
DOMAIN-SPECIFIC ENVIRONMENT GENERATION FOR

MODULAR SOFTWARE MODEL CHECKING

by

OKSANA TKACHUK

M.S, Kansas State University, 2003

AN ABSTRACT OF A DISSERTATION

submitted in partial fulfillment of the

requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Computing and Information Sciences

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2008

Abstract

To analyze an open system, one needs to close it with a definition of its environment,

i.e., its execution context. Environment modeling is a significant challenge: environment

models should be general enough to permit analysis of large portions of a system’s possible

behaviors, yet sufficiently precise to enable cost-effective reasoning. This thesis presents the

Bandera Environment Generator (BEG), a toolset that automates generation of environment

models to provide a restricted form of modular model checking of Java programs, where

the module’s source code is the subject of analysis along with an abstract model of the

environment’s behavior.

Since the most general environments do not allow for tractable model checking, BEG

has support for restricting the environment behavior based on domain-specific knowledge

and assumptions about the environment behavior, which can be acquired from a variety

of sources. When the environment code is not available, developers can encode their as-

sumptions as an explicit formal specification. When the environment code is available, BEG

employs static analyses to extract environment assumptions. Both specifications and static

analyses can be tuned to reflect domain-specific knowledge, i.e., to describe domain-specific

aspects of the environment behavior. Initially, BEG was implemented to handle general

Java applications; later, it was extended to handle two specific domains: Graphical User

Interfaces (GUI) implemented using the Swing/AWT libraries and web applications imple-

mented using the J2EE framework. BEG was evaluated on several non-trivial case studies,

including industrial applications from NASA, SUN, and Fujitsu. This thesis presents the

domain-specific environment generation for GUI and web applications and describes BEG,

its extensible architecture, usage, and how it can be extended to handle new domains.

DOMAIN-SPECIFIC ENVIRONMENT GENERATION FOR

MODULAR SOFTWARE MODEL CHECKING

by

OKSANA TKACHUK

M.S., Kansas State University, 2003

A DISSERTATION

submitted in partial fulfillment of the

requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Computing and Information Sciences

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2008

Approved by:

Co-Major Professor
Matthew Dwyer

Approved by:

Co-Major Professor
John Hatcliff

Copyright

Oksana Tkachuk

2008

Abstract

To analyze an open system, one needs to close it with a definition of its environment,

i.e., its execution context. Environment modeling is a significant challenge: environment

models should be general enough to permit analysis of large portions of a system’s possible

behaviors, yet sufficiently precise to enable cost-effective reasoning. This thesis presents the

Bandera Environment Generator (BEG), a toolset that automates generation of environment

models to provide a restricted form of modular model checking of Java programs, where

the module’s source code is the subject of analysis along with an abstract model of the

environment’s behavior.

Since the most general environments do not allow for tractable model checking, BEG

has support for restricting the environment behavior based on domain-specific knowledge

and assumptions about the environment behavior, which can be acquired from a variety

of sources. When the environment code is not available, developers can encode their as-

sumptions as an explicit formal specification. When the environment code is available, BEG

employs static analyses to extract environment assumptions. Both specifications and static

analyses can be tuned to reflect domain-specific knowledge, i.e., to describe domain-specific

aspects of the environment behavior. Initially, BEG was implemented to handle general

Java applications; later, it was extended to handle two specific domains: Graphical User

Interfaces (GUI) implemented using the Swing/AWT libraries and web applications imple-

mented using the J2EE framework. BEG was evaluated on several non-trivial case studies,

including industrial applications from NASA, SUN, and Fujitsu. This thesis presents the

domain-specific environment generation for GUI and web applications and describes BEG,

its extensible architecture, usage, and how it can be extended to handle new domains.

Table of Contents

Table of Contents vi

List of Figures x

List of Tables xii

Acknowledgements xiii

Dedication xiv

1 Introduction 1
1.1 Problem Definition . 4
1.2 Proposed Solution . 6

1.2.1 Unit and Property Specification . 9
1.2.2 Environment Generation . 9
1.2.3 Model Checking . 12

1.3 Thesis Contributions . 12
1.4 Thesis Organization . 15

2 Background and Related Work 16
2.1 Background . 16

2.1.1 Unit Testing . 16
2.1.2 Static Analysis . 17
2.1.3 Data Flow Analysis . 18
2.1.4 Software Model Checking . 20
2.1.5 Modular Model Checking . 22
2.1.6 Java Model Checking Frameworks . 23

2.2 Related Work . 25
2.2.1 Unit Testing . 25
2.2.2 Static Analysis for Java . 26
2.2.3 Points-to and Side-Effects Analysis 27
2.2.4 Modular Model Checking . 28
2.2.5 Java Model Checking . 29

3 Overview 31
3.1 Example: Observer-Observable . 31

3.1.1 Unit and Property Specification . 31
3.1.2 Interface Discovery . 33

vi

3.1.3 Driver Generation . 34
3.1.4 Stub Generation . 36
3.1.5 Model Checking and Refinement . 38

3.2 Environment Generation Methodology . 39
3.2.1 Unit and Property Specification . 40
3.2.2 Interface Discovery . 41
3.2.3 Driver Generation . 41
3.2.4 Stub Generation . 42
3.2.5 Model Checking and Refinement . 42

4 Domain-Specific Environment Generation 45
4.1 Environment Generation for GUI Applications 46

4.1.1 Example: Button Demo . 47
4.1.2 Domain-Specific Knowledge . 49
4.1.3 Domain-Specific Methodology . 52

4.2 Environment Generation for J2EE Applications 57
4.2.1 Example: SUN’s Pet Store . 58
4.2.2 Domain-Specific Knowledge . 59
4.2.3 Domain-Specific Methodology . 65

5 Environment Generation Techniques 69
5.1 Program Representation . 69
5.2 Interface Discovery . 70

5.2.1 Unit Interface . 70
5.2.2 Environment Interface . 71

5.3 Specifying Assumptions . 73
5.3.1 Specifying Actions . 73
5.3.2 Specifying Patterns of Actions . 75
5.3.3 Specifying Drivers and Stubs . 76

5.4 Extracting Assumptions . 78
5.4.1 Abstract Access Paths . 79
5.4.2 Points-to Analysis . 86
5.4.3 Side-Effects Analysis . 88
5.4.4 Analyzing Swing/AWT and J2EE components 90

5.5 Code Generation . 92
5.5.1 Action Code Generation . 92
5.5.2 Pattern Code Generation . 93
5.5.3 Driver and Stub Code Generation . 94

5.6 Limitations . 94

vii

6 BEG Implementation and Usage 96
6.1 High-Level Architecture . 96

6.1.1 Application Information . 98
6.1.2 Interface Finders . 100
6.1.3 Assumptions Acquirers . 101
6.1.4 Code Generators . 102
6.1.5 Code Printers . 103

6.2 BEG Options . 104
6.3 Common Configurations . 104

6.3.1 Driver Generation . 106
6.3.2 Stub Generation . 107

6.4 Limitations . 108

7 Experience 109
7.1 NASA’s Autopilot Tutor . 111

7.1.1 Driver Generation . 112
7.1.2 Stub Generation . 116
7.1.3 Verification Results . 116

7.2 GUI Examples . 119
7.2.1 Driver Generation: Event-Handling 119
7.2.2 Stub Generation: Swing/AWT Components 121
7.2.3 Verification Results . 123

7.3 Fujitsu’s I-BPM . 125
7.3.1 I-BPM Architecture . 126
7.3.2 Database Adapter Module . 126
7.3.3 Cache Module . 136
7.3.4 Discussion . 140

7.4 SUN’s Pet Store . 142
7.4.1 Driver Generation: Event-Handling 142
7.4.2 Stub Generation: J2EE Components 144
7.4.3 Verification Results . 145

8 Conclusion and Future Work 147
8.1 Conclusion . 147
8.2 Future Work . 149

Bibliography 153

Bibliography 163

A BEG Configurations and Generated Code 164
A.1 Observer-Observable . 164

A.1.1 Universal Driver . 164

viii

A.1.2 User Specified Stubs . 165
A.1.3 Empty Stubs . 166

A.2 GUI Examples . 167
A.2.1 Universal Driver . 167

A.3 SUN’s Pet Store . 170
A.3.1 User Specified Driver . 170

ix

List of Figures

1.1 Environment Generation Problem . 5
1.2 Modular Model Checking Framework Using BEG 7

2.1 Data Flow Equations for Forward Data Flow Analysis 18
2.2 JPF Modeling Primitives . 23
2.3 Bandera Modeling Primitives . 24

3.1 Customized Observer-Observable Implementation 32
3.2 Customized Buffer Implementation . 33
3.3 Observer-Observable User Assumptions and Driver Model 35
3.4 Buffer’s Models Based on May and Must Side-Effects Analysis 37
3.5 Buffer’s Containment Models: Automated and Refined 38

4.1 ButtonDemo GUI States . 47
4.2 Button Demo Example (excerpts) . 48
4.3 Swing/AWT Event Handling Mechanism . 51
4.4 Environment Generation for GUI Applications 53
4.5 ButtonDemo Universal Driver (excerpts) . 55
4.6 Pet Store Sign in and Item Screens . 58
4.7 J2EE Applications Architecture . 59
4.8 Interfaces for SignOnEJB with local access 61
4.9 Pet Store Event Handling . 62
4.10 Pet Store Descriptor File mappings.xml (excerpts) 62
4.11 Example of Pet Store Event-Handlers . 63
4.12 Environment Generation for J2EE Applications 64
4.13 HttpServletRequest Stub . 67

5.1 Action Syntax . 73
5.2 Regular Expressions Assumptions Syntax . 75
5.3 Driver and Stub Assumptions Syntax . 77
5.4 Example in Java and Jimple to Demonstrate Naming of Access Paths 80
5.5 Tracing Assignments Through the Concrete Heap 81
5.6 Tracing Assignments Using 1-Limited Analysis 82
5.7 Tracing Assignments Using 1-Limited Analysis with Reachability 83
5.8 GUI and J2EE event-handling method examples 91
5.9 GUI and J2EE event population examples 92
5.10 Assumption Semantics . 93

x

6.1 BEG High Level Architecture . 97
6.2 ApplInfo Class . 98
6.3 BEG Common Configurations for Driver and Stub Generation 106

7.1 Autopilot Tutor GUI . 110
7.2 Snippet of the mouseClicked Method . 113
7.3 Autopilot Assumptions . 115
7.4 MouseEvent Stub . 116
7.5 Pilot’s Mental Model for Detecting Altitude Deviation Errors 117
7.6 Universal Driver for GUI applications (excerpts) 120
7.7 Example Swing Method add . 122
7.8 Method add Analysis and Model . 123
7.9 I-BPM Architecture . 126
7.10 Database Adapter Protocol . 127
7.11 User Assumptions for Adapter Module . 128
7.12 Driver Models for Adapter Module . 129
7.13 User Assumptions for Pet Store . 143
7.14 Driver for Pet Store (excerpts) . 144
7.15 SignOn Stub . 145

xi

List of Tables

5.1 Value Generation for JPF Framework . 92

6.1 BEG Options . 105

7.1 Verification Data for GUI Examples . 124
7.2 Verification Results for the Database Adapter Module 134
7.3 Verification Results for the Cache Unit . 139
7.4 Verification Results for the Pet Store Model 146

xii

Acknowledgments

I want to thank the people whose support made this thesis possible. First of all, I wish

to express my gratitude to my advisor, Matthew Dwyer, for giving me a challenging and

interesting problem to work on, for his constant positive encouragement, for reading several

rough drafts of this thesis, and providing constructive comments.

I am thankful to the professors at Kansas State University whose classes sparked my

interest in research and continuation of my education. I am grateful to John Hatcliff, who

graciously agreed to step into the co-advisor’s shoes after Dr. Dwyer transferred to the

University of Nebraska - Lincoln. I thank my committee – my advisors, Robby, Torben

Amtoft, Steve Warren, and Medhat Morcos – for reading my thesis and providing helpful

comments. Special thank you goes to Robby for his support with the Bogor model checking

framework and Gurdip Singh for helping with the graduation paperwork.

I am grateful to the people behind the JPF model checking framework, especially Willem

Visser, Corina Păsăreanu, and Peter Mehlitz, for their constant support with JPF.

I want to express my appreciation to my colleagues at Fujitsu Laboratories of America –

Sreeranga Rajan, Indradeep Ghosh, Mukul Prasad, and Ryusuke Masuoka – for supporting

my work on environment generation and for giving me a chance to apply my methodology

to Fujitsu’s applications.

I am grateful to my family and friends, especially Tima, Nadia, Marina, Vadim, Natasha,

Max, Olya, Maxim, Kuzya, Misha, Umid, and Annabelle, for the wonderful summer camping

trips, winter skiing trips, and dinner parties. They always gave me something to look forward

to while I was working on my thesis. At last, I want to thank my father and my mother,

who always encouraged me to pursue high education and gave me their love and support.

xiii

Dedicated

To My Beloved Mother,

Nadia Tkachuk

xiv

Chapter 1

Introduction

Research efforts [14, 35, 92, 97] show that model checking [11] can be an effective technique

for detecting concurrency-related errors in software systems. However, due to scalability

issues, to handle industrial-size software, model checking needs to be combined with powerful

reduction techniques such as partial order reduction [77], data abstraction [23], predicate

abstraction [5], slicing [22], heuristic search [36], or modular model checking [50]. In this

thesis, we pursue the modular approach, which restricts analysis to selected parts of a

program, called a unit under analysis.

Units are open systems, which may interact with other components, whereas model

checking requires closed, i.e., complete, systems. To model check a unit in isolation, one has

to close it with a model of its execution context, which we refer to as an environment. Given

a Java program, we consider its decomposition into two parts: a unit under analysis and the

unit’s environment. The main idea behind this decomposition is to model the environment

at a high level of abstraction, thus reducing the state space of the entire system. The unit’s

source code is the subject of verification along with an abstract model of the environment’s

externally observable behavior. The resulting abstracted model can be analyzed against

unit properties by existing Java model checking frameworks such as Bogor [70, 71] and Java

PathFinder (JPF) [9, 45].

Environment generation is a significant challenge, since an environment should be general

enough to cover interesting unit behaviors and uncover errors, yet restrictive enough to

1

enable tractable model checking, without being overly restrictive, which may cause the

analysis to miss important behaviors and mask errors. Experience shows that environment

generation is often done by hand (e.g., [64]) or omitted. For example, in [59], while model

checking the Linux kernel’s TCP protocol, due to complexities of modeling interactions

between the protocol and the kernel, a decision was made to run the entire Linux kernel in

a model checker. As a result, model checking could not complete the search. In general,

interactions between a unit and its environment can be complicated and difficult to analyze:

the environment can influence the unit’s control (e.g., by invoking the unit’s methods)

and data (e.g., by modifying the unit’s data flowing into the environment). In Java, both

data and control interactions can also happen through synchronization, exceptions, global

references, parameters, and return values.

Environment generation is a problem persistent across different types of program analy-

sis: in unit testing, one has to write test drivers, components that make calls to the unit, and

stubs, simplified implementations of actual classes and methods called by the unit; in static

analysis, one has to supply analysis results for components that are missing or impossible

to analyze (e.g., stubs for native methods in Java); in modular model checking, one has to

write both drivers and stubs.

When modeling drivers and stubs, there are three aspects of environment behavior one

has to model: (1) control, usually represented by sequences of actions the environment may

perform on the unit; (2) data, the values the environment may pass to the unit through

arguments or return values; and (3) concurrency, usually described by the number of threads

in the environment and synchronization used. There are several automated approaches that

can be used to model certain aspects of drivers and stubs:

• Structural Analysis: In unit testing, there are tools (e.g., JTest [46], JCrasher [17],

Randoop [61]) that use structural analysis of Java classes under test to automatically

generate JUnit [47] tests. However, automatically generated JUnit tests are limited to

sequential drivers that perform short sequences of method calls with sample or random

2

argument values.

• User Specifications: Specifications can be used to describe more complicated sequences

of actions a driver may perform on the unit. This approach is used in assume-guarantee

model checking [50, 56, 65], where the environment is restricted by user-provided

specifications called environment assumptions. Various formalisms have been used

for writing environment assumptions, e.g., Linear Temporal Logic (LTL) [56] in [66],

Graphical Interval Logic (GIL) [21] and regular expressions in [4]. Most of these

concentrate on describing sequences of method calls the environment may perform on

the unit, yet, they do not address specification of synchronization and data values

flowing from the environment to the unit.

• Symbolic Execution: There are tools that address generation of data values based

on symbolic execution (e.g., Korat [8], Symstra [96], Kiasan/KUnit [20]). However,

these tools work for sequential programs, do not scale for large units, and rely on user

specifications such as method pre- and post-conditions.

• Static Analysis: Deeper static analyses can be employed to discover interesting en-

vironment sequences (e.g., sequences of methods that raise unit exceptions [94]) and

to identify environment data partitioning (e.g., [78]). In general, such analyses can

target only specific environment features. Slicing [38] can be used to calculate all

possible dependencies between a unit and its environment. However, slicing can be

over-approximate and usually requires complete programs, including stubs for native

methods.

• Run-Time Analysis: Monitoring program executions allows one to learn patterns of

environment behavior [3], yet, such techniques require that the environment is set up

and the unit under analysis is running.

Section 2.2 presents more related work. In spite of many approaches that can be used for

3

environment generation, most only address specific aspects of program behavior and work

for sequential programs.

In this thesis, we present the Bandera Environment Generator (BEG), a toolset for auto-

mated environment generation, which treats data and control dependencies between a unit

and its environment. The BEG approach evolved based on experience applying it to many

case studies. In addition to providing techniques to calculate various aspects of environment

behavior, the BEG case studies reveal that certain domains require modeling of domain-

specific features. We present the environment generation methodology for (1) general Java

programs, (2) Java programs with Graphical User Interface (GUI), written using the AWT

and Swing libraries, and (3) web applications written using the J2EE framework.

1.1 Problem Definition

Java software is usually built as a collection of classes or packages that may be implemented

independently and integrated later to produce a desired system. In such a setting, it is

natural to define a unit under analysis as a collection of Java classes. The environment is

defined as a collection of classes with which the unit interacts. Interactions happen at the

unit-environment interface, which is represented by unit and environment public methods

and fields. Both a unit and its environment can perform actions at each other’s interface.

These actions can be assignments to public fields and invocations of public methods, which

may return data, including exceptions.

Given a unit as a collection of Java classes, we wish to build a model of its environment.

The modeled environment classes are broken into drivers and stubs. We define drivers as

Java classes that hold a thread of control, i.e., classes containing the main() method or

classes that extend/implement java.lang.Thread/java.lang.Runnable. The remaining

environment classes are called stubs. In many cases, drivers exercise the unit behavior by

performing sequences of actions on the unit, and stubs are the components that are used by

the unit, e.g., library classes.

4

Drivers

Stubs

Unit Environment
Generation

Code Base

Unit
?

?

?

?

?

Figure 1.1: Environment Generation Problem

Since Java applications are built as a collection of classes that may be implemented in-

dependently and integrated later, there are two situations in which modular model checking

is required: (1) the entire application is code-complete and represents a closed application

that is too large for cost-effective analysis (in this case, the environment implementation is

available) and (2) some environment classes are not code-complete or missing due to the

open nature of a system. For example, GUI applications are inherently open and need

a model of a GUI user before they can be treated as a closed system required for model

checking. In this case, we may have documentation or other specification artifacts, e.g., a

description of a screen transition diagram, use case scenarios, program usage, or behavior

of missing components.

Figure 1.1 depicts the problem we want to solve. On the left, it shows a Java system

represented by a collection of classes (represented by boxes containing lines of code). A unit

is represented by a collection of classes enclosed with a dashed line; the rest of the classes

in the system represent the environment. The arrows depict dependencies among classes;

5

arrows that cross the boundaries of the unit depict unit-environment interactions, which can

be directed to and from the unit and can represent data or control dependencies. We want

to generate code for the environment’s observable behavior, i.e., code for drivers and stubs

that directly interact with the unit, preserving the behavior of the entire environment that

may affect the unit, while abstracting away behavior that is internal to the environment.

The right part of Figure 1.1 illustrates the problem by indicating the result of environment

generation with “?” on drivers and stubs. Note that the picture shows a common case

when drivers make calls to the unit and stubs are called by the unit. In fact, all of the case

studies performed to evaluate BEG fall into this category. In general, the interactions may

be arbitrary (e.g., stubs may have callbacks to the unit and the unit may have callbacks to

drivers).

1.2 Proposed Solution

Thorough treatment of the mechanisms by which the environment may influence the unit’s

behavior is essential for cost-effective reasoning. The unit-environment interactions may

include control and data dependencies, including synchronization-related ones. There are

also cases when even code-complete applications cannot be model checked without modeling

additional components, e.g., GUI applications. For this reason, we believe that multiple

sources of information should be combined to generate environment models that reflect a

broad range of realistic environment behaviors and that capture control and data interaction

between a unit and its environment. In addition, to better understand what types of support

are needed, we perform a number of case studies to learn about common environment

features that need to be modeled for cost-effective model checking.

We implement our solutions to the environment generation problem in the Bandera

Environment Generator (BEG), which, given a unit under analysis, generates code for its

environment. The unit closed with the generated environment is model checked against the

unit’s properties using existing Java model checking frameworks such as Bogor [71] and Java

6

Unit

Environment
Implementation

Unit

Environment
Model

Java+Modeling
Primitives

Interface
Discovery

Acquiring
Assump.

Code
Generation

Environment Generation

Environment
Assumptions

Unit Property Java Model
Checker

Parsing
Env

Assump

Analyzing
Env Impl

1 2

3

Figure 1.2: Modular Model Checking Framework Using BEG

PathFinder (JPF) [92].

Figure 1.2 shows the high-level architecture of our modular model checking framework,

which consists of the following steps:

1. Unit and Property Specification:

Users specify the unit under analysis as a collection of Java classes. They also specify

the unit properties to be checked.

2. Environment Generation: Environment generation consists of the following three

steps:

(a) Interface Discovery: As the first step, BEG automatically discovers the struc-

tural information about classes, methods and fields in the unit-environment in-

terface; we call it the syntactic interface. The behavior of the environment is

discovered at the next step.

7

(b) Acquiring Environment Assumptions: Environment assumptions are used

to describe the behavior of the environment. BEG supports acquiring environ-

ment assumptions from two sources: user specifications and environment code, if

available. To extract environment assumptions from code, BEG employs static

analysis.

In the absence of assumptions, BEG can be configured to generate universal

drivers and stubs. Universal drivers consist of a number (specified in a configu-

ration file) of unit class instances and threads. The methods of universal drivers

and stubs exhibit the most general behavior (i.e., they perform any sequence of

program actions that are exposed at the unit-environment interface).

(c) Code Generation: Using environment assumptions, BEG generates environ-

ment models encoded in Java using special modeling primitives to capture ap-

proximations produced by static analyses or defined by the user specifications.

Generated environment code is integrated with the unit’s code and passed to

existing model checking frameworks.

3. Model Checking: Once the unit is closed with its environment, existing abstraction

techniques can be used to further reduce the state space of the unit-environment

system. The resulting abstracted program and the unit’s properties are fed to existing

Java model checking frameworks such as Bogor and JPF. Given a complete system,

these model checkers exhaustively explore all possible paths in the system and, if a

property violation is found, record the violating trace, called a counterexample.

Next, we describe the above steps in greater detail. Note that BEG supports environment

generation steps, whereas the first step, unit and property specification, is done manually

and the third step, model checking, is done using existing Java model checking frameworks.

8

1.2.1 Unit and Property Specification

In general, selection of the classes in the unit is driven by the properties that one wants

to reason about. One can also use domain-specific knowledge. For example, for applica-

tions written using a framework, e.g., Swing/AWT or J2EE, the application-specific code is

treated as the unit, whereas the framework code is treated as the environment.

To produce effective environments, it is better to choose a cohesive unit with classes

tightly coupled internally but loosely coupled with environment classes. This strategy min-

imizes the number of unit-environment dependencies, which may be difficult to describe at

a specification level or difficult to automatically extract using static analysis.

1.2.2 Environment Generation

In this section, we describe the three steps of environment generation in BEG.

Interface Discovery

The unit-environment interface consists of two parts: (1) the unit interface, consisting of

unit methods and fields that can be exercised by the environment, and (2) the environment

interface, consisting of external classes, methods and fields referenced by the unit. Given

a unit under analysis as a collection of Java classes, BEG automatically discovers both the

unit and environment interfaces.

Information about methods and fields in the unit interface is used to construct program

actions, i.e., method calls and field assignments, the environment may perform on the unit.

These actions define an alphabet of environment actions that can be used to construct

universal environments. These actions are also used to write user assumptions or check

their validity.

The environment interface, i.e., classes, methods and fields referenced by the unit, gives

information about the structure of stubs that need to be generated. The syntactic envi-

ronment interface constrains the number of classes, methods, and fields that need to be

9

generated in the environment to those that directly interact with the unit.

Acquiring Environment Assumptions

If the implementation of environment classes is available, then static analyses can be used to

discover certain environment assumptions. If some environment classes are missing, e.g., the

representation of a user for GUI applications, BEG supports specification of different aspects

of environment behavior. BEG has the following support for specifying user assumptions

and extracting environment assumptions using static analyses:

• Specifying Assumptions: BEG supports generation of drivers and stubs from user

specifications. Such drivers and stubs can instantiate unit classes and perform se-

quences of actions on those instances. BEG allows users to specify compactly the

number of threads in the driver, the number of instantiations, and the sequences

of actions performed by drivers and stubs using LTL and regular expressions, using

method invocation and assignment expressions as atomic actions.

To specify data values (e.g., arguments for method invocation), BEG has the following

support. If exact data values are known, then concrete data values can be specified.

If concrete values are unknown, then choice or abstract values can be used. Choice

values encode a nondeterministic choice over a range of values of the specified type.

Abstract values are used to denote any value of the appropriate type. In addition,

when specifying a method call, one can omit values for receiver objects and parameter

values; BEG fills the holes with values of the appropriate types.

• Extracting Assumptions: Various static analyses can be used to extract control,

data and concurrency-related effects. Currently, BEG supports side-effects analysis

[87, 85] to capture the way the environment may modify unit data. Additionally, side-

effects analysis can be tuned to track side-effects to specific fields belonging to the

unit or environment. We developed several variants of side-effects analysis to track

specific features of Swing/AWT and J2EE components. For example, we identified

10

containment as an important property for environment components, useful for both

GUI and web applications. Containment analysis tracks side-effects to fields which

may store unit data. Additionally, we identified features like visibility and enabledness

that are important for GUI components. We describe more domain-specific features in

sections 4.1 and 4.2. BEG analyses are adapted specifically for environment generation

problem: they are modular, compositional, parameterized, and produce summaries for

environment methods.

Environment Code Generation

BEG translates environment assumptions into Java code. For example, given assump-

tions in LTL, BEG translates them into an automaton that is encoded as Java code.

Special modeling primitives are used to reflect nondeterminism in the environment in-

troduced by the user specifications or produced by the approximation of static analy-

ses. For example, to reflect the possibility of an environment action, it is encoded as

if(Verify.randomBool()){action}, which forces an underlying model checker to explore

both branches of the if statement: the one where the action happens and the one where it

does not.

When generating action code, each atomic action is translated into a legal Java as-

signment or method invocation, including receiver objects and argument values. Choice

values are represented by a nondeterministic choice over a set of values. For example,

Verify.randomObject(String type) is interpreted as a nondeterministic choice over a

set of heap objects of the specified type in the program state where the call is executed.

Abstract values represent any value of the corresponding type; they are encoded using

Abstraction.TOP modeling primitives. Both Bogor and JPF, used in this work, support

the modeling primitives used in our environment generation framework and they are natural

to implement in any explicit-state model checker.

11

1.2.3 Model Checking

Model checking results can only be as good as environment models. For example, if the

environment misses some important unit behavior, then “verified” results cannot be trusted.

Also, if an error is found but it is introduced by an infeasible environment path, then the

error is spurious. Therefore, we need to evaluate the quality of environment models produced

by BEG. Since it is not always feasible to model check a unit closed with the universal

environment, we use fault detection and coverage to evaluate the quality of environment

models: a high quality environment model will uncover a property violation or, in case of

no violations, will produce high coverage for the unit under analysis. Several metrics can be

used to evaluate coverage during model checking [72]. In this thesis, we use branch coverage

over the unit code to evaluate quality of generated environments.

The model checking step may uncover that the environment model needs refinement,

i.e., it needs to be constrained in case of intractable model checking or it needs to be

expanded in case of poor coverage. In this work, the refinement step is done manually, e.g.,

the user may need to refine environment assumptions and regenerate the environment code

or manually edit stubs, generated based on static analysis results. Therefore, while BEG

offers automated support for environment generation based on user specifications and static

analysis results, the desired environment model may need manual refinement.

1.3 Thesis Contributions

We envision two ways in which BEG can be used effectively: during component development

as an adjunct to traditional unit testing approaches and during program validation to enable

more efficient reasoning and to model non-source-code components.

During component development, individual classes, or groups of classes, that constitute

cohesive functional components, perhaps structured as Java packages, may become code

complete when the code they interact with (e.g., client code) has not been written. In

this setting, the classes form a unit and the missing classes they interact with form the

12

environment. To enable effective checking, we expect that developers will need to encode

assumptions about the behavior of the environment at the unit’s interface to account for

both control and data effects. These assumptions can subsequently be checked against

implementations of the missing environment classes as they become code complete.

During program validation, when considering a complete application, one may break

the system into parts to enable more efficient checking of program properties. In this

setting, the user selects classes that define the unit under analysis and the environment

model is automatically extracted. For applications that interact with external entities,

such as embedded control software processing data from hardware devices, developers may

incorporate assumptions about those interactions to generate a representative model of the

external environment.

The key issue in using our environment generation techniques is balancing the human

cost (i.e., the effort involved in writing specifications), the tool cost (i.e., the expense of ver-

ification), and the degree of coverage (i.e., the coverage of unit code). While environment

generation in general is a challenging and difficult to automate problem, by focusing on

specific domains and features, we make it practical. While some of our techniques require

manual effort, e.g., environment refinement, the models produced for specific domains are

usually precise and reusable across multiple applications from the same domain. For exam-

ple, stubs developed for Swing/AWT and J2EE libraries are reusable, so the cost of their

development can be amortized.

Our approach builds on existing work in unit testing, assume-guarantee reasoning, and

static analysis. This thesis makes the following contributions:

• Automated interface discovery: We provide support for automatic discovery of

the syntactic unit-environment interface. This information is used to build universal

environments, to check the validity of user assumptions, and to constrain the environ-

ment model to classes, methods, and fields that directly interact with the unit.

• Acquiring environment assumptions from a variety of sources: We adapt

13

several existing specification forms such as LTL and regular expressions to describe

environment behavior. While LTL and regular expressions can be used to describe

patterns of program actions, BEG specification language also allows for specification

of data and concurrency-related aspects of environment behavior. We also adapt

existing static analyses techniques to work specifically for environment generation

problem. Our analyses are modular, compositional and parameterized.

• Environment code generation: We describe strategies for encoding environment

assumptions into Java code that can be processed by Java abstraction and model

checking tools.

• BEG implementation: We implement a tool parameterized by different sources and

descriptions for environment assumptions. The tool has an extensible architecture, so

that new strategies for environment assumptions and code generation can be easily

added.

• Extensive case studies: We evaluate our approach on a number of non-trivial Java

examples, taken from different domains: GUI applications and Java applets, written

using Swing/AWT libraries, and web applications written using J2EE libraries. To

show the scalability of our approach, our studies include real industrial applications:

NASA’s Autopilot [74], Fujitsu’s I-BPM and SUN’s Pet Store [82]. The Autopilot

and I-BPM case studies also demonstrate that BEG-generated environments are more

cost-effective than previously written manual environments.

• Environment generation methodology: Based on the case studies, we develop

and describe a methodology that can be used to perform environment generation for

general Java applications, as well as domain-specific strategies for GUI and J2EE

applications.

14

1.4 Thesis Organization

The next chapter gives background and related work on unit testing, static analysis, and

modular model checking. Chapter 3 describes our general methodology and illustrates it

on a small publish-subscribe example. Chapter 4 describes domain-specific methodolo-

gies developed for GUI and J2EE applications. Chapter 5 describes BEG’s techniques for

unit-environment interface discovery, specifying and extracting assumptions, and code gen-

eration. Chapter 6 describes BEG’s extensible architecture, options and configurations.

Chapter 7 discusses case studies, including industrial applications. We conclude and de-

scribe future work in Chapter 8.

Some of the material presented in this thesis has been published in the form of articles.

Our environment generation approach for GUI applications, described in section 4.1, is

based on [26]. Presentation of BEG specification language in section 5.3 is based on [88].

Presentation of static analysis in section 5.4 is based on our earlier work [85, 87]. We extend

our previous static analysis to work specifically for GUI and J2EE applications. Some

experiments in Chapter 7 have been described in [26, 86, 88, 89].

15

Chapter 2

Background and Related Work

In this Chapter, we presents background and related work on techniques related to this

thesis, specifically, unit testing, static analysis, and model checking. For each approach,

we describe general techniques and some tools that implement them for analysis of Java

programs. As we demonstrate, each approach has to confront the environment generation

problem, i.e., building a model of the environment for a system under analysis.

2.1 Background

2.1.1 Unit Testing

There are many testing techniques (e.g., black box testing, white box testing). Our tech-

niques are most similar to unit testing. To test a unit, developers need to provide a frame-

work that allows for exercising the behavior of the unit. A testing framework includes a

program that simulates the behavior of the environment by passing sequences of inputs

or test cases to the unit, executing the code of the unit and recording the outputs. This

program is called a test harness or a test driver (this is similar to environment drivers in

our framework). To simulate complex or missing environment components, e.g., a database,

mock objects [32] are frequently used (this is similar to environment stubs in our frame-

work). For easy maintenance, a test harness takes test cases from a repository of tests, feeds

them to the unit, and saves the results into a repository for later examination. Correctness

16

of outputs is identified by oracles, which examine test executions and record those that do

not match the expected results (this is similar to the model checking step in our framework).

Additionally, coverage is used to evaluate how extensively a test suite exercises the unit’s

behavior. The types of coverage include statement, branch, condition, and path coverage

[98].

Overall, unit testing is a widely used technique that scales well and can be evaluated

based on coverage results. However, unit testing requires generation of test cases (i.e., the

environment) that produce high coverage, avoiding redundancy. This work usually involves

a lot of manual labor and is mostly targeted at sequential code.

2.1.2 Static Analysis

Static analysis is a compile-time technique used to collect information about program run-

time behavior. A well-studied application of static analysis is code optimization, for exam-

ple, dead code elimination, improvement of registers usage, and elimination of redundant

computation. Another application is detecting potential errors or proving interesting prop-

erties of programs, for example, finding null pointer dereferences or proving their absence.

In this thesis, we adapt side-effects analysis [51], which determines a set of memory

locations modified by a program statement or method. This analysis requires information

from points-to analysis [55], which determines the objects a reference variable may point to.

Another related analysis is slicing [84], which given a set of program points (e.g., program

statements), called a slicing criteria, automatically calculates the program points that may

influence the execution of the slicing criteria. Slicing calculates all possible data and control

dependencies between the slicing criteria and the rest of the program points.

Static analysis used for code optimization and program verification must be safe, i.e., the

information it collects should be true for all possible program executions and inputs; to be

computable, due to fundamental undecidability theory, the results are usually approximate.

When used to prove correctness of programs or to detect errors, static analysis is comple-

17

Dataexit(s) = (Dataentry(s)−Kill(s)) ∪Gen(s)

Dataentry(s) =
⊔
{Dataexit(s′) | s′ ∈ pred(s)}

Dataentry(s0) = Init

Figure 2.1: Data Flow Equations for Forward Data Flow Analysis

mentary to traditional testing techniques and model checking. Due to analysis imprecision,

static analysis is less precise but, in general, more scalable than model checking. Due to

safety, unlike traditional testing techniques, static analysis can produce formal correctness

results.

There are several approaches to static analysis, among them are Data Flow Analysis

(DFA) [60] and Abstract Interpretation [16]. Such approaches require the analysis designer

to decide on a cost-precision tradeoff: the more precise the analysis, the more costly. In this

thesis, we employ DFA to calculate specific unit-environment dependencies.

2.1.3 Data Flow Analysis

In DFA frameworks, a program is represented as a Control Flow Graph (CFG), where nodes

represent basic blocks of the program, e.g., sequences of statements, and edges represent con-

trol flow between them. The basic approach of DFA is to propagate abstract facts through

CFG nodes. For example, points-to analysis propagates points-to graphs or reference vari-

ables and sets of objects they may point to through CFG nodes and side-effects analysis

propagates sets of modified objects through CFG nodes.

When propagating abstract facts through CFG nodes, one specifies the direction of

propagation: forward analyses propagate data along the control flow (e.g., points-to and

side-effects analyses); backward analyses propagate data in the direction opposite to the

control flow (e.g., live variable analysis, which calculates for each program point the vari-

ables that may be potentially read before their next write). For each CFG node, e.g., a

program statement s, DFA calculates both its incoming and outgoing data, Dataentry(s)

18

and Dataexit(s). The incoming information flowing though a CFG node gets transformed

by a transfer function according to the semantics of the program statement at the node.

Figure 2.1 shows a common form of transfer functions used in the equational approach for

forward DFA. The first transfer function shows that a statement s generates data defined

by the set Gen(s) and overwrites data defined by the set Kill(s). Information flowing out of

a node is propagated to all of its successors, succ(s). If a node has several incoming edges,

to calculate its incoming data, the facts flowing from all of its predecessors, pred(s), are

combined according to a combination operator,
⊔

, which is commonly either intersection,⋂
, or union,

⋃
. Analyses that use intersection calculate data that persists on all execution

paths; such analyses are called must analyses. In contrast, may analyses use union as a

combination operator and calculate data that holds on at least one execution path.

In addition to transfer functions, the incoming data for the initial node, s0, are specified

as a special initial value, Init. To analyze a program, the analysis first initializes the data

at the entry point of the program, then repeatedly processes CFG nodes to calculate their

incoming and outgoing data until a fixed point is reached, i.e, when repeated processing

of statements produces no change in the abstract facts calculated for each CFG node. To

guarantee the existence and reachability of the fixed point solution, the transfer functions

and the data values have to satisfy certain conditions. A sufficient condition that guarantees

a fixed point will be reached is that data values form a complete lattice and the transfer

functions are monotone.

There are several features of DFA analyses that influence the degree of approximation of

the analysis. Analyses that calculate data within a procedure without exploiting information

about its caller or callees are termed intraprocedural ; such analyses must account for other

procedures pessimistically. Analyses that propagate facts across procedure boundaries are

called interprocedural. Flow-sensitive analyses take into account the order of statements; less

precise but faster, flow-insensitive analyses ignore the order of statements. Context-sensitive

analyses distinguish between calls to the same procedure at different program points by

19

keeping track of context information at each call site; context-insensitive analyses ignore

the context information. Thread-sensitive analyses take into account possible switches in

control flow due to thread interleavings; thread-insensitive analyses ignore such interleavings.

In general, insensitive analyses scale better, however, they produce less precise results. It is

up to analysis designers to pick analysis features according to how they are willing to trade

off precision for scalability.

2.1.4 Software Model Checking

Model checking [11] is an automatic technique to verify properties of models represented by

finite-state transition systems. The process of model checking consists of modeling a system

under analysis, specifying its properties, and finally verifying that the property holds for the

model. If a violation of the property is found, model checking produces a counterexample,

a violating trace, which can be used to pinpoint the source of the error.

Initially applied to verification of high-level designs, model checking has proven to be

useful for verification of software systems, which in general are not finite-state. First, a

program under analysis is modeled in a model checker’s input language and program prop-

erties are stated in a formalism accepted by the model checker. For example, the SPIN

model checker [41] accepts models written in Promela and properties expressed in Linear

Temporal Logic (LTL) [56]. Since real software is not always finite-state, modeling may

require the application of techniques to produce a finite-state model that overapproximates

the executable behavior of the program.

Given a finite-state transition system and a property expressed in a logical formalism,

model checking performs verification through exhaustive exploration of all the states reach-

able by the system and checking whether the property holds in each state. If a model is not

finite-state, bounded model checking can be used to explore all possible paths of bounded

length. Due to possible overapproximation of the model, the model checker may report

a false alarm, a violating trace that exists in the model but does not exist in the actual

20

program.

The differences in model checking algorithms come from the order the states are visited

and how the states are enumerated and stored. There are explicit state model checkers (e.g.,

SPIN, Bogor, JPF), which manipulate and store states explicitly (e.g., as bit-vectors) and

implicit state model checkers (e.g., SMV [57]), which represent and manipulate symbolic

encodings of sets of states (e.g., Binary Decision Diagrams (BDDs)).

Software model checking can identify concurrency-related errors such as deadlocks and

race conditions, which are difficult to identify using traditional testing approaches. However,

application of model checking to real software has been limited by the state space explosion

problem, which states that the size of the model’s state space grows exponentially with the

number of independent components (e.g., threads). There are several solutions that address

this problem; among them are:

• Partial Order Reduction: Partial Order Reduction (POR) [77] exploits commutativ-

ity of concurrently executed independent transitions, which result in the same state

regardless of their order. Only one interleaving of independent transitions needs to be

explored by a model checker.

• Atomicity: A procedure or code block is atomic if, for every arbitrarily interleaved

program execution, the overall behavior and outcome of the execution is the same as

if it was executed without any interleavings (i.e., in a single atomic step). Atomic-

ity information (e.g., provided as user annotations) guides a model checker to avoid

exploring all possible interleavings for an atomic block.

• Abstraction: Abstraction is a technique based on the theory of abstract interpretation

[16]. Abstract interpretation calculates approximated program semantics from the

concrete one by replacing the concrete domain of computation and its concrete se-

mantic operations with, respectively, an abstract domain and corresponding abstract

semantic operations. For instance, data abstraction is used to substitute a program’s

21

concrete data values that have large domains with abstract representations that have

small value domains. This works well when a property of the system depends on

properties of the variables rather than on their concrete values.

• Heuristic Search: Various heuristics can be used to guide the search. For example,

exploring states with blocked threads first to get to a deadlock [36].

• Slicing: Given a property, the slicing (mentioned in section 2.1.2) performs various

dependency analyses to calculate the parts of the program that have no influence on

the property; such parts can be safely sliced away [22].

Another solution is modular model checking, which we pursue in this work and describe

next.

2.1.5 Modular Model Checking

The motivation for modular verification [37, 50] is that breaking the system into smaller

components and analyzing them one at a time at the level of their interface behavior is

cheaper than analyzing the whole system at the lower level of detail. There are several

flavors of modular verification. In this thesis, we adapt the assume-guarantee [65] approach,

which decomposes the system into two parts: a unit under analysis and its environment.

The assume-guarantee specification has two parts: guaranteed behavior of the unit, which

describes the unit’s desired behavior, and assumed behavior of the unit’s environment. An

assume-guarantee specification expressed in LTL is a pair 〈φ, ψ〉, where φ and ψ are both

LTL specifications. The assume-guarantee approach is used to show that the behavior of the

unit is guaranteed to satisfy ψ, assuming that the behavior of the environment satisfies φ. In

case of LTL specifications, the pair 〈φ, ψ〉 can be combined to a single LTL formula φ =⇒
ψ. In this case, there are two approaches to assume-guarantee model checking compared

in [66]: (1) model checking of the module closed with a universal environment against a

specification of the form φ =⇒ ψ and (2) if φ is a safety property of the environment,

22

1 package gov.nasa.jpf.jvm;
2 public class Verify {
3 static public void assert(boolean cond) {
4 if (!cond) throw new RuntimeException("assertion failed");
5 }
6 ...
7 static public void beginAtomic () {}
8 static public void endAtomic () {}
9 static public int random(int max) { return 0;}

10 static public boolean randomBool () { return false;}
11 // extensions for environment generation

12 static public Object randomObject(String type){ return null;}
13 static public Object randomReachable(String type , Object obj){ return null;}
14 }

Figure 2.2: JPF Modeling Primitives

encoding φ directly into the implementation of the environment and model checking the

module closed with the environment against the module specification ψ. Our framework

allows for modular verification of open Java systems using both approaches. In addition,

our framework provides flexibility for the second approach by allowing synthesis of Java

environments using additional notations (e.g., regular expressions, side-effects descriptions).

2.1.6 Java Model Checking Frameworks

In this thesis, we use Java PathFinder (JPF) [9, 45, 92] and Bogor [70, 71], which we describe

next.

JPF is an explicit state Java model checker built on top of a customized virtual ma-

chine that executes a Java program along all possible paths, checking for runtime errors

(e.g., unhandled exceptions) and synchronization-related problems (e.g., deadlocks and race

conditions). When running a program, JPF systematically explores all possible thread in-

terleavings and inputs. JPF runs the bytecode directly, bypassing the step of modeling

the system. To curb the state space explosion problem, JPF employs heuristic search and

partial order reductions. JPF is an open source project and has been successfully used to

check real industrial-size programs, e.g., DEOS [64] and an Air Traffic Control System [7].

Bogor is an explicit state model checker, designed to be extensible and customizable.

23

1 package edu.ksu.cis.bandera;
2 public class Abstraction{
3 public static int TOP_INT = 0;
4 public static boolean TOP_BOOL = false;
5 public static String TOP_STRING = "top";
6 ...
7 }
8 public class Bandera {
9 static public void beginAtomic () {}

10 static public void endAtomic () {}
11 static public int chooseInt(int max) { return 0;}
12 static public boolean choose () { return false;}
13 // extensions for environment generation

14 static public Object chooseClass(String type){ return null;}
15 static public Object chooseReachable(String type , Object obj){ return null;}
16 }

Figure 2.3: Bandera Modeling Primitives

Bogor’s input language, Bandera Intermediate Representation (BIR), is designed to be ex-

tensible with new semantic primitives; Bogor’s plug-in architecture allows adding new state

space storage and exploration strategies. Bogor has been used to model check various

domain-specific programs, including Java.

Both JPF and Bogor can be combined with the Indus slicer [68], which can help reduce

the state space [22]. However, JPF, Bogor, and the Indus slicer require a closed program

written in pure Java. All case studies presented in this thesis are open systems, which

require environment generation before any whole-program analyses such as slicing or model

checking can be applied to them.

Both JPF and Bogor support modeling primitives that denote nondeterministic choices

used in this thesis. Given a set of values and a nondeterministic choice over that set, the

underlying model checker systematically explores all values in the given set. Figures 2.2

and 2.3 shows excerpts from the Verify and Bandera classes, used in JPF and Bogor

respectively to model nondeterministic choices. For example, randomBool() is a choice

between {true, false} and randomInt(n) is a choice over {0, . . . , n− 1} [23]. The following

methods were added to support our environment generation approach: randomClass("C")

24

is a choice over the allocated instances of class C in the program state where the call is

executed and randomReachable("C", obj) is a nondeterministic choice over the allocated

instances of C that are also reachable from obj.

The Abstraction class, shown in Figure 2.3, declares TOP fields for scalar types and for

commonly used non-scalar types, e.g., String. The TOP values are used during environment

code generation to emit unknown values. The TOP values denote any value of the specified

type. Abstraction (e.g., [23]) and symbolic execution tools (e.g., [19]) can be configured to

recognize TOP values and treat them according to their semantics.

2.2 Related Work

In this section we present approaches used in unit testing, static analysis, and modular

model checking that are related to BEG techniques.

2.2.1 Unit Testing

Java unit testing tools, e.g., JUnit [47], provide a standard infrastructure for setting up test

suites. Once a test suite is set up, it can be automatically run every time the code base

changes. JUnit encourages developers to write unit tests, although, writing test cases and

inserting checks that act as oracles is usually a manual process.

There are tools that automate the task of writing JUnit tests, e.g., Parasoft’s Jtest [46],

JCrasher [17]. These tools analyze the structure of Java classes under test, then generate and

execute JUnit-format test cases designed to expose uncaught runtime exceptions and verify

requirements expressed with Design by Contract annotations. While these tools automate

the task of building JUnit test suites, they do so in an ad-hoc manner, resulting in test suites

that may miss test cases or contain redundant tests. Tools like Jtest are valuable tools for

setting up a JUnit test suite, yet, compared to BEG environments, Jtest-like tools exercise

Java classes in a limited way: a single Java class is exercised in a sequential environment,

the driver method call sequences are short, and parameter values are limited to corner cases

25

(e.g., null values, which are used to expose NullPointerExceptions).

Some tools address redundancy of JUnit tests, e.g, Randoop [61], however, these tools

still address sequential code only and rely on generation of random values.

Other tools address generation of data values based on symbolic execution (e.g., Korat

[8], Symstra [96], Kiasan/KUnit [20]). These tools work for sequential programs, do not

scale for large components, and exploit user specifications such as method pre- and post-

conditions (e.g., expressed in Java Modeling Language (JML) [52]).

2.2.2 Static Analysis for Java

Examples of Java static analysis tools and approaches range from analyzers that use shallow

intraprocedural data flow analyses (e.g., FindBugs [27] can detect possible null pointer

dereferences) to tools that use some interprocedural analyses (e.g., JLint [44] can detect

deadlocks by building a global lock graph and checking that there are no cycles in it) to

analyzers that perform a whole-program analysis to calculate all possible program control

and data dependencies (e.g., Indus [68]).

Static analysis can infer program properties or mine specifications. Weimer et al. present

a miner [93] that produces simple policies dealing with resource leaks and forgotten obli-

gations. Specifically, the miner learns simple two-state FSM policies given by the regular

expression (ab)* (e.g., an opened file should be closed). Whaley et al. [94] present a static

technique that, for a given Java class, detects illegal sequences of two method invocations

on an instance of the class. Specifically, if the first method sets a field of the class to a

value that leads to an exception when executing the second method, then such a sequence

is illegal. These techniques can be used to learn some patterns of actions the environment

may perform on a unit, yet, these patterns are simple.

Stoller [78] describes an approach that computes a partition of a system’s inputs based

on the data-flow analysis of the system. The idea is to use a single representative input value

from each partition to exercise all behaviors of the system and to avoid exercising the same

26

behavior twice. In contrast, BEG generates environment values based on user specifications

or it fills missing values using abstract or choice modeling primitives. BEG approach relies

on subsequent symbolic execution or abstraction phases to partition abstract values prior

to model checking.

In Java, static analysis can be complicated by the extensive set of Java libraries that con-

tribute to the size of the program under analysis and native code written in other languages.

These generally require generation of stubs.

Another complication, for interprocedural analyses, is the need to resolve virtual method

invocations. Java is an object-oriented language, where a call site usually has a form

r.m(a1, ..., an) with r being a receiver object. At run-time, the invoked method is deter-

mined by examining the actual type of the receiver object and its superclasses and finding

the first method that matches the signature of the called method. At compile-time, the

actual type of the receiver object can only be estimated. One may employ a Class Hierar-

chy Analysis (CHA) to determine possible types of the receiver object based on its declared

type; given a long inheritance chain, the results of CHA analysis may be too imprecise.

More precise but costly analyses can be used for virtual invoke resolution, e.g., points-to

analysis.

2.2.3 Points-to and Side-Effects Analysis

There are various implementations of points-to and side-effects analysis for Java.

Soot [69] and Indus [68] provide both analyses, however, these tools perform whole-

program analysis, i.e., to produce safe results, the program under analysis needs to have

main method and pure Java implementation for native methods. Such tools cannot analyze

GUI or J2EE applications without performing environment generation first.

Rountev et al. [73] explore how points-to and side-effects analyses may be used to

produce summaries for library modules that later may be used for separate analysis of

client modules. Unlike in BEG, their summaries are produced using whole program analysis

27

under the worst-case assumptions about a client and are targeted at the optimizations of

the client.

BEG analyses are customized to work specifically for the environment generation prob-

lem: they are modular [10, 95], parameterized [55], flow-sensitive [51], and produce method

summaries that can be encoded in Java. BEG analyses are also extensible and can be tuned

to track side-effects to specific objects. We extended BEG points-to and side-effects analysis

to track containers, i.e., objects that can hold unit data, and to track data specific to GUI

and J2EE libraries.

2.2.4 Modular Model Checking

Our approach to environment generation from specifications builds on the work of Avrunin

et al. [4], who developed tool support to analyze partially implemented real-time systems

whose components were implemented in Ada or specified using graphical interval logic and

regular expressions. Our work also builds on the approach for model checking of partial

software systems in Ada presented in [24, 25, 66] by Pasareanu et al., who used SPIN and

SMV model checkers to verify safety properties of units closed with universal environments

and environments synthesized from LTL assumptions. While these approaches concentrate

on describing sequences of method calls the environment may perform on a unit, they do

not address specification of data values flowing from environment to the unit.

Another example of modular verification is described in [13] and incorporated into the

Verisoft model checker [35]. Colby et al. use static analysis to close an open system by

calculating the influence of externally defined data. The main idea behind their analysis is to

find all conditionals dependent on external data and substitute them with a nondeterministic

choice. Unlike in our approach, they use a simple notion of data dependence to drive their

analysis, which has no ability to control the precision of the generated environment.

A modular approach to checking multi-threaded programs is implemented in Calvin [30].

Their approach is aimed at procedure checking and relies on user specifications of environ-

28

ment assumptions that describe other procedures in the system and constrain interactions

among threads. Unlike in our framework, theirs allows for simple invariant specifications

and requires that programs obey a restricted class of locking disciplines with respect to

thread interactions.

2.2.5 Java Model Checking

Model checking of Java programs faces the same challenges as Java static analysis, only to

a greater extent, since model checking can be viewed as a most precise, least scalable form

of static analysis. Extensive Java libraries and infinite data domains contribute to the state

space explosion problem. Native code cannot be handled and needs to be modeled first,

either using pure Java or a modeling language of the underlying model checker. This means

that programs with file IO or Remote Method Invocation (RMI) need to be preprocessed

first to model the parts of the application that make use of native code. In addition,

open interactive systems (e.g., GUIs and web applications) need a model of the user to

appropriately close the system.

Both Bogor and JPF have been used to perform model checking of general Java programs

as well as domain-specific programs [6, 42, 63]. For some approaches [6], a collection of

models for specific library classes is produced. The advantage of such an approach is that

once the models are generated, they can be reused across multiple analyses from the same

domain. The limitation of the approach is its applicability to a specific type of applications.

Next we describe several domains where Java model checking has been applied.

Stoller et al. [79] show how a distributed (multi-process) Java program can be trans-

formed into a single-process program using three automated transformations: (1) central-

ization: combining multiple processes into a single process; (2) RMI removal: replacing

of native RMIs with ordinary methods that simulate RMIs; (3) Pseudo-crypto: replacing

native cryptographic operations with their simulations. Unlike our work, this approach has

been carried out mostly at the theoretical level, with no real large case studies.

29

Another approach to model checking distributed Java applications is implemented in

NetStub [6], a framework that contains reusable stubs for java.net and java.nio libraries.

This approach is similar to our approach of developing reusable domain-specific stubs. Un-

like in our work, their approach has no automated support for stub generation.

There are related approaches to specification and generation of environment for model

checking of software components [42, 63]. The approach by Parizek et al. [63] works for

software components with well-defined behavioral specifications written in ADL. Given such

components, they derive drivers by calculating the inverse of ADL component specifications.

In their framework, specifications already exist and, due to the nature of ADL components,

which make no external calls, there is no need to generate stubs. Their approach addresses

a specific instance of the environment generation problem, whereas BEG addresses a more

general problem and has automated support for interface discovery and stub generation.

The approach by Hughes et al. [42], called interface grammars, is based on using Context

Free Grammar (CFG) to describe usage of Java components. CFG is more expressive than

automata-based specifications, e.g., LTL or regular expressions used in our work, however,

this approach incorporates user specifications only. Using their approach, one can specify

API usage of a Java class and generate a stub for it, which will check that the unit under

analysis uses the class according to the specified grammar. While the CFG approach is more

expressive, it does not scale to large systems, as only one stub at a time can be described

by the interface grammars. Our case studies show that stub generation step can produce

thousands of stubbed out classes; to perform stub generation on such a scale, one needs

automated support, e.g., static analysis in BEG.

30

Chapter 3

Overview

In this chapter, we demonstrate our approach on a small publish-subscribe program, which

illustrates the use of the observer pattern [33]. Then, in section 3.2, we describe our environ-

ment generation methodology shaped by several large case studies and different domains.

3.1 Example: Observer-Observable

In this section, we illustrate how to use BEG to verify a property of a small publish-subscribe

program implemented using Java’s Observer and Observable classes from the java.util

library. Figure 3.1 shows classes Subject and Watcher, which play a role of observable and

observer. The Subject class declares the field obs of type Buffer, shown in Figure 3.2,

which is a container for Watchers that are registered for the Subject. The Watcher class

contains a bookkeeping field registered, which keeps track of whether the Watcher is

registered on the Subject. Suppose, we are interested in reasoning about whether “Only

registered Watchers are notified of Subject updates”. This property is specified using

Bandera Specification Language (BSL) in [15]. We can also assert that the registered field

of Watchers is true at the point where a Subject calls update() (line 41 in Figure 3.1).

3.1.1 Unit and Property Specification

The user designates the unit under analysis by naming the collection of Java classes whose

properties need to be verified. In general, selection of the classes in the unit is driven by the

31

1 public class Subject extends Observable {
2 protected boolean changed = false;
3 protected Buffer obs = new Buffer ();
4
5 public void changeState (){
6 setChanged ();
7 notifyObservers ();
8 }
9 public synchronized void add(Watcher o){

10 obs.register(o);
11 }
12 public synchronized void delete(Watcher o){
13 obs.unregister(o);
14 }
15 public void notifyObservers(Object arg) {
16 Watcher cw;
17 Buffer lb = new Buffer ();
18 synchronized (this) {
19 if (! changed)
20 return;
21 obs.copy(lb);
22 changed = false;
23 }
24 if (obs.size() != lb.size ())
25 cw = null;
26 while (!lb.isEmpty ()) {
27 cw = lb.removeFirst ();
28 cw.update(this , arg);
29 }
30 }
31 protected synchronized void setChanged (){
32 changed = true;
33 }
34 public synchronized boolean hasChanged () {
35 return changed;
36 }
37 }
38 public class Watcher implements Observer{
39 public boolean registered = false;
40 public void update(Observable o, Object arg) {
41 assert registered;
42 }
43 }

Figure 3.1: Customized Observer-Observable Implementation

32

1 public class Buffer extends Vector {
2 public void register(Watcher w) {
3 if (! contains(w))
4 super.addElement(w);
5 w.registered = true;
6 }
7 public void unregister(Watcher w) {
8 super.removeElement(w));
9 w.registered = false;

10 }
11 public Watcher removeFirst () {
12 Watcher result = elementAtIndex (0);
13 unregister(result);
14 return result;
15 }
16 }

Figure 3.2: Customized Buffer Implementation

properties that one wants to reason about. For our example and the mentioned property,

Subject and Watcher should be in the unit.

3.1.2 Interface Discovery

The interface discovery step finds the two parts of the unit-environment interface: the unit

interface and the environment interface.

To find the unit interface, the unit classes are analyzed to discover methods and fields

of the unit that may be referenced by the environment. For our example, public methods

changeState(), add(), delete(), notifyObservers(), setChanged(), and hasChanged()

of class Subject and update() of the Watcher class may be invoked by the environment. In

addition, Watcher’s field registered can be directly assigned to some values by the envi-

ronment. The unit’s exposed methods and fields are used by BEG to construct environment

actions, which can be used to describe patterns of actions the environment may perform on

the unit.

To discover the environment interface, the unit classes are analyzed to discover any

external classes, methods, and fields referenced inside the unit. The external references

drive the generation of the environment components that are directly referenced by the

33

unit. In our example, java.util.Observable, java.util.Observer, and Buffer are in the

environment. Note that the actual environment may consist of more classes due to transitive

class and method dependencies, for example, the java.util.Vector class is also in the

environment as a supertype of the Buffer. To make environments more compact, BEG can

be configured to generate environment components that are immediately referenced in the

unit. BEG approximates the rest of the environment by incorporating summaries of classes

that have an indirect effect on the unit into the generated environment components.

3.1.3 Driver Generation

BEG can be configured to generate universal drivers, which can perform all possible se-

quences of actions exposed by the unit interface. We show the code of the universal driver

for the observer-observable example, automatically generated by BEG, in Appendix A.1.1;

BEG is configured to instantiate two instances of each unit type and to create two threads

performing all possible sequences of actions on the created instances. It is clear that uni-

versal drivers are not practical as they contain many nondeterministic choices and may

contribute to the state space explosion.

Environment behavior can be constrained by environment assumptions. These assump-

tions can be specified or automatically extracted from the environment code, if available.

In our case studies, the code for drivers is not initially available, therefore, we use speci-

fications to constrain driver behavior. Given assumptions about sequences of environment

actions, BEG generates a set of driver threads that implement the most liberal model that

is consistent with the given assumptions (i.e., any computation in the model satisfies the

assumptions and any computation that satisfies the assumption is a computation in the

model). Figure 3.3 (top) illustrates an assumption with one instance of Subject and two

Watchers and a pair of threads whose behavior is given by regular expressions over method

names with parameter values elided. The elided parameters can be interpreted as values

that are selected nondeterministically from the possible values of the parameter type. The

34

environment {
setup { 1 Subject; 2 Watcher; }
driver -assumptions {

re{
Change: (changeState ())*
Register: (add() | delete ())*

}
}

}

1 public class EnvDriver {
2 public static void main(String [] p0){
3 Subject s0 = new Subject ();
4 Watcher w0 = new Watcher ();
5 Watcher w1 = new Watcher ();
6 new Change(s0 , w0 , w1). start ();
7 new Register(s0 , w0 , w1). start ();
8 }
9 }

10 public class Change extends java.lang.Thread {
11 public Subject s0;
12 public Watcher w0 , w1;
13 public T0(Subject p0 , Watcher p1 , Watcher p2){
14 s0 = p0; w0 = p1; w1 = p2;}
15 public void run (){
16 while(Verify.randomBool ())
17 s0.changeState ();}
18 }
19 public class Register extends java.lang.Thread { ...
20 public void run (){
21 while(Verify.randomBool ())
22 switch(Verify.randomInt (1)){
23 case 0:
24 s0.delete(Verify.randomObject("Watcher"));
25 break;
26 case 1:
27 s0.add(Verify.randomObject("Watcher"));
28 break;
29 }
30 }
31 }

Figure 3.3: Observer-Observable User Assumptions and Driver Model

35

first thread repeatedly calls the changeState() method on the only instance of Subject

and the second thread calls any sequence of add() or delete() calls on the Subject object

with a nondeterministically selected Watcher.

Figure 3.3 (bottom) also shows the generated drivers that capture the assumed behavior.

The EnvDriver class allocates the specified instances and starts the execution of the two

threads. Thread implementations model the assumption specifications by invoking modeling

primitives that are interpreted by the underlying model checker as a nondeterministic choice

over a set of values, as described in section 2.2.5.

3.1.4 Stub Generation

A user may specify assumptions for stubs in a way that is similar to driver specifications:

the program actions, their sequence patterns, and data values are specified in a similar

way. We show an example of user specifications for the Buffer class in Appendix A.1.2.

However, if the implementation of the environment components is available, then static

analysis techniques can be used to generate stubs automatically.

One may start with generation of empty stubs using the simplest settings in BEG.

Appendix A.1.3 shows BEG’s configuration and the Buffer model with empty stubs. This

setting is useful for generation of library classes that do not have many side-effects with

respect to the unit under analysis. In our particular example, the field registered is

modified by the environment.

BEG’s points-to and side-effects analyses can be applied to determine how the envi-

ronment methods can influence the unit data [85, 87]. In our example, the analysis of the

Buffer implementation calculates the following effects: methods register and unregister

may/must side-effect the field registered of the Watcher. As described in section 2.1.3,

may side-effects analysis calculates possible side-effects, whereas must side-effects analysis

calculate side-effects that happen on all method executions.

Models are generated to reflect possible side-effects as calculated by the analyses. Fig-

36

1 public class Buffer{
2 public static Buffer TOP_OBJ =
3 new Buffer ();
4 public void register(Watcher p){
5 if(Verify.randomBool ()
6 p.registered = true;
7 }
8 public void unregister(Watcher p){
9 if(Verify.randomBool ())

10 p.registered = false;
11 }
12 public Watcher removeFirst (){
13 return Verify.
14 randomObject("Watcher");
15 }
16 }

1 public class Buffer{
2 public static Buffer TOP_OBJ =
3 new Buffer ();
4 public void register(Watcher p){
5 p.registered = true;
6 }
7 public void unregister(Watcher p){
8 p.registered = false;
9 }

10 public Watcher removeFirst (){
11 return Verify.
12 randomObject("Watcher");
13 }
14 }

Figure 3.4: Buffer’s Models Based on May and Must Side-Effects Analysis

ure 3.4 (left) shows the Buffer model generated using BEG’s may side-effects analysis,

which calculates that on some paths of the method register(), it assigns its parameter’s

registered field to true and, similarly, on some paths of the method unregister(), it

assigns its parameter’s registered field to false. The possibility of a side-effect, produced

by the may side-effects analysis is encoded in Java by enclosing the side-effecting statement

with if(Verify.randomBool() (lines 3,4 and 7,8). The must side-effects analysis option in

BEG refines results of the may side-effects analysis by factoring out side-effects that occur

on all executions; such side-effects are encoded in Java as unconditional assignments, thus

producing more precise stubs, as shown by lines 5 and 8 in Figure 3.4 (right).

If the analysis cannot calculate the concrete values on the right hand side of side-effecting

assignments or return statements, then approximate values are used. For example, the

return value of removeFirst() is approximated using randomObject("Watcher"), which is

interpreted as a nondeterministic choice over the heap instances of Watcher type.

To minimize the state space of the environment, for each environment type BEG gen-

erates TOP_OBJ field. This field denotes a single instance of the environment class and is

used during code generation for the environment, i.e., any time the environment needs a

37

1 public class Buffer{
2 Object elementData [];
3 public void register(Watcher p){
4 //must side -effects

5 elementData[TOP_INT] = p;
6 p.registered = true;
7 //may side -effects

8 ...
9 }

10 public Watcher removeFirst (){
11 //may side -effects

12 elementData[TOP_INT] = null;
13 ...
14 // return locations

15 return Verify.
16 randomReachable("Watcher",this);
17 }
18 }

1 public class Buffer{
2 Object elementData [];
3 int count;
4 ...
5 public void register(Watcher p){
6 elementData[count] = p;
7 count ++;
8 p.registered = true;
9 }

10
11 public Watcher removeFirst (){
12 return Verify.
13 randomReachable("Watcher",this);
14 }
15 }

Figure 3.5: Buffer’s Containment Models: Automated and Refined

value of type C ∈ E, it uses the C.TOP_OBJ field. This mechanism avoids creating multiple

environment objects by the environment itself. It also allows one to mark the environment

objects for further processing by abstraction and symbolic execution techniques. Note that

the unit can create multiple instances of environment classes by calling regular constructors

of the environment classes. Section 7.3.2 shows more examples of using TOP_OBJ fields in

the environment models.

3.1.5 Model Checking and Refinement

After the environment models are generated, we combine them with the code of the unit

and use JPF or Bogor to verify the unit properties. Model checking the observer example

from Figure 3.1 with JPF using the environment models from Figures 3.3 and 3.4 (on the

right), and the mentioned property yields a spurious counter-example where an unregistered

Watcher is notified of an update. This is due to the imprecision of the generated code for

the removeFirst() method, which can return any allocated instance of type Watcher.

To produce a more precise model of the Buffer class, we use BEG’s containment anal-

ysis, designed to track containment properties of environment components. A compo-

38

nent with the containment properties can store objects of the unit type, thus partition-

ing the heap into objects that are reachable from the container and objects that are not

reachable from it. The left side of Figure 3.5 shows the model generated by BEG us-

ing the containment analysis tuned to track side-effects to array-type fields. Note that

BEG emits elementData[TOP_INT] = p to denote the addition of the method’s parame-

ter to the elementData array, inherited by the Buffer from the Vector. BEG also emits

randomReachable("Watcher", this) as a return value of the method removeFirst().

One can go over the code generated by BEG and refine it, e.g., elementData[TOP_INT] can

be refined as elementData[count]. The right side of Figure 3.5 shows the manually refined

Buffer stub.

Boosting the precision of the Buffer model, by using the container model of the Buffer,

eliminates the spurious counterexample and reveals a property violation due to a race con-

dition in the implementation of notify() that is due to the intentional limitation of the

scope of the synchronized statement for improved performance.

Section 7.2.2 contains more examples showing how containment can be used to boost

the precision of generated stubs for the Swing and AWT libraries. The user can specify the

fields to track, e.g., Componenet[] component field of the java.awt.Container class. For

APIs known a priori, e.g., for container classes from the java.util package, BEG can be

configured to treat such classes as part of the unit and preserve calls from the environment

classes to containers such as Lists, HashMaps, etc. This approach is used to develop stubs

for the javax.servlet.http APIs, described in section 4.2.3

3.2 Environment Generation Methodology

When model checking the observer-observable example, we followed a methodology that can

be described by the following steps:

1. Module isolation and property specification

39

2. Environment generation

(a) Interface discovery

(b) Driver generation

(c) Stub generation

3. Model Checking and Refinement

• Error detected

– Spurious error: go to 2

– Actual error: fix the error, go to 3

• Incomplete or Verified: check coverage

– Desired coverage: done

– Poor coverage: go to 2

This thesis addresses automated support for step 2, environment generation. We use

existing Java model checking frameworks to perform model checking in step 3. We give

useful insights on how to approach unit selection and model refinement, however, automated

support for these steps is beyond the scope of this thesis. We discuss ideas for automation

of unit selection and model refinement in section 8.2, Future Work.

3.2.1 Unit and Property Specification

The unit selection is driven by the unit properties: classes mentioned in the properties should

be included in the unit. Domain-specific knowledge can also be used to specify the unit. For

example, for GUI and J2EE applications, one can specify the unit as the application-specific

code, treating GUI and J2EE libraries as the environment that needs to be stubbed out. In

Chapter 4, we describe our domain-specific methodology for GUI and J2EE applications.

40

3.2.2 Interface Discovery

This step calculates the syntactic unit-environment interface, which consists of the unit

interface and the environment interface.

In general, the unit interface consists of all public methods and fields. However, for

specific domains, the unit’s interface can be restricted to domain-specific APIs. For instance,

for GUI and J2EE applications, driver actions can be defined as special event-handling

methods that process user inputs such as button clicks. We discuss domain-specific APIs in

Chapter 4. The set of methods and fields in the unit interface is used to generate a universal

driver or validate driver specifications.

The environment interface consists of all external classes, methods, and fields referenced

by the unit. The syntactic environment interface drives stub generation for the components

that are directly referenced in the unit, potentially omitting generation of many classes that

are indirectly used by the unit. The environment interface is also used to validate user

specifications for stubs.

3.2.3 Driver Generation

BEG has support for generating universal drivers and drivers generated from user specifica-

tions. Section 5.3 describes BEG’s support for user specifications in detail. In short, BEG

supports specification of different aspects of driver behavior: synchronization (e.g., number

of driver threads), control (e.g., sequences of actions performed on the unit), and data (e.g.,

driver and stub inputs).

One can start with universal drivers or drivers generated from user specifications and

refine them. In this work, we start with drivers generated from user specifications, as

universal drivers typically do not allow for tractable model checking.

41

3.2.4 Stub Generation

BEG has support for generating the following types of stubs: empty, universal, based on

user specifications, and based on static analysis results. Currently, BEG performs side-

effects analysis, which can be constrained based on domain-specific information. Chapter 4

describes domain-specific information for GUI and J2EE components, and Chapter 5.4 de-

scribes BEG’s side-effects analysis, including its customization for GUI and J2EE libraries.

In this work, we start with empty stubs and keep enhancing them with additional be-

havior such as data and control effects. As the last step, slicing can be used to produce

stubs with all possible unit-environment dependencies. Here is the hierarchy of stubs used

in this thesis:

1. Empty stubs: no effects

2. Data effects: domain-specific side-effects

3. Control effects: callbacks

4. Slicing

Our experience shows that step 2 is very effective, especially if tuned for specific domains.

For most case studies presented in Chapter 7, step 2 was sufficient to uncover errors or

produce the desired coverage results.

3.2.5 Model Checking and Refinement

The generated environment may exercise too many unit behaviors to allow for tractable

model checking or too few to cover all interesting behaviors. In both cases, the environment

may need refinement: if the environment is too large, it may need to be reduced; if an

error is known to exist but the environment is too restrictive and masks the error, then the

environment needs to be expanded. Going in either direction may not be trivial, however,

in some specific instances, it is possible to design a systematic approach to reduce or expand

the environment based on domain-specific knowledge and model checking results.

42

• Unit Refinement: If too many dependencies exist between the unit and its environ-

ment classes, it is useful to redefine the module by moving tightly coupled classes

from the environment to the unit. In this work, we used this approach when static

analysis calculated too many side-effects for some environment classes, as described

in section 7.3.

• Driver Refinement: In this work, we started with drivers synthesized from user speci-

fications. In some instances, we needed to refine the drivers based on branch coverage

results, as described in 7.3. For example, if a unit method is not getting covered, it

can be added to the alphabet of driver actions.

• Stub Refinement: We found that for stubs, it is convenient to start with empty stubs

and keep enhancing them with specific features. An alternative would be to start with

universal stubs or stubs calculated by slicing. Our experience shows that universal

stubs are largely impractical, whereas stubs based on slicing may retain too many

dependencies between the unit and its environment. Our case studies show that for

well defined units, calculating data effects of the environment is usually sufficient to

detect errors. Also, for specific domains, e.g, for GUI and web applications, we built

a specific hierarchy of features to be added to stubs; we describe these in Chapter 4.

To summarize, the following is our environment generation methodology:

• Generic Domain

– Interface: All public methods and fields

– Drivers: Constrained by user specifications

– Stubs: Effects to data of unit type

• Specific Domain

– Interface: Domain-specific APIs

43

– Drivers: Constrained by user specifications

– Stubs: Effects to domain-specific data

Overall, both driver and stub refinement can be customized for specific domains. One

needs to study the domain and mine for domain-specific features that are important to

preserve while modeling the domain. These features can be used to build the hierarchy of

refinement steps, which can be automated. In the next Chapter, we describe two specific

domains: Swing/AWT and J2EE frameworks. We describe domain-specific APIs that can

constrain the alphabet of driver actions and domain-specific data to constrain BEG’s side-

effects analysis.

44

Chapter 4

Domain-Specific Environment
Generation

An increasingly important class of object-oriented software systems are frameworks. Frame-

works provide for large-scale reuse of functionality by collecting threads of control, operations

and data structures that relate to a specific problem domain (e.g., Swing and AWT are Java

frameworks that supports the development of Graphical User Interfaces (GUI), and J2EE is

a Java framework for developing web applications). Frameworks present rich interfaces that

allow application-specific processing to be coordinated through the framework. Frameworks

are difficult to test due to the complexity of their interfaces and the degree of parameteriza-

tion that is possible to configure their behavior. Current state-of-the-practice in framework

testing relies on the use of groups of use cases to drive test case generation. In such a

setting, BEG can be a valuable tool because it enables synthesis of drivers that capture

multiple framework use cases. Furthermore, the use of nondeterminism in assumption spec-

ifications allows drivers to span multiple framework configuration settings. This offers the

advantage of allowing configuration-independent properties to be analyzed without having

to enumerate combinations of configuration settings.

In this chapter, we study two popular frameworks: Swing/AWT and J2EE. We present

domain-specific knowledge and how it was used to customize environment generation for

these domains.

45

4.1 Environment Generation for GUI Applications

GUIs are often employed to guide users through the interactions with an underlying appli-

cation. GUIs can be effectively used in Human-Computer Interaction (HCI) systems to ease

a user’s task by presenting the behavior of the underlying application at a high level of ab-

straction, hiding potentially overwhelming details from the user, and by enabling/disabling

GUI components to guide the user through the task.

Traditional approaches to validation of GUI aspects in HCI systems involve prototyping

and live-subject testing. These approaches are limited in their ability to cover the set of

possible human-computer interactions that a system may allow, since patterns of interaction

may be long running and have large numbers of alternatives. In this section, we present

environment generation customized for model checking GUI applications, where the behavior

relevant to interaction orderings, enforced by a GUI, is preserved. This section and the case

studies in section 7.2 are based on [26].

Verification of HCI systems is a significant challenge. While simplifying the interaction

between a user and the underlying application, GUIs contribute to the complexity of the

entire system by engaging in the interactions with the user and the underlying application.

GUIs are usually written using frameworks such as the Swing and AWT toolkits, which

simplify the programming effort but complicate verification of the end product. As a result,

model checking of GUI applications may be intractable due to the complexity of the toolkit

components used for the GUI implementation, infinite data domains in the underlying ap-

plication, and complex semantics of the interaction between multiple systems: the user, the

GUI, the underlying application, and the task the user is trying to achieve [18].

Despite the complexity of HCI applications, we exploit domain-specific knowledge to

identify appropriate driver and stub generation techniques for GUI applications. Next,

we discuss typical GUI frameworks features that influenced our environment generation

approach. While there are many frameworks used for GUI development, in this section we

concentrate on programs with GUIs implemented in the Java Swing and AWT frameworks.

46

Figure 4.1: ButtonDemo GUI States

We believe that many of the high-level ideas presented in this section apply to other GUI

frameworks.

4.1.1 Example: Button Demo

Swing and AWT are object-oriented frameworks, where windows, widgets on a window

(e.g., buttons, selections, text entry boxes), the text and color associated with widgets and

windows, and numerous additional attributes are all defined by instantiating framework

classes. A typical GUI application creates a number of windows and widgets. As the

user interacts with the application, the number of windows and widgets available for the

interaction changes. A user can select any input action that is enabled in a given state of

the GUI.

Figure 4.1 shows the GUI of a simple button demo example, taken from the SUN’s Swing

tutorial [83]. This simple GUI has three clickable buttons and only two states. In the initial

state, the left and middle buttons are enabled and pressing on the left button disables the

middle button and enables the right button. After pressing on the enabled right button, the

GUI goes into its initial state. Pressing on the enabled middle button does not change the

47

1 import javax.swing .*;
2 import java.awt .*;
3 import java.awt.event .*;
4 public class ButtonDemo extends JPanel implements ActionListener {
5 protected JButton b1, b2, b3;
6 public ButtonDemo () {
7 b1 = new JButton("Disable middle button", null);
8 b1.setVerticalTextPosition(AbstractButton.CENTER);
9 b1.setHorizontalTextPosition(AbstractButton.LEFT);

10 b1.setActionCommand("disable");
11
12 b2 = new JButton("Middle button", null);
13 b2.setVerticalTextPosition(AbstractButton.BOTTOM);
14 b2.setHorizontalTextPosition(AbstractButton.CENTER);
15
16 b3 = new JButton("Enable middle button", null);
17 b3.setActionCommand("enable");
18 b3.setEnabled(false);
19
20 // Listen for actions on buttons 1 and 3.

21 b1.addActionListener(this);
22 b3.addActionListener(this);
23
24 b1.setToolTipText("Click this button to disable the middle button.");
25 b2.setToolTipText("This middle button does nothing when you click it.");
26 b3.setToolTipText("Click this button to enable the middle button.");
27
28 add(b1); //Add Components to this container

29 add(b2); //using the default FlowLayout

30 add(b3);
31 }
32 public void actionPerformed(ActionEvent e) {
33 if (e.getActionCommand (). equals("disable")) {
34 b2.setEnabled(false);
35 b1.setEnabled(false);
36 b3.setEnabled(true);
37 } else {
38 b2.setEnabled(true);
39 b1.setEnabled(true);
40 b3.setEnabled(false);
41 }
42 }
43 public static void main(String [] args) {
44 JFrame frame = new JFrame("ButtonDemo");
45 ...
46 frame.getContentPane ().add(new ButtonDemo (), BorderLayout.CENTER);
47 frame.pack ();
48 frame.setVisible(true);
49 }
50 }

Figure 4.2: Button Demo Example (excerpts)

48

state of the GUI. This example has no underlying application, yet, it demonstrates many

important features of GUI applications.

Figure 4.2 shows the implementation of the ButtonDemo class. This example creates one

JFrame (line 44), one JPanel (line 46), and three buttons of type JButton (lines 7, 12, and

16).

4.1.2 Domain-Specific Knowledge

Swing and AWT Components

The essential step in modeling GUI components is identifying their abstract state. The

abstract state of each GUI component is defined by the values of the fields we model; the

abstract state of the entire system is defined by the state of each constituent component. For

example, an instance of java.awt.Component defines values for over eighty fields of various

types (e.g., java.awt.Color background, int width). Capturing an actual state of the

Component object by specifying values of all of its fields is very expensive. Fortunately, for

verification of interaction ordering behavior, we only need to record the values of fields that

relate to the logical state of the component and not its look and feel. Next, we describe the

properties of Swing and AWT components that are relevant to interaction ordering.

Containment Hierarchy A typical Java GUI consists of a number of components (frames,

panels, buttons, labels). There is usually a top-level container that provides a place for the

other components to paint themselves. Some of the most commonly used top-level con-

tainers are JFrame (e.g., in the ButtonDemo example) and JApplet (e.g., in the Autopilot

example described in section 7.1). There are also intermediate containers such as JPanel

that simplify the positioning of atomic components such as buttons and labels. The atomic

components are usually the components whose role is to get inputs from the user.

Atomic containers are usually added to the intermediate containers, which in turn are

added to the top-level containers using special add() methods (e.g., lines 28-30 add buttons

to the ButtonDemo and line 46 adds the ButtonDemo to the top-level JFrame). Events are

49

usually propagated through the containment hierarchy. Therefore, when modeling GUI

components, we need to preserve their containment properties.

Modality A modal dialog is one that restricts the next user interaction to the enabled

actions on that dialog; all other actions are disabled. The ButtonDemo example does not

create modal dialogs, but they are commonly used to display error messages or prompt a

user for additional information. Until the user dismisses the modal dialog, he is restricted

to using that window only.

Modality is tracked by the boolean field modal of the java.awt.Dialog class. The

modal field can be set using the method setModal() or when invoking one of the Dialog’s

constructors that take the boolean modal as one of the arguments.

Enabledness and Visibility Once a user chooses a window to work with, he is then

able to select from that window’s components that are both visible and enabled. Disabled

or invisible components do not allow for user selection. Visibility and enabledness is set

using methods setVisible() (e.g., line 48) and setEnabled() (e.g., lines 34-36 and 38-40),

which modify the boolean fields enabled and visible of the java.awt.Component class.

Selection In addition to buttons, there are tabs and radio buttons, which show selection:

usually, only one item at a time may be selected. Selecting a new component deselects the

previously selected one. This is called a single selection model. Selection is implemented by

consulting the containment and selection information when updating the component states

for the radio buttons. More specifically, it is implemented using the boolean field selected

and can be set using the method setSelected(boolean b) of the GUI components (e.g.,

javax.swing.JRadioButton). In addition, radio buttons are added to a button group (e.g.,

ButtonGroup), which keeps track of a currently selected button (e.g., AbstractButton field

selection of the ButtonGroup class).

50

GUI
Components

Event
Listeners

Underlying
Application

Events

Display
Update

User
Actions

Event
Handling

Code

Figure 4.3: Swing/AWT Event Handling Mechanism

Look and Feel Swing types also provide an enormous variety of options for controlling

the visual aspects of the GUI. For example, in Figure 4.2, lines 8, 9, 13, and 14 set the

vertical and horizontal positions of the left and middle buttons. These features are a part

of the look and feel properties and are not relevant for reasoning about the interaction

orderings.

Event-Handling

GUI applications are reactive systems that take sequences of user actions (e.g., mouse clicks,

mouse movements) and produce changes in the state of the GUI and/or the underlying

application. On the implementation level, each time a user clicks on a button or performs any

other action on a screen of a GUI, an event, an object of type Event, is fired and processed by

the event-handling methods of the event-handlers, objects of type EventListener. Any GUI

component can be notified of the event if it implements the EventListener interface and is

registered as an event listener on the appropriate event source. The event-handling methods

examine the event object and, depending on the information it carries, change the state of the

GUI and/or the underlying application. The event objects carry various information, e.g.,

the type of the button clicked, the command associated with that specific button, the text

a user entered into the text field. Figure 4.3 shows a high-level view of the event-handling

51

mechanism in Swing and AWT. The framework executes a cyclic event-dispatching thread,

which processes each event in turn and invokes the associated event-handling methods. The

event listening mechanism used in Swing/AWT is an example of the observer-observable

pattern, similar to the publish-subscribe example described in section 3.1.

In Figure 4.2, the ButtonDemo class implements ActionListener by providing imple-

mentation of actionPerformed(ActionEvent e) (lines 32-42). Lines 21-22 implement reg-

istration of the listener to buttons b1 and b3. Clicking on b1 or b3 creates an object of type

ActionEvent and invokes the actionPerformed() method of the ButtonDemo, passing the

event as an argument to the method.

The GUI events can be divided into two categories: logical events correspond to user ac-

tions that require interaction with the underlying application or GUI control-logic, whereas

low-level events indicate actions that are primarily handled automatically by the default GUI

framework, e.g., listeners that highlight a component or display a tooltip when a mouse is

moved over it. We focus on the logical events and their handlers in this work, although the

low-level events can be treated using the same mechanisms.

4.1.3 Domain-Specific Methodology

Our environment generation approach consists of partitioning an HCI application into three

parts: the Swing/AWT framework, the GUI implementation (i.e., the application-specific

GUI setup and event-handler code that interacts with Swing/AWT to configure the struc-

ture of the GUI and to implement its control-logic), and the underlying application (i.e.,

the code that is common to GUI and command-line versions of an application). By decom-

posing an application in this way we can target each part with a different technology for

extracting a faithful and appropriately precise model of its behavior. In this setting, the

GUI implementation is the unit under analysis, the missing user component is the driver,

and the Swing/AWT framework components are stubbed out. The underlying application

can be either included into the unit under analysis or stubbed out, depending on the types of

52

Environment
generation

GUI Display User Actions

GUI set up

Event Listeners

Underlying
Application

Swing/AWT

Underlying
Application Stubs

javax.swing.*

java.awt.* stubs

User
Actions

Driver Set
Up

Event Listeners

Figure 4.4: Environment Generation for GUI Applications

properties being checked. In section 7.1, we present the autopilot tutor example, for which

we preserve the state of the underlying autopilot and in section 7.2, we discuss case studies

with an underlying application stubbed out.

The left-side of Figure 4.4 illustrates the three-layer structure of a Swing/AWT applica-

tion. The framework owns the main execution thread, controls the rendering of the display

images, and processes user inputs to produce events that are relevant to the application. The

GUI implementation is comprised of all of the application code that directly manipulates

Swing types, for example, to configure the structure of the GUI and to define and register

event-handler methods. The underlying application is the remainder of the application that

is, by definition, not directly dependent on Swing types.

53

Our approach is to develop a single model of the Swing/AWT framework’s interaction

ordering-related behavior. Intuitively, the different layers of a Swing/AWT application exert

different degrees of influence on the behavior of the overall program relative to interaction

orderings. Towards this end, we extend BEG to preserve information about Swing/AWT

interaction ordering-related types and fields. Next, we discuss our environment generation

methodology customized for the Swing/AWT frameworks.

Interface Discovery

The task of the interface discovery step is to find all methods and fields that can be ex-

ercised by the environment, in this case a GUI user, and to find all external references,

including Swing/AWT libraries. In terms of finding external references, BEG did not need

any tuning, but for discovering methods that can simulate user actions, some tuning was

needed. For this domain, the unit interface consists of special event-handling methods, e.g.,

actionPerformed(), of the event handling classes.

Driver Generation

BEG can generate two types of drivers: universal and synthesized from user specifications.

The use of specifications did not need any tuning for this domain. The universal driver

generation, however, needed special handling.

Next, we give an example of a universal driver for the ButtonDemo class. The entry points

to the unit under analysis are the special event-handling methods, e.g., actionPerformed()

for the ButtonDemo example. Using these methods, one can write specifications to describe

sequences of user events, e.g., (actionPerformed())*, which describes a universal driver

for the ButtonDemo.

Figure 4.5 shows the driver code for the ButtonDemo example, with the set up section

taken directly from the main method of the ButtonDemo class, with addition of creation of

two events. The assumptions section reflects the above specification. We added an assertion

to check for the property “buttons b1 and b3 are never enabled at the same time”.

54

1 import env.javax.swing .*;
2 import env.java.awt .*;
3 import env.java.awt.event .*;
4 import gov.nasa.jpf.jvm.Verify;
5 public class EnvDriver{
6 public static void main(String [] args){
7 //set up , taken directly from GUI implementation

8 JFrame frame = new JFrame("ButtonDemo");
9 ...

10 ButtonDemo buttonDemo = new ButtonDemo ();
11 frame.getContentPane ().add(buttonDemo , BorderLayout.CENTER);
12 frame.pack ();
13 frame.setVisible(true);
14
15 ActionEvent actionEvent1 = new ActionEvent("disable");
16 ActionEvent actionEvent3 = new ActionEvent("enable");
17
18 // assumptions

19 while(Verify.randomBool ()){
20 assert (!(buttonDemo.b1.isEnabled () && buttonDemo.b3.isEnabled ()));
21 ActionEvent event = (ActionEvent)Verify.randomObject(
22 "env.java.awt.event.ActionEvent");
23 buttonDemo.actionPerformed(event);
24 }
25 }
26 }

Figure 4.5: ButtonDemo Universal Driver (excerpts)

The ButtonDemo class is a simple GUI example, with one event-handler, which is regis-

tered on one component, which in turn is always visible and enabled. In general, we need

to take into account the information about the GUI components’ visibility and enabledness,

i.e., the constraints the GUI puts on the user’s actions. Since Swing/AWT event-handling

APIs are known a priori, we can write a driver that will work for any GUI application,

written using Swing/AWT. We present such a driver in section 7.2 and use it to model

check a collection of small GUI examples from [83]. The universal driver presented in sec-

tion 7.2 takes into account GUI components’ visibility and enabledness in each state. In

section 7.1, we present a case study where regular expressions are used to constrain user

actions according to given use case scenarios.

55

Stub Generation

Containment To preserve the containment information of the GUI components, we con-

figure BEG to perform containment analysis, which can keep track of side-effects to array-

type fields or callbacks to the fields of container type from the java.util package. This

is similar to the container model used for the Buffer class, described in section 3.1; more

examples are given in section 7.2.2.

Modality Modality is modeled by preserving the modal field of java.awt.Dialog and

modeling side-effects of setModal() and other methods on this specific field. We customize

BEG’s side-effects analysis to keep track of side-effects to the modal field. Therefore, we

keep track of modality as part of the abstract state of dialogs. In addition, we keep track

of all available windows in the system in two data structures: a set of windows that do

not restrict user interactions (i.e., frames and non-modal dialogs) and a stack for restrictive

windows (i.e., modal dialogs). At each step, if the second structure is not empty, the modal

dialog on the top of the stack represents the window a user may interact with. If there are

no modal dialogs open, then the user may interact with any window from the first set.

Visibility and Enabledness We model these aspects of GUI components by including

per widget visibility and enabledness booleans. We configure BEG to keep track of side-

effects to enabled and visible boolean fields of Swing/AWT classes.

At each step, the user may choose among the visible and enabled children of a top-

level window. While certain components may not be displayed in a given state (and hence

reasonably considered invisible), we consider a logical notion of visibility defined as follows

: a component is visible if either it is visible on the display in the current state or it can be

made visible by selecting a series of visible components starting in the current state. Thus,

we consider the set of all components that lie on a path which consists of visible components

to be logically visible.

56

Selection We keep track of selection by modeling the selected field of radio buttons,

their button group, and the selected button within a button group. We customize BEG to

keep track of side-effects to these fields.

Event Handling The event-handling code is preserved as part of the unit under analysis.

The library methods used to register event listeners on the events are modeled to preserve

the containment properties, e.g., addListener() methods are implemented similar to add

methods of containers. We configure BEG to keep track of containment properties with

respect to the listener components.

Look and Feel Fields that implement the look and feel properties are not modeled;

methods that have side-effects on such fields are modeled using empty stubs.

Putting all of these features together, we configure BEG to produce summaries of

side-effects on the interaction ordering-related framework data for each method in the

Swing/AWT APIs. The resulting combination of models safely captures the event-related

GUI behavior while abstracting other aspects of the GUI, e.g., color, shape, size, and the

underlying application. Furthermore, the model retains the structure of an event-driven

Swing/AWT system. This safe, but approximate, model is used as a starting point for

the manual development of a more precise model, if needed. This model is reused across

multiple analyses, hence the cost of its construction can be amortized. Sections 7.1 and

7.2 present our experience with model checking applications written using Swing and AWT

libraries.

4.2 Environment Generation for J2EE Applications

In this section, we describe environment generation for a specific class of web applications.

While there are many frameworks used for development of web applications, we base our

discussion on the J2EE framework [81], used to implement enterprise applications. Next,

we describe features of J2EE applications relevant to environment generation and model

57

…

…

Figure 4.6: Pet Store Sign in and Item Screens

checking. We believe that many of the high-level ideas presented in this section apply

to model checking web applications written using other frameworks, e.g., Struts [80] and

Hibernate [40].

4.2.1 Example: SUN’s Pet Store

As an example, we use SUN’s Pet Store [82], an open-source application distributed with

SUN’s AppServer. The Pet Store example is a typical enterprise application, which allows

users to create an account, sign-in to their account, browse through a catalog of pets, add

chosen pets into a shopping cart, place their order, and sign out. The Pet Store has several

screens, which constrain and guide the user through the sequences of actions, similar to a

GUI in Swing/AWT applications. Figure 4.6 shows the Sign-in (top-left) and Item (bottom-

right) screens of the Pet Store example. An example of a functional property we would like

58

J2EE Server

Web Tier

Business Tier
DataBase

Client Tier
Servlets

EJBs

Figure 4.7: J2EE Applications Architecture

to check for the Pet Store example is “after check out, the cart becomes empty”.

4.2.2 Domain-Specific Knowledge

Architecture

Enterprise applications are open distributed multilayered systems, usually comprised of arti-

facts written in several languages (e.g., Java, HTML, XML). A typical enterprise application

is distributed over three different locations: a client machine, a J2EE server machine, and a

database machine. Therefore, enterprise applications are considered to have three tiers. Fig-

ure 4.7 shows the architecture of a typical enterprise application. The three layers embody

different functional aspects of the enterprise applications:

• The client tier is in charge of the interface with a user. It may include a web browser,

web pages, or applets.

• The server tier processes data, which flow from a client to a database and vise versa.

The server tier usually contains two layers: the web tier, which consists of Java Servlets

or JavaServer Pages (JSPs), and the business tier, which handles business logic by

59

employing the Enterprise JavaBeans (EJBs).

• The database tier is in charge of data persistence. It is optionally deployed on a

separate machine.

To apply Java model checking techniques, e.g., JPF, all non-Java components, including

a user, need to be represented as pure Java implementations. In addition, the distributed

nature of an application needs to be dealt with so that the resulting Java model is non-

distributed but preserves the behavior of the original application relevant to its logical state.

Next, we describe J2EE components and the event-handling mechanism of enterprise

applications in greater detail.

J2EE Components

Before the web and business tier components can be executed, they are deployed within

the web and EJB containers. These containers serve as a run-time environment for servlets

and EJBs. They are configured according to descriptor files, usually written in XML and

packaged with an enterprise application.

Web tier The web tier contains servlets and JSPs, which filter and process user requests.

The web container is configured according to descriptor files containing information per-

taining to the web tier, e.g., security and authentication mechanisms.

Business tier The business tier contains EJBs, which process data flowing from a client

and store it in a database. Likewise, EJBs retrieve data from the database, process it,

and send it back to the client. The EJB container is configured according to descriptor

files, containing information about the business tier, e.g., EJB categories and transaction

management.

There are several categories of EJBs: session beans are in charge of information that

pertains to a single client session, entity beans are in charge of data persistence, and message-

driven beans allow for asynchronous message processing.

60

Local Client

SignOnEJB

authenticate()

createUser()

ejbCreate()SignOnLocalHome

create()

SignOnLocal

authenticate()

createUser()

Figure 4.8: Interfaces for SignOnEJB with local access

Due to the distributed nature of enterprise applications, session and entity beans are

designed to be accessed by a client using the bean’s interfaces. There are two types of

access: remote and local. A bean with a remote access has remote and home interfaces; a

bean with a local access has local and local home interfaces. Remote and local interfaces

define the bean’s business methods; home and local home interfaces define the bean’s life

cycle and finder methods. The Pet Store EJBs support local access. Figure 4.8 shows an

example of the local and local home interfaces for SignOnEJB, used when the createUser

action, available on the signIn screen, is performed. We discuss this action in more detail

later.

Database The database is an important part of J2EE applications. The database access

APIs are implemented by the java.sql package. The database works as a container that

holds application data.

61

Figure 4.9: Pet Store Event Handling

<url-mapping url="createuser.do" screen="create-customer.screen" >
<web-action-class>...web.actions.CreateUserHTMLAction</web-action-class>

</url-mapping>
...
<event-mapping>

<event-class>...events.CreateUserEvent</event-class>
<ejb-action-class>...ejb.actions.CreateUserEJBAction</ejb-action-class>

</event-mapping>

Figure 4.10: Pet Store Descriptor File mappings.xml (excerpts)

Containment Similar to the Swing/AWT framework, the J2EE components’ features

include containment properties. Many J2EE classes are implemented to hold information,

e.g., in the package javax.servlet.http, HttpServletRequest objects contain user data

flowing from a web browser to the web tier, HttpServletResponse objects contain the

application data flowing from the web tier back to the user, HttpSession holds the session

data, and HttpSessionContext holds the context information.

Event Handling

The event-handling mechanism of enterprise applications is similar to the event-handling

mechanism of GUI applications: there are events and their corresponding event-handling

classes. Unlike in GUI applications, there could be one or two levels of event handling: one

through the web tier and one through the business tier. Figure 4.9 shows the two-tier event-

handling mechanism for the Pet Store example. The client request flows to the web tier,

62

1 public class CreateUserHTMLAction extends HTMLActionSupport {
2 public Event perform(HttpServletRequest request)
3 throws HTMLActionException {
4
5 String userName = (String)request.getParameter("j_username");
6 String password = (String)request.getParameter("j_password");
7 String password2 = (String)request.getParameter("j_password_2");
8 ...
9 if (userName != null && password != null)

10 return new CreateUserEvent(userName ,password);
11 return null;
12 }
13 }
14 public class CreateUserEJBAction extends EJBActionSupport {
15 public EventResponse perform(Event e) throws EventException {
16 CreateUserEvent cue = (CreateUserEvent)e;
17 String userName = cue.getUserName ();
18 String password = cue.getPassword ();
19 ...
20 ServiceLocator sl = new ServiceLocator ();
21 SignOnLocalHome home =(SignOnLocalHome)sl.getLocalHome (...);
22 SignOnLocal signOn = home.create ();
23 ...
24 signOn.createUser(userName , password);
25 ...
26 }
27 }

Figure 4.11: Example of Pet Store Event-Handlers

where it is mapped to its event-handling class of HTMLAction type, whose event-handling

method is executed. If the result of the event-handling method produces an object of type

EJBEvent, it is sent to the EJB tier, where it is mapped to its event-handling class of the

EJBAction type, whose event-handling method is then executed.

Another major difference between GUI applications and J2EE applications is how the

events are mapped to their corresponding event-handlers. While registration of the event-

handlers in GUI applications happens statically, i.e., according to the setup code, registration

of the event-handlers in J2EE applications happens dynamically, according to XML descrip-

tor files, used at deployment time. Figure 4.10 shows excerpts of mappings.xml, distributed

with the Pet Store example. This example shows that the createUser event is handled by

CreateUserHTMLAction in the web tier and CreateUserEJBAction in the business tier.

63

J2EE Server

Database

Stubs

javax.servlet

stubs

Client

Events

EJB container

Web container

Servlets

EJBs

Data

Base

Client

EJB container

Web container

Servlets

EJBs

Environment

generation

javax.ejb

stubs

Driver

Set Up

Figure 4.12: Environment Generation for J2EE Applications

Figure 4.11 shows excerpts from the code for the two event-handling classes used to

process the createUser event. The CreateUserHTMLAction class implements the event-

handling method perform(), which takes an argument of the HttpServletRequest type,

retrieves user data from it, such as userName and password, and creates and object of type

CreateUserEvent. The createUserEJBAction class also implements the event-handling

method perform(), which takes the event produced by the CreateUserHTMLAction class,

retrieves userName and password and invokes createUser() of SignOnEJB, using its local

interface SignOnLocal.

64

4.2.3 Domain-Specific Methodology

Figure 4.12 shows our environment generation methodology for enterprise applications. In

this domain, the Java part of a given enterprise application, excluding libraries, is treated as

the unit under analysis. This part of the application-specific code contains implementation of

servlets, EJBs, and event-handlers for the web and business tiers. Driver generation creates

drivers that instantiate objects according to deployment descriptor files and simulate user

actions on a browser. Stub generation replaces actual components such as a database and

the J2EE libraries with Java implementations that preserve important behaviors but run in

a non-distributed program.

Interface Discovery

As described in section 3.2, the general approach discovers the syntactic unit-environment

interface. The unit interface in the general approach consists of all public methods and

fields of the unit. However, in the J2EE domain, we are interested in the event-handling

classes and their event-handling methods, which can be used to simulate user actions by the

driver generation step.

Driver Generation

One approach to driver generation is to use the information about the screens and but-

tons available to the user at each step, similar to GUI applications. While we can get a

handle on the GUI components, such as windows and buttons, we cannot do the same for

J2EE applications, since such components are usually described by non-Java artifacts, e.g.,

HTML. One solution is to use HTML descriptions of the screen transition diagram for J2EE

applications and automatically build the screen transition diagram in Java. We leave this

approach for future work (section 8.2).

Another approach is to use BEG’s support for regular expressions to describe actions

of a user interacting with an application through a browser. When a user pushes a button

or enters text into a text box, an HttpServletRequest is generated and sent to an event

65

handling class for processing. Driver generation produces a Java implementation of the

user component that sets up the event-handling mechanism of J2EE applications during

deployment. The driver contains two sections: setup and user actions. The setup section

instantiates the event-handling classes of the web and business tiers and creates binding

between the application events and the event-handlers according to deployment descriptor

files. The user actions section reflects two aspects of the user behavior: sequences of the

user actions and the user data. Both aspects are described using BEG’s specification lan-

guage. Specifically, we use regular expressions to describe sequences of actions; user data is

described using concrete, choice, or abstract values.

To generate user inputs, we need to populate HttpServletRequest objects with keys, de-

noting their input source, and values denoting user inputs. Note the usage of getParameter()

APIs, shown in Figure 4.11:

String userName = (String)request.getParameter("j_username");
String password = (String)request.getParameter("j_password");
String password2 = (String)request.getParameter("j_password_2");

These APIs are used to retrieve user inputs from the HttServletRequest objects. The

keys, e.g., "j_username" denote the source of the user input, in this case, the text field

where the user name must be entered. We configure BEG to track constant strings used in

domain-specific APIs, e.g., in getParameter() calls. The set of such strings is finite and is

used to generate code for population of HttpServletRequest with specific keys and their

corresponding values.

Section 7.4 presents use case scenarios and drivers developed for the Pet Store example.

Stub Generation

Containment We configure BEG to track side-effects to the fields relevant to containment

properties, e.g., the fields holding session information, context information, and user data.

This information is used for development of initial stubs. Some initial stubs may require

manual refinement, however, once developed for a specific framework, stubs can be reused

across multiple applications belonging to the same framework.

66

1 public class HttpServletRequestImpl implements HttpServletRequest {
2 Hashtable params = new Hashtable ();
3 ...
4 public void setParameter(String p1 , String p2){
5 params.put(p1 , p2);
6 }
7 public String getParameter(String p1){
8 return params.get(p1);
9 }

10 ...
11 }

Figure 4.13: HttpServletRequest Stub

Figure 4.13 shows excerpts from our stub implementation of the HttpServletRequest

APIs, based on the analysis of the MockHttpServletRequest class implemented by the

Spring Framework [31]. Implementation of the mocks objects by the Spring Framework

uses HashMaps and Hashtables to implement containment properties. We configure BEG

to track callbacks to such classes. Note that the field params is used to keep a mapping

between keys denoting a source of user inputs and values denoting the user inputs.

Database Currently, we do not perform analysis of the database implementation. Be-

cause of the native code, it is a complex component to analyze. For the Pet Store example,

we used BEG to generate empty stubs for the java.sql classes. Then we manually re-

fined ResultSetImpl, the empty stub implementation of the java.sql.ResultSet APIs,

to contain a two-dimensional array to hold data. This model can be reused across multiple

applications. We note that for some properties, it is sufficient to model the database using

empty stubs.

In this chapter, we studied two frameworks: Swing/AWT and J2EE. We identified their

features that are relevant to checking properties related to their logical state, not their look

and feel properties. The two domains share common features such as the event-handling

mechanism, used to process user events and can be exploited to generate drivers. To generate

stubs, we identified common important features, e.g., containment. These two domains

67

identified the need to customize the following BEG’s features:

• Interface Discovery: BEG’s unit interface discovery was customized to scan for special

event-handling classes and their event-handling methods.

• Driver Generation: Generation of the setup section was customized to take into ac-

count the GUI setup for GUI applications and mappings from event to their event

handlers for J2EE applications. In addition, we developed a universal driver for GUI

applications which, on top of the application-specific setup, can be reused across dif-

ferent GUI applications.

• Stub Generation: BEG’s side-effects analysis was customized to track side-effects to

fields that implement domain-specific features, e.g., containment.

In the next chapter, we describe our environment generation techniques. We describe

the algorithms used for interface discovery, BEG’s grammar for user specifications, formally

present BEG’s side-effects analysis, and describe BEG’s code generation techniques.

68

Chapter 5

Environment Generation Techniques

In this Chapter, we present our environment generation techniques. Specifically, we focus on

(1) automatic discovery of the unit-environment interface, (2) BEG’s specification language,

(3) BEG’s static analysis for extracting assumptions, and (4) code generation techniques for

encoding environment assumptions into Java code. We describe each of these in turn and

conclude with limitations of the current approach and possible extensions.

5.1 Program Representation

Interface discovery and static analysis techniques in BEG work on Jimple, a three-address

representation of JVM byte-codes used in the Soot framework [91]. We consider the following

syntactic categories: classes c ∈ Class, methods m ∈Method, fields f ∈ Field, statements

s ∈ Stmt, expressions e ∈ Expr, local variables p, l, r ∈ V ar (with p denoting parameters

and l/r used on the left/right hand side of assignment expressions), operators op ∈ Operator,
and types t ∈ Type.

We assume presence of operators for relating fields and methods to their containing class,

similar to Java reflection APIs and methods implemented in Soot, f.getDeclaringClass(),

m.getDeclaringClass(), and operators relating classes to their methods and fields, c.getMethods()

and c.getF ields(). We assume that all expressions in our language have types and that the

type of each expression e can be found using the function e.getType(). We assume that an

expression e of scalar type can be evaluated to a constant if a function e.isConst() returns

69

true. Since the programs we analyze are precompiled, we assume that they contain no

typing errors, for example, all field access expressions are type correct, conditionals for if

and while statements have a boolean type (which is included in the scalar type), and the

terms in the expression e1 op e2 have types for which op is defined.

We denote the classes identified as the unit as U ⊆ Class. For convenience, we use fU

to denote the set of fields where f.getType() ∈ U .

5.2 Interface Discovery

There are two aspects of the unit-environment interface that BEG addresses: actions that

the environment may perform on the unit and actions that the unit may perform on the

environment. BEG automatically discovers both, which we describe next.

5.2.1 Unit Interface

BEG walks over unit classes to discover the unit interface, which, in general, consists of

public methods and fields of the unit classes. Based on a specific domain, the entry points

into the unit under analysis can be restricted. For example, as described in Chapter 4, for

GUI and web applications, these are defined as special event-handling methods that process

user inputs such as button clicks and writing into a text field.

Algorithm 1 shows our algorithm for discovering the unit interface. Methods isRelevantMethod()

and isRelevantField() define domain-specific information about methods and fields that

may be exercised by unit drivers. The set of discovered entry points is used to build an

alphabet of default environment actions, which consist of field assignments and method

calls, including constructor calls. The unit interface information is used to validate user

assumptions and, if no assumptions are provided, the default actions are used to generate

universal drivers.

70

Algorithm 1 Unit Interface Discovery

Input: U : set of unit classes
Output: S: set of unit methods and fields

Initially: S = ∅
1: for each class u ∈ U do
2: for each method m ∈ u.getMethods() do
3: if isRelevant(m) then
4: S = S ∪m
5: end if
6: end for
7: for each field f ∈ u.getFields() do
8: if isRelevant(f) then
9: S = S ∪ f

10: end if
11: end for
12: end for
13: return S

5.2.2 Environment Interface

BEG walks over unit classes to discover external references, which consist of classes, meth-

ods, and fields directly referenced by the unit. The external references are used to define

boundaries of the needed environment. They are also used to validate user assumptions for

stubs and to build empty and universal stubs, if no assumptions are given.

Algorithm 2 shows the algorithm for discovering all external references of a given unit.

For each of the unit classes, the algorithm checks whether its parent or any of the interfaces

it implements need to be generated in the environment. Next, the algorithm walks over

fields and methods of each unit class. For each field, it checks whether its type needs to

be created in the environment. For each method, it checks its signature and analyzes the

list of locals and statements. The method checkMethodSignature(m) checks the return

type, the types of parameters and possible exceptions. Statements are analyzed for external

method calls and external field references. The call graph is used to resolve virtual invoke

expressions. The method checkEnv(c) checks whether class c is external to the unit, and

if it not already in the environment, it adds that class to E.

71

Algorithm 2 Environment Interface Discovery

Input: : U : set of unit classes, CG: call graph
Output: : E: set of environment classes, methods, and fields

Initially: E = ∅
1: for each class u ∈ U do
2: envCheck(u.getSuperclass())
3: for each interface I ∈ u.getInterfaces() do
4: envCheck(I)
5: end for
6: for each field f ∈ u.getFields() do
7: envCheck(f .getTypeClass())
8: end for
9: for each method m ∈ u.getMethods() do

10: envCheckSignature(m)
11: for each local l ∈ m.getLocals() do
12: envCheck(l.getTypeClass())
13: end for
14: for each statement s ∈ m.getStatements() do
15: if (s.containsInvokeExpr()) then
16: method m′ = CG.resolveDispatch(s)
17: envCheckSignature(m′)
18: class D = m′.getDeclaringClass()
19: if (envCheck(D)) then
20: E = E ∪m′
21: end if
22: end if
23: if (s.containsFieldRef()) then
24: f = s.getF ieldRef()
25: class D = f .getDeclaringClass()
26: if (envCheck(D)) then
27: E = E ∪ f
28: end if
29: end if
30: end for
31: end for
32: end for
33: return E

72

T ::= boolean | int | C
action ::= T l | l := e | l.f := e | l.m(l̄)

e ::= p | C.f | r | r.f | null | a | r.m(r̄) | new C(r̄)

Figure 5.1: Action Syntax

Note that when discovering driver actions, domain-specific information can be used to

constrain the set of actions. When discovering environment interface, all external references

are added, regardless of domain-specific information, to make the unit compilable with the

set of produced stubs. The domain-specific information about stubs is used later, when

discovering their behavior.

5.3 Specifying Assumptions

In this section, we describe BEG’s specification language. We focus on BEG’s support for

specifying program actions and patterns of actions that the environment may perform on

the unit. The same actions and patterns of actions apply to both drivers and stubs. In case

of drivers, the patterns of actions reflect implementation of methods belonging to driver

threads (e.g., main() and run()), whereas in case of stubs they reflect implementation of

non-driver methods.

5.3.1 Specifying Actions

Environment may perform various actions on the unit, e.g., call unit’s methods, perform

assignments to unit fields, instantiate unit classes. BEG specification language has support

for describing such actions. Figure 5.1 shows BEG’s actions simplified syntax, which allows

for specification of variable declarations and many Java expressions, including assignments,

method invocations, and object allocations. Barred identifiers indicate finite lists, for ex-

ample, l̄ denotes a list of variable names. In general, any Java expression or statement can

73

be used to describe a single environment action as long as there is no interference with the

special logical operators used to describe patterns of actions.

In addition, BEG recognizes abstract and choicemodeling primitives declared by Verify,

Bandera, and Abstraction classes described in section 2.1.6. These modeling primitives

fit into the action syntax, since they are either field reference expressions or method call

expressions. Next, we describe syntax of field assignments and method call actions in more

detail.

Field assignments can be either static field assignments or assignments through object

references of unit type. Assignments are of the form l.f = r where: type(l) ∈ U , f is of scalar

or unit type, and r is either a concrete value (e.g., a scalar constant), choice, or abstract

value. The target of the assignment, l, is a previously introduced local, choice or abstract

value of appropriate type, or the name of a class when a static field assignment is to be

specified.

Method call actions are defined using standard Java syntax, but where partial specifica-

tion of parameters is allowed. Missing parameters in a method call are interpreted as actual

parameters with concrete, abstract, or choice value for the formal parameter type. BEG

can be configured to emit any of the three types of values. For example, consider several

methods named m in class C with signatures:

public R m(P x, Q y) { ... } // method 1

public R m(P x) { ... } // method 2

public R m() { ... } // method 3

We can denote the occurrence of a call to the first method with any receiver object of

type C, a specific value, p1, for x, and a choice value for y as m(p1, chooseClass("Q")).

The meaning of such an action is the nondeterministic choice of a call on method 1 from

the set of all calls that can be constructed by selecting instances of C and Q for the receiver

and y parameter, respectively, and using p1 for parameter x. To denote the occurrence of

a call to any of a subset of methods named m, one can elide the parameter list suffix that

distinguishes the elements of the set. For example, m(p1) denotes a call to either method 1

74

spec :== action
:== spec; spec
:== spec|spec
:== (spec)
:== spec?
:== spec∗
:== spec+
:== spec + {n}
:== spec + {n, m}

Figure 5.2: Regular Expressions Assumptions Syntax

or 2 with any receiver object and p1 for parameter x. The action m() denotes a call to any

of the three methods with any parameter values.

In the absence of a driver specification, BEG uses information about the unit interface,

consisting of unit fields and methods, and constructs default driver actions consisting of field

assignments and method calls with parameter values elided. The elided values get filled in

during the code generation step.

5.3.2 Specifying Patterns of Actions

Different formal notations can be used for specifying patterns of program actions. Cur-

rently, BEG has support for LTL and regular expressions. LTL is usually supported by

model checkers and is commonly used to specify properties. One can use LTL to specify

environment assumptions and, when the environment code is available, the same assump-

tions can be used to check that the environment satisfies its LTL properties. Our approach

to LTL specifications is similar to the one developed for model checking Ada programs by

Pasareanu et al. described in [66].

Regular expressions are a familiar formal notation to many developers and our experience

shows that many find it easier to use than temporal logics. Next, we describe our approach

to regular expressions specifications in detail.

Regular expressions defined over the alphabet of program actions describe a language

of actions that can be initiated by the environment. The simplest regular expression is

75

a single program action. Complex environment assumptions are built up using the stan-

dard operators for regular expressions: ; (concatenation), | (disjunction), ∗ (closure), and

? (optional occurrence). Positive closure (+), bounded iteration (r + {n} the concate-

nation of n occurrences of r), and a generalization of bounded iteration (r + {n,m} =

r+ {n}|r+ {n+ 1}| . . . |r+ {m}, where n and m are a pair of ordered natural numbers) are

also supported. The syntax of these assumption specifications, spec, is given in Figure 5.2,

where action is a program action.

As an example, java.util.Iterator presents a standard interface for generating the

elements in an instance of a container. Semantically, this interface assumes that for each

instance of a class implementing the Iterator interface (denoted by the introduced name

i), all clients will call methods in an order that is consistent with the following specification:

Iterator i = iterator ();
(i.hasNext (); i.next (); i.remove ()?)*

This expresses both required sequencing of calls (e.g., a call to iterator() on some

instance of a class that implements the Iterator interface must precede a call to hasNext())

and allowable optional calls (e.g., the occurrence of a single remove() call after a call to

next()) over each instance of Iterator.

In the absence of user specifications, BEG can be configured to generate universal en-

vironments. During the interface discovery step, BEG finds all methods and fields in the

unit interface and, using them, constructs default field assignments and method calls. Sup-

pose the alphabet of default driver actions is a1 . . . an, then the universal environment will

correspond to a regular expression (a1| . . . |an)∗.

5.3.3 Specifying Drivers and Stubs

Once the patterns of actions are specified, the user needs to specify which environment

methods implement them. Figure 5.3 shows the syntax of BEG’s specification. There

are several section in BEG’s specification file: definitions, setup, and assumptions. The

optional definitions section can be used to give mnemonics to hard-to-read actions. We use

76

environment {
(definitions {(key = value)*})?
(setup {(num Type ;)*})?
(driver -assumptions{

(re |ltl { Main | num? ThreadClassName: spec #})*
})?

(stub -assumptions{
(ClassName{

(re|ltl MethodSignature{ spec (return val)?})*
})*

})?
}

Figure 5.3: Driver and Stub Assumptions Syntax

this feature in section 7.1 to give easy-to-understand names to user actions. We also use

this feature to specify a mapping from events to their event handlers for J2EE applications,

as described in section 7.4. The optional setup section can be used to specify the number of

instances per unit type the main method should create. We use this feature to specify the

setup for the observer-observable example in section 3.1. More complicated setup behavior

can be specified in the assumptions section, using Main as the name of the driver thread.

The assumptions section may contain specifications for drivers and stubs. Note that

the user can mix LTL and regular expressions descriptions in one specification: some driver

threads and stub methods can be described using LTL, others using regular expressions.

In the driver-assumptions section, the user describes the behavior of the main method of

the main thread, using Main as the thread name, and the run methods of the other driver

threads. Specification of the Main thread describes the behavior of the main thread before

the other threads are started. In addition, we can have support for describing the behavior

of the main thread after the other driver threads are done, e.g., by supporting a cleanup

section. However, in our case studies, we did not have the need for the clean up section.

In the stub-assumptions section, the user may specify some stub methods; the rest of

the stubs are automatically generated by BEG. Specification of stub methods is similar to

specification of driver methods, except for an optional return val statement. The user

77

may also skip specification of the return statement and let BEG fill it with a value of the

appropriate type.

5.4 Extracting Assumptions

In this section, we discuss static analysis techniques used in BEG to extract certain envi-

ronment assumptions. In general, interactions between the unit and its environment can be

complicated and difficult to analyze: the environment may influence the unit’s data (e.g.,

by modifying objects flowing from the unit) and control (e.g., by invoking various methods

in the unit’s interface). There are techniques such as slicing, which can calculate all pos-

sible dependencies between the unit and its environment, however, slicing techniques can

be expensive. Static analyses targeted to calculate only certain aspects of unit-environment

interactions can be more effective and produce more compact Java models. Based on our

experience with case studies stubs are usually passive components with few callbacks and

synchronization, therefore, we mainly concentrate on calculating data dependencies. Specif-

ically, we describe side-effects analysis, which calculates a set of objects possibly modified

by a method, and points-to analysis, which for each reference variable calculates a set of ob-

jects that the reference may point to. The points-to analysis is a prerequisite for side-effects

analysis.

Next, we present our points-to and side-effects analysis, described in detail in [87, 85].

To perform case studies presented in this thesis, we needed to make it extensible and tune

it to different domains. As a result we implemented extensions that track containment and

features specific to GUI and J2EE libraries. These extensions do not change the algorithm

that calculates points-to and side-effects information. Only the definition of what constitutes

the unit under analysis needs to reflect domain-specific information. This is done using

extensible APIs in BEG, which we describe in chapter 6.

As mentioned in section 2.1.3, we use Data Flow Analysis (DFA) to perform static

analysis. Note that a DFA is fully defined by the lattice of data values propagated through

78

CFG, the transfer functions, the combination operator, the direction of propagation, and

the initial data values.

Points-to and side-effects analysis results are only dependent on assignment statements

and method calls. Assignments in three-address form, l.f = r, always refer to a local

reference-type variable l in forming the target address; due to the 3-address form, we do

not need to consider complex dereference expressions on the left-hand side of assignments;

due to reference type of l, the points-to analysis keeps track only of non-scalar type variables;

assignments to scalar-type variables are ignored. We restrict our analysis presentation to

the following statements:

identity: l = p

copy: l = r

load: l = r.f

store: l.f = r

allocation: l = new C

invoke expression: r0.m(r1, ...,rn)

invoke statement: l = r0.m(r1, ...,rn)

Our analyses treat array access expressions similarly to field access expressions and non-

virtual invoke statements similarly to non-virtual invokes; for simplicity we restrict our

language and limit the presentation to reference and scalar types and to virtual invokes.

For details on other statements, please refer to [85].

5.4.1 Abstract Access Paths

Fundamental to our analyses is our approach for representing the memory locations that

a statement may reference. Our approach is based on length-limited access path based

analyses (e.g., [51]) and parameterized analyses (e.g., [54]). We combine these approaches

79

1 class Node{
2 Node next;
3 Data data;
4 ...
5 }
6
7 class ...{
8 void m(Node n, Data d){
9 n.next.next.data = d

10 }
11 }

1 // Jimple representation:

2
3 class ...{
4 void m(Node n, Data d){
5 ...
6 t = n.next;
7 t = t.next;
8 t.data = d;
9 }

10 }

Figure 5.4: Example in Java and Jimple to Demonstrate Naming of Access Paths

and adapt them to our setting in which the analysis distinguishes between unit data and

environment data to precisely characterize points-to information for the former, but not the

latter.

The goal of our analysis is different from the traditional goal of points-to analyses. In

particular, we do not use analysis results to determine potential aliasing relationships and

therefore do not require a canonical representation of points-to information. Our analyses

are used to safely represent, at each program point, the state of the program, which maps

variables to their values; values can be heap locations, a special value null denoting a null

pointer, or scalar values (e.g., integers, reals, etc.).

An important part of an access path based points-to analysis is coming up with a scheme

for access paths used to name heap objects. To give the intuition behind our access paths

names, let us look at a simple example shown in Figure 5.4; the right side shows the example

in Java, the left side shows the code using the Jimple representation. Class Node shown in

the example serves as a list where Data objects may be stored. Suppose, types Node and

Data are unit types and suppose method m is an environment method under analysis. Let

us trace what happens to unit data being passed to the method m.

Tracing Assignments Through the Concrete Heap For demonstration purposes,

suppose that before the first assignment of method m (in Jimple) is executed, the heap

80

dn

next

data

t = n.next; t.data = d;t = t.next;

t t→ n.next.next

dn

next

data

t = n.next; t.data = d;t = t.next;

t t→ n.next

dn

next

data

t = n.next; t.data = d;t = t.next;

t t→ n.next.next

Figure 5.5: Tracing Assignments Through the Concrete Heap

looks as shown in the upper left picture of Figure 5.5. Then, the next three pictures show

the heap after executing the first, second, and third assignments. It is easy to see that at

the end of the method execution the variable t points to a heap node that may be named

n.next.next. However, in general, chains of references through the heap may be infinite

and cannot be statically bound to heap objects. One solution to this problem is to use a

k-limiting bound on the length of access paths. Let us trace the example using an analysis

with 1 as a k-limiting constant.

Tracing Assignments Using 1-Limited Analysis Figure 5.6 (left) shows the heap

after execution of the first assignment. The picture is the same as before except now we

are using dashed arrows rather than solid ones to show relationships between reference

variables and heap objects. This is done to emphasize that according to the analysis results

81

dn

next

data

t = n.next; t.data = d;t = t.next;

t t→ n.next

dn

next

data

t = n.next; t.data = d;t = t.next;

t

Data Node

t→ chooseNode

Figure 5.6: Tracing Assignments Using 1-Limited Analysis

the variable t may point to a node named n.next. After the second assignment is executed,

t may point to the node that can be named n.next.next, beyond k-limit. Usually, once the

k-limiting bound is reached, the analyses loose some or all information about heap locations

being described. However, in Java, we can exploit the type information and trace that after

execution of the second assignment, the variable t may point to a heap object of type Node

(not to any heap object). The right side of Figure 5.6 shows this by having t point to any

heap object (shaded) of type Node. We use a special name chooseNode to denote a set of all

heap objects of type Node at a given program state.

Note that this analysis yields very imprecise results: after the execution of the third

statement, the data field of every shaded box may point to d. To improve the precision of

this analysis, we track reachability of heap objects.

Tracing Assignments Using 1-Limited Analysis with Reachability Figure 5.7

shows steps for the analysis improved with reachability tracing. The heap is shown as

before after the execution of the first assignment. However, after the execution of the sec-

ond assignment, this analysis can distinguish between all heap objects of type Node from

the heap objects of type Node that are also reachable from the node n.next through heap

references. The shaded objects on the right side of Figure 5.7 show the set of Node objects

that t may point to after the execution of the second assignment. We use a special name

82

dn

next

data

t = n.next; t.data = d;t = t.next;

t t→ n.next

dn

next

data

t = n.next; t.data = d;t = t.next;

t t→ reachUnitNode(n.next)

Figure 5.7: Tracing Assignments Using 1-Limited Analysis with Reachability

reachUnitNode(n.next) to denote this set.

This example gives the intuition behind exploiting the type and reachability information

for heap objects. Note that the access paths explained in the example started with n, the

name of the formal parameter. In general, access paths may start with a name for an

object of unit type that an environment method may modify. There are several categories

of such objects: globals, parameters, and newly created objects. It is convenient to set up a

symbolic location for each of them: global locations, denoted by C.f , parameter locations,

denoted by pi, with p0 representing this, and newly allocated objects, denoted by newc,s,

for all instances of c created by statement s.

Note that object may flow to the environment through the return value of called methods.

For each object returned from a method, we can trace whether the object is a parameter,

global, or newly created object. The above symbolic locations are called roots. The naming

scheme for roots guarantees uniqueness of their names within a method.

Formal Discussion

More formally, our points-to representation captures information relative to a given method

and is parameterized by a root symbol that represents memory locations. There are three

kinds of memory locations that may serve as a root: public static fields of classes (denoted

C.f), method parameters (denoted pi), and newly allocated data (denoted newc,s for objects

83

of type C allocated at statement s). New locations are modeled as per-allocator summary

locations which are supported by the environment code generation described in Section 5.5.

Our representation makes use of operations that denote sets of heap-allocated objects in a

given state. One can access the set of all allocated instances of class C (denoted choosec),

and the set of allocated instances of class C that are reachable from memory location l via

paths through the heap that only reference unit data (denoted reachUnitc(l)).

A memory location holds a value that is a scalar, a null, or a heap object. To repre-

sent non-scalar memory locations tracked by the points-to analysis, we denote them by an

abstract access path π ∈ AbsPath that may be defined by the following regular expression:

π = [(C.f | pi | newc,s)f
0−k
U (reachUnitc)?] | choosec | null

An access path is either choosec expression, a null, or a length-limited path that starts at a

root symbol, consists of 0 to k dereferences of field accessors of unit type, and is optionally

terminated in a reachable expression. Alternatively, we use notation reachUnitc(π) (where

the parameter is understood to be the path prefix) to denote (π)reachUnitc. We refer to

a prefix of a path with j field dereferences as π[j]. The semantics of a path are defined

relative to a program state. Paths represent field accesses that are type correct in the sense

that π[j] with type C can only be extended to length π[j + 1] by a field f where class(f) is

C. Length-limited paths end in either the location referred to by the field access sequence

or a reachUnitc(π[k]) expression. In the former case, the access path represents instances of

class C that are reachable via the chain of field dereferences denoted by π in state s. In the

latter case, the access path represents instances of class C that are reachable via a chain of

field dereferences through unit data from any of the memory locations denoted by π[k] in

state s. Note that a variable, l ∈ V ar, of a reference type may point to a set of locations,

Π ∈ P(AbsPath), whose types are assignment-compatible (i.e., π ∈ Π⇒ type(π) ≤ type(l),

where ≤ is the sub-typing relation).

Our abstract access paths provide a different degree of precision compared to traditional

k-limited access path based representations (e.g., [51]) in that they are well-typed and they

84

are able to represent heap reachability relationships between locations.

A pair of abstract access paths is ordered (≤) based on the containment order of the

sets of memory locations denoted by the pair. According to the semantics described above

the order is:

∀j≤i π[i] ≤ reachUnittype(π[i])(π[j])

∀c,i reachUnitc(π[i]) ≤ choosec

This ordering is lifted to sets of symbolic locations as follows:

(∀a∈S∃b∈S′a ≤ b)→ S ≤ S ′

An abstract access path can be extended by a field dereference (denoted π.f) using rules

that distinguish unit locations from environment locations. If π.f refers to an environment

location, the analysis does not keep track of it:

type(f) 6∈ U =⇒ π.f = choosetype(f)

Otherwise, if π.f refers to a unit location, we must consider the structure of π:

type(f) ∈ U =⇒ π.f =


(root)f iUf if π = (root)f iU ∧ i < k
reachUnittype(f)(π) if π = (root)fkU
reachUnittype(f)(π

′) if π = reachUnitc(π′)

choosetype(f) if π = choosec

An abstract access path rooted in a formal parameter π(p) can be prefixed (denoted

π(π′/p)) by substituting the name of formal parameter p, used in defining access path, with

type and length appropriate path prefix π′. If a prefix operation causes the sequence of field

dereferences to exceed k then the extension operator is applied for each field dereference

beyond k. The intuition here is that we calculate a symbolic analysis summary for a method

m and then use the prefixing operator (denoted m(π̄/p̄)) to determine the effects at a call

site by substituting the actual parameters, represented by π̄, for the symbols representing

the formal parameters, p̄, of m.

Extension and prefixing operations can be lifted to sets of abstract access paths Π ∈
P(AbsPath) by extending or prefixing each constituent path (denoted Π.f and Π(π̄/p̄)).

85

5.4.2 Points-to Analysis

Our points-to analysis is a flow-sensitive, forward-flow analysis. A set of points-to mappings

from method reference-type locals to sets of abstract locations that they may/must point

to

Ptmay, P tmust : V ar → P(AbsPath)

is calculated for entry and exit of each statement in the flow graph. An additional

mapping

Ptmaym , P tmustm : Method→ P(AbsPath)

maps methods to their return locations as calculated by the points-to analysis at the

exit point of the methods.

The lattice of the may analysis is a powerset lattice L = (P(V ar → P(AbsPath)) with

partial order ⊆, least upper bound operator ∪, and least element ∅. The lattice of the must

analysis is a powerset lattice L = (P(V ar → P(AbsPath)) with partial order ⊇, least upper

bound operator ∩, and least element V ar → P(AbsPath). The initial data flow set is empty

for both analyses. Sets are combined at flow-graph merge points by unioning the images of

mappings with the same domain element for may analysis and intersecting them for must

analysis.

The data flow equations are defined as follows:

Ptmayentry(s) =
⋃
{Ptmayexit (s

′) | s′ ∈ pred(s)}

Ptmayexit (s) = (Ptmayentry(s)−Kill(s)) ∪Gen(s)

Ptmustentry(s) =
⋂
{Ptmustexit (s′) | s′ ∈ pred(s)}

Ptmustexit (s) = (Ptmustentry(s)−Kill(s)) ∪Gen(s)

To simplify presentation, we define operation Locs(l, s) = {π | (l → π) ∈ Ptentry(s)},
that given the local variable l and the statement s, returns the set of locations that l

86

may/must point to at the entry point of s; to further simplify the notation, we omit the

second parameter s, but it is understood that Locs(l) is evaluated using the may/must

points-to information at the entry point of statement under analysis.

We define transfer functions for assignment statements s shown in Figure ?? in terms

of Kill/Gen functions. For assignment statements, the Kill sets are of the form (to avoid

specifying two sets of functions, we omit may/must superscript for Ptentry(s)):

Kill(l = ...) = {l→ Π | (l→ Π) ∈ Ptentry(s)}

Kill(l.f = r) = {l′ → π | (l′ → π) ∈ Ptentry(s) ∧

∃i | π[i] ∈ Locs(l).f}

The Kill function for the store statement calculates all references l′ that may/must

point to a location whose access paths π contains the heap reference f that gets modified

by the statement. As a safe approximation, such variables will point to choosetype(l′) after

the statement.

For statements whose assigned type is not in the unit the Gen set is:

Gen(l = ...) = {l→ choosetype(l)}

In all other cases the Gen sets for statement s are:

Gen(l = p) = {l→ {p}}

Gen(l = r) = {l→ Locs(r)}

Gen(l = r.f) = {l→ Locs(r).f}

Gen(l.f = r) = {l′ → choosetype(l′) | (l′ → π) ∈ Kill(s)}

Gen(s: l = new C) = {l→ {newc,s}}

Gen(l = r0.m(r1, . . .)) = {l→ Ptm(m)(¯Locs(ri)/p̄i)}

Gen(l = (C)r) is defined using operation setType(π,C). The operation modifies the

type of abstract access path π to C, e.g., setType(chooseObject,MyData) = chooseMyData.

87

This operation is lifted to sets of abstract access paths by modifying the type of each

constituent path.

Gen(l = r0.m(r1, . . .) is defined using Ptm(m) which is a set of return locations as

calculated by the points-to analysis for m. Return locations described by abstract access

paths rooted in a formal parameter π(pi) are prefixed with the abstract access paths that

describe locations of the corresponding actual parameter ri; prefixing of π(pi) with locations

of ri is denoted π(Locs(ri)/pi). Applying prefixing to all return locations in Ptm(m), we

get the Ptm(m)(¯Locs(ri)/p̄i) used in the definition of the Gen function.

5.4.3 Side-Effects Analysis

Side effects occur in store statements l.f = r. Our side-effects analysis uses the symbolic

locations calculated for l at an assignment statement to determine the set of objects whose

fields may be referenced as the target of the assignment. The value of the right-hand side of

such an assignment is also safely approximated by looking up the abstract values referenced

by r.

As mentioned previously, we calculate both may and must side-effects information. These

are flow-sensitive, forward flow analyses. The analyses relate side-effected symbolic locations

to sets of abstract values

AbsV alue = {AbsPath ∪ Scalar>}

Note that Scalar> is the domain of values for all non-reference variables lifted to contain

a >t value, for each type t, that represent all possible values of type t; the values in Scalar>

are similar to values in a constant propagation lattice [58], however, our analysis can keep

track of a set of constant values. An abstract value va ∈ AbsV alue such that va = π(p) can

be prefixed (denoted π(π′/p)). Abstract value prefixing is defined analogously to prefixing for

abstract access paths; prefixing for scalar type values or access paths that do not originate in

a formal parameter produces no change. Prefixing operation can be lifted to sets of abstract

values V ∈ P(AbsV alue) by prefixing each constituent value (denoted V (π̄/p̄)).

88

A set of side-effects mappings from abstract locations to sets of abstract values

Semay, Semust : AbsPath→ P(AbsV alue)

is calculated for entry and exit of each statement in the flow graph. The lattice of the

may analysis is a powerset lattice L = (P(AbsPath→ P(AbsV alue)) with partial order ⊆,

least upper bound operator ∪, and least element ∅. The lattice of the must analysis is a

powerset lattice L = (P(AbsPath→ P(AbsV alue)) with partial order ⊇, least upper bound

operator ∩, and least element AbsPath → P(AbsV alue). Sets are combined at flow-graph

merge points by unioning domain values with the same AbsPath elements for may analysis

and by intersecting them for must analysis. The initial data flow sets for may and must

analyses are empty.

Transfer functions are defined for store and invoke statements as follows:

Semayentry(s) =
⋃
{Semayexit (s

′) | s′ ∈ pred(s)}

Semayexit (s) = (Semayentry(s)−Kill(s)) ∪Gen(s)

Semustentry(s) =
⋂
{Semustexit (s′) | s′ ∈ pred(s)}

Semustexit (s) = (Semustentry(s)−Kill(s)) ∪Gen(s)

For clarity we define V als(r, s) = Locs(r, s)∪Scalars(r, s), where Scalars(r, s) is defined

for a scalar type r and returns a set of abstract scalar values r may hold at the entry

point of statement s. For simplicity we omit specifying the second parameter s from these

operations. Scalar(r) is evaluated to a scalar constant if isConst(r) = true and is evaluated

to >t otherwise.

For store statements where l may point to at most one memory location we can overwrite

previous values of l.f , i.e., perform a strong update. The Kill set in such a case is defined as

follows (to avoid presentation of two sets of transfer functions we omit specifying superscripts

89

may/must for Seentry(s)):

Kill(l.f = r) = {π.f → V | π ∈ Locs(l) ∧

(π.f → V) ∈ Seentry(s) ∧ isSingular(l)}

If l may point to more than one memory location, overwriting previous values of l.f may

be unsafe. For such cases the Kill set is empty; this is a weak update, which keeps previous

values of l.f.

Gen sets for store and invoke statements, s, are defined as:

Gen(l.f = r) = {π.f → V als(r) | π ∈ Locs(l)}

Gen(r0.m(r1, . . .)) = {π(¯Locs(ri)/p̄i)→ V (¯Locs(ri)/p̄i) |

(π → V) ∈ Sem)}

where Locs(l) denotes a set of locations l may point to according to either must or may

points-to analysis; Sem denotes either the must or may analysis summary for m. For all

other statements the identity transfer function is used.

5.4.4 Analyzing Swing/AWT and J2EE components

As discussed in sections 4.1 and 4.2, when analyzing Swing/AWT and J2EE library classes,

we want to keep track of side-effects to specific fields in the environment. The algorithm to

calculate points-to and side-effects analyses does not need to change, however, the definition

of the unit has to reflect domain-specific information.

In addition to using side-effects analysis to track domain-specific features like visibil-

ity, enabledness, and containment, we also found it useful to have automated support for

generation of user events, a feature common for both GUI and J2EE applications.

Figure 5.8 shows actionPerformed() method implementation from the ButtonDemo

example discussed in section 4.1 and perform() method from the CreateUserHTMLAction

90

1 //GUI event -handling example

2 public void actionPerformed(ActionEvent e) {
3 if (e.getActionCommand (). equals("disable")) {
4 b2.setEnabled(false);
5 b1.setEnabled(false);
6 b3.setEnabled(true);
7 } else {...}
8 }
9 //J2EE event -handling example

10 public Event perform(HttpServletRequest request)
11 throws HTMLActionException {
12
13 String userName = (String)request.getParameter("j_username");
14 String password = (String)request.getParameter("j_password");
15 String password2 = (String)request.getParameter("j_password_2");
16 ...
17 if (userName != null && password != null)
18 return new CreateUserEvent(userName ,password);
19 return null;
20 }
21 }

Figure 5.8: GUI and J2EE event-handling method examples

event handling class, taken from the Pet Store example described in section 4.2. While these

two event-handling methods use different APIs, they perform a similar task of identifying

the contents of parameter object, which encodes user inputs, e.g., the type of button clicked

("disable"), the text field filled out ("j_username"). Note that constant strings are used

to denote the type of button, text field, etc. Such constants are easily identified using a

simple scanning algorithm, which walks over event-handling methods (using domain-specific

information about event-handling APIs) and looks for constant strings used as parameters

to domain-specific APIs used to unwrap objects that encode user events. The discovered

information can be used to populate user event objects with concrete data.

Figure 5.9 shows examples of populating ActionEvent object used in the ButtonDemo

driver and populating HttpServletRequest object used in the Pet Store driver.

91

1 //GUI event population example

2 ActionEvent actionEvent = new ActionEvent("disable");
3
4 //J2EE event population example

5 HttpServletRequestImpl createUserEvent=new HttpServletRequestImpl("createUser");
6 createUserEvent.setParameter("j_username", Abstraction.TOP_STRING);
7 createUserEvent.setParameter("j_password", Abstraction.TOP_STRING);
8 createUserEvent.setParameter("j_password_2", Abstraction.TOP_STRING);

Figure 5.9: GUI and J2EE event population examples

Type Concrete Abstract Choice
Bool false Abstraction.TOP_BOOL Verify.randomBool()
Int 0 Abstraction.TOP_INT Verify.randomInt(n)
String ”top” Abstraction.TOP_STRING Verify.randomObject(”String”)
C ∈ E null C.TOP_OBJ Verify.randomObject(”C”)
C ∈ U null n/a Verify.randomObject(”C”)

Table 5.1: Value Generation for JPF Framework

5.5 Code Generation

Environment code generation can be separated into: action code generation, pattern code

generation, and generation of the outer shell for drivers and stubs. For LTL pattern, the

tableau method from [34] is used to construct a transition system emitted as Java code.

For regular expressions, pattern code is generated from the abstract syntax trees for regular

expressions by matching patterns in the tree and emitting Java code. Actions form the leaves

of regular expression syntax trees, hence code generation for actions is simply a method call

from the regular expression code generation pass.

5.5.1 Action Code Generation

As we described in section 5.3.1, users can describe program actions using various Java

expressions including special modeling primitives used to denote choice and abstract values.

Users may also omit specifying values. To fill omitted values, BEG performs types checking

to calculate the appropriate types of values. There are three categories of values BEG can

emit: concrete, abstract, and choice values. Table 5.1 shows value code generation for some

92

r|s → switch (chooseInt(1)) {
case 0: code(r); break;
case 1: code(s); break;

}
r; s → code(r); code(s);
r∗ → while (chooseBool()) {code(r);}
r? → if (chooseBool()) {code(r);}
r+ → do { code(r);} while (chooseBool())
r + {n} → for (int i=0; i<n; i++) { code(r);}
r + {n, m} → for (int i=0; i<n+chooseInt(m-n); i++) { code(r); }

Figure 5.10: Assumption Semantics

common types of values. By default, BEG emits TOP values for scalars, Strings and types

belonging to the environment and choice values for reference types belonging to the unit.

For example, a query for method m with an empty formal parameter type list on class

C described in Section 5.3.1 would return the full descriptions of methods 1, 2 and 3. Code

would then be emitted that allowed for each of the possible calls as follows:

if (chooseBool ()) {
chooseClass("C").m(chooseClass("P"), chooseClass("Q"));

} else if (chooseBool ()) {
chooseClass("C").m(chooseClass("P"));

} else {
chooseClass("C").m();

}

5.5.2 Pattern Code Generation

Regular expression assumption specifications are mapped to Java using the templates shown

in Figure 5.10; for clarity we use r and s to refer to distinct instances of spec from the syntax.

These templates use the non-deterministic choice constructs mentioned previously and are

defined recursively, using code to refer to the code fragment for a given subexpression.

For expressions that are program actions, the code call generates code as described in the

preceding section.

Much of the behavior of generated model code is internal to the environment. Internal

environment states and actions are hidden in our models by embedding them in atomic

statements. Atomic statements are defined by pairs of beginAtomic() and endAtomic()

93

method calls. No lexical structuring of these calls is required, rather an atomic statement

extends along any path from an instance of beginAtomic() to an instance of endAtomic().

We hide environment details by emitting endAtomic() calls immediately before the code

for a program action and beginAtomic() calls immediately after the code for a program

action. Additionally, the first statement in each environment thread is beginAtomic() and

the last is endAtomic(). This strategy has two consequences: internal environment behavior

does not contribute to state explosion and internal actions are elided from counter-examples

making them shorter and easier to read.

5.5.3 Driver and Stub Code Generation

Throughout this thesis, we give many examples of generated drivers and stubs. Section 3.1

presents a driver generated from regular expressions and stubs generated from side-effects

summaries for the observer-observable example, section 7.1 presents a driver generated from

regular expressions and stubs for NASA’s autopilot tutor example, section 7.2 presents

stubs generated for GUI libraries, section 7.3 presents drivers generated from regular ex-

pressions and stubs for two modules of Fujitsu’s I-BPM software, and section 7.4 presents

a driver generated from regular expressions and stubs for J2EE components. In addition,

Appendix A gives more examples, e.g, Appendix A.1.1 shows code for the universal driver

for the observer-observable example and Appendix A.1.2 shows observer’s stubs generated

from user specifications.

5.6 Limitations

While the BEG specification language is rich enough to support most of Java constructs,

it does not have support for all of Java. Some Java statements can be specified using

the current support, e.g., the if statement can be specified using the ? operator, loops

can be specified using the * operator. However, some features can not be simulated, for

example, there is no support for the synchronized blocks inside method bodies. Many

94

synchronization aspects of the environment can be encoded: in the driver specifications,

one can specify the driver threads and in stub specifications, one can include synchronized

into the environment methods’ signature. However, there is not current support for inner

synchronization, e.g., one cannot specify an environment method that takes its parameter

and modifies it, while holding a lock on it. None of our case studies needed support for

such a feature. However, in future, the BEG specification language can be extended to

handle more of Java expressions and statements, including support for a method’s inner

synchronized blocks and property specification, e.g., assertions.

Similarly, static analysis in BEG does not calculate all possible unit-environment interac-

tions. There are techniques such as slicing, which can calculate all possible unit-environment

dependencies. However, slicing usually requires closed pure Java programs, is more expen-

sive than environment generation, and produces fewer reductions. By design, for scalability,

BEG skips some dependencies (e.g., concurrency-related dependencies). This may be ap-

propriate, since most stubs execute atomically, with no interference [28]. Static analyses in

BEG were driven by case studies, which showed that data effects were effective for mining

domain-specific features like containment.

95

Chapter 6

BEG Implementation and Usage

BEG is implemented in Java on top of the Soot framework [91, 76]. BEG uses the fol-

lowing Soot features: at the front end, BEG uses Soot’s class loading; to perform static

analysis, BEG uses Soot’s class hierarchy, method control flow graph and call graph repre-

sentations; to perform interprocedural side-effects analysis, BEG uses Soot’s intraprocedural

DFA framework. We discuss the usage of each Soot feature in the following sections.

6.1 High-Level Architecture

Figure 6.1 shows a high-level architecture of BEG. There are four main modules in BEG:

interface finder, assumptions acquirer, code generator, and code printer. BEG has an ex-

tensible plug-in architecture. Each of the modules includes an abstract class that can be

extended and customized for specific domains or user needs. ApplInfo data structure is

used to carry information about the application under analysis from one module in BEG to

another. ApplInfo is also extensible and can encode domain-specific information about the

application under analysis. Each BEG module adds information to the ApplInfo instance

being passed.

The main class, EnvGenerator, reads a configuration file and creates instances of the fol-

lowing types, according to the configuration file: ApplInfo, InterfaceFinder, AssumptionsAcquirer,

CodeGenerator, and CodePrinter. The main class also loads unit classes using Soot, which

loads and stores class files as instances of SootClass. A SootClass has information about

96

InterfaceFinder

ApplInfo findInterface(ApplInfo)

AssumptionsAcquirer
ApplInfo findInterface(ApplInfo)

CodeGenerator

ApplInfo generateCode(ApplInfo)

CodePrinter

void printCode(ApplInfo)

ApplInfo

ModuleInfo unit

ApplInfo

ModuleInfo unit

ModuleInfo env

ApplInfo

ModuleInfo unit

ModuleInfo env

Assumptions asmp

ApplInfo

ModuleInfo unit

ModuleInfo env

Assumptions asmp

Code Files

EnvGenerator Config file
main(String[])

Fills unit

Finds env structure

Fills env methods with
bodies

Fills assumptions

Figure 6.1: BEG High Level Architecture

the name of the class, its parent, the interfaces it implements, a list of SootMethods and

SootFields of the class. A SootMethod has information about the name of the method, its

modifiers, its parameter types, return type, and a body, which consists of a list of locals and

a list of statements. Soot has support for several intermediate representations to encode

method body information: Baf, Jimple, and Grimp (see Soot tutorials [75]). In this thesis,

we use Jimple, a three-address bytecode representation which offers typed variables and

a limited number of statement kinds. Jimple is a convenient representation for data flow

97

1 public abstract class ApplInfo {
2 ModuleInfo unit;
3 ModuleInfo env;
4 EnvHierarchy hierarchy;
5 EnvCallGraph callGraph;
6 Assumptions assumptions;
7
8 // constructors

9 //get methods

10 //set methods

11 // domain defining methods

12 abstract boolean isRelevantType(Type type);
13 abstract boolean isRelevantClass(SootClass sc);
14 abstract boolean isRelevantMethod(SootMethod sm);
15 abstract boolean isRelevantField(SootField sf);
16 }

Figure 6.2: ApplInfo Class

analyses.

Next, we describe each module in greater detail. All BEG classes belong to edu.ksu.cis.envgen.*

packages. For brevity, we drop edu.ksu.cis.envgen from the package names.

6.1.1 Application Information

The ApplInfo data structure is used to carry information through the pipeline of BEG

modules. Figure 6.2 shows excerpts of its implementation. ApplInfo declares the following

fields used to store information about the program under analysis:

• ModuleInfo unit: This field keeps track of the unit classes, loaded by BEG’s main

class.

• ModuleInfo env: This field keeps track of the environment classes, methods, and

fields discovered by the InterfaceFinder module.

• EnvHierarchy hierarchy: This field keeps information about the hierarchy of the

program under analysis. EnvHierarchy may be different from the Soot’s hierarchy

because BEG-generated environment is usually smaller than the actual environment.

98

• EnvCallGraph callGraph: This field stores information about the call graph of the

program under analysis. EnvCallGraph may different from the Soot’s call graph be-

cause BEG can prune Soot’s call graph based on domain-specific information.

• Assumptions assumptions: This field gets filled by the AssumptionsAcquirer and

is used by the CodeGenerator to build bodies for environment methods.

The ApplInfo is an abstract class, which declares isRelevant*() methods used to

describe domain-specific information. These methods are used by various BEG modules:

• isRelevantType(Type type): describes relevant types. This method is used by the

points-to analysis to track points-to information for objects of relevant types only, e.g.,

unit type.

• isRelevantClass(SootClass sc): describes relevant classes. This method is used

by the unit interface finder to produce a smaller set of entry points into the unit, e.g.,

for GUI domains, only event-handling classes need to be considered.

• isRelevantMethod(SootMethod sm): describes relevant methods. This method is

used by the unit interface finder to produce a smaller set of entry points into the

unit, e.g., for GUI domains, only event-handling methods need to be considered. In

addition, information about irrelevant methods can be used to prune Soot’s call graph.

• isRelevantField(SootField sf): describes relevant fields. This method is used by

the side-effects analysis to track side-effects to specific fields only.

BEG includes several implementations of the ApplInfo:

• DefaultDriverInfo: Considers all public methods and fields as relevant. This class

can be used to generate universal or domain-unspecific drivers.

• DefaultStubInfo: Describes unit type fields as relevant. This class can be used to

generate stubs with side-effects to objects of unit type.

99

• GUIDriverInfo: Considers special event-handling APIs from Swing/AWT libraries as

relevant. This class can be used to generate drivers for GUI applications.

• GUIStubInfo: Encodes information about specific fields in Swing/AWT libraries, as

discussed in section 4.1.

• J2EEDriverInfo: Considers special event-handling APIs from J2EE library as rele-

vant. This class can be used to generate drivers for J2EE applications.

• J2EEStubInfo: Encodes information about specific fields in J2EE library, as discussed

in section 4.2.

Next, we describe BEG modules and how they use the ApplInfo data structure in greater

detail.

6.1.2 Interface Finders

The InterfaceFinder class is an abstract class with the following methods:

public abstract class InterfaceFinder {
public abstract void setOptions(Properties properties);
public abstract ApplInfo findInterface(ApplInfo applInfo);

}

There are two aspects of the unit-environment interface as discussed in section 5.2 and

there are two implementations of InterfaceFinder in BEG:

• UnitInterfaceFinder: implements the algorithm described in section 5.2.1: it walks

over unit classes and gathers relevant methods and fields. The algorithm uses imple-

mentation of isRelevantClass(), isRelevantMethod(), and isRelevantField() to

gather domain-specific entry points into the unit under analysis. This information is

later used for driver generation.

One can extend UnitInterfaceFinder to collect specific classes, methods, and fields

by providing their own implementation of isRelevant*() methods.

100

• EnvInterfaceFinder: implements the algorithm described in section 5.2.2: it walks

over unit classes and finds all external references to classes, methods, and fields. For

each external reference, EnvInterfaceFinder creates a new SootClass, SootMethod,

or SootField and stores them in the ModuleInfo env field of the ApplInfo object.

Note that EnvInterfaceFinder discovers the structural information about the envi-

ronment, not its behavior.

Before scanning the unit, the EnvInterfaceFinder builds a call graph. This is done to

resolve virtual invoke expressions. There are two options available in BEG: one based

on Class Hierarchy Analysis (CHA) and one based on call graph build by Spark [53].

The second one is done using a whole-program analysis and requires presence of the

main class and main method. Thus, the Spark call graph can be used only after driver

generation phase. CHA-based call graph can be used without a main class, however,

it is less precise.

6.1.3 Assumptions Acquirers

BEG has support for acquiring assumptions from two sources: user specifications and static

analysis.

User Specification

The module for reading user specifications includes a JavaCC-generated parser, based on

the specification language grammar described in section 5.3. The spec.SpecReader class ex-

tends AssumptionsAcquirer, parses, type checks a user specification and produces Assumptions

object which encodes the specification information. The Assumptions object is later used

by driver or stub generators to produce bodies for environment methods.

Static Analysis

Currently, BEG includes analysis.SideEffectsAnalyzer, which extends AssumptionsAcquirer

and walks over external references discovered by EnvInterfaceFinder, performing the inter-

101

procedural, compositional, parameterized, flow-sensitive points-to and side-effects analysis

described in section 5.4.

BEG uses Soot’s DFA framework, which, given an implementation of transfer functions,

merge operator, direction of data flow, and initial value, performs a fixed point computation

over the control flow graph of each method. Soot’s DFA framework is interprocedural, i.e.,

it walks over CFG for each method. We extend it by implementing transfer functions for

invoke statements, i.e., by building the interprocedural CFG on the fly.

BEG uses domain-specific information, encoded in isRelevant*() methods of the ApplInfo

instance to (1) scope the call graph and interprocedural CFG based on isRelevantMethod()

(2) scope points-to analysis based on isRelevantType(), and (3) scope side-effects anal-

ysis based on isRelevantField(). Depending on the implementation of isRelevant*()

methods, BEG can be tuned to produce side-effects to all unit-type fields, fields specific

to Swing/AWT libraries, or fields specific to J2EE libraries. One can provide their own

implementation of isRelevant*() methods to collect side-effects to specific objects in the

environment.

6.1.4 Code Generators

A code generator uses information encoded in the Assumptions object to build bodies for

environment methods discovered by the interface finder. As mentioned, we use Jimple to

perform scanning and static analysis techniques. We extended the Soot framework with

classes that represent Java bodies, Java statements and Java expressions. Code generators

build Java bodies and attach them to SootMethods.

Driver Generators

Driver generators build bodies for driver class methods. The following driver generators are

implemented in BEG:

• UnivDriverGenerator: builds run methods for universal threads, which perform all

possible sequences of actions on the unit.

102

• SpecDriverGenerator: builds run methods based on user specifications, as described

in section 5.5.

• J2EESpecDriverGenerator: builds a setup section according to mappings from events

to event handlers and, for each event, stamps out event-handling code customized

according to J2EE APIs, as described in section 4.2 and applied in section 7.4.

Stub Generators

BEG has implementations of the following stub generators:

• EmptyStubGenerator: builds empty bodies, inserts return statements if necessary.

• SpecStubGenerator: builds method bodies based on user specifications, as described

in section 5.5.

• SEStubGenerator: builds method bodies based on side-effects summaries produces by

side-effects analysis.

6.1.5 Code Printers

The CodePrinter is an abstract class that declares methods that can be configured to

produce code for different languages or frameworks:

1 public abstract CodePrinter{
2 public abstract void setOptions(Properties properties);
3 //class structure

4 public abstract void printClass(SootClass sc , FileWriter file);
5 public abstract void printMethod(SootMethod sm , FileWriter file);
6 ...
7 // modeling primitives

8 public abstract void public String printTopValue(Type type);
9 public abstract void String printRandomObjectCall(Type type);

10 ...
11 }

Currently, BEG provides implementation for JavaPrinter, which produces Java code.

One can extend the JavaPrinter to produce modeling primitives for different model check-

103

ing frameworks. By default, the JavaPrinter produces modeling primitives supported in

JPF.

Overall, BEG contains about 20K LOC, with 8K taken by JavaCC-generated files, which

implement a parser for BEG specification language.

6.2 BEG Options

BEG has a command line interface. The following command is used to run BEG:

java edu.ksu.cis.envgen.EnvGenerator -c <configfile >

where <configfile> is a name of the configuration file, which specifies concrete classes

to instantiate for each of the BEG modules, various BEG options, and unit classes.

Table 6.1 lists the BEG options (second column) and their values (third column). Columns

D (fourth column) and S (fifth column) denote whether the option is used to generate drivers

or stubs. Some options can be used for both. Default values are shown in bold font.

Options 1-5 show BEG’s extensible classes and their implementations available in BEG.

We previously described each of the implementations.

Options 6-16 can be used for driver generation and options 7-21 can be used for stub

generation. Most options are self-explanatory. Options model and ignoreModeling can

be used to scope code generation; options analyze and ignoreAnalyzing can be used to

scope static analysis, in addition to implementations of isRelevant*() methods; option

unitAnalysis can be used to force BEG to analyze unit classes. This option can be used

to analyze library packages without client code: by loading library packages as unit and

setting unitAnalysis to true.

6.3 Common Configurations

In this thesis, we employ user specifications to generate drivers and static analysis to gen-

erate stubs. Figure 6.3 shows the flow of these two approaches. Next we describe several

configurations used for the case studies in this thesis.

104

Option Value D S Description

01 DomainInfo DefaultDriverInfo X unit public methods and fields
GUIDriverInfo X GUI event handling APIs
J2EEDriverInfo X J2EE event handling APIs
DefaultStubInfo X unit types
GUIStubInfo X GUI stub features
J2EEStubInfo X J2EE stub features

02 InterfaceFinder UnitInterfaceFinder X finds unit interface
EnvInterfaceFinder X finds all external references

03 AssumptionsAcquirer SpecReader X X reads a spec file
SideEffectsAnalyzer X performs side-effects analysis

04 CodeGenerator UnivDriverGenerator X universal driver
SpecDriverGenerator X driver based on specs
EmptyStubGenerator X empty stubs
SpecStubGenerator X stubs based on specs
SEStubGenerator X stubs based on se summarries

05 CodePrinter JavaPrinter X X prints Java code

06 numThreads <int> (default 2) X number of driver threads

07 specFileName <fileName> X X specification file name

08 printActions true/false X X flag to print env actions

09 outputDir <dirName> X X output directory

10 outputPackage <packageName> X X package prefix

11 outputValue concrete/choice/abstract X X output values

12 framework jpf/bogor X X modeling primitives support

13 unit <classNames> X X unit classes

14 unitPath <pathNames> X X unit directories and jars

15 model <pathNames> X X model only these packages

16 ignoreModeling <pathNames> X X do not model these packages

17 analyze <pathNames> X analyze only these packages

18 ignoreAnalyzing <pathNames> X do not analyze these packages

19 mainClass <className> X main class

20 callGraph cha/spark X type of call graph

21 unitAnalysis true/false X flag to analyze unit classes

Table 6.1: BEG Options

105

InterfaceFinder

AssumptionsAcquirer

CodeGenerator

CodePrinter

Code Files

EnvGenerator

Config file

Fills unit

Finds env
structure

Fills env methods
with bodies

Fills
assumptions

UnitInterface

Finder
EnvInterface

Finder

SpecReader SideEffects

Analyzer

SpecDriver

Generator

SEStub

Generator

Java

Printer

Config file

Figure 6.3: BEG Common Configurations for Driver and Stub Generation

6.3.1 Driver Generation

• Universal Driver Generation

Appendix A.1.1 shows configuration file for generation of universal drivers for the

observer-observable example, described in section 3.1.

• Using Specifications

Configuration for driver generation for the observer-observable example, described in

section 3.1.

ApplInfo = applinfo.domain.DefaultDriverInfo
InterfaceFinder = applinfo.UnitInterfaceFinder
AssumptionsAcquirer = spec.SpecReader

106

CodeGenerator = codegen.SpecDriverGenerator
specFileName = specs/observer -re.spec
unit = Subject Watcher

• Domain-Specific Driver Generation

Configuration used to generate drivers for the Pet Store example described in section

7.4.

ApplInfo = applinfo.domain.J2EEDriverInfo
InterfaceFinder = applinfo.UnitInterfaceFinder
AssumptionsAcquirer = spec.SpecReader
CodeGenerator = codegen.SpecDriverGenerator
specFileName = specs/petstore.spec
unit = petstore classes

6.3.2 Stub Generation

• Empty Stubs Appendix A.1.3 shows the BEG configuration for generation of empty

stubs for the observer-observable.

• User Specifications Appendix A.1.2 shows the BEG configuration for generation of

stubs for the observer-observable from user specifications.

• Side-Effects Analysis Configuration for stub generation for the observer-observable

example, using side-effects analysis:

ApplInfo = applinfo.domain.DefaultStubInfo
InterfaceFinder = applinfo.EnvInterfaceFinder
AssumptionsAcquirer = analysis.data.SideEffectsAnalyzer
CodeGenerator = codegen.SEStubGenerator
unit = Subject Watcher

• GUI Components Analysis

The following configuration is used to process the button demo example described in

section 4.1:

ApplInfo = applinfo.domain.GUIStubInfo
InterfaceFinder = applinfo.EnvInterfaceFinder
AssumptionsAcquirer = analysis.data.SideEffectsAnalyzer
CodeGenerator = codegen.SEStubGenerator
unit = ButtonDemo

107

• J2EE Components Analysis

The following configuration is used to process the Pet Store example, described in

section 7.4:

ApplInfo = applinfo.domain.J2EEStubInfo
InterfaceFinder = applinfo.EnvInterfaceFinder
AssumptionsAcquirer = analysis.data.SideEffectsAnalyzer
CodeGenerator = codegen.SEStubGenerator
unit -path = <petstore path >

• Libraries without Client Code

BEG can be configured to analyze libraries without supplying their client code.

unitAnalysis = true
unitPath = <lib jars >

When the flag unitAnalysis is on, BEG will load unit classes and analyze them. This

option is useful when stubs are needed for a library package without knowing which

specific classes are used ahead of time.

6.4 Limitations

BEG is configured to run once, to generate drivers or stubs but not both. The tool can be

extended to generate both drivers and stubs on the same run. BEG can also be extended

to run multiple times and be invoked from another tool.

108

Chapter 7

Experience

We have applied BEG to a variety of examples. A number of multi-threaded Java programs

that have been the subject of analysis in literature have been re-verified by generating the

previously hand-built environments with BEG. In addition to the Observer-Observable ex-

ample, these examples include: a Producers-Consumers framework for exercising a bounded

buffer, a generic Readers-Writers synchronization framework, and dining philosophers with

host, a classic synchronization problem.

While BEG proved to be useful in generating environments for these small systems, the

tool support is much more valuable when attempting to reason about properties of larger

software systems. Our first large case study was NASA’s Autopilot simulator [74], described

in section 7.1. This application is implemented as Java applet with a GUI implemented

using Swing and AWT libraries. The Autopilot motivated our domain-specific approach to

environment generation for GUI applications, discussed in section 4.1. Section 7.2 presents

our experience with model checking a collection of GUI examples, including the ButtonDemo,

described in 4.1.

Next, we verified two modules belonging to Fujitsu Enterprise software, which were

previously verified with manually constructed environments. We were able to re-generate the

environments without much domain knowledge and compare performance of BEG-generated

environments with the manually built ones. We describe this experiment in section 7.3.

After that, a research group at Fujitsu, Japan, asked us to set up verification of J2EE

109

Figure 7.1: Autopilot Tutor GUI

applications using JPF. They had an internal framework for developing web applications

and wanted to evaluate model checking. As a proof of concept, they picked SUN’s Pet

Store example [82], whose architecture and event-handling mechanism was similar to their

internal applications. Thus, we embarked on verification of a whole J2EE application, not

just its separate modules. We studied J2EE frameworks and customized BEG to handle

J2EE-specific APIs, as described in section 4.2. Section 7.4 describes our experience with

the Pet Store example, which was introduced in section 4.2.

110

7.1 NASA’s Autopilot Tutor

In this section we describe environment generation and model checking results for an MD-11

Autopilot tutor [74]. This section is based on results previously reported in [86, 88].

The Autopilot tutor is a web-based application with a GUI that simulates the Autopilot

Mode Control Panel (MCP) and a Primary Flight Display (PFD) of an MD-11 aircraft

autopilot. Figure 7.1 shows the GUI of the tutor. A user may click on the buttons to

dial desired altitude and vertical speed, and advance the aircraft towards its goal altitude.

The autopilot tutor is implemented as an applet. The application code consists of more

than 3500 lines of code clustered in one class. These measures bely the true complexity

of the system as there is intensive use of java.awt and java.swing GUI frameworks that

influences the behavior of the system; in fact the main thread of control is owned by the

framework and application methods are invoked as application call-backs.

The autopilot tutor was checked for automation surprises, a term used to describe sce-

narios in Human-Machine Interaction (HCI) when a machine behaves differently from the

user’s expectation. An example of an automation surprise is the well known mode confusion

problem in civil aviation, where a pilot thinks that the autopilot is operating in one mode,

when in fact, it is operating in another. Specifically, in the case of the kill the capture mode

confusion [62], a pilot thinks he is going to capture his target altitude but the autopilot

misses the altitude.

Among the underlying causes of automation surprises are the complexity of automation

behavior (there may be many modes of operation, some unaccounted for), the user’s lack

of understanding of the machine behavior (inadequate user model), and the inability of

the interface to provide sufficient information to the user to unambiguously determine the

state of the machine (inadequate interface). All of these might lead to a situation where

the pilot’s mental model of the system behavior, i.e., the pilot’s understanding of how the

system should behave, is different from the actual system behavior.

To verify the autopilot tutor, one needs to extract models of the following components

111

in the system: (1) the user model (the pilot’s mental model), (2) the task the user is trying

to achieve (e.g., “take the aircraft to a certain altitude”), (3) the machine (the autopilot),

and (4) the interface between the user and the machine (knobs, wheels, and displays in a

cockpit) [18]. Next, we use our environment generation technique for constructing these

models and verifying their interaction. Specifically, the main class of the application, the

Autopilot, which extends java.applet.Applet and makes a large number of calls to AWT

methods to create and update the simulated cockpit displays, is treated as a unit under

analysis. The GUI components are stubbed out. The user tasks are used to construct

drivers and a pilot’s mental model is used to encode and check assertions in the code during

verification.

7.1.1 Driver Generation

Next, we describe some of the pilot’s tasks and sequences of actions that correspond to

achieving such tasks. All pilot’s tasks and their corresponding scenarios were taken from

the autopilot tutorial [74].

Pilot’s Actions

All of the tasks described in this section are achieved using combinations of clicking on the

following buttons on the display:

• the mcp altitude knob, which has four clickable areas: two symbols, plus and minus,

used to increment, and respectively decrement, the mcp altitude in increments of 100

(we will call these inrcMCPAlt and decrMCPAlt actions); and two symbols, pull and

push, representing pulling and pushing the knob (we will call theses pullAltKnob and

pushAltKnob actions).

• the mcp pitch wheel, which has plus and minus symbols for incrementing and decre-

menting of mcp vertical speed in increments of 100 (we will call these incrMCPVS/decrMCPVS

actions).

112

1 public void mouseClicked (MouseEvent e){
2 //MCP Alt Knob PULL

3 if ((e.getX()> mcpx+altcntx) && (e.getX() < mcpx+altcntx +(45/2)) &&
4 (e.getY()> mcpy+knobsy) && (e.getY() < mcpy+knobsy +(45/2)))
5 {
6 MCPKnobWheeln = 1;
7 mcpAltitude = mcpPreSelAltitude;
8 }
9

10 //MCP Alt Knob PUSH

11 if ((e.getX()> mcpx+altcntx) && (e.getX() < mcpx+altcntx +(45/2)) &&
12 (e.getY()> mcpy+knobsy -(45/2)) && (e.getY() < mcpy+knobsy))
13 { MCPKnobWheeln = 2;
14 if (vs >= 0) {mcpAltitude =((altitude+captureRegion)/100)*100;}
15 else{mcpAltitude =((altitude -captureRegion)/100)*100;}
16 mcpPreSelAltitude=mcpAltitude;
17 }
18 ...
19 }

Figure 7.2: Snippet of the mouseClicked Method

• the fly button, which is used to step the aircraft forward (we will call it the fly action).

• the init button, which resets the altitude of the aircraft to 5000 (we will call it the

start action).

As discussed in section 4.1.2, each time a user clicks on a button or performs any other

action on a screen of a GUI, an object of type Event is fired and sent to objects of type

Listener. Listener objects examine the event object and invoke a special event handling

code that corresponds to that particular type of event. This may result in the state change

of the underlying application as well as the state of the GUI itself.

In the case of the autopilot tutor, the display is a MouseListener on itself, and it

implements the mouseClicked(MouseEvent e) method, which, depending on where on the

screen the event was originated, invokes a different piece of code. Figure 7.2 shows a snippet

of code from this method. To detect the type of the event, the event-handling code inspects

the coordinates of the event objects. For each event, we manually inspected its coordinates,

for example, to simulate the incrMCPAlt action, we need to create an event with X =

113

400, Y = 110 and pass it to the mouseClicked method.

Pilot’s Tasks

Next, we describe some scenarios described in the autopilot tutorial:

• Climb/Descend and Maintain MCP Altitude

This goal is achieved by dialing the MCP altitude, pulling the altitude knob, and flying

the aircraft forward until the desired altitude is reached. More formally, we need to

execute the inrcMCPAlt/decrMCPAlt action some number of times, followed by the

pullAltKnob action, followed by the fly action as many times as required to meet

the goal.

Using the regular expressions notation, we can describe this scenario using the follow-

ing expression:

incrMCPAlt/decrMCPAlt *; pullAltKnob; fly* // until level off

• Capture MCP Altitude

The aircraft automatically transitions to this goal as it approaches the desired altitude

to level flight. This goal can be achieved by dialing the mcp altitude, pulling the mcp

altitude knob and stepping the aircraft forward until it is in a capture region. The

formal representation can be described as follows:

incrMCPAlt/decrMCPAlt *; pullAltKnob; fly* // until in capture region

• Climb/Descend and Maintain MCP - Fixed Rate of Climb/Descend (ROC/ROD)

This mode is achieved by rotating the pitch wheel (setting the vertical speed) while

the aircraft’s goal is Climb/Descend Maintain MCP Altitude.

incrMCPAlt/decrMCPAlt *; pullAltKnob; incrMCPVS/decrMCPVS *; fly*

• Climb/Descend Away from MCP Altitude - 2 sec

114

environment{
definitions{

pullAltKnob=mouseClicked(pullAltKnobEvent);
incrMCPAlt=mouseClicked(incrMCPAltEvent);
incrMCPVS=mouseClicked(incrMCPVSEvent);
fly=mouseClicked(flyEvent);

}
driver assumptions{

re{
Main:

Event incrMCPAltEvent = new MouseEventImpl (400, 110);
Event incrMCPVSEvent = new MouseEventImpl (540, 110);
Event pullAltKnobEvent = new MouseEventImpl (420, 130);
Event flyEvent = new MouseEventImpl (550, 440);
Autopilot autopilot = new Autopilot (); #

User: init (); incrMCPAlt *; pullAltKnob; fly*; incrMCPVS *; fly* #
}

}
}

Figure 7.3: Autopilot Assumptions

This goal is achieved by rotating the pitch wheel while the aircraft is in the capture

region and the vertical speed is low enough to allow the aircraft to stay in the capture

region after 2 sec and re-enter the Climb/Descend MCP Altitude-Cap mode.

incrMCPAlt/decrMCPAlt *; pullAltKnob; fly*; //until in capture region
incrMCPVS/decrMCPVS *; //small enough to stay within capture region
fly*

• Climb/Descend Away from MCP Altitude

This goal is achieved by rotating the pitch wheel while the aircraft is in the capture

region and the vertical speed is too high for the aircraft to stay within the capture

region.

setMCPAlt *; pullAltKnob; fly*; //until in capture region
setVerticalSpeed *; // too large to stay within capture region
fly*

115

1 public class MouseEventImpl implements MouseEvent
2 {
3 int X;
4 int Y;
5 public MouseEventImpl(int p1 , int p2){
6 X = p1;
7 Y = p2;
8 }
9 }

Figure 7.4: MouseEvent Stub

Driver Assumptions

For this system, we found it useful to name the user actions to improve the readability of

both the assumption specifications and generated counter-examples. As shown in Figure 7.3,

we used BEG’s facility for defining mnemonics for driver actions. The assumptions were

defined in terms of those mnemonics.

7.1.2 Stub Generation

BEG calculated the data effects of the AWT methods called from the Autopilot class and

generated safe approximation of the data effects on explicitly defined fields of Autopilot

and on fields inherited from AWT classes.

7.1.3 Verification Results

The autopilot model was checked for mode confusion problems by encoding a model of a

user’s understanding of the aircraft state. That user model was integrated with the system

to monitor the state of the autopilot. Assertions were inserted to compare the state of the

autopilot to the state of the pilot’s mental model; assertion violations indicated a mismatch

between the user model and the software’s state, which implies a potential mode confusion.

Next, we describe a simple pilot’s model designed to catch “kill the capture” errors.

116

1 import gov.nasa.jpf.jvm.Verify;
2 public class PilotMentalModel{
3 private Autopilot ap;
4
5 public static final byte climb = 1;
6 public static final byte descend = -1;
7 public static final byte hold = 0;
8
9 public static byte expectation = hold;

10
11 public PilotMentalModel(Autopilot a){
12 ap = a;
13 }
14 public void getExpectation (){
15 if(ap.mcpAltitude - ap.altitude >= 100)
16 expectation = climb;
17 if(ap.altitude - ap.mcpAltitude >= 100)
18 expectation = descend;
19 if(ap.altitude == ap.mcpAltitude)
20 expectation = hold;
21 checkExpectation ();
22 }
23 public void checkExpectation (){
24 Verify.assert(expectation != climb || ap.getMode () == climb);
25 Verify.assert(expectation != descend || ap.getMode () == descend);
26 Verify.assert(expectation != hold || ap.getMode () == hold);
27 }
28 }

Figure 7.5: Pilot’s Mental Model for Detecting Altitude Deviation Errors

Pilot’s Mental Model

We present a simple user model specifically built for identifying altitude deviation er-

rors. The task description identifies specification classes for the states of the autopilot.

We need to identify the states for the pilot model. Suppose, the user needs to identify

whether the aircraft is climbing, descending, or holding the altitude. This suggests three

specification classes: climb, descend, and hold. Figure 7.5 shows implementation of the

PilotMentalModel class. The user model contains three states (modes) and each of the

machine states is mapped to one of these categories, using method getMode(). The user

mode is identified by the method getExpectation(): the user looks at the interface of the

system and makes a prediction of whether the aircraft is climbing, descending, or holding

117

the altitude, e.g., if the goal altitude (ap.mcpAltitude) is greater than the current altitude

(ap.altitude), then the aircraft is climbing. The method checkExpectation() checks

that the predicted state of the machine corresponds to the appropriate actual state of the

machine. We used JPF’s assertions to encode the property (expected state =⇒ actual

state), which is equivalent to (!expected state || actual state), as shown on lines 24-26.

Note that since “kill the capture” mode confusions occur when the aircraft misses its

target altitude, i.e., keeps climbing or descending past the dialed altitude, having three

modes in the pilot model allows us to catch such scenarios. For other mode confusion

problems, we need to enrich the pilot’s model to include more modes.

Model Checking Results

We refined driver assumptions, shown in Figure 7.3, with a call to checkExpectation()

and bounded the number of actions by 10, as follows:

init (); incrMCPAlt ^{1 ,10}; pullAltKnob;
(checkExpectation (); fly)^{1 ,10}; incrMCPVS ^{1 ,10};
(checkExpectation (); fly)^{1 ,10}

Model checking the Autopilot class using a driver generated from the above specifica-

tion, JPF produced a counter-example. The original error trace was given in terms of all

Java statements included in the trace. When generating the autopilot driver, we turned

the printing of environment actions on. Then we wrote a script that processes a JPF coun-

terexample, containing System.out.println("EnvDriver:<action name>") and extracts

a sequence of driver actions only. After processing, the counterexample looks as follows:

init; incMCPALT; incMCPALT; pullAltKnob; fly; fly; incMCPVS; fly

This trace corresponds to the following sequence of actions: increment mcp altitude

twice (set the target altitude to 5200 starting from 5000), fly twice (advance towards 5200),

increment the vertical speed once, and fly once (steps the aircraft to 5300). If a user performs

these steps on the autopilot tutorial, he will see the aircraft climb past its goal altitude of

5200 and climb to 5300. In this state the assertions get broken: the user sees that the goal

118

altitude is below the current altitude and thinks that the aircraft should be descending, yet

the aircraft is in the climbing mode.

It is interesting to note, that a previous effort to build an environment for this application

required several months of manual work and yielded an environment model that was incon-

sistent with the actual environment implementation. From relatively simple specifications,

and running a side-effects analysis on the GUI components of the application, BEG gener-

ated an environment in less than 4 minutes that was consistent with the implementation,

modulo the fidelity of assumption specifications.

7.2 GUI Examples

In this section, we present our experience model checking a collection of GUI applications

under all possible interaction orderings enforced by a GUI. These applications, taken from

Java Swing tutorial [83], while not as large as many real applications, contain a representa-

tive collection of Swing components. This study appeared in [26].

7.2.1 Driver Generation: Event-Handling

As described in section 4.1, the event-handling mechanism in Swing applications is an ex-

ample of publish-subscribe pattern. When a user performs an action on a GUI component,

an event of corresponding type is fired and sent to listeners subscribed to be notified of that

event.

Since all event-handling APIs are known a-priori, we can construct a universal driver that

works for any GUI application written using Swing/AWT libraries. Figure 7.6 shows code

for such a driver. The main method executes an infinite loop. Inside the loop, the program

executes three statements (lines 7,8,10). In the method chooseTopWindow(), a window is

selected for interaction by prioritizing modal dialogs and choosing any top-level window, or

reachable sub-window, if none exist. That window is analyzed to determine the visible and

enabled components it contains and one of those is selected (line 8). The registered handlers

119

1 public static void main(String [] args) {
2 JComponent container;
3 //setup GUI

4 ...
5 //event -handling loop

6 while (true) {
7 window = chooseTopWindow ();
8 container = (JComponent) randomReachable("env.javax.swing.JComponent",
9 window , isVisible , isEnabled);

10 notifyListeners(container);
11 }
12 }
13 public static Window chooseTopWindow () {
14 Window window = null;
15 Vector modalDialogs = SwingUtilities.getModalDialogs ();
16 if (! modalDialogs.isEmpty ())
17 window = (Dialog) modalDialogs.lastElement ();
18 if (window == null) {
19 Vector topWindows = SwingUtilities.getTopWindows ();
20 window = (Window) randomReachable("env.java.awt.Window",
21 topWindows);
22 }
23 return window;
24 }
25 public static void notifyListeners(JComponent container) {
26 EventListener [] list = container.getListeners ();
27 ...
28 EventListener listener;
29 for (int i = 0; i < list.length; i++) {
30 listener = list[i];
31 if (listener instanceof ActionListener)
32 ((ActionListener) listener). actionPerformed(new ActionEvent(container));
33 if (listener instanceof ItemListener)
34 ((ItemListener) listener). itemStateChanged(new ItemEvent(container));
35 ...
36 }
37 }

Figure 7.6: Universal Driver for GUI applications (excerpts)

120

for that component are then notified in turn, using the method notifyListeners() (line

10), which collects all listeners registered on the event and invokes their event-handling

methods. As a result of executing the event-handling code, the state of the GUI may

change, therefore, the collection of top-level windows and their visible enabled components

may change. The key to this model is the ability to express nondeterministic choice over

collections of heap allocated objects.

Note that the universal driver is written manually once and is reused across multiple

GUI applications. The universal driver checks all possible sequences of user actions allowed

as well as constrained by a GUI. For applications with a complex state transition diagram,

the number of all possible sequences can be large and model checking under the universal

driver may be intractable. We did not encounter the state space explosion problem with

a collection of GUI examples described in this section. However, if the infinite loop in the

universal driver leads to a state space explosion, the loop can be bounded, e.g., by a length

of use case scenario, or bounded model checking can be used.

7.2.2 Stub Generation: Swing/AWT Components

In this section, we give examples of stubs generated using BEG’s side-effects customized for

analyzing Swing/AWT libraries.

As described in section 4.1.2, all Swing components inherit their properties from class

java.awt.Component, which declares boolean fields visible and enabled. java.awt.Container

is a sub-type of Component, which implements containment properties through the field

Component[] component. Modality is implemented by a boolean field modal of java.awt.Dialog.

JComponent, a descendant of Container, declares EventListenerList listenerList, where

listeners of *Listener type (e.g., MouseListener, ComponentListener) may register using

add*Listener() method. All Swing components inherit this listener mechanism.

In addition to inherited features, Swing components declare fields reflecting their specific

features, e.g., tabs implemented by JTabbedPane, which declares Vector pages to keep

121

1 public class Container extends Component{
2 Component [] component = new Component [0];
3 public Component add(Component comp) {
4 addImpl(comp , null , -1); return comp;
5 }
6 protected void addImpl(Component comp ,
7 Object constraints , int index){
8 if (ncomponents == component.length) {
9 Component newcomponents []=new Component [..];

10 component = newcomponents; ...
11 }
12 if (index == -1 || index == ncomponents) {
13 component[ncomponents ++] = comp;
14 } else {
15 component[index] = comp; ncomponents ++;
16 } ...
17 }
18 }

Figure 7.7: Example Swing Method add

track of added tabs and SingleSelectionModel to keep track of tab selection. Integer type

fields can affect the number of widgets created for a component (e.g., int optionType in

JPOptionPane defines how many buttons are displayed on the pane). Fortunately, such fields

have a predefined and small set of values (e.g., optionType = YES_NO_OPTION produces a

pane with two buttons: yes and no).

We use BEG’s specialized side-effects analysis to calculates side-effects to specific fields

of Swing/AWT components, i.e., boolean fields visible, enabled; fields that serve as con-

tainers (arrays, lists) and eventListeners. We illustrate this analysis on the add() method

of java.awt.Container class. Figure 7.7 shows excerpts of its Java implementation. We

are interested in the side-effects this method has on the fields, discussed above, that are

related to the abstract state of GUI components. Figure 7.8(top) shows the output of BEG

that encodes the results of side-effects analysis. BEG calculates that the method must side-

effect the field component by assigning the parameter object to an element of the array.

Unfortunately, the Java code is complicated by various checks on the method input and

the state of the field component. If the array is too small, the new array is allocated, and

122

// must side -effects
this.component[TOP_INT] = param0;
// may side -effects
this.component = new Component[TOP_INT];
this.component[TOP_INT]= chooseObject (" Component ");

1 public class Container extends Component {
2 Component [] component;
3 int length = MAX_SIZE;
4 int size = 0;
5 public Component add(Component param0){
6 component[size] = param0;
7 size ++;
8 return param0;
9 }

10 }

Figure 7.8: Method add Analysis and Model

the elements from the old array are copied to the new array. It is hard to design static

analyses to accurately track such behavior, therefore, the analyses results may be imprecise.

However, the model-writer can inspect the analysis results and decide whether to model the

behavior that causes the imprecision. In this case, we do not wish to model the allocation of

the new array since any such error would be detected by simply executing the application.

Therefore, the final model, shown in Figure 7.8(bottom), reflects only the must side-effects

of the method.

Another advantage of using analysis results to guide or to check the modeling process

is the ability of the analysis to identify the methods that do not have any side-effects on

the specified fields. A majority of methods in Swing only effect the look and feel of a GUI

and thus have no side-effects on interaction order related data. Such methods can be safely

modeled using empty stubs.

7.2.3 Verification Results

To perform model checking of GUI examples, we used Bogor [71]. Bogor’s architecture is

designed to ease customization of its module to exploit properties of an application domain

to reduce the cost of model checking. Bogor was customized to efficiently check the models

123

Example Measure ALL SSC

Button Demo Trans 1920 2045
Objects: 50 States 1816 7
Choices: 3 Space (Mb) 40.2 39.6

Locations: 7563 Time (s) 4 0.8
Voting Dialogs Trans 3114 4630

Objects: 120 States 2930 17
Choices: 4 Space (Mb) 45.5 44.5

Locations: 8269 Time (s) 10 1
Dialog Demo Trans 88493 181512

Objects: 257 States 84439 1033
Choices: 14 Space (Mb) 74.3 47.6

Locations: 8689 Time (s) 512 38
Calculator Trans 29016 35574

Objects: 362 States 27903 105
Choices: 24 Space (Mb) 66.4 48.6

Locations: 8789 Time (s) 183 20

Table 7.1: Verification Data for GUI Examples

of GUI applications generated by our environment generation techniques. More specifically,

it leveraged the fact that the user must wait for the GUI to respond to one request before

he can input another action.

In contrast to general multi-threaded applications where interleaving may occur at each

state, in models of single dispatch-threaded GUIs, branching in the state-space occurs only

when nondeterministic choice constructs are used to model user selections or abstraction of

the underlying application. Thus, the number of states stored could be reduced to those at

which branching may occur and still preserve all user interaction orderings in the model.

The solution was to modify the state storage strategy in Bogor to only store states in which

a choice expression is invoked. The intuition is that those are the earliest points where we

can decide whether the choices cause different states. This strategy was called store-states-

on-choose (SSC).

Figure 7.1 presents the results of running the applications on an Opteron 1.8 GHz (32-

bit mode) with maximum heap of 1 Gb using the Java 2 Platform. For each example, we

124

give the total number of objects allocated during system execution (nearly all of which are

Swing component and container sub-types), the number of nondeterministic choices used

to model user inputs, and the number of control locations in the combined model of the

Swing library, GUI implementation and underlying application; due to abstraction of the

underlying application the actual number of lines of code for an example can be many times

larger than the number of locations.

In all runs, we used all of the reductions and memory-compression techniques available

in Bogor (ALL) and compared that to the addition of the store-states-on-choose (SSC)

strategy.

We note that the time to generate the models for these systems was negligible, except

for the manual process of reading side-effects summaries for Swing methods and pruning

them based on our understanding of their actual behavior. It took several days to fine tune

our model of Swing based on the approximate starting model. Fortunately, that process

happens only once and its cost can be amortized across the analysis of many Java Swing

applications.

The data clearly show the benefit of customizing the analysis for single dispatch-threaded

GUIs; reductions of more than an order of magnitude in run-time are achieved for the

examples. We note that memory reduction is not as apparent since these examples are

relatively small. We expect that as GUI implementations scale, especially in terms of the

number of non-modal dialogs, significant memory reductions can be observed.

7.3 Fujitsu’s I-BPM

In this section, we present verification of two modules belonging to a development version of

Fujitsu enterprise software called Interstage Business Process Management (I-BPM). This

case study appeared in [89].

125

Connectivity

Directory

Interface

Database

Interface

Java Client

Web Browser

Java Applet

Web

Tier

Main Logic

and

Analytics

Figure 7.9: I-BPM Architecture

7.3.1 I-BPM Architecture

The I-BPM application has a 4-tier architecture, as shown in Figure 7.9. The user interface

can be implemented as a Java client, Java applet, or as a web browser. The main process

logic and the analytics engine reside in the third tier. The fourth tier contains the under-

lying repositories including a database, directory, and document management. The I-BPM

modules communicate through Java RMI.

The version of the application we examined contained over 1700 classes, spanning over

500,000 lines of code (LOC). We worked with the same version that was used for manual

environment generation in [43]. The two modules that were analyzed were database adapter

and cache, both residing in the third tier. All experiments were run on a desktop with 1G

RAM, 2.4 GHz processor, running Linux 9.1, using SDK 1.5.

7.3.2 Database Adapter Module

The database adapter module is used to communicate with an underlying database, using

an RMI protocol. The relevant parts of the protocol are shown in Figure 7.10. The client

code:

1. acquires the DbAdapter

2. calls getConnection() on the DbAdapter, receiving a DbConnection

126

get DbAdaper

getConnection()

releaseConnection()

use

Figure 7.10: Database Adapter Protocol

3. uses the database through the DbConnection

4. releases the connection

Creation of DbConnection objects is very slow. To save time, step 4 returns the

DbConnection object back to a pool of available connections. If a client dies for some

reason, while holding a connection, the connection is not returned to the pool. To fix this

problem, I-BPM checks each of its connections in step 2 to see if the original client is still

alive. If the original client seems dead, the connection is handed out to a new client. If a

client is dead due to a broken network connection, this behavior is correct. However, in the

implementation, the client is assumed dead if its connection is 5 minutes old:

long stale = System.currentTimeMillis () - 300000;
if (stale > conn.getLastUse ())

releaseConnection(conn);

Therefore, it is possible for 2 clients to end up with the same DbConnection object. This

may lead to unwanted interleaving of clients’ transactions.

During manual environment generation, the above code in DbAdapter was modified to

model the possibility of releasing connections using the following code:

if(Verify.randomBool ())
releaseConnection(conn);

Automated stub generation presented in section 7.3.2 solves this problem by inserting

nondeterminism into stubs automatically, without prior knowledge of the application.

127

environment{
driver -assumptions{

re{
Main:

DbAdapterImpl adapter = new DbAdapterImpl ("", 3);
connect ("" ,"" ,"" ,"") #

2 Client:
getConnection (); releaseConnection () #

}
}

}

Figure 7.11: User Assumptions for Adapter Module

Unit and Property Specification

We restrict our presentation to checking properties that were found violated using manual

environments. One such property was “no two clients get the same DbConnection object”.

All properties were specified using Java assertions and manually added to the driver code.

When generating environments with BEG, we started with a unit consisting of the

DbAdapterImpl class, which has 330 LOC and 12 public methods in its interface. We did

not know if other classes (e.g., DbConnectionImpl) would need to get added to the unit

later.

Driver Generation

Using the protocol in Figure 7.10 as a guide, we started with a specification shown in

Figure 7.11. The specification file contains two sections: the setup section shows that the

driver creates one instance of DbAdapter and the assumptions section shows that the driver

spawns two threads. The methods used in the specification are the DbAdapter methods

that implement the protocol in Figure 7.10. The constructor takes an integer parameter

denoting the number of connections to be created; connect() creates the connections;

getConnection() hands out an available connection; and releaseConnection() returns

a connection back to the pool of available connections. The DbAdapterImpl class declares

several fields used to store available and used connections. The protocol methods adjust

128

1 public class EnvDriver {
2 public static void main(java.lang.String [] param0){
3 DbAdapterImpl adapter = new DbAdapterImpl("", 3);
4 try{
5 adapter.connect ("", "", "", "");
6
7 }catch(Exception e){e.printStackTrace ();}
8 Client c1 = new Client(adapter). start ();
9 Client c2 = new Client(adapter). start ();

10 }
11 }
12 public class User extends java.lang.Thread {
13 public DbAdapterImpl adapter;
14 public Client(DbAdapterImpl param0){
15 adapter = param0;
16 }
17 public void run (){
18 try{
19 adapter.getConnection ();
20
21 adapter.releaseConnection(
22 (DbConnection)Verify.randomObject("DbConnection");
23 }
24 catch(Exception e){e.printStackTrace ();}
25 }
26 }

Figure 7.12: Driver Models for Adapter Module

these container fields accordingly.

Figure 7.12 shows the Java code generated from the specification. Note that this par-

ticular driver, due to a nondeterministic choice over connection objects, includes executions

where one client can release another client’s connection. To avoid such behavior, we refined

the driver by specifying concrete values for connections:

2 Client: connection = getConnection ();
releaseConnection(connection) #

To check the property, use added the following assertion at the end of the main method

assert !(c1.connection != null && c2.connection != null) ||
(c1.connection != c2.connection);

It states that if two clients hold a connection (which is not null), then the connections

should be different. We tested the driver combined with the faulty unit and previously

129

written manual stubs. The property did not get violated.

We increased the number of threads in the specification to 3, regenerated the driver, and

the property was violated. The counterexample analysis revealed that the property violation

occurs when, upon calling getConnection(), there is only one available connection left.

Therefore, such behavior manifests only if the number of clients is equal to or more than

the number of created connections.

Next, we compared performance of the automatic driver with the previously written

manual one. To make comparison of drivers fair, we adjusted both manual and automatic

drivers to create the same number of connections and to start up the same number of

clients. Preliminary results showed that the manual driver was producing a system with a

much larger state space than the automated one.

We studied the manual driver: it set one of debugging flags on. Even though the driver

did not print any messages while running, it did call many debugging routines, checking

whether some messages needed to be printed. We turned the debugging in the manual

driver off and its performance increased by a factor of 5. We decided to compare automatic

environments to the manual environments that did not make any calls to debugging or

logging. We wanted to see what reductions, if any, the automatic environments could

perform beyond abstraction of debugging.

The next round of comparison uncovered missing behavior in the automatic drivers:

the branch coverage showed that the manual driver exercised more methods than BEG-

generated one. In contrast with the automated driver, the manual driver creates an instance

of DbAdapter through a call to DbAdapterFactory.createDbAdapter(). The method cre-

ates an instance of the adapter, calls connect() followed by disconnect() on the adapter

to test its functionality, and stores it into an RMI registry. Then it looks up the adapter

through a call to Naming.lookup():

public static void main(String [] args)
DbAdapterFactory.createDbAdapter ();
// stores using Naming.rebind(name , dbAdapter);

...

130

// retrieves

DbAdapter adapter =(DbAdapter)Naming.lookup(name);
}

Note that model checking programs with references to the actual java.rmi.Naming

class is intractable. To enable model checking, a simple stub for the Naming class was

written during manual environment generation. The Naming stub was modeled as a simple

container with methods rebind() and lookup() used to store and retrieve adapter objects.

We believe that manual stubbing out of the Naming class was performed to enable model

checking rather than to preserve semantics of RMI. Since storing the adapter object in an

array and retrieving it does not have any effects on the adapter objects, we decided not

to refine BEG specifications with the calls to the DbAdapterFactory and Naming classes,

even though the specification language of BEG allowed it. In the end, we refined the

specification by adding the missing calls to connect() followed by disconnect() to test

the newly created instance of the adapter. The resulting automated driver performed the

same sequences of calls to the DbAdapter as the manual one, while omitting calls to other

classes in the environment.

Stub Generation

Stub generation is a challenging exercise. Different classes require different stub generation

approaches, which depend on the types of properties one wants to preserve in stubs. For

example, stubs for java.util (e.g., Hashtable and Vector), used in the adapter module to

store available and used connections, need to preserve containment properties, if one wants

to keep track of how many available connections are left at each client request.

BEG can be configured to track containment properties and to generate containers that

store data in an array. However, JPF handles the original implementation of Hashtable

and Vector without much overhead and for this case study we use container classes from

java.util in their original form. In addition, many classes from java.lang (e.g., java.lang.Object

and java.lang.Thread) did not need any modeling, because JPF has a built-in treatment

131

for such classes.

Feeding the DbAdapterImpl class to BEG, we generated empty stubs at first. For ex-

ample, a stub for the currentTimeMillis() method, used by the DbAdapter to figure out

connections’ age, looks as follows:

public class System{
...
public static long currentTimeMillis (){

return Abstraction.TOP_LONG;
}

}

Treating DbConnectionImpl as part of the environment, BEG produces the following

code for this class:

public class DbConnectionImpl implements DbConnection{
public static DbConnectionImpl TOP_OBJ = new DbConnectionImpl ();

}

As described in section 5.5, TOP_OBJ fields are used as return values in stubs, for example,

the createDbConnection() method, called inside the connect() method of DbAdapter to

create a new connection, is stubbed out as follows:

public class TransportFactory {
public static synchronized DbConnection

createDbConnection(java.sql.Connection param0){
return DbConnectionImpl.TOP_OBJ;

}
}

TOP values can be safely interpreted by abstraction engine or executed symbolically given

support for symbolic execution. For example, given support for abstraction, a model checker

can automatically infer that

long stale = System.currentTimeMillis () - 300000;

should be interpreted as TOP_LONG, and stale > conn.getLastUse() as TOP_BOOL, or

Verify.randomBool(), thus, eliminating the need to identify conditions that may be influ-

enced by environment.

JPF can be used to perform symbolic execution [48], however, at the time of this exper-

iment, symbolic execution in JPF was available only for small components (e.g., one class)

132

and we have not applied symbolic execution to our case studies. Without support for ab-

straction or symbolic execution, TOP values are interpreted by the model checker as regular

values and one needs to check that they do not mask errors. The easiest way is to configure

BEG to initialize TOP_OBJ fields to null. Testing with null values is useful to find out

which objects flowing from environment are dereferenced or used otherwise in a setting that

prohibits null values, e.g., creating null connections and inserting them into a hashtable

of available connections raises an exception. Creating TOP connections is a problem as well,

since TOP objects can not be compared deterministically. As the next refinement, we added

the DbConnectionImpl class to the unit, as was suggested by the property, and reran the

stub generation preserving side-effects with respect to DbConnection objects.

The side-effects analysis in BEG detects allocation sites for unit objects and generates

code accordingly. The refined implementation of the createDbConnection(), taking into

account its effects on DbConnection objects, is

public static synchronized DbConnection
createDbConnection(java.sql.Connection param0){

DbConnectionImpl dbconnectionimpl0 =
new DbConnectionImpl(Connection.TOP_OBJ);

return dbconnectionimpl0;
}

The refined stubs were sufficient to detect the error in the faulty unit and, for error-free

unit, to produce branch coverage similar to the manual environments.

Using DbAdapterImpl and DbConnectionImpl classes as input, BEG generates 125

classes with 2719 LOC. Stub generation for the adapter unit runs within 2 minutes. During

the manual effort, 11 classes with 1034 LOC were manually written. In addition, 15 classes

with 5973 LOC were manually edited to enable model checking. We did not investigate the

differences between the edited classes and their original implementation to count how many

of 5973 LOC were written manually. It is also unclear how much time manual modeling

took. The whole process took approximately one month by one person, however, it included

the learning curve required to get familiar with the application.

133

Example Config States Trans Mem Time CE Mds/Ads CovU CovT

Adaptere Mds 29,390 57,166 106,624 01:26 526 45/114, 4/156 132/600
AdMs 23,762 42,594 104,448 00:44 521 45/114, 4/156 72/482

Ads 15,384 32,976 41,344 00:13 516 1.9 45/114, 4/156 56/332
MdsP 8,423 13,708 89,088 00:56 110

AdMsP 3,805 6,818 47,232 00:18 110
AdsP 2,599 4,762 41,088 00:10 99 3.2

Adapter Mds 26,709 53,749 104,896 01:15 38/114, 4/156 120/600
AdMs 19,886 36,177 101,312 00:39 38/114, 4/156 55/482

Ads 12,175 26,320 30,272 00:13 2.2 38/114, 4/156 48/332
MdsP 6,603 11,835 90,048 00:44

AdMsP 4,055 8,041 56,000 00:22
AdsP 2,882 5,903 39,296 00:10 2.3

Table 7.2: Verification Results for the Database Adapter Module

Verification

Table 7.2 shows verification results for the adapter module with 2 connections and 2 clients.

We ran the experiments on two versions of the example, one with errors, Adaptere, and

one with the errors corrected, Adapter. The latter is used to show impact of automatically

generated environments on a full state space exploration; alternatively, we could force the

model checker to perform a full state space exploration with a faulty version.

We ran JPF v3.1.2. To show influence of Partial Order Reduction (POR) on benefits

of environment generation, we ran JPF with POR on and off. The rows in the table

present different configurations of environments and JPF used: the Mds row presents model

checking results for the unit combined with the Manual drivers and stubs; the AdMs row

shows results for Automated drivers combined with the unit and Manual stubs; Ads stands

for the use of Automated drivers and stubs; P indicates the use of POR.

The third and fourth columns in the table show numbers for states and transitions;

such numbers remain constant across multiple JPF runs. Other numbers, memory (in kb)

and time (in hours:minutes:seconds format), may vary from run to run depending on JPF

environment; we ran the experiments three times and calculated the average values. The

column CE shows a counterexample length for the faulty unit.

134

The data in the table show that automatic environments have a nontrivial reduction

factor. Calculating the ratios Mds/Ads and MdsP/AdsP , using numbers of states, shows

that automatic environments reduce the number of states for the adapter example by a

factor ranging from 1.9 to 3.2. The third column in the table shows the values of Mds/Ads,

entered to the left of the corresponding Ads entry. For example, the reduction factor of

automated environment generation for the fault-free adapter unit, with the use of POR, is

calculated as 6,603/2,882 and entered to the left of 2,882.

By design, automated drivers perform the same sequences of method calls to the unit as

the manual drivers, thus, the path coverage for both environments is similar. In addition,

we measured branch coverage, presented in the last two columns in table 7.2. Column CovU

shows coverage for branches inside the unit: DbAdapterImpl and DbConnectionImpl classes;

column CovT shows total coverage for the entire example. The total coverage shows that the

unit closed with the manual environment has 600 branches, the unit closed with automated

drivers and manual stubs has 482 branches, and the unit closed with the automated drivers

and stubs has only 332 branches, out of which 114 branches belong to the DbAdapterImpl

class and 156 branches belong to the DbConnectionImpl class. It is clear that automated

environments add a small number of branches to the system, while manual environments

contain a larger number of decision points (in this case, 600-114-156 = 330).

Examining branch coverage, we see that the automatic environments cover as many

decision points inside the unit as the manual ones. In addition, the data show that finding a

counterexample for the faulty adapter module is more expensive than performing the whole

state space exploration of the fault-free example. Examining branch coverage for the faulty

unit suggests that erroneous paths invoke extra code, which is not exercised in the error-free

example.

135

7.3.3 Cache Module

Unit and Property Specification

The purpose of the object cache is to ensure that database accesses occur as seldom as

possible. We identified the ProcessDefinitionProxy class, called PDProxy in the rest of

this section, as the entry point into the unit. The class acts as a layer between the main

code and the database adapter; it has 1257 LOC and 54 public methods.

We restrict our presentation to the two properties that were found violated using manual

environments. One of the properties checks for race conditions and the other checks the

consistency between the cache and the database.

Driver Generation

Many methods of the DbProxy have redundant functionality. Therefore, only several meth-

ods that have different purposes (such as edit(), commit(), cancel()) were used to specify

the drivers.

Specifying the kinds of drivers that were written manually was straight forward. To

check for race condition, the manual driver could be described using the following BEG

specification:

environment{
driver -assumptions{

re{
Main: PDProxy p = makeNew ()#
Writer: edit (); commit (); destroy () #

}
}

}

This driver creates an instance of the PDProxy class and spawns the Writer thread,

which performs a simple sequence of calls to the only instance of the unit available. The

property is embedded at the end of the main method of the main thread and checks the

consistency between two Hashtable fields of the PDProxy instance.

To check consistency between the cache and database, a manual driver created two

instances of PDProxy and spawned two identical threads calling several methods in the unit

136

interface. The manual driver could be specified using the following BEG assumptions:

environment{
driver -assumptions{

re{
Main:

PDProxy p1 = makeNew ();
PDProxy p2 = makeNew () #

CacheStresser1:
p1.edit ();
p1.modifyProcessDefinition ();

(p1.commit () | p1.cancel ()) #

CacheStresser2:
p2.edit ();
p2.modifyProcessDefinition ();

(p2.commit () | p2.cancel ()) #
}

}
}

The interesting part of driver generation for cache is generation of arguments for various

method calls. The makeNew() method takes 3 parameters

public synchronized PDProxy makeNew(PDStruct newStruct ,
UserAgentProxy userAgent , String clientContext) {}

To fill parameter values, BEG generates TOP_OBJ values of appropriate types. The

UserAgentProxy class is an interface and can not be instantiated. To create an instance of

the UserAgentProxy, BEG generates a simple stub for the UserAgentProxyImpl class.

The second property checks consistency between the contents of the field pdStructShare

of the PDProxy and the database. Specifying this property required getting a handle on the

database contents. The interface to the database is represented by the UserAgentProxy

class, which is stubbed out during the driver generation part. We discuss the refinement of

the UserAgentProxy class in the next section.

Stub Generation

First, using the PDProxy class as a unit, we generated empty, stubs. Such stubs were

sufficient to find race conditions in the faulty cache module and produce coverage similar to

manual drivers for the race-free module. This step produced 93 classes with 1606 LOC.

137

Checking the second property required stubs refinement. First, since the field pdStructShare

was of type PDStruct, we needed to include this class into the unit and calculate poten-

tial environment side-effects on the instances of this class. Second, we needed to refine the

model of the UserAgentProxyImpl class or include the original class into the unit. The class

implements methods that store objects of PDStruct type into the database, fetch them from

the database, edit, commit, etc. Since BEG can be configured to detect containment prop-

erties, we ran BEG on the UserAgenProxyImpl class, calculating its effects on the PDStruct

objects.

BEG detected that storing an object into the database stores it into the field procDefStruct

of the PDTxn object called txn. However, BEG could not detect that fetching the same ob-

ject from the database would return an object that is reachable from txn. Instead BEG

generates a new PDStruct object. Examining the code, we found that before retrieving an

object from the database, it is cloned using

return (txn.cloneTransaction ()). procDefStruct;

where the cloneTransaction() method creates a deep copy of txn, including a deep

copy of its field procDefStruct. Due to cloning of objects, BEG is not able to pick up

containment properties. One could use the results of BEG to model faithful stubs, including

cloning of objects. However, we wanted to model the database as a simple container data

structure. In the end, we refined the stub for a database, using an array field to store

objects.

Using PDProxy and PDStruct as unit classes, BEG generates 92 classes with 1631 LOC,

including one class with side-effects on PDStruct objects. All BEG analyses in this section

run within 3 minutes.

Verification

Table 7.3 shows verification results for checking race conditions (examples Racee and Race)

and consistency between the database and cache (Consiste and Consist). Calculating

the ratios Mds/Ads and MdsP/AdsP for the Racee and Race examples, shows reduction

138

Example Config States Trans Mem Time CE Mds/Ads CovM CovT

Racee Mds 1,800 2,935 42,688 00:07 653 28/468 128/1766
AdMs 1,613 2,529 38,016 00:05 650 28/468 124/1714

Ads 636 936 24,640 00:04 317 2.8 28/468 34/538
MdsP 183 322 37184 00:06 36

AdMsP 109 185 27008 00:04 25
AdsP 71 114 19456 00:02 24 2.6

Race Mds 2,346 3,970 37,184 00:09 28/468 130/1766
AdMs 2,148 3,425 34,560 00:07 28/468 126/1714

Ads 1,057 1,690 26,304 00:07 2.2 28/468 36/538
MdsP 500 948 24,856 00:06

AdMsP 287 525 21,944 00:04
AdsP 231 420 20,096 00:03 2.2

Consiste Mds 123,587 210,097 109,340 01:15 1,318 44/468, 31/830 130/1750
AdMs 20,662 38,905 65,344 00:22 1,310 44/468, 31/830 110/1714

Ads 19,617 36,976 50,944 00:18 1197 6.3 44/468, 31/830 100/1374
MdsP 31,285 53,185 65,264 00:29 195

AdMsP 8,018 14,946 58,304 00:18 478
AdsP 7,449 13,881 45,184 00:17 441 4.2

Consist Mds 24,811,745 69,958,785 705,472 05:54:14 47/468, 36/830 120/1750
AdMs 1,568,157 4,286,581 219,456 18:55 47/468, 36/830 108/1714

Ads 1,503,098 4,108,537 213,888 13:39 16.5 47/468, 36/830 94/1374
MdsP 3,567,867 8,082,864 249,536 49:02

AdMsP 471,475 1,223,360 188,800 06:13
AdsP 407,018 105,4146 182,592 04:25 8.8

Table 7.3: Verification Results for the Cache Unit

factors from 2.2 to 2.8, with reduction factors being slightly smaller when POR is on. For

the Consiste and Consist examples, the reduction factors range from 4.2 to 16.5, with

reduction factors substantially smaller when POR is on.

The biggest reduction factors are seen in the last experiment, when checking the con-

sistency property of the error-free cache module. We were surprised to see that most of

the reduction in that example was caused by automated drivers (Mds/AdMs). Inspect-

ing the differences, we found that manual drivers initialized the PDProxy objects in separate

threads, whereas the BEG specification language suggested to the user that the set up could

be done in the main thread, thus reducing thread interleavings during the initialization of

the UserAgentProxy, PDStruct, and PDProxy objects.

The coverage numbers for automatic environments are similar to manual ones. All

139

environments designed to check the race condition cover 28 branches inside the PDProxy

class; environments designed to check consistency between the database and cache cover

44 (47 for the fault-free example) branches of the PDProxy class and 31 (36 for the fault-

free example) of the PDStruct class. The branch coverage numbers are extremely small,

however, both PDProxy and PDStruct classes contain many redundant methods not used

in the drivers. Also, we used coverage reported by the manual environments as the target

coverage and stopped environment refinement when the target coverage was achieved.

7.3.4 Discussion

In this section, we present several questions we had before using BEG to verify I-BPM

modules.

Is BEG capable of generating environments for I-BPM module? We found BEG spec-

ification language capable of specifying the types of drivers that were previously written

manually. Also, using BEG stub generation, we generated stubs without prior knowledge

of the application.

How do automatic environments compare to manual ones? For all experiments, the

automatic environments produced a smaller system, yet, for faulty modules, uncovered the

errors and, for error-free modules, produced coverage numbers similar to manual environ-

ments. We found BEG environments to be more effective than manual ones. BEG drivers

perform better than manual drivers because they make calls to the module classes directly

(e.g., in the adapter example). They also suggest to perform initialization of objects in the

main thread (e.g., in the cache example), which avoids thread interleavings during initial-

ization. BEG stubs perform better because aggressively cut parts of the environment that

has not influence of the unit.

What is modeled manually and how are these features handled automatically? The fol-

lowing 4 features were modeled specifically during the manual environment generation to

enable model checking by JPF:

140

(1) RMI: The java.lang.Naming class, used to store and retrieve objects from the RMI

registry, was modeled as a simple container. In the automatic drivers, the use of Naming

class was omitted, as storing and retrieving of adapter objects from a container has no side-

effects on them and, thus, does not influence the adapter properties we checked in this case

study.

(2) JDBC: For the adapter module, classes from java.sql used to implement JDBC

were modeled as empty stubs. For the cache module, database behavior was stubbed out at

the UserAgentProxy interface, using a simple container. BEG easily handled the first case,

however, producing a container for the UserAgentProxy class proved to be difficult due to

cloning of objects.

(3) Time: The Date class was manually stubbed out to always return the same time.

BEG generated empty stubs for both the Date class and System.currentTmeMillis()

method.

(4) Localization: The java.util.ResourceBundle, used for loading and reading error

messages from a specified file location, was manually stubbed out. This class was not

generated by BEG, since it was not referenced by any of the modules and did not have any

effects on the unit.

What is the impact of POR on performance of environment generation? According to

[28], the majority of methods in an arbitrary application (especially, library methods) are

meant to be atomic. Atomicity property means that the outcome of a method execution does

not depend on thread interleavings, i.e., for analysis purposes, it is sufficient to check only

one, e.g., sequential, execution of an atomic method. With POR on, JPF executes many

methods atomically. We thought that the behavior added or excluded from atomic methods

would not have great impact on the state space exploration, i.e., that POR would decrease

reductions by BEG. While some examples in this case study exhibit this behavior, others do

not. We can not generalize results on the interaction between environment generation and

POR until more case studies are carried out. It is possible that some particular features of

141

the case study (or the BEG-generated environments) prevent consistent interaction between

environment generation and POR. Regardless of how POR influences reductions by envi-

ronment generation, the examples in this section show that BEG environment generation is

capable of producing nontrivial reductions on top of POR.

Which BEG methodology is used to generate environments for I-BPM modules? To

verify I-BPM modules, we generated concurrent drivers from user specifications, followed

by stub generation. First, we generated empty stubs then enhanced them with side-effects

to unit data and callbacks. While verification of the two I-BPM modules did not require

special handling of J2EE libraries, used to build I-BPM, this case study moved us in the

direction of developing a domain-specific methodology for J2EE applications.

7.4 SUN’s Pet Store

In this section, we describe our experience with model checking the Pet Store example,

which is introduced in section 4.2.1.

7.4.1 Driver Generation: Event-Handling

As described in section 4.2.3, the driver generation produces a driver that simulates user

actions on a browser of a web application. There are two ways to approach this task:

generate all possible sequences of user actions constrained by a GUI of the web browser

or generate drivers according to specifications. In section 7.2, we built a universal driver

for GUI applications, reusable across multiple applications. Given the setup code of a GUI

application, the universal driver performs all possible sequences of user actions allowed by

the GUI.

In web applications, setup is done during the deployment time. A web application

usually includes HTML pages that describe a Screen Transition Diagram and there are

XML descriptor files that describe events and their corresponding event-handling classes.

The setup information can be automatically extracted from HTML and XML artifacts,

142

environment{
definitions{
// webActionMap
createUser = CreateUserHTMLAction
...

// ejbActionMap
CreateUserEvent = CreateUserEJBAction
...
}
driver -assumptions{

re{
// Set of user scenarios
Main: createUser;

createAccount; updateAccount;
(purchase; remove; (purchase | update))*;
(purchase; order)*; signOff #

}
}

}

Figure 7.13: User Assumptions for Pet Store

however, we leave this approach to future work, as mentioned in section 8.2. Instead, we

specify event-handling mappings and use case scenarios using BEG’s specification language.

Figure 7.13 shows a specification for the Pet Store example. The definitions section

is used for describing mappings from events to their event-handlers; this information is

available in mappings.xml as shown in figure 4.10. There are two levels of event-handling

in the Pet Store: through the web and ejb tiers. The assumptions section is written using

regular expressions using the event names as atomic actions. Note the use of Main as the

name of the user thread; the driver is to contain only one main thread.

Figure 7.14 shows excerpts from the driver code generated from described assumptions.

The setup section (lines 1-6) instantiates the event handling classes and creates mappings

from events to their event-handlers, according to the definitions in the specification. In the

assumptions section, each action gets translated into a series of Java statements that create

an event (line 9), populate it (lines 11-13) according to analysis described in section 5.4.4,

and pass it through the two levels of the event-handling (lines 15-20). The driver generator

143

1 //Setup Section

2 HashMap actionMap = new HashMap ();
3 actionMap.put("createUser", CreateUserHTMLAction ());
4 ...
5 actionMap.put("CreateUserEvent", new CreateUserEJBAction ());
6 ...
7 // Client Events

8 HttpServletRequestImpl createUserEvent =
9 new HttpServletRequestImpl("createUser");

10 createUserEvent.setParameter("j_username", Abstraction.TOP_STRING);
11 createUserEvent.setParameter("j_password", Abstraction.TOP_STRING);
12 createUserEvent.setParameter("j_password_2", Abstraction.TOP_STRING);
13
14 HTMLAction createUserHTMLHandler = actionMap.get("createUser");
15 Event createUserHTMLResponse = createUserHTMLHandler.perform(createUserEvent);
16
17 String ejbEventName = createUserHTMLResponse.getName ();
18 EJBAction createUserEJBHandler = actionMap.get(ejbEventName);
19 createUserEJBHandler.perform(createUserHTMLResponse);
20 ...

Figure 7.14: Driver for Pet Store (excerpts)

for J2EE applications is customized to generate an event-handling template according to

event-handling APIs used in the application.

Appendix A.3.1 shows a sample of the Pet Store specification and automatically gener-

ated driver we used in our experiments. By default, BEG generates TOP values for all user

inputs. We experimented with symbolic execution to calculate sets of interesting concrete

values for TOP values. Unfortunately, at the time, symbolic execution tools available to us,

JPF and Bogor/Kiasan [19], either did not have sufficient support for treatment of Strings

or did not scale beyond one or two symbolic values for one event at a time. We manu-

ally refined several TOP values to encode nondeterministic choices for the following keys:

j_password, j_password_2, itemId, and itemQuantity.

7.4.2 Stub Generation: J2EE Components

Using BEG’s setting for analysis of J2EE components we generated stubs for all libraries

used by the Pet Store example. This step produced 88 packages, 589 classes with 5907 LOC.

144

1 public class SignOnLocalImpl implements SignOnLocal {
2 public static SignOnLocalImpl TOP = new SignOnLocalImpl ();
3 SignOnEJB signOnEJB;
4
5 public SignOnLocalImpl (){
6 signOnEJB = new SignOnEJB ();
7 try{
8 signOnEJB.ejbCreate ();
9 }catch(Exception e){e.printStackTrace ();}

10 }
11 public void createUser(java.lang.String param0 , java.lang.String param1){
12 signOnEJB.createUser(param0 , param1);
13 }
14 public boolean authenticate (String userName , String password){
15 return signOnEJB.authenticate(userName , password);
16 }
17 }

Figure 7.15: SignOn Stub

In addition to generating library code, there is a need to generate implementations of

application-specific classes. A typical J2EE application is a collection of classes, many of

them interfaces, which get implemented during deployment time. During stub generation,

BEG automatically generates implementations of application-specific interfaces. Figure 7.15

shows a stub for implementation of the local interface of the SignOnEJB, used to process the

createUser event. This step produced 22 packages, 39 classes with 600 LOC.

Some manual refinement was necessary, e.g., implementation of java.sql.ResultSetImpl

was refined to include a two-dimensional array, populated with several Pet Store items.

7.4.3 Verification Results

We applied JPF to the Pet Store model to validate several types of requirements. In this

section we report on checking the following properties:

• CartEmpty: A shopping cart becomes empty after placing an order

• PasswdMatch: A user should supply matching passwords to create an account

• Quantity: Quantity of each item in a cart should be greater than 0

145

Property States Trans Heap Mem Time
CartEmpty 113 314 22642 76 03

PasswdMatch 57 157 11479 75 03
Quantity 79 136 15311 75 03

Table 7.4: Verification Results for the Pet Store Model

The above properties were encoded in LTL and checked while running JPF. Table 7.4

shows data for this experiment. JPF reported a violation of the PasswdMatch requirement:

the user could supply 2 different passwords and still allowed to create an account.

The whole experiment took one month by one person. The bulk of this period was taken

by studying the example, its documentation, studying the domain of J2EE applications

and tuning BEG to treat J2EE libraries. Code generation by BEG was fast and manual

refinements took a couple of days. This experiment convinced researchers at Fujitsu, Japan,

to try JPF on their internal web applications. We spent two months setting up environment

generation for their internal framework, which uses their own libraries. In the end, we

delivered a set of reusable library stubs and driver templates, which could be easily tuned

to specific applications within the same framework.

146

Chapter 8

Conclusion and Future Work

In this Chapter, we conclude by summarizing the contributions of this thesis and describe

additional techniques that could enhance BEG as future work.

8.1 Conclusion

In this thesis, we presented environment generation techniques that enable model checking

of open systems and reduce the state space of large closed systems. We presented Bandera

Environment Generator, which has automated support for:

• Interface Discovery: Given a collection of unit classes, BEG automatically discovers

unit and environment interfaces. BEG implements several strategies for discovering

the unit interface: for general Java programs, BEG collects all public methods and

fields of the unit, for GUI and J2EE applications, BEG collects domain-specific event-

handling methods. The unit interface information is used to build universal drivers

and check the validity of user assumptions.

The environment interface, which consists of all external classes, methods, and fields

referenced by the unit, is used to define the boundaries of the called environment.

This allows BEG to drop many classes from the environment that are not directly

referenced by the unit. The behavior of dropped classes is safely approximated by

performing static analysis on the actual environment implementation.

147

• Specifying Assumptions: Using method call expressions and assignments as atomic

actions, one can describe sequences of actions using regular expressions and LTL. BEG

supports specification of three types of data values: concrete, choice, and abstract. In

addition, data values can be omitted and BEG can be configured to automatically

generate values belonging to one of the categories.

BEG’s specification language was driven by large case studies, including industrial

applications. We also found BEG’s specification language capable of describing the

kinds of drivers that were written previously by hand, as described in section 7.3.

• Extracting Assumptions: BEG offers flexibility in how much behavior is to be

included in stubs. One can start with empty stubs. If such stubs are not sufficient

to find errors, one can turn on side-effects analysis, which can be tuned for different

domains to track domain-specific objects. We found that empty stubs enhanced with

data effects were capable of uncovering errors. We also found that stub generation

could be done without prior knowledge of the applications.

• Encoding Assumptions into Code: BEG translates environment assumptions into

Java code using special modeling primitives that denote environment nondetermin-

ism. Modeling primitives randomClass(type) and randomReachable(type, ref)

were added to JPF and Bogor to support environment generation.

Measuring Environment Effectiveness: Environments generated by BEG may not be

safe, i.e., in case of the “verified” result, we can not be sure that the program is free of

errors. We take a pragmatic approach to measuring quality of environments. We say the

environment is effective if it leads to a discovery of an error or, in case of the “verified”

result, it shows good branch coverage for a unit under analysis.

Methodology We presented a methodology for environment generation, consisting of:

identifying the unit under analysis, writing specifications for drivers, and generating stubs

148

using BEG’s modular side-effects analysis. We studied domains of GUI and J2EE applica-

tions and refined our generic methodology to be effective for such domains.

Case Studies We evaluated BEG on a number of case studies, including real industrial

case studies from NASA, Fujitsu, and SUN. We found that BEG-generated environments

were cost-effective relative to hand-generated environments, as described in sections 7.1 and

7.3.

8.2 Future Work

The environment generation approach presented in this thesis has limitations, which can be

addressed in future work:

Automating Unit Identification: In this thesis, the unit is identified manually by a

user. In some cases, the domain-specific knowledge is used to identify the unit automatically,

e.g., application-specific code for GUI and J2EE applications.

This task can be automated for certain programs using the information produced by

static analysis, e.g., one that builds Program Dependence Graph (PDG). Given a property,

one can identify the appropriate unit using techniques similar to slicing. Using the PDG,

we can set up heuristics to identify classes that influence the property. Since the chains of

dependencies may be long, we can set up a bounded search, e.g., include in the unit classes

and methods that belong to a bounded-length chain of dependencies for a given property.

Unfortunately, such analyses work best for complete pure Java programs. The case

studies we presented in this thesis are open reactive systems, some of them presented as a

collection of classes without any dependencies among them, e.g., J2EE applications, which

get setup at deployment time.

Specifying Assumptions Extensions: The driver specification language could be ex-

tended to handle more Java expressions and statements, including support for property

149

specification, e.g., assertions. Other, more powerful notations can be used to describe se-

quences of environment actions, e.g., Context Free Grammars, as described in [42].

Exracting Assumptions Extensions: Several techniques can be used to extract envi-

ronment assumptions, both statically and dynamically.

• Static Analysis: BEG can be extended with other static analysis techniques, e.g.,

atomicity analysis [29], safe locking analysis [1], domain-partitioning analysis [78].

BEG can also be combined with slicing, which can be used during stub generation step

to increase confidence in results. Once the drivers are generated, off-the-shelf slicers

(e.g., the Indus Java slicer[68]) can be used to reduce the resulting system. Preliminary

results show that BEG environment generation is a more aggressive approach than

slicing, however, at a cost of safety [90]. Slicing, while a safe technique, does not scale

as well and may retain too many dependencies in the final slice. We believe, we can

combine both slicing and stub generation to strike the balance: first, stub generation

can be used to stub out classes that definitely do not influence the property, then

slicing can be applied to the reduced system.

• Symbolic Execution: One limitation of the current approach is treatment of TOP val-

ues, which can be safely interpreted by abstraction engine (e.g., in Bandera [14]) or

executed symbolically (e.g., [48]). Unfortunately, at the time of our case studies, sym-

bolic execution in JPF worked only for small units, and due to scalability issues, we

did not use automated support to treat the TOP values according to their semantics.

This limitation can be addressed by experimenting with the latest symbolic execution

in JPF or using test case generation to refine TOP values.

• Run-time Analysis: Run-time analysis can be used to extract environment assump-

tions after observing many runs of the program under analysis. There are many run-

time analysis tools for Java, e.g., JPax [39], Sofya [49]. A typical run-time analysis

150

methodology includes instrumenting the code, e.g., marking actions that environment

may perform on the unit; running the program multiple times, recoding the traces

and then processing them to learn usage patterns. One way to process the traces is

use off-the-shelf PFSA learners [67] that generalize from a set of traces and discover

likely automata-based properties [3]. This approach can be used to learn patterns

of environment actions, however, this technique assumes that the unit-environment

system is set up and running.

• Learning Assumptions: Learning algorithms [2, 12] can also be used to learn environ-

ment assumptions.

Extending Support for the J2EE Framework: As mentioned in sections 4.2.3 and

7.4, information about screen transitions for J2EE applications is usually encoded using non-

Java artifacts, e.g., HTML. We can develop automated support for generating Java code for

screen transitions and develop universal drivers, similar to the ones we developed for GUI

applications. Then, we can check all use case scenarios enabled by a screen transition of a

given J2EE application.

Extending to Other Frameworks: The landscape of frameworks used to develop ap-

plications is always changing. In this thesis, we studied Swing/AWT and J2EE frameworks,

however, BEG can be extended to handle other frameworks. For example, for web applica-

tions, BEG can be extended to handle frameworks used to process user input at the front

end of web applications, e.g., Struts [80], and frameworks used to interface with a database,

e.g., Hibernate [40].

Automating Environment Refinement: In this work, we manually went through sev-

eral refinements of the unit-environment system. For example, as described in section 7.3,

based on model checking results, we adjusted modules to include classes that were tightly

coupled with the unit; based on coverage information, we adjusted driver specifications (e.g.,

151

to include more calls to the module); based on model checking results, we refined stubs (e.g.,

to include side-effects). It would be useful to have automated support for refinement of units,

drivers, and stubs based on results of model checking and coverage information.

152

Bibliography

[1] M. Abadi, C. Flanagan, and S. N. Freund. Types for safe locking: Static race detection

for java. ACM Trans. Program. Lang. Syst., 28(2):207–255, 2006.

[2] R. Alur, P. Černý, P. Madhusudan, and W. Nam. Synthesis of interface specifications

for java classes. In POPL ’05: Proceedings of the 32nd ACM SIGPLAN-SIGACT

symposium on Principles of programming languages, pages 98–109, New York, NY,

USA, 2005. ACM Press.

[3] G. Ammons, R. Bodik, and J. R. Larus. Mining specifications. In Symposium on

Principles of Programming Languages, pages 4–16, 2002.

[4] G. S. Avrunin, J. C. Corbett, and L. Dillon. Analyzing partially-implemented real-time

systems. In Proceedings of the 19th International Conference on Software Engineering,

pages 228–238, 1997.

[5] T. Ball, R. Majumdar, T. Millstein, and S. Rajamani. Automatic predicate abstraction

of C programs. In Proceedings of the ACM SIGPLAN ’01 Conference on Programming

Language Design and Implementation (PLDI-01), pages 203–213, June 2001.

[6] E. Barlas and T. Bultan. Netstub: a framework for verification of distributed java

applications. In ASE ’07: Proceedings of the twenty-second IEEE/ACM international

conference on Automated software engineering, pages 24–33, New York, NY, USA, 2007.

ACM.

[7] A. Betin-Can, T. Bultan, M. Lindvall, S. Topp, and B. Lux. Application of design for

verification with concurrency controllers to air traffic control software. In Proceedings

of the 20th IEEE International Conference on Automated Software Engineering, 2005.

153

[8] C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated testing based on java

predicates, 2002.

[9] G. Brat, K. Havelund, S. Park, and W. Visser. Java PathFinder – a second generation

of a Java model-checker. In Proceedings of the Workshop on Advances in Verification,

July 2000.

[10] J.-D. Choi, M. Burke, and P. Carini. Efficient flow-sensitive interprocedural computa-

tion of pointer-induced aliases and side effects. In Conference Record of the Twenti-

eth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, pages 232–245, Charleston, South Carolina, 1993.

[11] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.

[12] J. M. Cobleigh, D. Giannakopoulou, and C. S. Păsăreanu. Learning assumptions for

compositional verification. In Proceedings of the 9th International Conference on Tools

and Algorithms for the Construction and Analysis of Systems (LNCS 2619), 2003.

[13] C. Colby, P. Godefroid, and L. J. Jagadeesan. Automatically closing open reactive

programs. In SIGPLAN Conference on Programming Language Design and Implemen-

tation, pages 345–357, 1998.

[14] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Păsăreanu, Robby, and

H. Zheng. Bandera : Extracting finite-state models from Java source code. In Proceed-

ings of the 22nd International Conference on Software Engineering, June 2000.

[15] J. C. Corbett, M. B. Dwyer, J. Hatcliff, and Robby. Expressing checkable properties

of dynamic systems: The Bandera specification language. International Journal on

Software Tools for Technology Transfer, 4(1):34–56, 2002.

[16] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In Conference

154

Record of the Fourth Annual ACM Symposium on Principles of Programming Lan-

guages, pages 238–252, 1977.

[17] C. Csallner and Y. Smaragdakis. JCrasher: An automatic robustness tester for Java.

Software – Practice and Experience, 34(11):1025–1050, Sept. 2004.

[18] A. Degani and M. Heymann. Formal verification of human-automation interaction.

Human Factors, 2002.

[19] X. Deng, J. Lee, and Robby. Bogor/kiasan: A k-bounded symbolic execution for

checking strong heap properties of open systems. In ASE, pages 157–166, 2006.

[20] X. Deng, Robby, and J. Hatcliff. Kiasan/kunit: Automatic test case generation and

analysis feedback for open object-oriented systems, 2007.

[21] L. Dillon, G. Kutty, L. Moser, P. Melliar-Smith, and Y. Ramakrishna. A graphical

interval logic for specifying concurrent systems. ACM Transactions on Software Engi-

neering and Methodology, 3(2):131–165, April 1994.

[22] M. B. Dwyer, J. Hatcliff, M. Hoosier, V. P. Ranganath, Robby, and T. Wallentine.

Evaluating the effectiveness of slicing for model reduction of concurrent object-oriented

programs. In TACAS, pages 73–89, 2006.

[23] M. B. Dwyer, J. Hatcliff, R. Joehanes, S. Laubach, C. S. Păsăreanu, Robby, W. Visser,

and H. Zheng. Tool-supported program abstraction for finite-state verification. In

Proceedings of the 23rd International Conference on Software Engineering, May 2001.

[24] M. B. Dwyer and C. S. Păsăreanu. Filter-based model checking of partial systems.

In Proceedings of the Sixth ACM SIGSOFT Symposium on Foundations of Software

Engineering, Nov. 1998.

[25] M. B. Dwyer and C. S. Păsăreanu. Model checking generic container implementations.

In Proceedings of the 1st Symposium on Generic Programming, May 1998.

155

[26] M. B. Dwyer, Robby, O. Tkachuk, and W. Visser. Analyzing interaction orderings with

model checking. In ASE’04: Proceedings of the 19th IEEE international conference on

Automated software engineering, pages 154–163, Washington, DC, USA, 2004. IEEE

Computer Society.

[27] FindBugs. Website. http://findbugs.sourceforge.net.

[28] C. Flanagan and S. Freund. Atomizer: A dynamic atomocity checker for multithreaded

programs. In Proceedings of the 31st ACM Symposium on Principles of Programming

Languages (POPL’04), 2004.

[29] C. Flanagan, S. N. Freund, and M. Lifshin. Type inference for atomicity. In TLDI ’05:

Proceedings of the 2005 ACM SIGPLAN international workshop on Types in languages

design and implementation, pages 47–58, New York, NY, USA, 2005. ACM Press.

[30] C. Flanagan and S. Qadeer. Thread modular model checking. In Model Checking

Software (LNCS 2648), May 2003.

[31] S. Framework. Website. http://www.springframework.org/.

[32] S. Freeman, T. Mackinnon, N. Pryce, and J. Walnes. Mock roles, objects. In OOPSLA

’04: Companion to the 19th annual ACM SIGPLAN conference on Object-oriented

programming systems, languages, and applications, pages 236–246, New York, NY,

USA, 2004. ACM.

[33] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of

reusable object-oriented software. Addison-Wesley Professional, 1995.

[34] R. Gerth, D. Peled, M. Vardi, and P. Wolper. Simple on-the-fly automatic verification

of linear temporal logic. In Protocol Specification Testing and Verification, pages 3–18,

Warsaw, Poland, 1995. Chapman & Hall.

156

http://findbugs.sourceforge.net
http://www.springframework.org/

[35] P. Godefroid. Model checking for programming languages using VeriSoft. In Proceedings

of the 24th ACM Symposium on Principles of Programming Languages, pages 174–186,

Jan. 1997.

[36] A. Groce and W. Visser. Model checking java programs using structural heuristics.

In ISSTA ’02: Proceedings of the 2002 ACM SIGSOFT international symposium on

Software testing and analysis, pages 12–21, New York, NY, USA, 2002. ACM Press.

[37] O. Grumberg and D. E. Long. Model checking and modular verification. ACM Trans-

actions on Programming Languages and Systems, 16(3):843–871, May 1994.

[38] J. Hatcliff, M. B. Dwyer, and H. Zheng. Slicing software for model construction. Higher-

order and Symbolic Computation, 13(4), 2000.

[39] K. Havelund and G. Rosu. Monitoring java programs with java pathexplorer. In In

Proceedings of Runtime Verification (RV01, pages 97–114. Elsevier, 2001.

[40] Hibernate. Website. http://www.hibernate.org/.

[41] G. J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineering,

23(5):279–294, May 1997.

[42] G. Hughes and T. Bultan. Interface grammars for modular software model checking. In

ISSTA ’07: Proceedings of the 2007 international symposium on Software testing and

analysis, pages 39–49, New York, NY, USA, 2007. ACM.

[43] G. Hughes, S. P. Rajan, T. Sidle, and K. Swenson. Error detection in concurrent java

programs. In Workshop on Software Model Checking, 2005.

[44] JLint. Website. http://artho.com/jlint.

[45] JPF. Website. http://javapathfinder.sourceforge.net.

[46] JTest. Website. http://www.parasoft.com.

157

http://www.hibernate.org/
http://artho.com/jlint
http://javapathfinder.sourceforge.net
http://www.parasoft.com

[47] JUnit. Website. http://www.junit.org.

[48] S. Khurshid, C. S. Pasareanu, and W. Visser. Generalized symbolic execution for model

checking and testing. In TACAS, pages 553–568, 2003.

[49] A. Kinneer, M. B. Dwyer, and G. Rothermel. Sofya: Supporting rapid development

of dynamic program analyses for java. In ICSE COMPANION ’07: Companion to the

proceedings of the 29th International Conference on Software Engineering, pages 51–52,

Washington, DC, USA, 2007. IEEE Computer Society.

[50] O. Kupferman and M. Y. Vardi. Modular model checking. In COMPOS (LNCS 1536),

1998.

[51] W. Landi, B. G. Ryder, and S. Zhang. Interprocedural modification side effect analysis

with pointer aliasing. ACM SIGPLAN Notices, 28(6):56–67, 1993.

[52] G. T. Leavens, A. L. Baker, and C. Ruby. Jml: a java modeling language. In In Formal

Underpinnings of Java Workshop (at OOPSLA’98, 1998.

[53] O. Lhoták. Spark: A flexible points-to analysis framework for Java. Master’s thesis,

McGill University, December 2002.

[54] D. Liang and M. J. Harrold. Efficient computation of parameterized pointer information

for interprocedural analyses. Lecture Notes in Computer Science, 2126:279, 2001.

[55] D. Liang, M. Pennings, and M. J. Harrold. Extending and evaluating flow-insenstitive

and context-insensitive points-to analyses for java. In Workshop on Program Analysis

For Software Tools and Engineering, pages 73–79, 2001.

[56] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:

Specification. Springer-Verlag, 1991.

[57] K. L. McMillan. Symbolic model checking: an approach to the state explosion problem.

PhD thesis, Pittsburgh, PA, USA, 1992.

158

http://www.junit.org

[58] S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann

Publishers, 1997.

[59] M. Musuvathi and D. Engler. Model checking large network protocol implementations.

In The First Symposium on Networked Systems Design and Implementation, 2004.

[60] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer-

Verlag New York, Inc., 1999.

[61] C. Pacheco and M. D. Ernst. Randoop: feedback-directed random testing for java. In

OOPSLA ’07: Companion to the 22nd ACM SIGPLAN conference on Object oriented

programming systems and applications companion, pages 815–816, New York, NY, USA,

2007. ACM.

[62] E. Palmer. Oops, it didn’t arm: a case study of two automation surprises. In Proceedings

of the Eighth International Symposium on Aviation Psychology, 1995.

[63] P. Parizek and F. Plasil. Specification and generation of environment for model checking

of software components. Electron. Notes Theor. Comput. Sci., 176(2):143–154, 2007.

[64] J. Penix, W. Visser, E. Engstrom, A. Larson, and N. Weininger. Verification of time

partitioning in the DEOS real-time scheduling kernel. In Proceedings of the 22nd In-

ternational Conference on Software Engineering, June 2000.

[65] A. Pnueli. In transition from global to modular temporal reasoning about programs.

In K. Apt, editor, Logics and Models of Concurrent Systems, pages 123–144. Springer-

Verlag, 1985.

[66] C. S. Păsăreanu, M. B. Dwyer, and M. Huth. Assume-guarantee model checking of

software : A comparative case study. In Theoretical and Applied Aspects of SPIN

Model Checking (LNCS 16 80), Sept. 1999.

159

[67] A. Raman and J. Patrick. The sk-strings method for inferring pfsa. In Proceedings of

the workshop on automata induction, grammatical inference and language acquisition

at the 14th international conference on machine learning (ICML97), 1997.

[68] V. Ranganath. Indus Website. http://indus.projects.cis.ksu.edu.

[69] C. Razafimahefa. A study of side-effect analyses for java. Master’s thesis, McGill

University, Dec. 1999.

[70] Robby. Bogor Website. http://bogor.projects.cis.ksu.edu, 2003.

[71] Robby, M. B. Dwyer, and J. Hatcliff. Bogor: An extensible and highly-modular model

checking framework. In Proceedings of the 9th European Software Engineering Con-

ference held jointly with the 11th ACM SIGSOFT Symposium on the Foundations of

Software Engineering, 2003.

[72] E. Rodrguez, M. B. Dwyer, and J. Hatcliff. flexible framework for the estimation of

coverage metrics in explicit state software model checking. In in Proceedings of the 2004

International Workshop on Construction and Analysis of Safe, Secure and Interoperable

Smart Devices, 2004.

[73] A. Rountev and B. G. Ryder. Points-to and side-effect analyses for programs built with

precompiled libraries. In Proceedings of the 10th International Conference on Compiler

Construction (CC’01), 2001.

[74] L. Sherry, M. Feary, P. Polson, and E. Palmer. Autopilot tutor: Building and main-

taining autopilot skills.

[75] Soot. Tutorial. http://www.sable.mcgill.ca/soot/tutorial/index.html.

[76] Soot. Website. http://www.sable.mcgill.ca/soot/.

160

http://indus.projects.cis.ksu.edu
http://bogor.projects.cis.ksu.edu
http://www.sable.mcgill.ca/soot/tutorial/index.html
http://www.sable.mcgill.ca/soot/

[77] S. D. Stoller. Model-checking multi-threaded distributed java programs. In Proceed-

ings of the 7th International SPIN Workshop on SPIN Model Checking and Software

Verification, pages 224–244, London, UK, 2000. Springer-Verlag.

[78] S. D. Stoller. Domain partitioning for open reactive systems. In Proceedings of the

international symposium on Software testing and analysis, pages 44–54. ACM Press,

2002.

[79] S. D. Stoller and Y. A. Liu. Transformations for model checking distributed java

programs. In Proc. 8th Int’l. SPIN Workshop on Model Checking of Software, volume

2057 of Lecture Notes in Computer Science, pages 192–199. Springer-Verlag, May 2001.

[80] Struts. Website. http://struts.apache.org/.

[81] SUN. J2EE 1.4 Tutorial. http://java.sun.com/j2ee/1.4/docs/tutorial/doc/.

[82] SUN. Java Pet Store. http://java.sun.com/j2ee/1.4/download.htmlsamples.

[83] SUN. Swing Tutorial. http://java.sun.com/docs/books/tutorial/uiswing/

index.html.

[84] F. Tip. A survey of program slicing techniques. Journal of Programming Languages,

3:121–189, 1995.

[85] O. Tkachuk. Adapting side effects analysis for modular program model checking. Mas-

ter’s thesis, Kansas State University, 2003.

[86] O. Tkachuk, G. Brat, and W. Visser. Using code level model checking to discover

automation surprises. In Proceedings of the 2002 Digital Avionics Systems Conference,

2002.

[87] O. Tkachuk and M. B. Dwyer. Adapting side effects analysis for modular program

model checking. In Proceedings of the Fourth joint meeting of the European Software

161

http://struts.apache.org/
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/
http://java.sun.com/j2ee/1.4/download.htmlsamples
http://java.sun.com/docs/books/tutorial/uiswing/index.html
http://java.sun.com/docs/books/tutorial/uiswing/index.html

Engineering Conference and ACM SIGSOFT Symposium on the Foundations of Soft-

ware Engineering, Sept. 2003.

[88] O. Tkachuk, M. B. Dwyer, and C. S. Păsăreanu. Automated environment generation

for software model checking. In Proceedings of the 18th IEEE International Conference

on Automated Software Engineering, Oct. 2003.

[89] O. Tkachuk and S. P. Rajan. Application of automated environment generation to

commercial software. In ISSTA’06: Proceedings of the 2006 international symposium

on Software testing and analysis, pages 203–214, New York, NY, USA, 2006. ACM

Press.

[90] O. Tkachuk and S. P. Rajan. Combining environment generation and slicing for modular

software model checking. In ASE, pages 401–404, 2007.

[91] R. Valle-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and P. Co. Soot - a Java

optimization framework. In Proceedings of CASCON’99, Nov. 1999.

[92] W. Visser, K. Havelund, G. Brat, and S. Park. Model checking programs. In Proceedings

of the 15th IEEE Conference on Automated Software Engineering, Sept. 2000.

[93] W. Weimer and G. Necula. Mining temporal specifications for error detection. In

Proceedings of the 11th International Conference on Tools and Algorithms For The

Construction And Analysis Of Systems (TACAS ’05), April 2005.

[94] J. Whaley, M. C. Martin, and M. S. Lam. Automatic extraction of object-oriented com-

ponent interfaces. In Proceedings of the International Symposium on Software Testing

and Analysis, July 2002.

[95] J. Whaley and M. Rinard. Compositional pointer and escape analysis for Java pro-

grams. In OOPSLA’99 ACM Conference on Object-Oriented Systems, Languages and

162

Applications, volume 34(10) of ACM SIGPLAN Notices, pages 187–206, Denver, CO,

Oct. 1999. ACM Press.

[96] T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra: A framework for gener-

ating object-oriented unit tests using symbolic execution. In Proceedings of the 11th

International Conference on Tools and Algorithms for the Construction and Analysis

of Systems (TACAS 05), pages 365–381, April 2005.

[97] J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Using model checking to find serious

file system errors. In Proceedings of the Sixth Symposium on Operating Systems Design

and Implementation, 2004.

[98] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit test coverage and adequacy.

ACM Comput. Surv., 29(4):366–427, 1997.

163

Appendix A

BEG Configurations and Generated
Code

A.1 Observer-Observable

A.1.1 Universal Driver

BEG configuration to generate a universal driver:

ApplInfo = applinfo.domain.DeafultDriverInfo
InterfaceFinder = applinfo.UnitInterfaceFinder
CodeGenerator = codegen.UniversalDriverGenerator
numThreads = 2
numInstances = 2
unit = Subject Watcher

The universal driver generated automatically by BEG:

1 public class EnvDriver {
2 public static void main(String [] param1){
3 Subject s = new Subject ();
4 Subject s2 = new Subject ();
5 Watcher w = new Watcher ();
6 Watcher w2 = new Watcher ();
7 new EnvDriverThread(s, s2 , w, w2). start ();
8 new EnvDriverThread(s, s2 , w, w2). start ();
9 }

10 }

1 public class EnvDriverThread extends java.lang.Thread {
2 public Subject s, s2;
3 public Watcher w, w2;
4 public EnvDriverThread(Subject param1 , Subject param2 ,
5 Watcher param3 , Watcher param4){
6 s = param1;
7 s2 = param2;

164

8 w = param3;
9 w2 = param4;

10 }
11 public void run (){
12 while(true){
13 int choice = Verify.random (8);
14 switch(choice){
15 case 0:
16 ((Watcher)Verify.randomObject("Watcher")). registered =
17 Abstraction.TOP_BOOL;
18 break;
19 case 1:
20 ((Watcher)Verify.randomObject("Watcher")).
21 update(Verify.randomObject("Observable"),
22 Verify.randomObject("Object"));
23 break;
24 case 2:
25 ((Subject)Verify.randomObject(Subject)).
26 delete ((Watcher)Verify.randomObject("Watcher")));
27 break;
28 ...
29 case 8:
30 ((Subject)Verify.randomObject(Subject)).
31 add(((Watcher)Verify.randomObject("Watcher")));
32 break;
33 }
34 }
35 }

The universal driver corresponds to the following BEG specification:

environment {
setup { 2 Subject; 2 Watcher }
driver -assumptions {

re{
2 EnvDriverThread:

(changeState () | add() | delete () | hasChanged () |
setChanged () | notifyObservers () | update () |
registered = TOP_BOOL)*

}
}

}

A.1.2 User Specified Stubs

BEG configuration to generate stubs from user specifications:

ApplInfo = applinfo.domain.DefaultStubInfo
InterfaceFinder = applinfo.EnvInterfaceFinder
AssumptionsAcquirer = spec.SpecReader

165

CodeGenerator = codegen.SpecStubGenerator
specFileName = specs/observer -stubs.spec
unit = Subject Watcher

Stub specification sample:

environment {
stubs -assumptions {

Buffer{
re removeFirst (){

return (Watcher)Verify.randomReachable (" Watcher", this);
}
re register(Watcher p){

p.registered = true;
}
//the rest of the methods are identified and stubbed out by BEG

}
}

}

A.1.3 Empty Stubs

BEG configuration to generate empty stubs:

ApplInfo = applinfo.domain.DefaultStubInfo
InterfaceFinder = applinfo.EnvInterfaceFinder
CodeGenerator = codegen.EmptyStubGenerator
unit = Subject Watcher

1 import gov.nasa.jpf.jvm.Verify;
2 import edu.ksu.cis.bandera.Abstraction;
3 public class Buffer{
4 public static Buffer TOP_OBJ = new Buffer ();
5
6 public Buffer (){
7 }
8 public void register(Watcher param0){
9 }

10 public void unregister(Watcher param0){
11 }
12 public void copy(Buffer param0){
13 }
14 public Watcher removeFirst (){
15 return ((Watcher)Verify.randomObject("Watcher"));
16 }
17 public boolean isEmpty (){
18 return Abstraction.TOP_BOOL;
19 }
20 }

166

1 package java.util;
2 import gov.nasa.jpf.jvm.Verify;
3 import edu.ksu.cis.bandera.Abstraction;
4
5 public interface Observer {
6
7 }

1 package java.util;
2 import gov.nasa.jpf.jvm.Verify;
3 import edu.ksu.cis.bandera.Abstraction;
4
5 public class Observable {
6 public static java.util.Observable TOP_OBJ =
7 new java.util.Observable ();
8
9 public Observable (){

10 }
11 }

A.2 GUI Examples

A.2.1 Universal Driver

Reusable universal driver:

1 package env;
2
3 import env.java.awt .*;
4 import env.java.awt.event .*;
5 import env.javax.swing .*;
6 import env.javax.swing.event .*;
7 import env.java.beans .*;
8 import env.java.util.EventListener;
9 import java.util.Vector;

10 import gov.nasa.jpf.jvm.Verify;
11
12 public class UserModel {
13 public static Window chooseTopWindow () {
14 Window window = null;
15 System.out.println("Fetching a top level window");
16
17 Vector modalDialogs = SwingUtilities.getModalDialogs ();
18 Dialog modal;
19
20 if (! modalDialogs.isEmpty ()) {
21 modal = (Dialog) modalDialogs.lastElement ();
22 if (modal != null && modal.isVisible ()) {
23 window = modal;

167

24 }
25 }
26 System.out.println("Fetching a frame or non -modal dialog");
27 if (window == null) {
28 Vector topWindows = SwingUtilities.getTopWindows ();
29 window = (Window) Verify.randomReachable("env.java.awt.Window",
30 topWindows);
31
32 }
33 return window;
34 }
35 public static void notifyListeners(JComponent container) {
36
37 EventListener [] list = container.getListeners ();
38
39 EventListener listener;
40 for (int i = 0; i < list.length; i++) {
41 listener = list[i];
42 if (listener == null)
43 continue;
44 if (listener instanceof ChangeListener) {
45 ((ChangeListener) listener). stateChanged(new ChangeEvent(
46 container));
47 }
48 if (listener instanceof ItemListener) {
49 ((ItemListener) listener). itemStateChanged(new ItemEvent(
50 container));
51 }
52 if (listener instanceof ActionListener) {
53 ((ActionListener) listener). actionPerformed(new ActionEvent(
54 container));
55 }
56 if (listener instanceof PropertyChangeListener) {
57 ((PropertyChangeListener) listener)
58 .propertyChange(new PropertyChangeEvent(container));
59
60 }
61 ...
62 }
63 }
64 }

Reusable model of the class that keeps track of modal and non-modal dialogs:

1 package env.javax.swing;
2
3 import gov.nasa.jpf.jvm.Verify;
4 import edu.ksu.cis.bandera.Abstraction;
5 import java.util.Vector;
6 import env.java.awt .*;
7
8 public class SwingUtilities {

168

9 public static Vector topWindows = new Vector ();
10
11 private static int maxNumWindows = 10;
12
13 public static Vector modalDialogs = new Vector ();
14
15 public static void invokeLater(java.lang.Runnable param0) {
16 }
17 public static void updateComponentTreeUI(env.java.awt.Component param0) {
18 }
19
20 // auxiliary methods to keep track of top windows

21
22 public static void addTopWindow(Window window) {
23 if (topWindows.size() < maxNumWindows) {
24 topWindows.add(window);
25 }
26 }
27 public static void removeTopWindow(Window window) {
28 topWindows.remove(window);
29 }
30 public static Vector getTopWindows () {
31 return topWindows;
32 }
33 public static void addModalDialog(Dialog dialog) {
34 modalDialogs.add(dialog);
35 }
36 public static void removeModalDialog(Dialog dialog) {
37 modalDialogs.remove(dialog);
38 }
39 public static Vector getModalDialogs () {
40 return modalDialogs;
41 }
42 }

Application-specific driver built on top of the reusable universal driver:

1 import java.util.Vector .*;
2
3 import env.java.UserModel;
4 import env.java.util.EventListener;
5 import env.javax.swing .*;
6 import env.java.awt .*;
7 import env.javax.swing.event .*;
8 import env.java.awt.event .*;
9 import env.java.beans .*;

10
11 import gov.nasa.jpf.jvm.Verify;
12
13 public class EnvDriverDialogDemo{
14
15 public static void main(String [] args) {

169

16 // Create and set up the window

17 JFrame.setDefaultLookAndFeelDecorated(true);
18 JFrame frame = new JFrame("DialogDemo");
19 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
20
21 // Create and set up the content pane.

22 DialogDemo newContentPane = new DialogDemo(frame);
23 // content panes must be opaque

24 newContentPane.setOpaque(true);
25 frame.setContentPane(newContentPane);
26
27 // Display the window

28 frame.pack ();
29 frame.setVisible(true);
30 SwingUtilities.addTopWindow(frame);
31
32 // event -handling loop

33 Window window;
34 JComponent container;
35
36 while (true) {
37 window = UserModel.chooseTopWindow ();
38
39 container = (JComponent) Verify.randomReachable(
40 "env.javax.swing.JComponent", window);
41
42 UserModel.notifyListeners(container);
43 }
44 }
45 }

A.3 SUN’s Pet Store

A.3.1 User Specified Driver

BEG configuration file for driver generation:

ApplInfo = applinfo.domain.J2EEDriverInfo
InterfaceFinder = applinfo.UnitInterfaceFinder
AssumptionsAcquirer = spec.SpecReader
CodeGenerator = codegen.J2EESpecDriverGenerator
specFileName = specs/petstore.spec
printActions = true
unit = com.sun.j2ee.blueprints.petstore.controller.web.actions .*
com.sun.j2ee.blueprints.petstore.controller.ejb.actions .*
com.sun.j2ee.blueprints.petstore.controller.events .*

Specification files for driver generation:

170

environment{
definitions{

// webActionMap
createUser = CreateUserHTMLAction
createAccount = CustomerHTMLAction
updateAccount = CustomerHTMLAction
purchase = CartHTMLAction
remove = CartHTMLAction
update = CartHTMLAction
order = OrderHTMLAction
signOff = SignOffHTMLAction

// ejbActionMap
CartEvent = CartEJBAction
CreateUserEvent = CreateUserEJBAction
CustomerEvent = CustomerEJBAction
OrderEvent = OrderEJBAction
SignOnEvent = SignOnEJBAction

}
driver -assumptions{

re{
// Set of user scenarios
Main: createUser;

createAccount; (createAccount | updateAccount);
(purchase; remove; (purchase | update)) ^ {0 ,2};
(purchase; order)^{0 ,3};
signOff #

}
}

}

Driver automatically generated from the above specification (with Abs used for Abstraction

and some imports factored out for reduction of the code):

1 import gov.nasa.jpf.jvm.Verify;
2 import edu.ksu.cis.bandera.Abs;
3 import com.sun.j2ee.blueprints.petstore.controller.web.actions .*;
4 import com.sun.j2ee.blueprints.petstore.controller.ejb.actions .*;
5 import com.sun.j2ee.blueprints.petstore.controller.events .*;
6 import com.sun.j2ee.blueprints.waf.controller.web.action .*;
7 import com.sun.j2ee.blueprints.waf.controller.ejb.action .*;
8 import com.sun.j2ee.blueprints.waf.event .*;
9 import env.javax.servlet.http .*;

10
11 public class EnvDriver {
12 public static void main(java.lang.String [] param0){
13 java.util.HashMap actionMap = new java.util.HashMap ();
14 actionMap.put("purchase", new CartHTMLAction ());
15 actionMap.put("update", new CartHTMLAction ());
16 actionMap.put("createAccount", new CustomerHTMLAction ());
17 actionMap.put("order", new OrderHTMLAction ());

171

18 actionMap.put("signOff", new SignOffHTMLAction ());
19 actionMap.put("updateAccount", new CustomerHTMLAction ());
20 actionMap.put("createUser", new CreateUserHTMLAction ());
21 actionMap.put("remove", new CartHTMLAction ());
22
23 actionMap.put("SignOnEvent", new SignOnEJBAction ());
24 actionMap.put("OrderEvent", new OrderEJBAction ());
25 actionMap.put("CartEvent", new CartEJBAction ());
26 actionMap.put("CustomerEvent", new CustomerEJBAction ());
27 actionMap.put("CreateUserEvent", new CreateUserEJBAction ());
28 EnvUserDemo EnvUser0 = new EnvUserDemo(actionMap , actionMap);
29
30 try{
31 HttpServletRequestImpl createUserEvent =
32 new HttpServletRequestImpl("createUser");
33 createUserEvent.setParameter("j_password", Abs.TOP_STRING);
34 createUserEvent.setParameter("j_password_2", Abs.TOP_STRING);
35 createUserEvent.setParameter("j_username", Abs.TOP_STRING);
36 HTMLAction createUserHTMLHandler =
37 (HTMLAction)actionMap.get("createUser");
38 if(createUserHTMLHandler !=null){
39 System.out.println("@EnvDriverThread: createUser");
40 Event createUserHTMLResponse =
41 createUserHTMLHandler.perform(createUserEvent);
42 if(createUserHTMLResponse !=null){
43 EJBAction createUserEJBHandler =
44 (EJBAction)actionMap.get(createUserHTMLResponse.getClass (). getName ());
45 if(createUserEJBHandler !=null){
46 EventResponse createUserEJBResponse =
47 createUserEJBHandler.perform(createUserHTMLResponse);
48 }
49 }
50 }
51 }
52 catch(Exception e){
53 e.printStackTrace ();
54 }
55 try{
56 HttpServletRequestImpl createAccountEvent =
57 new HttpServletRequestImpl("createAccount");
58 createAccountEvent.setParameter("email_a", Abs.TOP_STRING);
59 createAccountEvent.setParameter("mylist_on", Abs.TOP_STRING);
60 createAccountEvent.setParameter("banners_on", Abs.TOP_STRING);
61 createAccountEvent.setParameter("credit_card_expiry_year", Abs.TOP_STRING);
62 createAccountEvent.setParameter("telephone_number_a", Abs.TOP_STRING);
63 createAccountEvent.setParameter("country_a", Abs.TOP_STRING);
64 createAccountEvent.setParameter("given_name_a", Abs.TOP_STRING);
65 createAccountEvent.setParameter("city_a", Abs.TOP_STRING);
66 createAccountEvent.setParameter("family_name_a", Abs.TOP_STRING);
67 createAccountEvent.setParameter("favorite_category", Abs.TOP_STRING);
68 createAccountEvent.setParameter("address_1_a", Abs.TOP_STRING);

172

69 createAccountEvent.setParameter("language", Abs.TOP_STRING);
70 createAccountEvent.setParameter("state_or_province_a", Abs.TOP_STRING);
71 createAccountEvent.setParameter("credit_card_number", Abs.TOP_STRING);
72 createAccountEvent.setParameter("address_2_a", Abs.TOP_STRING);
73 createAccountEvent.setParameter("postal_code_a", Abs.TOP_STRING);
74 createAccountEvent.setParameter("credit_card_expiry_month", Abs.TOP_STRING);
75 createAccountEvent.setParameter("credit_card_type", Abs.TOP_STRING);
76 HTMLAction createAccountHTMLHandler =
77 (HTMLAction)actionMap.get("createAccount");
78 if(createAccountHTMLHandler !=null){
79 System.out.println("@EnvDriverThread: createAccount");
80 Event createAccountHTMLResponse =
81 createAccountHTMLHandler.perform(createAccountEvent);
82 if(createAccountHTMLResponse !=null){
83 EJBAction createAccountEJBHandler =
84 (EJBAction)actionMap.get(createAccountHTMLResponse.getClass (). getName ());
85 if(createAccountEJBHandler !=null){
86 EventResponse createAccountEJBResponse =
87 createAccountEJBHandler.perform(createAccountHTMLResponse);
88 }
89 }
90 }
91 }
92 catch(Exception e){
93 e.printStackTrace ();
94 }
95 int choice4=Verify.random (1);
96 switch(choice4){
97 case 0:
98 try{
99 HttpServletRequestImpl updateAccountEvent =

100 new HttpServletRequestImpl("updateAccount");
101 updateAccountEvent.setParameter("email_a", Abs.TOP_STRING);
102 updateAccountEvent.setParameter("mylist_on", Abs.TOP_STRING);
103 updateAccountEvent.setParameter("banners_on", Abs.TOP_STRING);
104 updateAccountEvent.setParameter("credit_card_expiry_year", Abs.TOP_STRING);
105 updateAccountEvent.setParameter("telephone_number_a", Abs.TOP_STRING);
106 updateAccountEvent.setParameter("country_a", Abs.TOP_STRING);
107 updateAccountEvent.setParameter("given_name_a", Abs.TOP_STRING);
108 updateAccountEvent.setParameter("city_a", Abs.TOP_STRING);
109 updateAccountEvent.setParameter("family_name_a", Abs.TOP_STRING);
110 updateAccountEvent.setParameter("favorite_category", Abs.TOP_STRING);
111 updateAccountEvent.setParameter("address_1_a", Abs.TOP_STRING);
112 updateAccountEvent.setParameter("language", Abs.TOP_STRING);
113 updateAccountEvent.setParameter("state_or_province_a", Abs.TOP_STRING);
114 updateAccountEvent.setParameter("credit_card_number", Abs.TOP_STRING);
115 updateAccountEvent.setParameter("address_2_a", Abs.TOP_STRING);
116 updateAccountEvent.setParameter("postal_code_a", Abs.TOP_STRING);
117 updateAccountEvent.setParameter("credit_card_expiry_month", Abs.TOP_STRING);
118 updateAccountEvent.setParameter("credit_card_type", Abs.TOP_STRING);
119 HTMLAction updateAccountHTMLHandler =

173

120 (HTMLAction)actionMap.get("updateAccount");
121 if(updateAccountHTMLHandler !=null){
122 System.out.println("@EnvDriverThread: updateAccount");
123 Event updateAccountHTMLResponse =
124 updateAccountHTMLHandler.perform(updateAccountEvent);
125 if(updateAccountHTMLResponse !=null){
126 EJBAction updateAccountEJBHandler =
127 (EJBAction)actionMap.get(updateAccountHTMLResponse.getClass (). getName ());
128 if(updateAccountEJBHandler !=null){
129 EventResponse updateAccountEJBResponse =
130 updateAccountEJBHandler.perform(updateAccountHTMLResponse);
131 }
132 }
133 }
134 }
135 catch(Exception e){
136 e.printStackTrace ();
137 }
138 break;
139 case 1:
140 try{
141 HttpServletRequestImpl createAccountEvent =
142 new HttpServletRequestImpl("createAccount");
143 createAccountEvent.setParameter("email_a", Abs.TOP_STRING);
144 createAccountEvent.setParameter("mylist_on", Abs.TOP_STRING);
145 createAccountEvent.setParameter("banners_on", Abs.TOP_STRING);
146 createAccountEvent.setParameter("credit_card_expiry_year", Abs.TOP_STRING);
147 createAccountEvent.setParameter("telephone_number_a", Abs.TOP_STRING);
148 createAccountEvent.setParameter("country_a", Abs.TOP_STRING);
149 createAccountEvent.setParameter("given_name_a", Abs.TOP_STRING);
150 createAccountEvent.setParameter("city_a", Abs.TOP_STRING);
151 createAccountEvent.setParameter("family_name_a", Abs.TOP_STRING);
152 createAccountEvent.setParameter("favorite_category", Abs.TOP_STRING);
153 createAccountEvent.setParameter("address_1_a", Abs.TOP_STRING);
154 createAccountEvent.setParameter("language", Abs.TOP_STRING);
155 createAccountEvent.setParameter("state_or_province_a", Abs.TOP_STRING);
156 createAccountEvent.setParameter("credit_card_number", Abs.TOP_STRING);
157 createAccountEvent.setParameter("address_2_a", Abs.TOP_STRING);
158 createAccountEvent.setParameter("postal_code_a", Abs.TOP_STRING);
159 createAccountEvent.setParameter("credit_card_expiry_month", Abs.TOP_STRING);
160 createAccountEvent.setParameter("credit_card_type", Abs.TOP_STRING);
161 HTMLAction createAccountHTMLHandler =
162 (HTMLAction)actionMap.get("createAccount");
163 if(createAccountHTMLHandler !=null){
164 System.out.println("@EnvDriverThread: createAccount");
165 Event createAccountHTMLResponse =
166 createAccountHTMLHandler.perform(createAccountEvent);
167 if(createAccountHTMLResponse !=null){
168 EJBAction createAccountEJBHandler =
169 (EJBAction)actionMap.get(createAccountHTMLResponse.getClass (). getName ());
170 if(createAccountEJBHandler !=null){

174

171 EventResponse createAccountEJBResponse =
172 createAccountEJBHandler.perform(createAccountHTMLResponse);
173 }
174 }
175 }
176 }
177 catch(Exception e){
178 e.printStackTrace ();
179 }
180 break;
181 }
182 for(int i=0;i<0+ Verify.random (3);++i){
183 try{
184 HttpServletRequestImpl purchaseEvent =
185 new HttpServletRequestImpl("purchase");
186 purchaseEvent.setParameter("itemId", Abs.TOP_STRING);
187 HTMLAction purchaseHTMLHandler = (HTMLAction)actionMap.get("purchase");
188 if(purchaseHTMLHandler !=null){
189 System.out.println("@EnvDriverThread: purchase");
190 Event purchaseHTMLResponse =
191 purchaseHTMLHandler.perform(purchaseEvent);
192 if(purchaseHTMLResponse !=null){
193 EJBAction purchaseEJBHandler =
194 (EJBAction)actionMap.get(purchaseHTMLResponse.getClass (). getName ());
195 if(purchaseEJBHandler !=null){
196 EventResponse purchaseEJBResponse =
197 purchaseEJBHandler.perform(purchaseHTMLResponse);
198 }
199 }
200 }
201 }
202 catch(Exception e){
203 e.printStackTrace ();
204 }
205 try{
206 HttpServletRequestImpl removeEvent = new
207 HttpServletRequestImpl("remove");
208 removeEvent.setParameter("itemId", Abs.TOP_STRING);
209 HTMLAction removeHTMLHandler = (HTMLAction)actionMap.get("remove");
210 if(removeHTMLHandler !=null){
211 System.out.println("@EnvDriverThread: remove");
212 Event removeHTMLResponse = removeHTMLHandler.perform(removeEvent);
213 if(removeHTMLResponse !=null){
214 EJBAction removeEJBHandler =
215 (EJBAction)actionMap.get(removeHTMLResponse.getClass (). getName ());
216 if(removeEJBHandler !=null){
217 EventResponse removeEJBResponse =
218 removeEJBHandler.perform(removeHTMLResponse);
219 }
220 }
221 }

175

222 }
223 catch(Exception e){
224 e.printStackTrace ();
225 }
226 int choice7=Verify.random (1);
227 switch(choice7){
228 case 0:
229 try{
230 HttpServletRequestImpl updateEvent = new
231 HttpServletRequestImpl("update");
232 updateEvent.setParameter("itemId", Abs.TOP_STRING);
233 updateEvent.setParameter("itemQuantity", Abs.TOP_STRING);
234 HTMLAction updateHTMLHandler = (HTMLAction)actionMap.get("update");
235 if(updateHTMLHandler !=null){
236 System.out.println("@EnvDriverThread: update");
237 Event updateHTMLResponse = updateHTMLHandler.perform(updateEvent);
238 if(updateHTMLResponse !=null){
239 EJBAction updateEJBHandler =
240 (EJBAction)actionMap.get(updateHTMLResponse.getClass (). getName ());
241 if(updateEJBHandler !=null){
242 EventResponse updateEJBResponse =
243 updateEJBHandler.perform(updateHTMLResponse);
244 }
245 }
246 }
247 }
248 catch(Exception e){
249 e.printStackTrace ();
250 }
251 break;
252 case 1:
253 try{
254 HttpServletRequestImpl purchaseEvent = new
255 HttpServletRequestImpl("purchase");
256 purchaseEvent.setParameter("itemId", Abs.TOP_STRING);
257 HTMLAction purchaseHTMLHandler = (HTMLAction)actionMap.get("purchase");
258 if(purchaseHTMLHandler !=null){
259 System.out.println("@EnvDriverThread: purchase");
260 Event purchaseHTMLResponse =
261 purchaseHTMLHandler.perform(purchaseEvent);
262 if(purchaseHTMLResponse !=null){
263 EJBAction purchaseEJBHandler =
264 (EJBAction)actionMap.get(purchaseHTMLResponse.getClass (). getName ());
265 if(purchaseEJBHandler !=null){
266 EventResponse purchaseEJBResponse =
267 purchaseEJBHandler.perform(purchaseHTMLResponse);
268 }
269 }
270 }
271 }
272 catch(Exception e){

176

273 e.printStackTrace ();
274 }
275 break;
276 }
277 }
278
279 for(int i=0;i<0+ Verify.random (3);++i){
280 try{
281 HttpServletRequestImpl purchaseEvent = new
282 HttpServletRequestImpl("purchase");
283 purchaseEvent.setParameter("itemId", Abs.TOP_STRING);
284 HTMLAction purchaseHTMLHandler = (HTMLAction)actionMap.get("purchase");
285 if(purchaseHTMLHandler !=null){
286 System.out.println("@EnvDriverThread: purchase");
287 Event purchaseHTMLResponse =
288 purchaseHTMLHandler.perform(purchaseEvent);
289 if(purchaseHTMLResponse !=null){
290 EJBAction purchaseEJBHandler =
291 (EJBAction)actionMap.get(purchaseHTMLResponse.getClass (). getName ());
292 if(purchaseEJBHandler !=null){
293 EventResponse purchaseEJBResponse =
294 purchaseEJBHandler.perform(purchaseHTMLResponse);
295 }
296 }
297 }
298 }
299 catch(Exception e){
300 e.printStackTrace ();
301 }
302 try{
303 HttpServletRequestImpl orderEvent = new
304 HttpServletRequestImpl("order");
305 orderEvent.setParameter("address_2_b", Abs.TOP_STRING);
306 orderEvent.setParameter("email_a", Abs.TOP_STRING);
307 orderEvent.setParameter("city_b", Abs.TOP_STRING);
308 orderEvent.setParameter("telephone_number_a", Abs.TOP_STRING);
309 orderEvent.setParameter("country_a", Abs.TOP_STRING);
310 orderEvent.setParameter("family_name_b", Abs.TOP_STRING);
311 orderEvent.setParameter("postal_code_b", Abs.TOP_STRING);
312 orderEvent.setParameter("given_name_a", Abs.TOP_STRING);
313 orderEvent.setParameter("address_1_b", Abs.TOP_STRING);
314 orderEvent.setParameter("city_a", Abs.TOP_STRING);
315 orderEvent.setParameter("family_name_a", Abs.TOP_STRING);
316 orderEvent.setParameter("given_name_b", Abs.TOP_STRING);
317 orderEvent.setParameter("country_b", Abs.TOP_STRING);
318 orderEvent.setParameter("address_1_a", Abs.TOP_STRING);
319 orderEvent.setParameter("state_or_province_a", Abs.TOP_STRING);
320 orderEvent.setParameter("address_2_a", Abs.TOP_STRING);
321 orderEvent.setParameter("postal_code_a", Abs.TOP_STRING);
322 orderEvent.setParameter("state_or_province_b", Abs.TOP_STRING);
323 orderEvent.setParameter("telephone_number_b", Abs.TOP_STRING);

177

324 orderEvent.setParameter("email_b", Abs.TOP_STRING);
325 HTMLAction orderHTMLHandler = (HTMLAction)actionMap.get("order");
326 if(orderHTMLHandler !=null){
327 System.out.println("@EnvDriverThread: order");
328 Event orderHTMLResponse =
329 orderHTMLHandler.perform(orderEvent);
330 if(orderHTMLResponse !=null){
331 EJBAction orderEJBHandler =
332 (EJBAction)actionMap.get(orderHTMLResponse.getClass (). getName ());
333 if(orderEJBHandler !=null){
334 EventResponse orderEJBResponse =
335 orderEJBHandler.perform(orderHTMLResponse);
336 }
337 }
338 }
339 }
340 catch(Exception e){
341 e.printStackTrace ();
342 }
343 }
344 try{
345 HttpServletRequestImpl signOffEvent = new
346 HttpServletRequestImpl("signOff");
347 HTMLAction signOffHTMLHandler = (HTMLAction)actionMap.get("signOff");
348 if(signOffHTMLHandler !=null){
349 System.out.println("@EnvDriverThread: signOff");
350 Event signOffHTMLResponse =
351 signOffHTMLHandler.perform(signOffEvent);
352 if(signOffHTMLResponse !=null){
353 EJBAction signOffEJBHandler =
354 (EJBAction)actionMap.get(signOffHTMLResponse.getClass (). getName ());
355 if(signOffEJBHandler !=null){
356 EventResponse signOffEJBResponse =
357 signOffEJBHandler.perform(signOffHTMLResponse);
358 }
359 }
360 }
361 }
362 catch(Exception e){
363 e.printStackTrace ();
364 }
365 }
366 }

178

	Title Page
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Dedication
	Introduction
	Problem Definition
	Proposed Solution
	Unit and Property Specification
	Environment Generation
	Model Checking

	Thesis Contributions
	Thesis Organization

	Background and Related Work
	Background
	Unit Testing
	Static Analysis
	Data Flow Analysis
	Software Model Checking
	Modular Model Checking
	Java Model Checking Frameworks

	Related Work
	Unit Testing
	Static Analysis for Java
	Points-to and Side-Effects Analysis
	Modular Model Checking
	Java Model Checking

	Overview
	Example: Observer-Observable
	Unit and Property Specification
	Interface Discovery
	Driver Generation
	Stub Generation
	Model Checking and Refinement

	Environment Generation Methodology
	Unit and Property Specification
	Interface Discovery
	Driver Generation
	Stub Generation
	Model Checking and Refinement

	Domain-Specific Environment Generation
	Environment Generation for GUI Applications
	Example: Button Demo
	Domain-Specific Knowledge
	Domain-Specific Methodology

	Environment Generation for J2EE Applications
	Example: SUN's Pet Store
	Domain-Specific Knowledge
	Domain-Specific Methodology

	Environment Generation Techniques
	Program Representation
	Interface Discovery
	Unit Interface
	Environment Interface

	Specifying Assumptions
	Specifying Actions
	Specifying Patterns of Actions
	Specifying Drivers and Stubs

	Extracting Assumptions
	Abstract Access Paths
	Points-to Analysis
	Side-Effects Analysis
	Analyzing Swing/AWT and J2EE components

	Code Generation
	Action Code Generation
	Pattern Code Generation
	Driver and Stub Code Generation

	Limitations

	BEG Implementation and Usage
	High-Level Architecture
	Application Information
	Interface Finders
	Assumptions Acquirers
	Code Generators
	Code Printers

	BEG Options
	Common Configurations
	Driver Generation
	Stub Generation

	Limitations

	Experience
	NASA's Autopilot Tutor
	Driver Generation
	Stub Generation
	Verification Results

	GUI Examples
	Driver Generation: Event-Handling
	Stub Generation: Swing/AWT Components
	Verification Results

	Fujitsu's I-BPM
	I-BPM Architecture
	Database Adapter Module
	Cache Module
	Discussion

	SUN's Pet Store
	Driver Generation: Event-Handling
	Stub Generation: J2EE Components
	Verification Results

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Bibliography
	BEG Configurations and Generated Code
	Observer-Observable
	Universal Driver
	User Specified Stubs
	Empty Stubs

	GUI Examples
	Universal Driver

	SUN's Pet Store
	User Specified Driver

