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INTRODUCTION

A general goal for analog computer simulation of transfer

functions is the simulation of an arbitrary transfer function by

a single operational amplifier; in this report special techniques

limited to RC transfer impedances are developed.

Development of the state space approach to transfer

function simulation is made and the number of amplifiers re-

quired is determined. The operational eunplifier is characterized

as a computing element, and a matrix approach is used to show

the effects of utilizing two port networks as input and feedback

elements. Having developed a general transfer impedance approach

to the simulation of transfer functions, simulation of specific

functions is attempted, but only achieved to the second order

case.

Three appendices contain proofs, calculations, and an

equivalent circuit development of single operational amplifier

transfer function simulation which parallels the matrix approach

given in the body of the report.



STATE SPACE APPROACH TO TRANSFER FUNCTION SIMULATION

The most widely used method of transfer function simula-

tion is the classical state space approach. This technique has

the advantage of being both systematic and simple to apply; how-

ever, implementation requires a rather large number of opera-

tional amplifiers for a given transfer function simulation.

Simulation of the transfer function

E a^s^

T(s) = -^ bn " ^ <^)

I b.sJ
j-o 3

will be shown to require in general f(5+3n)/2l amplifiers for

simulation by the state space method (1,3).*

A general state space development will now be made.

Consider Fig. 1.

eo -
I (ii-bn-i e^) (2)

Di(s) - ^.
©i h^.i + s

(3)

Figure 2 indicates the extension to the second order case.

ei 1 1
(4)

1 + bn.2 TiTCbn-i+s)

DjCs)

bn-2 * ^n-l s + s- (5)

•Heavy brackets indicate the greatest integer function.



We are generating a denominator polynomial whose co-

efficients are determined by the feedback elements. A proof

will now be given that this pattern continues in general.

Proof

:

Let Dn(s) -_1 ^^,^
'

^g,

Z a^s^ '

i«»o

Referring to Fig. 3 we see:

1 + 1 Dn(s) k + s E aisi
i=o

n
(i+l)k + I a^s

i»o

(8)

Dn+l(s) - 1
^gj

k + aoS + ais-"- +. . .+ a^^s'^"''^

°n*i^^> "H?r—

:

(10)

J bjsJ
j-o

where: bQ » k
bj « aj-i j>l Q.E.D.

We have shown that simulation of the polynomial

Dn(s) » k
bo + ^1«^ +• • .+ bn-l«""^ + b""

^^^^

is performed by the block diagram in Fig. 4. Such a transfer

function can be generated by "patching" Pig. 4 on an analog

computer.

Consider now the block diagram induced by an arbitrary

numerator polynomial N^Cs). Referring to Fig. 5 we see that:



Fig. 6 indicates the extension to the first order case:

It is seen that an arbitrary numerator polynomial is

being generated; its coefficients correspond to the feed forward

elements. A proof will be given that this continues in general,

? . 1

Proof: Let B„(s) = n^3> » i»o
gn+l gn+1 (14)

Generating Bn+i(s) by the block diagram in Fig. 7.

Bn+i(s) - 1° - fn±l + °n(s)

®i «

n

I a^s^

Bn+i(s) = i=2 = ^n-n(3)

gn+2 gn+2 Q.E.D.

Considering the denominator and numerator generation

procedures, and bearing in mind that an operational amplifier

possesses the sign inverting property, we obtain the general

computer diagram shown in Fig. 8. This diagram will generate

the transfer function



Tn<s> ° ^ ' bn - 1 (16)

j«o

Careful study of Fig. 8 shows that n integrators, n/2

inverters, and 2 summing amplifiers are required for n even;

for n odd 2Ii inverters are required with the same number of

integrators and summing amplifiers. A tabulation of this for

several values of n makes it apparent that in general f(5+3n)/2l

amplifiers are required for simulation of T^Cs).
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Fig. 1. Basic building block for state space denominator
generation.
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Fig,. 2,
.
Block diagram for generation of second order
denominator by the state space approach.
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k

Fig.. 3. Block diagram to generate n+1 order denominator
by the state space approach.
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Fig, k. Block diagram for generation of denominator of
order n by the state space approach.
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Fig. 5. Basic building block for state space niimerator
generation.
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Fig. 6. Block diagram for generation of second order
numerator by the state space approach..
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Figo 7. Block diagram for generation of n+l order numerator
polynomial,.

Fig.. 8. Computer diagram for simulation of general transfer
function of order n.



f r

ONE AMPLIFIER REALIZATION OF TRANSFER FUNCTIONS

Transfer function simulation by the state space approach

uses simple input and feedback impedances, but requires a large

number of amplifiers.

Recalling that io/ei -Zpg/Zi it would appear that a

more economical alternative would be to utilize more complicated

input and feedback impedances and fewer amplifiers. For purposes

of analog computation, however, the only building blocks available

are resistors and capacitors (Recalling that a 1 per unit (pu)

resistance = 1 megohm, a 1 pu capacitance = 1 microfarad, and a

1 pu inductance » 1 megahenry, it becomes apparent why such a

limitation must be imposed)

.

A characteristic of RC driving point impedances is that

all poles and zeros must fall on the negative real axis (4)

;

this places severe restrictions on the class of transfer fvinctions

which can be simulated. In this report an investigation is made

of the feasibility of utilizing RC transfer impedances as the

input and feedback impedances of an operational amplifier. The

goal, which was only partially achieved, is simulation of a

prescribed transfer function utilizing only a single operational

amplifier.
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OPERATIONAL AMPLIFIER CHARACTERISTICS

Consider the operational amplifier given in Pig. 9. The

equivalent circuit for this amplifier is given in Fig. 10 for

the following ideal aunplifier assumptions:

1) The ideal amplifier's input impedance (Z. )

is infinite. ^"

2) There is no coupling impedance between output
and input of the ideal amplifier. This is the
isolation property.

3) The output impedance is I/Yq and the linearily
dependent generator is proportional to yeg.

Straightforward, but tedious, calculation (see appen-

dices I and II) yields the following equations:

e„ - e. ^1^2 * YoYl

- . - Yl (Y2-WY0)
O i Y + yY^Yj ^^^^

h^'^z
out y + yY^Y^

where: Y^^ - l/Z^, Y2 - VZpg, y - YiYj+Y^Y^^+YjY^

(19)

Note that:

lim eg "

(17a)

lim e^ Y^ Zp3

ii
" " Yj - - Z^ (18a)

lim Zq^^ - (19a)
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It is worthy of mention that a parallel development may

be made in which the ideal aunplifier is represented by a voltage

controlled current generator (-gCg) in parallel with an impe-

dance (Zq) . It seems obvious that in the limit as y-*-**, g and

Zq would likewise become infinite. This mode of thinking will

be useful in a later section where a matrix derivation of trans-

fer characteristics will be made.
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^F3
r-vAWW—

I

IDEAL
• AMPLIFIER

Fig, 9» Operational amplifier as used for computation.

ho

^1 ^FB
sAAAAi—o vAAAAA " ?-

0

.-zye.

e.

Figc 10, Equivalent circuit for Fig. 9.
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ANALOG COMPUTATION AND THE TRANSFER MATRIX

Consider the tremsfer matrix of the two port network

shown in Fig, 11 with given voltage and current conventions.

The linear dependence is given by

El » AE2 + Bl2 (20)

II « CEj + Dl2 (21)

or in matrix form it is

(eA /a B I /E

I^riCDMl^' <22)

Utilizing two port networks as input and feedback im-

pedances for an operational amplifier, a simple relationship

will be established between the transfer matrices of the input

and feedback networks, and the transfer function generated.

While a purely matrix approach will be used in this section,

identical results can be generated by considering equivalent

circuits. This is done in Appendix III. The matrix approach

is more rigorous; the equivalent circuit approach is included

for those who desire a physical "feel" for the problem.

Figure 12 indicates the situation under consideration,

and under the normal ideal amplifier assumptions this reduces

to Fig. 13. For Fig. 13 it is seen that:

^1,

^2

gei + i,/ <23)
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1

1
ei a b

c d tl
a b
c d

\o o
ti (24)

'l-bg

,
-dg Ml

a b
c d II (25)

e-i

1-bg I dg 1-bg
la b
ic d

ii
1 [ a b

1-bg [g+c d

il

?2
1^2,

(26)

(27)

We now cascade an input network onto the left to obtain

ei
1-bg

:; :|(
a b

g+c d II (28)

Setting i2«o yields the open circuit voltage

62 1-bg
aa + e(g+c)

(29)

Since ad-bc = 1 in a passive network, the above equation becomes

^ „ ad - b(g+c)
e^ " ao + 6 (g+c)

If ad<<b(g+c) and ao<<e(g+c) then

(30)

Ĥ
h

(31)*

This last result is analogous to the well known result (Fig. 9)

o

^i

^FB
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but we are not now working with driving point RC impedances,

We have acquired a richer source for generation of transfer

functions

.
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Fig, 11,, A linear two port network.

IDEAL
AMPLIFIER

Fig, 12. Operational amplifier with two port networks
as input and feedback impedances,.

Fig, 13, Equivalent circuit for Fig, 12.
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ANALOG COMPUTATION AND THE AIDENTITY

Use of transfer impedances enriches the nvimber of trans-

fer functions which can be constructed on a single operational

amplifier. An attempt will now be made to apply this method to

specific cases.

Of considerable interest in the study of servo systems is

the class of functions known as approximate identities (2) , here-

after referred to as aidentities. An approximate identity of

order p, (1 ),is defined as a ratio of polynomials A(s) such

that:

n
I a^s^

*'=' = '-^ 7 (32)

E b^s^
i=o

where a^^ « b^ for i<p<n+l<m+l. That is, the first p (33)

successive pairs of coefficients of si are equal.

We shall now develop a network for the analog computer

simulation of aidentities by transfer impedances.

Lemma:

For the RC ladder network in Fig. 14 the components of

the transfer matrix

/«n Sn
\

Yn «n) <34)

are polynomials in 1/s.^

An induction proof will be made. The assertion is obviously

true for n - 1 (Fig. 15). Assume o^, Bn' Ynr «n' are poly-

nomials in 1/s; cascade on an RC "L" section (Fig. 15).



Yn+1 *n+l Ynd/s) 6n(Vs)
fl 1/sC \

1/R 1+1/sc)
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(35)

«n+l " On^Vs) + (1/R) B^^l/s) " "n+l^^/^^ (36)

Pn+l = (l/sC)a^(l/s) + (1 + 1/sC) B^d/s) -6^^.1(1/8) (37)

Yn+1 =Yn + (VR) «^ = Yn+i<Vs) (38)

«n+l = (VsC) Yn^Vs) + (1 + 1/sRC) B^^d/s) =6^+1^^/^^ ^^^^

Q.E.D.

The element of primary interest is e^^. It can be shown

i«o

-1
(40)

where n is the number of capacitors present in the network of

Pig. 14.

Let us now place a unit resistor in parallel with 3
n

(The equivalent circuit approach is the best viewpoint to take

here; refer to Appendix III). This physically corresponds to

the network of Fig. 16.

'PB
KM

1 + en
(41)

i«o
PB n^

I an_isi + (1+a ) s"
i«o

This is an aidentity of order n.

(42)
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It is now obvious that the network of Fig. 16 when placed

in the feedback loop of an operational amplifier having Z- = 1

will generate aidentity transfer functions. For practical appli-

cation we seek a simple relationship between the component values

of Fig. 16 and the coefficients of equation (42); with this as a

goal we investigate a specific aidentity.
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^(—pH^ « « o

Fig.. Ih. Network for P(l/s) generation.

C

R

Fig.. 15. Basic component of Fig. 1^.

'nAAAAV

f-H^ o • « ^f

Fig.. 16. Network for aidentity generation..
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THE RAULT FUNCTION

There Is a theorem developed by Reza which states that

if A is a positive real function/ and B is defined by

1 - B
1 + B

? /I - a) k

J Pk rr-A
k=o » '

(43)

where n
o<pj^<l, I

p,^
= 1

k=o
(44)

then B is a positive real function. The proof is elementary

and will not be presented.

Consider a special case of this theorem where:

nl - = L. n
2" i!(n-i): 2" U (45)

Therefore:

1

r +
B
B

1

2"

1

1 + A

1 -

n

1 - A
1 + A

Solving for B yields

B 1 -
1

rr-A
n

^Mr^^r

(46)

(47)

(48)

The simplest non-trivial positive real function

possible for A is

A = 1/s (49)
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This implies that

B (s) = (^-^1)" - s"
(50)^^ ' {s+l)n + gn ^^0)

For the remainder of this report this function shall be

referred to as the Rault function of order n (2) . It is obvious

that since the numerator and denominator of B (s) differ only in

the s" position, Bn(s) is an aidentity of order n. By the bi-

nomial expansion we may write Bj^(s) as

n-1

x=o' '

Bn<=' - i=f-: (51)

+ 2s'^

Let us investigate the pole and zero locations of this

function.

Pole locations:

(s+l)" = -s^ (52)

(s+l)^-e ^^^k-D'T ^n^ k„ 1^2,3. . .

Therefore: (s+1) = e j (2k-l)y s, k = 1,2,3. . . (53)
n

Let 6 » ^^^"^^^
, k » 1,2,3. . . (54)

sj^ - =^ra <55)
1 - e3 9

(1-cose) - j sin e (56)
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= cos Q - 1
j

sin e ^^^j

(1-cos 6)2 + sin^ e (1-cos 6)2 + sin^ 8

But:

(1-cos 6)2 + sin2 e = 2 - 2cos 6 (58)

Therefore:

1 J. -; 1 sin 6 ,^„.
^k ' -

2
" ^ 2 (cos 6)-l ^59)

Where

A similar development shows that the zeros are:

^ 1 J. -; ^ sin * ,^^.
^q ° - 2

" ^ 2 (cos »)-l <60)

= ^ / q •= 1,2,3. . . (61)

The Rault function is unusual in that all its poles and

zeros fall on a line parallel to the imaginary axis and inter-

secting the negative real axis at - 1/2.
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SIMULATION OP THE RAULT FUNCTION

As a specific case of single operational amplifier simu-

lation of transfer functions the Rault function will be simulated.
- V

The Rault function of order one is :
'

B^{B) _1
+ 2s

(62)

Consider the network of Fig. 17 (a degenerate case of

Fig, 16). Using this as a feedback network for an operational

amplifier with Z^ » 1 (Fig. 9).

- S(s) —
1 + sCi

(63)

Setting C, * 2 the Rault function of order one is ob-

tained up to a sign by a single amplifier.

The Rault ftinction of order two is

B2(s) - 1 -f 2s
(64)

1 + 28 + 2s''

The feedback network of Pig. 18 possesses the following

transfer matrix:

a b\ /I 1/bCA /I oi

Ic dl" lO 1 ) ll/R li

1 l/sC2\

\o 1 I

(65)

i + 1 A- r, Jk-J\. jA
sRCi sC2 \?- * sRCiJ* sCjL

/R

(66)

sC.
+ 1

Therefore

:

02(8) k * k]
''

RC1C2 s
-2

(67)
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Placing a unit resistance in shunt with the top of the

Tee network in Fig. 18 (see Appendix III) gives the following

result:

Ik ^ y

e2vo, - —r-
n Tj (68)

RiCiC- C, v+ Co s + s2

R1C1C2 + 2 ~

R1C1C2 + 2
Ci ^ C2 s + 28^

(69)

Setting

R1C1C2 = 1 (70)

and

Cf + q = 1 (71)

yields the Rault function of order 2 (up to a sign) . Equations

(70) and (71) are satisfied if:

Ci = C2 = 2 (72)

Rl = 1/2 (73)

The appropriate computer diagram is shown in Fig. 19.

The Rault function of order three is;

D / > 1 + 3s •»• 3s^
3,(3) =

(74)^ 1 + 3s + 3s2 + 2s3 ""
'

Computation similar to that shown for the second order

case, when performed on the network of Fig. 20 yields
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+ 2
r 1 ;_1 1_\ 1 /I 1_\1 , 1_ 1- L. 2
[r2C3|Ci+C2)+RiCi 102+03) J

8+2 C^+Cj+Cj »
B /a)..

R1R2C1C2C3

*C^ X\^v#^ ^9^1 * 2[^(4+e^|+R^(q+§j)]82 + 28-

We agree to neglect the sign and now equate coefficients

of equation (75) to those of (74)

.

1 1

2 R1R2C1C2C3 (76)

111 111
2 - R2C3 C^ + Cj + R^ q * q «^^^

3 111
2 - CT + Cj + Cj (78)

Since we have three equations in five unknowns it would

seem that a solution for three elements in terms of the other

two would be a simple matter; a demonstration will be made that

this is not the case.

Pick Rl - 1/2 Ci - 2 (79)

We thus obtain:

3 , 1 ^ 1 _ + L. + L.
2 2R2C3 R2^2^3 ^2 ^3

(81)

1-1 1

C^ + Cj (82)

Substituting equations (80) and (82) into (81) yields

3 1 3
2 2R C, + 2 (83)

Which is a contradiction.
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Similar contradictions were obtained for a large number

of trial values for R^^ and C^* While it has not been proven

that no solutions exist to equations (76), (77) and (78), the

existence of such solutions seems unlikely. Our method of

simulation has failed for the third order Rault function. It

was also established that the method fails for higher order

Rault functions.
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If

Fig. 17. Network for 1. generation.

i^

C2

R

/^Fig. 18. Partial network for I2 generation.

Fig.. 19.. Computer diagram for Rault function of order two.

-^WAAA

Fig, 20. Network for ^^ generation.
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A PATTERN SEARCH

Simulation of the Rault aidentity was attained up to

the second order case by appropriate networks of the type given

in Fig. 16 having R^ » 1/2 and all C^ = 2 for all i. Third

order aidentity generation with the same values yields

«o 1 + 4s + 3s^'
2 ? (84)

**i 1 + 4s + 3s^ + 2s^

which differs from the Rault function by only one coefficient.

Pole-zero locations of transfer functions generated by semi-

ladders of the type shown in Fig. 16 with R^^ = 1/2, C^ » 2 for

all i were investigated for up to the ninth order case by use

of a digital computer. Partial results are given in Table I.

All zeros lie on the negative real axis, and higher order net-

works merely place more and more poles on the negative real

€ucis. It is suggested that an extensive investigation of RC

transfer impedances is required in order to determine limita-

tions on pole zero locations.



30

Table 1. Pole-Zero Locations

5-f2.08-»-1.58^

S+a.Os+l.Ss^+s^

Zeros Poles
8- -.333 8 - -.306
8- -.999 8 - -.597+J1.131

5-t-3. 084-5. 08^-l-2.0s^

5+3 . 08+5 . (Pa2+2 . Os"^+s^

Zeros Poles
8 » -.293 8 -.310
8 « -.500 8 -.407
8 - -1.707 8 - -.641+J1.882

5+4.08+10.58^+10.08^+8.58^
5+4 . Os+10 . 58^+10 . 08-^+2 . 5s^+s^

Zeros Poles
8 - -.276 8 - -.271
8 » -.381 8 - -.464
8 - -.724 8 - -.499
s » -2.618 s = -.632+J2.747

5+5 . Os+18 . 08^+28 . 08^+17 . 5s^+3 . Os^

5+5. 0s+18.0s2+28. Os^+17. 5s*+3 . Os^+s^

Zeros Poles
8 « -.268 s -.272
8 -.333 s " -.317
8 - -.499 s » -.572+J3.716
8 - -.3.732 8 - -.633+J.097
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INTENTIONAL FEEDBACK

Use of an RC feedback network and a single amplifier has

failed to produce the desired results. The configuration we

have been considering is shown in Fig. 21, and gives the follow-

ing transfer functions.

e_ = - Xe^ w (85)

Consider the network of Fig. 22 which yields the follow-

ing transfer function.

eo - -(Ke^ + yv) (86)

Two obvious cases are:

1. V = e^ (Feedback)

2. V ej^ (Feedthrough)

The second case is discarded as representing merely a

modification of the input network. Consider case one:

e^d + m) » - Ke^

«o

©i 1 + y

For this to give us an aidentity le and y must be identi-

cal polynomials in 1/s. It is apparent this is what we have

been doing all along by the inclusion of the unity feedback

resistor; nothing is gained by this approach.
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Fig.. 21.. Operational amplifier with conventional transfer
impedance feedback..

Fig.. 22. Two input system for investigation of intentional
feedback..
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CONCLUSION

The state space approach to transfer function simulation

is svunmarized and the operational amplifier characterized as a

computational device in this report. A method has been developed

for single amplifier simulation of high order transfer functions

by use of the transfer impedance of a two port network.

The specific case of a single operational amplifier

simulation of the Rault aidentity of arbitrary order is attempted,

but is only achieved up tc the second order case.

It is felt that more extensive investigation of the trans-

fer impedance, 6, is required to determine what constraints must

be placed upon it when considering only RC networks. The prob-

lem of transfer function simulation on a single amplifier is

reduced to the synthesis of the transfer impedance 8, but little

can be said in general about transfer impedance synthesis.
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APPENDIX I

Millman's Theorem

A useful tool for the investigation of operational am-

plifier characteristics is Millman's Theorem:

If the circuit of Fig. lA is given then

n
E e-Y-

E ^ = ^^ ^ (lA)
out n

Z Y.

i=t1

Proof:

Assume EQ^t to be true for a given n. Consider Fig. 2A

which is equivalent to Fig. lA with one more branch added.

Applying Norton's Theorem to Fig. 2A, Fig. 3A is generated.

Parallel admittances and current generators are now combined

in the normal fashion, and after taking a Thevenin equivalent

we arrive at the network shown in Fig. 4A. We see that e .

is given by

n

.\ ^i^i

^out = ^ (2A)

iil
"^

and the theorem has been proven.
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e^Y ^2

9 t
;

'out

Fig.. lA. Network for Millman's theorem.

n

n
Z Y.

i=l ^

n
Y= Z Y.

i=l
^ n+1

n+1

'out

Fig. 2A.. Extention of Fig. lA. to n+1 case..

n
i_= Z e^Y
n .

i=l
1-^1

n
Y= I Yj

1=1
Yn+1 'out

I

in+l~^n-fl ^n+l

Fig.. 3A^ Norton equivalent of Fig^ 2A..

e=

n

1=1
n

R= 1

n
Z Yi

1=1

'out

Fig.. ^A. Thevenin equivalent of Fig. 3A.
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APPENDIX II

Derivation of Ideal Operational Amplifier Characteristics

Consider Fig. 10 and apply Millman's Theorem (see

Appendix l) :

_ ejYi + (-yeq) ^2 + ^o e^Yi (Y2 + Yp) -yegY2Yo
eg - _ (3A)

^1 *H* ^o
1 '2 o' 20

Where: Y^ = 1/Z. , Y^ = l/Z^g, Y = Y^Y2 + Y^Y^ + Y2Y^

^1^2
, ^

e = ^i 1^1 -^ ^2] - ^^^a yp ej (Y^Yz) - ye^Y^ (Y^ + Y2)
=Q =

^ (4;^j

^1^2 ^1^2 + Yq (^1 + Y2)
+ Y^1+^2 °

Therefore:

e = gj (Y1Y2 + YqYi) - pe^ Y2Y„

^o
= ^i ^^1^2) - ^^g (^o^l) - ^^a ^0^2

(5A)

(6A)

Solving for e :

^g
'1

-H III2I0L ei
^^1^2 -^ ^o^l)

e = ^i ^^1^2 -^ yp^l ^

^ Y + pY2Y^

(7A)

(17)
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Also:

.. = .[ Il^
Y (Y + yY2Y^)

Zll]
(8A)

eo - e
L ^ Y (Y + u YoY^) J

(9A)

But:

(Y. + Y.) (Y + Y„) = Y Y + Y Y. + Y Y + Y '

1 2 o 2 12 o2 lo 2
= Y + Y^^ (lOA)

Therefore:

e© = ^i
^1^2 _ W YpYl (Y + Y2 )

Y Y (Y + V YqY2)
(llA)

e = e-
o 1

r^i (^2 - ^ ^o>t

Y + M Y^Yo"2
(18)

Using the same model (Fig. 10) and assximptions we shall

calculate the output impedance of the ideal amplifier. Placing

a voltage e across the output as shown in Fig. 5A it is seen that;

^g
=

L^i -^ ^2
(12A)

1 = e 1+ (e + peg) Y^
lYi -H Y2.

= e r YiY

L^i + Y2
+ Y„ + 2_Q_

7 _ e _
^out ~

i
~

Yi + Y2J

1

(13A)

Y1Y2
+ Y^ +

^ ^2^0 (14A)

Yi + Y2 -o Y^ + Y^
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1^2 "^ Wl * ^o^l " ^"2"o
out ~ y v^ + Y Y. + Y^Yt + pY^Y,

^"''^^^

^1 + ^2
' =» — (19)
'out Y + yY2Yo ^ '
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g

Fig., 5A. Kodel for output impedance calculations.
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APPENDIX III

An Equivalent Circuit Approach
to Analog Transfer Functions

Any two port network may be represented mathematically

as a T or pi equivalent, although, of course, the Tee and Pi

elements are not necessarily physically realizable.

The shunt network in Fig. 6A possesses the transfer

matrix

:

A B

C D

1

lY 1
(16A)

For the series network in Fig. 7A:

(17A)
'A B

IC D

1 Z

1/

Straightforward cascade operations on these basic build-

ing blocks yeild transfer matrices for the Tee and Pi equivalents.

For the Pi in Fig. 8A it can be shown that

B - Zj (18A)

Consider again the transfer function generated by Fig. 12,

and think of the pi equivalent of the two networks (Fig. 9A) . If

w is large equations (17a) , (18a) , and (19a) apply, e^^ is thought

of as an ideal voltage source (or take a Thevenin equivalent of

the actual source shunted by Z , and let I" 6 + Z-,„™.) , there-

fore Zj^ may be neglected (or included in S) . Z^ and Z may

be neglected for large y as e -^O , Zj^ appears across an ideal
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voltage source (m large implies Z ^^ -»-0) and may also be ne-

glected. Therefore, one can conclude that

®o ^FB b

ei -
Zi

- - 8 <31)
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ei e.

Fig. 6A,. Basic parallel network..

e.

Fig.. 7A.. Basic series network.

t
e.

A/WW-

Fig.. 8A. a pi network.

Fig,. 9A, Pi networks used as input and feedback elements of
an operational amplifier
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The goal of this report is the simulation of a specific

transfer function class by a single operational amplifier with

two port networks as input and feedback impedances.

The report gives a detailed development of the state

space approach to analog computer transfer function simulation

with attention given to the number of amplifiers required.

From a straightforward analysis of an operational amplifier

equations are developed which define the amplifier as a com-

puting element. A matrix approach is used to derive a rela-

tionship between the transfer impedances of the input and feed-

back networks and the transfer function thus generated. Turning

to the specific case, a network is developed to simulate the

general class of transfer functions known as approximate

identities. The Rault function of arbitrary order is derived

and simulation of this Rault function is attempted. This simu-

lation is only successful up to the second order case. The re-

port indicates that further investigation is required to deter-

mine restrictions to be placed on transfer impedances when only

RC networks are permitted.


