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CHAPTER 1

INTRODUCTION

The mathematical models which represent the complex
blending of biological, chemical, and physical factors are
not simple. In general, they must be represented by complicated
differential equations, and these equations cannot be solved
analytically when a fairly complicated system is involved. In
order to establish these equations, the reaction and diffusion
rate constants must be estimated from the actual experimental
data., In other words, these constants or parameters must be
estimated directly from the set of differential equﬁtions
based on the measured concentrations with respect to tiﬁe or
space. This estimation problem forms a two-point or multipoint
nonlinear boundary-value problem in which the conditions are
not all given at one point. This type of nonlinear boundary-
value problem is subtle and diffcult to solve.

The purpose of this work is to use two powerful technigues
which have been recently developed for obtaining numerical
solutions to water resources problems of the boundary-value
type. Quasilineavization and invariant imbedding represent
two completely different apprcaches to these problems., The
quasilinearization technique, also known as the generalized
Newton~Raphson method, represents an iterative approach
combined with linear approximations; while the invariant

imbedding approach, or the invariant principle, reformulates



the original boundary-value problem into a family of initial
value problems by introducing new wvariables or parameters.

Emphasis is placed upon computational instead of
analytical aspects throughout this work. Most of the
discussions are concerned with the actual convergence rates
and computaticnal requirements., Various numerical examples
are solved and detailed computational procedures and results
are given. General discussions concerning the stream quality
models are also given but are not in detail,

In Chapter 2, the quasilinearization technigue is
introduced; the generalized Newton-Raphson formula, and the
principle of superposition are discussed briefly.

Chapter 3 is devoted to the application of the quasi-
linearization technique to various estimation problems in
stream quality modeling. Many details concerning the
computational procedure, and the convergence rates of the
results are given in this chapter. It is shown that the
quasilinearization technique appears to be a powerful tool for
the stream quality modeling.

The invariant imbedding approach is described in Chapter 4,
In this chapter, not only the basic concept but also the non-
linear filtering theory is discussed.

In Chapter 5, the invariant imbedding approach is applied
to solve some boundary-value problems which result from the
identification or estimation of both state and parameters in

dynamic stream pollutlon modeling,



CHAPTER 2

QUASILINEARIZATION

2.1 INTRODUCTLON

The quasilinearlzation techniqua,.also known as the
generalized Newton-Raphson method was developed by Bellman and
Kalaba [4, 5y 8], and has been applied extensively to various
chemical engineering problems by Lee [20—23, 26] for obtaining
numerical solutions of two-point or multipoint nonlinear
boundary-value problems, Lee and his co=-workers have also
extended the application of the technique successfully to
various problems in the fields of industrial management systems
(18, 38), applied mechanics [27], water resources research
(28], etc.

Conceptually, the quasilinearization technique, is very
similar to the Newton-Raphson root finding method; however,
the unknowns to be determined in this teclhnigque are functions
and are not fixed values (roots) as in Newton-Raphson method.
Thus, both the computational and theoretical aspects are much
more complicated,

In general, most engineering problems are nonlinear
boundary-value problems whose numerical solutions cannot he
obtained easily, and there is a need for a method which can
solve this type of problem efficiently. However, there are
noe severe difficulties in solving linear boundary-value

problems, so whenever a nonlinear boundary-value problem is



encountered, there is a natural temptation to try to
linearize the nonlinear problem. However, the approximate
linearized equations are often unsatisfactory for many
application purposes. By the use of the quasilinearization
technique, not only the original nonlinear equations can be
linearized, but even more important, a seguence of funétions
which converges rather rapidly to the solution of the original
nonlinear equations can be provided.' For most practical
problems, an initial approximation for the unknown function
can be obtained from engineering experience and intuition,
With this initial approximation, the solution of the original

equations can be obtained through a sequence of functions,

2.2 GENERALIZED NEWTON-RAPHSON FORMULA
To apply the quasilinearization techmnigue, consider the

following general system of nonlinear differential equations

dx,
aﬁg fi(x.l’ x2, e e o 9 JCM, t) (2I1)

= by By o5 Me

where the Xy represents the dependent variable and t is the
independent variable, In vector form, this system of

equations can be represented by

(2.2)

Q.I o
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whore x and f represent M-~dimensional vectors with components

X1s Xp9 P xy and £, £,, ..., £, respectively. Eq. (2.2)

can be linearized by the recurrence vector equation [8, 20-23].

dx
o = £ 8) ¢ 300 (g = X (2.3)

where §k+1 and X1 represent M-dimensional vectors with

components x1’k+1, xz'k+1. se ey xM,k+1 and x1,k’ xz’k es vy

Xy, k! respectively. The Jacobian matrix £(§k) is

o8, of, . of
Xk %k XM,k
°f, . of, of,
X1,k 2,k Xy x :
J(x,) = N (2.4%)
Ty Ly, Pty
i 9x1,k Qxa,k gxM,k 1K

Note that Eq. (2.3) is essentially the Taylor series expansion
with the second and higher order terms neglected, If Xy is
assumed to be the known value and is obtained from previous

calculations and x . is the unknown value, Eq. (2.3) will

always be linear.



2.3 PRINCIPLE OF SUPERPOSITION

In general, it is not an easy task to solve a two-point
or multipoint nonlinear boundary-value problem. However, if
the performance equations are linear, the superposition
principle can be used [20-21].

Assume that the boundary conditions 7or Egq. (4) are

' b &
xj,k+1(tf) = X Jiu Ty By snwyg m (2.5a)

xp 1e01 (o) = xp L = mel, ms2, «.., M. (2.5b)
Now consider how the system of Egs. (2.3) and (2.5) can
be solved. Generally, the system cannot be solved in closed
form, IHowever, since Eq. (2.3) is linear, the system can be
solved numerically by the use of the principle of superposi-
tion; and a numerical integration teclhnique such as the
Runge-Kutta integration scheme [20, 35] for initial value
problems can be used, It is well known that for M simultaneous
linear equations, their general solutions can be represented
by one set of particular solutions and M sets of homogeneous
solutions [20-21]. Thus, the general solutions of LEq. (2.3)

are

M

X1 (B) = X5 4 (B) + SE% a4 k1 3ng,xe1 (B (2.6)

& £
tO £t £ tf



where x (t) and x

(t) are M-dimensional column vectors
~pyk+1 1

hj,k+
with components x1p,k+1(t)’ x2p,k+1(t)’ PR pr,k+1(t) and
x!hj,k+1(t)’ x2hj,k+1(t)’ ooy xth’k+1(t), respectively., The

aj,k+1’ =1, 2, +++3 M, represent the M scalar integration
constants to be deterimined from the boundary conditions.

The one set of particular solutions and M sets of
homogeneous solutions must be obtained numerically. However,
since they can be any solutions of Eq. (2.3) as long as the
homogeneous solutions are nontrivial and distinct, any set of
initial conditions can be used to obtain the particular
solutions; and any M sets of initial conditions, as long as
they are nontrivial and distinct, can be used to obtain.the
M sets of homogeneous solutions, :Furthermore, if these M+l
sets of indtial con&itions are chosen in such a way that they
satisfy the given initial conditions as given in Eq. (2.5b),
only m sets of homogeneous solutions are needed with m

integration constants, a 2y eee+y m, Thus,

j,k+1, J = 1’
Eq. (2.6) can be reduced to

m
i1 (8) = By 100 (B) ;1;1 5 ket Bug,uen (8 (2.7)

£ £
to £t £ tf
In vector form, the set of algebraic equations (2.7) can be

represented by



X (8) = a5p,1r.+1(1’) + ﬁh,k+1(t) Bk 1 (2.8)

where 5k+1 is the m=-dimensional integration constant vector

with components a1’k+1, a2,k+1’ o vy am,k+1, respectively.

The symbol x (t) represents the homogeneous solution

h,k+1

matrix

X1b1,k4e1(F) x1h2,k+1("’) cer x1hm,k+1(t)
Zont, 101 (8) Xonz, 11 (B) cee Xopp g 1 (8)

sth,k-i-'l(t) = . (2‘9)

Lxmh1,k+‘!(t) xmz,k+1(t) eesn x] ,k+1(t)_'

Once the particular and homogeneous solutions are

obtained, the integration constant, %k+1 can be obtained
from Eq. (2.8), With 2, ,1 known, the general solution

§k+1(t) of £q. (2.3) can be obtained., Once §k+1(t),

t,. £t £t is obtained, an improved solution vector

0 £?

§k+2(t) can be obtained., The procedure is continued until the

process converges and the desired accuracy is obtained,

2.4 DISCUSSION
In the quasilinearization techniquc, the solution of the
nonlinear equation is obtained by solving a sequence of linear

equations. In general, the solutions of this sequence of



linear equations converge rapidly to the solution of the
original nonlinear equation provided that the process converges.
The main advantage of this technique is that if the procedure
converges, its convergence would be guadratic. Quadratic
convergence means that the error in the current iteration

tends to be proportional to the square of the error‘in the
previous iteration. The advantage of quadratic convergence,

of course, lies in the rapidity of convergence.

The principle of superposition provides a fairly routine
procedure for solving the linear equations of the boundary-
value problems on modern computers, However, in spite of all
the advantages, the ill-conditioning phenomenon which is the
main difficulty encountered in the use of this technique can
make the superposition principle useless. Another difficulty
is the convergence problem, If the initial approximation is
not within the domain of convergence a solution generally
cannot be obtained. Further discussions of convergence

properties can be found in the literature [20].

/
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CHAPTER 3
STREAM QUALITY MODELING AND

ESTIMATION BY QUASILINEARIZATION

3.1 INTRODUCTION
Modeling and estimating the response of a river or stream
to any proposed pollution abatement action is one of the most
complex problems facing the sanitaryrengineers. The mathemat—
ical models which must represent é complex blending of
biological, chemical, and physical factors are not simple
and must be représented by complicated differential equations.
In order to establish these equations, the reaction and
diffusion parameters must be estimated from actual experimen-
' tal measurements., For a fairly complicated Syatem these
equations cannot bg solved analytically. Furthermore, the
reaction, diffusion, and mixing constauls cannot be measured
directly. They must be calculated from the measured change
of concentrations with respect to time or space. Thus, these
constants or parameters must bé estimated directly from the
set §f differential equations based on the experimental data.
In this chapter, the computational aspects of estimation
process by the gquasilinearlzation technique will be discussed
with respect to its application in stream quality modeling
and estimation. The estimation problem is treated as a

two-point or multipoint boundary-value problem.
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3.2 HYDROLOGICAL BACKGROUND

Water comes in contact with many different substances
during its natural passage from the air, over and through
the ground, through the various uses of the municipalities
and industries back to the stream, lake and to the sea, and
from there to the air again, In the surface runoff stage of
the cycle, water may carry with it soil, chemical contam-
inants, vegefation, and micro-~organisms., 1In the ground watexr
stage, water will contain many dissolved minerals; this is
usually the stage at which man encounters water,

Man's use of water for domestic, municipal, and industrial
purposes introduces a further degfadation of water quality.
The wasles disqharged into the stream from municipal and
industrial treatment plants generally consist of a large
variety of chemical compounds, of which a large portion is
bio-degradable and oxygen demandiﬁg. When this waste substance
is placed in a watercourse, it undergoes biocheinical oxidation
by micro-organisms for food. When sufficient dissolved oxygen
is contained in.the water, the dominant organisms are aerobic,
The dissolved oxygen is used to complete the oxidation
reaction, resulting in the production of carbon dioxide and
water. However, if there is dinsufficient dissolved oxygen
available, then anaerobic organisms predominant and end up
with undesirable products such as putrid odors, septic
conditions, and even fish kills, etc.

Bue to the fact that there are various oxygen-demanding
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organisms con*nined in wastes,and the importance of the
dissolved oxygen content of streams, it is therefore more
common to measure the "strength" of wastes in terms of their
biochemical oxygen demand (BOD) rather than to analyze for
the chemical constituents of the waste., For this reason
stream quality standards usually specify minimun dissolved
oxygen (DO) concentrations for the streams,

The dissolved oxygen content of a stream is generally
governed by two major factors: One is the utilization of
oxygen by biochemical oxidation, and the other is the supply
of oxygen by absorption of atmospheric oxygen, artificial
aeration, and photosynthesi: .,

The biochemical oxygen demand of the polluted water
consists of two reaction stages: The first is concerned
with the relatively earlier acting oxidation of carbonaceous
material, while the second is concerned with the later and
slower acting nitrification process. In practical cases,
engineering investigations are carried out using only first
stage demand., Thus, only the first stage demand has been
satisfactorily generalized in mathematical terus,

In the following section, the commonly used mathematical

models will be discussed.

3.3 THE MATUEMATICAL MODELS
The most widely used mathematical model of the dissolved

oxygen relationships in a sgtream is that proposed by Streeter
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and Phelps [40]. It is an one dimensional model and is in
terms of two competing parameters:; One is the biochemical
oxygen demand, and the other is the dissolved oxygen. The
model describes biochemical oxidation as a very simple first

order differentical equation

S= = -K,B | (3.1)

where B is the first stage biochémical oxygen demand in parts
pef million {ppm), t is the time in days, and K, is a reaction
rate constant for deoxygenation in clr:;n.’:,,r"'1 which depends not
only on the characteristics of the waste but also on the
watler temperature.‘

In the Streeter-Phelps model, the reaeration is also
presented as a first order process depending upon the

difference between the dissolved oxygen concentration, and

the saturation concentration:

dc

at = “Kp(s-C) (3.2)

where C is the dissolved oxygen concentration in ppm, S is
the satuation concentration in ppm, and K2 is the reaeration
rate constant in day".

By combining the rates of the two reactions, the resulting

equation in terms of the dissolved oxygen deficit is obtained:
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3% = KB - K,D (3.3)

where D = S - C,

The Streeter-Phelps formulation describes the behavior
of the dissolved oxygen concentration in a single reach of
a stream, It considers only the oxygen uptake of dissolved
organic material and the absorption of atmospheric oxygen,
but it fails to account for the effects of photosynthesis,
sedimentation, bottom scour, and surface runoff on the
dissolved oxygen balance,

Furthermore, since the capacity of the stream to
assimilate bio~degradable wastes is determined by such factors
as BOD and DO concentrations, stream flow and temperature,
and the physical and biological properties of the stream
that affect settling rates, reaeration, and BOD addition
due to runoff and scour, etc. A number of modifications
of this work have been proposed by several people {10], [13],
[30), [41].

In the present study, a modified Streecter-Phelps model
which has been developed by Camp [ 10] and Dobbins [13] is
cousidered.,

In addition to the tﬁo rate coﬁstants, deoxygenation
and reaeration, three more constants which represent the
BOD addition due to runoff and scour, oxygen production or

reduction by plants or bottom deposits, and sedimentation
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appear in the Camp-~Dobbins model, In the present case, Eqgs,

(3.1) and (3.3) become

dB

at = ~(K; + K3)B + R (3.4)

dbD

5t = KB - KD - A (3.5)
where B, D, K1, Kz, and t remain the same as in Egs., (3.1) and

(3.3), R represents the BOD addition rate due to runoff and
scour in ppm per day, A is the rate of oxygen production or
~reduction due to plant photosynthesis and respiration in ppm
per day, and K3 is the sedimentation and absorption rate
-constant in day'1.
The Canp-Dobbins equations do not satisfactorily describes
the complex biological, chemical and physical phencmena of
svreamms. However, they do account for the elfects of introduc-
tion of some unstable bio~degradable and oxygen demanding
wastes on the oxygen resources of streams, It is, therefore,
the model commonly used by state and federal officials as means

of water pollution control, Letting B, be the initial (t = 0)

o

BOD, the BOD concentration B, at any point (corresponding to a

t
time, t) downstream can be obtained by integrating Eq. (3.4).

B, = (B - _R };(I{1+I{3) -

O K+ ¥ Ko, (3.6)

Substdituting ' D i
ubstituting for By from Eq. (3.6), and letting D, be
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the initial oxygen deficit, Eq. (3.5) can be integrated to

determine the DO deficit D, at any point downstream.

t
K, R -(K1+K3)t -K,t
D, = (B0 - —) (e - e )
Kz-(K1+K3) K, +Kq
K =X.t =K.t
1 R A 2 2
'K, (K1+K3 - 1{1) (b=w "} +Bys " . (3.7)

A graph of Dt versus t results in the typical oxygen
"sag curve", shown in Figure 1. The point of maximum DO
deficit (or minimum DO concentration) is éalled the critical
point, The critical deficit Dc’ and the critical time tc,
occur at the critical point., In Region A, fhe rate of
deoxygenation exceeds the reaeration‘rate. While in Region
B, the reverse is true, Further discussions of water pollution
models, BOD and DC relationships in streams, can be found in

the references [14-15, 30-32, 34, 39, 41-42],

3.4 PARAMBTER ESTIMATION

The purpose of this section is to illustrate how the
gquasilinearization technique can be applied to the estimation
problems in stream quality modeling. A number of exanmples
are solved to illustrate the technique.

3.4,1 A Simple Estimation Problem

To illustrate th: approach, consider the simple

representation of strean quality proposed by Camp and Dobbins,
described earlier in Eqs. (3.4) and (3.5).

In actual experiumental sdituations, tie reaction rate
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constants K1, Kz, and K3 cannot be measured directly. Only
B and D can be measured at Variqus values of t, The rate
constants must be estimated from these experimental wvalues.
Since Eqs. (3.4) and (3.5) can be solved in closed form, the
estimation of these rate constants is not very difficult.
However, it must be noted that Egqs. (3.4) and (3.5) are a
simplified representation of the actual stream situation.
The use of a more realistic model would make the differential
equatiﬁns more complicated and unsolvable analytically.
The estimation of these rate constants from the experimental
data becomes very difficult when closed form solutions for
the equations representing the process cannct be obtained,
Furthermore, even if closed form solutions for the process
model could be obtained, as in Eqs., (3.4) and (3.5), the
present approach of directly estimating the parameters from
the differential equations still has distinct advantages.,
Note that the parameters or rate constants appear nonlinearly
in the resulting analytical solutions of Egs. (3.4) and (3.3).
The estimation of parameters from nonl: :ear algebraic equations
is not simple. The quasilinearization technique appears to
be much more powerful than the commonly used nonlinear regres-
sion or nonlinear least squares estimation techniques.

The problem can be stated as follows: Estimate the rate

constants or parameters K., K,, and K, for Eqs. (3.4) and (3.5)

3

with the following measured or experimental data
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B(exp)(ts) =b_, 8§ = 1, 2, seey Su

(3.8)
D(exP)(tr) = d ’ r = .t, 2, s ey R,

where S + R 2 3, t. £t £ ¢ and t,. £ tr £ £ The initial

0] 8 £ 0
conditions for Eqs. (3.4) and (3.5) are

f’

B(to) =B
- | (3.9)

I
)

D(to)
The quantities bs and dr are known values and are obtained by
measuring B and D experimentally at various values of t. The
number of the experimental values must be greater or equal

' to the number of thé unknown constant parameters. The
superscript, (exp), denotes that the values of B and D aré
experimental values., Note that ts and tr are not necessarily
the same. Although experimental data for both the state
variables B and D are assumed, the approach can be used in
the same way if only one of thé variable has experimental
measurements, ‘

3.4.2 Computational Consideration

First, the case in which S + R = 3 is considered. It
is assuted that only the following three data points are

available for estimating the rate constants

B(exP)(t1) = b,
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B(exp)(tz) = b (3.10)

D(exP)(tl) =d,.
Murther asaume that the experimental errors resulting from
obtaining the experimental data are very small and thus these
experimental values can be considered as the true values of
B and D at the given values of t, To estimate the rate

constants, it is convenient to consider the unknown parameters

K K2 and K, as dependent variables parallel to B and D, and

1! 3

as functions of the independent variable t, Since these

funotions do not change with time t, they can be written as:

dK1
g5 = © | (3.11)
dK ’

2
55 =© (3.12)
dK3
a.__E,_.,=O (3013)

Now, the system has five simultaneous differential
equations, Eqs. (3.4), (3.5), (3.11)=(3.13). The five
equations can be solved by the use of the boundary conditions

as given in (3.9) with t; = O and

I
(=3

B(t,) 1

i
o

B(t,) = b, (3.1%)

{
(o)

n(t,)
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where t1 and tz are two discrete wvalues of t within the interval

0 £ t £ tf. Note that the experimental data are used as the

boundary conditions, Since these boundary conditions are not
all given at one point, the problem is therefore a multipoint
boundary=-value tyj;;e. Furthermore, since both the rate

constants K1, K, and K and the original wvariables B and D

2 3
are considered as unknown functions, Egqs. (3.4) and (3.5) are
nonlinear equations. Thus, the system represented by Eqgs.
(3.4), (3.5), (3.11)=(3.13) is a multipoint nonlinear boundary-

value problem,

3.4.3 The Least Squares Approach

For nearly all parctical situations, the experimental data
are not exact and always have experimental o1 measurement
errors, It i1s therefore desirable to obtain a fairly large
amount of data instead of just three data points. For
S + R > 3, the classical least squares criterion can be used,
the object is to determine the constant parameters so that the
sum of the sguares of the deviations is minimized. Instead
of using boundary conditions (3.14), one can obtain these
three conditions by minimizing the folleowing least squares
expression

2 R

S
Q= 2 [B(t) -v] " + = ((t,) - a]” (3.15)

10 Ky

and Kg4. B(t_ ) and D(t_) are obtained by solving Bags. (3.4)

where the minimization is over the constant parameters K
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and (3.5).

Note that the above problem is equivalent tec the
optimization problem of minimizing the expression (3.17)
subject to the conditions (3.4%), (3.5) and (3.9). The
minimization is over the three unknown initial values K,(0),
X,(0) and xB(o).

3.,4.,4 Computational Procedure

The estimation problem for thersimple stream quality
model can now be approcached by the quasilinearization technique.
The system of equations (3.4), (3.5), (3.11)=(3.13) can be
easily linearized by using the generalized Newton-Raphson
formula of Eq. (2.3) as developed in Chapter 2 with M. = 5,

These linearized equations are

dB

el
at Ky * %5100 B0~ Bk, ke
” BkKS.k+1 + BKy 4o+ BKg p 4+ R (3.16)
dDk+1
Tt " K kPrer T %20kt OB, ke
= DyKo see1 — Kq kB * K D - A (3.17)
dK1 k41
.a-%—-l-___... = 0 (3.18)
dK
2,k+1
— T -
T 9 (3.19)
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dK
1
E?QLE1~ = 0, (3.20)

The tweo given boundary conditions are

o

B, 1(0) = B (3.21)

Dk+1(0) . 0, (3.22)

The other three boundary conditicns can be obtained either
by using Eqs. (3.14) or by minimizing the least squares
equation (3.15). Since the use of least squares is a more
practical problem, the case of minimizing Eq. (3.15) is
considered.

Egqs., (3.16)-(3.20) are linear equations ﬁith variable
coefficients, In general, they camnot be solved in closed.
form, However, since they are line:.’, the principle of super-
position as described earlier in Chapter 2 can be used, The
general solution vector equation for the system of equations
(3.16) through (3.20), which corresponds to Eq., (2.8), can

be represented by

Bt (B) = X 10 (8) + 2 (8D 25, (3.23)

where 0 £ t £ ¢ The state vector §k+1(t) and the particular

f.

solution vector ip,k+1(t) are defined as



§k+1(t) =

ﬁp,k+1(t) =

=~ =

Byy1(t)
Dk+1(t)
K1,k+1(t)

K2'k+1(t)

_KB.k+1(t)4

FBp,k+1(t)7

D, ket (¥)

K1P:k+1(t)

Kop, kst ()

_ijsk*1(tl

The integration constant vector is

Rl et

/and the homogeneous solution matrix is defined as

#1,ke1

a2’k+1

a
N 3,1{1-1 B

24

(3.24)

(3.25)

(3.26)
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Bot,ke1(8)  Bpp g1 (8} Bpg 4 (F)
Dot,ie1(8) Pra yq1(8) Dpg p (%)
X, ka1 (8 = | King i1 (B Koo g1 (8) Kqpg g (8) (3.27)

K X

2, k41 Y Fopp 31 (8) Kppg o4 (8)

Kont,ke1$8) Kgpo w1 (t) Egpg o 4 (8) ]

The particular and homogeneous‘solutions are chosen in
such a way that they satisfy thertwo given initial conditions
in'(3.21) and (3.22). Thus, only three sets of homogeneous
solutions and three integration constants are needed. In
actual calculations, the set of particular solutions are
obtained by integrating Eqs. (3.16)~(3.20) with the following

initial values:

B
D

,(0) = |0 (3.28)
| )
0

The homogeneous form of Egs. (3.16) through (3,20) is

dBk+1 (
T - VK o+ Kg 4By g - B L

= By ket (3.29)
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de+1
at = KPrer T K21 P OB Ky
= DKo ke (3.30)

dK

1,k
-a—t—-’-—i-- =0 (3-31)
dx

2, k4
—_—atl - 0 (3;32)
at
dK

ket _

EgzL___ s 0 (3.33)

are
"0 o0 o]
0o 0 0
xh’k+1(o) = 1 10.2 (3.34)
0O 1 0
0.5 0 1 j.

Note that the initial values in (3.28) and (3.34) are
chosen in such.a way that at t = 0, the general solutions of
B and D in Eq. {(3.23) satisfy the given initial conditions
(3.21) and (3.22) and only three sets of homogeneous solutions
are needed. HNote alsc that three simple linear relationships
between the integration constants aj,k+1’ J=1, 2, 3 and the

constant parameters K, 2, 3, can be obtained from

J!]{+1, J = 1’

the general solutions of K., K2 and K, in £q. (3.23) and the

3
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initial conditions (3.28) and (3.34%). These linear relation-

ships are as follows:

Ky a1 (8] =89 g #2510 + 0:2 a5 (3.35)
Ky ka1 (8) =25 g (3.36)
KB,R+1(t) = 0.5 28y y.1 * 83 1.1 (3.37)

Since the two given boundary conditions, Eqs. (3.21) and
(3.22), have already been used in choosing the initial
conditions for obtaining the particular and homogeneous
solutions. The remaining three integration constants, aj,k+1’
=1, 2, 3, can Be ocbtained from the remaining three boundary
conditions. For the case S + R > 3, these three conditions
can be obtained by minimizing Eq. (3.15). At various positions
of ts and tr(s = 1y 2y weey S T =1, 2, .u.y R), the following
5 + R equations can be obtained from the general solutions of

B and D in the vector equation (3.23)

3
Bra1(Be) = By o a(80) + 5520 a5 i1 By ket (ts) (3.38)

Dk+1(tr) = Dp,k+1(tr) + 5Eﬁ aj,k+1 Dhj,k+1(tr) (3°39)

Substitution of the above two equations into Eq. (3.15) yields,

S 3
2
Qeypr = ggi[Bp,k+1(ts) * 551 2, kel Bri,ke1(tg) = B,]
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3 2
1[Dp’k+1(tr) + }51 35 e Dhj,k+1(tr) -d]% (3.ko)

<
r

M=

+

Since the particular and homogeneous scolutions at the
various positions of t are known and are obtained numerically
by using the initial values in {3,.,28) and (3.24), the .only
unknowns on the right-hand side of Eq. (3.40) are the three
integration constants, aj,k+1’ J = j, 2, 3, Thus, the problem
is now changed.into an optimization problem of determining
the values of these three integrétion coenstants such that the

vaiue of is minimized,

Qs
There are many techniques which can be used to minimize

Eq. (3. 40). However, for this work, partial differentiation

will be used to obtain the extreme values., By differentiating

(3.40) with respect to a j=1, 2, 3, respectively, and

Jok+1?
setting the results equal to zeros, the following three

algebraic equations are obtained:

—8511—— = 2 Ig B (t_)(B (t.)
ai,k+1 3;1 hi,k+1'" s Py k+1' s
¥ 531 %5,k41 Phy,ka1(ts) = P
+ 2 331 Dhi,k+1(tr)[Dp,k+1(tr)
+ f51'aj,k+1 Dhj,k+1(tr) - Bl

= 0 (3.41)

1 =13 By 3
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These three equations form the remaining three boundary
conditions. Since the variables B(ts), D(tr), b_ and d_

(s =1, 2, oe4y S3 »r =1, 2, ...y R) are all known values,

the integration constants aj,k+1’ j=1, 2, 3, can now be
obtained by solving the above three algebraic equations. Once
the integration constants are known, the general solutions

for B (), Dy, (6)s Ky 1 4 (8)s Ky o (%), and Ky o (%)

can be obtained from Eq. (3.23). Since the estimated

K and K are constants, they can

1,k+1? 72,k+1? J,k41
be obtained either from the general solutions (3.23) or by

parameters K

the linear relationships represented by Egs. (3.35)-(3.37).

K and K known, an

ke+1® F1 k01’ ¥2 xp1? 3, ke

improved set of values can be obtained in the same way by

With B , D
k+1

making k = k+1 in (3.16)-(3.20). The iterative procedure is
continued until the desired results are obtained provided
that the process converges.,
The computatienal procedure can now be summarized as
follows:
1. Linearize the system of equations {(3.4), (3.5), (3.11)-
(3.13) using the generalized Newton-Raphson formula (2.3).
2, Assume a set of reasonable initial functions for B(t),
D(t), K1(t), Kz(t), and Kj(t). Let these initial
functions be Bk:o(t)’ Dkzo(t)’ K1'k=0(t), Kz,k:o(t)’and
KB'k=0(t).
3. Integrate Eqs. (3.16)-(3.20) numerically using (3.28) as

the initial value with k = 0,



30

4, Integrate the homogeneous equations (3.29)-(3.33) three
times using (3.34) as the initial value with k = O,

5. Solve Eq. (3.41) for the integration constants 25 kpl=1’
=1, 2, 3, using the newly obtained particular and

homogeneous solutions from Steps3 and 4, and using the

H

given experimental data, hs and dr (s 1y 2y wowy 83
o= by @y emay Bl

6. Calculate B, ,_ .(t), D ,_.(%), K1’k+1=1(t), Ky ree1a1 ()
and K3,k+1=1(t) using Eq. (3.23) or obtain K1,k+1=1’
'Kz,k+1=1’ and Ky stz from Egs. (3.35) thfough (3.37).

7. Repeat Steps 3 through 5 with k = 1, 2, ..., until no

| further improvement on the values of B(t), D(t), K;» K,
and K3 can be obtained., _

"Note that the best évailable initial functions should be used

for Step 2.

3.4.5 A More General Estimation Problem

In practical situations, the oxygen production or
reduction rate A, and the BOD addition rate R, cannot be
measured directly for most of ﬁhe cases. Thus, a practically
important problem is: Given experimental data on B and D
along the stream and assume that the pollution model of the
stream can be represented by Egs. (3.4) and (3.5), obtain the
K

best estimates for the parameters KI’ I A, and R, This

2’ 3’
problem can be solved in essentially the same way as before
except for the presence of five unknown parameters, This

system can be represented by DEgs. (3.%4), (3.5), (3.11)=(3.13)

and
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dA
H :ix O (3.’42)
AR
Lo (3.43)

These seven equations can be linearized in the same way as
that discussed for the estimation of three parameters. Since
A and R appear linearly in these equations, the linearization
operation does not influence these two parameters, Using the
principle of superposition, a system of seven equations for
the general solutions can be obtained. By using the initial
values listed in Table 1 to obtain the particular and homogeneous
solutions, only five sets of homogeneous solutions are needed,
Eq. (3.41) remains essentially the same except that i = 1, 2,
eeey S and J =1, 2, seey 5He

Note that since Ak(t) and Rk(t) do not appear in the
linearized equations, the initial functions for Akmo(t) and
Rk:o(t) are not needed in Step 2 in the previously discussed

computational procedure,

3.5 NUMERICAL RESULTS

To test the effectiveness of this approach, the constants
or coefficients in Egs. (3.4) and (3.5) are estimated from
a given set of data. These given data are obtained numerically
by solving Egs., (3.4) and (3.5) using the following numerical

values:



Table 1.
Initial Values Used for Obtaining the Particular and

Homogeneous Solutions

Variable Particular Homogeneous Solutions
Solution 1 2 3 4
Bk+1(0) 7.0 | 0 o} 0 0
Dk+1(0) 5+7 0 0 0 0
K1'k+1(0) o} 1 1 0.2 0.3
Kz'k+1(0) 0 o} 1 o o
Kj’k+1(0) o} 0.5 0 1 0.5
Ak+1(0) 0 0 0 0 1

Rk+](0) 0 0 0 0 Ue2
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B 740,y p° = 5.7, te =1, (3.44)
R = 0.15, A = 0,85, ' (3.45)
K, = 0.31, K, =1.02, X5 = 0.03. (3.46)

Egs. (3.4) and (3.5) are integrated numerically with the
Runge-Kutta integration scheme. The step size whichwas used
in this integration is At = 0,01. Part of the results from
this integration are listed in Table 2 and plotted in Figure 2
which are used as the experimental data. Note that 21

(s

particular problem, Note also that the experimentai profile

R = 21) data points are used and t, =t for this

of D used as shown in Figure 2 is just a portion of the
complete "oxygen sag" curve which has been described in
Section 3.3.

3.5.1 Estimation of Two Parameters

First, parameters K, and K2 are estimated using the

"
values listed in Table 2 as the experimental data. In other

words, K., and K2 are considered as the unknown parameters

1
which must be estimated from the given data listed in Table 2,
the given model represented by Egs. (3.4) and (3.5), and the
given values represented by Eqs. (3.44), (3.45) and KB = 0.03.
The system of equations for this problem is represented
by Lgs. (3.4)=(3.5), and (3.11)-(3.12). These four equations
can be linearized in the same way as before except that K

3

is considered as a given constant.



Table 2,

Numerical Values Used as Experimental Data

ts s B(exP)(t ) = b n(exp)(t ) = d
s s s s
0.00. 1 7.0000 5.7000
0,05 2 6.8894 5.4801
0.10 3 6.7807 5.2695
0.15 4 6.6739 5.0677
0.20 5 6.5688 k.8743
0.25 6 6.4655 L.6890
0,30 7 6.3640 h.5113
0.35 8 6.2642 k.3410
0.hko 9 .6.1660 h,1776
0.45 10 6.0695 4.0209
0.50 11 5.9746 3.8706
0.55 12 5.8814 3.7262
0.60 13 5.7897 3.5877
0.65 14 5.6995 3.4547
0.70 15 5.6109 3.3269
0.75 16 5.5237 3.2042
0.80 17 5.4380 3.0863
0.85 18 5.3538 2.9729
0.90 19 5.2710 2.8639
0.95 20 5.1896 2.7591
1.00 21 5.1095 2.6583

34
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The initial wvalues used to obtain the one set of
particular and two sets of homogeneous solutiohs are listed
in Table 3., Note that the initial values are chosen in such
a way that they satisfy the given initial conditions in (3.21)
and (3.22). Thus only two sets of homogeneous solutions are
needed. This problem is solved by using the same computational
procedure discussed earlier except that only two parameters
are being estimated and the initial #alues used for obteaining
the particular and homogeneous soluticns are given by Table
3. The RungenKﬁtta integration scheme is used with the step
sizé[&t = 0.01, fo test the influence of the initial functions
used in Step 2 in the computational procedure, the following
three different set; of initial functions are used for the

unknown parameters X, and K, :

1 2

(1) K1,k:o(t) = Bals KZ,k:O(t) = @t

(2) Xy o) = 0.5, K, | () = 0.5 (3.47)

1.0

(3) K1’k20(t) = 1,0, 'Kz’k=0(t)

for 0 £ t = tf = 1. The following constant functions are used

as the initial functions for B and D for all the calculations:
Boolt) = 7.0, By _o(t) = 5.7 (3.48)

for 0 £ t £ t_ = 1. In other words, instead of the
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experimental data given in Table 2, the initial conditions
in (3.21) and (3.22) are used as the initially assumed constant
furictions for B and D, Notice that in order to increase the
convergence rate, either the experimental data or the actual
solutions of B and D should be used as the initially assumed
functions in practical solutions,

The problem converges rapidly to the correct solutions
for all three sets of initially assumed functions. The
convergence rates for B and D with the initially assumed
= 0.1 are shown in

functions K = 0,1 and K

1,k=0(t) 2,k=0(t)
Figure 3. Notice that a great amount of improvement has been
obtained during the first iteration. The convergence rates
for B and D with the second and third sets of initial functions
as shown in (3.47) are approximately the same as that shown

in Figure 3. The convergence rates for the unknown parameiers
K, and K, are shown in Table L., It can be seen that a six-
digit accuracy is obtained in only three or four iterations,

It should be noted that the initially assumed functions as
given by YXq. (3.47) are very far removed from the correct

solutions.

3.5.2 Estimation With Experimental Errors-Two Parameters

In practical situations, thé data obtained almost always
have measurement or experimental errors, To test the
influence of the experimental errcors on the rate of convergence
of this approach, the data listed in Table 2 are corrupted

with noise by the equations



Variable

B 0)

k+1(
Dk+1(0)
Kl,k+l(o)

Ky, x41(0)

Table 3.

Particular
Solution

7.0

5.7

0

4]

Initial Values Used for Obtaining the
Particular and Homogeneous Solutions

Homogeneous

Solutions

0

0

0

o



Table 4. Convergence Rates of K} and X

{(Two Parameter Problem

21

Iteration

32

1 2 1 2 1 2
0 0.1000 0,1000 0.,5000 0,5000 1,0000 1.0000
1 0.2859 0.7940 0.3306 0.8861 0,3908 0.1005
2 0.3099 1.0136 0.3100 1.0170 0.3095 0.1020
3 0.3100 1,0200 0,3100 1,0200 0.3100 0,1020
4 0.3100 1,0200 0.3100 1.0200 0.3100 0.1020
5 0.3100 1,0200 0,3100 1.0200 0.3100 0,1020
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bs(noise) = b +R (3.49)

(noise)
Ay T s ds

(3.50)

where s = 1, 2, ..., 8 with 8 = 21. Rbs and Rds represent
normally distributed random numbers, These random numbers
are generated by using the IBM scientific subroutines GAUSS
and RANDU, The means for these normally distributed random
numbers are zeros and the staﬁdard deviations are 0.35 and
and R

0.25 for ﬁ respectively. These standard deviations

bs ds’

are approximatelf Tfive percent of the data listed in Table 2.
These noisy data are listed in Table 5.

The problem is solved with the other numerical wvalues
remaining the same as that used for the case without noise.
The convergence rates for the three sets of initial functions
as given in Eq. (3.47) are shown in Table 6. It can be seen
that the presence of experimental errors does not slow the
convergence rates. However, due to the presence of noise,
the values of K1and K2 obtained are not the same as the
original given values. It is expected that as the number of
the noisy data increases, the estimated values for K1 and K2
should approach the original given values. This problem has
also been solved with 101 data points for both B and I and
with all other numerical values remaining the same. The
convergence rates for this 101 data points problem are
approximately the same as that shown in Table 6. However, the

= 1,0347

estimated values are improved to K, = 0,3147 aund K

1 2



Table 5, Numerical Values Used as Noisy Experimental Data

¢ . B(exp)(ts) - bs(noise) D(exp)(ts) - ds(ncise)
0.00 1 6.6533 5.8645
0.05 2 6.8742 5.8692
0.10 3 6.5075 : 5.0755
0.15 L 6.7591 ‘ 4,8416
0.20 5 6.6911 5.0409
0.25 6 6.7217 4,5628
0.30 7 6.5256 4.5621
0.35 8 6.4335 - - 4,2095
0.40 ¢ 6.0326 4,1910
0.45 10 5.9162 3.9586
0.50 11 5.2339 3.9796
0.55 12 5.8915 3.7372
0.60 13 5.9010 3.2301
0.65 14 6.0309 , 3.2228
0.70 15 5.9557 3.2451
0.75 16 5.3062 3.0929
0.80 17 5.4196 3.0774
0.85 18 5.4891 2.7755
0.90 19 6.0634 2.7798
0.95 20 5.2012 2.9485

1.00 21 L.,7616 2.4054



Convergence Rates of Ii,,

Table 6 .

and K

With Noisy Experimental Data
(Two Parameter Problem)

Iteration K, K, K, K, X, X,
) 0.1000 0.1000 0.5000 0.5000 1,0000 1,0000
1 0.2748 0.8026 0.3179 0.8984 0.3762 1,0227
2 0.2967 1.,0366 0,2968 1,0405 0,2964 1.0436
3 00,2968 1,0438 0.,2968 1,0438 00,2968 1.0439
L 0.2968 1.0439 00,2968 1,0439 0.2968 1,0439

43
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which are fairly close to the original given values for K1

and K2.

3.4,3 Estimation of Three Parameters

Now consider K1, Kz, and K3 as unknowns., The problem is
to estimate these three unknown rate constants in Eqs. (3.4)
and€(3.5) by using the given initial conditions, Eq., (3.44),
and the given numerical values, Eq. (3.45). 7The values
listed in Table 2 are again used as experimental data,

By the use of the initial values as given by Egs. (3.28)
and (3.34), this problem is solved by using the following

three different sets of initially assumed functions and the

computational procedure listed earlier

0.5

(1) Xy kao(t) = 0.5, K, 4 o(8) = 0.5, Ky o(f)

Bioolt) = 7.0, Dy=olt) = 5.7

(2) K1’k=0(t) = 0,1, Kz’k=0(t) = 0.1, Kjlkzo(t) = 0,1

Bk=0(t) = 6.1, Dk=0(t) = 3,1 (3.51)

(3) Ki'kzo(t) = 0,08, Kz’k=0(t) = 0.08, Kg’kzo(t) = 0,35

Bk=0(t) = 5,0, Dk=0(t) = 5.0
for 0 £ t = tf = 1, The Runge-Xutta integration scheme with
step size Ot = 0.01 is used again., The convergence rates

with the three different sets of initial functions are shown
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in Table 7. The convergence rates for B and D with

Ky ke0(t) = Ky o olt) = K5, () = 0.5, B () =7.0, and
D, _o{t) = 5.7 given in (3.51) are shown in Figure 4, The
convergence rates for the other two sets of initial functions
are approximately the sime as those shown in Figure 4.

3.5.4 Estimation With Experimental Errors - Three Parameters

Again, to test the influence of the experimental errors
on the rate of convergénce for the three parameter problen,
the noisy data listed in Table 5 are used once again to
estimate the three unknown rafe constants K1, K2’ and KB'

With the numerical values in (3.44), (3.45) remaining
the same, this problem is solved by using the following two

different sets of initial functions for B and D:

(’) Bk___o(t) = 7.0, Dk=0(t) = 5.7

(3.52)
The three sets of initial functions used for K1, K2’ and KB
are
(1) Ky keo(8) = Ky ol8) = K5 4 o(t) = 0.1
(2) Ky 08 = Ky g o) = Ky 4 o(8) = 0.5 (3.53)

(3) Ky 0(8) =Ky 1 o(6) = Ky ) (%) = 1.0

o
H

o
I~
ot
i~
et
1)

1. The convergence rates with these different



Table'7A. Convergence Rates of K.,
(Three Parameter problem)

1 h2 and K

Bo(t) = 7.0, D (t) = 5.7

Iteration K1 Kz Kj
0 0.5 0.5 D5
1 -0.1016  0,3125 0.6367
2 0.h262 1.1268 -~0.0956
3 0.3110  1.0215  0.0290
4 0.3100 1.,0200' 0.0300
5 0.3100 1,0200 0,0300

3

L6



Table 7B. Convergence Rates of K, K2 and KB
(Three Parameter Problem)

Bo(t) = 6.1, Do(t) =h3.1

Tterution K1 Kz hg
(o] 0.1 0.1 0.1
1 © ~=1.8891 -3.0000 2,2500
2 0.5601 1.2169 -0,2200
3 0.3180 1.0326 0.0220
4 0.3100 1.0200 0.0300

5 0,3100 1.,0200 0.0300



Table 7C. Convergence Rates of K

y K., and K

(Three Parameter Probler 2

Iteration Bbit) = > DO(#) =2
3 X, K3
0 0.08 0.08 0.35

1 Lk.2375 h.7500 -3.9688

2 0.8192 1.7918 -0.4800

3 0.2862 0.9865 0.0538

4 0.3100 1,0199 0.0300

5 0,3100 1.0200 0.0300

3
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sets of initial functions are shown in Table 8, It can be
seen that the convergence rates of Kl' K2, and KB remain
very rapid. llowever, due to the presence of noise, the

1* Ko and KB are not the same as the
original given values (see Table 8). Especially the value

estimated values of K K

- of K, obtained, K, =-0,0148, is far from that of the origimnal

3

given value, K

3

5 = 0.03, It can be interpreted that this

unstabi;ity is caused by three facts: First, the expermental
data used are just a partial representation of the complete
"oxygen sag" curve, Second, the original given value of
0.03 is rather small as compared with the values of

K

3
K1 0.31, K2 = 1.02, and those wvalues of experimental data,

Third, random noises are imposed., It is expected that the

results of this estimation should be improved as a complete
"oxygen sag" curve is used as the esperimental data, and
a longer duration of the process is used.

In order to further investigate the convergence and
other computational aspects of this problem, the following
numerical values are used:

8® = 30.0, p% = 1.0, t_ = 5. (3.54)

The other values in (3.45) and (3.46) remain the same. Again,
Eqs. (3.%4) and (3.5) are integrated numerically with the
Runge-Kutta integration scheme, The step sire used in this

integration is increased to At = 0,05, Part of the result



Table 8A, Convergence Rates of K., Kz, and K
With Noisy Experimental Dats
(Three Parameter Problem)

B.(t) = 7.0, D (t) = 5.7

. o 0

Iteration K X e
1 2 3

¢ 0.1000 0, 1000 0.1000

2 0.5241 1.2511 =0.1903

3 0.3527 1.0832 <-0.0176

L 0.3499 1.0787 =0.0148

5 0.3499 1.0787 =~0.0148

3
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Table 8B. Convergence Rates of K_, KZ’ and K
With Noisy Experimental Data

(Three Parameter Problem)

3

Tteration

Bo(t) = 7.0, Do(t) = 5.7

X, K, X,
o 0.5000 0.5000  0,5000
1 2,8500 4.0000 -2.3750
2 0.4950 1.4100 -0,1634
3 1 0.3389 1.0632 -0,0039
4 0.3498 1,0786 -0.0148
5 0.3499 1.0787 =0,0148
6 0.3499 1.0787 =0.0148
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Table BC. Convergernce Rates of K, K2, and K

With Noisy Experimeintal Data

(Three Parameter Problem)

Iteration

Bo(t)-": 7+0, Do(t) = 5.7

K, X, X,
) 1.0000 1.0000 1,0000
1 -1,0093 -0.6875 1,h141
2 0.0196 0.6166 0.,3169
3 0.3407 1.,0636 -0.0057
b 0.3498 1,0786 _0.0148
5 0.3499  1,0787 -0.0148
6 0.3499 1,0787 -0,0148

3
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Table 8D. Convergence Rates of K., K,, and K
With Noisy Experimental Datd

(Three Parameter Problem)

Bo(t) = 5.0, Do(t) = 5.0

Iteration 3 X X,
0 0,1000 0,1000 ©0,1000
1 1,0000 11,5625 -0,8438
2 0.5763 1.3724 .-0.2524
3 0.3493  1.0780 -0.0143
4 0.3499 1.0787 -0.o1hé
5 0.3499 1.,0787 -0,0148

3
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Tahle 8L, Convergence Rates of K., X,

21 and K

With Noisy Lxperimental Data

(Three Parameter Problem)

Bo(t) = 5.0, Do(t) = 5,0

Iteration K1 Kz K3
0 0.5000 0,5000 0,5000
1 -0,0625 0.6250 0,2188
2 0.2964  0,9936 0.0386
3 0.3491 1.0773 =~0.0140
4 0.3499 1,0787 -0.0148
5 0.3499 1.0787 ~0.,0148

3
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Table 8F, Convergence Rates of K_, K,, and K
With Noisy Lxperimental Data

(Three Parameter Problem)

Bo(t) = 5.0, Do(t) = 5,0

Iferation K1 %&_ K3
0 1.0000 11,0000 1,0000
1 | 2.,2375 3.1875 -2.2186
2 0.7523 1.6864 -~0,4089
3 0.3384%  1,0627 ~0.0033
b 0.3498 1,0786 -0.,0148
5 0.3499  1,0787 -0,0148
6 0.3499  1,0787 -0.,0148

3
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are listed in Table 9. Instead of the eguations given in
(3.49) aund (3.50), the data listed in Table 9 are corrupted

with noise by the following equations

bs(n°ise) =b_(1 + 041 R, ) (3.55)

d (noise)
s

=a (1 +0.1R (3.56)

ds)

with 8 = 1, 2, ..., 21, The means for these normally
distributed random numbers are remained to be zeros, but the
standard deviations now used are 0.50 and 0,10 for Rbs and

R respectively, By using Egs. (3.55) and (3.56), the

ds’
measurement errors are approximately five percent proportional
to the true values of B and D listed in Table 9, The noisy
data for this problem are shown in Table 10. The data in
Table 9 and noisy data in Table 10 are plotﬁed in Figure 5.
It is seen that thére is a “"sag" curve in Figure 5.

For the present case, the initial values given in (3.28)
and {3.3%) are once again used except that the values for
B0 and D0 are changed to BO = 30,0 and DO = 1,0, respectively,
The initial functions used for K1, K2, and K3 are the same

as those given in (3.53)- The two sets of initial functions

for B and D are:

1.0

Bkzg(t) = 30.0, D, _(t)

(3.57)
5.0

it

Blolt) = 5.0, D (%)



Table 9, Numerical Values Used as Experimental Data
(Complete Oxygen Sag Curve)

B(exP)(ts) - bs D(exP)(ts) - ds

ts 8
0,00 1 30.0000 1,0000
0.25 2 27.5913 2.5525
0.50 3 25.3789 3.5979
0.75 L 23,3468 L.2632
1.00 5 21.4803 L.,6457
1.25 6 19.7658 4.8199
1.50 7 18,1911 h,8h27
1.75 8 16,7447 4,7573
2,00 g 15.k162 L.5964
2.25 10 14.1959 4,3847
2.50 11 13.0751 4.1&08
2.75 12 12.0456 3.8785
3.00 13 11,0999 3.6077
3.25 14 10,2314 3.3361
3.50 15 9.4336 3.0687
3.75 16 8.7008 2.8092
4,00 17 8,0278 2.5602
4,25 18 7.4096 2.3232
4,50 19 6.8417 2.0991
%.75 20 6.3202 1.8882
5.00 21 5.8411 1.6907



s B(exP)(ts) =

bs(noise) D(exp)(ts) _

q (noise)
8

Table 10.
tS
0.00 1
0,25 2
0.50 3
0.75 &
1.00 5
1.25 6
1.50 7
1.75 8
2,00 9
2.25 10
2.50 11
2.75 12
3.00 13
3.25 14
3.50 15
3.75 16
4,00 17
h.25 18
4,50 19
h.75 20
5.00 21

30.0086
28,1118
26,7720
21.8259
19,7630
21.9842
17.6209
16,3512
16,7522

14,2938

13.7861
11,6554
10.8524
9.6077
8.6727
8.2575
8.,2696
7.8113
7.+3904
6.4533
5.7843

1.0055
2,5871
3.5265
4,24k90
h.6us5
L,82735
4,8916
4.,6931
4,6554
4,2695
h.1462
3.9292
3.5828
3.3559
3.0510
2.8061
2.5929
2.3636
2.0625
1.8874

1.7026
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Numerilcal Values Used as Noisy Experim-ntal Data
(Complete Oxygen Sag Curve)
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Based on the noisy experimental data listed in Table 10U, thiws
problem is solved withAt = 0,05, The convergence rates for
these different sets of initial functions arc listed in
Table 11. As can be seen in Table 11, tlhie obtained values

K, = 0.3086, K

1 2
to the original given values.

= 1.,0161, and K, = 0.0307 are fairly close

3

3.5.5 Estimation of Five Parameters
It is recognized that methods for measuring some of the

rate constants, namely K A, and R, have not been perfected

gt
and in most cases are unavailable. However, these rate
constants still can be estimated from the stream quality model
if the experimental data on B and D along the stream are
available,
Now consider K

K A, and R as unknown parameters,

1! 2' KB!
The problem can be solved essentially in the same way as tﬁat
for the three parameter problem. By using Table 2 as the
experimental data and with the other numerical values remaining

the same, the problem is solved by using the following three

different sets of initial functions:

(1) Bkzo(t) = 7.0, Pkuo(t) = 5.7,

1{1,k=0(t) = KE,k:O(t) = K3,k=o(t) s =0
(2) Bk:O(t) = 5.0, Dk=0(t) =.5.0,
K%,kzo(t) = Kz,k=o(t) = Kg,k_o(t) = 0.1 (3.58)



Table 11A, Convergence Rates of K., K,, and &
With Noisy Experimental Datf
(Three Parameter Problem With
Complete Oxygen Sag Curve)

Bo(t) = 30.0, Do(t) = 1.0

Iteration (At = 0,05, te = 5)

K, K, Kg
0 0,1000 0,1000 0,1000
1 11,0625  2,3125 -0.0625
2 1.0446  2.3051 0.1184
3 0.1137 1.9917 =0.3970
L 0.2862 0.9253 0.0433
5 0.3069 1.0050 0.0330
6 0.3085 1.0157 0.0309
7 0.3086 1.,0161 0,.0307
8 0. 3086 1,0161 0.0307

3
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Table 11B. Convergence Rates of K_, Kz, and Kj
With Nodisy Experimental Data
(Three Parameter Problem With
Complete Oxygen Sag Curve)

Bo(t) = 30.0, Do(t) = 1.0
(ot = 0,05, to = 5)

Iteration
K, K, Kq
0 0.5000 0.5000 0.,5000
1 0.4625 6.3750 0.4375
2 0.2327 0.,9151 40.2291
3 0.2944  0.9394  0.0360
4 " 0.3081 1.0136 0,0313
5 0.3086 1.0160 0,0307
6 0.3086 1.0161 0.,0307

7 0.3086 1.0161 00,0307



Ta'le 11C. Convergence Rates of K_,
With Noisy Experimental Datd
{(Three Parameter Problem With
Complete Oxygen Sag Curve)

Kz, and X

By(t) = 30,0, by,

(t) = 1.0

(at = 0.05, t, = 5)

Iteration
K, X, K,
0 1.0000  1.0000 1,0000
1 0.4000 2,2500 0,3125
2 0.5477 1.9378 =0.1195
3 0.2244 0.6987 0.1106
b 0,3058  1.0080  0.0335
5 0.3085 11,0159 0,0308
6 0.,3086 i.0161 0.0307
7 0.3086 1,0161 0,0307

3
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Table 11D, Convergence Rates of K1, Kp, and KB
With Noilsy Experimental Datd
(Three Parameter Problem With
Complete Oxygen Sag Curve)

Bo(t) = 5.0, Do(t) = 5.0
Iteration (ot = 0.05, Yp = 5)
K, K, Ko
0 0.1000 0.1000 0.1000
1 3.5875 4,0000 -2.9063
2 0.9958 4.1670 00,6572
3 0.0385 =0.2514  0.2999
4 0.3558 1.2857 -0.0164
5 0.3099 1.0193 0,029k
6 0.3086 1.0161 0.0307

7 0.3086 1.0161 0.0307



Table 11E, Convergence Rates of K_, X,, and K
With Noisy Experimental Dat:
(Three Parameter Problem With
Complete Oxygen Sag Curve)

3

Bo(t) = 5.0, Do(t) = 5.0
Tteration (At = 0.05, t, = 5)
K, K, K,
0 0.5000  0,5000 0,5000
1 ~4.9125 44,0625 3.9063
2 0.0750 1.0625 -0,1563
3 0.0817  1.0625 -0,1306
4 ' 0,2241 1.2996 -0.0415
5 0.3137 1.0260 0,0116
6 0.3091 1,0182  0.0301
7 0.308§ 1,0162 0.0307
8 0.3086 1.0161  0.0307

9 0.3086 1.0161 00,0307
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Table 11F.

Convergence Rates of XK.,

Ky

and K

With Noisy Experimental Data
(Three Parameter Prcblem With

Complete Oxygen Sag Curve)

By(t) = 5.0, Do(t) = 5.0
(ﬂt = 0005' tf = 5)

Iteration
K, K, K,
0 1.0000 1,0000 1,0000
1 28,0250 30,0000 -30.6875
2 1.1492 22,7500 ~0.5664
3 6.5048 28.9919 -5.9920
4 ~-1.0027 hL.7889 1.2529
5 0.0168 ~0.,4656 0.3207
6 0.3250 1.1242  o0.0142
7 0,3122 1.0305 0,0271
8 0.3087 1.0165 0.0306
9 0.3086 1.0161  0,0307
10 0.3086 1.0161  0,0307
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(3) B__,(t) = 3.0, D__(t) = 3.0,

1{11:1(:"—0(.‘;) = KZ,R:O(t) = Kka-_-O(t) = 0.1 ¢

The convergence rates for the five constant parameters
are shown in Table 12, It can be seen that in spite of the
large number of parameters to be estimated, the convergence
rates of the problem remain very rapid. Only five iterations
are needed to obtain a four digit accuracy. Note that the
initially assumed functions as given by Eq. (3.58) are very
approximate., With sets (2) and (3) of (3.58) as the initially
assumed functions, fairly large oscillations are obtained
during the first three iterations (see Table 12), However,
the convergence rates have not been reduced in spite of the
large oscillétions involved. The convergence rates of B and
D with K1’k=0(t) = Kz'kzo(t) = K3'k=0(t) = 1.0, Bk=o(t) = 7.0,

and Dk_o(t) = 5.7 are shown in Figure 6.

3.6 DISCUSSION

The numerical examples that have been shown above,
indicate that the quasilinearization technigue is a very
useful tool for solving nonlinear boundary-value problemns or
for estimating the unknown system parameters., In general,
it can be said that as long as the initial approximations are
reasonable and within the counvex region of convergence, the

technique converges rapidly- usually within seven iterations.



Table 12A., Convergence Rates of XK_, Kz, Kj' A and R
(Five Parameter Problem)
Iteration Bo(t) = 7.0, Do(t) = 5.7
K, K, K, A R
0 1.0000 1.0000 1,0000 - -
1 ~1,2766 =0.7500 0.9961 0,0625 =0,1750
2 -0,4866 -0,0592 ~1,2693 1.4366 -14,6611
3 0,2943  1,0014 0.0663 0.,8215 0.2948
4 0.2944 1,0196 00,0307 0.84%79 0.1500
5 0.3100  1.0200 0.0300 0.8500 0.1500
6 0.3100 1.0200 0,0300 0,8500 0. 1500
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Table 121,

Convergence Rates of K.,

K,, K

sy A and R

(Five Parameter Problem) 273
Iteration By(t) = 5.0, Dy(t) = 5.0

X, K, K, A R
0 0.1000 0,1000 0,1000 = -
1 3.7033 3.9375 =3.6357 1.9375 -1.1125
2 22,4543 13,9128 22,0784 82,4427  0.4091
3 0.0352 00,8720 0,3049 -0.2299 0.1503
4 0.3097 1.0195 0,0303 0.8597 0,1500
5 0.3100 1.,0200 ofo3oo 0,8500 00,1500
6 0.3100 1.0200 0,0300 0.8500 0,1500



Table 12C, Convergence Rates of K,_,
(Five Parameter Problem)

Kys Kqy A and R

Bo(t) = 3.0, Do(t) = 3,0

Iteration
X, K, X, A R

0 0.1000 0,1000 0,100+ - -

1 26,5531 11.8750 8.2891 56.8750 9, 803¢
2 26,7191 13,7742  7.3718 112,5150 235.1970
3 0.9036 1.4436 -0,6148 2,6631 -~0.5017
b 0.4095 1.0843 -0.0693 1.1923 0,1520
5 0.3101 1,0203 0.0299 0.844u9 0.1500
6 0.3100 1,0200 0,0300 0.8500 0.1500
4 0.3100 11,0200 0.0300 0,8500 0.1500
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The advantage of this approach is that the parameters and
the solution of the differential equations representing the
system are obtained simultaneously. Furthermore, any known
information about the parameters can also be utilized in
estimating the initial approximations or starting values for
the parameters.

In order to illustrate the effectiveness of this
technique, both the exact sclutions and noisy data of B and
D have been used as the experimental data. Furthermore, based
on two simple differential equations (3.4) and (3.5) which
represent the widely used pellution model, different numbers
of parameters f{from tvo, three, and five have been estimated.
It is shown that with very approximate initial guesses for
the unknown p:arameters, only three to seven iterations are

needed teo obtain a four to five digit accuracy.
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CHAPTER &

INVARTANT IMBEDDING

4.1 INTRODUCIION

In previous chapters, the quasilinearization technique
has been introduced to solve nonlinear boundary~value problems
arising from stream quality modeling, In this chapter, a
completely different approach, known as "invariant imbedding",
will be introduced for solving boundary-value problems,

"The invariant imbedding principle has its origin in the
theory of semigroups. Ambarzumian [1] seems to have been the
-first one to introduce this principle in any significant
fashion. Chandrasekhar [11] generalized the results of
Ambarzumain and used'this principle elegantly in treating the
theory of radiative transfer, This principle has been studied
estensively by Bellman, Kalaba, Wing, and co-workers [4, 6, 9];
Recently, Lee has further extended the invariant imbedding
applications successfully to various boundary-value problems
in chemical engineering (29, 2k, 25].

Strictly speaking, the invariant imbedding is only a
con;ept; it is not a technique or method. This concept involves
a completely different approach to formulating the problem.
Instead of only considering a single problem with a fixed
duration or length of the independent variable, the invariant
imbedding approach is fto consider a family of problems with

durations ranging from zero to the duration of the original
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problem. By imbedding these problems, the parficular original
problem can be solved. For this reason, this concept can be
applied to a variety of different problems,

It sbhould be emphasized that because this concept is
completely different from the usual concept, it frequently
gives some different insights to the same problém which has
been treated previously by the usual method. Furthermore,
these new formulations often have distinct advantages over
the original formulation, both computationally and theoretical=-
1y.. The dynamic programming [3-4, 7, 20, 26] is a good
example., The functional equation of dynamic programming is
essentially the invariant imbedding equation with the addition
of maximization or minimization,

In this chapter, emphasis will be placed on the use of
the basic concept of invariant imbedding as a computationai
tool. More elegant formulations and the theoretical or
analytical . pplications of the invariant imbedding concept

will not be discussed.

L.2 NONLINEAR FILTERING AND ESTIMATION

The invarijiant imbedding concept has been applied to
various two-point boundary-value problems., This concept can
also be used to derive some useful results in nonlinear
filtering and estimation theory. In this section, application
of the invariant imbeddins concept to the simultaneous

estimation of state and parameter from differential equations
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will be discussed.

Since the invariant imbedding approach is completely
different from the usual classical approach, two main
advantages can be obtained. First, it can be applied to a
great variety of nonlinear problems. Second, a sequential
estimation scheme is obtained. By the use of this sequential
scheme, only current data are needed to estimate the current
or future wvalues of the parameters, No statistical assumptions
are needed concerning the nolise or experimental disturbances
of the data. The generally used least squares criferion can
be used to obtain the optimal estimates. If the information
concerning the disturbances are known, better criteria than
the classical least squares may be employed.

To illustrate the approach, consider a system whose
dynamic behavior can be represented by the following simplé

nonlinear differential egquation:

& = £ P, (4.1)

where £ is a known function. The problem is to estimate the
values of the state x and the constant parameter P from the
measured data on'x. Generally, there are two kinds of noise
or disturbances involved in the experimental measurements,

The first kind is the unknown disturbance on tlhie input. Oﬁing
to the presence of this disturbase, the process must be

represented by
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% = f£(x, p, t) + &(x, p, t) u(t), (4.2)

where g is a known function, and u(t) represents tlie unknown
disturbance omn the input. The second kind of disturbance
is then the measurement error. Thus, the measured value of

x(t) is
z(t) = x(t) + (mweasurement errors). (4.3)

In practical situations, x(t) generally cannot be measured
directly, and only a certain function of x can be measured.

Let this measurable function be h(x, t); then
z(t) = h(x, t) + (measurement errors), (4.b4)

where hh is a known function of x and t,

Note that the state x(t) and the parameter P are to be
estimated simultaneousiy. Consider P as a dependent variable
and as a function of t, the differential equation can be

established:
aP _ o (4.5)

Notice here that the state of this system is now represented

by x(t) and P(t).
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By using the classical least squares criterion, this
estimation problem can be stated as: Based on the measure-
ment z(t) at various positions of t, O = t, €t £ty estimate
the unkrown state x and the parameter P at the time t = tf

for the system (4.4) such that the following integral

expression is minimized:
tf ”
J = j [h(x, t) - z(t)] dt (4.6)
8]

Where z(t) is the observed function. The function x(t) is
determined on the interval 0 £ t ¢ t. by Eq. (4.1). Note
that the problem is minimized with respect to the measurement
errors only., The minimization on the other kind of input
disturbance is not shown here.

The above results crr also be generalized to systems

with dynamics represented by n differential equations. The

equations corresponding tc Egs. (4.1), (4.3), and (4.6) are

0%
&= 1 0 (5.7)
z(t) = hix, t) + (measurement errors), (%.8)
and
e m -
i = | Loyt 0 - 25002 e, (5.9)
=1
0

respectively., The wvectlors X and f are n-dimensional, z and h
~ L d
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are m-dimensional. The functions hj, J=1, 2, +.., m, arec
evaluated by using the values x obtained from Eq. (h.?) and
ZJ’ =1, 8y eoey m, are the observed functions as determined
by (4.8). The number m represents the number of measurable
quantities and m £ n.

Using invariant imbedding and calculus of variations,

the following sequential estimator equations are obtained:

og iy
3a = £(2s a) + a(e)(n (s, 2)]" [z(a) - (g, ) (4.10)
4 T
o = £§(§, a) q(a) + %(a)[ﬁg(g- a))
+ a(a){hge(ss 2)(2(a) - nle, a)l} a(a)
- a(a){h(e) ))" B (s @) ga(a)y (3.11)

where e represents the values of x, and q is the weighting
function. It should be noted that Eq. (4.10) represents n
differential equations and (4.11) represents n® aifferential
equations of the initial value type.

The above estimator equations were originally obtained
by Bellman and co-workers (9], and by Detchmendy and Sridhar
[12]. The derivation of these equations can be found in

Lee [20].

L,5 DISCUSSION
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Since dinvariant imbedding is a concepil, the invariant
imbedding equations can be obtained by various different
formulations or derivations. It has been shown that this
approach is very useful in treating a wide variety of problems
such as boundary-value problems, eigenvalue problems, non-
linear filtering theory, etc,

In conclusion, the invariant imbedding approach appears
to be a powerful tool for both numerical and theoretical
study of wvarious prublems involved in engineering and science,
The distinct advantage of this appre:..:n is its completely
different concept from the usual formulation of the problem.
Thus, many new insights and formulations can be obtained for
various problems, lHowever, the invariant imbedding approach
‘also has its disadvahtages. Instead of solving the original
problem, a family of problems must be solved. Thus, more
computer storage and-more computation time is generally needed
to obtain the solution. Obviously, it is the price that has
to be paid to avoid the boundary-value difficulties.

A more detailed discussion'of the advantages and dis-

advantages of invariant imbedding is to be found in [20],
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CHAPTER 5
DYNAMIC HODELING OF STREAM QUALITY BY

INVARIANT ITUBEDDING

5.1 INTRODUCTION

In Chapter 3, the quasilinearization techmnigue has been
used extensively to identify or to estimate the unknown system
parameters in stream quality models. The estimation problem
was treated as a two-point or multipoint boundary-value problem.
In this chapter, a completely different approach, invariant
imbedding, is used to estimate the dynamic response of stream
pollution action.

A water quality model of a stream or estuary must
represent the complex blending of biolcgical, chemical, and
physical factors. It is not simple and must be represented
by complicated differential equations. Furthermore, due té
the constant fluctuation of pollutants with time and space,
complicated partial differential equations sometimes are
needed. In order to establish these equations, the reaction
and diffusion constants must be estimated from actual
experimental data. Note that these constants generally
cannot be measured directly, they must be calculated from
the measured concentrations. Due to the complicacy of the
partial or ordinary diifferential equations and the constantly
fluctuating concentrations, it is not easy to estimate these

constants,
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By the use of the invariant imbeddingy approach, a
sequential estimation scheme is obtained. This scheme provides
a distinct advantage in that only current data are needed for
the estimation process, Thus, not only the parameters but
also the fiture concentrations of the pollutants can be
estimated. This approach forms an efiective on-line up-dating
scheme for the computer modeling and control, Consquently,

a large amount of computer memory and computer time can be
saved.

Based on the stream quality model developed by Camp and
Dobbins, serveral ectimation problems are solved., It is shown
that this approach forms an effective tool for the dynamic

modeling and adaptive forecasting of stream or estuary quality.

5.2 ESTIMATION OF STATE AND PARAMETERS
To illustrate the approach, the simple representation of

stream quality by Camp and Dobbins is considered

dB .
== " -(1{1 + 1{3)13 + R (5.1)
A .

9t - KB - KD - A, (8+2)

where B represents the BOD concentration, D is the DO deficit,
R is the BOD addition ro e due to runoff and scour, A is the
oxygen production rate due to plant photosynthesis; K1, Kz,

and K, are the rate constants for deoxygenation, reaeration,

3
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and sedimentation, respectively,

To estimate the rate constants, K1, Kz, and KB' let

—1 = 0
fEE =0
dt
di

= 0.
dt

. The system of equations (5.1)={5.5) can be represented

synbolically by Eq. (4.7) with n = 5,

(5.4)

(5.5)

The estimation of state B, D, and parameters K1, Kz, and

Kj can now be approached by tlhie nonlinear filtering theory

of invariant imbedding which has been presented previously

in Section 4.2,

5.3 NUME: ICAL EXAMPLES

To test the effectiveness of this approach, the state
and the rate constants in Eqs.l(5.1) and (5.2), are to be
estimated from the noisy measurements on the concentration
off BOD and the DO deficit. The noisy measurements aroc
obtained numerically in two steps, First, the differential
equations (5.1) and (5.2} are integrated by the Runge-Kutta

integration scheme using the following numerical values

B(0) = 7.0, b(0O) = 5.7,
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R = 0,15, A = 0.85, At = 0,02, te = 2, (5.:7)
K1 = 0.31, 1(2 = 1.02, KB = 0.03’

where At is the integrati-n step size. Second, the result
obtained from fthis integration are corrupted with noise bLy

the equations

Bz(t;) = B(ti) + R (%)) (5.8a)
Dz(ti) = D(ti) " Rb(ti), (5.8b)
with i = 0, 1, 2, ..., N, tO = O, ‘bn = tf' ar ' ti+1 - ti = At.

The Rb's and Rd's represent the measurement errors and are
random numbers with Gaussian distributions. The means of these
distributions are zeros and the stardard deviations are 0.35
and 0,25 for Rb's and Rd's, reapectively., These measurement
errors are approximately five percent of the true values of

B and D, respectively, The measured data at every tenth point

are given in Table 13, and in Figure 7 and 8.

5.3.1 Estimation of State and One Parame ter

First, the case with one parameter (n = 3) is considered.
The state, BOD concentration B, DO deficit D, and the

deoxypenation constant X, are to be estimated from the noisy

1
measurements given in Table 13
The system of equations corresponding to Bq. (4.7) is

(5.1)~(5.3) with n = 3, m = 2. Dy applying the established
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vector equations (4,10) and (4.11) with

ola) = |e, (5.92)

£le, a) =|e.e. - K, -4 ~ (5.9p)

| %7 |
E(%! a) = [ ] (5.90)

Bz (a) ‘
z(a) = [ J (5.94)

and

a(a) =|ay; ay, a,4 (5.9¢)

the desired estimator equatiouns are obtained
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~{ & K,.)e1 + R

1 3 ]
e2 = rs:je“l - K2e2 - A
e 0
L 3] L i
999 2 q1§1 1o
Bz(a) - e
[ =4
+ |99 95 3| |01 (5.10)
pz(a) - e,
|0 0]

BE) . -l _-(e

9y, 42 93 + K3) O -e

3 1| %1 Y2 Y3
Uy 9pp Y23 = ©3 Ky eq| | %21 922 %23
0 o o]|!

L% Tge e | ] %31 932 933
p 1 -
Q,, 94, 4 .

1 %2 94 - X 0
1 3 (83 + 3) e3
* 1921 922 929 0 K, 0| +Q
Qnqy Qa, G
931 932 933] | e, e, O]
U1 2 3] [T L s
= {921 92 93| |97 LO . ;]
00
931 932 933
911 92 9q4]
o1 %22 9235 (5.11)
931 952 933,
. . de, dg
: ’ 1 i J .
where e, and qij represent aa and Haii (i =1, 2y, 3; J = 1,

2, 3), respectively. The functions e 92, and e, are the

3
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Eqs. (5.10)

and (5.11) represent twelve simultaneous estimatur equabions

which can be written as follows:

14

%2

943

D e

21

e

H]

+

+

n

i}

i

—(e3 + Ks)e1 + R + q, [Bz(a) - e

q12[:Dz(a) = 62]

Byl K,e, = A + g, (Bz(a) - eﬂ

a,, [Dz(a)

62]‘

q31 [BZ(E) - e1j + q32 EDZ(E) - 62]

2
-2 q11(63 + KB) - (q31 + q13)e1 - q11

992%9

-q12(e3 + KB) + Q1193 (i (qu - q13)e1

9.5 = 29992 = 9429,
dqg(es + Kg) = dgqey = 934955 = 49,4

(agy = dpgleq = ayqKy = ap (ey + Xy)
911%5 7 Y199 T 9,
(q12 + q?_])e3 + (q32 % q23)e1 -~ 2 q,,K,

2
931912 = 9,5,

(5.12a)

(5.12b)

(5.12¢)

(5.13a)

(5.13b)

{(5.13¢c)

(5.13d)

(5.13e)
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g = 913%3 * 933%) = Gpg¥n ~ i3 T Ya¥sj (5.131¢)

The Runge-Kutaa integration scheme is used with the step
size At = 0.02. The problem is solved with various sets of
assumed initial values. A few have been selected for

illustrations, One selected set of initial values is
ef0) =| 5.7 (5.14a)

(19 1]

g(o) =1 1 1 (5.14b)

ot

1 qu(O) ¥

b
e o

where values for q33(0] are 1, 5, 10, 20, and 50, respect’ -ely.

The estimated values for the deoxygenation rate constant by

{

are shown in Fipure 9. The tirue valﬁe of this estimated
parameter is obtained rapidly by time t = 1,2. It is seen

that the estimated values of K1 approach the true wvalue more
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rapidly as the assumed value of q33(0) increases, However,

if the value of q33(0) becomes too large, such as q33(0) = 50,

it results in a slight overestimation of the value of K1 or
the 93 trajectory.
Another set of chosen initial values is
7.0
e(0) =| 5.7 {5.15a)
e,(0)
| -3
1 1
q(0) = |1 1 1 (5.15b)
i 1 5,

where eBiJ) represents the various initial values for K, .
These velues are 0,01, 0.1, 0.31, 0.5, and 1, respectively.
The results are shown in Figure 10. In spite of the very

approximate initial guesses for the unknown parameter K the

1!
true value is obilained by time t = 0.8,
In order to estimate the state B, I, and the parameter

K1 simul taneously, the following set of iritial wvalues is

used

e(0) = |e,(0) (5.16a)
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q{o) = | 1 50 1 (5.16b)
q _

e.(0)
e, (0)
values for state B and D. They are

where the vector represents a few sets of initial

e,(0) 7.0

e,(0) 5.7],

[ Gy (5.17)

respectively. Satisfactory results for the estimated values

for By, D and K1 are obtained and shown in Figure 11, 12, and

13, respectively. Notice that in Figure 13, in spite of the

large oscillations of K1 or the e3 trajectory between time

t =0 and t = 0.8, the true value is obtained by time t = 1.6,
Instead of using the value qu(O) = 50, i = j =1, 2, 3,

for the diagonal terms of q{(0) in kq. (5.16b), the value
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qij(o) =10, i = j =1, 2, 3, is al~n used. Only the estimated
values of the state B are plotted in Figure 14, It is seen
in the figure, the resu'is are not very good,

It should be emphasized that in actual calculations,
not only the values of ¢(0), but also the values of %(0) are
very important. If the assumed values for ¢(0) and 2}0) are
reasonable, fairly satisfactory estimated results should be
obtained in most cases. However, one must keep in mind that
the filtering action of the estimation process depends greatly
upon the values assumed for the diagonal terms of matrix %(O).
In general, for most pracii_al probleus, a rough idea about
these values can be obtained either by experience and

intuition or by the trial-and-error method.

5:3.2 Estimation of State and Two Parameters

Now consider both.the rate constants K, {deoxygention)
and K, (reaeration) as unknowns. The problem of this
simultancous estimation of the state B, D and the parameters
K1 and K2 is solved.

The equations correSpondng to Eq. (4.7) are now igs.
(5.1)=(5.4) with n = 4, m = 2, Using Eqs. (4.10) and (4.11)

with h(e, a) and z(a) remaining the same as in (5.9c) and

(5,9d), but with ¢(a), L(e, a) and g(a) changed to
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(a) = (5.18a)

W

£(§’ a) = (5.18b)

and
991 %12 995 944
Ap1 9pp 934 9y

q(a) = (5,18¢c)
999 932 933 934

| U W2 s Uy | o0

twenty simultaneous estimator equations are obtained:

il

--(e3 + 1(3)31 + R+ q11[Bz(a) - e,]

+ a9, Dz(a) = e,] (5.19a)

e, = eqe, - e, - A 4 q21[ﬁz(a) - e,

+ Qpp[Dz(a) - e,] (5.19b)
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agi(Bz(a) - e;] + ay(Dz(a) ~ ey]

qh1[52(a) = 31] + qhztDz(a) = 32]

-2 q.”(e3 + KB) - (q31 + q13)e1

2
911 = 9429,

-q12(e3 + KB)

2%, - 8

-q13(e3 + KB)

q12q23

-q1h(e3 + KB)

9129y

(q31 - q23)ei

911°3 = U1%2

(q12 + qZ1)93

(ayp + agyle,

914%3 *+ 933%,

92193

= 9p2924

93183 - (d3p = 444)ey

931212 " 94292

434%1 = 991954

A34%1 ~941994

Ap1ey = dpqleg + Xj)

921991 = 9229

(qu + q23)31 - 2 Qe

93199 -

948y

2
22

= 443,

(5.19c)

(5.194)

(5.20a)

(5.20b)

(5.20c¢)

(5.204)

(5.20¢€)

(5.20f)

(5.20g)



Doy

44

933

4

U2

.

Ay

Whera

1

Q4% * 994% ~ Dy~ WYLCo

= G519y ~ 93,9y

= —q31(83 + KB) = q3391 =, q31q11

Q3595

dq9185 + G34@5 = d55€) = Qgu@,

= Qq993 " 2359,
= 93193 = 93293
= =Ag49qy = 9329

= ~qyq (e + K3) - quqeq - quqqq,

= 924

i}

Q183 + 4% = Ap®y = s,

= A9 T Y92

Q193 T 099

=19y T U9y

94

(5.20n)

(5.201)

(5.205)

(5.20k)

(5.201)

(5.20m)

(5.20n)

(5.200)

(5.20p)

the functions ey e and e, are defined the same as in

2 3

the one parameter problem, e, represents the optimal estimate
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for the present case.
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Using the following two sets of initial conditions,

Lgs. (5.19) and (5.20) are solved:

1)

W

q(0)

~

q(0) =

(0)

9(0) =

(7.0
5.7
=1 o, (0)

=401

s o

5.7

|, (0)

(5.21a)

(5.21b)

(5.22a)

(5.22b)

e,(0)
where [ ] represents several dilferent sets of initial

e, (0)

values assumed for the estimation of K., and K.,

1

They are
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e,(0) (0.1

eh(o) | 0.5],

| 0.8/,
'0.31]
| 1.02], (5.23)

-b-5]
L 2 s

respectively. The results shown in Figures 15-18 are obtained
by using the Runge-Kutta integration scheme with the integration
step size At = 0,02, Only the estimated values for the
parameters K, and K_ are presented in these figures, It is

1 2
clearly shown that in Figures 15 and 16 the true values for

K1 and K2 are obtained at approximately t = 1.2, except
e,(0) 1

when the set of initial values in which 3 = [ ] is
e, (0) 3

used. The reason for this is simply because the values chosen
for ej(O) = 1 and eq(O) = 5 are far from the true values of

K1 and Kz. Ilowever, when the values of the diagonal terms

in the weighting function q(0) are increased from 5 to 50,

as shown in (5.22b), the results are much improved (sece

Figure 17, 18).

To estimate extensively the stute B, D, and the



37

parameters K1, and Kz, the following initial values are used

o, (0]
05 (0)
ef{0) = (5.2kha)
0.1
| 0.5 |

%(o) = (5.24b)

e, (0)
where [FI(O%] represents the initial values as follows:
2

e1(0) 7.0

e,(0) 5.7/,

(5.25)

The results of the estimated state and parameters are shown

in Figures 19-22, The estimates for B and D are very stable,
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but large oscillations are observed in the KL and Kz
trajectories between time t = ¢ and t = Q.,8. Nevertheless,
the: results obtained are still acceptable for practical
purposes .,

Experiments using qiifal =—ﬂa.andfqij(o) = 100,
i =3 =Ty 2, weeyp 4, for the diagonal terms of the waighting
function matrix q(0), have alsa been performed. The gbtained
results are very poor. Consquently, the best filtering action
is gbtained with,qij(O) =50, I = F = Ty 2y ey %,y for the
praesent case.,

5«33 A More General Bstimation Problem

Given ebserved measurements for the BOD concentration B,
and the DO deficit D, along the stream and that the stream
quality model can be represented by Eqs. (5.T) and (5.2), one
obtaing the best estimates for the state B, D, and the |

paraneters K Ké and K,. This estimation problem can be

154 3
golved exactly in the same way as previous problems except
for the presence of three parameters. The system can be
represented by Bgs. (5.1)={5.5).

Again, with n = 5, m = 2, and using Egs. (4.10) and

(4.71) with

E(a) = _‘83 ; (“\5"«263)
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f(ﬁv a) = 0 (5.26Dp)

911 %2 %3 Yy Q5
91 922 923 Yoy 9zg
q(a) = | %31 932 933 Y34 U35 (5.26¢)

Ut U2 W3 Wy s

51 52 53 51 955 |,

and with h(e, a) and z(a) remaining the same. Thirty

simultaneous estimator equations are obtained:

e, = -(93 + 95)e1 + R o+ q11[Bz(a) - 91]

+ q12[DZ(a) - 92] (5.27&)

e, = egey - eye, - A + q21[Bz(a) - e1]

+ a,,[Dz(a) - e,) ’ (5.27b)
;3 = q31[bz(a) - 31] + qutDz(a) - @3] (5+27c)
éh = qu.(0z(a) -~ e ] + qhz[Uz(a) - e,] (5.274)



ey = q51[Bz(a) ~ e, + q52[Dz(a) -~ e,]

919

942

q13

9y

q15

a4

a2

n

-2 q”(e3 + es) - (q31 + Qg + Ggq + q15)e1

2
d39 = 942924

-q12(ej + 95) + (q13 - q32 ” q§2)e1

iy + A9983 = A8y = (A4 + 93) a4,

“tigleg + e5) - (a55 + a55)e,

91193 = %293

"q1h(e3 + 35) - (un + q§u)e1

1%y = 2%

-ay5(e5 + e5) - (955 + a55)e;

91%15 = 91295

-q21(93 + 95) + (q31 - q23 - Q25)e1

A1® + 944%5 ~ Apq&y - apq(ayq + 9y5)

(q32 " q23)e1 = (a4, + ayyde,

(a,, + ay,,)e; - 2 a,,0, -a,9,, -q

12 3

100

(5.27e)

(5.28a)

(5.28b)

(5.28¢)

(5.28d)

{(5.28e)

(5.28¢)

(5.28g)
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q25

q31

q32

933

935

g q

]

133%1 7 943%2 * %i3%3 T 9235

9319153 = 9p5954

A34%9 = Uu®s + 483 = u8y

U994 = 929y

354

= Ay5%2 * U5%3 T 95

921915 = 93295

'q31(93 + es) = (q33 + q35)e1

931217 = 94294

3381 = 934%; *+ 94¢%3 = 9558,

931992 = 9329

=931%13 = 93293

=941914 = 9329y

=A3195 = 932955

;qu1(e3 + es) - (th + th)ej

Q1994

PR Y

101

(5.28n)

(5.284)

(5.283)

(5.28k)

(5.281)
(5.28m)
(5.28n)

(5.280)

(5.28p)
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U2 = Wg® = uCe + 9185 = Ay

'S R PR AP | (5.28q)
éus = "3 7 W23 | ~ (5.28r)
&44 = "y - Y%y (5.28s)
&45 = =945 = 995 | (5.28%)

951 = ~95q(eg + eg) - (agy¢ agg)ey |

= 951997 - 952954  (5.28u)

Qga = A5q€¢ = A%, + A51%5 = A%y

= 959912 = U529, (5.58v)1
553 = "51%3 " 952923 (5.28w)
ésh = "951%4 "~ %% ' (5.28x)
455 = "951%15 ~ 52925 (5.28y)

Where the functions ey e2, 33, and e, remaining the same,
The function e5 represents the optimal estimate for the
additional parameter Kj’

Different sets of initial wvalues have been used to solve

this three parameter problem, These sets are :



e
~
1 1
11
Q(O) e 1 1
1 1
1 1
|

(0)

1

1

ay4(0) 1

1

1

Q44(0)

1

where q,4(0) = q,,(0) = qz.(0) = 5,

2)

q(0) = 1

ot

7.0 |

5.7
e4(0)

eu(O)

95(0) ’

=

a55(0)

20, and 100,

103

(5.29a)

(5.29b)

respectively,

(5.30a)

{(5.30Db)
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e,(0)
where eu(O) represents the initial values

e5(0)

_ej(O)—] 0.31

it
)
L]
o
N

eh(o)

e (O) _0'03_‘ ]

(5.31)

0.8

_Oo 05_ ’

1.0
2.0

0.05],

respectively., The values selected for qij(o), i=3=
1, 2, ¢eey 5, are 5 and 50. Note that the Runge-Kutta
integration scheme is again used with At = 0,02.

The estimated results for this problem are very poor and
they will not be shown., Among the above various sets of

initial values, only the set with values
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! 7.0 ]
5.7
e(0) = |0.31 (5.32a)

1.02

0.03],

q(o) = | 1 101 1 1 (5.32b)

shows fair estimates for the state-B, D and the paramefers

E K1, K2, and KB' Soﬁe minus values and unreasonable estimates
are obtained for the other sets of initial values used. |
Consquently, the true values of this estimation problem for
both state and parameters are not obtained satisfactorily.

It is understood that the poor estimates may be caused
by two reasons. [IPirst, the true value of K3 = 0,03 is
relatively small compared with the true values of K1 = 0,31,
K2 = 1,02, and B, D profiles., Second, the problem becomes

more complicated and unstable when thirty simultaneous

differential equations are inveolved.

5.4 DISCUSSION

The invariant imbedding approcach has been used to solve
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the estimation problem for both state and parameters
simultaneously. Three numerical examples iﬁ dynamic stream
quality modeling are solved. The results of the optimal
estimates for problems with one parameter and two parameters
are very good, However, unsatisfactory results for the third
problem with three parameters are obtained. Thus, in spite
of this approach appears to be an effective tool for solving
nonlinear estimation problems, much more research and
computafional experiments are needed.

It should be emphasized that in actual calculations the
number of estimator equations increases rapidly as the number
of parameters increases. However, if the estimator equations
are not too complicated, and since the original problem has
been converted into iﬁitial-value type, no iterative procedure
is needed. Consquently, a lot of computer memory and |

computer time can be saved.



Table 13.

Numerical Values Used as Noisy Measurements
t, Bz(ti) Dz(ti)
0.0 7.0020 5.8369
0.1 7.5664 5.3087
0.2 6.9495 4,9066
0.3 6.0073 4.4836
0.4 6.0980 4.3540
0.5 6. 4141 3.3631
0.6 6.4561 3.6594
0.7 5.2465 3.1703
5.8 5.3337 3.2807
0.9 5.4875 2.7151
1.0 L.8351 2,6218
1.1 5.1369 2.1120
1.2 4.9037 1.7561
1.3 L,2546 1.9986
1.4 5.4648 1.8651
1.5 3.9549 2.0035
1.6 k.3701 1.7669
1.7 4,0002 1.7151
1.8 4.4408 1.07453
1.9 3.8943 1,1499
2.0 3.7120 1.4434
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BOD Concentration, B

3.0 - — B, Actual -
' OB.z, Noisy

0 0.4 0.8 1.2 1.6 2.0
t

Fig- 7'

Actual and Noisy Measurements of BOD Concentration
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DO Deficit, D

3.0

!
0.8 1.2 1.6 2.0

0.2
t
Fig. 8.
Actual and Noisy Measurements of DO Deficit
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e1(0) = 7.0, 32(0) = 5.7
a,,(0) =a,,(0) = q,,(0)
4,,(0) = a,,(0) = qy,(0)
a41(0) = ag,(0) =1
e3(0) = 0

[

il

0.5

0.1 q33(0) =5 o
: 0) = 1
q33( )
l ] |
0 0.4 0.8 1.2 1.6 2,0
t
Fig. 9.

Estimated Parameter K1

as A Function of q33(0)
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or K

e1(0)=7.0, e2(0)=5.7

4,,(0) = q,,(0) = q,5(0) =
451{0) = q,,(0) = a,5(0) =
q31(0) = q32(0) = 1
1,00 s
0.8""" /63(0) = 1 s
0-6""' —
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Fig. 10.

Estimated Parameter K1 as A Punction of eB(O)
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Estimated State B as A Function of 91(0), ez(O)
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e1(0) = 7.0, e,(0) = 5.7
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Fig. 15.

Estimated Parameter K, as A Function of 93(0), e, (0)
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Fig. 16.

Estimated Parameter K, as A Function of e3(0), e, (0)
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qij(0)= 1, 14
=50, 1i=]
i=1, 2, ..oy 4
jF‘s 2y seey b

93(0)=1, e, (0)=5
1.2 . -

e3(o)=o.5, eu(0)=2

- 0.8f- p/’//’ ) -

o.6-{'

e3(0)=0¢31’ eh(0)=1 .02

0.4

ej(O)aO.Z, eh(0)=0.8

| ] i |
v} o. 4 0.8 1.2 1.6 2.0

t

Fig. 17.

Estimated Parameter K, as A Function of 93(0), eh(O)
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Estimated Parameter K, as A Function of e3(0), eh(o)
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Estimated
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Estimated Parameter K, as A Function of e,(0), e,(0)
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as A Function of 91(0), ez(O)
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CHAPTER 6
CONCLUSION-

The nonlinear system estimation problem represents a
ma jor hinderance to the synthesis as wellias to the analysis
of accurate dynamic water-resource system models, The reasons
are: 1) absence of explicit analytiéal solutions to the non-
linear models which represent the systems; 2) difficulties of
numerical solutions obtained from the nonlinear models of the
boundary-value type on digital conmputers. Quasilinearization
and invariant imbedding represent two powerful‘computational
tools for overcoﬁing these difficulties,

As has been shown in the numerical examples»presented
in this work, the parameter esfima;ibn problems are effectively
solved by quasilinearization and invariant imbedding. It has
been proven that these two numerical techniques are very
promising for the dynamic modeling and adaptive forecasting
of stream or estuary quality.

The most attractive nature of the quasilinearization
technique lies in its gereral applicability to a large class
of complicated nonlinear models and its rapid convergence
property, Solutions to the examples in this study reveal:

1. Accurate initial conditions are ﬁot required. Only

reasonable approximations are neecded.,

2. Convergence rates of state and parameters to the

optimal values are fairly rapid (within seven
iterations).

3. Convergence rates are not reduced in the presence of
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nolse or experimental errors (five percent noise
level is imposed on the data).

, Fairly high accuracy is obtained (four to five digit
accuracy).

5. In general, if convergence does not occur in five to
seven iterations, convergence will not result.,

.Since the above estimation problem is essentially a two-
point or multipoint boundary-value problem, it can also be
solved by the invariant imbedding approach, By using this
approach, expressions for the missing boundary conditions can
be obtained by a sequential estimation scheme., The optimal
sequential estimator equations are a system of ordinary
differential equétions of initial wvalue type, which can be
solved very easily on digital or analog computers, Thus, the
invariant imbedding approach is idealiy suited for solving‘
this estimation problem, However, along with these advantages,
the drawbacks are also noted:

1. The estimated results are less accurate than those
obtained by quasilinearization. However, these
results are still accurate enough for practical
purposes.,

2, It is subtle in choosing the intial values for the
weighting functions. In general, they must be
obtained by experience or the trial-and-error method,
or the best filtering action for the estimation

process cannot be obtained.
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3+ IExperiences indicate that reasonable accurate values
of the optimal estimates cannot be obtained for

problems with a large number of complicated equations.
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APPENDICES

Computer Programs
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APPENDIX 1.

COMPUTER PROGRAM FOR THE PROBLEM OF ESTIMATION
OF THREE PARAMETERS WITH EXPERIMENTAL ERRORS
BY QUASILINEARIZATION
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STREAM QUALITY MODELING AND ESTIMATION BY QUASILINEARIZATION--
ESTIMATION OF THREE PARAMETERS WITH EXPERIMENTAL ERRORS

THE CAMP-DOBBINS STREAM QUALITY MODEL

DB/DT=={K1+K3}*B + R
OD/DT=K1%B - K2*D ~ A

NOTATION

B-—-~ BOD CONCENTRATION

D---- DISSOLVED OXYGEN DEFICIT

A-=--— OXYGEN PRODUCTICN OR REDUCTION DUE TO PLANTS AND BOTTOM
DEPOSITS

R---— BOD ADDITION RATE

K1=--— DEOXYGENATION RATE CONSTANT

K2--- REAERATION RATE CONSTANT

K3--- SEDIMENTATION AND ABSORPTION RATE CONSTANT

THIS PROBLEM IS TO ESTIMATE THE RATE CONSTANTS Kl, K2, AND
K3 BASED UPON THE ABOVE CAMP-DOBBINS STREAM QUALITY MODEL

THIS PROGRAM WAS WRITTEN BY IRVING Ko HWANG, DEPARTMENT OF
INDUSTRIAL ENGINEERING, KANSAS STATE UNIVERSITY, MANHATTAN,
KANSAS, MAY, 1969

Heeofe ook deote o e oot o el ok o s olofok ok ootk oo otk kool e ok ok ok ok ok lokok
NOTE: OOUBLE PRECISION IS USED IN THIS PROGRAM.

THE MAIN PROGRAMse

IMPLICIT REAL*8({A-H,0-2)

DIMENSION B{101),Dt1013},BN(101),DN(101},B5(101},DS(101),BZ{101),
1DZ(101),BP{101),DP{101),BH1{(101),BH2(101),BH3(101},0H1(101),
2DH2(101),DH3(10114Q(3+3)+BB(3),X(3)

CUM”GN GIN! GZNIGBN’ A' R' BN' BN’ K

1« PRINT OUT THE PROGRAM TITLE.

READ (1,51} ND
51 FORMAT{I3)}
WRITE(3,11) ND
11 FORMAT{//5X*NO, OF DATA SETS: ND=* 15//)
DO 1000 IM=1,ND
WRITE(341)
-1 FORMAT(//5X,*STREAM QUALITY MODELING AND ESTIMATION BY ',
1"QUASILINEARI ZATION-*//3 X, *ESTIMATION OF PARAMETERS K1, K2y '
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2'AND K3 WITH EXPERIMENTAL ERRORS'//)

2e READ IN AND PRINT OUT DATA.

WRITE(3,2)

2 FORMAT{/LIX6(1H*)/1X"#DATA**/1X6(1H*)/)
READ{1+50) Cl,C2+9G1l9G29G3+sGINsGC2NyG3NsA+RyDT9S51+52+B1+8B2,83+4B44N,

50 FORMAT(10F542/7TF542/313)

3

55

23

45
22

1NO ¢ MN

WRITE(343) C1402,61962963946GINyG2NyG3NyAsRyDT+51452481,B2,B348B44N,

INOs MN
FORMATI/74X® (i=9F5,2+"7

C2='F542+' G1l="F5,2,' G2='FSs2s

1' G3='F5.2/4X" GIN='F5,24" G2N="F5,24" G3N="F5424" A='F542,
2 =1F5:274X' DT=1F5329" S1='F5e2," S52='F542/74X' Bl='F5:24

31 B2='F5.24" B3='F5:2,°

4% MN='15/)

B4='F5,2/4X"* N=%1I5,* NO=']I5,

3s SOLVE THE CAMP-DOBBINS DIFFERENTIAL EQUATIONS AS

EXPERIMENTAL DATAe

BS{1)=C1
DS{1)=C2

CALL RUGKUL{BS,DSsG1+G2+G3+AsR+DT4N)

4 CORRUPT THE EXPERIMENTAL DATA WITH GAUSSIAN DISTRIBUTED

RANDOM NDISE.

Ii=1

1X=53471

AM=B1

5=51

DO 22 I=1:Ns5

AA=D.

DO 23 K=1,12

CALL RANDUUIX,IY.YEL)
PXX=1Y

AA=AA+YFL

IX=PX

V={ AA—6s ) 2S5 +AM

IF{I1 oNEe 1) GO TO 45
BZ{IN=BS{I)*{1s+0s10%V)
GO0 1O 22
DZ{1)=DS{I)*(1,+0410%V)
CONTINUE

IF{1I «GEs 2) GO TO 111
IX=31383

AM=B1

$=82

I1=11+1

GO T0 5%
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111 WRITE{3,4)
4 FORMAT{/10XT'EXPERIMENTAL DATA VS, NOISY EXPERIMENTAL DATA:?/)
(b0] 100 I=IQNQ5
100 WRITE(3:+5) 14BS{I)oIsDS{T)I,4BZ{T),1,D2(1)
5 FORMATISX'BS (94,13 )=7014,6,5X0S{",13%)=2D144,6,5X*BZ("4,13°)=1D14.6
195X'DZ(?*,13%)="D14e6)

5¢ ESTIMATE PARAMETERS Kl, K2, AND K3 BY QUASILINEARIZATION,
QUASILINEARIZATION LOOP STARTS HERE,

L=1

S5e1 ASSUME INITIAL FUNCTICNS FOR 8 AND De

0O 200 I=1l.N
BN(I)=C1
200 DN{1)=C2
555 K=1
WRITE(3,6) L
6 FORMAT(///1X25(1H%)/LRLTH* ITERATION 13,4X1H®/1X25(1H%)/}

5¢2 ASSUME INITIAL VALUES AND SOLVE FDR YHE ONE SET OF
PARTICULAR SOLUTIONSe

BP{1)=Cl

DP{l)=C2

Glp=B1

G2P=B1

G3P=81

CALL RUGKUZ (BP,DP,GIP+G2P,G3P,DT,N}

5¢3 ASSUME INITIAL VALUES AND SOLVE FOR THE THREE SETS OF
HOMOGENEOUS SOLUTIONS,

K=2

BH1{(1)=B1

DH1(1)=B1

GlH1=B4

G2H1=B1

G3H1=B3

CALL RUGKU2 {BH1,DH1,Gl1H]1 ,G2H1,G3H1,DT,N)}
BH2{1)=B1

DH2{1)=B1

GlH2=B4

G2HZ2=B4

G3H2Z2=81

CALL RUGKU2{BH2,DH24G1H2+4G2H2:G3H2,DT4N)
BH3{11=81

DH3{1)=8B1
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GlH3=82
G2H3=81
G3H3=B4
CALL RUGKU2{BH3,4DH3,61H3,G2H3,G3H3,0TsN)

5¢4 SOLVE FOR THE INTEGRATION CONSTANTS Al, A2, AND A3,

DO 300 I=1,MN.
DO 400 J=14MN_
400 Q(1,J)=81
300 8B(1)=B1
DO 500 I=14N,5
QUlyl)1=Q(1, 1) +BHLI{I)*BHL (1)+DHLLI ) *DHL(])
RQ{1+2)=0(12)+BH1{T1)*BH2 () +DHLIT)*DH2(T)
QU1+3)=Q(1y3)4BHLITI*BH3(I)+DH1I(T)*DH3(])
Q{241 1=Q(2, 1) +BH2{I)*BHL (I )+DH2{ 1 }*DH1 (1)
Q(2+21=Q(2,2)+BH2{1 ) *BH2 (T )+DH2{ 1 }Y*%DH2(1)
Q(2,3)=Q(2,3)+BH2( 1) *BH3 (I} +DH2{ I )*DH3 (I}
Q{3,1)=Q43, 1} +BH3{T)*BH1{I)+DH3(I1)*DH1I(I)
QU3,2)=Q(3,2)+BHI{ T ) *BH2 (1 )+DH3( T )*DH2( 1)
QU3,3)=0(3,3)+BH3(I}*BH3(I)+DH3{I)}*DH3(1])
BBU11=BEB{1)+BZ{I)*BHL(I}-BHI(I)*BP(I)+DZ(I)*DHL(I)~-DHL{I}%DP(])
BB(2)=BB{2)+BZ{I )*BH2(I)-BH2{1)}*BP(I)+DZ(I}*DH2(T1)-DH2(T}*DP(I)
BB{3)=BB(3)+BZ(I)*BH3{T)~BH3(T)*BPII}+DZ(1)*DH3(1)-DH3{I)%DP(])
500 CONTINUE
CALL GJRM{Q,B8,X,MN)
Al=X{1)
A2=X{2}
A3=X(3}
WRITE{(3,7) Al,A2,A3
7 FORMAT{//1X*THE INTEGRATION CONSTANTS ARE OBTAINED: Al='D14,6,
13X%A2="D14%4e 64 3X*A3=2'D14%4e 6//)

5¢5 ONCE THE INTEGRATION CONSTANTS ARE KNOWN, THE
GENERAL SOLUTIONS ARE OBTAINED.

WRITE(3,8)

8 FORMAT{/S5X'###4# THE GENERAL SOLUTIONS #####2//)
DO 600 I=14N
BUI)=BP{I)+AL*BH1(I)+A2*%BH2(])+A3%BH3{1)

60C D{I}=DP{I)+A1*DHL(T)+A2%DH2(I)+A3%DHI(T])
DO TO{J I=1'N|5
TOO0 WRITE{3,9) I,B{1})s1,DlI)
9 FORMATHSX'B{',131)=9D14,6,5X'D1{',13%7)="D14e6])

546 THE ESTIMATED PARAMETERS Kl, K2, AND K3 ARE OBTAINED.
Gl=A1+A2+82%A3

G2=4A2
G3=83*A1+A3
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WRITE(3,10) Gl,G2+G3
10 FORMAT{//5Xv%k%xx%k THE ESTIMATED PARAMETERS ARE OBTAINED *¥¥kx%x%kt///

110X 'K1=2'D1446410X*K2="D144,6,10X"K3=D14e6///)

Se 7 REPEAT THE ITERATIVE PROCEDURE UNTIL THE PROCESS
CONVERGES AND THE DESIRED VALUES ARE OBTAINED.

GIN=Gl
G2N=6G2
G3N=G3
DO 800 I=14N
BN{I)=B(I)
800 DNI{I)=D(I)
L=L+1
IF{L «LEs NO) GO TD 555

QUASILINEARIZATION LOOP ENDS HERE.
LOOOD CONTINUE

sTop
END
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SUBROUTINE RUGKUL{BsDyGlyG2,G3,RA4ReDTyN)

RUNGE-KUTTA INTEGRATION SUBROUTINE FOR SOLVING
THE CAMP AND DOBBINS DIFFERENTIAL EQUATIONS

IMPLICIT REAL#*8({A-H,0-7)

DIMENSION B8(1),D(11}

NN=N-1

Pl=-{G1+G3)

DO 10 I=1,4NN

Al=(P1*B (1) +R)*DT
Bl={(GLl*B(1)-G2*%D(I)}-A)*DT
A2={P1*(B{IV+Al/2s Y+R}*DT
B2={G1*(B{I)+AL/2,1-G2%{D(I}+B1/2. )-A)*DT
A3={PLl*{B(I1)+A2/24 1+R)*DT
B3={G1*{B(I)+A2/2s )-G2%(D(T1)+B2/2- )-A)%DT
A4=(PL*{B{I)+A3)+R)I*DT
B4={G1*{(B(I)+A3)-G2*(D(1)+83)-A}*DT
BUI+1)=B(I)+{AL424%A2+42, *A3+A4) /6
DIT+1)=D(I)+{Bl+2.%B2+2, *¥B3+B4)/bs
CONTINUE

RETURN

END
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SUBROUTINE RANDUUIX.IYsYFL)

SUBROUTINE COMPUTES UNIFORMLY DISTRIBUTED RANDOM REAL NUMBERS
BETWEEN O AND 1.0, AND RANDCM INTEGERS BETWEEN O AND 2%%3],

IMPLICIT REAL*8({A-H,D-1)
1¥Y=1X%65539

IF(1Y «GEs €} GO TD 10
IY=1Y+214T748364T7+]
YFL=1Y
YFL=YFL*,4656613D~9
RETURN

END
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SUBROUTINE RUGKUZI(BsDyGleG2:G3,DT 4N}

RUNGE-KUTTA INTEGRATION SUBROUTINE FOR SOLVING
THE PARTICULAR AND HOMOGENEOUS SETS OF SOLUTIONS

IMPLICIT REAL*B{A~H,0-1)

DIMENSION B{1),D(17,BN{101),DN{101}
COMMON GINyG2N,G3NsAsRyBN,DN,K

NN=N-1

Pl=—={GIN+G3N)

DO 10 I=1,NN

P2==-BN{I i*(G1+G3)}

P3=BN{1)*G1-DN(11%G62

IF{K «NEs 1) GO TO 20

P4=-P1*BN(I}+R

PS=-GIN®BN{1)+G2N*DN(1)}-A

60 TO 30

P4=0,

P5=0,

Al={(P1%*B(1)+P2+P4)*DT

Bl={GIN*B{I }-G2N*D(I)+P3+P5)*DT
A2={(PLl%{BU{I) +A1/214+P2+P 4 ) *DT
B2={GIN*{B{I)}+A1/2 ) =G2N*(D(I)+BL/26)+P3+P5}%DT
Ad=(PI*(BLI)+A2/26 Y +P24P4)*DT
B3=(GIN*{B{1)+A2/2: ) -G2N*(D{1)4+B2/2, ) +P34P5)*DT
AG=(P1*{B{I)}+A3}+P2+P4)*]DT
B4={GIN*(B{I)+A3)=-G2N*(D(1)+B3)+P3+P5)*DT
BII+1)=B(I)+{AL+2o%A242, %¥A3+A4)/ b,
DUI+1)=D{I)+1B1+2,%B2+42,*B3+4B4)/6.
CONTINUE

RETURN

END
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SUBROUTINE GJRM{Q,BB,X,MN)

SUBROUTINE FOR SOLVING SUSTEM OF ALGEBRAIC EQUATIONS BY THE
GAUSS-JORDAN REDUCTION METHOD

IMPLICIT REAL*B{A-H,0-1)
DIMENSION Pl4,4),Q01s1)yT(4,4)sU{4,4)4X11),BB{1)
DO 400 I=1.MN
DO 400 J=1.MN
IF{I-J)}4104420,410
410 PU1,J)=0.
GO TO 40C
420 PllyJi=ls
400 CONTINUE
DO 500 K=],MN
IFIQ{K,K}1510,520,510
520 IF(K~MN}530,540,530
530 NisK+l
DO 600 I=NI,MN
IF(Q{I+K))610,600,610
600 CONTINUE
540 WRITE(3,120})
120 FORMATIL{3OX15{1H*),? NO SOLUTION ',15{1H%*))
GO TO 2000
610 DO 700 J=14¢MN
UK, J)=Q1(K,s J)
QUK J)=Q(1,3)
Q{T,JI=UiK,J)
T{KeJI=PIK4 J)
P{K,J)=P(1,J)
PlT,J)=TI(K,J)
700 CONTINUE
510 IF{QUKyK)=1s)} 710,720,710
T10 QQ=Q(K,K)
DO 800 J=1,MN
QK J1=Q{Ky J) /QQ
800 PiIK,J)=P{K,J)/QQ
720 DO 500 I=14MN
IF{1-K)910,500,910
910 IF{Q(I,K)}920,500,920
920 PP=Q{1,.,K)
DO 1000 J=1,MN
QUIJ1=2Q{I,J)-PP¥*Q(K,J}
(000 PL{I.J)1=P(1l4J)=-PP*P{K,J)
500 CONTINUE
DO 1100 I=1,MN
X{1)=0,
DO 1100 J=1.MN
L100 X{I¥=X{1)+P{1,0)%BB(J)
000 RETURN
END
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APPENDIX 2.

COMPUTER PROGRAM FOR THE PROBLEM OF SIMULTANEQUS
ESTIMATION OF STATE AND TWO PARAMETERS
BY INVARIANT IMBEDDING
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DYNAMIC MODELING OF STREAM QUALITY BY INVARIANT IMBEDDING--
SIMULTANEOQUS ESTIMATION OF STATE AND TWO PARAMETERSe

THE CAMP-DOBBINS STREAM QUALITY MODEL

DB/DT=={K14K3 }*B+R
DD/DT=K1*B-K2*D-A

NOTATION

B BOD CONCENTRATION

D DISSOLVED OXYGEN DEFICIT

A OXYGEN PRODUCTION OR REDUCTION DUE TO PLANTS AND BOTTOM
DEPOSITS

R BOD ADDITION RATE

K1 DEOXYGENATION RATE CCNSTANT
K2 REAERATION RATE CONSTANT
K3 SEDIMENTATION AND ABSORPTION RATE CONSTANT

THIS PROBLEM IS TO ESTIMATE THE STATE B Ds AND THE
RATE CONSTANTS K1, K2 SIMULTANEOUSLY BASED UPON THE
ABOVE CAMP-DOBBINS STREAM QUALITY MODELe.

THIS PROGRAM WAS WRITTEN BY IRVING Ke HWANG, DEPARTMENT OF
INDUSTRIAL ENGINEERINGy KANSAS STATE UNIVERSITY, MANHATTAN,
KANSAS, FEBe 1970.

e s 53t sl ol e e o ade ok e e o ol o e oo o ol o ol o o o e o o o o e e ofe e o el ik ol ol e e e o ol ol e ol o o e ol o skl e o e ok e kol

NOTE: ©DOUBLE PRECISION IS USED IN THIS PROGRAM.
THE MAIN PROGRAM,

IMPLICIT REAL*8{A-H,0-2)

DIMENSION B(101),0{(101),BZ(101),DZ(101},EL1{101),E2(101},
1€3(101),E4(101),Q11(101),Q12(101},Q13{101),Q14(1011},
202114101),022(¢101),Q23(101),Q24(101),Q31(101),0Q32(101},
3Q33(101),Q34(101),Q41(101),Q42(101)4Q43(101)+Q44(101)

1s PRINT OUT THE PROGRAM TITLE.

WRITE{(3,1)
1 FORMAT{//5X, *DYNAMIC MODELING OF STREAM QUALITY BY',

1* INVARIANT IMBEDDING-*//3X.'SIMULTANEQUS ESTIMATION OF*,
2% STATE By Dy AND PARAMETERS K1, K2°//)

2¢ READ IN AND PRINT OUT CATAe



30
12

10

3
1000
2

20

4

400

200

300
100

CAhkh

READ (1,30} M

FORMAT(I3)

WRITE{3,12} M

FORMAT{//? NO. OF DATA SETS: M=713)

K=1

READ {1410) G1,G2¢G39AsRsDEL+sCLlyC29AMeS1452,N
FORMAT{11F5s2+14)

WRITE(3:3) GleG2:G3sA,RyDEL,L14C2,AMsS19S524N

FORMATI/5Xe® GLl='F5:25" G2='F5:24' G3='F5,2," A=TF5,2,"

1FS5e24? DEL='F5,2//5%Xe" C1l='F5.2+" C(2='F542,' AM='F5,2,"
2F5a2y" S22'F5424" N=t15)

WRITE(3,2) K

FORMATU//5X+511H*) 3 *DATA SET NOe ',13,5{(1H%*)//)

READ{(1,20) AlsA24A3,A4sA5,A6,AT

FORMAT{F541+6F542)

WRITE(394) AL4A2:A34A4:A5,865A7

FORMATU{/5Xs ' Al="FSals?' A2="F5.24" A3='FSe2,' A4=1F5,2,"

1F542s" A6='F5,24" AT='F502/)
IF(K oGEe 2) GO TO 2000

3¢ SOLVE THE CAMP-DOBBINS DIFFERENTIAL EQUATIONS.

WRITE(3,5)

FORMATL/4X1IHI 06X *BLI) 210X DUT) " ON*BZIT)?,OX*DI(1I))
WRITE(346)

FORMATI(61L1H*))

8{1)1=C1

Dl{l)=C2

CALL RUKUTI(B,DsGleG2:G3,AsRsDEL,N)

4e CORRUPT THE CAMP-DOBBINS SOLUTION WITH GAUSSIAN
DISTRIBUTED RANDOM MOISE AND USE THE RESULTS AS THE
EXPERIMENTAL DATA,

I1=1

IX=53471

5=51

DO 100 I=14N

AA=0.0

DO 200 II=1,12

CALL RANDULIX,IY,YFL)
PX=1Y

AA=AA+YFL

IX=PX
V={AA=640)%S+AM

IF{I1 »GTe 1) GO TO 300
BZ{I)=BlI}+v

GO 10 100
DZI{I)=D(1)+V

CONTINUE

R="

Si=*

A5

=0
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IF{11 «GEe 2) GO TO 500
IX=31353
$=52
I1=11+1
60 TO 400
500 DO 600 I=1,N
600 WRITE(3,7) [+B(I),D(1),BZ2(1),DZL 1)
7 FORMATIIS,4(Dl4%ab6))
WRITE{3,6)

5¢ SOLVE THE SEQUENTIAL OPTIMAL DIFFERENTIAL ESTIMATOR
EQUATIONS,

2000 WRITE(3,8)
8 FORMAT{//4X1HIy6X EL~B® y 10X"E2~D" yIXTEZ~KL"yIXYE4~K2" )}
WRITE(3,9)
9 FORMAT{61(1H%*))

Sel1 ASSUME INITIAL VALUES FOR THE ESTIMATOR EQUATIONS,

El1{l)=A2

E2(1)=A3

E3(1)=A5

E4{l)=A6

Q11(1)=Al
Ql12i{1)=A4
Ql3(1l)=A4
Ql4(l)=A4
Q21 (1i=A4
Q22(1)=A1
Q23(1)=A4
Q24(1)=A4
Q31(1)=A4
Q32(1)=A4
Q33(1)=A1
Q34(1)=A4
Q41(1)=A4%
Q42(1)=A4
Q43(1)=A%
Q44(1)=Al

5¢2 CALL THE RUNGE-KUTTA INTEGRATION SUBROUTINE(RUKUT2)
TO SOLVE THE ESTIMATOR EQUATIONS,

CALL RUKUT2(El,E24E39E4,011,Q12,Q013,0Q014,021,0Q022,023,024,031,0Q032,
1033,0349Q41,40Q42,Q439Q449BZsDZ4AsRyG3,DELN)

6e PRINT OUT THE OPTIMAL ESTIMATES OF THE STATE AND
THE PARAMETERS,
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DO 700 I=1,N
700 WRITE{3411) I+EL(IX+E2{T),E3(1),E4(])
11 FORMATIIS5:4(D14.6))
WRITE(3,9)

T« PRINT DOUT THE OPTIMAL ESTIMATES OF THE WEIGHTING
FUNCTIONS.

WRITE(3,13)
13 FORMAT(//74X1HI,TX*QL1%,11X°QLl2%,11X°Q13%,11X*Q14%,11X"Q217%,11X
1'Q22%,11X'Q23%,11X*Q24%)
WRITE{3,14)
14 FORMAT{1X,116(1H*)}
00 800 I*lquS
800 WRITE(3+15) I1+Q1l1{I),+Q12(1),Q13(1)+Q141{1),Q21(1),Q22(11,Q23(1},
1Q241(1)
15 FORMATI(15,8(D14.6))
WRITE{(3,14)
WRITE(3,16)
16 FORMATL{//74X1HI,TX'R31%,11X*Q32%,11XQ33%,11X*Q347,11X'Q417,11X
197Q42%,11X9Q43%,11X7%Q447)
WRITE(3,14)
DO 900 I=14N,5
900 WRITE{3,15) I.+4Q31010,Q3241),033(10,Q34(1),0410(11,042(1),Q43(1),
10441(1)
WRITE(3,14)
K=K+1
IFIK «LEs M) GO TO 1000
sTop
END
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SUBROUTINE RUKUT1(ByDyGl4629G34A4RyDEL4N)

RUNGE-KUTTA INTEGRATION SUBROUTINE FOR SOLVING THE
CAMP AND DOBBINS DIFFERENTIAL EQUATIONS

IMPLICIT REAL*B(A-H,0~2)

DIMENSION B(1),D(1)

NN=N-1

DO 10 I=1,NN

Al=({-(G1+G3 )} *B(I1)+R)*DEL
Bl=(G1*B(I)-G2*D(I)-A)*DEL
A2=(-(GL+G3)*(B(I)+AL/2, ) +R)*DEL
B2=(G1*(B(I)+A1l/2)-G2*{D{I)+B1/2. )-A)*DEL
A3={-(G1+G3)*(B{I)+A2/2s }+R}*DEL
B3={G1*IB(I)+A2/24 )~-G2*(D{1)+B2/2~ }-A)*DEL
A4=(-(Gl+G3)*(B(I)+A3)+R)*DEL
B4=(G1*(B(I)+A3)-G2*(D{(I)+B3)-A)*DEL
BII+11=B(I)+(AL+2e%A2424 ¥A3+A4) /6.
DUI+1)=D(I)+{Bl+2,%B2+42.%B3+B4)/6.
CONTINUE

RETURN

END

147
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SUBRDUTINE RANDU{IX,IYsYFL)

SUBROUTINE COMPUTES UNIFORMLY DISTRIBUTED RANDOM REAL NUMBERS
BETWEEN O AND 1.0 AND RANDCM INTEGERS BETWEEN D AND 2%%3]1,

IMPLICIT REAL*B(A-H,0-2)

IY=IX*65539

IF{IY «GEe C) GO TO 10
IY=1Y4+2147483647+1
YFL=1Y

YFL=YFL¥, 4656613D-9
RETURN

END
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SUBROUTINE RUKUTZ2(El,E2,E34E4,Q11+Q12,Q13,Q14,Q21,Q22,Q23,Q24+Q31,
10324033,Q0344Q41+,Q42+Q43,Q44,BZ4DZyAyRyG3,DEL4N)

RUNGE-KUTTA INTEGRATION SUBROUTINE FOR SOLVING THE SIMULTANEOUS
DIFFERENTIAL ESTIMATOR EQUATIONS

IMPLICIT REAL*B{(A~H,0-12)

DIMENSION E1(1)4,E2(1),E3(1),E4(1),Q11(1),+Q12(1)+QL3(1),Q14(1),
1Q21(11,Q22{(1),Q23(1),Q024(1),Q31(1),Q32(1),Q33(1),Q34(1},Q41(1),
2Q421(1),Q4311),Q44(1),8B2(1),DZ{(1)

NN=N-1

DO 10 I=1,4NN

Al=(=(E3(I)+G3)*EL(TI+R+QLL{II*(BZ(II-EL(I))+QL2{T)*(DZ{I)-E2(1)))
1*DEL

BI=(E3(T)*EL(I)-E4(T)*E2{1)-A+Q21(I)*{(BZ(I)=EL(T1))+Q22(I)*(DZ(I)~
1E211) ) }*DEL

Cl=(Q3L(I)*(BZ(I)}-EL(I)) +Q32(I)*{DZ2{1)-E2(I))I*DEL

Dl=(Q41{ I)*(BZ(E)-ELL{I))+Q42{1)*(DZ(1)-E2(1) ) )*DEL

Fl={-2%Q11{T )*(E3(1)4G3)=-(Q3L(T)+QL3LI) I*ELLI)-QLL(T)**2-Ql2(])*
1Q21 (1) )*DEL

Hl={=Q12(I)*(E3(I)+63)1+QL1L(I}*E3(1)=-(Q32([)-Q13())*EL(I}-Ql2(1}%
1E4(I)-QLl4(T)*E2{1)=-QLlI(T)*QLl2{(T1)~-QLl2(T)*Q22(1) )*DEL

Ol={(=-QL3(I)*(E3(T)+G3)~-Q33(I)*EL(I)-Q11(I)*Q13{1)-Q12(1)*Q23(I))*
1D0EL

Pl={=-Q14(I)*(E3(I)+G3)-Q34(1)*EL(1)-Q1L(I)*QLla(I)-QLl2(I)*Q24(1))*
1DEL

Ql={(Q31(1)-Q23{I) ¥*E1([)-Q2L(I)*E4(T)-Q2L (I *(E3(T)+G3}+QL1 (]} *E3
LII)=-Q4L{ IV *E2(1)-Q21411*QLL1(1)-Q22{1)*Q21(1})*DEL

R1I={(QL2(T)+Q21{ 1) )*E3(T1)1+(Q32(1)+Q23(I))*E1(1)-24%Q22(1}*E4{(])~
1{Q42(1)+Q24 (1 M I*E2(1)-Q21 (1)*QL12(1)-Q22( 1) **2)*DEL

S1=(QL3(II*E3(1)+Q33(I)*EL(])-Q23(T)*E4{I)-Q43(TI*E2(I)-Q21(1)*Ql13
11(11-Q22(1)*Q23(1) )*DEL

T1=(QLA(I)*EZ(T)+Q34(1)*EL{T)I~Q24(T)*E4G({I)-Q44(T)*E2(1)-Q2L(T1)*
1Q141(1)-Q22( 1) *Q24(1))*DEL

Ul={=-Q3L(L}*(E3(T)+G3)-Q33(II*EL(I}-Q3L(I)*QLL(T)-Q32(I)*Q21(]}}*
1DEL

V1={Q31{I)*E3(I}1+Q33(I1)*EL(I1)-Q32(1)*E4(I)-Q34(1)*E2(1)-Q311{])*
1Q12411-Q32(1)*Q22{1)})*DEL

Wl={-031(1)*Q13(1)=-Q32{1)1%Q23(I))*DEL

X1={-Q3L{I1*Q14(1}1-Q32(1)*Q24(1))*DEL

Y1=(=-Q41(I)*(E3(1)+G3)-Q43(I}1*EI{I)-Q41(I)*QL1{I)-Q42(T)*Q21(1})*
1DEL

Z1={Q4l(I)*E3(I1}+Q43 (I *EL(TI-Q42(IV*EALI)-Q44()*E2(T)}-Q41(I)*
1Q12¢(1)-Q42(1)*Q22(1))*DEL

AAL=(=-Q41(1)*Q13(1)-Q42( 1 )*Q23{1))*DEL

BBl={(-Q41(I}*QLl4(1)-Q42(1)%*Q24(1))*DEL

A2=(—((E3(I)+C1/2e V4G ) ¥ (EL{I)+A1/26 ) +R+(QLL(T)#FL/26)*(BZ{I)~{(
1EL{I)+A1/26 ) ) +{QL2{ T )4H1 /2 V¥ {DZUI)-{E2(1}+B1/24)) ) %*DEL

B2={{E3{I1+C1/2 V*{EL(I}+AL/2, )~ (E4A{1)4D1/2:5 V*(E2(T)+B1/2e )-A+(
102141)4Q1/2 1 *{BZ (1} -(EL{1)+AL1/2-))+(Q22(1)+RL/2.V*{DZ{1}-{E2(]1)+
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281/24)))Y*DEL

C2=1({Q3L (T +UL/2: ) ¥ (BZ{I)~(EL(I}+AL/20))#(Q32{T)+VL/ 2 )%(DZ(I)~=A
1E2(1)+B1/2+}) )*DEL

D2={{Q4l (1) +YL1/2, )% (BZ{1)-(EL(I)+AL1/2:))+(Q42(T}+21/261%(DLIT)~-
1E2(1})+B1/24) ) 1*DEL
F2={-2*(QLL1(I}+FL/2, )% { (E3(T1)4C1/26)4G3)}=-({Q32(I)¢UL/2:)+{QL3(I)+
10172 D I*(EL(I)+AL1 /2 )-{QLLC(IV4F1/2, ) %% 2~(Q12(1)+HL/2)%{Q211{1)+Q1l/
22, ) )*DEL

H2={-{Q12(T1 ) +HL1/26 Y*{{E3{I)+CL/2- J4G3)+{(QLL{TV+FL/2: ¥*(E3(I1}¥C1/2s
1)-1(Q32(1)+V1/2, )=1(QLl3(T1)+01/2 ) I *{EL({I)+AL/24)={QL2{T)4H1/ 24 )%
2EGLT)I+D1/24)-(QL4(T1)4P1/ 2, ) *(E2(T)+B1/2,)-(Q11(1)4F1/2)%{Q12(1)+
3H1/2e)-(QL2(1)#H1/24 1%{Q22(1)+R1/ 24 ) ) %*DEL
02={-{Q1311)401/2e )*T{E3(1)4C1/2: 14G3)~(Q33(1)+Wl/2.)%(ELLI)+AL/2,
1)-(QLI{II+F1 /2 )%(Q13(1)+01/2}-(QL2(1)+HL/2 1% (Q23(1)+S51/2,))%DEL
P2={={QL4(T1)#PL/26 )*L{EILTI+4C1/2, ) +G3)-{Q34{1)#X1/2: P*{EL{I)#AL/20
DI=(QLI{T}+F1/72:, )% (QLAUTI)+PL/2 ) (QL2(T)+H1/26 )% {Q24(1)+T1/24))%DEL
Q2={((Q3L(II+ULl/2¥=(Q23(1)+51/2 1 I*(EL(I}+A172,}=(Q21(1)4Q1/24)%
1(E4(T)+4D1/726)-1(Q2111)+QL /2 )% {(E3(T}+CL1/2e)4G3)#(QLLI(IJ+FL1/2, )% (
2E3{I1+4C1 /25 )~ (Q4L(T1)#YL /2 J*¥(E2{ 101481724 1-(Q21(1)+Q1724)%(QLLL 1)+
3FLl/2.1-{Q22{1)4R1/2:, )%1Q211T)4+Q1 /24 ) }*DEL

R2={{ Q1211 ) +H1/2e }4{Q21(1)4QL/2 NI *(E3(TII+C1/26 )+ {Q32(1)}4V1/2:)+
1{Q23(1)+S1/2: MI*{EL(T)+AL1/2,)=2%(Q22(114RL/ 2, ) *{E4(1}4D1/2,)~
2U{Q42(1)+21/2.)1+4(Q24( 1)1 #T1/2 1 1*LE211)4B1/2+)~{Q211{1)#+Q1/24 )%
3012(114H1/724)-{Q2211}#R1 /2 )**2)*DEL
S2=11013(1)+01/2 1 #(E3(I)14C1/2 ) +(Q33(T)+W1l/ 26 V*X{EL{TI}+AL/ 2,0~
1Q23(I1+4S1/26 V*{E4{I ) 4D/ 2 )-{Q43(T)+AAL/26 1 *(E2(T1)+4B1/2.1~-(Q21(]1)+
201726 1%(Q13(11401/2.)~{Q22{1)+R1/2.,)1%{Q23(1)+51/2,))%DEL
T2=({QLla(1)+PL/2c V*{E3(TI4C1/ 24 ) +{Q34(T)#X1/ 2 )*(EL{I}+AL/20 )1
1024(T)14T71/2e ) ¥(E4L{T)+DL/ 26 }={Q44(T)+BBL/2 )% (E2(T1)+B1/2.1-{Q21( 1)+
1Q1/2e 1*¥{QL4{T14+PL1/ 2+ 1-{Q22U1)4R1/ 26 )% (Q2411)+T1/2,) ) *DEL
U2=(={Q3L({1)+UL/ 2 V*{(E3LI)4CL/2)4G3)-(Q33TL1)+WL/ 2.1 *{ELLI)+AL/20
11-(Q31{I)+UL/2: ) *(QLLI{T)+F1 /2, )-(Q32(1})+V1/2:1%{Q21(T1)+Q1/24) ) *DEL
V2=4(Q31(1)+UL/2 ) *R(E3(I I +C1 /26 1 #(Q33(T)+UW1/ 24 )*{EL(I)+AL/2,4)—1
1Q32(1)4V1/26 ) *(E4UT}4D1/2)-(Q34(1)+X1 /26 )*{E2(T1)+B1/2+)-1{Q31{I)+
2Ul/72e 1*(QL2(1)+4HL/ 20 }-(Q32(1)+V1/24)%(0Q22(1)+R1/24))*DEL
W2=(=(Q31(TI+UL/2 1 %{Q1311)+01/2)-1Q321I) V1726 )%1{Q23(1)+51/2.))%
1DEL

X2=(=(Q31 (1) +UL/2: 1 2(QL14(1)+PL/2: )-{Q32(T)4V1/2:)%(Q241(1)+T1/26))%
1DEL

Y2=(-(Q41(1)+YL/ 2 Y*{{E3LI)+C1/2: 14+G3)-(Q43{]}+AAL/ 2 }*(EL(TI)#AL/
120 1-(Q41 (1) 4Y1/2: )% Q11T )} +FL/20 1-(Q42(1)+21/26)%(Q211{1)#+Q1/26))%
2DEL
22={(Q41(I1)+4Y1/2: )*(E3{I)+4C1/2: ) +{Q43{I)+AAL/2, }*{EL(I})4+AL/24 )~
1Q62(1)1+421/2 ) *{EA(LI)+D1/ 2 1-(Q44(1)+BBL1/ 24 )*LE2(1)}4B1/2,)-(Q41{]I)+
2Y1/72 1¥( Q1201 )4H1 /26 1=(Q42(IV+11/2.)%(Q22(T)+R1 /24 ) }*DEL )
AA2={-(QA11 1) +Y1/2s)%(QL3(1)+01/2,)~(Q42(1}+721/2)%(Q23(1)451/241})
1*#DEL
BB2=(-{Q4L1I1+YL/2:)%(QL4{T)#P1/2,)~(Q42({1)+Z1/2)%(Q2411)+T1/2.))
1*DEL
A3={-({E3(I)+C2/26 V463 *{EL{I)+A2/2. )4R+(QL1{T1)+F2/2: )1 %{BZ{1)~{
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TEL(I)4A2/2e )V +(QL24T)+H2 /2 )X (DZUIV-LE2(1)+B2/24)) V) *DEL
B3=((E3(I)+C2/2. ) X{EL(I)+A2/26 )~ {E4(1)4D2/2, )*(E2{1)+B2/2s)-A+(
1021(1)+4Q2/2 ) *(BZ{I)-(EL(I)+A2/2: 1 )+(Q22(I)+R2/2:1*{(DZ{1}=-(E2(]1)+
2B2/24 ) )V *DEL
C3=((Q31(I)+U2/2e 1 *{BZ{I)-IEL(I}+A2/2))4(Q32(1)4V2/2)*{(DZ{1)-{
1E2{1)+B2/2+ ) ) )*DEL

D3=({Q4L (1) +Y2/2: )R(BZ{I}-{EL(I)+A2/2:))4(Q42(1)+22/2:)%{DZ{1}~{
1E2(1)+B2/2+ ) ) )*DEL
F3z{-2e*%(QL11I)4F2/2: )L (E3LT)+C2/26)+G3)-{{Q3L{T)+U2/2:)+(Q13(1)+
10272 V)X ELCI)#A2/22)=tQLLUT)4F2/ 20 ) ¥%2-(QL2(T)4+H2/2: 1 %(Q21(1)+Q2/
22s ) ) XDEL
H3={=(Ql2{I)+H2/2s )*{E3 (1)1 +C2/2214G3)+{QLL{I)+F2/2. )*{E3{1)14C2/20
13-0(Q3281)4¢V2/2: )-1Q13(11402/2e ) V*(ELL{TI+A2/2o)-1QL2{1)*H2/ 25 )%
2E4{I14D2/2 ) -(QL4LTI)+P2/2: VX(E2(1)4B2/2a)-(QLLIUIV4F2/26 1 %(QL2(1})+
3H2/2e 1=({QL2(1)4H2/2. 1 ¥{Q22{11+R2/2e ) ) *DEL

03=(=(Q13(I)+D2/2a V*({E3(L)+C2/2:14G3)={Q33(1)+W2/2e VX(ELITII+A2/2,
1)-{(Q1L1{I)+F2/26 )% {Q13(T)+02/2)—1Q12(T1}+H2/2e1%(Q23(1)+52/2+))*DEL
P3={—~{014{1)4P2/2 1 *({E3(I)+C2/2:)14G3)=(Q34{1)+X272. )*{EL{I}+A2/2,
11-{QLI(I)+F272: V*¥{QLla{ 1) +P2/2: ) —(QL12{ 1) +H2/ 26 1 *(Q24(1)+T2/2¢ ) )*DEL
Q3={{(Q31{T1)1+U2/ 2 )~1Q23 (1) 452/2= V) {EL{II+A2/2:)={Q21(1)+02/26)%
LIE4(T1)4D2/2e ) =(Q21{I1)+Q2 /2 V¥ ((E3(I)+C2/26)+G3)+{QLL{I)+F2/2.)%(
2E311)+C2/2e )~(Qa {I)+Y2/2: ) *{E2(1)}4B2/2)-(Q21(1}+Q2724)%(QLlL(1)+
3F272e )=1022(1)4R2/2: V*{Q21(1)4+Q2724 ) ) *DEL
R3=(((Q12(T1)Y+H2/2: ) +1Q21(1)1+4Q2/2: )1 *{E3{I)+C2/2)1+((Q3211)#VY2/2,)+
1{Q23(1)1+S2/2 VIF{EL(T)4A2/2 )2 *{(Q2211)+R2/2e ) *{E4(1}4D2/2s )~
20104201V 4Z2/72)44Q24 (1) 4T2/72a) )% IE2(1)4B2/2 )-(Q211T)+Q2/24 )% !(
3Q12(T1)1+4H2/26 ) =(Q22(I1)+R2/2, ) %%2) %DEL

S3={(Q13{1)+02/2 V*(E3{1)+C2/2)+{Q33{1}1+W2/2: )*{E1(]1)#A2/2,)-1
1Q23(11452/2:)1%{E4 (1) 40272 )-{ Q43I +AA2/26)*{E211)4B27/2,)~({Q211(1)+
20272 YR(QL3{1)40272:)-(Q2211)+R2/2)%(Q23{1)+52/24))*DEL
T3={{QLl4(IV4P2/2a V¥ {E3(I)+C2/2e 1 +1{Q34(1)+X2/2a }*(EL(1)+A2/2.)~(
1024 (1 )4T2/2 V¥(E4GII)#D2/2: )-1Q44(1)+BB2/2, )*{E2(1)+B2/2s ) -{Q21(1 )+
10272 V2{QL4(T1)4P2/2:)-{Q22(1)}+R2/2:)%{Q24(1)+T2/2¢ ) )*DEL
U3d=(-1Q31(I}4+U2/2e ) *({E3(1)+02/2)4G3)-(Q33(1)+W2/2s ) *{EL1(1)+A2/20
1)=(Q311{I1+U02/2: 1 *X{QLLCTI ) +F2/26 )-{Q3211)4V2/2:,)1%{Q21(1)4+Q2724 ) )*DEL
V3= ({Q31(1)+U2/2: Y*{E3{1}4C2/2)+(Q33(T)4W2/2e V*{EL{T)+A2/26 )~
1Q32(1)+V2/2: ) *{E4(1)+D2/2 )1 Q34 (1) #X2/2e)%{E2(1)4B2/26)-(Q31(1)+
2U2/72e 1E(QL2(T1)4H2/2:1-1Q32(1)+V2/2:)%{Q22(1)+R2/2¢ ) )*DEL
W3={={Q31(I)+U2/21%{Q13([)402/2: 1=(Q32{T)+V2/2:)%{Q23(1)+52/24))}%*
1DEL
X3={-{Q3L(I)+U2/2e ) *%(QL1AILTI)+P2/2:)-LQ3211)+V2/2:.)%(Q24{1)+T2/26)}%*
1DEL

Y3=(=(Q41{1)+Y2/2e JR({(E3(I)4C2/214G3)-{Q43( 1) +AA2/ 2 ) X{ELL{])4A2/
12 )=1Q41(I)+Y2/2. 0 *(QL1I(I)+F2/2:,)1-1Q42{1)+72/2,)*{Q21{1)+Q2/2,) )%
2DEL

Z23={(Q41 (1) #Y2/2e )R {E3(1)4C2/2e )+ (Q43 (1) +AA2/2e )% {ELIT)+A2/2:)- 1
1Q42(11422/7/2e )V *{EG(T1)4D272,)=1Q441({1)4BB2/2s)*(E2(1}+B2/2s)-{0Q42(1)+
2Y2/2, 1%1Q12(1)+H2/26 1 =1Q421I1) 41272, 1%{Q22{1)+R2/24 ) ) *DEL
AA3=(-1{Q41(1)+Y2/24)*{Q13(1)+02/2,)-(Q42(1)+22/2,1%(Q23(1)452/2,1))
1%#DEL
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BB3=(-(Q&L{I)+Y2/24 ) %(QL4(1)+P2/2.,)1-(Q42{1)+22/2:,)%(Q24(1)+T2/24))
1*DEL
Ab={=(LEZ(II+C3)+G3)*(EL(I)+A3I+RH{QLL{TII+FA)*(BZ(I)-(EL(I)+A3))+(
1Q12( I )+H3)*(DZ(T)-(E2(1)4B3)) ) *DEL
Bé={(E3{I)+C3)*(EL(II+A3)-(E4(I)+D31*(E2(1)+B2)-A+(Q21{T1)+Q3)*{
1BZ{I)-(EL(T)+A3))+(Q22(T)+R3)*(DZ(T)-(E2(I)+B3)))*DEL
Co=((Q3L(II+UBNX{BI(I)-(EL(T)+A3 ) +{Q32(T}+VI)*(DZ(I)-{E2(1)4B3)})
1%DEL
Dé=((Q4l{IN+Y3)*(BI(II-(EL(I)+A3))+{(Q42(1)+Z3)*(DZ(I)-{E2(1}+B3)))
L*DEL
Fa={-2%{QLLUI)+FII*{{E3C(II+C3)+G3)-((Q3L(TI+U3)+(QL3(1)+03))*{(
1EL(II+A3)={QL1(I)+F3)#*2-{QL12(I)+H3)*(Q21{T)+Q3) )*DEL
Ha=(-(Ql2(I)+H3)*((E3(I)+C3)+G3)+{QLI(T)+F3)*(E3(1)+C3)-1(Q32( 1)+
LV3I=(QLI3{I)+03 ) *{ELLI)+A3)=(QL2{TI+H3) *{E4G{I)+D3I)-{QL4{ 1) +P3) ¥{
2E2(1)4B3)-(QL1CI)+F3)1*(Q12(T1)+H3)-(QL2( T }+H3)%(Q22(1)+R3))*DEL
O4=(=(QLl3(I)+03)+({E3{I)+C3)+4G3)-(Q33(I)+W3)*(EL(IV+A3)-(QLLI(T)+F3
1)*{Q13(1)+03)-(Ql2(I)+H3)*(Q23(1)+S3))*DEL
Pa=(={QLA(I)+P3)X({EI(II+CII+63)~-(Q34()+XI)*(EL(I)+A3)-(QLL(I)+
IF3)%(Ql4(I)+P3)-(QL2(]1)+H3)*(Q24(T)+T3))*DEL
Q4=11(Q31(I)+uU3)-{Q23(T)+S3 M) *(EL(I)+A3)-({Q21(I1)+Q3)%(E4(])+D3)-
LIQ2L(T)+Q3)*((E3(I)+C3)+G3)+(QLI(TI+F3I*{EB(I)+C3)-(Q4L(1)+Y3)*(
2E2{I)+B3)1-{Q2L(I)+Q3}*{QLLIT)+F3)-(Q22(I)+R3)%x{Q21(1)+Q3))*DEL
Re=(({(QL2{T1)1+H3)+(Q2LITID+Q3)IX(EZ(I)+C3)+{(Q32{1)4V3)+{Q23(1)+453))
1#(EL(T)+A3)~2*(Q22(I)+R3)*(E4(I)+D3)-((Q42(1)+Z3)+(Q24(1)+T3) ) *(
2E2{1)4B3)-(Q21{1)+Q3)*{Q12(I)+H3)-(Q22( 1 )+R3)**2)*DEL
S4={(QL3(I)+0*(E3(L)+C3)4(Q33(T}+W3)*{EL(T)+A3)~(Q23(T)+S53)*(
LE4TUI)+D3)=-(Q43(I1)+AA3)*(E2(1)+B3)-{Q21UI)+Q3)*{Q13(1)+03)-(Q22(] )+
2R31%*(Q23(1)+53))*DEL
T4=1(QL&ITI}+P3V*{E3(L)+C3)+(Q34(1)+X3)*(ELI(T1)+A3)-1Q24(])+T3})*{
LE4UIN+403)1-{Q44(I)+BB3I*{E2(T)+83)-(Q21(1)1+Q3)*{QL4(1}+P3)-(Q22(1)+
2R3V *(Q24{I)+T3))*DEL
Us=(-(Q31(I)1+U3)*((E3(T)+C3)+G3)-(Q33(I)+W3)*({EL{T)+A3)-(Q31(I)+u3
LI*{QLI(T)+F3)-{Q32(T1)+V3)*(Q21 (1)+Q3))*DEL
Ve={(Q31({T)+U3)I*(EI(TI+C3)+(Q33(TI+W3IR(ELIT)+A3)~(Q32({T)+VI)*{
1E4{T)+D3)-{Q34(I)+X3)*(E2(T1)1+B3)-(Q31(T1)+U3)%{Q12( 1) +H3)=-{Q32(])+
2V3)*(Q22{1)+R3)}*DEL
Wae=(-(Q3L(T)+U3I*(QL13(T1)+03)-(Q32(T)+V3}*(Q23(1)+S3))*DEL
X4={=-{Q3L{I)+U3)*(QL&{1)+P3)=(Q32(T)+V3)*(Q24({1)+T3))*DEL
Ya=(-(Q41(T)+Y3)%((E3{I)+C3)+G3)-(Q43(I)+AA3I*{EL(I)+A3)-(Q41(1)+
LY31*(QLl1(I)+F3)-(Q42(1)+Z3)*(Q21L(1)+Q3) }*DEL
Z4={(Q61 (I)+Y3)*(E3(I}+C3)+(Q43(1)+AA3IX{EI(TII+A3)-(Q42(1)+23)%(
LEA(TII+D3)={Q44(I1)+BB3)*(E2(I)+B3)-(Q41(I)+YI)*{QL2(TIV+H3)-(Q&2(1)+
2Z3)%(Q221{1)+R3))*DEL
AAG=(=(Q4L1{ 1) +Y3)*(QL3(I)+03)-(Q42(T)+Z3)*(Q23(T1)+53))*DEL
BBA=(~1Q4l(I}+Y3)%(QL4(1)+P3)-(Q42(1)+23)*{Q24(1)+T3))*DEL
ELUI+1)=E1(I)4(A142,%A242.%A3+A4) /6,
E2{I+1)=E2{ 1) +(B1l+2,%¥B2+2,*B3+4B4%) /6,
E3(I+1)=E3(I)+{CLl4+2%C2+2,%C34C4) /6,
E4{I+1)=E4(1)+{D1+2,%D2+2,%D3+4D4)} /6,
QLII+)=QLL(IV+(Fl+2.*%F242,%F3+F4) /6.
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QlZ2(I+1)1=012( 1)+ (H14+2%H242,%H3+H4) /6,
QL3(I+1)=Q13(1)+(01+2.*%0242.*03+04)/6,
Qla(I+1)=QLl4( 1)+ (PL+2. %P 242, %P34+P4) /6,
Q2L{I+41)=Q2L(I)+(Q1+2,*Q2+2,%Q3+Q4) /6,
Q22{1+41)=Q22( 1)+ (R1+2,%R2+2:*R3+R4) /6
Q23{1+1)=Q23( 1)+ (S1+2:*52+2:%53+454) /6,
Q24(1+1)=Q24( 11+ (T1+2,*T242:%T34T4) /6.
Q31(I+11=Q31( 1)+ (ULl+2*%U2+42,%U3+U4) /6,
Q32(I+1)=Q32( 1)+ (V142e%*V2+42:.%V3+V4) /6,
Q33(I+1)=Q33{I}1+(W1l+2.*W2+2,% W3+ W4) /6,
Q340T+1)=Q34 (I )+ (X1426%*X242:%X3+X4%) /6
Q4liI+1)=Qal(I)+ (Y142, %Y2+42.%Y3+Y4)/bs
Q42(1+1)1=Q42( 1)+ (Z1+2.%7242.*%23414) /b4

Q43{1+1)=Q43 (1) +[AAL+2,%AA242.%AA3+AAL) /6,
Q44(1+1)=Q44(1)+(BBL+2,*BB2+2.*BB34BB4) /64

CONTINUE
RETURN
END
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Quasilinearization and invariant imbedding are two useful
techniques for obtaining the numerical solutions of nonlinear
boundary~value problems. Furthermore, these techniques have
been shown to he very effective for solving various estimation
problems, The principle advantages of these approaches are
that various estimation criteria such as the least squares
criterion can be used and the estimation procedures converge
rapidly to the desired wvalue.

The purpose of this work is to investigate the effective~
ness of these two recently developed numerical tools for
solving various estimation problems involved in water
resources modeling.

The quasilinearization technique is used to identify or
to estimate the parameters in river or stream pollution. By
using this technigue, the parameters can be estimated directly
from the differenfial equations representing the polliution
model and from the measured data such as BOD and DO, Several
numerical examples are solved, It is shown that with very
approximate initial guesses for the unknown paraneters, only
three to seven iterations are neceded to obtain a four to five
digit accuracy. Due to the rapid convergence property of
this approach, it appears to be a powerful technique for the
dynamic modeling of stream quality problems.

The invarjiant imbedding approach is also used to estimate
these parameters of dynamic stream quality models. In this

approach, a sequential estimation scheme is obtained. DBy the



use of this sequential scheme, only current data are needed
to estimate the current or future wvalues of the parameters.
The classical least squares criterion is used to obtain the
optimal estimates, A few e. amples are solved to illustrate
this approach. It is seen that not only the parameters but
also the state or the future concentrations of the pollutants
are estimated by this approach. Thus, this approach also
forms an effective tool for the modeling and adaptive fore-

casting of stream or estuary quality.



