
A NEW METHOD FOR THE DESIGN OF FIR DIGITAL FILTERS

by

SCOTT ANTHONY NICHOLS

B.S. Kansas State University, 1986

A THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Electrical and Computer Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1988

Approved by:

' Major Professor

MoloX
AllEDfl 231bSb

TABLE OF CONTENTS
-EXE
<\%

C . 2_

CHAPTER ONE. INTRODUCTION

Introduction to Digital Filtering 1

Statement of Problem 3

Thesis Overview 6

CHAPTER TWO. REVIEW OF CLASSICAL DESIGN PROCEDURES

Frequency-Sampling Method 8

Parks-McCleiIan Method 11

CHAPTER THREE. DEVELOPMENT OF THE NEW METHOD 16

CHAPTER FOUR. DESIGN PROCEDURE 23

CHAPTER FIVE. PROGRAM

Program ROLF. EXE 25
Editing/Selecting Filter Prototypes 30
Computing Impulse Coefficients 34

Parks-McClellan 35
New Method 35
Adjusting The Dense Frequency Grid 35

Computing Filter Response 36
Displaying Filter Coefficients 36
Reading/Writing Filter Prototypes To/From Disk 36
Stack/Register Manipulations 37
Plotting Impulse Coefficients And Responses 38
Things To Watch For 38
Hints to Programmers 39

CHAPTER SIX. EXAMPLES AND RESULTS

Comparing Filter Magnitude Responses 42
Comparing Some Design Times 54

ii

TABLE OF CONTENTS (CONTINUED)

CHAPTER SEVEN. CONCLUSIONS

Introduction 55
Design Speed of New Method 55
Summary of Performance 56
Problems with New Method 57

REFERENCES 58

APPENDIX PROGRAM SOFTWARE LISTING 59

in

LIST OF FIGURES

Figure Page

1 Block layout of program. 27

2 Example 1, comparing the new and 44
frequency-sampling methods.

3 Example 1, comparing the new and 45
Parks-McClellan methods.

4 Example 2, comparing the new and 47
frequency-sampling methods.

5 Example 2, comparing the new and 48
Parks-McClellan methods.

6 Example 3, comparing the new and 50
frequency-sampling methods.

7 Example 3, comparing the new and 51
Parks-McClellan methods.

8 Example 4, comparing the new and 53
Parks-McClellan methods.

IV

ACKNOWLEDGMENTS

This author would like to express his appreciation for the

support provided in the creation of this manuscript by

faculty, friends, and family. Dr. Stephen A. Dyer, my major

Professor, is largely responsible for the conception of the

method developed herein. I am very grateful for his

supervision, patience, and motivation.

A special thanks is also in order for my graduate committee

members, Dr. Brian K. Harms and Dr. Christopher M. Sorensen

who surely must have suffered a little when perusing the

preliminary version. They were able to make some key

suggestions for revising the final manuscript.

My parents and sweet "Rosy" also merit thanks for cheering

me on when my enthusiasm for writing waned to undetectable

levels.

CHAPTER ONE

INTRODUCTION

Introduction to Digital Filtering

Filtering is a process concerned with separating known

signals from one another, modifying a signal's

characteristics, and attempting to suppress noise or

distortion in a desired signal. Examples of filters

include cross-overs in stereo speakers, spark plug noise

suppressers in automobiles, and equalizers for musical

instruments.

While filtering can be accomplished in the time domain, this

paper is wholly concerned with filtering in the frequency

domain. This means that the filters herein will be

discussed in terms of their frequency component selectivity.

For example, a low-pass filter would ideally transmit the

lower frequency components of a signal unaltered (pass-band)

while suppressing the higher frequency components (stop-

band) . Furthermore, it is usually desired that the

transition region, which are the frequencies between those

which are fully transmitted and those which are wholly

suppressed, be extremely small. This is known in the

literature as a brickwall filter due to the abrupt change

in amplification between the stop-band and pass-band

frequencies. In practice, this brickwall transition cannot

be achieved so one measure of a filters effectiveness is how

narrow or abrupt this transition region can be made while

maintaining smooth characteristics in the stop-band and

pass-band.

While filters were originally constructed from discrete

components such as resistors, capacitors, and inductors, the

advent of modern digital computers has made the digital

filter possible. Digital filters perform the same functions

as their analog counterparts, but differ in that the

filtering operation is done numerically with the

characteristics of the filter determined by certain

numerical coefficients known as impulse response

coefficients. These coefficients completely characterize

the filter. The advantages of digital filters over analog

are that the filter characteristics can be made arbitrarily

close to design values (increase the precision of the

coefficients) and it is very easy to change the filter

without obtaining different components (change the

coefficients). Additionally, since the filter is

represented numerically, it can be simulated on a computer.

This means that the data to be filtered can be recorded and

the filtering leisurely performed at a later date.

Digital filters have two representations, these being

infinite impulse response (infinite number of impulse

response coefficients) and finite impulse response (finite

number of impulse response coefficients). This paper is

concerned with the finite impulse response (FIR) digital

filter.

Statement of Problem

Various methods for designing FIR digital filters have

appeared in the literature within the last two decades.

Among these methods are those which strive for optimality in

a Chebyshev sense, i.e., possess equal ripple properties,

and other simpler representations which seek to directly

obtain the filter coefficients. Some well known methods

include the Parks-McClellan method [1,2,3], which optimizes

the selection of frequencies at which the filter response is

specified, and frequency-sampling which obtains the filter

by performing an inverse discrete Fourier transform (IDFT)

on the desired frequency response. However, these classical

methods have their decided disadvantages. It is not trivial

to implement and compute a filter via an optimal method.

This can discourage the use of these methods in a personal

computer oriented environment. On the other hand, one-pass

frequency-sampling strategies [4] can be implemented and

computed rather quickly but lack specific control over the

transition-band frequencies. In addition to that, their

response characteristics are often unsuitable at the edges

of the transition bands, which tends to prohibit their use

in critical filtering applications.

The need exists for a one-pass suboptimal design procedure

which will generate a filter quickly, allow exact

specification of transition band frequencies, and also

attempt to distribute the Chebyshev error at the band-edges

throughout more of the filter's spectrum. It will be shown

that the discrete cosine transform (DCT) [5] and Lagrange

interpolation [6] can be used in conjunction with one

another to satisfy these criteria in many cases. In this

new method, the DCT is used specifically to recover the

approximating-cosine coefficients from which the filter

impulse coefficients are derived from. By performing a

simple operation on the data prior to transforming, an N/2-

point DCT can be implemented in lieu of an N-point IDFT with

the attendant decrease in computation effort.

Lagrange interpolation is used to sample an approximation to

the filter response at N equally-spaced frequencies. Since

the transition band frequencies can be a subset of the

guessed extremals, this effectively pins the filter response

at the band edges. The other advantage in using Lagrange

interpolation is the inherent way in which it assumes band

ripple (albeit not equal ripple). This often has a net

effect of reducing Chebyshev error close to the transition

regions, which the one-pass frequency sampling method tends

to accentuate. This is the central theme of the Parks-

McClellan approach, which attempts to force the pass and

stop-band ripple to increase to an outer limit, thereby

distributing the error equally over the entire spectrum of

the filter.

The approximation to the FIR filter response can be

expressed as a weighted sum of cosine functions. For the

case off odd filter length and even symmetry, the form is

n-1
x(f) = V d(k) cos(2Trkf), 0.0 < f 0.5 (1)

k^O

The use of an interpolation strategy based on the guessed

set of extremal frequencies is necessary if the DCT is to be

used to recover the cosine coefficients. This is due to a

lack of correspondence between the arguments of the DCT

basis functions and the approximating weighted sum of cosine

functions. In other words, the argument of the DCT does not

evenly span the frequency range of zero to the Nyquist

frequency, as does the approximating function. Hence, an

exact interpolation of the function based on the guessed set

of extremal frequencies is needed. This will be further

delineated as the new procedure is developed.

Thesis Overview

Chapter 2 of this thesis will briefly discuss two well known

classical methods for designing FIR digital filters, namely,

the one-pass (one iteration of design procedure) frequency-

sampling method and the Parks-McClellan method. These

methods were chosen due to the differences of their

methodology and the availability of literature explaining

their implementations. Chapter 3 covers the development of

the new method. This includes a discussion of the problems

to be overcome in utilizing the DCT for this purpose and

also a step-by-step solution of the problem. Chapter 4

describes a design procedure delineating the steps in

applying this method in practice. A major part of this

thesis is concerned with the software written to design and

test the filters. This is entirely covered in Chapter 5.

Some mechanical details of the program are presented as well

as a detailed example of how to edit and design a filter

using the program. Finally, this chapter mentions some

quirks that a user should be aware of and some programming

hints, should one decide to modify the software. Chapter 6

compares both magnitude responses and design times among the

three methods while Chapter 7 summarizes the viability of

the new method as a general procedure for designing FIR

digital filters.

CHAPTER TWO

REVIEW OF CLASSICAL DESIGN PROCEDURES

Frequency-Sampling Method

A frequency-sampling method for obtaining the filter

coefficients is easy to implement and can be computed

quickly, but higher-order filters tend to have large

deviations at the band-edges. Since band-ripple is not

equal throughout the spectrum, it follows that the filter

exceeds the design requirements in some cases but does not

attain it in others. The frequency-sampling method is based

on sampling one period of the desired filter's frequency

response. To illustrate, let h(m) , < m < N-l, be the

desired FIR coefficients and H(n), < n < N-l, be the DFT

coefficients of this sequence. Since any N-point data

sequence is completely specified by its N DFT coefficients,

the h(n) can be completely recovered from an IDFT of the

filter's sampled response. The IDFT of an N-point sequence

is defined as

8

h(m) = 1/N
N
^ H(n)e" j27rnm/N

n=0
< n < N-l (2)

with the H(n) generally being complex. The transfer

function of an FIR filter is represented as

N" 1

H(z) =
I h(m)z"m

m=0
< m < N-l (3)

Substitution of Eqn. (2) into Eqn. (3) yields , after some

effort,

N-l (1 - z"
N

)

H(z) = 1/N I H(n) —= (4)
n=0 (1 - vT'V 1

)

The frequency response can be obtained by the substitution,
•A m

z = e J
. After simplification, this leads to

H(u .) = .-3<«-D«T/2 -j H (n) e
-j(N-l)n*/NN-l

n=0

sin[N(wT - 2 tt n/N)/2]
(5)

N sin[(UT - 2Trn/N)/2]

where 2 v n/NT is the rfi^ DFT frequency component. This

method exactly pins the response at the specified frequency

locations but the response between these points is left to

the interpolating function, sin(N x)/sin(x) where

x = (coT - 2 * n/N)/2.

This interpolation can become quite ill-behaved when

extremely narrow transition widths are specified. Two

additional considerations in the design of FIR filters are:

insuring that the impulse coefficients are real and insuring

that the filter has linear phase. Real coefficients are

obtained by constraining the H(n) such that

H(n) = H(N - n) (6)

with 1 < n < N/2 -1, for N even and 1 < n < (N - l)/2, for

N odd. It is desirable to have real coefficients due to the

simplicity of the arithmetic operations and hardware

requirements as apposed to performing all operations with

complex coefficients. This would unnecessarily slow the

filtering process while increasing the requirements for

storage registers, etc..

The linear-phase property is of sufficient importance that

it too warrants further discussion. Since Fourier analysis

indicates that the vast majority of signals encountered in

engineering problems can be represented by a weighted sum of

sine and cosine basis functions, then it is natural to ask

what effect the system has on the phase of each sinusoidal

component and if they are all influenced by the system to

10

the same degree. It turns out that in many instances, this

is important and it is very desirable to have the property

of linear-phase. This means that the time delay of each

frequency component is the same and therefore, each

component will propagate through the system in the same

amount of time. In other words, no distortion due to

unequal phase delays will be introduced into the signal.

The linear-phase property will achieved by noting that the

H(n) = H e-1 ^ where the H are real constants. In view of

this property, the argument <j> is chosen to be -(N-l)n-rr/N,

£ n < N-l; then the product of the H(n) with the

e J u in Eqn. (5) will result in a net phase of zero.

This results in a linear-phase property or, in other words,

the time delay function will be (N - l)/2, < wT <_ it .

Parks-McClellan Method

The Parks-McClellan scheme yields the "best" filters that

can be obtained in terms of minimizing the overall pass-band

and stop-band error. This is achieved when the Chebyshev

ripple is equal throughout the frequency spectrum of the

filter. However, a general multi-band solution is

relatively complicated to implement and the computing effort

can be significant for high-order filters. Following is a

sketch of the development for FIR linear-phase filters

having an odd number of impulse coefficients and even

11

symmetry. The extension to even-length filters or odd

symmetries is straight forward and the interested reader can

refer to [2] for this development. If h(i) is a casual

seguence on the interval < i <^ N-l then the Z transform of

h(i) is defined as

N-l

I
1=0

H(z) =
I h(i) z"

1
(7)

The Fourier transform of this seguence is

N-l . n
HU») = Y h(i) e~

lum
(8)

1=0

with a)' defined hereafter as u' = e^ u for convenience.

An odd-length, even-symmetry, linear-phase filter can be

described as follows

HUM = GUM e
j(N" 1)/2

(9)

where

n-l
GUM =

I d(i) cos(u)i) (10)
i=0

and n = (N-l)/2 + 1, d(0) = h(n-l) and d(i) = 2h(n-i-l) for

i=0,l, • . • ,n-l. The formulation of the problem is to find

the d(i) such that the function G(u
1

) is the mini-max

approximation to the desired function DUM. In pursuit of

this goal, we define an error function

12

E(a') =W(o') [D(u') -Glu')] (11)

= (-D x p

with W(w '
) defined as a ratio of the Chebyshev error in any

band compared to the normalized ripple of an arbitrarily

chosen band. At least one or more bands of the filter must

have an error weighting function W(u ') of unity to give

meaningful deviation ratios.

Egn. (11) now defines a problem in Chebyshev approximation

whereby the d(i) are found such that the error function

E(aj') is minimized over the (possibly disjoint) intervals of

interest. A well-known theorem which is key in the solution

of Chebyshev approximation over disjoint intervals is the

Alternation Theorem [2]. If some function X(aj') is a linear

combination of r cosine functions, then a necessary and

sufficient condition for X(w') to be the best unique

weighted Chebyshev approximation to D(u ') over subsets of

[0, tt] is that E(u ') contains at least r+1 extremal

frequencies, ai'(i), i=0,l,...,r. In other words,

E[,'(i)] = - E[M ' (i+1)] for i=0,l,...,n [2].

The solution of the nonlinear system of equations defined by

Eqn. (11) can be obtained from a variety of methods, the

most efficient being the Remez exchange [1,2,3] which is the

method chosen by Parks and McClellan. The gist of this

13

procedure is as follows.

1) Choose n+1 frequencies. These are estimates of the

extremals of the approximation to the desired function

and usually are equally spaced.

2) Calculate an estimate of p .

3

)

Use Lagrange interpolation over n points to obtain an

approximation to the desired function D(u') where n is

defined as n = (N-D/2 + 1.

4) Compute the error function defined in Eqn. (11).

5) Search this error function for the n+1 (or more)

frequencies at which the error function exceeds the

calculated value for the deviation.

4) If more than n+1 extremals exist, discard those which

exhibit the least amount of deviation or those

which do not satisfy the Alternation Theorem. With

respect to the endpoints of the error function, if N+2

extremals exist, then retain the extremals yielding

the largest absolute value of deviation.

5) If no extremals changed in location from the previous

iteration, then the approximation problem is finished;

otherwise, repeat the process starting at step 2,

14

utilizing the new set of extremals.

6) Obtain the d(i) in Eqn. (10) via an IDFT.

7) Obtain the impulse coefficients in Eqn. (8) from the

following relations (exemplified for odd length,

symmetrical filters).

d(0) = h(n-l), d(i) = 2h(n-i-l) for i=0,l, . . . ,n-l.

15

CHAPTER THREE

DEVELOPMENT OF THE NEW METHOD

A new method will now be presented which overcomes some of

the disadvantages of the classical methods. The goal at

hand is that of obtaining a (suboptimal) FIR filter whose

frequency response will be approximated by a series of the

form in Eqn. (12). The coefficients d(k) are to be found.

n-1
X(f) =

I d(k) COS(2Trkf),
k=0

< f < 0.5 (12)

It is observed that the DCT is one of a class of discrete,

weighted Chebyshev polynomials which possesses an inverse

transform with a form similar to that in Eqn. (12). The DCT

is given by

n-1
L(k) =/Z7n I x(m) cos([2m+l]kir/2n)

m=0
k=l,...,n-l (13)

16

n-1
L(0) = A/n

I
x(m)

m=0

the inverse DCT (IDCT) is

n-1
x(m) = L(0)/,/n" + /27n j L(k) cos([2m+l]k7r/2n)

k=l
m=0,l, . . . ,n-l (14)

We note that Eqns. (12) and (14) differ by the starting

index, an additional sura term of L(0) / /n , and a

multiplication factor of ^2/n. A modification of the

original data sequence x(ra) , m = 0,1,..., n-1, is needed to

alleviate these differences. The DCT of the transformed

x(m) will then yield the d(k) in (12) exactly.

We first deal with the difference in indexing between (12)

and (14) by rewriting (14) as

n-1
x(m) =v27n \ L(k) cos([2m+l]kT;/2n) - L(0)(/2~ - 1) /M

k=0
m=0, 1 , . . . ,n-l (15)

We next eliminate the factors of vT/n and L(0)(/2 - 1)/ /n.

To accomplish this, assume a new data sequence

x'(m) = a(ra)[x(m) + y(m)],
m=0 ,1 , . .

.

,n-l

then
n-1

L(0) = /T/h
I

a(m) [x(m) + y(m)

]

m=0

17

and

n-1
L(k) = I a(m)[x(m) + y(ra)] cos([2m+l]k7r/2n) ,

m=0
k=l,2,...,n-l (16)

It also follows that the inverse transform can be written as

N-1
a(m)[x(m) + y(m)] =

J L(k) cos([2m+l]k7r/2n)
m=0

- L(0)(/2 - 1) /&.

m=0,l, . . . ,n-l (17)

Letting a(ra) = /2/n, we can rewrite (17) as

n-1
x(m) = V L(k) cos([2m+l]kTT/2n) - y(m) - L(0)(/2 - D/^2

m=0,l,...,n-l (18)

If we force y(m) + L(0)(/2 - D//2 = for ra=0,l, . . . ,n-l,

then we have accomplished our goal. To attain this, we note

that the original definition for the L(0)-term in the DCT is

n-1
L(0) = /I7n I a(m)[x(m) + y(m)].

i=0

Hence,

n-1 n-1
L(0) = /l/n I /27n x(m) + /l7n [^27n y(m)

i=0 i=0

Substituting for L(0) now yields

18

n-1 n-1
y(m) + [/T/hl yf/n x(i) + /I7n J /27h y(i)] (/Z - D//2 =

i=0 i=0
m=0,l,...,n-l (19)

After simplifying, we get

n-1 n-1
y(m) + (/2 - l)/n v y(i) + (/2 - l)/n [x(i) =

i=0 i=0

111=0,1, ... ,n-l (20)

From this equation, it is clear that y(m) = y is a constant

for all m=0 / l / . . . ,n-l. Eqn. (20) then can be solved for y

in terms of the x(i) as follows.

n-1
(Jl - l)/n I y(i) = ny(/2 - l)/n

i=0
= (^2 - l)y

Hence

,

n-1
y + (ft - l)y + (1/2 - l)/n y x(i) =

i=0

Finally, we arrive at a closed-form expression for y in

terms of the x(i) as

n-1
y = (1 - /2)/(n /2) j x(i) (21)

i=0

This yields the modification for the original data sequence

of x(m) , m=0,l, . . . ,n-l as

x'(m) = /27n [x(m) + y] m=0, 1, . . . ,n-l (22)

19

where y is given in Eqn. (21). Performing a DCT on this new

data sequence will yield the d's in Eqn. (12).

In the frequency-sampling method, the N impulse coefficients

are obtained by performing an N-point IDFT of the desired

frequency response. This does not permit the transition

regions to be specified exactly since the transitions can be

specified only at discrete frequency intervals.

Additionally, some procedure must be employed to guess at

the response in the transition region. The frequency-

sampling example herein employs a simple linear

interpolation scheme.

As an alternative using the DCT, consider, for example, an

even-symmetry filter with an odd number N of impulse

coefficients. In this situation, the number n of

approximating cosines is n = (N - l)/2 + 1, where

n-1
x(f) = I d(k) cos(2irkf),

k=0
< f < 0.5 (1,23)

Comparing this with

n-1
x(m) = V L(k) cos([2m+l]kTr/2n)

k=0
m=0,l, . . . ,n-l (24)

we notice that the arguments of the cosines have the

20

correspondence

27rkf «« *- (2m+l)2kTr/4n (25)

Hence, the frequency components of the DCT are

f = (2m + l)/4n

111=0,1, . . . ,n-l (26)

The L(k) are obtained, using the DCT, as

n-1
L(k) = *

/
2~7n I x'(m) cos([2m+l]W2n)

m=0
m=0 , 1 , . . . ,n-l

The final problem is to obtain values for x 1 (m) at the

frequencies f = (2m + l)/4n for m=0,l, . . . ,n-l. This can be

done via the Lagrange interpolation formula.

n-1

ki
akV (x

f - V
x'(f) = (27)

n-1
I a./(xf - x,)

k=0
K r K

where x = cos(2Trf), and x, = cos(2irfk). We note that the

f's are the frequencies derived from Eqn. (26), and the fk 's

are the original estimates of the n+1 extremals used to

generate the deviation

21

n+1

I
i=0

a.D(f.)

n+1
J.

a
i
(-l)

1

i=0 W(f
±)

P = : (28)

where D(f) is the desired response, W(f) is the weighting

function, and the a.'s are given by

.n+1
a. = (-1)

1
I l/(x. - x.

)

(29)
1

j=0, j^i 3

We notice that, in this procedure, the edges of the

transition band may be specified exactly, the weighting

function can be arbitrary, and any of the four cases of

filters (symmetric/antisymmetric; even/odd) may be obtained.

22

CHAPTER FOUR

DESIGN PROCEDURE

The following describes a design procedure for obtaining

FIR digital filters via the new method.

1) Compute n+1 equally-spaced frequency values contained

in the intervals

f 6 [0.0,

f

x
] u Ef

2
rf

3
] ••• u [f.,0.5]

where f . represents the beginning transition

frequency of the last filter band. These are the

frequencies used in the equation x, = cos(2uf,).

2) Obtain n equally-spaced frequencies by indexing

through Eqn. (26). These are the frequencies used in

equation x = cos(2irf).

3) Sample an approximation of the filter's magnitude

response at these frequencies via Lagrange inter-

polation, Eqn (27).

4) Compute the constant

23

n-1
y = (1 -^)/(n /2) J x(i)

1=0

5) Compute the modified frequency response

x'(m) = /2/n [x(m) + y]

,

m = 0,1,... ,n-l

6) Perform an N/ 2 -point DCT on the new sequence to

obtain the coefficients to the approximating

cosines.

7) Obtain the filter impulse coefficients from these

cosine coefficients by the following relation.

h(n-l) = d(0), 2h(n-i-l) = d(i) for i=0

,

1, . .

.

, n-1.

24

CHAPTER FIVE

PROGRAM

Program ROLF. EXE

A program was developed in order to expedite the process of

developing and simulating the filters and also for the

purpose of comparing relative performance between design

procedures. Care has been taken to modularize the design

while keeping an appropriate level of visibility between

modules in anticipation of the needs of future users. The

overall architecture of the program is functionally

equivalent to an a Hewlett-Packard reverse-Polish-notation

calculator with the scalar stack registers being replaced by

structures of complex vectors and a variety of extensions

being added. The extensions include filtering and general

signal processing. While the program provides the shell for

many different functions, only the filtering, stack

manipulations, and plotting routines will be described in

detail since they are germane to the results of the research

25

completed herein. A flowchart of the program is provided in

Figure 1, which illustrates the constituent modules relating

to the FIR filter design section.

26

Oj Of *•

-I
p o m

r* ^

-t

C=3

* 5 -s <

0> 1=

i—< a.

—• ai

cd ai

aj

<

uv
«-

£- a*
-»- Oj -u»

J-* Oi
-o *—m a
UfcJ •^ nj

Uk-

a-

un at —j

.

ojX **
m ui
a* a»

On
»^> ^— ai

41 —

»

en

o

3
O
O

u
o
o

2
3

II

k en a

27

Upon entry into the program the primary menu is displayed to

the user.

Register

RO

Length Mode Type | Contents

REAL
j

empty

T
Z
Y
X

REAL
REAL
REAL
REAL

empty
empty
empty
empty

>>

Data generation
Arithmetic operations
Register operations
Filter design
Signal processing
Register input/output
Load second copy of C0MMAND.COM
<RETURN> Stack

The stack-register monitor (where applicable) is for the

convenience of the user in tracking the contents and

attributes of the various registers. These registers are

the structures containing the complex arrays in which are

stored the filter coefficients, filter response, and all

general data. Each register contains the information

displayed in the primary menu, i.e., the complex vector,

register length, mode (polar or rectangular), type (real or

complex) , and a message indicating the last action or

28

contents of that register. The filter section of the

program is invoked by choosing menu selection (4) . The

following menu is then displayed:

>>

Exit
FIR
IIR

Selecting Option (1) takes us to the finite-impulse response

digital filter design section, with which this paper is

concerned. Upon selection of menu option (1), the following

display is presented:

>>

Exit
Edit filter parameters
Compute impulse coefficients
Compute filter response
Display filter coefficients
Read filter from disk
Write filter to disk
<RETURN > Stack

29

It should be noted at this time that the parameters which

describe the filter to be designed are not resident in the

stack registers but rather are placed in a special FIR

filter structure. This means that reading a filter from the

disk or editing a filter in memory will not affect the

stack. The different menu options will now be reviewed.

Editing/Selecting Filter Prototypes

This allows the parameters constraining the design

characteristics of the FIR filter to be changed by the user.

In particular, the response type, symmetry, length of

impulse response, band value, and band weighting must be

specified. Following is an example run through this editing

procedure. The user is first presented with the following

prompt

:

1: Brickwall
2: General

>>

Choosing a brickwall response is appropriate for multi-

30

banded filters such as low-pass or band-pass. The general

response type will obtain a Chebyshev approximation to a

real data sequence in the X register such as 1/f, etc..

The other utilities of the program can eventually be used to

create such a response. The next choice to be made is:

1: Symmetrical
2: Asymmetrical

>>

which describe the symmetry of the impulse coefficients of

the resultant filter. Following this menu is a request for

the number of impulse coefficients:

Filter Length

>>

and the number of distinct bands of the filter

31

Number of distinct bands

>>

In specifying the number of bands, for example, a general

response type would possess one distinct band, a low-pass

filter would possess two distinct bands, a band-pass three,

and so on.

The following two menus will appear only if the user

specifies a brick-wall filter type. In this case, the user

is requested to specify the magnitude and band weight for

each distinct band:

Enter magnitude for band[i] >

Enter band weighting for band[i] >

The magnitude will normally be 1.0 for pass bands and 0.0

for stop bands, although filters with arbitrary

characteristics can be produced by specifying, say 0.8 for

32

one of the pass bands. The band weighting is a ratio of the

maximum allowable error in the band under question to that

of another band with an error weighting of unity. At least

one band of the filter must have a weighting of 1.0 for the

ratios to yield meaningful results. For example, if one

wanted the stop-band ripple of a low-pass filter to be twice

that of the pass-band ripple, then a weighting of 2.0 could

be assigned to the stop-band ripple and 1.0 to the pass-band

ripple. The final parameters to be specified are the

transition frequencies (still for brick-wall only). Also

note the difference in menus for the first, last, and middle

bands of the filter. This is due to the fact that the first

transition frequency is always zero while the last

corresponds to the Nyquist frequency. Hence, the user is

not requested to input their values. For the first distinct

band:

Enter upper transition for band [i] >

For any middle bands that may exist:

33

Enter lower transition for band [i] >

Enter upper transition for band [i] >

For the last distinct band:

Enter lower transition for band [i] >

The values to be specified here are a ratio of the desired

frequency divided by the sampling frequency, i.e., f/fs.

Computing Impulse Coefficients

This menu selection displays the following sub-menu

selection:

>>

Exit
Compute via Parks-McClellan
Compute via New Method
Toggle frequency grid density: (16)
<RETURN> Stack

34

This is the section where the actual filter coefficients are

computed. They are returned in the X register with the type

attribute set to REAL and the mode undefined. Note that in

order to compute the coefficients, a filter must have

previously been edited or read from the disk, or in the case

of a generalized filter response, the desired prototype must

be present in the X register.

Parks-McClellan:

Computes the filter coefficients by invoking the Remez

Exchange algorithm.

New Method:

Computes the filter coefficients by using Lagrange

interpolation and the DCT.

Adjusting The Dense Frequency Grid:

This value toggles over the following set of values:

density 6 [16, 20, 25, 5]

These values control the density of the frequency grid [x]

over which the error function is evaluated in the Parks-

McClellan routine, i.e., frequency grid [0 , {(N-l)/2 + 1}

* density] . The closeness of the Chebyshev approximation

and filter design time of both the new method and Parks-

McClellan method is affected by this value. Smaller values

significantly reduce design times but yield lower quality

35

approximations. The default value of (16) provides good

overall performance. A value of (5) yields extremely fast

design times for large filters while often suffering only

slight degradation in filter quality. Large values are

sometimes necessary when extremely narrow transition regions

are desired. The strategy is to try the filter and if the

procedure aborts prematurely, then the grid density can be

increased.

Computing Filter response

Valid filter coefficients must be present in the X register

prior to invocation of this routine. Functionally, it zero-

pads the coefficients out to the next power of two and

performs an FFT on the resulting sequence.

Displaying Filter Coefficients

This allows the impulse coefficients to be printed to the

screen. For long filters, the user may abort the display

prior to completion with no ill effects. Note that the X

register needs to contain the impulse coefficients and not

the filter response or some other extraneous data.

Reading/Writing Filter Prototypes To Disk

This allows a previously edited filter to be read into the

36

FIR filter structure at which point the filter can be edited

or the coefficients computed. An edited filter can also be

saved to the disk with any user specified name. If the file

name previously exists, then the user is prompted for

permission to overwrite it.

Stack/Register Manipulations

This utility allows the stack register contents to be

manipulated from nearly anywhere in the program. This

eliminates the frustrating and time consuming return from

deep within a complex hierarchy to invoke stack control from

the main menu. To invoke it (where it is available), just

hit <RETURN>. Similarly, <RETURN> will exit the stack

functions, returning control back to the previous context.

From the menu, it is clear that a variety of utilities exist

to save, swap, push, pop, and roll the stack registers. The

stack menu appears as follows:

37

: Exit

1

2

3

4

5

6

7
8

9

>>

Roll stack up
Roll stack down
Swap X and Y
Enter (duplicate) X
Store X in RO
Fetch RO to X
Clear the X register
Clear the stack
Toggle stack roll lock: (UNLOCKED)
<RETURN > Exit

Plotting Impulse Coefficients and Response

This utility is invoked from the main menu (not from the

filter design context) and provides graphic display of the

impulse coefficients, filter response (magnitude, log

magnitude, and discrete), and phase in radians.

Additionally, the data can be printed to the screen in

numeric format. Although the X register normally provides

the data, the "over plot" select can be toggled "ON" to plot

both the X and Y registers on the same screen. Obviously,

both registers need to represent the same kinds of entities

to provide meaningful results.

Things To Watch For

A couple of factors can cause an abortion of the design

38

procedures prior to obtainment of a filter. In the worst

case, the user is returned to the operating system prompt

(gasp) due to a divide-by-zero. Due to the logistics in

computing the Remez exchange, preventive logic seemed like a

bad idea. Typical causes are as follows:

* Specifying too narrow of a transition region such that

both cutoff frequencies fall within one increment of

the dense grid of cosines.

* Specifying too wide of a transition region such that the

estimate of the error is extremely small and round-off

error begins to dominate in the Lagrange interpolation

routine

.

* Specifying the filter order so large that round-off

error dominates in the Lagrange interpolation.

Solutions to these problems are simply to adjust the

constraints on the filter to a more reasonable level.

Hints to Programmers

The two main data structures in the program are the stack

registers and the FIR filter structure. These will be

discussed briefly in turn. The stack registers are defined

in stackops.c using the structure template defined in

rolf .h.

39

typedef struct
{

int len, /* register length */
mode, /* RECT or POLAR format */
type, /* REAL or COMPLEX data types */
contents; /* array index pointing to string */

/* description of contents or action */

COMPLEX *reg; /* actual data storage */

} REG x, y, z, t, etc...;

These objects are declared as statics to maintain the least

amount of visibility while reducing the possibility of

definition conflicts. If, for example, one wants to add a

utility tc the program, the following template exemplifies

what preparation needs to be done to gain access to one of

the registers, in this case, taking an FFT of the X

register.

void my_function (

)

REG *my_reg; /* define a pointer to any reg */

my_reg = get_reg(X); /* returns a pointer to X reg */
/* X,Y,Z,T, and RO are available */

my_reg->len = 1024;

fft(my_reg, my_reg->len, FORWARDJTRANSFORM)

;

my_reg->mode = RECT; /* RECT is defined in smath.h */
my_reg->type = CMPLX; /* CMPLX defined in smath.h */

return;

The data object which specifies the FIR filter parameters or

specifications uses the following structure templates:

40

typedef struct
{

double lw,
up;

} FREQUENCIES;

/* lower cut-off frequency */
/* upper cut-off frequency */

and

typedef struct
{

int type,
response,
order

,

nobands

;

/* even or odd symmetry */
/* brickwall or general */
/* number of impulse coefficients */
/* no of distinct filter bands */

double band_value [NOBANDS] , /* magnitude response */
band_weight [NOBANDS] ; /* weighting ratio */

FREQUENCIES tran_freq [NOBANDS]

;

} FIR SPECS;

There is currently only one storage object with which to

store the specifications of a filter. This object has no

interaction with the stack registers, i.e., it can be edited

with the stack registers being unaffected.

41

CHAPTER SIX

EXAMPLES AND RESULTS

Comparing Filter Magnitude Responses

Four examples are presented so that relative performance, in

terms of response characteristics and design times, can be

illustrated and compared. The first example has an impulse

length of 21 while the other examples were chosen to have 95

impulse-response coefficients. All examples represent

filters with even symmetry. In every example, the response

of the new method is represented by a solid line while the

classical design procedures are represented by a dashed

line.

Figures 2 and 3 represent LP filters of 21 impulse

coefficients defined over the subintervals f 6 [0,.2] u

[.25,. 5]. Figure 2 compares the frequency- sampling method

with the new method. The new method provides about 6 dB

additional attenuation in the stop-band while the frequency-

sampling method provides a smoother pass -band. Figure 3

42

compares the new method with the Parks -McClellan method. As

is usually the case, the first stop-bard lobe from the new

method exceeds that which is obtained from the Parks-

McClellan method.

43

o
o
m •

CO

T?
O

E

c

6 ao E
o
OD

1

N
I o

c

1

O L.d ^~ •^
o \~ *

n "D

o
C
o

c $
Q) a)

D c
CT
0)
u

a>

U.
-~

oo -a c
CM <D Lp

N o
• Q.
O E
E
L.

o
u

o *

z
a>

O Q.

O E
o
X
UJ

a>
L.

• —

0*0 O'Ot-

(gp) asuodssy 9pn}iu6o^

44

0*08-

oo

er>

"D
O
-C
+->

V
E

c
o o
o WW
•«

o
o

•—N 2N
1X 1

V)

I
D

i

O Q.

6 r— "D
o *-_» Cn

>v
o

U *
c V
<v c
D 0)
Or X
0)

—

'

L.

Lx.
C71

d
o "D o
CM 0)

N Q.

E
"5 o

E
o

i_

O
2 0)

d E
o o

X
UJ

ri

V
L.

D

0*0 0*0t- 0*08-

(gp) ssuodsay 9pn^iu6o^|

45

'031-

Figures 4 and 5 represent LP filters of impulse length 95

defined over the subintervals f e [0,.2] u [.22, .5]. Since

the transition region is narrow, the mid-transition roll-off

is very steep and the new methods advantages over the

frequency- sampler are not decisive. Again, frequency-

sampling provides a smoother pass-band roll-off but the new

method provides about 5 dB more attenuation in the stop-

band.

46

o
i-Om

o
l-o

N
I

f)

I

. O
O t-
O W

o
c
Q)

D
CT
0)

§ -o
tN CD

N

E
L.

o

o

"D
O
—

'

E

o>
c
"5.

E
o
<n

I

o
c

o
V

c
o

c

t
C
'Z
o
a
E
o
o

cm"

J»
a
E
o
X
UJ

I 1 I I I I I
I

I I I I I I I

O'O 0'08- '091

(gp) asuodsay 9pn^iu6o^

47

oo
m

o
o

N

ro

I

. O
O T-
O s_^
r>

O
c
V
D
<T

o
o

0)

N

E

o
o

CD

-o
o
-C
*>

E

c
O

H
U
O

n
-a
l.

O
Q_

TJ
C
o

c

C7»

"C
o
Q.

E
o
o

CN

V
CL

E
o
X

m
v
D

O'O O'Ot- 0*08-

(gp) asuodsay apn^iu&o^

•02L-

48

Figures 6 and 7 represent LP filters of impulse length 95

defined on f G[0,.2] u [.25,-5]. The transition width has

been widened and the new method provides approximately 36 dB

additional attenuation over frequency-sampling in the

stop-band while still maintaining smoother pass-band rolloff

characteristics. The Parks-McClellan method, as in all

cases, provides superior performance in every respect.

49

I I

oom
on

-o
o
-̂~
0)

E
a»

o c
o !Z
"*- Q.

E
o

/"~v 00
N

1I i

O

i

c
i

o 3

b i— <uo *~, * l.

n >*-

>s *oO c
c o
0)

D i
cr V
u c
L.

c
b
o "D o
cn 0) a.N

E
"5

E

o
o

k. m*o
z

Q.

6 E
o o

X
UJ

L.

D
a*

0*0
I

I
I I I I

I
I I I I

001- '0SL- '0030*09-

(gp) asuodsay apn}iu6D|^

50

0*0
""—I

—

r
'001-

o
o
«f>

•

9)

"O
O
-C
•*^

0)

E
do c
*•

"5

^^ o
N o
X 2

i

1

i

9)
-¥

O o
d *— Q.
o ^ _-»

ro ^
>s c
O D
c

3 c
o-
<U en
u

#
c

L- 'C

do TJ
o

CM V £N o%^m o"5

E
•

ro
L.

o V

z a
E

o
o X
o LU

•

L.

o

0'0S- '001- *osi-

(gp) asuodssy 9pn^u6o^j

•oos-

51

Figure 8 represents band-pass filters of impulse length 95

defined on the subintervals f 6 [0,.16] U [.2 ,.24] u

[.28,. 5] and compares an optimal solution (Parks-McClellan)

to the new method. The new method sacrifices 6 dB to the

optimal solution in the stop-band of the first transition

region. However, it betters the optimal solution by 12 dB

over the second transition.

52

CO

•o
O

E

c
O

15

o
u

I

9)
.¥

o
Q.

T3
C
O

c

o*

o
a
E
o
a

v
a.

E
o
X

00

Vu

*—

(gp) ssuodsay apn;iu6o^

53

Comparing Some Design Times

All filters were designed on a 16 MHz Compaq DESKPRO running

Borland's C compiler, version 1.5. Approximate times for

filters with 95 impulse coefficients are as follows.

* Parks-McClellan Method (768 grid points): 120 sec.

* Frequency- sampling via DFT: 39 sec.

* New Method: 10 sec.

* Frequency- sampling via a "fast" DFT: 5 sec.

These times reflect the use of IEEE-standard floating-point

emulation by the program. Addition of math-coprocessor

support should substantially reduce the time needed to

design a filter.

54

CHAPTER SEVEN

CONCLUSION FOR THE DESIGN OF FIR DIGITAL FILTERS

Introduction

A new method has been described for the design of FIR

digital filters. This method has been found to be effective

for designing large FIR digital filters of arbitrary

response type while allowing control over transition band

frequencies and band weighting.

Design Speed of New Method

It is extremely fast compared to the Remez exchange since

Lagrange interpolation is performed over (N-D/2 + 1 points

as apposed to the Remez exchange which interpolates more

than ten to twenty times that many points. This fact in

conjunction with the iterative nature of optimal design

processes can incur prohibitive design times for large

filters, particularly if hardware floating-point support is

not available. The gain in speed as compared to a

55

frequency-sampling method is based on obtaining the impulse

coefficients via an N/2-point DCT instead of an N-point

IDFT.

Summary of Performance

Lagrange interpolation based on an equally spaced set of

extremals is used to approximate the response of the filter.

This forces some ripple to be induced into the pass and

stop-bands thereby improving filter behavior at the band

edges. These band-edge characteristics depend on the

transition width and also on the general placement of the

transition band with respect to the zero frequency. While

it is not always possible to obtain a "usable" filter by

using a one-pass algorithm, it becomes more likely when

using the new design method. The advantages of the new

method are most clearly realized when designing filters

which do not impose extreme requirements on the transition

regions. For example, to impose a transition width of

[0.001] on the interval [0.0 , 0.5] of a 100-point filter

would likely result in extreme behavior at the band edges.

In this situation, a standard frequency-sampling realization

would likely provide superior performance although it to

would probably be unusable. The reason for the superiority

in an extreme case such as this is due to the fact that

56

Lagrange interpolation enforces smooth transitions between

bands. This results in an effective mid rolloff which is

steeper than given by the freguency-sampling method even

though the transition freguencies may by the same.

Problems With New Method

Problems are often encountered when designing with

transition widths of greater than about [0.2] or less than

[0.001] on the interval [0.0 , 0.5]. This is primarily due

to the finite number of points in the dense freguency grid

or roundoff error. This problem can be accentuated by very

large filters which increase sensitivity to round-off in the

Lagrange interpolation.

57

REFERENCES

1. McClellan, J. H. , and Parks, T. W. , "A Computer Program
for Designing Optimum FIR Linear Phase Digital Fil-
ters", IEEE Trans. Audio Electroacoust. , Vol. AU-21, No.
6, pp. 506-525, 1973.

2. Rabiner, L. R. , and McClellan, J. H. , and Parks, T. W.

,

"FIR Digital Filter Design Techniques Using Weighted
Chebyshev Approximation", Proc. IEEE, Vol. 63, No. 4, pp.
595-609, 1975.

3. Oppenheim, A. V., and Schafer, R. W. , "Digital Signal
Processing", Prentice-Hall, Englewood Cliffs, N. J., 1975.

4. Ahmed, N. , and Natarajan, T., "Discrete-Time Signals and
Systems", Reston, Reston, Va. , 1983.

5. Ahmed, N. , and Rao, K. R. , "Orthogonal Transforms for
Digital Signal Processing", Springer-Verlag, New York,
1975.

6. Hamming, R. W. , "Numerical Methods for Scientists and
Engineers, McGraw Hill, New York, 1973.

58

APPENDIX

PROGRAM SOFTWARE LISTING

Introduction to Appendix

The C source files included in the appendix reflect the

thread associated with the FIR filter design section only.

This specifically includes the main program shell, all

necessary header files (?.h), and all source files needed by

the shell to edit a filter, compute the coefficients, and

calculate the response. The peripheral routines such as

plotting utilities and stack operations are not included.

However, the primary register creation and maintenance

routines needed by the program are included in case a

programmer should wish to expand or revise the existing

software.

59

Listing of Source Files

common.

h

screen.

h

smath.h

fir.h

rolf.h

rolf .c

filter.

c

firfilt.c

firparms.c

fircoef .c

firsetup.c

remez.c

makeres.c

estextr.c

findextr.c

choosend.c

estrho.c

lagrange.c

alphas.

c

firres.c

stackops.c

Standard header

Screen macros

Math definitions and macros

Filter structures and definitions

Main program and register definitions

Main shell

Choose FIR or IIR filter

Edit, compute, I/O, display FIR filter

Edit FIR filter parameters

Choose Parks-McClellan or new method

Allocate memory, find desired response,
estimate extremals, call Remez

Remez exchange

Computes desired response from filter
parameters

Estimate the initial set of extremals

Find all extremals

Select the correct extremals

Estimate the Chebyshev error

Lagrange interpolation

Convert cosine to filter coefficients

Compute the response from the coefficients

Program register creation and maintenance

60

/**•***************

* SOURCE FILE:
*

*

* FUNCTION:
*

*

* DESCRIPTION:
*

*

*

* DOCUMENTATION
* FILES:
*

*

* ARGUMENTS

:

*

*

* RETURN:
*

*

* FUNCTIONS
* CALLED

:

*

*

* AUTHOR:
*

common .

h

None

Provides some general declarations,
constants, and utilities.

None

None

None

None

Scott A. Nichols

* DATE CREATED: 10ct87
*

*

**

#ifndef _COMMON_H
#define _COMMON_H

typedef int BOOL; /* boolean data type

/*
/* Define some termination and test constants.
/*
#define FALSE
#define TRUE ! FALSE
#define FAIL
#define SUCCEED !FAIL
#define OFF
#define ON !OFF

.*/

*/
.*/

61

#define EXIT
#define OK
#define ERROR !OK

/* */
/* Define some useful macros. */
/* */

#define FOREVER for (; ;

)

#define DIM(x) (sizeof (x) /sizeof (x[0])

)

#define SWAP(x,y,t) ((t = (y) , (y) = (x), (x) = (t))
#define YES(ch) (ch == 'y' || ch == 'Y'

)

#define NO(ch) (ch == 'n' jj ch == 'N'

)

#define STACKROLL(stk,pntr ,end) \

(pntr = (stk[pntr+l] == end ? : ++pntr)

)

#define INRANGE(low, x, up) ((x) >= low && (x) <= up)

#endif

62

/***
*

screen.

h

None

* SOURCE FILE:
*

*

* FUNCTION:
*

*

* USAGE

:

*

*

* DESCRIPTION:
*

*

*

*

* DOCUMENTATION
* FILES:
*

*

* ARGUMENTS

:

*

*

* RETURN:
*

*

* FUNCTIONS
* CALLED:
*

*

* AUTHOR:
*

*

* DATE CREATED:

*

* REVISIONS:
*

**

#ifndef _SCREEN_H
#define _SCREEN_H

#define HERC_BASE OxBOOO
#define CGA_BASE 0xB800
#define SCRN_BASE HERC_BASE

NA

Definition and declaration for some
constants and functions used in screen
I/O.

None

NA

NA

NA

Scott A. Nichols

4Dec88

Ver 1.00

63

/*
/* Def
/*
#def ine
#define
#define
#def ine
#define
#define
#define
#def ine
#define

ine some ansi cursor and screen functions.

save_cursor(

)

(fputs(
restore_cursor(

)

(fputs(
clear_screen(

)

(fputs(
right_cursor(x) (fputs(
left_cursor(x) (fputs(
up_cursor(y) (fputs(
down_cursor (y) (fputs(
clear_line() (fputs(
move_cursor

(y_x

)

(fputs

(

"\033[s",
"\033[u",
"\033[2J",
"\033[" x
"\033[" x
"\033[M y
"\033[" y
"\033[K",
"\33[" y_x

*/
*/
*/

stdout)

)

stdout)

)

stdout)

)

"C", stdout))
"D", stdout)

)

"A", stdout)

)

"B", stdout))
stdout)

)

"H", stdout))

/*
/*
/*
char
void
double

#endif

*/
*/
*/

Define some screen interface functions.

query(char *string)

;

key_pressed(void)

;

getd(void)

;

64

*

* SOURCE FILE:
*

*

* FUNCTION:
*

*

* DESCRIPTION:
*

*

*

*

*

* DOCUMENTATION
* FILES:
*

*

* ARGUMENTS

:

*

*

*

* RETURN:
*

* FUNCTIONS
* CALLED:
*

*

* AUTHOR:
*

*

* DATE CREATED:
*

*

* REVISIONS:
*

smath .

h

None

Some commonly used math functions
defined as macros, structure
definitions for complex, polynomial,
and rational data objects, and some
common mathematical constants.

None

Not Applicable

Not Applicable

None

Scott A. Nichols

24Jan87

Ver 1.00

**/

#ifndef _SMATH_H
#define _SMATH_H

#ifndef _MATH_H
include <math.h>
#endif

#define MAXLEN 4000 /* maximum length of a complex

65

array under MS DOS.

/* */
/* Define some useful mathematical macros. */
/* */

#define SIGN(x) ((x) < ? -l:((x) > ? 1:0))
#define LOG2(x) (log(x) /M_LOG2

)

#define ABS(x) ((x) < ? -(x):(x))
#define FRAC(x) (fabs(x) -(int) (x)

)

#define ROUND(x) \

(FRAC(x) < 0.5 ? (int)(x) : (int)(x) + SIGN(x))
#define ODD(x) ((x)%2 == ? 0:1)
#define MIN(x,y) ((x) <= (y) ? (x):(y))
#define MAX(x,y) ((x) >= (y) ? (x):(y))
#define SQR(x) ((x)*(x))
#define ISPOW2(x) (! FRAC (LOG2 (x))

)

#define NEXTPOW2(x) \

(ISPOW2(x) ? x : ROUND(pow(2, (int) (LOG2 (x)) +1)))

/* */
/* Template for a data object of type complex. */
/* */

typedef struct
{

double re;
double im;
} COMPLEX;

#define P_MAX_DEG 20 /* maximum degree of polynomial */

#define P MAX COEF P MAX DEG + 1 /* max number of coef */

/* */
/* Template for an object containing the coefficients */
/* of a polynomial. */
/* */

typedef struct
{

int deg;

double p [P_MAX_COEF]

;

} POLYNOMIAL;

/* */
/* Template for an object containing the coefficients */

66

/* of a rational function.
/*
typedef struct

{

POLYNOMIAL num;
POLYNOMIAL den;
} RATIONAL;

*/

/* Constants defining data types and formats
*/

#define
Idefine
#def ine
#define
#define
#define
#def ine
tdefine
#def ine
#define

*/
*/

REAL
CMPLX
DEG
RAD
HZ
RECT
POLAR
MAG
LOGMAG
PHASE

1

2

3

4

5

6

7

8

9

10

/*
/* Some
/*
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#endif

•*/

*/
•*/

common mathematical constants.

M_E
M_LOG2E
M_LOG2
M_LOG10E
M_LN2
M_LN10
M_PI
M_2PI
M_PI_2
M_PI_4
M_1_PI
M_2_PI
M_1_SQRTPI
M_2_SQRTPI
M_SQRT2
M SORT 2

2.71828182845904524
1.44269504088896341
(l/M_LOG2E)
0.434294481903251828
0.693147180559945309
2.30258509299404568
3.14159265358979324
6.28318530717958448
1.57079632679489662
0.785398163397448310
0.318309886183790672
0.636619772367581343
0.564189583547756287
1.12837916709551257
1.41421356237309505
0.707106781186547524

67

*

* SOURCE FILE: fir.h
*

*

* FUNCTION: NA
*

*

* DESCRIPTION: Definitions, declarations, and error
* constants for the design of fir filters.
*

*

* DOCUMENTATION
* FILES: None
*

*

* ARGUMENTS : NA
*

*

* RETURN: NA
*

*

* FUNCTIONS
* CALLED : NA
*

*

* AUTHOR: Scott A. Nichols
*

*

* DATE CREATED: 13Nov87
*

*

* REVISIONS: Ver 1.00
*

Hfndef _FIR_H
#define _FIR_H

#define PARKS_McCLELLAN 1

#define NEW_METHOD 2

#define LOWPASS 1

#define HIGHPASS 2

#define BANDPASS 3

Idefine BANDSTOP 4

#define MAX_ITER 25 /* maximum number of iterations
in the Remez exchange */

68

#def ine

#define

#def ine
#define

NOBANDS

BRICKWALL

GENERAL
EVEN SYMMETRY

/*

/*

/*
/*

number of distinct bands in
the filter
brickwall magnitude res-
ponse type
arbitrary response type
even-symmetry coefficients

*/

*/
*/
*/

#define ODD_SYMMETRY 2 /* odd-symmetry coefficients

/*
/* Template for object containing the index into the
/* array of transition frequencies.
/* _

typedef struct
{

int lw; /* lower transition frequency index
int up; /* upper transition frequency index
} TRAN INDEXES;

*/
*/
*/
•*/

V
*/

/*
/* Template for object containing band transition
/* frequencies.
/*
typedef struct

{

double lw;
double up;
} FREQUENCIES;

.*/

*/
*/
•*/

/* * /

/* Template for the object containing the parameters of */
/* a particular FIR type digital filter. */
/* */

typedef struct
{

int type; /*
int response; /*
int order

;

/*
int nobands

;

/*

even or odd symmetry filter coef
brickwall or arbitrary mag res
number of impulse coefficients
number of distinct filter bands

*/
*/
*/
*/

double band_value [NOBANDS] ; /* magnitude value in
a filter band */

double band_weight [NOBANDS] ; /* error weighting in a
filter band */

FREQUENCIES tran_freq [NOBANDS] ; /* array of all tran-
sition frequencies */

} FIR SPECS;

69

/*
/* Some function definitions used by the FIR
/* utilities.
/* _.

design */
*/
.*/

extern int fir_parms()

;

extern int remez ()

;

extern int make_response()

;

extern int estimate extremals (

)

extern int find extremals();
extern int choose_endpoints() ;

extern int alphas ()

;

extern double lagrange ()

;

extern double estimate rho()

;

#endif

70

*

*

*

*
SOURCE FILE: rolf .h

*

*

*
FUNCTION: None

*

*

*
DESCRIPTION:

*

*

*

*

Definitions,
for the rolf
operations.

declarations, and constants
specific functions and

*

*

*

*

*

DOCUMENTATION
FILES: A NEW METHOD FOR THE DESIGN

OF FIR DIGITAL FILTERS

*

*

*
ARGUMENTS

:

NA

*

*

*
RETURN: NA

*

*

*

*

FUNCTIONS
CALLED

:

NA

*

*

*
AUTHOR: Scott A. Nichols

*

*

*
DATE CREATED: 16May88

*

* REVISIONS: Ver 1.00
*

#ifndef _ROLF_H
#define _ROLF_H

include "common. h"

#include "screen. h"

include "smath.h"

#define REGLEN
#define PLOTLEN

1024 /* default register length */

1024 /* maximum number of plotting

71

points

#def ine
#define

READ
WRITE

/*
/*

signifies a
signifies a

read from the disk
write to the disk

*/
*/

/* */
/* These are the registers currently created within rolf. */
* *

/

#define
#define
#def ine
#define
#define
#define

X
Y
Z

T
RO
WORK

1

2

3

4

5

6

/

/* */
/* These are register contents or last-action indicators. */
* *

/

#define NO_CONTENTS
#define FIR_COEFFICIENTS 1

#define IIR_COEFFICIENTS 2

#define FIR_RESPONSE 3

#define IIR_RESPONSE 4

#define GENERAL_DATA 5

#define TRANS_DATA 6

#define INV TRANS DATA 7

/

/*
/* Structure template for the internal rolf registers.
/*

*/
*/

typedef struct
{

int len;
int mode;
int type

;

int contents

;

/*
/*
/*
/*

register length
rectangular or polar
real or complex data type
index of last-action or

contents message

COMPLEX *reg; /* pointer to a complex data array
} REG;

*/
*/

V

/*
/* Declaration of functions invoked within rolf.
/*

*/
*/
•*/

72

extern int create_regs()

;

extern REG *get_reg()

;

extern void free_regs()

;

extern void roll_up()

;

extern void roll_down()

;

extern void enter_reg()

;

extern void switch_reg()

;

extern char *toggle_lock()

;

extern void disable_roll()

;

extern void enable_roll()

;

extern void clear_reg(REG *)

extern void copy_reg(REG *,

extern void clear_stack()

;

extern void bin stk fix()

;

REG *)

;

tendif

73

/**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

SOURCE FILE: rolf.c

FUNCTION: main(

)

ARGUMENTS : None

RETURN: int : OK

DESCRIPTION:

This is the outermost shell of rolf.exe and
is used to set up the key parameters of the
program at runtime. These include adjusting
the stack length, creating and clearing all
the internal stack and storage registers,
and displaying the menu of primary program
functions. These functions include the
following: Various utilities which generate
data; unary and binary (including trig)
operations on the stack registers; register
operation such as rectangular-to-polar and
storing a register to disk; both IIR and FIR
filter design; signal processing such as FFT's
and IFFT's; numeric and graphical screen
output of register contents; exit to DOS
shell; stack register manipulations such as
swap X and Y, rotate up and down, and others.

DOCUMENTATION
FILES:

CONSTANTS

A NEW METHOD FOR THE DESIGN
OF FIR DIGITAL FILTERS

OK common .

h

EXIT common.

h

REGLEN rolf.h
RO rolf.h

MACROS
EXPANDED: YES()

FOREVER
common.

h

common .

h

74

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

FUNCTIONS
CALLED

:

create_regs(

)

clear_stack(

)

free_regs (

)

clear_reg(

)

disp_stack(

)

clear_screen(

)

data_gen(

)

arithops(

)

reg_ops (

)

filter*

)

sigproc(

)

scrn(

)

system (

)

stack (

)

query (

)

stackops.c
stackops.c
stackops.c
stackops.c
stackops.c
screen.

h

datagen.c
arithops.c
regops .

c

filter.

c

sigproc.c
scrn.c
DOS kernel
stack.

c

screen.

c

AUTHOR: Scott A. Nichols

DATE CREATED: 18May88

REVISIONS: Ver 1.00

**

#include <stdio.h>
include <stdlib.h>
#include <dos.h>
include "rolf.h"

int reg_len = REGLEN;

unsigned stklen; /* defined by the Borland startup code

main(

)

{

char ch;

stklen = 8000;

/*- create the stack and storage registers
if (create_regs()

)

{

75

fputs("Can't create the stack registers" ,stderr)

;

exit(2) ;

}

/*- clear the stack and storage registers */

clear_stack()

;

clear_reg(get_reg(RO))

;

FOREVER
{

clear_screen() ;

disp stack() ; /* displays the status of the stack */

printf ("\n0
printf ("\nl
printf ("\n2
printf ("\n3
printf ("\n4
printf ("\n5
printf ("\n6
printf ("\n7

Exit Program")

;

Data generation")

;

Arithmetic operations");
Register operations");
Filter design")

;

Signal processing")

;

Plotting/Printing")

;

DOS shell")

;

printf ("\n <RETURN> Stack");
printf ("\n\n>> ");

switch (query("") - '0')

{

case EXIT:
double check and free rolf's registers */

clear_screen()

;

ch = query ("Exiting Program. Continue ? ");
if (YES(ch))

{

free_regs ()

;

return (OK)

;

}

continue;

case 1:
invoke the data generation utilities */
if (data_gen()

)

query("Error in data generation");
break;

case 2:

invoke arithmetic operation utilities */

if (arithops()

)

query("Error in arithmetic ops");
break;

case 3

:

invoke the stack register operations */

76

if (reg_ops ()

)

query("Error in register operations");
break;

oase 4:
/* invoke the filter design utilities */

if (filterO)
query("Error in filter routine");

break;

case 5:
/* invoke the signal processing utilities */

if (sigproc()

)

query("Error in signal processing");
break;

case 6:
/* invoke the screen output function */

if (scrn()

)

query("Error in screen io");
break;

case 7:
/* load a copy of coramand.com and execute */

if (system ("comraand.com") != 0)
fputs("\nEXEC of C0MMAND.COM failed\n"

,

stderr)

;

break

;

default:
/* invoke the stack manipulation utility */

if (stackO)
query("Error in stack manipulations");

break;
} /* end switch (menu) */

} /* end FOREVER */

} /* end main */

77

/it**
*

* SOURCE FILE: filter.

c

*

*

* FUNCTION: int filter (void)
*

*

*

*

*

*

DESCRIPTION:

This function displays the menu allowing
selection between the design of an IIR or
FIR digital filter. After a selection is
is made, the appropriate function is invoked

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

DOCUMENTATION
FILES: None

ARGUMENTS

:

RETURN:

CONSTANTS

:

MACROS
EXPANDED:

FUNCTIONS
CALLED:

AUTHOR:

None

int: OK

OK common .

h

FOREVER common .

h

iir_f ilter(

)

fir_filter(

)

query (

)

clear_screen(

)

iirfilt.c
firfilt.c
screen.

c

screen.

h

Scott A. Nichols

DATE CREATED: 17May88

REVISIONS: Ver 1.00

78

*

it***/

include <stdio.h>
#include "rolf.h"

int filter(

)

{

char ch

;

FOREVER
{

clear screen ()

;

printf ("\n0
printf ("\nl
printf ("\n2

Exit")

;

FIR design")

;

IIR design")

;

printf ("\n\n>> ");

switch (query("") - '0')

{

case EXIT:
return (OK)

;

case 1:
/* design an FIR digital filter

if (fir_filter())

query("Error in FIR design");
break;

case 2:
/* design an IIR digital filter

if (iir_filter())
query("Error in IIR design");

break;

default:
break;

} /* end switch (menu) */

} /* end FOREVER */

} /* end filter () */

79

/**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

SOURCE FILE: firfilt.c

FUNCTION:

ARGUMENTS

:

RETURN:

int fir filter(void)

None

int: OK

DESCRIPTION:

This function defines the objects containing
the FIR filter parameters and transition
frequency indexes. It also provides the menu
and permits selection of the following filter
utilities: Editing filter parameters;
computing filter coefficients; computing
a simulation of the filter response;
displaying the impulse coefficients to
the CRT; reading an FIR filter from the
disk; writing an FIR filter to the disk;
displaying the FIR filter parameters;
manipulating the stack registers.

DOCUMENTATION
FILES:

CONSTANTS

:

A NEW METHOD FOR THE DESIGN OF
FIR DIGITAL FILTERS

OK
EXIT
READ
WRITE
FIR_COEFFICIENTS
X

common.

h

common .

h

rolf .h
rolf .h
rolf .h
rolf .h

MACROS
EXPANDED

:

FUNCTIONS
CALLED

:

FOREVER common .

h

get_reg(

)

stackops.c

80

* enter_reg(

)

stackops.c
* disp_stack(

)

stackops.c
* fir_parms(

)

firparms.c
* fir_coef (

)

fircoef .c
* clear_screen(

)

screen.

h

* query (

)

screen.

c

* fir_response(

)

firres.c
* fir_display(

)

firdisp.c
* fir_io(

)

firio.c
*

*
stack (

)

stack.

c

*

*

*
AUTHOR: Scott A. Nichols

*

*

*
DATE CREATED: 17May88

*

*

*
REVISIONS: Ver 1.00

*

**

include <stdio.h>
#include "rolf.h"
include "fir.h"

/* template in fir.h, this object contains the filter
parameters, initialization is to indicate that a
filter is not present

FIR_SPECS fir = {-1, -1};

/* template in fir.h, this object contains the indexes
of the transition frequencies

TRAN_INDEXES tran_index [NOBANDS]

;

double rho; /* estimate of the Chebyshev error

*/

*/

int fir_filter()

{

REG *x; /* template in rolf.h, defines a pointer to
an internal stack or storage register */

int i;

x = get_reg(X) ; /* set the pointer to the X register */

FOREVER
{

clear screen()

;

81

disp stack(

)

*.

printf ("\nO
printf ("\nl
printf ("\n2
printf ("\n3
printf ("\n4
printf

(

M \n5
printf

(

M \n6
printf ("\n7

Exit")

;

Edit filter parameters");
Compute impulse coefficients");
Compute filter response");
Display filter coefficients");
Read filter from disk")

;

Write filter to disk");
Display filter parameters");

printf ("\n <RETURN> Stack");
printf ("\n\n>> ");
switch (query("") - '0')

{

case EXIT:
return (OK)

;

case 1:
/* edit the FIR filter parameters */

if (fir_parms()

)

query("Error entering filter");
break;

case 2:
/* compute the fir impulse coefficients */

if (fircoefO)
query("Error calc coef");

break;

case 3

:

/* */
/* simulate the magnitude response */
/* of the filter */

/

clear_screen()

;

if (x->contents != FIR_COEFFICIENTS)
{

query("Error: need filter
coefficients ");

break;
}

enter_reg() ; /* perform an RPN enter fnc */

if (fir_response()

)

query("Error calculating
filter response")

;

break;

case 4:
/* */
/* display the FIR impulse coefficients */
/* to the CRT */

82

clear_screen()

;

for (i = 0; i <= x->len-l; ++i)
{

if (i % 23 == && i > 0)
if (query ("\nQuit ?") == 'y'

)

fcjrsak *

printf ("\ncoef [%d] = %lf",i,
x->reg[i] .re)

;

}

query ("\nPress any key to continue");
continue

;

case 5:

read filter parameters from the disk
if (fir_io(READ)

)

query("Error reading disk");
continue

;

.* /

case 6:
write filter parameters to the disk
if (fir_io(WRITE)

)

query("Error writing disk");
continue

;

case 7:
Display the filter parameters
if (fir_display()

)

query ("Error: displaying
filter parameters "

)

;

continue

;

default:
manipulate the stack registers
if (stackO)

query ("Error in stack ops");
continue;

} /* end switch (menu) */

} /* end FOREVER */

} /* end fir filter () */

83

/if**
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

SOURCE FILE: firparms.c

FUNCTION:

ARGUMENTS

:

RETURN:

int fir_parms(

)

None

int: OK

DESCRIPTION:

This function prompts the user for the
various FIR filter parameters which specify
the response characteristics. These are as
follows: Impulse response length; even or
odd symmetry impulse coefficients; brickwall
or general (arbitrary) magnitude response.
If the magnitude response type is brickwall,
then the number of distinct bands, amplification,
Chebyshev error weighting, and transition
frequencies for each band are also prompted for.

DOCUMENTATION
FILES:

CONSTANTS

MACROS
EXPANDED:

FUNCTIONS
CALLED

:

AUTHOR:

A NEW METHOD FOR THE DISIGN
OF FIR DIGITAL FILTERS

OK common .

h

BRICKWALL fir.h

None

clear_screen() screen.

c

getd(

)

screen.

c

Scott A. Nichols

DATE CREATED: 17May88

84

*

*

* REVISIONS: Ver 1.00
*

it***/

#include <stdio.h>
include " common. h"

#include "screen. h"

#include "fir.h"

/* template defined in fir.h, this object contains all
pertinent parameters which determine the character-
istics of the FIR filter */

extern FIR_SPECS fir;

int fir_parms()
{

int i;

clear_screen()

;

printf ("1: BrickWall\n")

;

printf (
" 2 : General\n")

;

printf ("\nEnter choice > ");
scanf (

" %d" , &fir . response)

;

clear_screen()

;

printf ("\nl: Symmetrical");
printf ("\n2: Asymmetrical\n")

;

printf ("\nEnter choice > ");
scanf ("%d" , &fir . type)

;

clear_screen()

;

printf ("\nFilter Length: > ");
scanf ("%d" , &fir . order)

;

clear_screen()

;

if (fir. response == BRICKWALL)
{

printf ("\nEnter The Number Of Distinct Bands > ");

scanf ("%d" , &fir . nobands)

;

printf ("\n")

;

clear_screen()

;

for (i = 0; i < fir. nobands; ++i)
{

printf ("\n\nEnter magnitude for band[%d] > ",

i+1) ;

fir. band value[i] = getd()

;

85

printf ("\nEnter band_weight for band[%d] > ",

i+1);
fir.band_weight[i] = getd()

;

}

clear_screen()

;

for (i = 0; i < fir.nobands; ++i)
{

if (i == 0) /* this frequency is always zero */
fir. tran_freq[i] . lw = 0;

else
{

printf ("\n\nEnter lower transition for"
" band[%d] > ",i+l);

fir. tran_freq[i] . lw = getd()

;

}

)

0.5 corresponds to the Nyquist frequency */

if (i == fir.nobands-1)
fir.tran_freq[i] .up = 0.5;

else
{

printf ("\nEnter upper transition for"
" band[%d] > ",i+U;

fir. tran_freq[i] .up = getd()

;

}

)

clear_screen()

;

return (OK)

;

} /* end fir_parms() */

86

/**
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

SOURCE FILE: fircoef.c

FUNCTION:

ARGUMENTS

:

RETURN:

int fir coef (

)

None

int: OK

DESCRIPTION:

The primary purpose of this function is to
invoke the appropriate routines which will
compute the FIR filter coefficients. The
two choices offered are by the new method
and by the Parks-McClellan method. It also
provides a utility which allows the density
of the frequency grid to be adjusted. This
is especially important when using the Parks-
McClellan method. A higher density (larger
value) means that the approximation will be
more accurate but will take significantly more
time to compute. The stack manipulation
function can also be invoked from this menu.

DOCUMENTATION
FILES:

CONSTANTS

A NEW METHOD FOR THE DESIGN
OF FIR DIGITAL FILTERS

OK
EXIT
REAL
PARKS_McCLELLAN
NEW METHOD

common .

h

common .

h

smath.h
fir.h
fir.h

MACROS
EXPANDED

:

FUNCTIONS
CALLED

:

FIR COEFFICIENTS rolf.h

FOREVER common .

h

STACKROLL() common.

h

query (

)

screen.

c

87

* clear_screen() screen.

c

* get_reg() stackops.c
* disp_stack() stackops.c
* enter_reg() stackops.c
* clear_stack() stackops.c
* stack() stack.

c

*

*
fir_setup() firsetup.c

*

*

*
AUTHOR

:

Scott A. Nichols

*

*

*
DATE CREATED: 17May88

*

* REVISIONS: Ver 1.00
*

*

**

#include <stdio.h>
Hnclude "rolf.h"
#include "fir.h"

/* template defined in fir.h, this object contains the
parameters which define the filter response
characteristics

extern FIR_SPECS fir;

extern double rho; /* estimate of the Chebyshev error

extern grid_density[] , /* this array allows a choice of
frequency grid densities

grid_choice; /* index to the current choice

*/

*/

*/
*/

int fircoef (

)

{

REG *x; /* pointer to a ROLF register

x = get_reg(X) ; /* point it to the X register

*/

*/

FOREVER
{

clear_screen()

;

disp_stack()

;

printf ("\n0
printf ("\nl
printf ("\n2
printf ("\n3

Exit")

;

Compute via Parks-Mclellan")

;

Compute New Method")

;

Toggle frequency grid density: (%d)" /

88

grid_density[grid_choice])

;

printf (

" \n <RETURN> Stack")

;

printf ("\n\n>> ");
switch (query(" M

) - '0')

{

case EXIT:
return (OK)

;

case 1:
/* */
/* Duplicate the X register to Y, load it */
/* with the appropriate information and */
/* invoke the setup function which will then */
/* then invoke the Remez exchange */

/
*.

enter_reg()

;

clear_screen()

;

x->len = fir. order

;

x->type = REAL;
x->contents = FIR_COEFFICIENTS;

if (fir_setup(x->reg / &rho,
PARKS_McCLELLAN)

)

query("Error computing coefficients");
break;

case 2:
/* */
/* Duplicate the X register to Y, load it */
/* with the appropriate information and */
/* invoke the setup function which will then */

/* invoke the new method */
/* */

enter_reg()

;

clear_screen()

;

x->len = fir. order;
x->type = REAL;
x->contents = FIR_COEFFICIENTS;

if (fir_setup(x->reg
f
&rho, NEW_METHOD)

)

query("Error computing coefficients");
break;

case 3

:

/* roll the frequency grid density */

STACKROLL(grid_density, grid_choice, EOF)

;

continue

;

default:
/* stack register manipulations function */

if (stackO)
query ("Error in stack ops");

89

continue;

} /* end inner switch */

} /* end FOREVER */

} /* end fir coef () */

90

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

SOURCE FILE: firsetup.c

FUNCTION:

ARGUMENTS

:

RETURN:

int fir_setup(res, rho, method)

(input/output) COMPLEX res [

]

The filter impulse coefficients are
returned in the real part of this array.
If the approximation was to a general
response type, then this desired arbi-
trary magnitude response would be passed
into the function from the X register.

(output) double * rho
This pointer references the final

estimate of the Chebyshev error upon
exiting the function.

(input) int method
Specifies whether the new method

or the Remez exchange will be invoked
to obtain the filter coefficients.

int: OK
ERROR

DESCRIPTION:

This function determines if the filter is of
case 1 , 2 , 3 , or 4 , determines the grid length
and the number of approximating cosines. It
then invokes the Remez exchange if an optimal
solution is desired. For the new method, it
estimates the Chebyshev error based on a
guessed set of equally-spaced extremals and
sets up to do the Lagrange interpolation.
Finally, it obtains the filter coefficients
by performing a DCT on the filter magnitude
response.

case 1: odd length / even symmetry

case 2: even length / even symmetry

91

*

*
case 3

:

odd length / odd symmetry

*

*
case 4

:

even length / odd symmetry

*

*

*

*

*

DOCUMENTATION
FILES: A NEW METHOD FOR THE DESIGN

OF FIR DIGITAL FILTERS

*

*

*

*

*

*

*

*

*

*

*

*

CONSTANTS

:

OK
ERROR
MAXLEN
PARKS McCLELLAN
NEW METHOD
EVEN SYMMETRY
ODD SYMMETRY
M 2PI
M PI
M_SQRT2

common.

h

common.

h

common .

h

fir.h
fir.h
fir.h
fir.h
smath.h
smath.h
smath.h

*

*

*

*

MACROS
EXPANDED: ODD() smath.h

*

*

*
FUNCTIONS
CALLED: make_res (

)

makeres.c
*

*

*

*

*

*

*

query(

)

estimate_extremal
estimate_rho(

)

lagrange(

)

dct()
alphas (

)

screen.

c

.s() estextr.c
estrho.c
lagrange.c
dct.c
alphas.

c

*

*

*
AUTHOR: Scott A. Nichols

*

*

*
DATE CREATE!): 17May88

*

*

*
REVISIONS: Ver 1.00

*

*************** ** ****************** ****************

include <stdio.h>
#include <stdlib.h>
include <math.h>

92

include "common. h"

include "smath.h"
include "fir.h"

#define DCT 1 /* forward discrete cosine transform */

/* template in fir.h, this object contains the indexes
into the dense grid for the transition frequencies */

*/
extern TRAN INDEXES tran index []

;

/* template in fir.h, this object contains the filter
parameters which specify all its response character-
istics */

extern FIR_SPECS fir;

/* adjustable density for the frequency grid */
int grid_density[] = {5,16,20, 25, EOF}

,

grid_choice =1; /* initialize to 16 */

int fir_setup(COMPLEX res[], double *rho, int method)
{

int i,
initial, /* starting index of cosines, error,

and frequency grids */
final, /* ending index of the same grids */

grid_len, /* the number of frequencies in the
dense grid excluding those which
fall in the transition regions */

n, /* number of approximating cosines */

no_points, /* number of frequencies in the
dense grid including the tran-
sition regions */

new_pntr, / updated array of extremal
indexes into the cosine, error,
and frequency grids */

old_pntr, / previous array of extremal
indexes into the cosine, error,
and frequency grids */

fil_type; /* filter type: cases 1, 2, 3, 4 */

double f, /* temporary frequency variable */

93

delta_f / /* frequency spacing of dense grid */

*a, *b, /* arrays used in the Lagrange */
*c, *x, /* interpolation function */

err, / error function over which the
extremal frequencies are searched
for */

grid, / dense grid of frequencies
excluding transition regions */

cosines, / cosines of the dense freq. grid */

factor, /* used to transform magnitude
response before usng the DCT
to get coefs. */

sum; /* used in transforming magnitude
response before using the DCT
to get coefficients */

/* */
/* determine filter type and number of approximating */
/* cosines */
/* */

if (fir. type == EVEN_SYMMETRY

)

{

if (ODD (fir. order))
{

fil_type = 1;
n = (fir. order - 1) / 2 + 1;
}

else
{

fil_type = 2;
n = fir. order / 2;

}

}

else
if (fir. type == ODD_SYMMETRY

)

{

if (ODD(fir. order)

)

{

fil_type = 3 ;

n = (fir. order - 1) / 2;

}

else
{

94

I

}

fil_type = 4;
n = fir. order / 2;

}

/* */
/* determine the number of frequencies in the dense grid */
/* including those which fall in the transition regions */

no_points = grid_density[grid_choice] * n;
if (no_points > MAXLEN)

{

query("Error: frequency grid too long "
) ;

return (ERROR)

;

}

I

/*
/*
/*
/*
/*
/*
/*

Allocate the storage for all the working arrays, note
that the storage for new_pntr is twice that of
old_pntr. This is for the case in which more than
(n+1) local maximums or minimums are found when
searching the error function.

(3*n + 3))

•*/

*/
*/
*/

V
*/
*/

old_pntr = (int *) malloc(sizeof (int)
if (old_pntr == NULL)

{

query ("Error: 'old_pntr' not malloced"
" in fir_filter() ");

return (ERROR)

;

>

new_pntr = (int *) (old_pntr + n + 1)

;

x = (double *) malloc(sizeof(double) *

(n*4+2 + 3*no_points+3))

;

if (x == NULL)
{

free (old_pntr)

;

query ("Error: 'x' not mallocated in fir_filter() "
)

;

return (ERROR)

;

>

a = (double *) (x + n + 1) ;

b = (double *) (a + n + 1) ;

c = (double *) (b + n);
err = (double *) (c + n);
grid = (double *

) (err + no_points + 1)

;

cosines = (double *) (grid + no_points + 1);

95

/*- determing the spacing of the dense set of frequencies */
delta_f = 0.5 / (no_points - 1);

/* */
/* generate the magnitude response for which the */
/* Chebyshev approximation will be fitted to */
/* */

if (make_res(res, grid, cosines, delta_f,
no_points, &grid_len)

)

{

free (old_pntr)

;

free(x)

;

query ("Error : fir_filter()
"

) ;

return (ERROR)

;

}

/* */
/* determine the starting and ending grid indexes based */
/* on the filter type and make the necessary adjustments */
/* in the desired response and weighting for filters */
/* other than case 1, i.e., odd length and even symmetry */
/* */

switch (fil_type)
{

case 1:
initial = 0;
final = grid_len;
break

;

case 2:
initial = 0;
final = grid_len - 1;
for (i = 0; i <= grid_len-l; ++i)

{

res [i]. re = res [i]. re / cos(M_PI * grid[i]);
res[i].im = res[i].im * cos(M_PI * grid[ij);
}

break;

case 3

:

initial = 1;
final = grid_len - 1

;

for (i = 1; i <= grid_len-l; ++i)
{

res [i]. re = res [i]. re / sin(M_2PI *grid[i]);
res[i].im = res[i].im * sin(M_2PI *grid[ij);
}

break;

96

case 4:
initial = 1;
final = grid_len;
for (i = 1; i <= grid_len; ++i)

{

res [i]. re = res [i], re / sin(M_PI * grid[i]);
res[i].im = res[i].im * sin(M_PI * grid[i]);
}

break;
} /* end of switch */

/* */
/* make an initial equally-spaced guess of the extremal */
/* frequencies */
/* */

if (estimate_extremals(initial, final, n,
new_pntr, grid_len)

)

{

free(x)

;

free (old_pntr)

;

query ("Error: fir_filter() ");
return (ERROR)

;

}

/* */

/* if the Park's method is desired, than do the Remez */
/* exchange */
/* * /

if (method == PARKS_McCLELLAN)
{

if (remez(res, cosines, err, a, b, c, x, rho,
initial, final, old_pntr, new_pntr, n)

)

{

free(x)

;

free(old_pntr)

;

query ("Error: fir_filter() ");
return (ERROR)

;

}

}

else
/* */
/* for the new method, compute a,b,c,x for the Lagrange */

/* interpolation formula */

/* */

if (method == NEW_METHOD)
*rho = estimate_rho(res, cosines, n, new_pntr,

a , b , c , x) ;

else
{

free(x)

;

97

free(old_pntr)

;

query("Error : fir_fliter () ");
return (ERROR)

;

}

/* */
/* Do the transformation on the desired magnitude */
/* response prior to performing a DCT. The development */
/* of this transformation is the primary reason for the */
/* existence of this thesis. */
/* */

sum = ;

for (i = 0; i <= n-1; ++i)
{

f = (2.0*i+1.0)/(4.0*n)

;

res [i]. re = lagrange(cos(M_2PI * f), b, c, x, n);
res [i] . im = ;

sum += res [i]. re;
}

factor = -(M_SQRT2 - 1) * sum / n / M_SQRT2

;

for (i = 0; i <= n-1; ++i)
res [i]. re = (res[i].re + factor) * sqrt(2.0 / n) ;

free(x); /* these are no longer needed */
free (old_pntr)

;

/*- do the DCT - this yields the cosine coefficients */

if (dct(res, n, DCT))
{

query ("Error : fir_filter() ");
return (ERROR)

;

}

/* _ */
/* convert the approximating cosine coefficients to */
/* impulse coefficients */
/* */

if (alphas (res, fil_type, fir. order, n)

)

{

query ("Error: fir_filter() ");
return (ERROR)

;

)

return (OK)

;

} /* end fir_setup() */

98

*

*

* SOURCE FILE: remez.c
*

* FUNCTION: int remez(res / cosines, err, a, b, c, x,
* new_rho, initial, final,
* old_pntr, new_pntr, n)
*

*

* ARGUMENTS

:

*

* (input/output) COMPLEX res[]
* Passes the desired filter response in the
* real part and the weighting function in the
* imaginary part, then returns the filter
* impulse coefficients in the real part.

* (input) double cosines []
* This array contains the cosines of the
* dense grid of frequencies.
*

* double err[

]

* Used within the remez() fnc. to store the
* error function over which the extremal frequencies
* are searched for.
*

* (input) double a[], b[], c[], x[]
* Arrays used by the Lagrange interpolation
* function.
*

* (output) double *new_rho
* The final value of the Chebyshev error is
* referenced by this pointer.
*

* (input) int initial, final
* These integers are the first and last
* indexes into the dense grid of frequencies and
* are set according to the filter type, i.e.,
* even or odd symmetry and even or odd impulse
* length, initial is set to zero or one and final
* is set to the frequency grid length or frequency
* grid length minus one. This adjustment prevents
* a divide by zero when normalizing the magnitude
* response and weighting function so that the
* Remez exchange can be used for all four filter
* types

.

*

* (input) int new_pntr [

]

99

* The initial guessed set of extremal freq-
* uency indexes is passed and thereafter, it
* contains the current updated set of extremal
* indexes

.

*

* int old_pntr[]
* This array contains the previous set
* of extremal frequency indexes and is used for
* comparison purposes to determine if any
* changes occured.
*

* (input) int n
* This is the number of approximating
* cosines.
*

*

* RETURN: int: OK
* ERROR
*

* DESCRIPTION:
*

* Performs the remez exchange. This involves
* searching over a dense set of frequencies
* for those at which the weighted error function
* achieves its maxima or minima. These new
* extremal frequencies are then used in the
* Lagrange interpolation routine to generate a
* new approximation to the desired response.
* A new weighted error function is then computed
* and the dense grid of frequencies is once again
* searched for those at which the error function
* changes sign. This is continued until no
* extremal frequencies have changed location
* from the previous iteration. The Remez
* exchange is then said to have converged and
* the approximation problem has been solved.
*

*

* DOCUMENTATION
* FILES: None
*

*

* CONSTANTS: OK common.

h

* ERROR common.

h

* MAX_ITER fir.h
*

* MACROS
* EXPANDED : None
*

100

* FUNCTIONS
* CALLED

:

estimate_rho(

)

estrho.c
* query (

)

screen.

c

* lagrange(

)

lagrange.c
* find_extremals(

)

findextr.c
*

*
choose_endpoints (

)

choosend.c

*

*

*

*

AUTHOR: Scott A. Nichols

* DATE CREATED: 17May88
*

* REVISIONS: Ver 1.00
*

*

**

#include <stdio.h>
include <math.h>
include "common. h"

include "screen. h"

include "smath.h"
#include "fir.h"

/* index into the dense grid of frequencies specifying
which are the transition frequencies */

extern TRAN INDEXES tran index []

;

int remez(COMPLEX rest], double cosines[], double err[],
double a[], double b[] , double c[], double x[]

,

double *new_rho, int initial, int final,
int old_pntr[] / int new_pntr[], int n)

{

int i,
iter, /* counter for iterations of the Remez

exchange */

count, /* the number of extremals that were
found */

changes; /* the number of extremals that
changed 7

double old_rho; /* the Chebyshev error of the previous
iteration */

101

*new_rho = ;

iter = 1;
do

{

old_rho = *new_rho;

/* */

/* estimate the error and compute the vectors */
/* to be used by the Lagrange interpolation fnc. */
/* */

*new_rho = estimate_rho(res, cosines, n, new_pntr,
a , b , c , x) ;

/* make sure the error is converging to a maximum */

if (old_rho > *new_rho)
{

query ("Error : Deviation did not increase"
" => suboptimal "

)

;

break;
}

/* compute the error function */

for (i = initial; i <= final; ++i)
err[i] = res[i].im * (res[i].re -

lagrange(cosines[i] , b, c, x, n));

/* */
/* Search the error function for all the maxima and */
/* minima without regard for the number found or the */
/* Alternation Theorem. */
/* */

if (find_extremals(err / new_pntr,
*new_rho, initial, final, &count)

)

{

query ("Error: remez() ");
return (ERROR)

;

}

/* */
/* Now make sure that the right number of extremal */
/* frequencies were found and that they all satisfy */

/* the Alternation Theorem. */
/* */

if (choose_endpoints(err , new_pntr, old_pntr,
n, count,
Schanges)

)

{

query("Error: remez() ");
return (ERROR)

;

}

102

repeat until no extremals changed or maximum iter */

} while ((++iter <= MAX ITER) && (changes != 0));

return (OK)

;

} /* end remez() */

103

/kit***
*

*

* SOURCE FILE: makeres.c
*

*

* FUNCTION: int make_res(res , grid, cosines, delta_f,
* no_points, grid_len)
*

*

* ARGUMENTS

:

*

* (output) COMPLEX res[]
* Returns the desired GENERAL or BRICKWALL
* filter magnitude response in the real part and
* the weighting function in the imaginary part.
* The use of a complex array is not special but
* adds convenience later when returning the
* impulse coefficients. This complex array
* can then be FFT'd to yield the simulated
* magnitude response of the filter. The magnitude
* and weighting function for each band of the
* filter are derived from the FIR filter parameter
* object named fir. If the filter magnitude
* response is GENERAL (arbitrary), then the
* weighting function is set to unity throughout.
*

* (input) double grid[]
* This is the dense grid of frequencies.
*

* (input) double cosines []
* This array contains the cosines of the
* dense grid of frequencies.
*

* (input) double delta_f
* Spacing between the frequencies in the
* dense grid.
*

* (intput) int no_points
* The number of approximating cosines times
* the frequency grid density.
*

* (output) int * grid_len
* The number of dense grid frequencies.
* This is equal to no_points minus the number
* frequencies that fall within the transition
* regions.
*

*

* RETURN: int: OK

104

DESCRIPTION:

Generates the desired GENERAL or BRICKWALL
magnitude response and weighting function
to be passed to the Remez exchange for fitting
an approximation to the desired response.

DOCUMENTATION
FILES:

CONSTANTS

:

MACROS
EXPANDED

:

FUNCTIONS
CALLED

:

AUTHOR:

REVISIONS:

None

OK common .

h

M_2PI smath.h
BRICKWALL fir.h
GENERAL fir.h

ROUND () smath.h

None

Scott A. Nichols

DATE CREATED: 17May88

Ver 1.00

#include <stdio.h>
include <math.h>
include "common. h"

include "smath.h"
include "fir.h"

/* template in fir.h, index into the dense grid of
frequencies specifying which are the transition
frequencies

extern TRAN INDEXES tran index []

;

105

extern FIR_SPECS fir; /* template in fir.h, this object
contains the filter parameters
which specify its characteristics*/

int make_res(res, grid, cosines, delta_f,
no_points, grid_len)
COMPLEX res [] ;

double grid[] , cosines[], delta_f;
int no_points / *grid_len;

{

int i, j , k;

double f; /* temporary frequency variable

switch (fir .response)
{

case BRICKWALL:
tran_index[0] .lw = 0;
for (i = 0; i < fir.nobands-1; ++i)

{

k = ROUND ((fir.tran_freq[i] .up -

fir . tran_freq[i] . lw) / delta_f);
tran_index[i] .up = tran_index[i] . lw + k;
tran_index[i+l] . lw = tran_index[i] .up + 1;

}

k = ROUND ((fir.tran_freq[i] .up -

fir.tran_freq[i] . lw) / delta_f);
tran_index[i] .up = tran_index[i] . lw + k;
*grid_len = tran_index[i] .up;

f - 0;
for (i = 0; i < fir.nobands; ++i)

{

f = fir. tran_freq[i] .lw;
for (j = tran_index[i] . lw;

j < tran_index[i] .up; ++j

)

{

res [j]. re = fir.band_value[i]

;

res[j].im = 1/f ir .band_weight[i]

;

grid[j] = f;
cosines[j] = cos(M_2PI * f);
f += delta_f;
}

f = fir.tran_freq[i] .up;
res [j]. re = fir .band_value[i]

;

res[j].im = 1/f ir .band_weight[i]

;

grid[j] = f

;

cosines [j] = cos(M_2PI * f);

106

}

break;

case GENERAL:
/* NOT AVAILABLE YET !

f = 0;
*grid_len = no_points-l;
fir.nobands = 1;
tran_index [] . lw = ;

tran_index[0] .up = *grid_len;

for (i = 0; i <= *grid_len; ++i)
{

res[i] .im = 1.0;
grid[i] = f;
cosines [i] = cos(M_2PI * f);
f += delta_f;
}

break;
} /* end switch */

return (OK)

;

} /* end make_response () */

107

*

* SOURCE FILE: estextr.c
*

*

* FUNCTION: int estimate_extremals (initial, final,
* n, new_pntr,
* grid_len)
*

*

* ARGUMENTS

:

*

* (input) int initial, final
* These integers are the first and last
* indexes into the dense grid of frequencies and
* are set according to the filter type, i.e.,
* even or odd symmetry and even or odd impulse
* length, initial is set to zero or one and final
* is set to the frequency grid length or frequency
* grid length minus one. This adjustment prevents
* a divide by zero when normalizing the magnitude
* response and weighting function so that the
* Remez exchange can be used for all four filter
* types

.

*

* (input) int n
* This is the number of approximating
* cosines.
*

* (output) int new_pntr [

]

* Indexes of the initial set of extremal
* frequencies are guessed and returned.
*

* (input) int grid_len
* The number of dense grid frequencies.
* This is equal to the number of approximating
* cosines times the grid density minus the
* number frequencies that fall within the
* transition regions.
*

*

* RETURN: int: OK
* ERROR
*

*

* DESCRIPTION:
*

* Makes a stab at guessing the initial set
* of extremals of the error function. These

108

are equally spaced within regions but not
within the overall frequency grid which
includes the transition frequencies.

DOCUMENTATION
FILES : None

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* DATE CREATED: 17May88
*

CONSTANTS

MACROS
EXPANDED

:

FUNCTIONS
CALLED

:

AUTHOR:

OK common .

h

ERROR common .

h

ROUND () smath.h

None

Scott A. Nichols

* REVISIONS:
*

Ver 1.00

**

#include <stdio.h>
include <math.h>
include "common. h"

include "smath.h"
include "fir.h"

/* template in fir.h, index into the dense grid of
frequencies specifying which are the transition
frequencies

extern TRAN INDEXES tran index []

;

extern FIR_SPECS fir; /* template in fir.h, this object
contains the filter parameters */

int estimate_extremals(initial, final, n, new_pntr,

109

grid_len)
int initial, final, n, grid_len, new_pntr[];

{

int i, j, k,
count = 0;

double f, findex, fdelta;

for (i = 0; i < fir.nobands; ++i)
{

if (i == fir.nobands-1)
k = n - count;

else
{

f = (n+1) * (tran_index[i] .up -

tran_index[i] . lw + 1) /(grid_len+l) -1;
k = (int) ceil (f)

;

if (k <= 0)

{

query ("Error : transition width too narrow");
return (ERROR)

;

}

}

fdelta = (tran_index[i] .up - tran_index[i] . lw) / k;
findex = (double) tran_index[i] . lw;

for (j =0; j <= k-1; ++j)
{

new_pntr [count] = ROUND (f index)

;

findex += fdelta;
++count

;

}

new_pntr [count] = tran_index[i] .up;
++count

;

}

new_pntr[0] = initial;
new_pntr[n] = final;

return (OK)

;

} /* end estimate extremals () */

110

*

*

* SOURCE FILE: findextr.c

*

* FUNCTION: int find_extremals (err , new_pntr, rho,
* initial, final, count)
*

* ARGUMENTS

:

*

* (input) double err [

]

* The error function over which the
* maxima and minima are searched for.
*

* (input) int new_pntr [

]

* Indexes of the current updated extremal
* frequencies in the dense grid.
*

* (input) double rho
* An estimate of the Chebyshev error.
*

* (input) int initial, final
* These integers are the first and last
* indexes into the dense grid of frequencies and
* are set according to the filter type, i.e.,
* even or odd symmetry and even or odd impulse
* length, initial is set to zero or one and final
* is set to the frequency grid length or frequency
* grid length minus one. This adjustment prevents
* a divide by zero when normalizing the magnitude
* response and weighting function so that the
* Remez exchange can be used for all four filter
* types

.

*

* (output) int * count
* The total number of extremal frequencies
* that were found.
*

*

* RETURN: int: OK
*

*

* DESCRIPTION:
*

* This routine finds every local maximum or
* minimum of the error curve. It makes no
* attempt to choose based on the Alternation
* Theorem or upon the number (n+1) extremals

111

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

that will eventually be retained. Those
discriminations will be performed in the
function choose_endpoints()

.

DOCUMENTATION
FILES: None

CONSTANTS

:

MACROS
EXPANDED:

FUNCTIONS
CALLED

:

AUTHOR:

OK common.

h

SIGNO smath.h

None

Scott A. Nichols

DATE CREATED: 17May88

REVISIONS: Ver 1.00

****** ***/

#include <stdio.h>
#include "common. h"

include "smath.h"
#include "fir.h"

/* template in fir.h, this array is the indexes into the
dense grid of frequencies specifying which are the
transition frequencies */

extern TRAN INDEXES tran index []

;

int find_extremals(double err[], int new_pntr[], double rho,
int initial, int final, int *count)

{

int i, /* used to index thru the error function when
searching for local maxima/minima */

oldsign, /* for comparing to determine when a

112

newsign, change of sign has occured which
indicates a max or min was passed */

tran_pntr; /* indexes through the distinct bands */

/*- provide a safty margin from roundoff */
rho = rho * 0.999;

/*- initialize for finding the first extremal */
oldsign = SIGN (err [initial+1] - err[initial])

;

tran_pntr = 0; /* start with first (or only) band */

/*- assume the first freg. in grid is always an extremal -*/
new_pntr[0] = initial;
count =1; / at least one extremal will be found */

i = initial+1; /* next frequency */

while (i < final) /* final indexes the last freq. */

{

/* */
/* make sure that all transition frequencies are */
/* chosen as extremals regardless if they are */
/* maxima or minima */
/* */

if (i == tran_index [tran_pntr] . up

)

{

new_pntr[*count] = tran_index[tran_pntr] .up;
++*count;
++i;
++tran_pntr

;

new_pntr [*count] = tran_index [tran_pntr] . lw;
++*count;
oldsign = SIGN (err [i+1] - err[i]);
++i;
}

else
/* */
/* if not a transition frequency, then search for*/
/* a local maximum or minimum */
/* */

{

newsign = SIGN(err[i+l]-err[i])

;

/* */
/* When a local max/min is found, snatch it if */
/* its magnitude is greater than the absolute */

/* value of the error function at that frequency */
/* */

113

if ((newsign != oldsign) &&
(fabs(err[i]) > rho)

)

{

new_pntr [*count] = i;
++*count;
}

oldsign = newsign; /* update for next extremal*/
++i;
}

}

/*- choose the last freguency to be an extremal also */

new_pntr [*count] = final;
return (OK)

;

} /* end find extremals() */

114

*

* SOURCE FILE: choosend.c
*

*

* FUNCTION: choose_endpoints (err , new_pntr, old_pntr,
* n, count, changes)

*

* ARGUMENTS

:

*

* (input) double err[]
* This contains the error function over
* which the extremal frequencies are searched
* for.
*

* (input) int new_pntr [

]

* The indexes into the dense grid of the
* updated extremal frequencies.
*

*

* int old_pntr[]
* This array contains the previous set
* of extremal frequency indexes and is used for
* comparison purposes to determine if any
* changes occured. If none did, then the Remez
* exchange is completed.
*

* (input) int n
* This is the number of approximating
* cosines.
*

* (input) int count
* The total number of extremal frequencies
* found in find_extremals()

.

*

* (output) int * changes
* The number of extremals that changed
* between the last and next to last iteration.
*

*

* RETURN: int: OK
*

* DESCRIPTION:
*

* Inspects the end-point extremals and makes
* certain that all extremals satisfy the
* Alternation Theorem. If two adjacent

115

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

extremal frequencies are found which
correspond to error values of the same
sign, then the extremal corresponding to
the smallest absolute value of the error
function is discarded. Then, if the excess
number of extremals found is divisible by two,
i.e., n+3 or more, then the two extremals
corresponding to the smallest errors are discarded
jointly. This is necessary so that the sign
convention of the Alternation Theorem will not
be violated. This process is continued until only
n+1 or n+2 extremals remain. If it is n+2, then the
end points are inspected for the largest absolute
value of the error function. The other end point
extremal frequency is discarded.

DOCUMENTATION
FILES: None

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

CONSTANTS

:

MACROS
EXPANDED

:

FUNCTIONS
CALLED

:

AUTHOR:

OK common .

h

SIGN() smath.h

None

Scott A. Nichols

DATE CREATED: 17May88

REVISIONS Ver 1.00

include <stdio.h>
include <math.h>
include <graphics.h>
#include "common. h"

include "smath.h"
include "fir.h"

116

int choose_endpoints(err / new_pntr, old_pntr,
n, count, changes)
int new_pntr[], old_pntr[], n, count, *changes;
double err []

;

{

*.

int i , j , index

;

double temp;

i = 1;
/* */
/* Check every extremal found to make sure that its */
/* corresponding error function value alternates in sign */
/* with its neighbors, if it doesn't then discard the */
/* smallest of the group */
/* */

while (i <= count)
{

if (SIGN (err [new_pntr [i]]) ==
SIGN (err [new_pntr [i-1]])

)

{

if (fabs(err[new_pntr[i]]) >

fabs(err[new_pntr[i-l]])

)

{

for (j = i; j <= count; ++ j

)

newjpntr [
j - 1] = new_pntr [j]

;

}

else
{

for (j = i; j <= count- 1; ++j)

new_pntr [j] = new_pntr [
j +1]

;

--count;
}

}

else
++i;

} /* end of while */

/* */
/* If all extremals satisify the alternation theorem but */
/* more than (n+2) exist, then discriminating the end- */
/* points will not suffice and the smallest extremal */
/* with its corresponding smallest neighbor must be */
/* discarded. The alternation theorm is then still */
/* satisified */

/
while (count >= n+2)

{

temp = le30; /* I hope this is big enough !

for (i = 1; i <= count- 1; ++i)

117

{

if (fabs(err [new_pntr [i]]) < temp)
{

temp = fabs(err [new_pntr[i]])

;

index = i

;

}

}

if (fabs(err [new_pntr[index- 1]]) <

fabs (err [new_pntr [index+1]])

)

--index;

for (j = index; j <= count-2; ++j

)

new_pntr [j] = new_pntr [
j +2]

;

count -= 2

;

} /* end of while */

/* */
/* If (n+2) extremals exist which satisify the */
/* alternation theorem, then choose the frequency */
/* with the corresponding error of largest absolute */
/* value */
/* */

if (count == n+1)
{

if (fabs(err[new_pntr[count]]) >

fabs (err [new_pntr []])

)

for (i = 0; i <= count-1; ++i)
new_pntr[i] = new_pntr[i+l]

;

/* */
/* see how many extremals have changed from the previous */
/* iteration of the Remez exchange */
/* */

*changes = ;

for (i = 0; i <= n; ++i)
{

if (old_pntr[i] 1= new_pntr[i])
++*changes;

old_pntr[i] = new_pntr[i];
}

return (OK)

;

} /* end choose_endpoints () */

118

119

/•••••••••••A***
*

*

* SOURCE FILE: estrho.c
*

*

* FUNCTION: double estimate_rho(res, cosines, n,
* new_pntr, a, b, c, x)
*

*

* ARGUMENTS

:

*

* (input) COMPLEX res[]
* The real part of res[] contains the desired
* magnitude response of the filter and the imaginary
* part contains the weighting function.
*

* (input) double cosines []
* This array contains the cosines of the
* dense grid of freguencies.
*

* (input) int n
* This is the number of approximating
* cosines.

* (input) int new_pntr [

]

* Indexes of the current updated set of
* extremal freguencies in the dense grid.
*

* (output) double a[], b[], c[], x[]
* Vectors used by the lagrange interpolation
* function.
*

* RETURN: double: Value represents an estimate of
* the Chebyshev error for a given
* set of extremal freguencies.
*

*

* DESCRIPTION:
*

* Estimates the Chebyshev error for a given set
* of extremal freguencies and computes the
* arrays a,b,c,x which will be used by the
* Lagrange interpolation function.
*

*

* DOCUMENTATION
* FILES: None
*

120

None

None

None

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

CONSTANTS

:

MACROS
EXPANDED

:

FUNCTIONS
CALLED

:

AUTHOR: Scott A. Nichols

DATE CREATED: 17May88

REVISIONS: Ver 1.00

#include <stdio.h>
include <math.h>
include "common. h"

include "smath.h"

double estimate_rho(res, cosines, n, new_pntr, a, b, c, x)
int n , new_pntr []

;

double cosines[], a[] , b[], c[], x[]

;

COMPLEX res []

;

{

int i , j

;

double num,
den,
rho;

/*- compute the cosines of the extremal frequencies */

for (i = 0; i <= n; ++i)
x[i] = cosines[new_pntr[i]]

;

for (i = 0; i <= n; ++i)
{

a[i] = 1;
for (j = 0; j <= n; ++j

)

if (i != j)
{

a[i] = a[i] / (x[i] - x[j]);
if (i < n && j < n)

121

b[i] = a[i];
}

}

num = 0;
den = 0;
for (i = 0; i <= n; ++i)

{

num += a[i] * res[new_pntr[i]] .re;
den += pow(-1.0 , (double) i) * a[i] /

res [new_pntr [i]] . im

;

}

rho = num / den;
for (i = 0; i <= n-1; ++i)

c[i] = res[new_j?ntr [i]] .re -

pow(-1.0, (double) i) * rho / res[new_pntr [i]] . im;

return (fabs (rho))

;

} /* end estimate rho() */

122

/A**
*

*

* SOURCE FILE: lagrange.c
*

*

* FUNCTION: double lagrange(cosf , b, c, x, n)
*

*

* ARGUMENTS

:

*

* (input) double cosf
* The cosine value of the frequency of
* interest.
*

* (input) double b[] , c[], x[

]

* Arrays generated by calling the fnc.
* estimate_rho()

.

*

* (input) int n
* The number of approximating cosines.
*

*

* RETURN: double: Value represents an estimate for
* the function at the point of
* interest.

* DESCRIPTION: Performs the Lagrange interpolation in
* the barycentric form.
*

*

* DOCUMENTATION
* FILES: None

*

* CONSTANTS : None

*

* MACROS
* EXPANDED: None
*

*

* FUNCTIONS
* CALLED : None
*

*

* AUTHOR: Scott A. Nichols
*

*

123

* DATE CREATED: 17May88
*

*

* REVISIONS: Ver 1.00
*

*

•a**/

#include <stdio.h>
include "common. h"

double lagrange(double cosf, double b[] , double c[],
double x[] , int n)

(

int i;

double temp,
num, den;

/* */
/* if cosf equals any of the x[i], then return c[i] to */
/* prevent a divide by zero */
/* */

for (i = 0; i <= n-1; ++i)
if (cosf == x[i]

)

return(c[i])

;

/*- initialize and perform the interpolation */

num = 0;
den = 0;

for (i = 0; i <= n-1; ++i)
{

temp = b[i] / (cosf - x[i]);
num += temp * c [i]

;

den += temp;
}

)

return (num / den);

124

/A**
*

* SOURCE FILE: alphas.

c

*

*

* FUNCTION: int alphas (coef, filter_type,
* filter_order , n)
*

*

* ARGUMENTS

:

*

* (input/output) COMPLEX coef [

]

* Passes the approximating cosine coef-
* ficients and returns the filter impulse
* coefficients.
*

* (input) int filter_type
* Type 1, 2, 3, or 4.
*

* (input) int filter_order
* Number of filter impulse coefficients.
*

* (input) int n
* The number of approximating cosines.
*

*

* RETURN: int: OK
* ERROR
*

*

* DESCRIPTION:
*

* Converts the approximating cosine coefficients
to the filter impulse coefficients based upon
whether the filter is of type 1, 2, 3, or 4.

*

* type 1: odd length / even symmetry
*

* type 2: even length / even symmetry
*

* type 3

:

odd length / odd symmetry

* type 4: even length / odd symmetry
*

* DOCUMENTATION
* FILES: None
*

125

CONSTANTS

:

MACROS
EXPANDED

:

FUNCTIONS
CALLED

:

AUTHOR:

DATE CREATED:

REVISIONS:

OK common.

h

ERROR common.

h

None

query() screen.

c

Scott A. Nichols

17May88

Ver 1.00

vie***/

#include <stdio.h>
#include <stdlib.h>
include "common. h"

#include " screen. h"

include "smath.h"

int alphas (COMPLEX coef[], int filter_type,
int fil order, int n)

{

int i, j

;

double *work; /* temporary work space

if ((work = (double *) malloc(sizeof (double)
* fil_order)) == NULL)
{

query ("malloc error in alphas() M
);

return (ERROR)

;

}

switch (filter_type)
{

case 1:

for (i = 1; i <= n-1; ++i)
{

work[n-l-i] = 0.5 * coef[i].re;

126

work[n-l+i] = work[n-l-i]

;

}

work[n-l] = coef [0]. re;
break;

case 2:

coef[0].re = coef[0].re + 0.5 * coef [1]. re;
for (i = 1; i <= n-2; ++i)

coef[i].re = 0.5 * (coef[i].re +
coef [i+1] .re)

;

coef[n-l].re = 0.5 * coef [n-1] .re;
for (i = 0; i <= n-1; ++i)

{

work[n-i-l] = 0.5 * coef [i]. re;
work[n+i] = work[n-i-l];
}

break;

case 3

:

coef [0]. re = coef [0]. re - 0.5 * coef [2]. re;
for (i = 1; i <= n-3; ++i)

coef [i]. re = 0.5 * (coef [i]. re -

coef [i+2] . re)

;

coef [n-2]. re = 0.5 * coef [n-2] .re;
coef[n-l].re = 0.5 * coef [n-1] .re;
for (i = 0; i <= n-1; ++i)

{

work[n-l-i] = 0.5 * coef [i]. re;
work[n+l+i] = -work[n-l-i]

;

}

work [n] = ;

break;

case 4:

coef [0]. re = coef [0]. re - 0.5 * coef [1]. re;
for (i = 1; i <= n-2; ++i)

coef [i]. re = 0.5 * (coef [i]. re -

coef [i+1] .re)

;

coef [n-1], re = 0.5 * coef [n-1] .re;
for (i = 0; i <= n-1; ++i)

{

work[n-l-i] = 0.5 * coef [i]. re;
work[n+i] = -work[n-l-i]

;

}

break;

default:
break;

} /* end switch */

127

for (i = 0; i <= fil_order-l; ++i)
coef[i].re = work[i];

free (work)

;

return (OK)

;

}/* end alphas () */

128

I

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

SOURCE FILE: firres.c

FUNCTION:

ARGUMENTS

:

RETURN

:

DESCRIPTION:

int fir_response(

)

None

int: OK
ERROR

Determines the FIR filters magnitude response
by zero-padding the X register, which contains
the impulse response coefficients, out to a
power of two and then performs a forward, fast
Fourier transform to find the freguency domain
representation of the filter.

DOCUMENTATION
FILES

:

CONSTANTS

:

MACROS
EXPANDED

:

FUNCTIONS
CALLED

:

None

OK
ERROR
FIR_RESPONSE
CMPLX
RECT

None

get_reg(

)

clear_reg(

)

guery(

)

fft()
check_pow2 (

)

common .

h

common .

h

rolf .h
smath .

h

smath .

h

stackops.c
stackops.c
screen.

c

fft.c
reg.c

AUTHOR: Scott A. Nichols

129

*

* DATE CREATED: 17May88
*

*

* REVISIONS: Ver 1.00
*

*

•a**/

#include <stdio.h>
#include "rolf.h"
include "fir.h"

#define FORWARD 1 /* forward Fourier transform */

/* template defined in fir.h, contains filter parameters */

extern FIR_SPECS fir;

extern double freq_data[] ; /* used when plottng response */

/* reg_len is user adjustable, usually (1024, 2048, etc.) */

extern int reg_len;

int fir_response(

)

{

/*- template in rolf.h, x is a pointer to a ROLF register */

REG *x;
int i;

x = get_reg(X) ; /* x now points to the X register */

x->len = reg_len;
x->type = CMPLX; /* data will be complex after an fft */

x->mode = RECT; /* rectangular format by default */

x->contents = FIR_RESPONSE; /* index of a display msg */

/* */
/* If the x register length is not a power of two, then */
/* set it to the next power of two with zero-padding. If */
/* the register length cannot be made a power of two, */
/* clear x and abort. */
/* */

if (check_pow2 (x)

)

{

clear_reg(x)

;

return (ERROR)

;

}

/* */
/* Since the x register contains the filter coefficients,*/

130

/* it must be at least as long as the filter order. */
/* */

if (fir. order > x->len)
{

clear_reg(x)

;

query ("Error: default register length is too short");
return (ERROR)

;

}

for (i = 0; i <= fir. order- 1; ++i)
x->reg[i] .im = 0;

for (i = fir. order; i <= x->len-l;++i)
{

x->reg[i] .im = 0;
x->reg[i] .re = 0;

}

fft(x->reg, x->len, FORWARD);

/*- the second half of the response mirrors the first */
x->len /= 2;

return (OK)

;

} /* end fir response () */

131

*

*

* SOURCE FILE: stackops.c
*

*

* FUNCTION: None
*

*

* ARGUMENTS

:

NA
*

*

* RETURN

:

NA
*

*

* DESCRIPTION:
*

* This source file contains a number of utilities
* which are germane to stack and register manipu-
* lations in the ROLF. EXE program. Following is
* a terse listing of the functions:
*

* int create_regs(void)
* void free_regs(void)
* REG *get_reg(int)
* void roll_up(void)
* void roll_down(void)
* void swap_reg(void)
* void copy_reg(REG *, REG *)
* void enter_reg(void)
* void disable_roll(void)
* void enable_roll(void)
* char *toggle_lock(void)
* void save_reg(void)
* void fetch_reg(void)
* void bin_stk_f ix(void)
* void clear_stack(void)
* void clear_reg(REG *)
* void disp_stack(void)
*

*

* DOCUMENTATION
* FILES: None
*

*

* CONSTANTS : None
*

*

* MACROS
* EXPANDED : None

132

*

*

* FUNCTIONS
* CALLED : None
*

* AUTHOR: Scott A. Nichols
*

*

* DATE CREATED: 17May88
*

*

* REVISIONS: Ver 1.00
*

*

**/

include <stdio.h>
#include <stdlib.h>
#include "rolf.h"

#define LOCKED /* stack roll is disabled */
#define UNLOCKED 1 /* stack roll is enabled */

/*-- Define some external data. */
extern char *rasg[]

;

static int stack_lock = UNLOCKED; /* let it roll initially*/

/* * /

/* This defines the variables and messages for */
/* displaying the register contents with disp_stack() */
/* * /

static char *locked = "LOCKED",
*unlocked = "UNLOCKED",
*real = "REAL",
*cmplx = "COMPLEX",
*polar = "POLAR",
*rect = "RECT",
*null = "",
*mode

,

*type,
*line = " "

?i n
r

*header = " | Register
j

Length
J

Mode j

"

" Type |\t\tContents \t j",

*format = " j %-2s j %6d
\

%-7s |"

" %-7s
!
%-25s j\n",

*regs[] = {"X" , "Y" ,"Z" , "T" ,"R0"}

;

133

/* */
/* This defines the objects of which the programs */
/* registers consist of. The complex pointer within */
/* such an object must still be allocated. */
/* */

static REG x, y, z, t, rO, work;

/*========== _ «

/

/* Create the complex registers which constitute */
/* the stack. */
/*=.- -aaaaaa- »/
int create_regs(

)

{

x.reg = (COMPLEX *) malloc((unsigned)
sizeof (COMPLEX) * REGLEN);

if (x.reg == NULL)
{

query("Memory not allocated !");
return (ERROR)

;

}

y.reg = (COMPLEX *) malloc((unsigned)
sizeof (COMPLEX) * REGLEN);

if (y.reg == NULL)
{

query("Memory not allocated !");
free (x.reg)

;

return (ERROR)

;

}

z.reg = (COMPLEX *) malloc((unsigned)
sizeof (COMPLEX) * REGLEN);

if (z.reg == NULL)
{

query("Memory not allocated I");
free (x.reg)

;

free (y.reg)

;

return (ERROR)

;

}

t.reg = (COMPLEX *) malloc((unsigned)
sizeof (COMPLEX) * REGLEN);

if (t.reg == NULL)
{

query("Memory not allocated !");
free (x.reg)

;

free (y.reg)

;

free(z.reg)

;

return (ERROR)

;

134

}

rO.reg = (COMPLEX *) malloc((unsigned)
sizeof (COMPLEX) * REGLEN)

;

if (rO.reg == NULL)
{

guery("Memory not allocated !");
free(x.reg)

;

free(y.reg)

;

free(z.reg)

;

free(t.reg)

;

return (ERROR)

;

}

work.reg = (COMPLEX *) malloc((unsigned)
Sizeof (COMPLEX) * REGLEN);

if (work.reg == NULL)
{

query("Memory not allocated !");
free(x.reg)

;

free(y.reg)

;

free(z.reg)

;

free (t.reg)

;

free (rO.reg)

;

return (ERROR)

;

}

return (OK)

;

/* Deallocate the stack. */

void free_regs(

)

{

free(x.reg)

;

free(y.reg)

;

free(z.reg)

;

free (t.reg)

;

free (rO.reg)

;

free (work.reg)

;

}

/* Make one of the stack registers available to a */
/* function. */

REG *get_reg(int reg_choice)
{

135

switch (reg_choice)
{

case X:
return (&x)

;

case Y:
return (&y)

;

case Z:
return (&z) ;

case T:
return (&t)

;

case RO:
return(&rO)

;

case WORK:
return (Swork)

;

default:
query ("Invalid Register");

}

/* Roll the stack up one register. */

void roll_up(

)

{

REG reg;

if (stack_lock == LOCKED)
return;

reg = t;
t = z;

z = y;
y = X;
x = reg;
return;

/*=- »/
/* Roll the stack down one register. */
/* »/
void roll_down(

)

{

REG reg;

136

if (stack_lock == LOCKED)
return;

reg = x;
x = y;
y = z;

z = t;
t = reg;
return;

/* Swap the (X) and (Y) registers. */
/ *==

v

void swap_reg(

)

{

REG reg;

reg = x;
x = y;
y = reg;
return;

}

/* Copy stack register utility. Copies the contents of */

/* regl into reg2. */

/ *==*/
void copy_reg(REG *regl, REG *reg2)
{

int i;
reg2->len = regl->len;
reg2->type = regl->type;
reg2->mode = regl->mode;
reg2->contents = regl->contents;
for (i = 0; i <= reg2->len-l; ++i)

{

reg2->reg[i] .re = regl->reg[i] .re;
reg2->reg[i] .im = regl->reg[i] .im;

}

return;
}

/* Perform an RPN enter operation. */

137

void enter_reg(

)

{

int i ;

if (stack_lock == LOCKED)
return;

roll_up()

;

copy_reg(&y, &x)

;

return;
}

/* Disable stack roll. */
/»= __ _ _ j— — _ »/
void disable_roll(

)

{

stack_lock = LOCKED;
}

/* Enable stack roll. */

void enable_roll(

)

{

stack_lock = UNLOCKED;
}

/* Toggle the lock which enables stack roll. */
/*= »/
char *toggle_lock(

)

{

if (stack_lock == LOCKED)
{

stack_lock = UNLOCKED;
return (unlocked)

;

}

else
{

stack_lock = LOCKED;
return (locked)

;

}

}

/* Save the X register to RO

.

*/

138

void save_reg(

)

{

int i ;

copy_reg(&x, &r0);
return;

}

/* Fetch the RO register to X. */
/ *==*/
void fetch_reg(

)

{

int i;

if (stack_lock == UNLOCKED)
roll_up()

;

copy_reg(&rO, &x) ;

return;
}

/* Binary stack fix up utility. */
/ *==*

/

void bin_stk_fix(

)

{

REG temp;

copy_reg(&t, &y) ;

temp = y;
y = z;
z = t;
t = temp;

}

/* Clear the stack */

void clear_stack(

)

{

clear_reg(&x)

;

clear_reg(&y)

;

clear_reg(&z)

;

clear_reg(&t)

;

return;
}

139

/*== »/
/* Clear a stack register. */
/ *== *

/

void clear_reg(REG *reg)
{

reg->len = 0;
reg->type = REAL;
reg->mode = RECT;
reg->contents = NO_CONTENTS;
return;

}

/*==*/
/* Utility which displays the status of the stack */
/* registers. */
/*==*/
void disp_stack(

)

{

int i ;

printf ("%s\n" ,line)

;

printf ("%s\n", header)

;

printf ("%s\nH , line)

;

if (rO.type == REAL)
{

type = real;
mode = null;
}

else
{

type = cmplx;
mode = (rO.mode == RECT ? rect : polar);
}

printf (format, regs[4], rO.len, mode, type,
msg [r . contents])

;

printf ("%s\n", line)

;

if (t.type == REAL)
{

type = real;
mode = null;
}

else
{

type = cmplx;
mode = (t.mode == RECT ? rect : polar);
}

printf (format, regs[3], t.len, mode, type,
msg [t . contents])

;

140

if (z.type == REAL)
{

type = real;
mode = null;
}

else
{

type = cmplx;
mode = (z.mode == RECT ? rect : polar);
}

printf(format, regs[2] / z.len, mode, type,
msg [z . contents])

;

if (y.type == REAL)
{

type = real;
mode = null;
}

else
{

type = cmplx;
mode = (y.mode == RECT ? rect : polar);
}

printf(format, regs[l], y.len, mode, type,
msg [y. contents])

;

if (x.type == REAL)
{

type = real;
mode = null;
}

else
{

type = cmplx;
mode = (x.mode == RECT ? rect : polar);
}

printf (format, regs[0], x.len, mode, type,
msg[x. contents])

;

printf ("%s\n", line)

;

return;

141

A NEW METHOD FOR THE DESIGN OF FIR DIGITAL FILTERS

by

SCOTT ANTHONY NICHOLS

B.S. Kansas State University, 1986

AN ABSTRACT OF A THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Electrical and Computer Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1988

ABSTRACT

Optimal FIR filter design procedures are time consuming to

implement and compute. Standard frequency-sampling methods

are efficient but lack control over transition band edges

and often yield unsuitable characteristics at band-edges.

This paper presents a procedure by which a suboptimal

filter is obtained in one pass of the design algorithm.

Control is maintained over the transition band edges and

band-edge response behavior is smoothed by acknowledgment of

ripple in pass-bands and stop-bands. This procedure makes

use of Lagrange interpolation and an N/2-point DCT to obtain

the filter coefficients. The method is faster than other

known FIR design methods and often produces a usable filter

when the frequency sampling method fails.

r.'

