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NOMENCLATURE

Area of liquid column

Total area of heat transfer surface

Area of vapor column

Wave velocity

Critical heat flux

Heat capacity at constant pressure
Diameter of vapor jet flow

Frequency of bubble release from heater surface
Gravitational acceleration

Universal gravitation constant

Convection heat transfer coefficient
Enthalpy per unit mass of saturated liquid
Enthalpy per unit mass of saturated vapor
hv—hL or the latent heat of liquid
Electric current through heater element
Kutateladze empirical constant

Thermal conductivity

Molecular weight

Number of active nucleation sites on bubbling surface
Liquid pressure

Prandtl number

Heat generation rate per unit volume

Heat flux from boiling

Critical heat flux

Critical heat flux after Kutateladze

Heat flux from conduction

IIL



(Q/A)nc Heat flux from natural convection

(Q/A)op Operating heat flux
@/A)g,,,,  Total heat flux
R Universal gas constant
Rh Bubble departure radius
R0 Electrical resistance of heating wire at 0°C
RB Resistance of precisive shunt resistor
aya Resistance of heater element and connections
Rth Theoretical resistance of the test wire
Rw Resistance of the test wire
b Radius of active site on heating surface
I'b Bubble radius
L The radius for which N would be one per unit area of
heating surface
'1‘L Liquid temperature
TB Saturation temperature
Tv Vapor temperature
Tw Heater element temperature
VL Liquid Velocity
VME Average volume of microlayer evaporated
VP Voltage of the battery
Vv Vapor velocity
Vw Voltage across heater element and connections
Vpressure Transient voltage signal from the pressure transducer
o Thermal diffusivity
B Three phase contact angle in Table 1.
é Bubble thermal boundary layer thickness

v



Accommodation coefficient, dimensionless
Wave amplitude

Wave length

Viscosity

Liquid density

Vapor density

Surface tension between liquid and its vapor
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I. INTRODUCTION

New developments in engineering applications often require that
heat be transferred under not only steady-state, but also transient
conditions. For example, during the operation of light water nuclear
reactors, heat generated in the fuel rods is increased exponentially
as the reactor is started up or is required to change power levels
within a short time. If the period is significantly shorter than that
at which the coolant can transfer all the heat generated in the fuel
rods, the fuel rod cladding may be exposed, for short periods, to nucleate
or to film boiling and rapid temperature fluctuations. Rapid decom-
pressions are potentially more serious. If a reactor primary coolant pipe
ruptures, the high pressure inside the reactor vessel will be released
to the atmosphere in seconds. The coolant becomes superheated rapidly
which in turn induces flashing throughout the reactor core and alters
the local heat transfer mechanisms. An accurate knowledge of the boil-
ing behavior during pressure transients of varying periods is, therefore,
necessary for the designer to estimate the worst possible heat transfer
during normal operation or abnormal occurrences.

Bolling heat transfer has been studied comprehensively for several
decades. The majority of previous analyses and experiments have been
concerned with steady-state, pool boiling. Most conventional applications
of boiling processes involve steady-state phenomena, in which the liquids
are at a certain pressure and only slow, incremental changes in heat
flux are encountered. As a result of this extensive research, there ére
numerous equations, either experimentally or theoretically derived,
available for the prediction of steady-state nucleate boiling heat
fluxes and critical heat fluxes under various thermodynamic conditions

and with different solid/liquid combinations.



Boilling heat transfer during both power and pressure transients
has been studied more recently. Most effort has been devoted to
power transients because of their more frequent occurrence in light
water reactors. Empirical correlations have been developed which
predict the transition from nucleate to film boiling as a function of
transient power period, iﬁitial heat flux, and thermodynamic conditions.
Pressure transients, on the other hand, have been studied only recently
because of the increasing concern about the Loss of Coolant Accident
(L.OCA). However, no systematic study has been performed.

Power transient studies to date have reported that if the transient
time constant is longer than about 100 milliseconds, the peak heat flux
during the transient can be predicted adequately by steady-state con-
ditions. 1If, however, the time constant is shorter than 20 milliseconds,
the heat flux during the transient may reach a higher value than that
predicted by steady-state correlations before the boiling transits
from nucleate to film boiling. It has been observed that even under a
step increase in power, nucleate boiling always precedes.the transition
to film boiling. Pressure transients have been much less thoroughly
studied. Investigations in rod bundles have been performed more to
provide design information rather than fundamental knowledge. In view
of the few studies of relatively slow pressure transients, it has been
suggested that the critical heat flux can be predicted with no signi-
ficant errors by steady-state correlations. But the results of recent
and more basic research into the heat flux and transient bubble growth
indicate that the heat transfer mechanisms may be quite different.
Because of the paucity of data on this topic, no solid conclusions have
been made about the actual effects of pressure transients on boiling

heat transfer.



Accordingly, as a first step in a comprehensive research program
the effect of very rapid pressure transients on boiling heat transfer
has been studied. The effects of two parameters, temperature of bulk
liquid and initial heat flux level, on the temporal variation of heat
flux and wire temperature are investigated during the depressurization
of water from 760 to 420 torr in approximately 10 milliseconds. The
review of pertinent literature, design of experiments, and experimental

results are discussed in turn in the following sections.



II. LITERATURE REVIEW

In this section, steady-state boiling will be discussed briefly
and applicable Critical Heat Flux correlations will be reviewed. Sub-
sequently, critical heat flux during power transients and decompressions

will be covered.

A. The Mechanism and Current Theories of Steady-State Pool Boiling

Steady-state boiling heat transfer studies have shown conclusively
that different levels of wall superheat, the wall temperature excess
above the saturation temperature, result in very different heat transfer
phenomena, which are fundamental to the understanding of the boiling
mechanism. The existence of several regimes of boiling was first clearly
discussed by Nukiyama (41) in 1934 and followed by many papers. A
typical steady-state boiling curve is shown in Fig. 1. The entire
curve is generally divided into four regionms: free convection, nucleate
boiling, transition, and stable film boiling regions followed by £ilm
boiling with radiation augmentation. Nucleate boiling is characterized
by the formation, growth, and detachment of vapor bubbles in the liquid
near the heater surface. It results in a sharp increase in heat flux,
but only a moderate increase in surface temperature. At low values of
wall superheat, bubbles are far apart and are nearly independent of one
another. As the superheat increases, more nucleation sites appear and
bubbles form more rapidly. At high superheats, no discrete bubbles can
be seen as they interfere with one another and unite to form bigger
vapor patches. As point B is approached, a further increase in wall
superheat will cause the heat flux to decrease since all heat must be

transferred through a vapor layer. This is called transition boiling.
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Heat transfer during this region is unstable. Part of the surface is
covered by vapor film, the rest is still undergoing stable nucleate
boiling until the superheat is increased high enough to cause the
coalesced bubbles to form a layer of vapor film covering the entire sur-
face. This is called film boiling. The critical point B is known
widely as DNB - depature from nucleate boiling, or the burnout point,.
Hereafter, this point will be referred to as the boiling transition and
the heat flux at this point as the CHF - critical.heat flux - as used
most commonly in recent literature.

There are several plausible physical explanations for the high rate
of heat transfer in nucleate boiling. Earlier researchers tended to
focus on the agitation induced by the bubble formations on the heater
gsurface. For example, Rohsenow and Clark (45) proposed that the bubbles
behave as agitation agents which increase the heat transfer. This
proposal has been studied by Robinson and Katz (43), by Grose et al.
(19), and by Mixon et al. (38). These experiments showed that the
bubble agitation does increase the heat transfer, but the heat fluxes in
these studies were in the lower range of nucleate boiling. Other
mechanisms which are not substantially different from the above include
that of the "bubble action," whereby the bubbles are assumed to push
the superheated liquid layer away from the heater surface (17), and the
mechanisms which explain the high heat flux by the increased turbulence
imparted to the boundary layer by the growing bubbles (21, 25).

More recently, latent heat transport mechanisms have been put forth
by several investigators. Moore and Mesler (39), in a pioneering experi-
ment, provided new data explaining the mechanism by which latent heat is

transported away from the heated surface. A fast response thermocouple



was used during the nucleate boiling of water. Surface temperature
drops of 11 °C to 16.7 °C within 2 milliseconds were observed indicating
a rapid extraction of heat during a very short time. The authors suggested
that there is a thin liquid layer underneath the growing bubbles and
that the evaporation of this layer into the bubbles brings the surface
temperature down during bubble growth. Further studies of this model
have shown that it is insufficient to explain the very high heat flux
(54). Most recently, Kirby and Westwater (32) and Katto and Yokoya (31)
experimentally found that a thin liquid film exists beneath irregular
vapor masses with the principal heat transfer mechanism at high heat
flux being the evaporation from this liquid film. It appears that these
different conceptual models reflect different stages of the boiling
mechanism; consequently, no overall analytical solution or empirical.
correlation is available to accurately predict the CHF.

In a recent review of current nucleate boiling theory, Labuntsov
(34) pointed out that future analyses should concentrate on the features
and structure of a very thin, liquid-rich film directly on the heater
surface which sustains the principal temperature drop. The existence
of such a film over the entire range of nucleate boiling has been con-
firmed by probing local voids with micro thermocouples (7,26). Therefore,
the bubble agitation model appears to be more satisfactory for lower
heat fluxes in nucleate boiling, while the latent heat transfer model is
more applicable at high heat fluxes. WNone of the models previously
mentioned explains the results of the latter experiments. Hence present
nucleate boiling models will have to be modified or a new model developed

in order to describe the entire nucleate boiling regime adequately.



B. Steady-State Pool Boiling Critical Heat Flux (CHF)

Tong (52) and Balzhiser (4) have given comprehensive reviews of
pool boiling heat transfer. They concluded that although the problem
has been approached from many different points of view, no overall
analytical solution has been obtained, and the design equations for
CHF predictions are strictly empirical. For instance, Gambill (18)
has noted that approximately fifty equations have been developed for
predicting CHF in pool and flow boiling situations. Only those genera-
lized CHF correlations that apply to saturated pool boiling will be
discussed here.

In boiling, bubbles appear to form repeatedly at nucleation sites
(cavities) on the heating surface, thus forming a "eolumn" of bubbles.
As the surface heat flux increases, visual observations indicate that
the number of active nucleation sites per unit area increases (44). 1In
addition, observations suggest that, as the heat flux increases to
just below the critical value, the successive bubbles coming from a
nucleation site converge into each other to form an undulating column
of vapor. Rohsenow and Griffith (46) formulated a semi-empirical relation
for the critical heat flux by combining observations from experiments in
organic liquid and water with the conceptual model noted above. Their

relation,

p. - p.. 0.6
L o L (2.1)

P

(Q/A) oy = 143 PRy :

was derived by tacitly assuming that the heater surface is covered by

vapor bubbles at CHF.



Addoms (2) proposed a dimensionless correlation:

p. = p._. 0.5
Y3 (L (2.2)
v

(Q.’A)CHF = 2.5 va(ga)

which also agrees well with data from experiments in water and organic
fluids,

Other researchers have developed semi-empirical correlations using
a more universal approach. For instance, Zuber (55,56), basing his |
arguments on wave motion, postulated that the boiling crisis is due to a
combination of Taylor's and Helmholtz's instabilities which deal with
the instability of a plane interface and the relative velocity of the

1iquid and its vapor respectively. The resulting equation is:

g (py - 0,) V4 oy 112
(Q/A) = 018 p by o 2 ] [;;—;—E;] . (2.3)
v

Here the constant, 0.18, was determined empirically from the data shown
in Fig. 2.

Kutateladze (33), Chang and Snyder (12), and Cobb and Park (14),
have also developed equations which are nearly the same as those of
7uber and Addoms. Their equations, Berenson's modification of Zuber's
analysis, in addition to some other pertinent correlations are listed
in Table 1.

The examination of the above correlations does not make the effects
of different parametérs on the critical heat flux entirely obvious.
However, from a thermodynamic point of view, it is apparent that the
system pressure will be a dominant factor since it determines the latent
heat of vaporization, the saturated vapor density and affects the sur-
face tension. In fact, its effect has been well documented by many

authors (13,15,18,24). Yet the CHF is far more complicated than this.
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Many other variables can influence the CHF experimentally and confuse
data interpretation. For instance, Tong (53), commenting on the effects
of wetting agents and surface conditions on the CHF in pool boiling,
noted that the maximum heat flux is practically independent of surface
material, cleanliness, and roughness. Berenson (6) found that a smooth
surface has a higher superheat at boiling crisis than a rough surface,
although both have approximately the same CHF. On the other hand, other
investigators have obtained different results. Costello and Frea (53)
found that deposits on stainless steel heater surfaces result in at
least a 50% increase in the CHF. Ivey and Morris (53) stated that
oxidized surfaces appear to yield a higher CHF than that associlated with
a clean metallic surface. Other parameters such as the diameter, the
surface orientation geometry and system acceleration all have small

effects on the CHF (53).

C. Boiling Heat Transfer in Transients

A clear interpretation of boiling behavior and CHF in both power
and pressure transients remains elusive even though these phenomena
have become of increasing importance. Because knowledge of the boiling
behavior during power transients is required for nuclear reactor design
and operation, basic studies of this phenomena are numerous while
investigations of pressure transients have been more recent, relatively

few, and unsystematic.

1. Boiling Heat Transfer in Power Transients

Transient thermal behavior originally became of interest because
of the possible effects of a prompt supercritical period on fuel clad-

ding integrity in nuclear reactors. Many studies have been performed on
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this topic (27,28,30,48,49,51,52,53). Notable early work was performed
by Rosenthal and Miller (47) and Johnson and Schrock (28), who studied
exponential increases in power to simulate transient conditions in
light water reactors. The experimental results have, in general, been
consistent and are reviewed by Tong (52). Transient CHF increases as the
power impulse time decreases. In fact, when the impulse time is larger
than 200 milliseconds, the transient CHF dées not deviate significantly
from the steady~-state CHF for similar subcooling. According to the
results of Rosenthal and Miller (47), the power excursion effect on CHF
decreases as the initial exponential period increases and gradually
becomes insignificant at periods greater than 14 to 30 milliseconds.
When time constants are extremely short the tramsient heat flux can
surpass the steady-state value before the boiling transitions to film
boiling. These effects are shown clearly by the data of Tachibana, et al.
(50) in Fig. 3. These authors have speculated that the CHF during rapid
power transients may increase because of a corresponding increase in
the number of surface nucleation sites. This supposition agrees with
the observation of Hall and Harrison (20) who observed that in extremely
rapid exponential power impulses with periods as short as 0.7 milli-
second, film boiling was invariably preceeded by a short burst of
nucleate boiling. Furthermore, peak heat fluxes 5 to 10 times the
steady-state CHF values under the same thermodynamic conditions were noted.
On the other hand, experiments of power transients with relatively
long time constants have been conducted also. Fontana (16), for
instance, studied transients with periods of up to 2 minutes, and Sakurai
et al. (48) studied transients with periods up to 1 second. In both
cases, the transient CHF was observed to be the same as the steady-state

CHF for the same liquid temperature and pressure. Although Fontana found
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this to be true only for periods greater than 10 seconds, Sakurail observed
that transient values of CHF corresponded with steady state levels for
periods down to 20 milliseconds. This agrees with earlier power transient
experiments conducted by Rosenthal and Miller (47).
It is well known that nucleation and subsequent bubble growth, which

are highly dependent on the thermodynamic conditions of the heater and
the liquid in the vicinity of the heater surface, directly influence
the heat flux. The effects of both power and pressure transients or the
CHF may be discussed on these bases. Equation (2.4), which is derived
from the surface temsion of a spherical bubble and the Clausius - Clapeyron
equation, gives an estimation of the surface superheat required to
initiate nucleation,

R T2 o

T - T = 2(—2

v s hLvPLrb

) . (2.4)

After nucleation and a few milliseconds after growth has begun, i.e.,
the later part of the bubble's life, according to Tong's analysis (53),
inertia of the surrounding liquid and the surface temsion forces can
probably be neglected. The pressure can be considered uniform through-
out the bubble and liquid. At this stage, bubble growth is governed by
the rate at which heat can be supplied from the superheatedrliquid to
the bubble interface to facilitate the vapor formation associlated with
growth.

If the liquid in the vicinity of the heating surface is very sub-
cooled initially, only a small amount of natural convection heat transfer
occurs. During a subsequent power transient, the heater surface tempera-
ture will surge because the heat input is rapidly increasing, but the

surrounding liquid, which remains cool, is not favorable to bubble growth.
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However, the fluid temperature lags behind at a value below that necessary
for incipient bubble growth. Nucleation may occur, however, on the

heater surface due to rapid increase in surface temperature. Transition
to film boiling results, as shown by the data of Rosenthal and Miller (49),
Johnson and Schrock (28), in Fig. 4. The smaller the impulse power period,
the more the temperature overshoot and the shorter the delay time.

If the heater is initially heot enouéh that the liquid layer sur-
rounding it is close to the saturation temperature, the increasing power
during the transient is more effectively transferred because of bubble
nucleation and growth. In this case, the transient CHF is significantly
different. The effect of the initial heat flux level on CHF is to lower
the transient CHF considerably at low initial heat flux and to approach

steady-state CHF at high initial heat flux (51).

2. Boiling Heat Transfer in Pressure Transients

The situation during a pressure transient is substantially more
complex due to the changing thermodynamic conditions in the bulk fluid.
As the pressure decay is initiated, the surface superheat increases due

to the decrease of TSa . The bulk coolant, instead of only the liquid

t
layer in the vicinity of the heater, becomes warmer relative to the
decreasing Tsat' The magnitude of the pressure decrease, of course,

determines the corresponding decrease in Tsat' If the transient is
sufficiently fast that it completes the depressurization before bubbles
can detach from the heater surface, the heat transfer cannot increase
until after the transient is completed. If the transient is slow, fof
example, 7.07 x 104 pascal/sec, there is ample time for many generations
of buBbles to grow on the surface and equilibrium may be reached.

Therefore the heat flux can follow the pressure change, and in this

1imiting case, the CHF can be predicted by steady-state correlations.
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In practice, the pressure transient 1s more complicated because
bﬁlk flashing is often involved. The heater boundary will be disturbed
by bubble agitation and heat transfer mechanisms observed in steady
state circumstances may no longer apply shortly after the transient is
triggered. No theoretical work has been done on this subject, and only
a few experiments have been conducted toward increasing our understanding
of this phenomena.

Howell and Bell (23) investigated the pressure transient effect in
pool boiling experimentally. The pressurized saturated water was allowed
to decay from moderate pressureg to atmospheric via a quick-opening valve.
Decompression was relatively slow. For example, it required 12 seconds
to reach atmospheric pressure from 4.2 x 105 pascal. Because of this slow
pressure transient, a link between steady-state and transient cases was
attempted, A typical heater temperature behavior during transient boiling
is shown in Fig. 5. The relation between transient events and the transient
pressure is shown in Fig. 6. The ribbon temperature started to decrease
once the decompression begaﬁ and continued until point ¢, the inception
of film boiling, was reached. The heater temperature then increased
until the burnout point was detected. The magnitude of transient CHF
appears higher than steady-state CHF by about 20 to 30 percent but inde-
pendent of the decompression rate. During this experiment, only the
initial heat flux was measured; hence, the magnitude of the fluctuation
of the heater temperature and the resulting variation in heat flux were
not indicated. The time from the start of decompression to the burnout
point was discussed more fully. Thus, knowing the initial conditions
and the decay rate, the time from point A to point B on Fig. 10b can be

calculated. The period between point B until film boiling begins (from
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point B to point C) 1s then found from a corrected experimental curve.
The final time segment, between the inception of film boiling and actual
burnout (point C to point D) can then be found analytically by assuming
complete insulation of the heating surface and calculating the time
required to reach the temperature of material failure. The time to
burnout was observed to increase with decreasing rate of pressure release.
Flashing, encountered in these experiments, was deemed responsible for
the delay of the boiling transition corresponding to the steady-state
prediction.

Cermak, et al. (11) examined the effect of pressure blowdown on flow
CHF in rod bundles. It was observed that for pressures of 6.3 x 105 to
10.5 x 105 pascal and relatively short time constants of 1 second,
steady-state CHF agreed with the observed transient CHF values to about
5 percent.

Studies of fast pressure transients are very few. Aoki, et al. (3)
investigated the boiling and burnout phenomena during very fast pressure
transients of time periods of approximately 25 milliseconds from atmospheric
pressure down to at most 7.3 x 104 pascal or higher. Heater surface
temperature behaviors for different initial heat flux 1evels were studied.
According to their results, the initial heat flux level determines the
overall transient behavior, as shown in Fig. 7. The most interesting
findings are for type B behavior (see Fig. 7). Specifically, the investi-
Vgators noted a spike characteristic of heat fluxes slightly lower than the
steady-state CHF of the final equilibrium state, a secondary boiling
during which boiling transition occurred, (see Fig. 7), and an initial
temperature drop for all levels of heat flux. The third observation

was also reported by Howell and Bell, but the first two findings are
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unique. By the use of high speed photography, Acki, et al. were able to
explain the bubble growth behavior in more depth than Howell and Bell.
Thus, at medium heat flux level, the temperature falls during the initial
sudden decompression but its drop ceases when the generated bubbles near
the wall begin to coalesce. After the heater wall is covered with a
large single coalesced bubble, the wall dries out and the temperature
increases steeply. However, as the large bubble is removed from the
surface by buoyancy, the temperature begins to drop and stable nucleate
boiling insues.

When the initial heat flux was higher than the steady-state CHF,
boiling transition and subsequent stable film boiling were observed.

The transition, however, did not occur during the pressure drop but
during the secondary boiling instead. By incorporating the thin liquid
layer model for the bubble generation and detachment at high heat flux
in nucleate boiling with their observations, the authors contend that
boiling transition occurs when a second generation of bubbles is formed
inside the thin liquid 1ayef underlying the bubble layer from the primary
bolling.

Summarizing previous decompression work, the following points
should be noted. Howell and Bell tried to predict transient boiling
transition on the basis of the initial conditions, i.e., operating heat
flux, pressure decay rate, and range. And perhaps more importantly,
‘they attempted to ansﬁer, if boiling transient occurs, at what stage
in the decompression will it happen? Aoki, et al. (3), on thé other
hand, were interested in determining whether the boiling transition
occurs during or after the pressure transient. The small time constant
and comprehensive recording of heater temperatures accompanied by photo-

graphic studies of bubble growth made their investigation more fundamental.
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In steady-state boiling, the CHF is defined at the critical point
as indicated in the beginning of this chapter. In power transients, the
CHF is similarly defined as the point at which the heat flux decreases
with further increase in heater temperatufe. Following the same line of
thought and considering that the variation of the heat flux during the
transient event is not controllable, perhaps the best definition of
the CHF in pressure transients is tﬁat minimum initial heat flux which
i8 sufficient to cause boiling transition during or shortly after the
pressure transient event. Howell and Bell obtained some data for this
purpose, but more data are necessary to establish a comprehensive rela-
‘tion. Aoki, et al. were unable to provide a comprehensive data set
since the degree of superheat in their apparatus also affected the rate
of decompression and the transient pressure hehavior. Their observation
of different temperature behaviors is of potential importance in the
better understanding of pressure transient boiling phenomena.

The research reported herein is the initial stage in a comprehensive
study of boiling transition'under decompression. As an extension to the
work described above, subcooled as well as saturated decompressions
were studied to better elucidate the effect of flashing on the wire
temperature behavior and boiling transition. In subsequent chapters,

the experimental apparatus, technique, results, and conclusions are

coverad.
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III. EXPERIMENTAL EQUIPMENT AND PROCEDURES

A. Experimental Equipment

Because only low liquid temperatures (less than 100 °C) and low
pressures (less than atmospheric) were involved in this experiment,
pyrex glass and aluminum were used to construct the entire apparatus.

In order to produce very fast transients, a diaphragm bursting technique
was used instead of a quick opening valve. When burst by a spring-
loaded plunger, this method has yielded consistent results. A fast
response temperature sensor, in the form of a platinum wire, was used
for following the transient temperature history for a period of uprto
500 milliseconds. The platinum wire was also used as the heater.
Details of the test assembly and the measuring circuit are described

in the following sections.

1. Test Assembly

A schematic diagram of the test assembly is shown in Fig. 8. The
test section was composed of an 800 ml Pyrex glass beaker that was fitted
with an aluminum flange. The reduced pressure, or blow-down tank, was
made of an eleven - liter glass vessel which has an aluminum flange and
valving to provide access to a vacuum pump. Aluminum pipe, 5.08 cm I.D.,
was used to connect the two sections through a diaphram section. Prior
to each transient run, an aluminum foill was clamped between the two
flanges of the diaphram section, and the pressure in the dump tank was
reduced to sub-atmospheric, in most experiments to 400 torr. An
aluminum tank was buillt originally to provide a constant temperature
environment for the test section during steady-state bﬁiling experiments.

This was found to be unnecessary, and later experiments were performed
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using a hot plate with a magnetic stirrer as the bath temperature
control. Distilled and deionized water was used in the experimentation.

No further filtration or purification was performed.

2, Electrical Circuit

The circuitry used in making steady-state and transient measurements

is shown in Fig. 9. Resistors R Rz, and R, are one 500 ochm and two-

1° 3
1 ohm high wattage resistors respectively for the control of current
through the test wire. Resistor Rs is a 0.226 ohm precision shunt
resistor. Current through the test wire is proportional to the voltage
across Rs' Resistor Rw is the test wire resistance. The test specimen
consisted of a 0.0127 cm—-dia platinum wire approximately 2.0 cm in
length, It was soldered on the ends of two copper electrodes and immersed
in the water bath in the test vessel.

In steady-state measurements, as shown in 9a, the test wire was
kept 8 cm below the water level to avoid surface effects as suggested
by Aoki (3). The steady-state boiling curves for various pressures
have been obtained by the use of a digital voltmeter to read wire vol-
tage across A-B and current during operation up to the burnout point.
Two 12-volt lead batteries provided stable wire current during each
test run. Bulk water temperature was monitored by a mercury thermometer
inserted inside the test vessel., Static pressﬁre was read directly on
a u-tube mercury manometer. Steady state resistances were measured by a
Leeds and Northrup Type S bridge circuit.

For the transient experiments, a Tektronix type 551 dual-beam
oscilloscope with a four-trace preamplifier was used to record the
voltage variation across énd the current through the test wire, in

addition to the output signal from a Kistler type 603 plezoelectric
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transducer with Kistler type 503 charge amplifier. The transient sweep

on the oscilloscope was recorded by a Polarcid scope camera.

B. Experimental Procedures

1. Steady-State Experiments

The following procedures were followed to produce steady-state
boiling curves at different pressures:

(1) The test vessel was cleaned and filled with deionized water which
had been boiled for at least one hour. The test vessel was then
placed in the constant temperature tank which had been previously
brought up to the desired temperature. Later experiments were per-
formed using a hot plate as the bath temperature control.

(2) The test wire was inspected by a 50X optical microscope and cleaned
with benzene. The wire was heated in air with a two amp. current
for twenty minutes after it was soldered to the ends of the electrodes.
The length of the wire was measured to * 0.05 cm.

(3) The electrical test assembly was inserted into the beaker. The
system was closed and brought to the desired temperature at which
time the resistance between points A and B on Fig. 8 was recorded.
A vacuum pump was used to lower the pressure to the desired level.

(4) Power was applieda to the test wire, and the wire voltage, Vw, the
voltage across the precision resistor, Vs, and the voltape across
the power supply, Vp, were recorded.

(5) The power level was raised incrementally in order that at least
10 data points were taken prior to boiling transition.

(6) Information in the steady film boiling reglon was obtained by

increasing the power until the wire burned out physically.
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2., Transient Experiments

The following procedures were followed in recording the wire
temperature behavior during and shortly after the pressure transient.
(1) The test assembly was prepared prior to each run in accordance

with steps 1 and 2 from section 1 abovﬁ.

(2) The test assembly was inserted into the test vessel and the whole
system was brought to the desired temperature. The resistance
between A and B in Fig. 8 was then recorded.

(3) The aluminum was inserted in the diaphram section and clamped.

The pressure in the blow-down tank was reduced to 400 torr by the

use of a mechanical vacuum pump.

(4) The DC power supply was turned on and the current through the test
wire was brought up gradualiy to a pre-planned value by adjusting
the variable resistors.

(5) The oscilloscope was DC balanced and proper sweep speed and sensi-
tivity were selected.

(6) The triggering level on the oscilloscope was pre-set. The triggering
level ajustment was the determing factor in the system sensitivity.
The beginning of the transient was not recorded, since the scope
was triggered by the pressure response. The voltage traces actually
represent the transient behavior after several milliseconds into
the transient.

(7) The voltage across the wire, Vw’ the voltage across the precision
resistor, Vs, and the voltage across the battery, Vp were recorded.
Final adjustment of the system pressure was made.

(8) The shutter control line of the scope camera was pressed. The
plunger was released, breaking the diaphragm and then the shutter

control was released.



(9) DC power supply was turned off and the access valve was opened.

(10) The Polaroid picture was developed.

35



36

IV. RESULTS AND DISCUSSION

'A relatively straightforward but carefully controlled series of
experiments have been performed. It was confirmed that the boiling
mechanism is affected significantly during and shortly after fast
transients. For instance, if flashing occurs in the bulk coolant, the
mechanism of bubble formation and growth may be quite different than
that expected when only local boiling around the wire is present. It
is surprising, therefore, to observe that even when there was no bulk
flashing, i.e., in the subcoocled blowdown case, wire temperature behavior
was similar to that in the presence of flashing. The understanding and
ﬁhe explanation of these boiling phenomena must be based in part, on a
clear understanding of the steady state nucleate boiling mechanism,
especially at high heat fluxes near the CHF. Unfortunately, as indicated
in Chapter 2, this region is not yet understood fully. In this chapter,
the results of both steady-state and transient boiling studies will be
covered. Discussion is based on currently accepted boiling models, due

to the lack of high speed photographic data in these first experiments.

A. Steady-State Experiments

In order to gain operating experience and to assure the consistency
of the apparatus, steady-state boiling experiments were performed as a
preliminary test. Data were collected under pressures from atmospheric
to 200 torr in a nearly saturated pool of water to construct steady-state
boiling curves. The circuitry used for steady-state measurements has

been shown previously in Fig. 9a.
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1. Interpretation of Steady-State Data

To calculate the temperature of the test wire from its resistamnce,

the resistance-temperature relation of pure platinum wire was used:

R(T) = B_(0°CY(L + aT_ + BT2) , (4.1)
where
@ = 3.95 x 107 deg™" °k,
B =5.8 x 10/ deg !l °k (Ref. 9),
Tw = the temperature of test wire in degress of Celsius,

the resistance of test wire at TW in ohms,

Ry(T)
RW(TW) can be calculated from the experimentally ocbtained values of
VI and Vw was shown below. Due to the existence of a connection resistance

and the small resistance of the copper electrodes, Vw must be corrected

by an amount V

stray
where
Vstray =1 Rstray ! (4.2)
and
I = VI/Rs i (4.3)
The stray resistance, Rstray’ is assumed to be equal to the

difference between the system resistance, Rsys' and the theoretical

reistance, Rth’

The resistance of the wire under operating conditions is then calculated

as

R, = v;/x = (vw - vstray)!I . (4.5)



38

By solving Eq. IV.1l, it is obtained:

2
Tw - o * /gB = 4By , (4.6)
where
Rw(Tw)
Yy=1-—. (4.7)
R (0°C)

The operating heat flux (Q/A)op’ can be calculated by the formula

@/n),, = /A, (4.8)

where A is the surface area of the test wire.
The wire temperature was assumed uniform both axially and radially.
The radial temperature distribution in a long cylindrical rod with

internal heat generation is

T 6 r2

w(r) _ . . 0__ (X 2

- el - - N (4.9)
max ax

where r is the radial distance from the centerline.

Because E, is only 0.0635 Em, and the thermal conductivity of platinum,
k, 1s 0.722 (Watt/ecm °K) at 27 °C or 0.775 (Watt/cm °K) at 927 °C,

the right hand side of Eq. IV.9 is not far from unity, i.e., Tw = Tmax'
Thus, the temperature distribution from the centerline to the surface is
nearly uniform. However, neglecting any end effects may be an invalid
assumption in the case of short wires, e.g. length of 1 ;m or less., In
this experiment, because the length of test wire is close to 2.5 cm and
the temperature behavior of the entire wire was measured instead of the
local temperature, the end effects were not considered. However, if the
temperature distribution along the wire 1s known, the constant which

relates the maximum temperature and the mean temperature of the wire can

be calculated.



39

2. Discussion of Steady-State Results

The data were processed by a short computer program listed in
Appendix A. All the results are presented in Appendix B. The boiling
curve under atmospheric pressure was plotted along with Petersons' (42)
and McAdom's (36) data and is shown in Fig. 10. Rohsenow's equation in
Table I was also used and the calculated results are presented in the
same figure for comparison.

The free convection region of the boiling curve in the present
study deviated slightly from the previous results. This may indicate
that an error was introduced because of uncertainty in wire length. For
low heat fluxes, the heater temperature is very close to the bulk fluid
temperature; therefore, the errors made in the measurement of the length
and end effects, will be substantially more important than in the |
boiling region. One other factor that may have contributed to the un-
certainty is the possible influence of augmented free convection on the
heat transfer. Since the pool was held at constant temperature by a
bottom hot plate, the resulfing free convection may increase the heat
transfer over that normally present from that induced only by the thermal
boundary layer in the near-wire region.

The boiling mechanism becomes very unstable as the boiling transition
1s approached. Because the controlled variable in this experiment was
the heat flux (as in most other studies except Peterson's (42)), it was
impossible to precisely detect the critical point. As the point of
transition was passed, the physical appearance of the wire changed
noticeably. At one location, the wire began to grow red. This local

behavior subsequently spread over the wire's entire surface except near
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the ends where the surface temperature was lower. This phenomena
corresponds to the case where the wire becomes engulfed in vapor and the
boiling shifts to position D on the boiling curve (see Fig. 1), film
boiling with radiation augmentation. The heat flux, as this transition
was observed, was taken as the CHF. The results, shown in Fig. 11,
are in good agreement with Aoki's data for a similar apparatus.
Frequently, the boiling transition was passed through without a
clear indication of nucleate boiling. This behavior has been observed
also by Aoki, et al. (3).
The steady-state experimentation dgscribed above gave confidence
that the measurement system was reliable. Following this, transient data

were gathered.

B. Boiling Heat Transfer During and Shortly after the Pressure Transient

1. The Interpretation of Transient Experimental Data

During decompression testing, the pressure decayed to 420 torr from
atmospheric. If the water reached its saturation pressure during the run
(as determined by the initial bulk fluid temperature), the final pressure
was at most 30 torr higher than 420 torr. All the transient data were
recorded by Polaroid pictures of oscilloscope trates. The test conditions
examined during the experimentation are shown in Table 2. Four levels of
heat fluxes were tested. At low heat flux, no bubbles appeared before or
after the pressure transient. The ratio of the initial heat flux,
(QIA)OP, to the CHF corresponding to the final state, (Q/A)CHF, was a§0ut
.6, Medium heat flux level was when (Q/A)OP/(Q/A)CHF was about .8. High
initial heat flux levels were close to the QCHF’ and very high initial
heat flux was higher than QCHF' For each level of heat flux, runs of

different superheats and subcoolings were tested as recorded in Table 2.
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It was assumed that the power supply provided a constant current
source throughout the run; therefore, the voltage across the test wire,

Vw, is proportional to the wire resistance, Rw,

V.= IR . (4.10)

The time dependence of the current, I, introduces significant errors only
at the end of the run, i.e. at the incidence of film boiling and later,
and its neglect is therefore justified. From Eq. 4.10 it is apparent
that

AV = 1 AR (4.11)
w w

Differentiating Eq. IV.1, it is obtained,

% = QAT+ 2BT AT = oAT_ (4.12)
Therefore,
AR = k ATw since a >> B , ' (4.13)
where
k = oR = o Rw(o "C) & | (4.14)

Hence the voltage trace of the wire during the pressure transient gives
a direct indication of the heater temperature variation. A typical
oscilloscope trace is shown in Fig. 12. The top trace is the pressure
transient behavior and indicates that the transient from 760 torr to

420 torr was complete within 10 milliseconds of initiation. The middle
curve is the voltage across the test wire with respect to time. The
lowest is the current trace which demonstrates that the current was con-
stant during the time frame of interest. The small fluctuﬁtions are

typical of medium and high heat flux levels because of nucleation and
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subsequent bubble detachments altering the surface temperature at high
frequency (39). In superheated experiments, the response of the pressure
transducer becomes unstable. The oscilloscope trace indicated that
after the first dicompression, the pressure would decay further and
went beyond the zero pressure level which is impossible. Hence, the
pressure in superheated cases is assumed similar to that in subcooled
cases. A summary of the experimental conditions and oscilloscope para-
meters for all the polaroid pictures cited here and after are listed in
Table 3.

During the transient part of the experiment, 119 pictures were taken.
The first 25 pictures were not useful for analysis because of the immature
experimental technique. Out of the 94 following pictures, only 64 proved
useful. Examples of these runs are shown and discussed in the following

sections. Reduction of transient data is covered in Appendix C.

2. Discussion of the Results of Pressure Transient Experiments

i. Subcooled Case

When the bulk water remained subcooled during and after the
pressure transient, no bulk flashing was induced. Typical results at
different heat flux level are shown in Fig. 13, 14, and 15.

For low heat fluxes, no bubbles were generated on the heater sur-
face before or after the transient. The heater temperature, TW, was
observed to drop almost 10 °C immediately after the transient. In this
case, because natural convection was not affected significantly by the

pressure, Tw always drifted back toward its original value at the end of

the transient period.
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Typical Sub-Cooled Data at Low Heat Flux.
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Typical Sub-Cooled Data at Medium Heat Flux.
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Fig. 16. Typical Sub-Cooled Data at High Heat Flux.
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At medium levels of initial heat flux, nucleation was observed on
the heater surface before the pressure transient. This bubble formation
was enhanced by the reduced pressure during and after the decompression.
Therefore, the heater temperature, which dropped initially during the
decompression, remained at the reduced levei due to the more vigorous
nucleate boiling. The same result was obtained when another series of
experiments with large initial subcoolings was conducted. In this case,
a higher heat flux was applied. Consequently, even though the bulk
fluid was well below the saturation temperature initially, nucleation
on the wire was still present. Tw then stayed at the new reduced level
of temperature after the transient. However, if the degree of initial
subcooling was greatly increased, only natural convection contributed
to the heat transfer. Therefore even if the applied heat flux was
relatively high, Tw’ in this case, drifted back to its original level.
These results were shown in Fig. 15.

At high and very high heat flux levels, although Tw tended to drop
initially as in the former cases, the boiling transited to film boiling
and Tw increased due to reduced heat transfer. However, the delay from
the start of the transient to the time of boiling transition was found
to be very random. It ranged from 20 milliseconds to several hundred
milliseconds. No boiling transition occurred during the decompression
under any conﬁition.

Two important results of subcooled depressurization deserve special
emphasis. The first is the initial temperature drop under all conditions,
even the most subcooled test in which no bubble mechanism existed during
the entire event. This can be explained, perhaps, by turbulence in the

surrounding liquid caused by the pressure wave. The rate of heat transfer
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by convection between a solid boundary and a fluid is generally evaluated

by means of Newton's Law of Cooling:

Y5urface to fluid = Ahc (Tw - Tm} ? (4.15)
where
A = heat transfer surface
E; = the convection coefficient,

T = the water temperature,

T = the temperature of test wire.
Once the pressure transient was initiated, the heat balance between the
heat generation, which follows Ohm's law as

2

q =1 Rw(Tw) s : : (4.16)

generated

and the convection heat flux was disturbed. The convection coefficient
was increased because of the turbulence, and the wire temperature
started to drop. This forced convection heat flux continued to be

larger than the heat generation; therefore, the wire temperature con-
tinued to drop until thermal equilibrium was reestablished. In order

to evaluate the magnitude of the change in E;, the condition prior to the
pressure transient is referred to as 1, and 2 is the state of the

reestablished equilibrium. If the following equations are used:

2 s
I Rw(Tl) (Tl - TL)hcl A, (4.17)
2 saan
I Rw(TZ) = (T2 - TL)hCZ A, (4.18)
or
- 2 R (T.)
=X w2
hcl A (Tl = TL) s (4.19)
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h,, = %mi(?-;—) ; (4.20)
2 L
where current, I, is assumed constant, then from Eq. IV.1,
Rw(Tl) = Ro(l + aTl) R (4.21)
R (T,) = R (1 +al,) . ' (4.22)

It may be easily found that the ratio of the heat transfer coefficients is:

h‘:2 ) (l + GTZ}(Tl - TL) i, 23)
& 1+ uTl T2 - TL
c
1
As an example, for run #64, T1 was 170.5 °C, T2 - T1 = =10 °C, and

T, = 82 °C; therefore,

h

| e]

2 _ 1+ 0.00395 x 165 88.5
n 1 + 0.00395 x 175 78.5°
cl

1.10 .

The convection heat transfef caused by turbulence is estimated, in this

case, to have been increased by 10%Z. Of course, further studies of the

velocity field next to the wire are necessary to investigate this

phenomena more completely. But, it can be seen that viclent agitation

by bubbles is not necessary to promote a heater surface temperature drops.
The second point of importance is the wire temperature behavior after

the transient. It remained at a depressed level at high heat fluxes,

but drifted back to its initial value at low heat fluxes. The explana-

tion given in the first part of this section, which notes the presence

of nucleate boiling for medium or high heat fluxes after the transient

is applicable. But further study is needed because the heat transfer
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immediately after the pressure transient 1s of special importance to the
understanding of the effect of flashing, which will be discussed in the

next section.

ii. Superheated Cases

Superheated blowdown is much more complex than the preceeding
subcocoled cases, since bulk flashing Is generated which influences the
wire heat transfer. In this series, water in the test vessel was slightly
subcooled initially so that vapor bubbles were generated throughout the
bulk volume once the decompression was initiated. Hence, the objective
was to determine the direct effect of the pressure transient and the in-
direct effect of the flashing on the heat transfer and boiling transition.

When the initial heat flux was low, Tw dropped during.the pressure
transient and remained at the lower level. By increasing the heat flux,
the effect of flashing could be seen by comparing the transient wall
temperature behavior with the subcooled cases. Instead of aiding the
heat transfer, the flashing actually caused the heat transfer from the
wire to deteriorate which resulted in the temperature peaks shown in
Fig. 17.

As the initial heat flux was increased, the results, shown in Fig. 18,
became unpredictable, because during some runs nucleate boiling persisted
during and after the transient while during others, the boiling transi-
tioned to film boiling with radiation augmentation. The characteristic
fluctuation observed by Aoki, et al. as shown in Fig. 7, however, was
not duplicated in these runs.

High initial heat fluxes were also studied. In all cases, film

boiling was evidenced by the rapid temperature rise, as shown in Fig. 19, 20.
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Fig. 19. Typical Superheated Data at High Heat Flux,
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Fig. 20. Typical Superheated Data at High Heat Flux.

Figure 22.
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In all the ruans, Tw dropped during the decompression, and rose rapidly

as film boiling began. The secondary Boiling reported in Aoki's work

(3) could not be clearly identified. However, there was a delay time to
boiling transition under all conditioms, a result that should be regarded
as one of the most important findings of the present study.

It has been explained previously, see for instance Howell and Bell (23),
that the drop in wire temperature during the decompression is due to the
violent flashing accompanying the decompression. That this is not the case
is shown clearly by comparing the present subcooled blowdown results. The
wire temperature drop during the transient was observed to be remarkably
insensitive to not only flashing, but also the bulk water temperature.

No significant dependence on the bulk water temperature can be found.
This is contrary to what Aoki, et al. had reported, wherein the drop of
Tw increased with increasing superheat as shown in Fig. 7. These
results were generated, however, from a limited amount of data from
saturated decompression only. Hence it must be concluded that ATW,

the initial temperature drop, is a result of the pressure transient and
not unique to flashing. Flashing, which only occurred in the super-
heated experiments, probably did not become significant during the rapid
pressure decay and; therefore, could have had little effect on ATw'
Hopper and Abdelmessih's investigation (22) supports this supposition.
For decompression times of 5 milliseconds, they observed no bubble
nucleation with less than 4 milliseconds delay beyond the termination of
the decompression period. Moreover, it was found that several milli-

seconds were required for bubbles to grow to a significant size.
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iii, Conclusions of Transient Experiments

- There are several interesting findings from this experiment, some

of which had not been reported before. Among these are:

(1) Boiling transition occurred after the completion of the pressure
transient. This observation, as shown in Fig. 19 and 20 was also
noted by Aoki, et al (3). But the "secondary boiling" postulated
by them to explain this phenomenon was not identified in the current
series of experiments. The time to the boiling transition after
transient initiation and the characteristic behavior of the heater
need to be studied further in order to make a definitive conclusion
about the importance of "secondary boiling" and the pressure transient
on transition.

(2) The heater temperature dropped immediately after the pressure
transient was initiated in both superheated and subcooled cases.

The temperature depression in the superheated case was expected, but
the temperature drop in subcooled transients has not been reported
before. Furthermore, the amount of drop in the subcooled case was
comparable to that in superheated depressurization. This, perhaps,
indicates the importance of the convection current induced by the
pressure wave propagation.

(3) The amount of the initial heater temperature drop was found to be
insensitive to the initial heat flux level and the surrounding coolant
temperature. This is different from what Aoki, et al (3) had obéerved
(see Fig. 7). Howevef, the decompression rate in this experiment is
approximately twice as fast as that used in the previous'work. Since

neither bubble nucleation in the bulk liquid nor that on the heating
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surface i1s instantaneous, a critical decompression rate may exist
which significantly alters the bubble growth history and, therefore,
affects the heat transfer. This obviously places considerable
importance on the study of bubble growth phenomena under pressure
transients of varying time periods in.future research.

(4) The flashing may inhibit rather than inhance the heat transfer.
Temperature peaks, observed only in the superheated cases, may imply
that the heater surface experienced partial vapor insulation for a
short period of time. The large amount of vapor generated during
the process of flashing provides favorable conditions for the for-

mation of a temporary vapor film on the heating surface.

C. Suggestions for Future Research

Since part of the purpose of this study was to be a first step in a
comprehensive program, suggestions for future apparatus and areas of
future interest are:

(1) Since the input heat flux dominates the temporal behavior of the
heater, as discussed in previous sections, a constant heat flux is
desirable during and after the pressure transient. Therefore, a
heating source isolated from the heat transfer surface is suggested.

(2) At high heat fluxes in the nucleate boiling region, high frequency
detachments from heating surface cause rapid fluctuations in both
local and overall surface temperatures., Efficient averaging methods
need to be developed to obtain reliable temperature measurements.

(3) For rapid decompression work, the pressure history at the location

of the heat transfer surface needs to be precisely recorded. A
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(5)
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pressure transducer for transient hydraulic pressure measurement
mounted close to the heat transfer surface 1is recommended.

The pressure range needs to be extended, and a variable decom-
pression rate is required to determine the actual effect of
pressure transients on boiling heat transfer and transition.

Fast photography is recommended to investigate transient bubble
growth, Such data, in turn, provides part of the information
necessary for fundamental qualitative and quantitative analysis of

the boiling process.
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Appendix A Computer Program for Processing Steady-State Experimental Data
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Appendix A (continued)
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Appendix A (continued)
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Appendix A (continued)
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Appendix A (continued)

IPTEZET*O 00 3I%61922°0 20 39618EE€"0 90 1558BBE1*0 60 3221515°0 10 3%%05E£Z°0 12
3TYZIET*0 00 3910622°0 Z0 30TYLIEH"D 90 35SERETIO 50 35%0015°0 12 31192E2"0 92
3E6IYET®O 00 3%16L22°0 Z0 31E6L0%°0 90 290949210 S0 I09¢65%°0 10 3EBZIZZ"0O 2
31292ZE1°0 0D 31169220 Z0 A0LZTISE 0 90 IELECZI0 S0 3199€%%°D 10 3Cz6LlZ®0 52
F9111E1°0 00 3911922°0 20 39ST9LE"D 90 3061621°0 60 3LZS20%°0 10 36961D02°0 €z
328862170 00 3L1%52270 20 3518£92°0 3 31199950 63 3THEIGE"D 1) 3JEL6Ss1*0 zz
369612170 00 3€01%2Z°0 20 2159C%E"0 €0 3Z2y9ER*0 S0 3%5%B0€"0 12 25282Z81°0 12
14209210 00 31€2€22°0 20 38E262E 70 €D 392¢9ZL*0 S0 309L19Z°0 10 2ECLULI*O ceZ
JLTBEZT"O 00 3E£86122-0 20 30LZECE"O G IL1LYY9 O €3 3ISLILET0 12 3E82191°0 o1
3110221*0 00 3¥560TT-0 20 3%T11682°0 50 24L15115°0 50 311401270 10 32122510 a1
32916110 00 3vEEs1Z°0 20 I619952 *C 6 FEZEHLE"D SD 359%5C1°D 10 3262%21°0 A
312291170 00 3JUCuE1Z*0 Z0 380ZL%2°0 60 SE%1L1ED €0 3516911°0 12 28Esfll*0 %1
588LLTITT0 00 3ESSRIZ0 Z0 3I%pEZvI°t0 €0 3LLYILI0 €0 2ELYLOT"0 10 3Z52e01°0 31
SLI%LTT"0 00 3eHEL1Z*0 20 3TL1682°0 S0 38659270 %0 3610655°2 10 31Z¢s01°0 »1
31641170 0C IL1%L1Z2°0 20 2€16222°0 €0 3TEBSIZ*O %0 3E9965L°0 PO I0Z92%5°0 €l
3L91511°0 00 2%.0L12°0 20 3696912 °0 60 30%69L1°D %3 31522590 10 352%%58°0 z1
I%BZH11"0 00 3195912°0 Z0 35%8LCZ70 S0 3496LC1*0 50 SE26%13°0 CO 29EL56L°0 11
316LE1T1%0 00 3vrz9izto Z0 301§202°0 €2 3151621°0 40 3E9E15%"0 00 3ZT16L1L"D o1
IE06211°0 00 3IHLISTZ0 Z0 3LZ0%610 %0 36ZL9L%°0 ¥ 31LC09E*D €D 3921%€9°0 &
36152110 00 3555%12°0 Z0 358106170 %0 312425870 %0 31%Z%1E°0 02 3E£1555°0 g
3665211%0 00 3009512°0 70 39850610 %D 3609%59°0 %0 38909520 00 3P%TLES"O L
356021170 C0 3Jie2Zsiz*e 20 36%5581°0 %0 3IEIRSES°0 %0 39251510 00 3%Z12L%*0 9
IPELTIITO 00 SAllsiZ*0 20 3I¥BEZETI*0 50 39L€20%°0 %0 35ZERY10 00 3T5TL0Y 0 [
3»90Z11°0 00 3562512°0 . €0 31%9581°0 %0 311921E°0 %0 3%%Z311°0 D) 3619C7£°0 y
3S0€T11°0 00 3598%12"0 0 32<08L1°0 %0 ZC118€E2°0 €0 39511180 07 IvyoslE=0 13
SEQLTIITO 00 3521512-0 20 3629281°0 0 3609£02°0 E0 360904L"D 02 3061162°0 z
3%L5011°0 00 3ILHH%12°0 20 38€L041°0 ) 3E64%51°0 €0 3755595 " 00 3e80E52°0 1
HHZex W/ 1Y YHZ**13/18
19)%dw3l 3HIM  (WHO) 39IM 20 3INVISISIY  (D)1IVIHYIANS TTYM XN14 1v3H (dWV) INIBaND =N
NJILVINIIVI 4D S1INS3d
QDE3"E osLs0 99
0019°E ) 0L¥60 57
200%"€ o0%Z5%0 49
00eZ*E 00T15°0 €9
0061°¢C 0L58%0 z?
0095°Z c3va"o 1%
0098°2 0r53°0 c?
E oogL*Z 06%2°0 13
00192 paca*o 85
00092 (%4: 5] 15
0362 "1 LB96°0 95
055670 5%33°D 44
0£25°2 09480 5%
EST?°D ELG®D 3
oose* 1 0£39°0 Fd4
oonos"1 0053°0 1s
’ : oeos*1 oveLTC 0s
ooga°1 0L2L"0 6%
23851 pZvyL*0 ey

Qostte o&3L*d Ly



72

Appendix A (continued)
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Appendix A (continued)
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Appendix A (continued)

0
%0
%0
%0
>0
»0Q
0
%0
>0
%0
%0
%0
%0
%0
L4
%0
0

€0
€0
€0
E0
€0
%0
€0
EQ
€0
€0
€0
€0
€0
€0
€0
0
€0
€0
£0
€0
€0

31005910
34688510
3516%S1°0
301624170
390T151*0
2ZH%151°0
3805LYT "0
IEBCTIH1®0
S8S09€1°0
ITIs%ET "0
38010¢1°0
ariezzto
316492170
3BGSLTIT"0
3IYE06TI1°0
39.0011°0
FETLZ0T"0
3£68199°0
3062C2L"0
310996L°0
365£258°0
35L L0680
3EOLGEHL"D
38SEEQL 0
359622L"0
391L608%0
3ZELOET"0
3508621°0
3960621°0
35EEB21"0
ILE2HZIO
30441210
2698921°0
32€9621°0
3259421°0
aLLsyZ1*o
I1L1E5T°0
36945710
3162210

00
oo
(+]]
00
00
00
[+1¢}
00
oo
0o
co
oo
00
0o
oo
00
00
co
oo
00
00
oo
oo
00
oo

oo
co
00
Qo
00
oo
oo
oo
oo
00
00
02
00

.
3965826"0
JETT1606"0
38409468 "0
3900888"0
JEQZEBE "0
3£0%%88*0
I0%60L8"0
AEEEBHE 0
30zZ10€8 "0
3L1%4%28°0
324510870
ILY96LL"0
36%5%6L4 %0
390066L°0
366EE4L0
JrevezL =0
A6L49969°0
39%1825°0
3598955°0
AT#9E6S*0
315%519°0
3920L€9"0
3L50669°0
3001C0L"0
3991655°0
37196550
3B0GLET"0
3LE221€2°0
ACTBIEZ 0
3BEEYETO
J0RE9EZ0
3%ZECET"0
3Z9%S€ET0
SEHLYEZT0
3gsLyEZ"0
3911%€2°0
3ci11sz 0
3ZsvEEZ "0
JEBBZEZ"0

%0
>0
%0
%0
%0
%0
%0
%0

*0
%0
%0
%0
40
%0
40
£0
€0
€0
€Q
£
£0
€0
£0
€0
€0
20
<0
<c
Zo
<0
<0
20
20
20
0
20
4y
20

JTST9ST "0
35400510
35909410
JO099ELT "0
3952Z%1°0
3265T%1 0
IR4999ET1°0
JeE?ZEL1 "0
IBCILLT "0
3199sZ1°0
3686C1L1°0
JI96E1IT"0
L LI te
321801 °0
340290170
39¢Z101°0
JGE99€5°0
JELEELS "D
3052 1£9°0
310180L "0
3658E9L 70
361708 "0
3£02168°0
J6L0S%5°0
36945£9°0
jotzieLo
3HZevIv "0
3eBely "0
3EFH50% "0
3GSER6E "0
Jerelee”0
286ELBE "D
3829€8E"0
FZeeTLE"O
JRESTLE*C
3L9L09c "0
360L9%7°0
3H896%E "0
JSE1O%E "0

3s199L1°0
JELFHIT1°D
J9LELPT10
3%18851°0D
3085451°0
32501610
Iveevyit0
ICEYIET*0
3B66TE1 "0
3201521%0
3gLEdZ1"0
3ccelt o
S6ET01T1*0
31062010
JELL001"D
39CHIES 0
JLELT93°0
9eHELY°0
32990250
J108C19°0
39686590
3T1TE0L0
35696610
3%98068*0
3695LES D
JESSPEDO
390619%°0
JEBLEYRO
3%0.L22%°0
JZETSCH "D
I6TZSHE"D
5£5169E°0
JuSlo%e"0
I%1682E"Q
355 161E°0
3C6590E=0
3111%L2°0
3260%LT "0
3BZHY9Z"0

90
20
90
20
90
50
20
90
92
90
92
99
90
92
9
%0
g0
90
90
93
90
9
9J
90
90
90
92
90
%0
90
20
90
90
90
923
90
20
92
S0

3160159°0
38596220
358¢2209°0
3694585 °0
4568595°0
JZ00LSS 0
3CCL1ES*D
JEHHZCS0
JCLSFEY D
36422ZL7°)
305LEPY "0
AECEOTD
312090%°0
ILPESLE®D
3%193LE"2D
3604%6HE"0
309202270
32€S%LT1%0
36%6161°0
ZL1sez0
FCELIYZ™O
J2I2552°0
JEC082°0
J1LYETE®0
36L1351°0
I08H9%ET"0
36%¢LT*D
3529€31°0
30EBSST0
32566510
3T1cey1*o
IREUIETL*O
36€5371°C
3I%¥gz121°0
JL65211°0
3%20€11°0
31501010
I%¥40101°D
3656585°0

10
10
10
10
10
10
12
10
10
10
10
12
L8
12
e
19
10
10
12

10
10
13
Hs
10
10
12
10
10
10
10
10
1
10
10
L&)
10
12
10

3Ts%EZY "0
369%61%°0
3209%1%°0
Iczgeivt0
3651%C%°0
JLZEICH "G
JEE1cELETD
21B€EBE"D
66 TLIRE"0
e 9lZBE"0
abLLIYLE=Q
3%1eS9e "0
3%0¢T19E"0D
3225160
ACSLESE"C
3GEZu%E "0
3cZe2%€ "0
3622022°0
3£36652°0
34Cs11€°0
Jeebsle"0
2665228°0
1G9%952E°0
39548€€°0
2JEEICE"D
JZLERIE"D
3FELLIZTH*O
396551%*0
3l1eeCt»"0
31eolds 0
3GEUZoc "0
3651%3c "0
AL0ZHLE"D
316%L9€"0
360CESE*0
JELEISE*D
A95L32€0
SLLGLEE"O
394962€"D

99
s3?
49
£9
Z9
19
09
65
8S
L5
¢
119
b3
(34
<5
1s
cs
6%
By
iy
9%
<y
%
£y
r4 ]
1%
0%
6
8E
LE
9c
SE
£27
€E

1€
0€
(T4
8z



76

Appendix A (continued)
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Appendix A (continued)
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Appendix A (continued)
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Appendix A (continued)
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Appendix A (continued)
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Appendix B Computer Program for.Pi_:ocessing Transient Experimental
Data and Results
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ABSTRACT

Results of an experimental study of the temporal behavior of the

transient behavior of local boiling under rapid décompression are
%presented. Specifically, the heat transfer from a thin wire heating
;1ement to water during and shortly after the decompression is discussed.
The fast pressure transient is observed to cause an initial heater
temperature drop and delay the boiling transition in both totally
subcooled depressurization and depressurization with flashing. Flashing,
which has been considered responsible for the enhanced heat transfer
during and after a pressure transient, is found to be of questionable

importance in this experiment, since at this rapid decompression rate,

flashing does not become significant until the decompression is complete.



