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INTRODUCTION 

The Moire method, although recent in origin, has been found to be an 

effective and efficient method for the analysis of various plate or grid 

structures. Because it requires a simple apparatus and relatively easy 

computations, it is quite useful. In particular, it is helpful in the 

analysis of structures which otherwise would require complex mathematical 

calculations for their solution. 

The Moire effect is an optical phenomenon produced when two somewhat 

similar arrays of dots or lines are superimposed, resulting in the formation 

of light and dark fringes. When used for the analysis of structures, the 

changes in slope, due to loading, of all the points on the model are 

determined by, first, taking a photograph of the image of a lined screen 

reflected by the unloaded model and then photographing on the same negative, 

the reflection of the lined screen from the loaded model. From the known 

slopes, it is then possible to determine the curvatures of the model, and 

the bending and torsion moments. 

The purpose of this study was: 

(1) to demonstrate the use of the Moire method for the analysis of a fairly 

complex rectangular balcony girder frame and hence to show its useful- 

ness for the analysis of many types of complex structures, 

(2) to study the behaviour of rectangular balcony girder frames under 

stationary and moving loads, 

(3) to derive a set of general equations for the theoretical analysis of 

rectangular balcony girder frames using a strain energy method, and to 

use them for the verification of the experimental results. 
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An overhanging balcony girder frame, whether rectangular or curved 

or of any other shape, can be analysed experimentally or theoretically by any 

of several different methods i.e. photoelastic method, deflection deter- 

mination method, slope deflection method, or by any of the strain energy 

methods. But, as shown in this study, the Moire method, by virtue of its 

simplicity, can be considered as a very useful method for the analysis of 

these types of structures. 
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REVIEW OF LITERATURE 

The Moire method in its present form, was developed by Lightenberg 

(1), at the Technological University of Delft in the Netherlands in 19514, 

who applied it to small slab models. His models included a rectangular 

plate with a circular hole, an equilateral triangular plate, a skew slab 

bridge model, and a floor panel with numerous holes. The experimental 

results he obtained from the models gave excellent agreement with the 

theoretical results. 

In the same year, Vreendenburgh and Van Wijngarden published a paper 

(2) dealing with the determination of the distribution of moments in flat 

slabs, using the Moire method. Their results were checked with experiments 

carried out by the National Council of Applied Scientific Research in the 

Netherlands, and with the exception of a single result, very good agree- 

ment was found. 

In 1956, Bradley used the Moire method to study the effect of a rec- 

tanFular cutout in a square clamped plate on the distribution of moments 

in the plate (20). He verified the experimental results of his study by 

the use of an approximate theoretical analysis, making use of finite 

differences. He used black perspex as his model material and introduced a 

lever system for the application of concentrated loads and aircells for 

uniformly distributed loads. The grid line spacing was 0.05 inches, He 

tested, in all, five models, and the results he obtained experimentally 

were in very close agreement with the theoretical results, with a maximum 

difference of about +5%. 

In 1960, Morse, Durelli, and Sciammarella presented the results of 

their study on the use of the Moire method in the two dimensional analysis 
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of strains (3). 

In the same year, Durelli along with Daniel presented a paper demon- 

strating the use of Moire fringes in the measurement of displacements and 

rotations in structural models (4). A modified method was developed by 

the use of two grids instead of one, a "model grid" cemented to the model 

and a fixed grid referred to as the "master grid", with respect to which 

the displacements could be measured. The grids used were transparent and 

were assumed to be in the same plane. 

In the same year, Durelli and Sciammarella started work on the inter- 

pretation of the Moire patterns as a function of displacements. A paper 

was published in 1961 (5). They also used two transparent grids. In 1963, 

Durelli, Sciammarella, and Parks presented a paper dealing with the 

detailed analysis of some points in the basic laws of Moire patterns (6). 

Properties dealing with the uniqueness and continuity of displacements 

were examined, so that the study provided a means to interpret the most 

general type of Moire patterns for strain analysis. 

In the same year, Sciammarella along with Fu-Pen Chiang developed a 

technique to extend the Moire method to three-dimensional problems (7). 

The test results showed that the accuracy and the sensitivity of the method 

were satisfactory. 

In a paper published in the same year, Bouwkamp discussed, in relation 

to the Moire method as used for the solution of plate bending, two graph- 

ical techniques for the determination of the direction of principal 

moments and stresses (8). 

In June, 1961i, Theocaris discussed the plane stress problems in 

relation to the Moire method (9). In the same year, Kubitza presented the 
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results of his work on stress analysis of grid works using the Moire method 

in the form of his Ph.D. dissertation at Washington University (10). He 

used a slightly modified apparatus and technique to obtain his results. He 

reduced the width of the screen ruling to 1/12" and used four fluorescent 

tubes around his model. He also revised the photographic procedure and 

used a 35 mm. camera with a high contrast copy film. All of his models 

were made of black plexiglas. His work yielded results which were within 

3.5% agreement with the calculated results. 

In a paper published in August 1965, Theocaris and Kuo presented a 

theory of Moire fringes produced by zonal gratings interfering with line 

gratings (11). 

In November, 1965, Post discussed the Moire grid analyser method for 

strain analysis (12). Also, in the same year, Fu Pen Chiang discussed a 

more accurate plotting method for displacement curves by using two-grids 

(13). In April, 1966, Theocaris discussed the use of the Moire method 

for the measurement of partial slopes in flexed plates (14). 

The Moire method has also been extended to thermal problems in 

recent years and a great deal of work is still being done in that area. 

In one of the most recent papers on Moire method, published in May 1966, 

Sciammarella and Sturgeon discussed the use of the Moire method in the 

determination of thermal stresses at high temperatures in stainless steel 

rings (15). 
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REVIEW OF THE MOIRE METHOD 

The Moire method, as already mentioned, has a real advantage over 

many other experimental methods of stress analysis in its direct determi- 

nation of the slope at any point on the model in any desired direction. 

The determination of slope is achieved by the use of a simple apparatus 

which essentially consists of the following parts: 

a) A grid or a ruled screen, consisting of alternate black and white 

lines of equal width, 

b) A camera, used to record two exposures on the same negative: 

first the reflection of the grid by the unloaded model; and 

second, the reflection of the grid by the loaded model, 

c) A model with a good reflecting surface. 

These three parts are supported by a massive and very rigid metal or wooden 

frame. 

The arrangement of these parts and the basic principle of the Moire 

method are shown in Fig. 1. 

The first exposure is made of the unloaded model. The point P on the 

screen is reflected by the point R on the model to appear as point I on 

the film in the camera. The next exposure is, then, taken of the loaded 

model so that the point R now shifts to point R'. The model rotates 

through an angle, say $ , and the point I on the film now becomes the 

image of the point Q instead of P on the screen. The relationship between 

the rotation of the model and the distance PQ on the screen, for a flat 

screen, can be written as below: 

c2 
PQ = 2,0a(1 + ;7) 
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The derivation of this formula is given in the appendix. 

If the distance between the point R on the model and its axis is not 

2 
too great, the term 

c - will be very small and can be neglected for a flat 
a2 

screen. With a = 25", say, and with an 8" model (max. c = h"), an error 

of about 22% would result if 0 were taken to be equal to 7. 
PQ 

5.. However, 

this error can be theoretically eliminated and practically reduced to a 

negligible amount by the use of a curved screen, as suggested by Lighten- 

berg (1). With a radius of cylindrical screen equal to 3.5 times a, we 

will have 

pr= , for all practical purposes. 
2a 

Fig. 2 shows the deviation of the true values of 0 from PQ/2a for 

different values of the radius of the screen, as computed by Lightenberg 

(1). 

The distance PQ is known, as the ruled screen or the grid has the 

same definite spacing for two black or white lines on it. By super- 

imposing the exposures of the loaded and the unloaded models on the same 

negative, the Moire fringes will appear in a definite pattern. They will 

consist of alternate light and dark stripes or bands. The light bands are 

generated by the compensation of the two exposures of the P and Q portions 

into full exposure of the area. These light bands are known as "Half 

fringes", because they locate the points undergoing a rotation of 2n-1(d ), 
2a 

where n = 1, 2, 3, ; and so, are of the order 

respectively. Similarly, the dark bands or stripes are produced when the 

P region coincides with the Q region, so that white lines coincide with 

white lines and black lines coincide with black lines. These bands are 
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known as the "Integer fringes", as they locate the points undergoing a 

rotation of zero, 12-g, 22-g, 32-5, ; and so, are of the order 0, 1, 2, 

3, , respectively. 

Every fringe of the set represents the points on the surface of the 

model which have a particular value of the slope in a direction perpen- 

dicular to the screen rulings. One can, therefore, have a general idea 

about the behaviour of the model under a particular loading, just by 

looking at the fringe pattern. The screen with the grid lines can be 

rotated at different angles for the determination of slopes in different 

directions. The slope so obtained is, then, used for the determination 

of all other unknowns for the model. 

For example, if the grid lines are parallel to the Y-axis of the 

model, we can obtain the values of bending moment, torsion and shear as 

follows: 

If slope = 0 = kx, 

Mx = EIxK , 

Tx = GJxKxy, 

and Fx = EIxKxxx. 

A sample fringe pattern is shown in Fig. 3. The pattern will give 

the values of bending moment in the beams AC and BD by the measurement of 

fringe spacings along their centre-lines. Similarly, the measurement of 

the fringe-spacings on the beam CD will give the values of torsion, as the 

grid lines run parallel to its centre-lines. The values of shearing forces 

can, then, be found from the corresponding values of the bending moments. 
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EQUIPMENT AND TEST PROCEDURE 

Equipment 

The test equipment consists, essentially, of the following parts: 

(a) Screen with the required illumination, 

(b) Photographic setup, 

(c) Model supports, 

(d) Loading arrangement, 

(e) Black plexiglas model of test structure. 

The above parts are held together and supported by a metal frame, 

made up of channels and angles, bolted together. The distance a, between 

the model surface and the grid surface is kept equal to 24-in., which is 

1 
times the radius of the cylindrical screen. The general setup of the 

apparatus is shown in Fig. t. 

The Screen. The grid paper was specially printed by the University 

Press on the KSU campus for this purpose, with a line width of 1/24" (or 

d, the spacing between the grid lines = 1/12"). The grid spacing was 

kept 1/12" throughout the tests on the basis of the recommendations of 

Kubitza (10), who observed that the fringes were difficult to locate for 

closer spacings; while on the other hand, for larger spacings, there is 

less accuracy. 

The sheets of papers containing the grid lines were then pasted on 

the aluminum screen which has a cylindrical surface with a radius R equal 

to 3.5 times the distance between the model surface and the grid surface. 

The screen can be rotated about its axis on an aluminum ring through any 

desired angle, by loosening four wingnuts at the back. The grid was 

illuminated by four 20 watt fluorescent tubes 23" long, mounted on a 
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Moire Fringe apparatus 

Fig. 11 
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plywood frame, fixed around the model frame, which provided quite uniform 

illumination of the screen rulings in any rotational position. 

Photographic Setup. A 35 m.m. Leica camera, with a High Contrast 

copy film, was used for all the photographs. The combination yielded 

sharp negatives with a good contrast between the dark and light fringes. 

The enlargements obtained from these negatives were also found to be quite 

good, with a clear definition of the half fringes and the integer fringes. 

The camera was rigidly mounted on a steel plate behind the tiny hole in 

the centre of the grid. 

Model Supports. The model was supported in a vertical position in 

a square steel two part frame. The two pieces were held together by 

numerous bolts, with the model supports placed in between the frame halves 

and the bolts tightened to achieve a built in condition at the supports of 

the model. 

Loading Arrangement. The load was applied with the aid of a lever 

arrangement which could transform a vertically suspended weight into a 

horizontal load, perpendicular to the model surface. The load could be 

applied at any part of the model by moving the lever to any horizontal and 

vertical position required. Level measurements were made to ensure that 

the load was always acting perpendicular to the model surface. 

The details of the loading arrangement and the model supports are 

shown in Fig. 5. 

The Model. All of the models were made of black plexiglas, 1/h" thick, 

with a very good reflecting surface. The thickness of the plexiglas sheet 

was checked at different points with the help of a micrometer screwgauge 

and the model was cut from a portion of the sheet with the nearly uniform 
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thickness. The thickness variation was around 5% in most of the cases. 

Test Procedure 

In all, five models were tested. The first two models were used to 

obtain, experimentally, the proper exposure time which would give a set 

of sharp fringes, and to check the experimental setup. For the latter, 

a fixed beam model was used, and the experimental results were verified 

by the known theoretical results. The close agreement indicated that the 

apparatus and the general setup were operating correctly. A frame model 

was then tested as a prelude to the actual work. The other three models 

were of rectangular balcony girder frames on which the actual detailed 

experimental and analytical analyses were carried out, and only the results 

of these models are presented here. 

All of the models were prepared by, first, roughly sawing out a piece 

of plexiglas slightly larger than the actual model with the aid of a 

saber saw, and then bringing it to the proper size and shape by the use 

of a plastic model-making machine with a vertical rotating cutter. 

The shapes and the sizes of the three models are shown in Fig. 6. It 

will be noticed that the width of the models was kept constant in all the 

three cases, while the height was changed. The height was made greater 

than the width in model no. (1), equal to the width in model no. (2), and 

less than the width in model no. (3). This was done in order to observe 

the effect of a change of the ratio of height to width on the bending 

moment, torsional moment and shearing force in the model. 

Fifteen load positions were tried for models (1) and (2) and eleven 

for (3). The models were loaded along their center-lines to obtain a 
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sufficient number of points for drawing the bending moment, torsional 

moment, and shear force influence lines. The load positions are shown in 

Fig. 6. For each load position, two sets of photographs were taken, one 

with the grid lines horizontal to get the bending moment and shear force 

in the legs and torsional moment in the beam, and the second with the 

grid lines vertical to obtain the values of bending moment and shear force 

in the beam and torsional moment in the legs. For each set i.e. for each 

position of the grid lines, two exposures were taken, first for the 

unloaded state and the second for the loaded state which was superimposed 

on the first one. 

A one pound load was first used for all the load positions, but it 

was found that the number of fringes per unit length was not sufficient 

to give an accurate result for load positions near the fixed supports. 

Higher loads were therefore used for load positions near the supports. 
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TESTING SEQUENCE AND DETERMINATION OF TIME DEPENDENT MODULUS, Et 

Testing Sequence 

The value of the modulus of elasticity is a function of time for 

plexiglas, as it is a visco-elastic material. Carpenter has shown that 

about 80% of the variation in the value of E takes place in the first three 

or four minutes of the load application (10). Kubitza has also verified 

his results by using an L-shaped cantilever beam subjected to a concentrated 

load for 10 seconds, 1.5 minutes, 4.5 minutes and 10 minutes (10). He 

determined the corresponding values of Et by equating the known theoretical 

slope with the slope obtained from the fringe photographs. His results 

are shown in Fig. 7, which gives a good idea of the variation of Et with 

time. 

From the above, it is quite clear that the time element is very 

important in experiments with plexiglas models. A definite time sequence 

is, therefore, necessary. On the basis of the results of Kubitza and 

Carpenter, a particular time sequence was chosen and used throughout the 

experimental work. The time of exposure was determined on the basis of 

many preliminary tests, and 111 seconds was finally adopted as the exposure 

time for all the photographs as it yielded best photographs of the fringe 

pattern. The complete time sequence used for the tests is given below: 

Each exposure was made for 112 seconds as mentioned above. The first 

exposure was made after 42 minutes had passed since removing the previous 

load. The load was, then, applied using the lever arrangement, which 

took about 20 seconds. The load was kept acting for bi minutes, and the 

second exposure of 111 seconds was, then, superimposed on the first exposure, 
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Time in Minutes 

Variation of Et with time for plexiglas (10) 

Fig. 7 
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and the load was removed. 

Determination of the Value of Et 

The values of Et, corresponding to hi minutes time of application of 

load on the plexiglas models was determined by using a model of a simply 

supported beam, cut from the same portion of the plexiglas sheet from 

which the test models were taken. The beam was then placed on two simple 

supports and a concentrated load was applied in the form of a weight 

suspended at the center of the beam. A dial gauge was used for the deter- 

mination of the deflection of the beam at the centre for that load, 

applied for L minutes. The value of Et was then calculated using the 

following deflection formula, 

Deflection 6= WL3 
48E1 ' 

where W = load applied at the centre of the beam, 

S= deflection at the centre, measured by the dialgauge, 

I = moment of inertia of the beam section, 

and L = the span of the simply supported beam. 

WL3 
Et = us, 

The observations and the values of 6 obtained for each observation 

are given in the table below. 
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Experimental Determination of Et for 11.5 minutes 

time of application of load 

(i) W = 1 Lb. 

(ii) Least Count of the dial gauge = 0.0001" 

(iii) Determination of 6: 

TABLE NO. 1 

S. No. Deflection measurement by dial gauge 6 

Initial dial reading Final dial reading Difference in inches 

1 12 68 56 o.0056 

2 11 70 59 0.0059 

3 10 57 b7 0.00147 

59 55 0.0055 

5 10 6)4 54 0.0054 

6 6 6o 5)4 0.00514 

7 2 6o 58 0.0058 

8 8 63 55 0.0055 

9 12 61 59 0.0059 

10 9 63 54 0.0054 

11 10 64 54 0.0054 

Mean = 0.0055 

WL3 1 x 53 
Et 

- 4861 48x0.0055 x 0.0011 

= 430,000 psi 

This is in very good agreement with the value obtained by Kubitza (10). 

His value of Et = /25 ksi was used for the analysis of model no. 1, while the 

value of Et = 430 ksi, as obtained above, was used for the rest of the models. 
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GENERAL CHARACTERISTICS OF FRINGE PATTERNS 

Before proceeding further, it is deemed necessary to deal in brief 

with what a fringe pattern actually represents qualitatively and what 

information it provides in a general sense without making any calculations. 

In fact, a fringe photograph is not only a complete record of the slope of 

the model at different points in the direction perpendicular to the grid 

lines, but it also indicates the general distribution of bending moments, 

shearforces, and torsional moments in that direction. Therefore, one can 

have a general idea about the distribution of stresses in the model just 

by looking at the fringe photograph. 

A fringe photograph will indicate the following characteristics to 

a knowledgeable observer: 

(1) Fringes perpendicular to the grid lines indicate the presence 

of torsion without bending moment in the element. 

(2) Fringes parallel to the grid lines indicate the presence of 

bending moment without torsion in the element. 

(3) Fringes inclined to the grid lines indicate the presence of 

bending moment and torsion. The degree of inclination indicates the ratio 

of the two. 

(t1) Equidistant fringes indicate a constant bending moment or 

torsional moment. 

(5) Increase in fringe spacing indicates a decrease in bending or 

torsional moment. 

(6) A change of direction of the fringes indicates a change of sign 

in bending or torsional moment. 
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PRESENTATION AND EVALUATION OF EXPERIMENTAL RESULTS 

As already mentioned, several load positions were used for each model 

in order to get enough points to draw the influence lines. Fifteen load 

positions were used for mode's number l and 2, and eleven for model number 

3. Two photographs were taken for each load position; one with the grid 

lines horizontal or in other words perpendicular to the legs. This photo- 

graph gave the torsional moment in the beam and the bending moment in the 

legs. The second photograph was taken with the grid lines vertical, and 

gave the bending moment in the beam and the torsional moment in the legs. 

A total of 82 photographs were taken. 

The photographs obtained were in general quite satisfactory, with 

many of them having sharp fringes. Some of them, however, had dim fringes 

on one of the legs, making it very difficult and in some cases impossible 

to measure the fringe spacings. One other difficulty faced in analyzing 

some of the photographs was that the number of fringes per unit length on 

the beam was not large enough for a complete analysis of the beam. This 

might have been not only because of the smaller width of the beam, but 

perhaps also because the bending moment changed sign in the beam, so that 

the fringes also changed direction in the small width. Heavier loads 

could have been used in order to increase the number of fringes on the 

beam, but they would have increased the number of fringes on the legs to 

such an extent, that it would have become almost impossible to measure their 

spacings. 

In reducing the data from the fringe patterns to determine the curv- 

atures and rotations, a semi-graphical procedure was followed in this study. 

Enlargements in IT x 4" size were first obtained from the negatives. Fringe 
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spacings were then measured directly on the photographs and were multiplied 

by the scale factor to obtain the actual fringe spacings. Slope curves 

were plotted between the fringe order and the distance, for each member of 

the frame. From these curves, bending and torsional moments were directly 

obtained as shown in the sample calculations below, and the bending moment, 

shear force and the torsional moment diagrams were then plotted. 

A complete sample evaluation of results follows for model number 1, 

with the load at station 5. Analyses for other load positions and other 

models were carried out in a similar way and the final experimental results 

are shown in a tabular form at the end of this chapter. 

Sample Evaluation of Results 

Fig. 8 shows the model with all the dimensions and the load positions. 

It should be noted that load positions 5 and 11 are symmetrically placed 

and therefore the value of bending moment and torsional moment at any 

point in the leg AC with the load at station 11 is equal to the bending 

moment or torsional moment at the corresponding point in the leg BD, with 

the load at station 5. The analysis was therefore carried out sometimes 

using the photographs for load at station 5 and sometimes using the photo- 

graphs for load at station 11, whichever was convenient and whichever gave 

the sharpest fringes for the member under consideration. 

The analysis was carried out as follows. 

(I) Bending Moment and Shear Force 

d 
2 y 

The fundamental equation for the bending moment M = EIT7 can be 
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expressed in difference form as 

OK 
My = EIQy , 

where, 

LiKy = change in slope in the Y-direction, 

and Ay = change in distance in the Y-direction. 

But,AKy = n x (change in slope per fringe order) 

= Acy = Th24 

where, 

n = fringe order, 

d = fringe spacing = 1/12", 

and a = distance between the model and the screen. 

Therefore, choosing n = 2 i.e. considering two fringe spacings, we 

obtain 

2 x 1/12 1 

liKY = 2 x 24 =288 

As I - 
_ bd3 = 0.897 x (0.2)13)3 

= 0.0011 in 4 

12 12 

and E = 430,000 lbs./in2, for t = 4.5 minutes, as determined experimentally, 

nd 

M E175 
430,000 x 0.0011 x 1/288 

y = 47. = AY 

- , for t = 4.5 minutes . 

Eqn. (1) 

(a) Determination of bending moment and shear force in leg AC with the 

load at station 5, or in leg BD with the load at station 11. 
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As already explained, for the determination of bending moment in a 

member of the frame, the photographs with the gridlines perpendicular to 

the centre line of that member were used. Therefore, for the determination 

of bending moment in AC or BD, the photograph with the grid lines 

horizontal were used. 

The photographs, with the grid lines horizontal and the load first 

at station 5 and then at station 11 are shown in Figs. (9a) and (9b). With 

the load at station 5, the fringes are not clear on all of leg AC. There- 

fore, the fringes on the leg BD with the load at station 11 have been used 

here. 

The fringe spacings and the distance of every fringe from the fixed 

end were measured accurately for the leg BD on the photograph for the load 

at station 11, and were then multiplied by the scale factor to get the 

actual spacings and the distances. A curve was then plotted of the fringe 

order versus the distance from the fixed end and is shown in Fig. 10. 

The values of bending moments were then calculated at a number of 

fringe positions from the fringe order versus distance curve using equation 

(1). 

For example, taking the fringe order equal to 7.5, 

Ay = distance between the fringes of order 6.5 and 8.5 

= 0.57", as shown in Fig. 10. 

Therefore, using equation (1), we obtain 

My = IL611.6 

-Y 0. 2.90 In. Lbs. 

As the distance of the 7.5 order fringe was 2.2" from the fixed end A, the 

co-ordinates of the point P, so obtained, are (2.9, 2.2) on the bending 



(a) Load at sta. 5 

(b) Load at sta. 11 

Fringe photographs with grid lines horizontal 

Fig. 9 
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moment diagram. 

Similarly, for obtaining the point Q on the bending moment diagram, 

the fringe of order equal to 11.5 was used, which is at 4.3" from the end 

and for whichby = 1.15". We, therefore, get the bending moment 

1.646 1.646 
My = 7E7- = 1,13- = 1.43 In. Lbs. 

In a similar way, bending moments for many points were calculated and 

the bending moment diagram was drawn for the leg BD with the load at station 

11 which is also the bending moment diagram for the leg AC with the load at 

station 5. The bending moment diagram is shown in Fig. 11. With the help 

of the bending moment diagram, the shear force diagram can be plotted. 

Since the bending moment is varying linearly, the shear force will be 

constant and will be equal to the rate of change of the bending moment. 

Shear Force = Rate of change of bending moment 

Bending moment at P - Bending moment at Q 

Distance between P and Q 

2.90 - 1./13 = 0.70 Lbs. 
4.3 - 2.2 

The Shear Force diagram is shown in Fig. 12. 

(b) Determination of bending moment and shear force in leg BD with 

the load at station 5 or in leg AC with the load at station 11. 

Here the photograph with the load at station 5 was used as it gives 

clear fringes for the whole leg BD. The fringe order versus distance curve 

was drawn in the same way as already explained, and is shown in Fig. 13. 

Values of spacing y were then picked from this graph and used in 

Eqn. (1) to obtain the bending moments at different points. The bending 
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diagram was then drawn as for the other leg and is shown in Fig. lh. The 

shear Force diagram was drawn by calculating the rate of change of bending 

moment from the bending moment diagram, and is shown in Fig. 15. 

(c) Determination of bending moment and shear force in the beam CD 

for the load at station 5 or 11. 

For the determination of bending moment in the beam, the photograph 

with the grid lines perpendicular to the beam (Fig. 16) was used. It has 

already been mentioned that the number of fringes on the beam was not large 

enough in some photographs. In this case, there were only three fringes 

on the whole beam which is the minimum number required for the analysis. 

The fringe order versus distance curve was drawn with the aid of these 

three fringes, and is shown in Fig. 17. Only two points were obtained 

from this curve for drawing the bending moment diagram, as shown in Fig. 

18. The corresponding Shear Force diagram is shown in Fig. 19. 

(II) Torsion. 

(a) Calculation of the value of J 
P' 

the polar moment of inertia for 

the rectangular section of the models. 

From Saint Venant's formula for a rectangular section, the polar moment 

of inertia, Jp, may be given by (29) 

B3D3 
Jp = K11324.Dz 

where B = width of the cross section, 

D = depth of the cross section, 

and K1 = a constant, given by 
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(a) Load at sta. 5 

(b) Load at sta. 11 

Fringe photographs with grid lines vertical 

Fig. 16 
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1 
K, 

3.645 - 0.04 

Here, B = 0.897" and D = 0.243". 

Therefore, 

1 1 
= = 

- 3.6)15 - 0.06D 3.645 -0.06x07 
0..2 
1 

3 

= 0.292 

and 
B3D3 0.292 x (0.897)3x (0.243)3 

J 
P 

= K1 
B 2 +D 2 (0.897)2 + (0.243)2 

= 0.00352 inh 

(b) Calculation of the value of G. 

430,000 
= 170,800 psi G = 

2(1?) 2(1+0.26) 

(c) Determination of torsional moments 

Torsional moment at any point along the centre line of a member is 

given by 

K Ty = GJ 
PA y 

y 

whereAKy = change in the slope along the centre line 

and 4y- = change in the distance along the centre line. 

Ty = GJ 
P 

nd/2a 
= GJ 

P y 

170,800 x 0.00352 x 2 x 7R-7E 
For n = 2, Ty = 

1/12 

6 Y 

Equation (2) 
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2.09 Equation (3) 

Lo 

(i) Determination of torsional moment in the leg AC. 

For the determination of torsional moment in the legs, the photographs 

with grid lines vertical were used. Using the photographs shown in Fig. 

16, for the load at station 5, a graph was drawn of the fringe order versus 

the distance from the base of the leg. This graph plotted as a straight 

line showed that the torsional moment was constant in the leg. 

From the graph,Ay = 6.03", for n = L.S. Therefore, using Eqn. (2), 

we obtain 

d 

Torsional Moment = GJ 
P AY 

170,800 X 0.00352 X 4.5 X 2x2 
1/12 

4 

6.03 

= 0.78 Inch Lbs. 

The torsional moment diagram is shown in Fig. 21. 

(ii) Determination of torsional moment in the leg BD 

The torsional moment in the leg BD was found in a similar way and was 

the same as in AC. 

(iii) Determination of the torsional moment in the beam CD. 

For the determination of torsional moment in the beam, the photograph 

with the grid lines horizontal (Fig. 9), was used. It had just three 

fringes on the beam and since the torsional moment was constant in the beam 

they were sufficient for the analysis. The distance between the first and 

the third fringe was measured and was equal to 4.86". 

Therefore, for n = 2, Ay = )i.86 ", using Eqn. (3), we obtain 
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2.09 
Torsion = T-7. - 0.43 Inch Lbs. 

The torsional moment diagram is shown in Fig. 22. 
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Final Experimental Results 

Model No. 1 

(Load W = 1 Lb., E = 425ksi) 

TABLE NO. 2 

Load at Shear Force at the Bending Moment at Torsional Moment at 
sta. fixed end B, the fixed end B, the fixed end B, 

Fo, in Lbs. Mo, in In. Lbs. To, in In. Lbs. 

1 MIDGE, SIM MOOD 

2 -- 0.545 -- 

3 0.1218 1.05 0.386 

4 0.1706 1.50 0.535 

5 0.2440 2.40 0.771 

6 0.2460 2.69 0.803 

7 0.400 3.50 0.450 

8 0.492 4.18 

9 0.600 4.68 .1111101M 

lo 0.687 5.23 -0.803 

11 0.682 4.5o -0.771 

12 0.702 3.30 -o.535 

13 -- -- -0.386 

14 0.903 2.350 4111 

15 IOW Mr IVO 41MI 
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Final Experimental Results 

Model No. 2 

(Load W = 1.48 Lbs., E = 430ksi) 

TABLE NO. 3 

Load at Shear Force at the Bending Moment at Torsional Moment at 
sta. fixed end B, F0, the fixed end B,Mo, the fixed end B, To, 

in Lbs. in Inch Lbs. in Inch Lbs. 

1 

2 

3 -- -- o.4o8 

MOD MUNI *OM, 

OP NO MO OW 

h 0.1795 1.310 0.597 

5 0.280 2.050 -- 

6 0.275 2.3o 0.8214 

7 0.414 2.882 0.613 

8 0.691 3.8o 0.445 

9 0.956 4.590 0.00 

10 1.046 4.810 -0.824 

11 1.162 __ -0.723 

12 1.232 4.190 -0.597 

13 1.422 3.420 --0.408 

1)4 IMO MP 111111,1M Mad. 

OWN, IMID _ - 
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Final Experimental Results 

Model No. 3 

(d = 1.48 Lbs., E = 430ksi) 

TABLE NO. 14 

Load at Shear Force at the Bending Moment at Torsional Moment at 
sta. fixed end B, Foy the fixed end B, Mop the fixed end B, T02 

in Lbs. in Inch Lbs. in Inch Lbs. 

1 

2 

3 

12 

5 

6 

7 

8 

9 

10 

11 

1 
0.05 

0.1361 

0.1370 

0.398 

0.690 

0.970 

1.761 

IMO 

MO OM 

ONO/ 

0000 

0.38 

0.813 

1.10 

1.7o 

2.40 

3.30 

4.05 

=Ip 

OM MN 

1101. 

IM 

0.207 

0.336 

0.520 

0.616 

0.790 

IM 

-0.52 

M 

-0.207 

Mb GM 
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DEVELOPMENT OF THEORETICAL RESULTS 

TO BE COMPARED WITH EXPERIMENTAL RESULTS 

For the theoretical analysis of these frames, a set of equations was 

derived by using a strain energy method. 

The figure below shows a rectangular balcony girder frame, rigidly built- 

in at A and B. 

L 

A B 

If the support B is removed, its effect can be replaced by a bending 

moment Mo, a torque To, and a shear force Fo. These generalized forces 

were taken as the redundant elements in the derivation. 

Hence, if U is the total strain energy of the beam, the conditions to 

be satisfied are 
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aU 
and ; = 0. 

The total strain energy of the beam is the sum of the components due 

to bending, torque and shear force. The strain energy due to the shear 

force is ordinarily much smaller than due to the other two and can 

consequently be neglected. Denoting the strain energy due to bending and 

torque by UB and UT respectively, we obtain 

au au 

OMo 
a-4 0, 

au 
E 

au 
w-I - 

aTo oTo 
0, 

auFs OUT 

Or' 
4 = 0. 

Given that ds is a small element anywhere along the length of the 

frame, EI is the flexural rigidity, and NJ is the torsional rigidity of 

the girder, 

then, UB = 
2E1 

TM 
x 
2 

ds, 
U 
T 

= 
1 rT2 

2NJ x 

Mx and Tx are the bending moment and the torsion at any section and 

the integration extends round the whole girder. 

The above equations can, then, be re-written as 

J 

mxds 1_ jr s o , (a) 
EI )gris- NJ Mo 

f M)Pkds + ,r Txpocds = o , (b) 
EI NJ 



AT 
1 rmx 

J 
aMxdR + r Tx,:f._Lcds 0 . 

EI J aF 0 
(c) 

The sign convention used here is as follows: 

(a) a positive bending moment at X is one that tends to make dx convex 

upwards, when dx is viewed from the front. 

(b) a positive torque at X is one that tends to turn the viewed section 

clockwise, and 

(c) a positive shearing force at X is one that tends to raise the viewed 

section. 

With these sign conventions, taking Mo, To, and Fo as positive, we 

proceed as follows. 

Load in CD 

(I) Section in AC 

Mo imposes a bending moment = -Mo, 

and a torsional moment = 0. 

To imposes a bending moment = 0, 

and a torsional moment = -To. 

Mx = -Mo 0 FoY W(L' -Y) 

Tx = 0 - To + FoL - W1 

C 

1 -+ 

X 

Therefore, from equations (d) and (e), we obtain 

aT 
0, 

No 

d 

D 

Sri B 

5'0 



622c - aF0 
0.2x = L 
aF0 

(II) Section in CW 

Mo imposes a bending moment a 0, and a torsional moment so -M0 , 

To imposes a bending moment = To, and a torsional moment = 0. 

Mx = 0 + To - Fo(L-x) + W(1-x) 

and Tx = -M0 + 0 + FoLl Wxo = -M0 + FoL' 

From the above equations, 

. 0 

' 
OT 

= -1, 
ON) ()MO 

.1c = +1, 

aF0 
azz = _(L -x), 

= 0 
aTo 

aTx 
= L'. 

aF0 

(III) Section in WD 

Mx ' 0 To - Fo(L-x) + 0 = To - Fo(L-x) 

Tx = -110 + 0 + FoL' + 0 = -Mo + FoL' 

which give, 

Fo 

(f) 

(g) 

-1 , 

aTx 
To 

= o , 

L2C = L'. 
A 

aF0 

C X 

+4-- 1 -PI 
.4. X --11 

17P .07.7 

D 

B 

51 



(IV) Section in DB 

Mo imposes a bending moment = Mo, and a torsional moment = 0. 

To imposes a bending moment = 0 , and a torsional moment = To. 

Mx ' Mo 0 - Fo.Y "I' 0 Mo - FoY 

Tx = 0 + To + 0 + 0 = To 

which gives 

("Ix' = 1, 

am() 

aM = 0, 
OT0 

amx 
aF0 ' aF0 

(j) 

(k) 

Now, using equation (a), we find 

1 r 

EItj -Mo FoY W(11-341 (-1)dy +J({Mo - Foy} (1)dd 

e iff FoLl) (-1)dx +°,1(-M0 + FoL') (-1)dX] = 0 

1 FoL' 
2 

WI,' 
2 

F L'2 
or a HmoL, - - )..1-{ - }i+ iNJ [cm, - FoiLl 

+0(1,..1) (1,_211 

r L 
.4- 

'2] 1 r 
or ET L2m0L, - FoLt 

2 W 
- -7- z- Lmol, - Fon] = 0 (A) 

For the load at the middle point of CD, 1 = L/2 and Fo = W/2, so that 

Equation (A) becomes, 

r 2 WT '21 
if Lm0L, - 

w 
Lt - 

NJ 
[ moL - = 0, 

21,41L12NJ + WIL'EI 
or Mo = 2(2L'NJ + LEI) 

(Aa) 

52 



Now, using Equation (b), we find 

EI U{ T° - Fo(L-x) + W(1 -x)} (1)dx + - Fo(L-x4 (1)dx] 

+ [1(7T0 + FoL - w1} (-1)dx + ijodx)] = 0 
NJ 

r Fo2 L2 W12 
or EI crol, - 

2 ] 
+ 

NJ 
[2T 

° 
L' - FoLL' + W1L1 = 0. 

For the load at the middle point of CD, 1 . L/2 and Fo = W/2, so that 

Equation (B) becomes 

r 
EI LT °L ° 8 1 NJ 

[ 2ToL1] = 

or T = 
o 8(NJL+2EIL') 

WL2NJ 

EI 

+ JT0 - Fo(lf-x)} -(L-x)].dx +jr.[Mo - Foy} (-y)d3] 

L. {f {_To FoL - wi} Ldy +0:t-Mo + L'dx +f 
NJ 

f-M0 + FoLl (L')dx 

+ 0] =0 

or 2- 
I 

[_m 

° 

L,2 4. 2 
5 
F 

0 
L,3 WL13 

- TaL2 + FnI3 - El2+ 
E 

- 

6 72 -3 2 6 

Now, using Equation (c), we obtain 

+ Foy + W(L'-y).1 ydy - Fo(L-x) + W(1-41 f-(L-x4dx 

(B) 

(Ba) 

1 
+ 

NJ 0 
LL' - M 

o 
LL' + FoL2L1 * FoL12L - WILL] = 0 

Load in AC 

(I) Section in AC 

(a) Section in AW 

(C) 

53 



M x = -M 
o 

+ Foy + W(1-y) 

Tx = -To + FoL 

which gives, 

= 0 
aTo 

= 
F 0 ' 

(b) Section in WC 

Mx 
= -mo FoY, 

Tx = -To + FoL, 

which gives 

= -1, 

a mo 

021x n = 

aTo , 
aF0 

(II) Section in CD 

Mx = To - Fo(L,x) 

Tx = -M0 + FoL', 

which gives 

a1; = 0, 

' 

C 

z, 
aTo x 

1 I 

dix L 
aF0 ,,,,11 

D 

B 

M 
A 

C 
X 

X p 

D 

-p B 

511 



(III) Section in DB 

M x = Mo -F0 y 

Tx = To, 

which gives 

= 1, 

()No 

ainE = 0, 
aTo 

aF0 

Ex 
= 

Lt. 

aF0 

am° 

a_Tz 
aTo 

d 
Therefore, using Equation (a), we obtain 

EI 
-Mo Foy W(1-Y)} ( -1)dy + -Mo Foy} 

o 

1 

NJ 

1 
or 

EI 

r 
Ei L 

or EI L 

Foll 
+ 

1 
C Te - [2T0L' - FoLLI] = 0 (E) 

55 

1A] 
(-1) dy + 0 + (Mo Foy) 

+ FoL')(-1)dx] = 0 
0 

21 1 
[?MoL' - FoL' 2 W1 

- + 
NJ 

koL - FoLL1 = 0 (D) 

Now, using Equation (b), we obtain 

_11 
- Fo(L-x)) (1)dx] + NJ 

i o 0 
(-T + Fo(L)) (-1)dy +f0T0(1)dy] = 0 



Now, using Equation (c), we find 

-M o + Foy + W(1-y4ydy + j(-M0 + Foy)ydy f{ 
EI 0 

+ £ {To - Fo(L-x) }(-(L-x))dx + f(M0 - Foy)(-y)d] 

+ L 
J 

[f(-To + FoL)Ldy + t(-To + FoL)Ldy + 1(-M0 + FoL')L'dx1= 0 
N 

which gives 

1 r_m 

° 

L,2 2 F 
o 
L,3 FoL3 1112 W131 

L EI 3 3 6 J 

2- [-TOLL, FoL2L, F 
o 
L'2L - M 

o 
LL'] = 0 (F) 

NJ 

Load in BD 

Since the model is symmetrical, the above equations for the load in 

AC can be used for the determination of bending moment, torsional moment 

and shear force at any point along the center line of the model for the 

load in DB. 

The equations so derived were used for the actual analysis of the 

frame models. Sample calculations are given below for model no. 1, with 

the 1 lb. load at Sta. 5. All of the rest of the calculations for other 

load positions and models were done in a similar fashion and are shown in 

a tabular form at the end of this chapter. 

Sample Calculations for Model No. 1, Load at Sta. 5. 

C 

Here, L = 5.525,1 

L' = 8.5" 

1 = 7.5" 

W = 1 Lb. 

56 

L' 
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Also, we know that ET = 430,000 x 0.0011 = 473 Lbs.-in2 

and GJ = 171,000 x 0.00352 = 601 Lbs.-in2. 

Therefore, using equation (D), with the above values, we obtain 

1 [2M0 x 8.5 - Fo x (8.5)2 - lx(7.5)2]+ 1 [M, x 5.525 - Fo x 8.5 
473 2 601 - 

or Mo = 5.12F0 + 1.319 

x 5.525] = 0 

Using Equation (E), we obtain 

(i) 

1 

473 
[5.525T0 - 15.25P1 + 

601 
1 [17T0 17Fo] = 0 or To = 2.76F0 ---(ii) 

Using Equation (F), we obtain 

11 73 

r x(8.5)2 + E Fox(8.5)3 
3 
Fox(5.525)3 - Tox(e ;e 

e)2 
x(7.5)3] 

+ 161.1 [(8.5) x (5.525) To + (8.5)(5.525)2 F0 + Fo (8.5)2(5.525) 

- M0(8.5)(5.525)] = 0 

or -139M0 + 1251.3F0 - 66.1T0 + 89.5 = 0 

Now, substituting the values of Mo, and To from Equations (i) and (ii) 

above into Equation (iii), we find 

-139(5.12F0 + 1.319) + 1251.3F0 - 66.4(2.76F0) + 89.5 = 0, 

which gives 

Fo = 0.263 Lbs. 
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From (1), and (ii), we obtain 

Mo = 2.667 Lbs. In. and To = 0.726 Lbs. In. 

So, we now know the redundants and can, therefore, determine the moments 

and torsions at all points along the centerline of the model by using 

Equations (d) to (k). 

Section in AC 

(I) Section in AW 

The bending and torsional moments for a section in AW are calculated 

as follows: 

At a point 0" from the fixed end A(i.e. at y = 0 or at A), 

My = -M0 + Foy + W(1-y) = -2.667 + 0.263 x 0 + 1(7.5-0) 

+4.833 In. Lbs. 

and Ty = -To + FoL = -0.726 + 0.263 x 5.525 

= +0.726 In. Lbs. 

At a point 1" from A, My = -2.667 + 0.263x1 + 1.(7.5-1) 11.096 In. Lbs. 

and T = -0.726 + 0.263 x 5.525 = +0.726 In. Lbs. 

Similarly, other values, at one inch intervals, were calculated and are 

given in a tabular form below: 
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TABLE NO. 5 

y in inches My. in In. Lbs. T in In. Lbs. 

2" +3.359 +0.726 

3" +2.662 +0.726 

4" +1.885 +0.726 

51, +1.1h8 +0.726 

6" +0.411 +0.726 

7" -0.326 +0.726 

(II) Section in WC 

At a point 8" from A, (i.e at y = 8") 

ICI = -M0 + Foy = -2.667 + 0.263 x 8 = -0.563 Inch Lbs. 

Ty = -To + FoL = -0.726 + 0.263 x 5.525 = +0.726 Inch Lbs. 

At a point 8.5" from A, 

My = -M0 + Foy = -2.667 + 0.263x85= -0.563 Inch Lbs. 

and Ty = -To + FoL = 0.726 Inch Lbs. 

Section in CD 

At C, (or at x = 0"), 

Mx = To - F0(L-x) = 0.726 - 0.263 (5.525 - 0) = -0.726 Inch Lbs. 

and Tx = -M0 + F0L1 = -2.667 + 0.263 x 8.5 = -0.1.30 Inch Lbs. 

Similarly other values were calculated and are given in a tabular form 

below: 



TABLE NO. 6 

6o 

x in inches Mx in Inch Lbs. T x in Inch Lbs. 

1" -0.464 -0.430 

2" -0.202 -0.430 

3,, +0.0601 -0.430 

4" +O.325 -0.430 

5" +0.588 -0.430 

5.525" +0.726 -0.430 

Section in DB 

At B,(i.e y = 0"), 

My = Mo - Foy = 2.667 - 0.263 x 0 = +2.667 Inch Lbs. 

and T = To= +0.726 In. Lbs. 

Similarly other values were calculated and are given in a tabular form below: 

TABLE NO. 7 

y in inches My in Inch Lbs. T in Inch Lbs. 

1 +2.404 +0.726 

2 +2.141 +0.726 

3 +1.878 +0.726 

+1.615 +0.726 

5 +1.352 +0.726 

6 +1.089 +0.726 

7 +0.826 +0.726 

8 +0.563 +0.726 

9 +0.430 +0.726 
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All the other results for other loads positions were obtained in a similar 

way and are shown in the following tables. The theoretical Bending 

Moment, Shear Force and Torsional Moment diagrams are shown in Figs. 23 - 

30. 
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Theoretical Results 

Model No. 1 

(Load = 1 Lb., E = 425ksi) 

TABLE NO. 8 

Load at sta. Fo in Lbs. M o in Inch Lbs. T 
o 

in Inch Lbs. 

1 Wean MOM. 

2 0.0654 0.551 0.183 

3 0.1296 1.138 0.358 

h 0.201 1.876 0.555 

5 0.263 2.667 0.726 

6 0.285 3.150 0.787 

7 0.393 3.705 0.545 

8 o.5o 4.26 0.215 

9 0.600 4.795 _0.244 

lo 0.713 5.35 -0.787 

11 0.746 4.883 -0.726 

12 0.824 4.124 -0.555 

13 0.905 3.362 -0.358 

14 0.942 2.449 -0.183 

15 
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Theoretical Results 

Model No. 2 

(Load = 1.48 Lbs., E = 430ksi) 

TABLE NO. 9 

Load at sta. Fo in Lbs. M o in Inch Lbs. To in Inch Lbs. 

1 am O. &MAO 

2 0.0643 0.4207 0.1775 

3 0.127 0.882 0.351 

h 0.1965 1.464 0.542 

5 0.261 2.124 0.721 

6 0.290 2.50 0.801 

7 0.488 3.19 0.623 

8 0.71,0 4.082 0.393 

9 0.998 4.98 0.028 

10 1.176 5.64 -0.801 

11 1.226 -- -0.721 

12 1.272 4.456 -0.543 

13 1.368 3.558 -0.350 

14 1.410 2.539 -0.1775 

15 NO MO IM I. MM. 
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Theoretical Results 

Model No. 3 

(Load 3: 1.48 Lbs., E = 430ksi) 

TABLE NO. 10 

Load at sta. Fo in Lbs. M o in Inch Lbs. T 
o 

in Inch Lbs. 

1 -- -- -- 

2 0.0995 0.436 0.201 

3 0.1350 0.910 0.370 

4 0.163 1.208 0.451 

5 0.424 1.848 0.540 

6 0.74 2.61 0.509 

7 1.022 3.381 0.248 

8 1.435 4.31 -0.449 

9 1.332 3.532 -0.370 

10 2.08 3.94 -0.201 

11 MO IN* OM OM/ MM. 
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1 0 1 2 3 4 0 1 2 

Shear Force in Lbs. -. 

Fig. 2t 

Theoretical Bending Moment and Shear Force diagrams for the leg. AC with load 
at sta. 5 

..._____ Bending Moment in In. Lbs. 

Fig. 23 
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3 4 0 1 2 

-.-- Bending Moment in In. Lbs. Shear Force in Lbs. 

Fig. 25 Fig. 26 

Theoretical Bending Moment and Shear Force diagrams for leg BD with load at 
sta. 5 
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0 1 2 3 4 0 1 2 

Bending Moment in In. Lbs. --P. Shear Force in Lbs. --1. 

Fig. 27 Fig. 28 

Theoretical Bending Moment and Shear Force diagrams for beam 

CD with load at sta. 5 
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Torsional Moment in In. Lbs. 

Theoretical Torsional Moment diagram for leg AC or BD with load at sta. 5 

Fig. 29 
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1 2 

Torsional Moment in In. Lbs.__ 

Theoretical Torsional Moment diagram for beam CD with 
load at sta. 5 

Fig. 30 
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COMPARISON AND DISCUSSION OF RESULTS 

Tables (11), (12) and (13) show the final experimental and theoretical 

results along with the percentage errors for models nos. (1), (2) and (3), 

for the bending moments, torsional moments and the shearing forces at the 

fixed end B, which were taken as redundants in the analysis. The experi- 

mental results were found to be in good agreement with the theoretical 

results. The percentage error varied from a minimum of zero percent to a 

maximum of 19%, with an average value of approximately 6 to 7%. 

There were probably several sources of error. First, a slight error 

in the measurement of fringe spacings would result in a magnified error 

in the final results. As has already been mentioned, some of the photo- 

graphs had dim fringes on one of the legs which made it difficult to 

measure their spacings very accurately. The dim fringes on one of the 

legs of those photographs might have been due to the model surface not 

being exactly parallel to the camera front, making the distance to that 

leg from the camera lens larger or smaller than that of the other leg. The 

accuracy of results also depends on the accurate plotting of the fringe 

order versus distance curves. The bending moment and torsional moment 

diagrams are plotted with the aid of the values ofbv obtained from these 

curves and a slight error in the values ofkr affects the values of bending 

and torsional moments quite considerably. 

Also, at the built-in supports, the last interference fringe is always 

at a very little distance from the support. Thus for the fringe order 

versus distance curve, a little extrapolation is necessary, resulting some- 

times in reduced accuracy. The accuracy is also reduced very near the 
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concentrated load, in part because of the fact that the theory is applicable 

to the middle plane of the model, whereas measurements are taken from the 

surface. Further, near a concentrated load, the stresses normal to the 

plane of the model are not close to zero even though they are assumed to be. 

Other comparatively insignificant sources of error may include the 

presence of a few small unseen wrinkles on the grid paper due to changes in 

temperature or humidity. In some cases, the full applied load might not 

have been transferred to the model because of a little friction in the 

lever bearing and because of the load arm not being exactly perpendicular 

to the model surface. Taking into consideration all these sources of 

error, an accuracy of 6-7% was considered to be quite satisfactory. 

The behaviour of the frame models under a moving load and the deviation 

of the experimental results from the theoretical results can be understood 

more easily from the influence line diagrams for Mo, Fo and To, shown in 

Figs. (31) through (39). It will be noticed that as the load moves from A 

to C, the values of bending moment, torsional moment and shearing force 

increase parabolically. Then, as the load moves from C to D, the bending 

moment and shearing force increase by a straight line relationship, while 

the torsional moment decreases parabolically, becoming zero at some point 

between the middle point of CD and the corner D, changes sign and then 

continues to vary parabolically till it reaches a maximum negative value as 

the load reaches D. As the load moves further from D to B, the bending and 

torsional moments, with opposite signs, decrease parabolically to a zero 

value at B, but the shearing force goes on increasing, becoming a maximum 

when the load reaches B. The shearing force, therefore. does not change 

sign as the load moves from A to B. The bending moment also does not change 
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sign and is maximum when the load is at D. But, the torsional moment 

changes sign. Thus the maximum positive value of torsional moment occurs 

when the load is at C and the maximum negative value occurs when the load 

is at D. 

As far as the general behaviour of the three models is concerned, it 

is quite clear from the influence-line diagrams that it is almost the same 

for the three of them. The change in the width-height ratio, therefore, 

does not have much effect, with the exception that as the height is 

increased with respect to the width, the point of contra-flexure in the 

torsional moment diagram shifts away from the corner D. 



Comparison of Experimental and Theoretical Results 

MODEL NO. 1 (Load = 1 Lb., E = 425 ksi) 

TABLE NO. 11 
0 in s. 0 in nc s. 0 in TITH-Lbs. 

Load at theoretical Experimental % age Theoretical Experimental age Theoretical Experimental age 

sta. error error error 

1 -- -- -- -- -- -- -- 

2 0.0650 -- 0.551 0.515 -1.09 0.183 

3 0.1335 0.1265 +5.25 0.138 1.050 -7.74 0.358 0.386 +7.83 

4 0.201 0.1706 -1h.80 1.876 1.50 -19.9 0.555 0.535 -3.60 

5 0.263 0.244 -6.46 2.667 2.110 -9.90 0.726 0.771 +6.20 

6 0.285 0.246 -14.00 3.15 2.69 -14.6 0.787 0.803 +2.03 

7 0.393 0.400 +1.78 3.705 3.50 -5.5 0.5h5 0.2150 -17.110 

8 0.50 0.492 -1.60 4.26 4.18 -1.88 0.215 -- 

9 0.60 0.600 0.00 4.795 4.68 -2.10 -0.211 -- 

10 0.713 0.687 -3.65 5.350 5.23 -2.21 -0.787 _0.803 +2.03 

11 0.746 0.682 -8.56 4.883 4.50 -7.85 -0.726 -0.771 +6.20 

12 0.824 0.702 -14.70 4.124 3.3o -19.99 -0.555 -0.551 -3.60 

13 0.880 -- -- 3.362 -- -- -0.358 -0.386 +7.83 

14 0.942 0.903 -4.15 2.449 2.35 -4.06 -0.183 -- -- 

15 -- -- -- __ __ -- __ __ 

Average error = 6.81% Average error = 6.26% Average error = 6.3% 



Comparison of Experimental and Theoretical Results 

MODEL NO. 2 (Load = 1 Lb., E = 1,30 ksi) 

TABLE NO. 12 

Load Fo in Lbs. Mo in Inch Lbs. To in Inch Lbs. 
at sta. Theoretical Experimental % age Theoretical Experimental % age Theoretical Experimental % age 
no. error error error 

1 -- -- -- -- -- -- 

2 0.0441 -- -- 0.2845 -- -- 0.120 -- 

3 0.0807 -- -- 0.5960 -- -- 0.2569 0.276 +7.10 

4 0.1328 0.1155 -13.04 0.989 0.886 -10.41 0.367 0.404 +10.10 

5 0.1761 0.1850 -5.05 1.437 1.385 -3.61 o.488 -- 

6 0.1960 0.1860 -5.10 1.689 1.550 -7.94 0.541 0.556 2.79 

7 0.330 0.306 -7.29 2.159 1.950 -9.74 0.1421 0.414 -1.67 

8 0.50 0.466 -6.8o 2.760 2.570 -6.68 0.268 0.301 +12.31 

9 0.672 0.646 -3.87 3.361 3.10 -7.76 0.018 

10 0.792 0.706 +10.81 3.810 3.250 -14.7 -0.541 -0.556 +2.77 

11 0.829 3.561 3.340 -6.2 -0.1,88 -0.188 0 

12 0.860 0.839 -2.44 3.010 2.830 -5.99 -0.367 -o.hoh +10.1 

13 0.923 0.962 +4.23 2.40 2.310 -3.75 -0.2369 -0.276 +16.16 

14 0.953 -- -- 1.71 -- __ __ -- 

15 -- __ __ -- -- -- -- __ 

Average error = 6.52% Average error = 7.678% Average error = 7.07% 



Comparison -f Experimental and Theoretical Results 

MODEL NO. 3 (Load = 1 Lb., E = /130 ksi) 

TABLE NO. 13 

Fo in Lbs. Mo in Inch Lbs. To in Inch Lbs. 

Load at Theoretical Experimental % age Theoretical Experimental % age Theoretical Experimental % age 

sta. error error error 

1 -- -- -- -- 11,11= 

2 0.0493 0.0426 -1.36 0.295 0.255 -1.35 0.14 0.140 0 

3 0.0906 0.0992 +9.50 0.615 0.551 -10.40 0.250 0.227 -9.2 

4 0.1109 0.1007 -9.21 0.816 0.744 -8.83 0.3042 0.290 4.66 

5 0.2869 0.271 -5.58 1.249 1.15 -7.94 0.365 0.311 -14.88 

6 0.500 0.464 -7.20 1.764 1.622 -8.05 0.344 0.395 +14.82 

7 0.694 0.656 -5.48 2.285 2.096 -8.26 0.168 -- -- 

8 0.970 1.191 +14.311 2.910 2.739 -5.84 -0.3039 -0.290 -4.6 

9 0.919 0.870 -5.23 2.385 2.178 -8.67 -0.250 -0.227 -9.2 

10 -- 2.660 -0.1h0 -0.140 0 

11 1.00 -- -- 1. 

Average error = 7.24% Average error = 7.42% Average error = 7.16% 
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SUMMARY AND CONCLUSIONS 

In this study, the Moire method was used for the analysis of 

rectangular balcony girder frames, and the results obtained were verified 

by a strain energy analysis. Black plexiglas was used as the model 

material and the photographs were taken by a Leica camera with a High 

Contrast Copy film. A lever was used for the transformation of a vertically 

suspended load into a horizontally applied load perpendicular to the model 

surface. Three models of different heights and the same widths were used 

and the concentrated load was applied at several points along the center- 

lines of the models to study the effect of a moving load. Photographs of 

the Moire fringes were obtained by super-imposing on an exposure of the 

reflection of grid lines at 1/12" spacing on the surface of an unloaded 

an exposure of the reflection of the same set of grid lines on the 

surface of the loaded model. These photographs were analysed by the use 

of a semigraphical technique of drawing the fringe order versus distance 

curves from which the bending and torsional moment diagrams were obtained. 

The final experimental results were in good agreement with the theo- 

retical results with an average error of 6-7%. It can, therefore, be 

concluded that the Moire method is a very useful and efficient method for 

the analysis of complex structures. The great advantage of the Moire 

method lies not only in its simple apparatus, time saving experimental 

procedure and comparatively easy calculations, but also in its direction 

determination of the slopes at different points in the model so that the 

fringe photographs themselves give a picture of the moment distribution in 

the model. The influence lines obtained by this method in this study give 
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a good idea of the effect of lateral loads on rectangular frames of the 

balcony girder type. They indicate that the most critical load positions 

to be investigated in the design of these types of structures for bending 

and torsional moments are the corners C and D, and for shear the fixed 

ends A and B. The results obtained by the use of Moire method can be 

considered to be quite adequate for design purposes. 
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RECOMMENDATIONS FOR FURTHER RESEARCH 

The Moire method can be applied to a variety of problems. For example, 

it can be applied to beams curved in plan with fixed supports or continuous 

over many supports. It can also be applied to plate problems of any type, 

stress concentration determination problems or any other stress or strain 

problems in two dimensions. With modifications in this apparatus, it can 

also be applied to shell problems, multi-storeyed frame problems and other 

three-dimensional problems. 

The apparatus and the technique need slight improvement because of a 

few sources of error, already discussed. Precautions should be taken to 

keep all the portions of the model in complete focus of the camera lens to 

get complete fringes on all the parts of the model surface. Also, more 

work should be done before starting the actual experiment to determine the 

most suitable loads for getting the optimum number of fringes on all the 

parts of the model. The fringes should be sufficient in number for drawing 

an accurate fringe order versus distance curve and should not be very 

closely spaced so that their spacing could be measured very accurately. 
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LIST OF SYMBOLS 

Symbol Stands for 

E Modulus of elasticity in tension and compression 

Et Time dependent modulus of elasticity 

EI Bending Stiffness 

G Modulus of rigidity 

F Shearing Force 

Fo Shearing Force at B 

M Bending Moment. 

Mo Bending Moment at B 

T Torsional Moment 

To Torsional Moment at B 

a Distance between the model and the camera 

s Distance of the screen from the model which is 
approximately equal to a 

K Transverse deflection at any point on the model 

Kx, Ky First partial derivative of K w.r. to x and y, 
respectively or the slope of the model surface 
in x and y directions, respectively. 

Kxx, Kyy Second partial derivative of K w.r. to x and y, 
respectively, or the curvature of the model 
surface in .x and y directions, respectively. 

Kxy, Kyx Second partial derivative of K w.r. to x and y 
or the warping of the model surface. 

Kxxx, Kyyy Third derivative of K w.r. to x and y, respect- 
ively. 

nd 
Slope at any point = -- 

2a 
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APPENDIX APPENDIX 

c2 
The derivation of the relationship PQ 2a0 (1 + 4710 is given below: 

p 

Horizontal 

1 

P" 1 

tan 
-1 
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I tan-1 2 
,-,01.-r,)4-1._ _ - . - Centre line a - 
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a 

(a) Unloaded Model 

-1 c 
tan - 0 

Model 

90 

tan 
Centre line 

Camera 

I Screen 

(b) Loaded Model 

Fig. 40 

Model 

In order to determine the change in slope 91 from the unloaded condition 

to the loaded condition, we use the known value of the difference PQ = p-r, 
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p being the distance from the axis, of the point on the surface of the grid 

screen P, reflected to the negative by a given point R on the unloaded 

model, and r being the distance to the screen point Q, reflected by the same 

point on the loaded model. 

From Fig. (40a), we find, 

p = p" = sitati(tacilc/a) a.tan(tan c/a) , 

from which p (s + a).9a- (1) 

From Fig. (40b), with the deflection of the model RR' neglected as 

being very small we obtain 

r = rt./. r" = a.tan(tan t c/a) - s.tanfr -(tan c/ay))1 - 

- stan-1 L2 - tan-1 c /a] 

c 

s[tan 20- c/a 
1 +(tan 2p) .; 

But, since pl is small, tan 20 V 20, 
214- c/a rac-s 
1+2 c /ail 

(2 

Combining equations (1) and (2), we obtain 
sc 2c 

p 
sc 

+ + c - c [lezL16!1 "tr" (14-v-A 4- 8(240 - 7) r 
1+ 2 jo 

a 

which gives, 

c2 
2s0 + 2q0-a-2 

c2 c2 
p r a PQ 20 2sie [1. + I 2a# [1 + 

since s 55 a 
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The Moire method was used in this study for the analysis of rectan- 

gular balcony girder frames. Three models were used with different heights 

and the same widths and a concentrated load was applied at several points 

along their centre lines with the aid of a lever arrangement, to study the 

effect of stationary and moving loads on these types of frames. Photographs 

of the Moire fringes were obtained by superimposing an exposure of the 

reflection of a lined screen on the surface of a loaded model over that of 

the unloaded model. A Leica camera with a high contrast copy film was used 

for this purpose. 

The experimental results were verified with the help of a set of 

general equations derived by using a Strain Energy method, and gave a very 

good agreement with the theoretical results. 


