mapped on to the global 

structure.  Similarly, the Event Indexing Model (Zwaan, Langston, & Graesser, 1995; Zwaan & 

Radvansky, 1998) argues that event information is decomposed into multiple dimensions which 

are gradually updated if new information is similar, and the likelihood of updating one’s event 

model increases as more of these indices change.  All of these models argue that new, incoming 

information is mapped onto existing event schemas in working memory during event perception.  

In particular, SPECT can help to explain how the differential perceptual processing of early, 

coarse information (e.g., gist) and later object information in the front-end affect back-end 

cognitive processing while laying the foundation for the event, and during subsequent mapping.  

Furthermore, the movement of broad to narrow processing in the ambient to focal shifting of 

attention provide an additional level of importance for constant monitoring of information at 

different levels of specificity (i.e., coarse to fine processing, respectively).  Therefore, the 

changes in covert attention provide a window into the mechanics of event model shifting at event 

boundaries.  

Because attentional impairment around event boundaries was relatively weak for both the 

attentional impairment and ambient-to-focal models, it is more likely that the more critical gating 

mechanism is in terms of attentional breadth (e.g., tunnel vision) and not overall attentional gain 

(e.g., general interference of attention).  Compared to the few percentage point differences in 

overall Gabor accuracy among boundary and non-boundary periods, the evidence for Gabor 
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accuracy as a function of eccentricity and time was much more distinctive for different boundary 

and non-boundary periods (see Fig. 13).  To reiterate, the ambient-to-focal shift model found 

some evidence of attention remaining tunneled during non-boundaries, but quickly moved from 

broad-to-narrow during coarse boundaries.  Specifically, the difference between central and 

peripheral was only 3-percentage point difference prior to the boundary and increased to an 

approximately 20 percentage point difference in the five seconds after the boundary.  Fine 

boundaries showed slightly less broadened attention for longer periods of time.  Thus, sensory 

gating during event perception may be in terms of attentional breadth. However, sizeable error in 

this model do not conclude with absolute certainty that the ambient-to-focal account of attention 

at event boundaries.  Therefore, it must be emphasized that the merits of this model require 

further investigation before it can be validated.  

A key component of SPECT argues that broad extraction of information (i.e., through the 

gist of the scene) is an important “front-end” process to facilitate the transition from one event to 

the next (Loschky et al., in press).  The ambient-to-focal shift model proposes that the 

broadening of attention during event boundaries exists because the absence of a valid event 

model means that there is no context to guide inhibitory processes with constraining the focus of 

attention.  It is also important to note that the methods used in this experiment have factored out 

low-level perceptual limitations of the visual system (e.g., cortical magnification, photoreceptor 

density, etc.), and thus the results reflect a change in the sensory gate that is specific to attention.  

 

4.5 Structural and Physiological Models of Working Memory and Attention During Event 

Perception 
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There are many structural and physiological models that attempt to explain the 

relationship between attention, perception, and memory, though the primary division in the 

current literature has been between the continuum-based perspective of “long-term working 

memory” (Ericsson & Kintsch, 1995) and the more categorical multicomponent model (A. 

Baddeley, 2003; A. D. Baddeley & Hitch, 1974).  However, developing a parsimonious, 

physiological representation of these memory hierarchies can become quite challenging when 

attempting to understand the multiple perceptual and conceptual dimensions in which 

information can be represented, and how these dimensions are nested within one another.   

Hierarchical Process Memory (HPM; Hasson, Chen, & Honey, 2015) is a 

neurophysiological model which embodies the long-term working memory theory of Ericsson 

and Kintsch (1995), where WM and LTM are not dissociated from each other, and instead WM 

represents an active memory trace in LTM.  An additional feature of HPM is that it specifies a 

relationship between the temporal receptive window (TRW, i.e., the length of time in which 

information can be accumulated) and the level of information processing. Specifically, early 

sensory areas accumulate information over short periods of time, and are thus updated 

frequently, whereas higher-order processes that are responsible for global (e.g., narrative) 

comprehension accumulate information over longer periods of time (Hasson, Chen, & Honey, 

2015).  Furthermore, the receptive field size for the early and late stages a direct relationship 

between receptive field size and TRW, with smaller receptive field sizes occurring for shorter 

TRWs and larger receptive field sizes occurring with longer TRWs (Himberger, Chien, & 

Honey, in Press).  Thus, broader scene space is more resistant to small, sudden changes as it 

relates to higher-order processing and provides stable modulation of low-level perceptual input.   
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For instance, HPM predicts particularly shallow temporal normalization (i.e., long 

TRWs) for the temporal-occipital junction and the intraparietal sulcus (Himberger et al., in Press; 

Zhou, Benson, Kay, & Winawer, 2017).  During free viewing of The Red Balloon, changes in 

goal orientation, a high-level event characteristic, resulted in strong reductions in intraparietal 

sulcus activation following coarse and fine boundaries (though the effect was stronger for coarse 

boundaries) (Zacks, Speer, Swallow, & Maley, 2010).  Furthermore, these reductions in 

activation for IPS coincided with strong error signals from the anterior cingulate cortex, which is 

a crucial component for event model updating (Reynolds, Zacks, & Braver, 2007)12.  Therefore, 

if (a) perception activates traces in LTM to form WM, and (b) higher level brain regions are less 

amenable to new information, a closed sensory gate would slowly starve global contextual 

hierarchies of relevant information, thus reducing activation of dorsal stream structures until a 

global update.  . The error signal from the anterior cingulate would then be responsible for 

reopening the sensory gates to flood coarse-level systems with new information from global 

visual space.  Thus, the event model can be reset to reflect a more accurate state of the visual 

environment.  

For instance, although event boundaries are triggered by several important dimensions, 

like characters, location and goals (Zwaan & Radvansky, 1998; Zacks et al., 2007), these 

dimensions do not seem to equally affect the likelihood and type of event updating.  Object-

based changes are more likely to result in fine boundary segmentation, whereas changes in space 

and causality are more likely to result in coarse boundary segmentation (Kurby & Zacks, 2012; 

Speer, Zacks, & Reynolds, 2007). Thus, coarse scene information changes results in coarse 

                                                 

12 However, error responses from subcortical dopamine systems are also critical for detecting prediction error. 

(Zacks, Kurby, Eisenberg, & Haroutunian, 2011). 
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boundary updates, whereas fine object information changes result smaller, fine boundary 

updates.   

Furthermore, when attention is limited to only the coarse event information, it can impair 

the ability to attend to information at finer levels of specificity (but not necessarily boundary 

information).  In one study, participants were told to read for specific types of content, where one 

group was instructed to attend to character shifts, while another group was instructed to attend to 

spatial shifts (Bailey, Kurby, Sargent, & Zacks, 2017).  The character change group showed 

very little difference in accessibility of spatial and character information when compared to a 

control group, in which no specific instructions were given.  However, the spatial change group 

showed substantial difficulty at accessing information at spatial changes and character-based 

non-changes in the narrative.  These results can be explained in terms of the stages of processing 

involved with spatial properties of attention and working memory (Bailey, Kurby, Sargent, & 

Zacks, 2017; Kurby & Zacks, 2012).  Spatial processing occurs at a coarser level of perceptual 

processing, compared to faces and objects, and by limiting attention to coarse spatial 

information, fine character information was not effectively maintained across the narrative.  

Thus, to the extent that spatial systems can help to contextualize information from a top-down 

perspective, it is also inherent in the fine information from the bottom-up but lacks the specificity 

for the finer distinctions that are necessary for detailed recognition.  

If event memory is hierarchical (Hard, Tversky, & Lang, 2006), with conceptual 

information helping to organize the interpretation of current information and the expectations for 

future event information (Zacks, Tversky, & Iyer, 2001), then the predictions made by the 

ambient-to-focal model would suggest that the narrowing of attention is analogous to the 

narrowing of information activated in LTM.  In this sense, the breadth of attention represents the 
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breadth of information in working memory.  When in the middle of an event, the event model can 

make specific predictions about what is about to occur next and attention is maximally narrowed.  

When those predictions produce errors over time, and when those errors are at a deep level of the 

memory hierarchy (e.g., space, goals, intentions, etc.), the event model must be updated globally 

(Reynolds, Zacks, & Braver, 2007; Zacks, Kurby, Eisenberg, & Haroutaunian, 2011).  However, 

if there are only a few changes to the event model (Huff, Meitz, & Papenmeier, 2014), or those 

changes to the event are at a superficial level of the hierarchy, event updates are mapped onto the 

existing, long-term event structure (Gernsbacher, 1995; Loschky et al., 2018).  Likewise, when 

larger increases in prediction error necessitate a larger (e.g., global) event model update, the 

event model shift would require updating the stored model at a deeper level of  the LTM 

hierarchy.  This would be similar to laying the foundation of a new event model (Gernsbacher, 

1990; Loschky et al., 2018).  When laying a new foundation for an event, the event model would 

be relatively unspecified, and attention would be minimally constrained until the appropriate 

model is selected.  In this state, it would be advantageous for attention to cover a large area of 

visual space, or (with respect to Event Segmentation Theory) the sensory gate would be 

maximally opened to provide the broadest sample of visual information.  Upon recognizing the 

gist of the environment, perceptual cues can help to narrow an appropriate event that is 

contextually and perceptually consistent with the coarse-level information (Larson, Hendry, & 

Loschky, 2012). 

4.6 Event Memory and Perceptual Modalities 

Event segmentation theory posits that event models constrain attention while also 

allowing viewers to make predictions about what should occur next in an event (Kurby & Zacks, 

2008).  Thus, the event model in working memory provides a buffer between prior knowledge in 



 

113 

LTM and new information from the senses.  When predictions are valid, the new information is 

redundant with information in LTM and therefore there is no need for LTM and WM to 

interface.  However, when new event information deviates from the event model in working 

memory, error signals increase in the anterior cingulate cortex (Zacks et al., 2010), and the event 

model in WM must be updated to improve prediction rates for new event information (Huff, 

Meitz, & Papenmeier, 2014; Reynolds, Zacks, & Braver, 2007; Zacks, Kurby, Eisenberg, & 

Haroutunian, 2011).  Event model updating is also said to be a period in which sensory gating 

mechanisms between perception and LTM are opened to encode new event information, and to 

recall accurate event information.  The novel event information that is consolidated into LTM is 

often constrained (and biased) by prior experience and expectations (Huff et al., 2017).  

However, there have been inconsistent findings regarding the importance of the types of 

information that cue coarse versus fine event model updating.   

A common theme between the previous research that used the videos presented in the 

current study (Sargent et al., 2013; Kurby & Zacks, 2011) is that they all used the same memory 

probe stimuli, namely in the form of visual recognition memory.  Generally, these studies found 

that fine event boundary agreement predicted better overall event recognition memory when 

participants were asked to discriminate between still images of videos that were either present or 

absent from the video they had seen (Kurby & Zacks, 2011; Zacks, Speer, Vettel, & Jacoby, 

2006; Sargent et al., 2013).  Event order memory (through ordering still images of the event 

video) has been slightly less consistent, however.  In one study, fine segmentation agreement 

predicted picture order memory for older adults only (Zacks et al., 2006), whereas in two other 

studies, no relationship between fine segmentation agreement and event order recognition 

memory was found, regardless of age (Kurby & Zacks, 2011).  In another study that used the 
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same videos as the current study, segmentation agreement was not found to correlate with event 

order memory (Sargent et al., 2013).  These results are inconsistent with the present study, which 

found event order memory to be predicted by coarse segmentation agreement, but not fine 

segmentation agreement. 

The current experiment did replicate previous results for object recognition during event 

perception.  Specifically, it demonstrated an advantage for boundary objects compared to non-

boundary objects using conceptual recognition cues.  In previous studies, participants showed 

very little difference in recognizing pictures of objects at boundaries versus non-boundaries, 

while a large memory advantage for boundary objects (versus non-boundary objects) was 

observed when the memory cues were conceptual (i.e., words; Swallow, Zacks, & Abrams, 

2009).  However, they did not find an effect for either fine or coarse segmentation agreement in 

predicting the advantage for boundary versus non-boundary objects.   

4.7 Limitations 

While the current study was able to show trends in favor of two non-mutually exclusive 

hypotheses, the best-fit models in the study were not able to differentiate between the two.  Even 

more troubling was the differences between the two models’ critical effects.  For the attentional 

impairment hypothesis, the overall attentional effect between coarse, fine and non-boundary was 

small (≈3%), however the standard error among participants was quite small, and thus the effect 

was relatively consistent across participants.  Conversely, the ambient to focal model showed 

strong differences in Gabor accuracy as a function of eccentricity and boundary offset time 

among the three event grains. However, the error among participants was quite large, and thus 

not as consistent of an effect.  Nevertheless, two alternative hypotheses have become 

substantially less likely.  First, it is very unlikely that improvements in memory around the event 
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boundary can be explained by increases in attention, since both models show a slight drop in 

attention, and these results replicate those by Crundall et al. (2002) and Huff et al. (2012).  

Furthermore, it is very unlikely that attentional tunneling occurs at event boundaries since the 

current evidence shows that, if the size of the UFOV changes during dynamic event perception, 

it is most likely to broaden at the event boundary.  Nevertheless, the question of which of the two 

hypotheses is more likely than the other is still unanswered and will require further research.   

Several limitations occurred in this experiment, which must be addressed by future 

studies. The first limitation of this study was that despite a large sample size (n = 89), there were 

still a large proportion of participants with missing data in several conditions (e.g., video type, 

eccentricity, and boundary type).  The low number of responses across participants was such that 

it made the complex random effects structures (both by-item and by-subject) computationally 

intensive (Betancourt & Girolami, 2013), especially with the inclusion of a three-way interaction 

in the fixed effects structure.  Therefore, while it is important that future research include more 

videos, it is equally important that more attentional probes are included within each video so that 

a more stable estimate of variability across participants and videos can be obtained.   

A second limitation of this study was that the individual segmentation data was not 

conducive to remapping the Gabor presentations to individualized event boundaries.  

Approximately 52% of participants segmented five times or less, which provides a very limited 

range of samples around the event boundary.  During the experiment, some participants were 

unsure of when to segment, despite being given a practice segmentation video and a feedback 

counter to provide a hint to the experimenter and the participant as to whether they were 

completing the task correctly.  This was to protect the data from contamination by the 

experimenter in guiding their responses and imposing unnatural uniformity in segmentation data.  



 

116 

In the future, additional shaping procedures will be necessary to ensure that participants clearly 

understand the instructions for segmentation in a way that is uniform and free from undue 

influence (Sargent et al., 2013; Zacks, 2004).   

An additional limitation of the GC-UFOV method is that only one Gabor presentation per 

eccentricity is possible in time, which makes the presence of an unmasked Gabor even more 

detrimental for sampling attention around a limited number of event boundaries.  Furthermore, 

the range of boundary offset times (i.e., the time around the event boundary) may have been too 

limited to capture a complete image of the changes in anticipation of an event boundary.  For 

instance, the fine boundary showed sustained broadened attention around the event boundary, but 

there was no indication of when that change occurred, or whether it was a discrete shift.  

Likewise, the sampling period around coarse boundaries may have also not been early enough to 

estimate when attention broadens in anticipation of a coarse boundary.  However, the current 

data were able to estimate when attention begins to narrow in response to the event boundary, 

which appears to begin approximately four seconds prior to the boundary time.  

4.8 Future Research  

This study was the first of its kind to estimate changes in attention—without conflating 

task performance with low-level visual sensitivity—during real-world event perception.  Despite 

the lack of conclusive results for the GC-UFOV during event perception, there are several 

modifications to the current experimental paradigm that can be made to improve upon it. 

However, to ensure that the changes from one experiment to the next can be attributed to a single 

methodological change, these modifications must be implemented slowly and systematically 

(Platt, 1964).  
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The first follow-up study should make minimal changes to the experimental paradigm 

and should instead make use of informed prior distributions to determine if the trends found in 

the current study are stable and replicable.  For complex hierarchical models, model stability 

indices like the WAIC and LOO can have difficulty showing any difference between the weak, 

flat prior distribution and posterior sampling, and thus the difference between the two similarly 

structured models will can be quite minimal (Vehtari et al., 2015).  Importantly, Bayes factors 

for Bayesian hierarchical models can be very misleading when flat priors and (at times) when 

weakly informative prior distributions are specified (Vehtari et al., 2015).  Instead, specifying 

informative priors for intercepts and slopes can greatly improve error estimations for the 

intercepts and slopes of future data (Vehtari et al., 2015).  Furthermore, model stability can be 

improved with more observations within each level of fixed and random effects (Betancourt & 

Girolami, 2013).  Therefore, this study would include more observations by flanking the event 

boundary with two observations.  However, the temporal inter-presentation interval between 

Gabor patches would need to be randomized so that one Gabor patch does not serve as a pre-cue 

for another, while also providing an appropriate (minimum) buffer time between presentations so 

as to not detract from the event video.  The increase in Gabor presentations would also serve as a 

fail-safe against the unmasked Gabor presentations, which cannot be used to accurately measure 

attention within this paradigm. 

If it is the case that a second sample can provide more definitive evidence of either the 

attentional impairment or ambient-to-focal hypotheses, the next logical step would be to 

determine if the changes around coarse and fine boundaries for one set of videos will generalize 

to the next.  A second study could determine if the posterior sampling distributions from this 

study can be used to generate prior distributions that generalize to other samples of participants 
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and videos, however such a study would require multiple days of testing and would require 

additional (financial) incentives to reduce attrition.  More engaging and surprising stimuli could 

also be used, however primary obstacle for the GC-UFOV method only allows for one 

observation per Gabor eccentricity, orientation (right vs. left), and boundary.  So, it requires 

many trials to estimate attentional breadth, and participant engagement may remain an important 

consideration.  Continually showing “surprising” stimuli could bias participants to become less 

sensitive to the surprises, however film could be a way to reduce variability in the perception of 

events while maintaining a high degree of engagement on the part of the participants (Loschky et 

al., 2015).Finally, a third study—independent of the GC-UFOV—could be implemented to 

determine the degree of global versus local perceptual processes that change during an event 

boundary, and when they occur.  To date, virtually all neurophysiological research in event 

segmentation has been conducted using fMRI.  Although fMRI has tremendous spatial resolution 

for functional brain activity, its temporal resolution is limited to approximately 1 s intervals (Lin 

et al., 2018).  Alternatively, techniques like electroencephalography (EEG) can have a temporal 

resolution as fine as 1 ms, with spatial resolution being its primary tradeoff.  One important 

limitation of EEG too consider is the propensity for overt motor activity to interfere with scalp 

electrical readings of brain activity, and this includes oculomotor behavior.  Given that eye-

movements are a necessary component to real-world perception and produce electrical activity in 

relatively low frequency channels (> 65 Hz; Yuval-Greenberg et al., 2008) measuring individual 

ERP components would yield quite noisy data.  However, using steady-state topography (SST) 

EEG, one can measure changes in the brain at low-frequency bandwidths that are outside of the 

frequencies expressed by electrical activity from eye movements (Muthukumaraswamy, 2013), 

specifically in the α and β bands, which are observed at 8-12 Hz and 13-35 Hz, respectively 
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(Pfurtscheller & Aranibar, 1977).  With regard to event perception, several experiments have 

been able to connect global inhibitory control of sustained attention to the α (Kelly, Lalor, Reilly, 

& Foxe, 2006) and β (Engel & Fries, 2010) bandwidths.   

The Information via Desynchronization Hypothesis (Hanslmayr, Staudigl, & Fellner, 

2012) has used research with Steady State Electroencephalography (SST EEG) to argue that 

reduced power in the α and β bandwidths impairs inhibitory control exerted by higher-level 

processes that would otherwise prevent new information from being encoded (Hanslmayer, 

Leipold, Pastotter, & Bauml, 2009; Klimesch, 1996).  These low frequency bandwidths have 

been previously associated with improved memory for a given stimulus when they follow the 

presentation of that stimulus, thus α and β bandwidths may be reflective of a period of a global 

event update.  Desynchronization of the α and β bands also produces higher γ bandwidth power, 

which is associated with greater integration of sensory information (Nyhus & Curran, 2010), and 

therefore may reflect perceptual processing activity at the sensory gate.  An additional finding 

relevant to event perception is that the α power correlates negatively with activity in the 

cingulate cortex (Jann et al., 2009), an area of the brain responsible for error monitoring and that 

has shown strong activation in response to coarse event boundaries (Zacks et al, 2010).  By 

gaining more sensitive temporal insights into event perception, it would then be possible to more 

accurately estimate when event boundaries are detected by viewers.  If this sensitive, continuous 

measure of attention were to be paired with the GC-UFOV task, then a clearer relationship 

between event segmentation and changes in attentional breadth may be established.  
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Chapter 5 - Conclusions 

Attention is the process that selects and enhances portions of our environment for in-

depth analysis by cognitive systems.  Real-world perception requires seamless transitions of 

attention from one moment to the next, when information from long-term memory is used to 

guide those shifts in attention.  These shifts in attention occur at event boundaries, where 

meaningful changes in event information violate our expectations of what should occur next. 

Event Segmentation Theory (Zacks & Swallow, 2007) argues that when our expectations are 

violated, the windows of perception open to incorporate new sensory information with prior 

event information.   

The results from this study do not support the notion that attention improves at these 

boundaries, however.  If anything, overall attentional gain slightly decreases at event boundaries 

when compared to non-boundaries, which replicates previous findings from Crundall et al. 

(2002) and Huff et al. (2012).  Nevertheless, there is evidence that the size of the attentional 

window increases at event boundaries, much like the aperture of a camera opens to expose film 

to light.  Even more important was that evidence for change in the size of the attentional window 

was found despite the fact that low-level perceptual limitations (i.e., photoreceptor density, 

cortical magnification, etc.) had been neutralized by thresholding attentional stimuli to be equally 

discriminable from central to peripheral vision in the absence of any cognitive or perceptual load 

(Ringer et al., 2014; Ringer et al., 2016).  Though the nature of systematic broadening and 

narrowing of attention still requires further experimentation to be effectively modeled, this study 

was among the first to find evidence of covert attentional tunneling and narrowing that can be 

attributed to real-world event structure.   
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