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CHAPTER 1 - INTRODUCTION

This thesis examines different ways that processes can communicate. In particular,

communications between distributed processes will be studied. It also examines the

communication primitives that are available in some standard languages, namely Ada '

,

Concurrent C and CHILL. A communication system that has been developed is also

presented in the paper. This particular communication system is used because it is

familiar to the author. Also, it provides facilities commonly found in communication

systems for real-time, distributed computing environments. The functions of the

communication system will be presented in detail.

The objective of this paper is to show how the facilities of the communication system can

be utilized to support the communication primitives of the aforementioned languages.

The additional functionality that would be necessary to map the communication

primitives of the languages into the services provided by the communication system will

be described.

This chapter discusses the communications mechanisms that are commonly employed

between processes. Chapter 2 presents the standard language communication primitives,

some of which are commonly available in languages that use two of the mechanisms,

namely message passing and remote procedure calls. Chapter 3 describes the

communications system. It presents the capabilities of the system. Chapter 4 presents

enhancements that would need to be developed to use the communication system to

support the standard language primitives. Chapter 5 provides the conclusions, showing

Ada is a registered trademark of the U. S. Department of Defense, Joint Ada Project.
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that the communication system can be used to provide the mechanisms for

communications

.

1.1 Standard Communication Methods

For the purposes of this paper, a distributed computing environment is defined to mean a

collection of, possibly heterogeneous, processors. The processors are connected through

a communications medium. A process can be understood as the execution of a program,

and its associated data structures. Processes can run on different processors.

In a distributed computing environment, processes need to communicate. The reasons

for the communication can be varied, such as:

— the processes need to synchronize activities;

— a client process requests service from a server process;

— or two cooperating processes need to pass information.

These needs have been widely discussed in the literature dealing with concurrent

processes and distributed processing. In particular, see [Andrews 83], [Hoare 78], and

[Brinch Hansen 77].

Different methods are available to facilitate the communications between concurrent

processes that share common memory. These techniques include the use of procedure

calls, shared variables and monitors.

For distributed processes that do not share memory, only message passing is a viable

alternative. Remote procedure calls and monitors are possible, but rely on an underlying

communications mechanism which utilizes message passing.

The following sections describe the characteristics of the communications mechanisms.

The advantages and disadvantages of each mechanism for distributed processing are
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presented.

1.1.1 Procedure Calls

Procedure calls are a standard mechanism used to communicate between procedures in a

typical sequential process. This mechanism involves passing parameters to the called

procedure, which will act upon the parameters and return to the caller. A result may or

may not be passed back to the caller.

The caller is blocked while the called procedure is executing. The caller expects the

called procedure to return to it when it has completed its operation. If the called

procedure fails, the caller expects to be terminated, or that an exception handling

procedure will be invoked, if provided by the language.

Communication between the calling and called procedures is accomplished by means of

the passed parameters, as well as possibly by global variables. Because it is assumed that

shared memory is available, the called procedure can affect the global variables directly.

Because shared memory is not necessarily available in a distributed system, traditional

procedure calls cannot be used for communication. However, because the semantics of

procedure calling is familiar to programmers, it would be beneficial to maintain a

semblance of it for distributed computing.

Remote procedure calling has been proposed as a mechanism for distributed systems

[Sloman 87], because it attempts to maintain a close similarity to traditional procedure

calling. It will be discussed in detail in section 1.1.3.

1.1.2 Message Passing

In a distributed system, when processes need to communicate, they must pass messages.

This action implies that a message handling, or communication, system is implemented to

support this need. In this paper, the term communication system will be used to indicate
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this facility.

Message passing involves having the caller construct a message, and send it to the

intended receiver. This operation is typically called a send. The receiver must actively

request a message. This is identified as a receive operation.

According to [Peterson 83], there are a number of issues that must be addressed in a

communication system. Some of the more interesting issues are:

• How do processes identify each other for communication? The

alternatives are direct or indirect naming.

• Where are messages sent? They may be either sent directly to the

receiving process or stored in buffers.

• Is the communication symmetric or asymmetric?

The following subsections will discuss the issues in more detail.

1.1.2.1 Process Identification When direct naming is used, each process explicitly

identifies the process with which it intends to communicate. This requires that each

process knows the name of its partner. This is called symmetric communication. If the

name of either process changes, the other one must know about it, and make the

appropriate correction.

If the sender identifies the receiver explicitly, while the receiver will accept a message

from any sender, the communication is called asymmetric.

When indirect naming is used, the messages are placed in a buffer or global location,

which may be called a mailbox [Gelertner 82] and [Kenah 88], a link [Solomon 79] or port

[Balzer 71]. Each process does not know the identity of the other, but must agree upon

the name of the global location. In this situation, neither process needs to know the
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name of its counterpart before a message transmission. In some implementations,

multiple processes may be attempting to receive or send through the same buffer

[Kenah 88].

1.1.2.2 Buffering Issues Either buffers are provided to allow the communicating

processes some level of asynchrony, or no buffers are used.

If buffering is allowed, the sender can resume execution as soon as its message has been

copied into the buffer. The buffering may be either bounded or unbounded. If the

buffering is bounded, a sender is blocked when buffers are not available, until one

becomes available. True unbounded buffers are unrealistic because there is a limit on the

amount of physical storage available in any actual system. An assumption can be made

that the storage space available is unlimited because it should not be exhausted in normal

usage.

If no buffers are used, the communicating processes must be halted while the message

transfer is being completed to prevent the message from becoming corrupted, because the

message is copied directly from the sender's storage area to the receiver's. If either

process is allowed to execute while the transfer is occurring, it may inadvertently write

over the storage area for the message. An advantage of no buffering is that the sender

receives an implicit acknowledgement that the message has been received, when it

continues execution.

1.1.2.3 Synchronization of the Communications Operations Either the sender or receiver

or both may be blocked for the duration of the communication. The different situations

are examined in the following subsections.

1.1.2.3.1 Asynchronous Send When the sender is unblocked as soon as the message is

queued by the communication system, it is referred to as an asynchronous send. This
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technique cannot be allowed if no buffering is offered by the communication system.

In this case, the sender does not know if the message has been received. If it is

necessary for the sender to confirm that the message had indeed been received, it would

have to request an acknowledgement from the receiver or the communication system.

This method allows for more concurrency between processes, and incurs little overhead

from the communication system. It puts a greater burden on the applications

programmer to ensure reliable communications.

1.1.2.3.2 Synchronous Send In a synchronous send operation, the sender will be blocked

until the receiver actually receives the message. In this way, the sender is assured that

the message was received.

While the sender is blocked, concurrency does not occur. This defeats one purpose of

distributed processing.

1.1.2.3.3 Asynchronous Receive As with asynchronous send, an asynchronous receive

operation allows the caller to continue execution while the operation is still outstanding.

It allows greater concurrency of activities within the receiver.

The receiving process will either be informed through an interrupt, or have to

periodically poll to determine when a message is received. When it determines that a

message has been received, it can then process the message.

As with asynchronous send, this method requires greater care from the application

programmer to ensure the correct operation of the process. Some communication

systems do not provide this type of receive operation, because either an interrupt service

is not available from the operating system, or the overhead of polling is too great for the

communication system. Many other communication systems only implement synchronous

receive operations, because a receiver process normally only waits for messages, and
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processes a message before attempting to receive another one. This is the normal

paradigm for server processes.

The VMS operating system [Kenah 88] provides interrupt services to notify processes

that messages are available. These services are used in the communication system

presented in Chapter Three.

1.1.2.3.4 Synchronous Receive In a synchronous receive operation, the receiver is

blocked until a message has been delivered to it. This can be used for synchronization as

well as communication.

If a message does not arrive, the process could be blocked forever. To prevent this from

happening in an unreliable communication system, the receiver may provide a timeout

interval.

1.1.3 Remote Procedure Calls

Remote procedure calls are similar to normal procedure calls, except that the called

procedure is not in the same process as the caller. It is even possible that it is not on the

same processor. But the semantics of a remote procedure call are the same as for a

normal procedure call, i.e. the caller is blocked until the called procedure performs the

requested operation, and returns.

This action closely models the client/server relationship, where the client calls the server,

and is blocked until the server performs the requested operation, and the results are

returned.

Remote procedure calls in a distributed system imply the existence of a communication

system that can transmit the requests and responses. In a distributed environment, a

message passing facility would be necessary to meet this requirement.
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1.1.3.1 Process Instantiation Because the process that executes the specified procedure is

remote, it either must exist before the call is made, or it must be created.

A separate process that exists to service all requests of a certain type will serialize them,

and thereby reduce the amount of concurrency possible. Ada is a language in which the

remote process exists prior to the execution of the call. Synchronizing Resources (SR)

[Andrews 82] allows for processes that wait for requests and then handles them.

In ARGUS [Liskov 82], handlers are remote processes that are created to service the call.

Distributed Processes [Brinch Hansen 78] also provides separate processes for each

invocation. Separate processes allow for more concurrency than would be possible with a

single server process. If common data is accessed by the concurrent server processes, the

servers must synchronize their accesses to the common data.

1.1.3.2 Remote Procedure Call Semantics Because the processes are communicating

through a potentially unreliable communication system, there is a possibility of messages

being lost. As a result, the call may be serviced by the called process more that once.

Remote procedure call semantics can be defined by one of the following two types.

1. Exactly once semantics

The called procedure will be executed exactly once, and the results will

be returned to the caller only once. This implies that duplicate messages

will be eliminated by the communication system.

2. At least once semantics

The called procedure is executed at least once.

The first type of semantics is more ideal because it correctly emulates the normal,

sequential procedure call. It is also the most difficult to implement, and incurs a higher

overhead, because the communication system needs to be more concerned about the
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successful transmission of messages. It implies a reliable communication system, that

will guarantee message delivery, despite failures in transmission.

1.2 Summary

This chapter has discussed the need for communications in distributed systems. Different

mechanisms for communication between processes have been presented, and their

advantages and disadvantages for use in distributed systems have been discussed.

The next chapter will present the communication primitives available in some languages,

in preparation for a discussion of a proposed implementation of these communication

primitives in a distributed system.
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CHAPTER 2 - SURVEY OF COMMUNICATIONS PRIMITIVES

This chapter examines the language constructs that are available in Ada, Concurrent C

and CHILL for interprocess communication. The semantics of each construct will be

presented. Issues that arise as a result of using the constructs in a distributed computing

environment are discussed for each language.

All of the languages discussed provide facilities for concurrent processing, but some of

these facilities do not lend themselves to distributed processing, especially when

reliability and real-time processing are important considerations.

The constructs available in Ada for interprocess communication are presented in Section

2.1. The constructs defined in Concurrent C are discussed in Section 2.2, while Section

2.3 provides a description of the constructs in CHILL.

2.1 Ada

Ada is a language that was developed in response to the needs of the U. S. Department

of Defense. A language was desired which would be able to be used for any defense

project. Ada was designed to be employed in systems as diverse as payroll systems and

real-time flight control systems in fighter aircraft. The goal of Ada was to provide a

single language that all programmers would use, and reduce the problem of maintenance

of programs that were written in little known, less maintainable languages.

As a result of these goals, Ada has become a large language with many different

constructs. Some of the constructs, such as the rendezvous, utilize new concepts that did

not exist previously in other languages.

The part of the language that is of interest in this paper is the tasking model for
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concurrency, and in particular the rendezvous mechanism for synchronization and

communication. A task is similar to the concept of a process in other languages. It is a

sequential program part that may execute concurrently with other tasks.

The following subsection will discuss the rendezvous, and its implications in a distributed

system.

2.1.1 The Ada Rendezvous

Communication between tasks is accomplished primarily by means of the rendezvous

mechanism. In its simplest form, two tasks must be willing to communicate for this

event to occur, hence the name rendezvous. If only one task is ready, it is blocked

awaiting the other one. A rendezvous can be considered a remote procedure call in which

the caller may be delayed longer than expected.

There are variations on the mechanism to allow either side to discontinue waiting for the

rendezvous.

Data is passed from the caller to the called task by the parameters in the entry call. The

called task can pass information back to the caller in the parameters from the call that are

specified as out or in out in the entry definition.

A task initiates a rendezvous by calling an entry declared in another task. The entry is

declared in a task specification in the same manner as a procedure in a package

specification. An entry call takes the following form:

task_name.entry_name( actual_parameters );

The called task must execute or be waiting on an accept statement within the entry to

have the rendezvous continue. The syntax of an accept is shown in Figure 2-1.
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accept entry_name( formal_parameters ) do
statements

end entry_name;

Figure 2-1. Syntax of Ada Accept Statement

Any sequence of statements may be executed in the body of an accept, including other

accept statements.

The rendezvous is complete when the end of the accept block is reached. At that time,

the caller is allowed to continue execution.

The naming in a rendezvous is asymmetric, because the caller must explicitly identify the

task with which it is to rendezvous, whereas, the called task does not know which task

called it.

2.1.2 The select statement

The select statement allows alternative blocks of statements to execute. Only one of the

alternatives will execute each time the select statement is encountered.

The syntax of the select statement appears in Figure 2-2.

The or and else alternatives are optional. If the keyword when occurs in any alternative,

the alternative is considered conditional. Otherwise, it is considered to be unconditional,

and is available for execution at any time. The value of the conditional expression in a

when clause determines whether the associated block is ready for execution. If the

expression is true, the alternative is considered open. A when clause is referred to as a

guard.

An example of the when clause appears in Figure 2-3.
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select

or

else

end select

Figure 2-2. Syntax of Ada Select Statement

when I < J = >
accept read(file:in filename, record[I]: out rectype) do

— read a record from the file

— and put it in the record buffer.

end read;

Figure 2-3. Example of Ada When Clause

Any of the open alternatives may execute. The order of execution is non-deterministic,

and only needs to be fair, so no task is needlessly blocked.

There is also an attribute, called the count, associated with each entry that indicates the

number of outstanding requests. This attribute can be used within the when clause to

provide priority for specific entries.

An example is shown in Figure 2-4.

If none of the alternatives is open, the else block will execute immediately.
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when entryl'count = =>
accept entry2(. . .)

end entry2;

Figure 2-4. Example of Ada Count Attribute Usage

2.1.3 The delay Statement

The delay statement is used to suspend a task. It can be used to specify a timeout value

in a task that is waiting for a rendezvous.

An example of a call to an entry, with an alternative delay statement is shown in Figure

2-5. The caller will not be delayed indefinitely if the designated entry is not ready for a

rendezvous.

select

task.entryl(argl)

;

or

delay 15.0;

— Statements are placed here to

-- respond to the delay.

end select;

Figure 2-5. Example of Ada Delay Statement

In this instance, the caller will either be able to rendezvous with task. entry within 15

seconds, or the statements after the delay statement will be executed. It must be noted

that the delay is only until the rendezvous starts. Once the rendezvous begins to occur,

the delay is canceled. The caller cannot prevent being hung indefinitely if the called task
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takes inordinately long to complete the rendezvous.

A task can also use the delay statement as an alternative to accept statements to only wait

a defined amount of time for a rendezvous.

2.1.4 Communication Considerations

For Ada, the communication system that implements the constructs described above must

be concerned about the following issues. These issues will be discussed in more detail

when an actual implementation is explored.

1. The communication system must determine the location of the entry being called.

The entry can exist in a number of tasks that reside on different processors.

2. When the delay statement is used in conjunction with an entry call, the

communication system must be able to recognize this condition, and be able to

cancel a rendezvous if the delay expires beforehand.

3. The communication system must be able to queue the entry calls in the proper

sequence.

4. The communication system must be able to provide the count attribute associated

with an entry.

2.2 Concurrent C

Concurrent C was designed as an extension to the C programming language for use in

concurrent programming. [Gehani 86] It is based on synchronous message passing, and

supports remote procedure calls, in much the same manner as Ada. It also provides the

rendezvous mechanism for synchronization and communication.

The terms process and transaction call in Concurrent C have essentially the same

meanings as a task and entry call, respectively, in Ada. They will be used in the
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discussion that follows, to more closely conform to the terminology for Concurrent C.

Concurrent C and Ada are similar, in that they both use the rendezvous method for

communication. The main differences exist in the accept statement and in the way a

timed transaction or entry call is established. In Concurrent C, the accept statement

allows for two additional clauses, the suchthat and by. The timed transaction call will be

discussed in a following subsection.

The select and delay statements, as used by the called transaction, function the same in

Concurrent C as in Ada, so they will not be discussed here. The example in Figure 2-6

will be used to indicate the syntax of the statements.

select {

(i < n) :

accept any(x) {

/* Statements to execute */

}

or

(i - - n) :

accept any2(y) {

/* Statements */

}

/* Additional statements */

}

Figure 2-6. Example of Concurrent C Syntax for Transactions

2.2.1 The Accept Statement

The suchthat clause is used for selecting which of the calling requests will be allowed.

The by clause is used for ordering of the accepted calls. Each clause is optional, and can

be specified in conjunction with each other. The syntax of an accept statement with the

optional clauses is shown in Figure 2-7. The expression is evaluated, and if it is true

(non-zero), the request is accepted. All allowable requests are accepted in FIFO order, if
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accept entry_name(parameters)

[suchthat (expression)]

[by (arith expr)] {

/* statements to be executed */

Figure 2-7. Syntax of Concurrent C Accept Statement

no by clause had been provided.

When a by clause is specified, the arith expr is evaluated for all outstanding, acceptable

calls. The one with the lowest value is accepted first.

2.2.2 Timed Transaction Calls

For a caller to limit the time period for a rendezvous to start, it must call the transaction

with the within statement. This statement is similar in intent to the delay in Ada. The

transaction call will only occur if the rendezvous occurs within the period specified. It

will not cancel the rendezvous if it already started.

The format of the statement is as follows:

within period ? proc.trans(actual_parameters) : expr

This statement will allow the rendezvous involving proc. trans to occur, if it happens

within period seconds. Otherwise, the transaction call is canceled and expr will be

evaluated.
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2.2.3 Communication Considerations

The considerations are the same as mentioned for Ada, with the addition of the following

issues.

1. The ordering of the requests for a transaction may be different if the suchthat or by

clauses are used in a statement.

2.3 CHILL

CHILL [CCITT 80] is a language that was developed for the telecommunications

industry, for Stored Program Control (SPC) switching machines. It is intended for real-

time, fault-tolerant applications. It is a high-level language that can also be used in other

applications.

Processes in CHILL have the same meaning as processes in Concurrent C and tasks in

Ada.

Message passing is the only means of communication in CHILL. Remote procedure

calling is not explicitly available.

The constructs that can be used for inter-process communication are the buffer mode and

signals. The send and receive operations are used to pass messages through a buffer or

signal. The following subsections describe the constructs.

2.3.1 Buffers

Processes communicate by passing messages through buffers. The statements send and

receive are used to pass messages. Only messages of the same mode as that given in a

buffer definition can be passed through the buffer. Mode in CHILL can be considered to

be the same as type in other languages.

Optionally, a buffer can be defined to have a specified number of slots to hold messages
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that have been sent, but not yet received. If no value is specified for the number of

slots, the buffer is unbounded.

An example of a buffer definition is given below.

del buff buffer (10) int;

In this example, a buffer named buff is declared. It contains ten slots, and can only

accept messages of mode int.

2.3.1.1 Sending a Message A sender deposits a message of the type allowed into a

buffer. If the buffer is not full, the sender is allowed to continue processing. If it is full,

the sender will be blocked until there is room.

A sender can specify a priority for the message being sent. Each message has a priority

attached to it. If none is specified when a message is sent, it is given a priority of zero.

The priority can be used to determine the order of delivery of messages to receivers.

The highest priority message will be sent to the next available receiver. If the highest

priority message is from a process that is blocked because the buffer is full, that message

will be sent, before a message in the buffer.

Message passing, using buffers is asymmetric, because the sender does not identify the

receiver of a buffer message. Because the sender continues execution immediately,

before the message is received, the sending operation is considered to be asynchronous.

An example of a call to send a message is shown in Figure 2-8. In this example, num is

defined as an integer variable. It is assigned a value of five, and sent through the buffer

buff to another process.
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del Dum int;

del buff buffer (10) int;

num := 5;

send buff(num);

Figure 2-8. Example of a CHILL Send Buffer Statement

2.3.1.2 Receiving Messages There are two methods to receive messages from buffers.

One is called a receive expression and the other is called a receive case action. A receive

expression is invoked by a process calling receive, and specifying the buffer name from

which a message is to be received. The process is blocked until a message arrives in the

buffer. The value in the message is assigned to a variable of the same mode.

An example of a receive expression operation is shown in Figure 2-9.

del msg char;

del buff buffer char;

msg := receive buff;

Figure 2-9. Example of CHILL Receive Expression Statement

The receive case action statement allows for alternative buffers to be waited on, or to

possibly not wait on any buffer.

An illustration of the format of the receive case action statement is given in Figure 2-10.
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receive case set send_proc

(buffi in msgl):
/* statements */

(buff2 in msg2):
/* statements V

else

/* statements */

esac;

Figure 2-10. Example of CHILL Receive Case Action Statement

If a message is available in either buffi or buffi, then it is put in the corresponding

message location, and the statements associated with the alternative are executed. The

process instance value of the sender of the message received is assigned to send_proc.

The order of selection when multiple buffers have messages is dependent upon the

priority of each message. The message with the highest priority is received first. If

multiple messages have the highest priority, selection is non-deterministic.

If no buffer has a message, and an else clause is specified, the statements associated with

the else clause are executed. This alternative allows the process to not be blocked when

there are no messages.

The receive operation can be either synchronous or asynchronous, dependent upon

whether the else clause is specified.

2.3.2 Signals

The use of signals can be for both synchronization and communication. The definition of

a signal can be in either of the following forms:
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signal A to receiver;

or

signal B = (int, int)

In the first case, the signal is only used for synchronization, because no associated

message is defined. In the second case, the signal sends a message that consists of two

integers. The first statement also shows that the identity of the destination process class

optionally can be specified as part of the definition for the signal.

Only signals that contain messages will be discussed in this section.

2.3.2.1 Sending Signals A process sends signals by using the send operation, in the

same way as with buffers. The difference is that a destination is specified with signals.

The destination is either identified in the signal definition, or in the send operation.

When it is identified in the signal definition, it is the class of processes that may receive

the signal. An actual send operation names the specific process instance that can receive

the signal.

Sample uses of the send operation follow, which rely on the example previously given for

signal definitions:

send B(l, 2) to procl;

send A;

In the first example, the signal B is sent to the process instance value given by procl,

with the parameters 1 and 2. The signal A, with no parameters, is sent to any process of

type receiver in the second example.
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A priority can also be specified when sending a signal, and the semantics for the ordering

of receiving signals is the same as that for receiving messages through buffers.

As with buffers, sending signals is asynchronous.

2.3.2.2 Receiving Signals Receiving signals is performed in exactly the same manner as

receive operations involving buffers.

2.3.3 Communications Requirements

The following are the issues that need to be addressed by the communication system

when addressing the communications primitives in CHILL.

1. Space needs to be allocated to store the messages associated with buffers. The

storage needs to be managed either in a central location, or cooperatively, because

it is not known where the process is located that will request the next message. If

the buffer is bounded, the storage requirements are known at compile time.

Otherwise, a large storage area, such as disk storage, may be needed to handle the

possible number of messages.

2. Storage also needs to be allocated for messages associated with signals. The same

storage requirements are possibly needed for signals as for unbounded buffers,

because no limit is placed on the number of outstanding signals.

3. The communication system needs to be able to determine when a message is

available, to handle the else clause of a receive case statement.

4. The location of the receiver needs to be identified, when signals are used. If a

specific process instance is used, the communication system can locate the process

directly. When a process class is used, the communication system has to determine

where potential receivers reside.
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5. The communication system must be able to handle messages of different priority,

and deliver the highest priority message first.

6. The communication system must be able to provide the process instance value for

the receive case action statement, when the set clause is used.

2.4 Summary

The communication primitives in Ada, Concurrent C and CHILL have been discussed in

this chapter.

In Ada, communications is by means of the rendezvous. Tasks wishing to communicate

through a rendezvous specify an entry point as the connection between the tasks. Either

a calling or caller task is blocked if the partner task is not ready to participate in a

rendezvous. Tasks on either side of a rendezvous (caller or called task) can determine

alternatives through a select statement. They can also abort a rendezvous attempt, either

by specifying a timeout value, or an else clause in the select statement.

Concurrent C provides similar capabilities to those provided by Ada. There are two

differences. One is the syntax of the timed entry call. The other difference applies to

the selection of alternatives in the select statement. The suchthat and by clauses are

provided to allow different ordering of waiting callers. They allow higher priority calls

to be processed before lower ones.

CHILL provides communication primitives that are different from those of Ada and

Concurrent C. The send and receive statements are provided, and the semantics of the

statements are very close to what would normally be expected from the names. Two

different mechanisms are provided in CHILL for passing messages. One is a buffer, and

the other is a signal. The semantics of a signal are similar to the transaction call in

Concurrent C and the entry call in Ada, because parameters can be specified in the
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signal, and a destination is specified, but the sender is not blocked waiting for the signal

to be received, and no result is returned to the caller. A buffer is a repository for

messages, and only messages of a specific type can be placed in a buffer. CHILL does

not provide for the type of synchronization in its communication primitives that is

implicit in the Ada and Concurrent C primitives. The sending process in a

communication is allowed to continue, even if the receiver has not yet received the

message.

The communication primitives have been examined to provide a basis for a discussion of

the issues that need to be addressed when attempting to implement the primitives in a

distributed environment.
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CHAPTER 3 - DESCRIPTION OF A SUPPORTING COMMUNICATION SYSTEM

This chapter discusses a communication system that can be used to support

communication operators found in a high level language. This communication system is

used because the author is familiar with its operations, having worked on its development

for the past three years, and it provides many of the same features that have been

proposed for other languages, such as Communicating Sequential Processes (CSP)

proposed in [Hoare 78], and Distributed Processes (DP) described in [Brinch Hansen 78].

It was designed to be used in a real-time processing environment, similar to the

environments for which the languages were designed.

The components of the system are presented in this chapter, as well as the characteristics

and functions of different aspects of the system. Each system component will be

examined in sufficient detail to allow for a discussion in Chapter Four concerning any

enhancements that would be needed to support the communications primitives in the

languages presented in Chapter Two.

3.1 Specification of System

As mentioned in Chapter One, the communication system that will be used as a basis for

providing the communications primitives in languages already exists. It operates under

the Digital Equipment Corporation (DEC) VAX/VMS operating system [Kenah 88], and

utilizes DECnet [DEC 86a], [Wecker 80] as the medium for communications between

nodes in sections of the network.

Because some of the nodes are connected as a VAXcluster , the high-speed Computer
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Interconnect (CI) bus is used for communication between them. This bus is used for a

number of reasons:

— the bandwidth is almost an order of magnitude higher than the Ethernet bus used

by DECnet (70 Megabits per second (Mbps) compared to 10 Mbps);

— the inherent reliability of the bus, and the software managing it, is better than that

of DECnet.

This chapter will discuss the operational aspects of the system, in order to provide a basis

for further discussion in Chapter Four concerning the additions necessary to support the

communication primitives which have been outlined in Chapter Two.

The system was developed with a goal of providing communication support for a real-

time, highly reliable, distributed system. The following are the major issues that drove

its development.

— The messages need to be delivered with a high degree of reliability, but guaranteed

delivery is not provided. In other words, the system is to provide a datagram

service.

— The messages need to be delivered as quickly as possible between processes on the

VAXcluster.

— The sender is not to be blocked, waiting for delivery of the message. As a result

of this requirement, the sender does not know if a message is received, unless it

explicitly waits for an acknowledgement. This acknowledgement results from

another message transfer between the two processes.

DEC, VAX/VMS, DECnet and VAXcluster are trademarks of Digital Equipment Corporation.
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— The receipt of messages can be either synchronous or asynchronous; the receiver

can choose the method.

— If a service queue exists at the time of delivery, and a receiver is not ready to

receive the message, the system will store the message.

— If a service queue does not exist for a message, it is discarded.

— The sender does not necessarily need to know the processor on which the receiver

is running. The sender needs to specify the receiving processor, but that processor

may be a logical name that the communication system will use to determine the

physical processor (s). The mapping from logical to physical name must be

dynamic, because of the characteristics of the environment. This topic is discussed

in more detail in Section 3.5.1.

Section 3.2 discusses the characteristics of service queues, which act as repositories for

messages in transit. Section 3.3 describes the format of messages handled by the

communication system. Section 3.4 discusses the major software components. Sections

3.5 and 3.6 present the operations which are provided to application processes. Section

3.7 compares the Communication System with a network standard.

3.1.1 Network Topology

The distributed environment consists of a number of DEC VAX processors.

Microcomputers, such as the Micro-VAX II, as well as superminicomputers, such as the

VAX 8650, make up the processors that communicate within the system. A major

advantage of using DEC processors and DECnet results from being able to integrate

processors with different capacities in the same network.

The system is not limited to the processors mentioned. Any processor that can

communicate through DECnet, and is compatible with the VMS operating system can
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utilize the communication system.

Figure 3-1 depicts the topology of the network. As can be seen from the figure, different

communication mediums, such as Ethernet and RS-232, can be used to connect the

processors. This enables the environment to be more geographically dispersed than a

Local Area Network (LAN) alone would allow.

Because of the topology shown, processes can communicate through different mediums.

One of the design goals is to provide as much transparency as possible to the

communicating processes. This is accomplished by requiring the communication system

to determine the communication path. Also, redundant paths are not utilized in the

system, other than those implicitly provided by DECnet. As an example, only the CI bus

is used for communication between processors on the VAXcluster, even though the

communication system could also provide connections through DECnet. The reasons for

not providing the dual paths were two-fold. Firstly, if the CI bus is not available, the

processors would crash. They require the CI bus to be functioning for the VMS

operating system processes to communicate between processors. Secondly, the DECnet

path would not provide the performance needed for inter-processor communications

between the VAXcluster processors.

3.2 Service Queues

Service queues are system provided buffers and data structures used to hold and control

messages. They are similar to mailboxes [Kenah 88] and ports [Balzer 71].

3.2.1 Characteristics

A service queue is uniquely identified by the following characteristics:

— Processor name,
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— Service queue name,

— VMS group ID.

A VMS group is a collection of login names that are logically associated with each other.

A group of login names normally share common functions in a organization. For

example, all login names in the payroll department of a company would be defined to be

in the same group. VMS uses the group ID of processes to control access to available

resources. For instance, files can have protections for reading, writing or deleting based

upon the group of the owner.

Each service queue can be uniquely identified by these values, and service queues with

the same name, on the same processor, but in different VMS groups, would actually be

different. In other words, a process that is operating in one VMS group, cannot send

messages to a process in a different group, even if they reside on the same processor and

use the same service queue name for communication.

A process sends messages to a service queue by naming it in a send operation. Refer to

Section 3.5 for details on specifying how to send messages. A process connects to a

service queue to receive messages by specifying the queue as one of the parameter values

in a receive operation. Section 3.6 identifies the ways that messages can be received.

Processes communicate by specifying the same service queues, and passing messages

through it.

Service queues can also be identified as permanent or temporary. A permanent queue

will exist, even if no process is connected to it. Whereas, a temporary queue will

disappear when no process is connected to it. When a temporary queue disappears, all

messages associated with it are also lost.

The advantage of permanent queues is that messages can be sent to them, even when no
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process is currently available to receive them. This implies that the receipt of the

message is important, and that timeliness of the receipt is not as critical.

Temporary queues have the advantage that messages which are intended for processes

that do not exist will be discarded. In cases where the timeliness of the receipt of the

message is important, and the information in the message is worthless if not received

immediately, temporary queues should be used. They are also useful in circumstances

where the receiver is not interested in messages that exist prior to the time it first starts

up. If a temporary queue is used, no messages will be in the queue when the receiver

first connects to it, thus relieving it of the responsibility of ensuring that no old, useless,

messages are processed.

3.3 Message Content

Messages delivered through the communication system consists of two parts. The first

part is the message header. It is created and maintained by the communication system,

but is available to the application programs. The second part is the user data. This part

is variable in length and is not evaluated by the communication system. The user can

pass any data, in any format desired, in this area. Its interpretation is dependent upon

the needs of the application processes.

The message header provides information that is useful to the application processes. The

information of importance to an application is listed below.

message length Length of the message, including the header. Only this part of the

buffer will contain valid information. A process must specify the

maximum size for any expected message when establishing a

receive operation. This field can be accessed by the application

process to determine the length of a message. Because the length
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of the header is fixed, the process can determine the length of the

data portion of a message.

sending process The name of the sending process. This field can be useful for

determining whether to accept a message.

sending process identification The process identification (PID) of the sending

process.

sending node The name of the sending processor. It is useful in determining to

which processor a response should be sent.

Additional information is also available in the header for the Network Server to use in

the determination of the destination processor and service queue.

3.4 Major Software Components

The communication system consists of a number of components. These components will

be described briefly in the following subsections. For a detailed description of the

Device Driver and Network Server components, refer to Appendix C. Each component

is necessary in order to provide the complete communication service for the configuration

described above.

If the communication system were to be used only in a VAXcluster environment, the

Network Server would not be needed. The Device Driver and Application Interface are

always needed to provide the minimum service, even if inter-processor communication

were not needed.

Figure 3-2 depicts the interconnection of the components and the application software.

3.4.1 Device Driver

The Device Driver is installed in the system to provide facilities to retrieve messages
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from and deposit messages into a service queue. Service queues were discussed in detail

in Section 3.3.

3.4.2 Network Server

The Network Server provides functions similar to those of the Device Driver. It

maintains DECnet connections to other processors. It also provides the service to send

messages between processors.

3.4.3 Application Interface

This interface is linked in with the application software. It provides the interface

between the communications processes and the application processes.

Application processes send and receive messages by calling these routines directly. The

routines perform some initial processing before calling the Device Driver to complete the

operation.

3.5 Sending Messages

There is only one available operation to send messages. It is called SEND 1
. The

parameters for the SEND operation, and its format, are described in Figure 3-3.

Messages are sent asynchronously. The sender is only notified if the request could not

be queued on the local side. The reasons for a failure status usually signify problems

that cannot be corrected by the sending process. These problems range from insufficient

memory available to the device driver not being loaded. It is assumed that processes that

encounter these problems will terminate themselves. Normally, these error statuses are

encountered only during the development phase, and appropriate error statuses have

1. The names used in this thesis for the communication operations are not the actual names of the operations

available in the Communication System. They are used to easily identify the operations performed.

3-10



SEND( msg, length, queue, node );

where:

msg address of the message to be sent.

length length of the message.

queue name of the service queue

node Destination processor name. This parameter is optional. If it

is not specified, it is assumed that the message is local.

Figure 3-3. Format of SEND Operation

been provided to aid in debugging new code.

The only exception to the above occurs if the remote service queue is full. This status is

returned to allow processes to exercise flow control, where it is appropriate.

The sending process can specify the node either as an explicit physical processor name,

or as a logical name. The following subsection discusses logical names, and how they are

mapped to physical names.

3.5.1 Logical Name to Physical Name Mapping

The communication system allows for logical names to be specified in a SEND operation.

These logical names are mapped to actual physical processor names, based upon certain

configuration information. The following discussion describes how the mapping is

effected.

The processors in a network are divided into two groups. One group is in the

VAXcluster, and will be called the cluster group. The second group is connected to the

cluster group and interconnected only through DECnet; this second group will be
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referred to as the net group. A process on a net processor can send messages to a process

on any other processor only through the Network Server. As can be seen, the groups are

mutually exclusive; a processor can only belong to one group.

A characteristic of the processes in the network is that all the processors in each group

will normally contain a collection of the same type of processes. That is, a process of

one type on a processor has a partner process on each of the other processors in the

group.

Another characteristic is that some processes exist on only one processor in the group.

All unique, individual processes exist on the same processor. The processor which holds

these processes which are unique within a group is called the coordinator processor.

These unique processes are used in coordinating the activities for the whole network. If

the coordinator processor fails, all the processes are automatically migrated to another

processor in the same group. This processor will then become the coordinator processor.

All processors in the group are available to be selected as the coordinator processor, and

one is chosen based upon an arbitration scheme, where each processor attempts to

become the coordinator, and only one succeeds.

The previous definitions will be useful in the following discussion of the name mappings.

The types of logical names supported are listed in Table 3-1.

3.6 Receiving Messages

Messages can be received either synchronously or asynchronously. Even with the

synchronous form, the receiving process has the option to return immediately if no

messages are available, or specify a timeout.
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Table 3-1. Processor Logical Names

Processor Type Description

Coordinator processor The process receiving the message is on the coordinator

processor. The communication system is required to map
to the correct physical processor name. For cluster

processors, the name is translated by the Application

Interface. For net processors, the name is passed to

the Network Server, and may not be correct. Network
Servers can reroute the message if it was delivered to

an incorrect processor.

Other Cluster Processors Send the message to the service queue on cluster

processors other than the local one. This name will be

translated to the physical names by the Application

Interface, if the local processor is a cluster

processor. If the sending processor is a net

processor, the message will go to all cluster

processors, and will be translated by the Network
Server. The name is mapped to all processors in the

configuration table that match the cluster processor

class.

Processes use this form to send a message to their

partner processes on the other cluster processors. It

is useful to coordinate, or disseminate, information.

All Cluster Processors This logical name is used to broadcast the message to

the specified service queue on all cluster processors.

The mapping is done the same as for the above, except

that the local processor will also receive the message,

if it is a cluster processor.

This mapping is useful to send the same message to the

same process type on all processors.

Other Net Processors

All Net Processors

This name is similar to the other cluster processors,

except that the net processors are selected. If the

local processor is a net processor, it does not

receive the message.

This is similar to the all cluster processors,

except that the net processors are selected. If the

local processor is a net processor, it also receives

the message.
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The reason for the range of receive options is due to the nature of the applications which

can use the communication system. Processes may be required to perform other

functions while awaiting messages. Also, messages may be sent at random times, in

response to other events, and the timing of these events is non-deterministic.

All the receive operations dynamically create buffers to hold the received messages. The

default buffer size is 5K bytes, but the process can change the value on each call. The

maximum size of a message which is allowed in the system is 32K bytes. If the buffer

created is too small to receive a message, an error status is returned and the message is

lost.

The receiving process must explicitly delete a buffer when it is finished using it. This is

done with the DELETE_BUF operation. Its format is shown in Figure 3-4.

DELETE_BUF( buf)-,

where:

buf pointer to the buffer created by a receive operation.

Figure 3-4. Format of DELETE_BUF Operation

Processes can only receive messages on the local processor. When messages are sent,

they are only delivered to the processor(s) specified. If a process is attempting to receive

messages that are being sent to a different processor, it will not succeed.

The following subsections describe the different types of receive operations available.
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3.6.1 Asynchronous Receive

A process may elect to receive messages asynchronously. This method allows the process

to continue with its normal execution while awaiting a message. This is possible in VMS,

because it supports interrupt handling within user mode processes, by delivering

Asynchronous System Traps (ASTs) [Kenah 88]. When an outstanding asynchronous

receive operation completes, the application routine specified when the operation was

invoked will interrupt the normal processing to execute.

The application routine can perform nearly any operation available in the system on the

received message. The only limitations occur when attempting to access data areas that

may also be changed by the mainline code. The AST can interrupt the mainline code at

any point, and must be concerned about changing variables that the mainline code also

changes, or accesses. This synchronization is a concern of the application programmer,

and must be dealt with appropriately to ensure correct operation of the process.

The format of the asynchronous receive is presented in Figure 3-5 in which the

parameters to the call are described.

3.6.2 Synchronous Receive

In this operation, the process will be blocked until a message is received. It can

optionally specify a timeout value to prevent it from being delayed indefinitely.

This form of the receive operation is normally used by processes that only respond to

requests passed to them by messages. They have no other operations to perform. They

could be considered server processes that respond to requests passed to them as

messages.

Another use for this operation is to receive responses to previous messages. This is

useful in ensuring that previously sent messages had been received at the destination. It
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ASYN_RECV( que, astrtn, astprm, bufsize );

where:

que

astrtn

Name of the service queue. This queue is local to the calling

process.

Address of the routine that will execute when the receive

operation completes. The routine is passed the status of the

call, a pointer to the buffer containing the message, and the

parameter passed by the caller. The status should be

checked to determine if the operation completed successfully

before accessing the message.

astprm The parameter that will be passed to the AST routine. This

parameter can be any 32 bit integer value. It is useful for

identifying which invocation of the receive operation caused

the AST routine to be called, when multiple outstanding

receive operations call a common routine.

bufsize This parameter is optional, and specifies the size of the

buffer that should be created to receive the message.

Figure 3-5. Format of Asynchronous Receive Operation

also allows for responses that indicate errors in the execution of an operation. For this

purpose, the timeout parameter is available.

The format of the synchronous receive operation is shown in Figure 3-6.

3.6.3 Receive Immediately

This operation is used when the process does not want to receive messages

asynchronously, and also does not want to wait for non-existent messages. It can be

considered to be a synchronous receive operation, with a timeout value of zero.

If no messages are available, an appropriate success status will be returned to the caller.
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SYNCH_RECV( que, buf, timeout, bufsize );

where:

que Name of the service queue.

buf Pointer to the buffer used to hold the message.

timeout The time to wait for the message to be delivered. The
resolution of the time interval is 10 milliseconds. This is an

optional value. If it is not specified, the process will wait

forever.

bufsize This parameter specifies how large to make the receive

buffer. It is optional.

Figure 3-6. Format of the Synchronous Receive Operation

RECV_NOW( que, buf, bufsize );

where:

que Name of the service queue.

buf Address of the buffer used to hold the message.

bufsize Size of the buffer. If not specified, the default value is used.

Figure 3-7. Format of the Receive Immediately Operation

The format of the operation is shown in Figure 3-7.

3.7 Comparison of Communication System

It would be informative at this time to compare the functions provided by the

Communication System with those defined in the seven layer Open System

Interconnection (OSI) standard developed by the International Standards Organization
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(ISO). This standard is used because it is generally known, and provides a level of

abstraction that makes it easier to discuss general functionality.

The International Telegraph and Telephone Consultative Committee (CCITT) adopted

the OSI Reference Model for its development of communications standards. Reference

X.213 was produced to describe the functions that are to be provided by the Network

layer in the OSI Reference Model.

The Communication System will be compared to the service expected to be provided by

Network layer. [CCITT 85] (also identified as X.213) defines the Network layer as

providing transparent data transfer between users. The Network layer is examined

because the services provided by the Communication System more closely correspond to

those defined for this layer than for any of the other six layers.

The functions specified for the Network layer are described in the following subsections.

The descriptions of the functions are paraphrased when the terminology of the

recommendation makes the meaning unclear, without introducing the meanings of the

terms used within the recommendation. When the recommendation is directly quoted,

quotation marks surround the quoted phrases. The extent to which the Communication

System provides each indicated function will also be described. The term Network Service

provider is used in the following discussion to indicate any entity that provides the

services defined for the Network layer.

3.7.1 Independence of Transmission Media

A Network Service provider is to provide "independence of underlying transmission

media" to its users.

The Communication System provides this function by determining the route each message

is to follow. Depending upon the source and destination processor, a message may travel
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either over DECnet or the CI bus.

3.7.2 End-to-End Data Transfer

A Network Service provider is to provide "end-to-end" data transfer.

The Communication System is responsible for taking a message from a sender's address

space, and delivering it to a receiver's address space, so it minimally satisfies this

requirement.

X.213 specifies that a Network Service provider must provide connection services to its

users, as part of the end-to-end data transfer. Connection establishment and release are

two phases involved in providing a connection between a pair of users. The

Communication System does not provide for connections. The overhead required to

establish, maintain and release connections were considered too excessive for the types of

messages sent between processes. Most processes only send messages to other processes

infrequently.

Processes that need connections can establish them through the operations available in the

Communication System. They would be responsible for establishing and maintaining

their connections. Connections would generally consist of the two processes

communicating through two service queues. One process would send messages to the

receive service queue of the other process. This is a burden on the developers for the

processes using the Communication System. For the applications planned for the

Communication System, the number of processes requiring connections is small

compared to the ones sending messages unidirectionally, and it was decided that the

Communication System should not incur the overhead for providing the service.

Because connections are not supported within the Communication System, the phases

described by X.213 for establishment and release of a connection will not be discussed.
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It is more useful to discuss the data transfer phase, because the Communication System

does provide this function. Within the data transfer phase, the Network Service provider

is to provide for exchange of messages, either unidirectionally or bidirectionally,

simultaneously. The Communication System provides for passing messages in a single

direction only. But processes that maintain their own connections can initiate transfers in

both directions, and the Communication System can handle this condition.

According to X.213, a Network Service provider must also be able to preserve both the

sequence and the boundary of messages. The Communication System preserves the

boundary of messages, because it transfers whole messages. It does not perform any

packet assembly or disassembly of messages. DECnet does packetize messages that are

over its maximum message size, but it guarantees to preserve sequence and message

boundaries.

3.7.3 Transparent Data Transfer

A Network Service provider provides "transparency of transferred information". This

requirement means that the Network Service provider does not interpret the information

given it by its user.

The Communication System meets this requirement. The messages sent through the

Communication System are all treated the same, regardless of content. The only

processing of a message done by the Communication System is to add a header. This

header is provided by the Communication System for use by the receiver of a message.

3.7.4 Quality of Service Selection

A Network Service provider is to allow selection of "Quality of Service parameters" for a

network connection.
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Because the Communication System is based on datagram message delivery, instead of

virtual circuits, it does not provide for connection establishment and release. As a result,

it does not provide for quality of service specification.

The quality of service provided is dependent upon the route selected for each message,

and the type of processor on which the sender and receiver processes reside. The speed

of the processors that constitute the computing system, (minicomputers vs.

microcomputers) and characteristics of the communication media (DECnet vs. CI bus vs.

local memory copy) strongly influence the quality of service.

The range of values for the quality of service parameters specified by the standard, that

are provided by the Communication System, are given below. The parameters associated

with connection establishment and release are not discussed, because connections are not

used.

— "Throughput"

Throughput is defined as the number of messages passed between the sender and

receiver per unit of time. According to X.213, the throughput should be specified

for each direction of a connection. Because connections are not used, the

throughput is equivalent for each direction.

The range of throughput is between 50 messages per second for message

transmission over DECnet, and 1000 messages per second for messages sent

locally on a minicomputer.

— "Transit delay"

Transit delay is defined as the time interval between the request by a process to

send a message and the receipt of the message at the specified destination.

Because the Communication System does not utilize connections, and a receiver
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may not be available at the time a message is sent, the values presented are only

the time necessary to send a message to the service queue.

The transit delay is highly dependent upon the congestion of the transmission

media, which the Communication System has little control over. The delay can be

from one millisecond for intraprocessor message transmissions to two seconds for

DECnet transmissions.

— "Residual error rate"

The residual error rate consists of the ratio of the number of lost, incorrect and

duplicate messages to the number of received messages.

The error rate is influenced more by the transmission media used by the

Communication System, than by the Communication System itself. The

Communication System is reliable, when considered by itself, because it provides

minimal functionality. It takes advantage of the reliability provided by the

transmission media. The transmission media consist of the VMS operating system

and the DECnet software. The operating system and DECnet provide for error

detection and correction in any message transmission. Flow control, packetizing,

sequencing and message acknowledgement are also provided by them.

Although the residual error rate has not been measured quantitatively, it has been

observed to be much less than one percent.

— "Transfer failure probability"

This value refers to the ratio of the number of messages sent that were not

received to the total number of messages sent.

This value is partially the result of the underlying transmission media and the

Communication System itself. In this case, the Communication System will
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purposely discard messages. The reasons include: no service queue available to

receive the message, and no path to the designated processor.

The major influence on this measure is the correctness of the implementation of

the application. Messages should not be sent to non-existent service queues.

There is no quantitative measure of this characteristic. Because the

Communication System is specified as a best-effort datagram service, any

application using it must be aware of potential problems with lost messages, and

handle the conditions appropriately.

3.7.5 User Addressing

The Network Service provider is to provide for addressing of its users.

The Communication Server provides for addressing by using a service queue. Each

service queue is unique by processor name, service queue name and VMS group

identifier. This addressing is not unique by process, because multiple processes can send

to or receive from a service queue.

3.8 Summary

This chapter has presented a Communication System that currently exists. The

specifications for this system, as well as the network topology it accommodates have been

provided. The communication system had been developed to be used in conjunction with

an application system and, as a result, only provides services that are considered

necessary for the application.

The concept of a service queue was presented. A service queue is a uniquely identified

repository of messages. Processes can send and receive a message by specifying the same

service queue.
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The components of the Communication System were described to provide a better

understanding for how the specifications for the system were implemented. The

requirements for performance, reliability and transparency of the destination led to a

unique system being developed. Some of the necessary tradeoffs resulted in operations

available to the user that require him to know more about the network and its topology

than normally should be allowed. The user is also required to provide for guaranteed

message delivery. The tradeoffs that resulted from the requirements are:

— no confirmation that a message had been delivered,

— no reliable means to determine if a processor is available to receive messages,

— message transfer times are dependent upon the path selected.

Parts of the Communication System are used for routing of messages. If a message

cannot be delivered, an alternate route is tried. This allows for greater probability that a

message is ultimately delivered. This routing only occurs within the Network Server.

The Device Driver does not use alternate routing for messages to be sent between the

cluster processors, because it is assumed that if a path does not exist from one cluster

processor to another, it is because one processor is down. In that case, the message is

not deliverable anyway.

The types of operations available to the user of the Communication System were

described in this chapter. The normal operations for sending and receiving messages

were presented. The destination processor for a send operation can either be a physical

processor, or a logical name that the Communication System maps to a physical

processor, or group of processors. This system is also unusual because of the number of

receive operations allowed to the user. A user can choose between asynchronous and

synchronous reception of messages. Also, within the class of synchronous receive
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operations, a user can choose to select a timeout value, or to receive an indication that no

message is available. Miscellaneous operations, such as canceling a receive operation on

a service queue, and emptying a service queue of all its messages are also provided.

These operations provide greater flexibility and control on the part of the users. This

extra freedom also puts a greater burden on the user to ensure that the programs using

these operations are correct.

The Communication System has been compared to the Network Layer of the OSI

Reference Model in order to put the capabilities of the system into perspective.
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CHAPTER 4 - IMPLEMENTATION OF COMMUNICATION PRIMITIVES

This chapter discusses the implementation issues involved with attempting to use the

communication system discussed in Chapter Three to implement the communication

primitives in Ada, Concurrent C and CHILL. As was mentioned previously, the purpose

of this paper is to investigate the concerns that arise when communication primitives in

standard languages are used in a distributed environment. A suggestion for an

implementation is now presented to show the issues that must be tackled in resolving the

problems.

Section 4.1 discusses the layers of software that are needed to support the communication

primitives. The components of one of these layers, the Language Interface, are

presented in Section 4.2. In Section 4.3, the issues concerning an implementation which

supports the communication primitives in Ada are presented. An implementation of

Concurrent C in a distributed system is discussed in Section 4.4. The implementation

issues which must be addressed in order to support the communication primitives of

CHILL are discussed in Section 4.5. A summary of this chapter is provided in Section

4.6.

4.1 Hierarchy of Layers

Supporting the communication needs of the communication primitives of the languages

from Chapter Two (Ada, Concurrent C and CHILL), in the environment of the

communication system presented in the last chapter, requires an additional layer of

software to be implemented. This layer will be referred to as the Language Interface

layer in the rest of this paper, and it consists of a number of components. The general

aspects of the layer's components are covered in Section 4.2. The specific capabilities of
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the layer, that relate to each language, will be presented in the appropriate sections of

this chapter.

Table 4-1 presents the layers needed to support the communication primitives, and the

responsibilities associated with each layer.

Table 4-1. The Three Service Layers

Software Layer Responsibilities

Language Interface

Communication System

Operating System

This layer is called directly by the

language constructs. It is responsible

for all operations necessary to

transform the constructs to the

appropriate calls to the Communication
System. It also ensures reliable

communication by including any additional

protocols. Any additional data

structures needed to maintain state

information are kept by this layer.

This layer is responsible for the

transmission and reception of messages.

It provides the services described in

Chapter Three of this paper.

This layer is responsible for the

normal system services provided by the

VMS operating system. The
communications and synchronization

mechanisms of the operating system are

utilized by the Communication System.

DECnet and CI communications are

considered to be part of the

Operating System.

One reason for the layers is that the Operating System and Communication System layers
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already exist, and the needed additional functionality should be added in another layer

for the purposes of modularity and flexibility. Also, the implementation of the Language

Interface layer would be different for each language, because each language uses

different primitives for communications, and the semantics of similar primitives are

different.

Each layer in the system only communicates with the layers that are directly above or

below it. See Figure 4-1 for the organization of the layers. The implementation of a

layer may be changed, as long as the functionality remains the same, thus there is little or

no impact on the surrounding layers.

Application Program

Language Interface

Communication System

Operating System

Figure 4-1. Layers of Communication
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4.1.1 Assumptions

The following assumptions are used in the discussions of specific properties of the

Language Interface which occur throughout the rest of this chapter.

1. Processes may exist on any processor in the network. The sender process does not

explicitly know the location of the receiver process involved in any communication.

2. Each language allows for the existence of multiple senders and receivers, each

possibly on a different processor. This implies that any necessary buffering is

either maintained centrally, or is distributed. In either instance, the Language

Interface needs to know where each message resides, so that it can be sent to a

waiting receiver.

3. For considerations of fault-tolerance, the ensuing discussion must assume that

processors can leave and come into the network. In other words, the network is

dynamically reconfigurable. As a result of this consideration, messages that reside

on processors that leave the network must not be lost. This consideration means

that either the messages are stored to disk, or the buffers are replicated on multiple

machines, or the messages reside on the processor of the sender until requested by

a receiver. In either case, a performance penalty results, because additional

processing is needed to copy the messages, and additional state information

concerning the location of messages needs to be maintained.

4. For calls in a language that have arguments present, e.g. entry calls in Ada, it is

assumed that checking the consistency of the number and type of the arguments

between the called and calling processes, is performed by the compiler. When

pointers are specified, the items referenced must be the same type for both

processes, because the referenced item will be copied into and from the message.
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5. Depending upon the scope rules of a language, some actions may result in intra-

process communication. An example would occur when buffers or signals are

defined local to a process in CHILL. In this case, assuming a process only executes

wholly on a single processor, a communication through the buffer or signal is

intra-process, and could be implemented directly by the compiler and run-time

library, and will not be discussed in this chapter. It is assumed that all

communication is between different processes, not within a single process.

6. In Ada and Concurrent C, when processes terminate, all outstanding messages sent

by them are removed from the system. Also, all state information referencing the

processes must be removed. In CHILL, the opposite action must occur, that is, the

messages sent by terminated processes through buffers and signals must remain in

the system.

7. All communicating processes are started in the same VMS login group. The

Communication System only allows processes in the same group to communicate,

thus allowing processes in separate groups to coexist in a network, without

interaction.

4.2 Language Interface Components

The two main components of the Language Interface are the run-time routines that are

linked into each process in the system, and a Directory Server. The run-time routines are

used in each process to map the communication primitives provided by a language into

services provided by the Communication System. The Directory Server maintains state

information for all processes written in a language involved in interprocess

communication. A facility with this capability is needed because the information needed

for connecting processes for communication is not available in any other part of the

network.
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The general functions of these components are presented in the following subsections.

4.2.1 Run-time Routines

These routines are linked into each process by the linker for the language. The routines

for process initiation and process termination are executed for all languages in essentially

the same manner. They are responsible for maintaining state information, and

connecting with or disconnecting from the Directory Server.

The activities performed by each group of routines are described in the following

subsections.

4.2.1.1 Process Initialization Routines When a process starts execution, routines in the

Language Interface execute to create any necessary service queues needed to allow

communication with the Directory Server. A special queue must be created for each

process to receive messages from the Directory Server. The queue must be distinct for

each process on the processor. The name of the queue has the following format.

XXXX_DIRECTORY_RSP

The XXXX part of the name is distinct for each process. It could be the Process

Identifier (PID) created by the operating system for the process, or the process name,

depending upon the conventions used in the operating system to ensure uniqueness. The

queue name also has to be able to be reproduced by the Directory Server, so it can

determine the destination queue for sending messages to the process. In this paper, the

PID will be used.

The Directory Server will be able to construct the response service queue name from the

PID in the header of a received message. This header, as mentioned in Chapter Three, is

provided by the Communication System. The VMS Operating System ensures that the
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PID is unique within a processor.

4.2.1.2 Routines for Sending Messages Routines exist to determine how to send

messages to other processes, when the appropriate call is made in the language. A

message is sent when an entry call in Ada or Concurrent C is made, or a send operation

in CHILL is performed. In the case of an entry call, the routines also wait for a

response from another process.

Messages are also sent between the processes written in a specific language and the

Directory Server. These messages are used to convey state information.

All messages sent by processes or the Directory Server rely upon the SEND operation

provided by the Communication System.

4.2.1.3 Routines for Receiving Messages When a process wishes to receive messages

from other processes, it calls these Language Interface routines. The necessary

interaction of a process with the Directory Server and the Communication System will be

done in this set of routines. The specifics of the actions performed are dependent upon

the language, and will be presented in the sections discussing the languages. These

routines would be invoked by an accept statement in Ada or Concurrent C, or a receive

statement in CHILL.

These routines receive messages from the Directory Server, which convey information

concerning the state of the system. For instance, the Directory Server sends a message to

a process when it times out waiting for an event to occur, which was requested by the

process. The routines receive messages from the Directory Server on the service queue

specified in Section 4.2.1.1. Any of the receive operations allowed by the

Communication System, synchronous or asynchronous, can be called by these routines.
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4.2.1.4 Routines Invoked when a Process Terminates Routines exist that will be invoked

when the process terminates. These routines must execute regardless of whether the

termination is normal or abnormal. The routines are responsible for cleaning up any

outstanding requests, and communicating with the Directory Server. The Directory

Server itself maintains state information about the system.

4.2.2 Directory Server

The Directory Server is responsible for determining when processes are attempting to

communicate. Because a process does not explicitly specify the location of its

communicating partner, the Directory Server must include a mechanism to determine the

location.

The Directory Server maintains information concerning processes that are attempting to

communicate. When a process wants to receive a message, possibly as a result of an

accept statement in Ada, it registers that intention with the Directory Server. The

Directory Server returns a message to each process attempting interprocess

communication which specifies whether or not another process is waiting to communicate

with it.

These activities imply that the Directory Server must maintain state information about the

network. The normal method used to store the information would be in a set of tables in

memory, or in a disk file. The problems of maintaining this data in a fault-tolerant

manner are similar to those encountered in maintaining a database in a distributed

system.

Two alternatives for maintaining the data are to have a central process maintain all of the

data for the network, or to have the data distributed across all, or a subset, of the

processors. The advantages of the first alternative are the data is maintained in one
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place, so multiple copies do not have to be synchronized, and also access to the data can

be single-threaded, thus reducing the need for concurrency control. Disadvantages of

this approach are: that the data could be lost if the process terminated abruptly; if the

data is saved to non-volatile storage, it would still be unavailable until the process is

restarted; performance penalties also result from single-threading access to the data. The

server process could be multi-threaded to allow concurrent access to the data, but that

would make the process more complicated, and consequently less reliable. The data

could also be checkpointed to disk, so it could be recovered when the process terminated,

and later restarted, but the data would still be unavailable during the interval that the

Directory Server is down.

Replicating the data would resolve most of the problems mentioned in the previous

paragraph concerning a single server. Multi-threading the access to the data would be

easier, because multiple servers exist. If one server process terminates, the other

processes are still available to maintain the data, and provide service to the other

processes in the system. But this approach also has disadvantages. One is that the

multiple servers must ensure that their copies are consistent. Changes in one copy must

be reflected immediately in the other copies. When processes update the data, an

appropriate mechanism must be used to ensure that two processes do not attempt to

update the same data concurrently. Possible methods for coordinating multiple updates

could include the two phase commit protocol described by [Kohler 81] for transaction

processing, or employing locks on the individual entries for the state information.

Because the issues involved with a distributed database system have been explored

extensively in the literature [Bernstein 81], [Date 83], [Filman 84], [Kohler 81],

[Liskov 82], and are worthy of a study in their own right, implementation details of the

Directory Server will not be presented. It is assumed that the state information provided
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by the Directory Server to the Language Interface run-time routines is accurate,

consistent and timely.

Since the Communication System used does not provide guaranteed message delivery, the

Language Interface run-time routines that communicate with the Directory Server must

ensure that the messages passed between themselves and the Directory Server are

delivered. The state information passed in the messages is important to the operation of

the communication primitives. The following subsection discusses the protocol used in

communications by the run-time routines and the Directory Server to guarantee message

delivery.

4.2.2.1 Message Passing Protocol Each message passed between the Language Interface

run-time routines and the Directory Server must be acknowledged, to ensure that the

message has been received by the destination process. To ensure that the originating

process had received the reply message, a second acknowledgement message must be sent

back to the second process. This method is similar to the three-way handshaking

protocol for connection establishment described in [Tanenbaum 81].

Each process updates its state information only after receiving an acknowledgement. A

timeout is the mechanism used in the receive operations to ensure that a process does not

wait indefinitely for an acknowledgement. If a process times out before receiving an

acknowledgement, it sends the message again. The timeout provided should be sufficient

to allow the message to be delivered, and acknowledged, assuming a worst-case

communication delay, but it should be short enough so that the process does not wait too

long, because the languages being implemented are to be used for real-time applications.

The amount of time to wait is difficult to determine, given the variability of the

communication medium, and the desire for optimum performance required by the

languages examined. It is assumed that a vast majority of the time, the message will be
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delivered correctly by the Communication System, and will be acknowledged

immediately. If a timeout occurs, the process resends the message. Duplicate messages

can be recognized through the use of a sequence number. If a second timeout occurs, the

process can assume the other process has terminated, and will execute an error recovery

procedure (see the next section).

4.2.3 Error Handling

Error detection and recovery in a distributed system is very difficult. Part of the

problem is that the layer approach does not allow the higher layers direct access to the

lower layers to determine if problems exist. In a typical communication system, each

layer assumes that the lower layers handle all errors, and provide error-free services.

When that assumption is not valid, the error detection and recovery becomes more

difficult. In the system presented, the lower layers, particularly the Operating System

and Communication System layers, provide no error handling. So any error handling

and correction must be done at the higher levels, either in the Language Interface or

Application Program layer.

One approach that the Language Interface layer could take would be to raise an exception

whenever a condition exists that it cannot handle. This approach can be used with Ada

and CHILL, because they have exception handling facilities. It is not an ideal solution,

because the language standards only specify certain exceptions which can occur when the

communication primitives are used. An example of a specified exception is the

PROGRAM ERROR that occurs when all guards in an Ada select statement are false.

Although the approach is not ideal, it can be used in this paper to simplify the

presentation of the implementation. It could also be argued that the approach is

acceptable, as long as the possible exceptions are identified, and added as extensions to

the language. A discussion of these topics is provided in [Burns 87]. Although their
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discussion is in the context of tasking in Ada, the issues raised are pertinent to any fault-

tolerant, distributed computing system. The system provides very few facilities to help a

user with the problems of error detection and recovery.

In the discussions on the implementation of the communication primitives, error cases

will be ignored, to simplify the presentation. This is an acceptable approach, because the

error cases can be numerous, and discussion of the processing necessary to handle them

would detract from the discussion of the normal operations of each communication

primitive.

4.2.4 State Diagrams and Transition Tables

Individual state diagrams and their corresponding transition tables are used to describe

the state changes that occur in the Language Interface run-time routines for each

communicating process. The diagrams and tables help to more concisely present the

allowable states and actions associated with each communication primitive. They are

used in conjunction with the discussions in the following sections to fully describe the

actions that occur in the run-time routines.

Individual state diagrams indicate all possible states for a particular function, and the

allowable transitions between the states. An oval is used to identify each state, while

directed arcs indicate the allowable transitions. A state is identified by capital letters,

and represents the current state, or location in the execution of a process. A transition

indicates the event that must occur to move from one state to another in a process. In

the transition tables associated with each individual state diagram, actions that are taken

in a process as a result of the occurrence of an event are indicated.

Composite state diagrams are used in this paper in a form similar to that used by

Sunshine [Sunshine 75] for the validation of network protocols. In a composite state
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diagram, pairs of states for individual communicating processes are presented, with the

allowable transitions between each pair of states.

The diagrams and tables can serve a number of purposes in the specification, design and

testing phases of a project such as this proposed implementation. They can aid in

ensuring the correctness of the specifications, by showing that the states and transitions

necessary to satisfy the specifications are reasonable and complete. A measure of

reasonableness is the number of states and transitions in a diagram. There should be

enough states and transitions, so that the user can clearly understand the representation

of the problem, but the number of states should not be so great that the user is confused.

If the states and transitions are reasonable, then an implementation should be able to

proceed easily. If they are not reasonable, the specifications may be overly ambitious or

incomplete. If the states and transitions are complete, the state diagram should result in

proper termination conditions. Incomplete states and transitions result in an inability to

traverse the state diagram to a final state. For example, suppose a process should be able

to transition from state a to state b, because of the occurrence of event e, but that the

transition is not indicated by the specification as being valid, or is not identified. The

state diagram would be able to show the need for the transition in the specifications.

Composite state diagrams are even more useful in this respect, because they are able to

examine the states of two processes. The interactions between the processes become

more obvious when a composite state diagram is used. The diagram helps to ensure that

inconsistent pairs of states cannot be reached, and that sufficient states and transitions

exist in the individual state diagrams to ensure correct representation of the interactions

between communicating processes.

In the design phase, the individual state diagrams can be used to determine the modules

that need to be developed. The transition tables could be expanded to determine the
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design of each module. Each action specified in the transition table could be decomposed

into a state diagram containing greater detail.

In the testing phase, the state diagrams could be used to determine the test cases required

to test the implementation. Test cases for all, or representative, valid and invalid

transition sequences could be developed. The state diagrams would be an aid in

determining which test cases should produce valid results, because transitions are allowed

that can reach a valid termination state.

4.3 Ada

The main form of communication between tasks in Ada is via the rendezvous. This

concept was presented in Chapter Two. A task calls an entry point in another task.

When the second task is ready to accept the rendezvous, the activity corresponding to the

entry point is accomplished, and each task can continue. The rendezvous is a

synchronization, as well as communication, primitive. Either task can be blocked waiting

for the other one to participate in the rendezvous.

The Directory Server maintains information about the tasks that wish to communicate via

a rendezvous. It is responsible for determining which tasks will participate in each

rendezvous.

The following subsections present the steps involved in each task that attempts to

participate in a rendezvous.

4.3.1 Calling an Entry Point

A task calls an entry point to indicate its interest in a rendezvous with a process that

contains that entry point. The call can be made either within a select statement, or as a

single statement. Since a call made from within a select statement includes the states

involved when there is only a single statement, only the processing required for the select
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statement will be presented.

The following steps outline the necessary actions in the Language Interface for the entry

point call. Refer to Figure A-2 and Table A-2 of Appendix A for the individual state

diagram and transition tables, respectively, for this operation.

1. The task, desiring an entry call, begins in the START state. The Language Interface

run-time routines send a message to the Directory Server process to indicate its

interest in a rendezvous with the indicated entry point. The task name and entry

name are passed to the Directory Server process. The timeout value, if a delay

statement is specified in an or clause of the select statement, is also passed in the

message.

The run-time routine issues a call to SYNCH_RECV on its response queue from the

Directory Server. The Directory Server sends a message back to the run-time

routine, indicating whether a task is available for the rendezvous. Based upon the

information, the run-time routine selects one of three possible actions. They are:

— Wait for a rendezvous, because no task is available to accept the entry call,

and an else clause is not specified in the select statement. (WR)

— A task is available. (5M)

— No task is available, and an else clause was specified. (EE)

The actions involved in each alternative are described below.

2. If a rendezvous is not possible from the START state, and an else clause is

specified, the task moves to the EE state in which the statements associated with the

else clause are executed.

The task is then continued, in the CE state, with the statement following the select

statement.
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3. If no task is available, the task waits, in state WR, for the Directory Server to

inform it when a task, with which it can rendezvous, is waiting. The run-time

routines call SYNCH_RECV on its response queue from the Directory Server. If a

delay was specified as an alternative, the task will receive a message from the

Directory Server indicating either that a task is available for a rendezvous, or the

task timed out. One of the issues with the timeout concerns when to start the

timeout interval. It can either be when the entry call is made, or when the request

is queued. As discussed in [Burns 87], either alternative causes problems in a

distributed system, because of the special handling that results from a delay of zero,

and the unclear definition in the language standard [USDoD 83].

4. If the task times out waiting for a rendezvous, the Directory Server sends a message

to the run-time routine, to have it execute the statements associated with the delay

alternative of the select statement. The task moves to the ED state. The Directory

Server also removes the task from the queue of waiting tasks for the entry point.

After executing the delay statements, the task continues execution with the

statement following the select statement, going to the CE state.

5. If a rendezvous is possible, either from the START state, or from the WR state, the

Directory Server sends a message to the run-time routine, informing it of the

destination for the rendezvous. The task moves to the SM state. The destination

indicates the processor name to receive the message sent by the run-time routine.

The service queue that is the target of the message is constructed from the task

name and entry name. For example, assume that the entry point called is entryl in

task taska, the service queue name would be:

taska_entryl
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A message is constructed by the run-time routines to send to the destination service

queue. The message contains the argument values from the call. If values are

passed by reference, the values referenced are put in the message, instead of the

pointers.

The run-time routine uses the SEND operation of the Communication System to

transport the message.

The run-time routine calls the SYNCH_RECV operation of the Communication

System to wait for a response from the called entry point. The service queue that it

waits on is known to the other task's run-time routine from the header of the sent

message. When the accept statements are executed by the called task, and it is

ready to send a response, it uses the PID to construct the service queue. Assuming

a PID of 12345678, the queue name would be:

12345678_ENTRY_RESPONSE

Because a task can only wait on a single rendezvous at any point in time, the task

would only be waiting for one message on the service queue. The processor name

for routing the response is also found in the message header.

6. When the response message is received, the values passed back are copied into the

appropriate arguments from the call. The task moves to the RM state. The task is

allowed to continue executing with the statements in the select statement

immediately following the entry call.

After the statements are executed, the task continues with the statement following

the select statement. The task moves to the CE state.
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4.3.2 Executing Accept Statements

A task can execute an accept statement either as a single statement, or in a select

statement. Because the execution of an accept statement from within a select statement is

the more interesting of these possible actions, it will be examined in this section.

Refer to Figure A-l for the individual state diagram, and Table A-l for the transition

tables describing this construct.

1. The task begins at the START state. The run-time routines of the Language

Interface evaluate the guard for each alternative, to determine if it is true. For each

true guard, the routines add the associated accept entry name into the message to be

sent to the Directory Server. After this message has been sent, the routines wait

for a response to this message, by calling SYNCH_RECV. The response from the

Directory Server indicates whether any rendezvous is possible, and if one is ready,

the entry name is given. The Directory Server decides which entry is selected when

multiple ones are possible, because only the Directory Server contains the state

information concerning communicating tasks. Multiple tasks may issue outstanding

accepts for the same entry point, and the Directory Server is responsible for

correctly determining which tasks communicate.

Depending upon the response from the Directory Server, the run-time routines

select one of the following alternatives.

— Waiting for a rendezvous. No entry is available for a rendezvous. (WR)

— No rendezvous is possible, and an else clause is specified. (EE)

— A rendezvous starts. (EA)

2. In state WR, the task is waiting for another task to call one of the entry points

specified in the message sent to the Directory Server. The run-time routines wait
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on the task's response queue for a message from the Directory Server, by

employing a call to SYNCH_RECV. When a task calls an appropriate entry point,

the Directory Server sends a message to the task, informing it of the service queue

name that has a message. The service queue name corresponds to one of the entry

points the task is waiting on. The run-time routines receive a message from the

service queue, by calling RECV_NOW. They take the arguments from the

message, and put them into the appropriate variables for the entry. The statements

included in the accept statement in the alternative of the select statement are

executed.

When the end of the accept statement is reached, the run-time routines construct a

response message to send back to the caller. The parameters that are to be returned

to the caller are put in the message. Only those arguments that are defined as out

or in out are sent back to the caller, so that the amount of data in the message can

be reduced. These arguments must be copied back into the corresponding

arguments used by the caller. The processor name from the original message

header is used to send the message back. The destination service queue is

constructed, as described in Section 4.3.1 Step 5.

The response message is sent to the caller.

The task continues with the statement following the accept statement in the select.

After the statements in the select alternative are executed, the task continues with

the statement following the select statement. The task goes to the CE state.

3. If a timeout occurs while waiting for a rendezvous, the Directory Server sends a

message to the task informing it of the event. The task moves to the ED state. The

same activity as that specified in Section 4.3.1 Step 4 for a timeout on an entry call

occurs in this instance.
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4. If no rendezvous can occur immediately, and an else clause is specified, the task

goes to the EE state. The statements associated with the else clause are executed.

The task continues with the statement following the select statement, and moves to

the CE state.

4.4 Concurrent C

Concurrent C provides basically the same facilities as Ada. The main differences are in

the ordering and selection of alternative accept statements in a select statement, by using

the suchthat and by clauses. The differences are mainly in the scheduling of a

rendezvous, and are not of interest in this paper. As a result, the implementation of the

communication primitives in Concurrent C would be similar to the implementation in

Ada.

An implementation of Concurrent C in a distributed system is discussed in [Cmelik], and

it would be useful to compare that implementation with the one proposed in this paper.

Cmelik et.al. implemented Concurrent C in three different configurations, but the

implementation for multiple processors connected through a Local Area Network (LAN)

is most useful for the comparison, because it is similar to the implementation presented

in this paper. In that implementation, a Concurrent C program is contained in multiple

TTVfUNIX processes, one Unix process per processor. A "message reading daemon"

Concurrent C process exists in each UNIX process to handle messages received from the

other processors. A "master" UNIX process, that is created when the Concurrent C

program starts execution, exists on the processor at the hub of a star configuration of

processors on the LAN. Messages sent between the processors pass through the "master"

UNIX is a registered trademark of AT&T.
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processor.

One difference between the two implementations is that there does not seem to be the

concept of a Directory Server in [Cmelik]. But it is not clear from the paper how the

Concurrent C processes determine the destination of a message.

Another difference is that Cmelik et.al. required an extra Concurrent C process to read

messages from other processors. This function is provided by the Language Interface

and the Communication System layers in this implementation. Each Concurrent C

process can send a message to any other Concurrent C process directly.

A third difference exists in the manner that Concurrent C processes are structured. In

[Cmelik], they are part of UNIX processes, and an additional scheduler was developed to

schedule execution of the Concurrent C processes in the UNIX process. In this

implementation, each Concurrent C process is a VMS process, so the VMS operating

system scheduler handles the scheduling of the processes. The VMS scheduling

algorithms are efficient, and are sufficient for scheduling of real-time processes. The

process context switching time that [Cmelik] cites as the reason for multi-tasking in that

implementation is not a problem in VMS, because the context switching is done very

similarly to the way mentioned in [Cmelik] for the Concurrent C processes. That is, only

registers are switched, and not the whole virtual memory and page tables for each

process.

4.5 CHILL

As mentioned in Chapter Two, there are two methods for processes to communicate in

CHILL. One is through buffers, and the other is through signals. In either case the

SEND and RECEIVE operations are used to pass messages.

Because the operations appear similar between the operations in CHILL and in the
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Communication System, it could be assumed that it would be simple to map the

communication primitives in CHILL into operations in the Communication System.

When the primitives are examined in detail though, it can be seen that they have some

complicating features that make them nearly as difficult to implement as those in Ada.

The factors that make it difficult to implement the CHILL communications primitives in

the Communication System are as follows.

1. Processes can send messages to either specific processes or process classes. This

requires the use of a Directory Server, like in Ada, to locate processes that are

willing to communicate.

2. Buffers and signals are persistent, which means that they must exist, even if no

process is willing to receive them. The Communication System assumes that if no

process attempts to receive on a temporary queue, and a message is sent to the

queue, the message is lost, because the queue only exists while a process is

connected to it. Permanent queues could be used, but then a process would be

responsible for creating all possible queues that may be needed in a system.

The Communication System also requires that messages reside on a specific

processor. If the receiving process is unknown at the time a message is sent, the

Communication System would not know which processor to specify for receiving

the message.

This problem requires that the messages be buffered outside of the Communication

System. The messages could be held in the sender process until a receiver has been

found for the message, but CHILL requires that messages outlast processes. In

other words, the message will exist, even if the sender terminates.

One alternative would be to have the Directory Server maintain the messages. They
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could be considered an extension of the state information that it must maintain. It

also gives the Directory Server more control over blocking the sender when a buffer

is full.

3. The sender must be blocked when a buffer of bounded size is full. The

Communication System can return a status indicating a queue is full, but the status

is only returned under some conditions. If both processes are on the same

processor, or they are both on cluster processors2 , the status can be returned,

because it is obtained by the Device Driver in the Communication System. If one

process is on a net processor, the information cannot be provided, because the

Network Server is not given the information to provide the status. Another

mechanism, such as mentioned above, is needed to ensure that the sender is blocked

at the appropriate time.

The state diagrams and transition tables for the communication primitives can be found in

Appendix B. The following subsections describe the activities that occur within the

Language Interface for each of the communication primitives.

4.5 .1 Sending Buffer or Signal Messages

The following steps are taken for each call to SEND. The storage for buffer or signal

messages is maintained by the Directory Server.

Because the Directory Server is responsible for the message storage, the only differences

between sending signal or buffer messages are concerned with the generation of the

messages. For buffer messages, the message is identified as a single parameter. For

signal messages, the message consists of possibly many arguments, so the message must

2. Refer to Section 3.5.1 for information on the meanings for cluster processor and net processor.
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be constructed from the arguments passed in the call. The problem here is very similar

to the problem with passing arguments through an entry call in Ada.

The following steps describe the operations necessary to send messages. Refer to Figure

B-l for the individual state diagram, and Table B-l for the transition tables.

1. The run-time routines begin at the START state. They send a message to the

Directory Server providing information on the sending action. Depending upon the

structure of the send statement, and whether a buffer or signal is specified,

different information is provided to the Directory Server to help it decide upon the

action to be followed.

If the send operation is on a buffer, only the buffer name and the priority are

provided.

If the operation is on a signal, the signal name, process instance, or process class

and priority are specified.

The process changes to the CD state by waiting for a response from the Directory

Server. It issues a call to SYNCH_RECV to receive the message.

Depending upon the information returned by the Directory Server, the process

advances to one of three states. They are:

— Buffer is full, wait for a free slot. (SD)

— No receiver available, send the message to the Directory Server. (CM)

— Receiver available, send the message directly to it. (SM)

2. When the process is in the SD state, the buffer is full. The process must wait until

a slot, or a receiver, is available to take the message. A buffer is bounded only

when a length is specified when it is defined. Otherwise, the buffer is unbounded,
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and will never be full.

It is possible for a process to send a buffer message directly from this state to a

receiver, if the priority of the message it is attempting to deliver is higher than the

priority of any other message awaiting delivery.

A process in this state, then, can move to either the CM state when a slot is

available, or the SM state when it is allowed to send its message directly to a

receiver.

3. When no receiver is available, the process is in the CM state. In this state, the run-

time routines sends the message to the Directory Server to store it.

This implementation allows the process to continue, or terminate, without affecting

the message, or the possibility of its delivery.

A disadvantage is that the Directory Server is responsible for maintaining the

buffers and signal storage areas, and this results in performance penalties. An

optimization is made by allowing a process to send a message directly to another

process whenever it is possible.

After the message is sent to the Directory Server, the process continues with the

statement following the send statement. The process moves to the CE state.

4. If a receiver is waiting for the message, the process moves to the SM state, and the

run-time routines send the message to the destination process. The destination

processor is specified in the message sent by the Directory Server.

The process continues with the statement following the send statement. It moves to

the CE state.
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4.5 .2 Receiving Buffer or Signal Messages

Processes can receive messages by using either the receive expression or the receive case

statement. The receive expression can only be used to receive messages through buffers,

and it results in an assignment of the message to a variable. The receive case statement

is more complicated, and allows for more variations. Multiple buffers or signals can be

waited on, and alternative statements can be executed. The following discussion focuses

only on the receive case statement. It is relatively trivial to implement the receive

expression.

The following steps describe the actions taken for receiving messages through either

buffers or signals. The state diagram for the receive operation is in Figure B-2, while the

transition tables are in Table B-2.

1. The process begins in the START state, by executing the receive case statement.

The run-time routines send a message to the Directory Server, requesting a message

from any of the alternative buffers or signals specified in the receive case statement.

The run-time routines then wait for a response from the Directory Server on its

response queue. Depending upon the response from the Directory Server, one of

three transitions is possible. They are:

— A message is available immediately. (RM)

— No message is available, and no else clause is specified. (WS)

— No message is available, and an else clause is specified. (ES)

2. If a message is available, the Directory Server sends it with the response message.

The Directory Server also specifies the buffer or signal associated with the message,

and the PID of the original sender. The process moves to the RM state.
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If the set clause is specified, the sender PID is placed in the variable specified in the

set clause.

If the in clause is specified, and the message is associated with a buffer, the

message is copied into the location specified. If the message is associated with a

signal, the values in the message are moved into the appropriate variables.

The process executes the statements associated with the signal or buffer indicated.

After execution of the statements, the process continues with the statement

following the receive case statement. It moves to the CE state.

3. If the Directory Server indicates that no message is available for the specified

buffers or signals, and no else clause is specified, the process moves to the WS

state.

The run-time routines wait on a message from the Directory Server, by calling

SYNCH_RECV on its response queue.

When a message is available, the Directory Server indicates the queue to use to

receive the message directly from the sender. The run-time routines receive the

message by calling RECV_NOW. The process then moves to the RM state.

4. If no message is available for the process, and an else clause is specified, The

process goes to the ES state. It executes the statements associated with the else

clause.

It then moves to the CE state, and executes the statement following the receive case

statement.

4.6 Summary

This chapter has examined a possible implementation for utilizing communication
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primitives available in Ada and CHILL in a distributed system. The issues involved, and

some of the more important decisions have been discussed.

State diagrams and transition tables have been used to analyze the possible states for each

operation. A composite state diagram was used to examine the interactions between

communicating processes in each language.

By examining the composite state diagram, the nature of the communication can be

identified. For example, the synchronous nature of a rendezvous in Ada becomes very

obvious in the composite state diagram. Also, the asynchronous quality of

communication in CHILL can be seen by the crossing of lines between state pairs, and no

obvious single line of processing as was the case with the Ada diagram.
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CHAPTER 5 - CONCLUSIONS

This chapter presents the conclusions that have resulted from the author's efforts in

developing the sample implementation for the communication primitives. One conclusion

concerns the usefulness of the state diagrams in developing and understanding the

proposed implementation. They are also useful in all phases of a development, as

discussed in Chapter Four. The implications of this conclusion are discussed in Section

5.1. Another conclusion involves the impacts on the Language Interface layer when

either the communication system that it uses, or the language primitives that it supports,

changes. Section 5.2 presents the implications of this second conclusion.

5.1 Usefulness of State Diagrams

The state diagrams had been very useful in the development of the sample

implementation presented in this paper. They describe in a succinct manner how the

Language Interface routines process the communication primitives of a high level

language. The terse description of states and transitions allows the entire implementation

to be viewed, and the descriptions clearly depict how the transitions are made between

states. Of course, the transitions and states must be chosen by the developer, but the

state diagrams can help to show when paths through the states become invalid. For

example, in the state diagram for Ada in Figure A-l, it is obvious that the task cannot

move from the ED state to the EA state, because, when the task starts to execute the
a a

statements for the delay alternative of the select statement, it aborts waiting for a

rendezvous. If the task is not waiting for a rendezvous, it cannot execute the statements

associated with an accept statement. If a transition is specified in a design between this

pair of states, it would become obvious from an analysis of the state diagram that the
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transition is invalid.

The possible flow of control within the Language Interface run-time routines is shown

clearly with the state diagrams. These patterns of control help to show that the structure

of the routines is correct, in the sense that each possible state is represented, and all

allowable transitions are shown. Of course, it is easy to provide too much detail, and

obscure the structure. This is one reason why states and transitions for the error

conditions are not provided in the state diagrams for the Language Interface run-time

routines.

Because of the languages studied, and their intended application areas, performance is an

important consideration in the design of the support facilities for the languages. State

diagrams can be used to determine the maximum expected communication delay between

states. The transitions between states that involve passing messages between the

Language Interface run-time routines and the Directory Server can have bounded

communication times. These times would be the maximum transit times for message

passing within the communication system. With the maximum delay times known, the

designer could determine if the performance of the system is acceptable. They are also

useful in program testing, because the tester can verify that a module developed meets

the maximum delay times specified, or has reached an invalid condition, because the

maximum delay time has been exceeded.

Composite state diagrams are also found to be useful, particularly in examining the

interaction between communicating processes. They help to determine if states in the

individual state diagrams are consistent with each other. They also help to determine the

level of detail needed in the individual state diagrams to correctly represent operations in

the run-time routines. This feature of the composite state diagram was discovered when

the author constructed the composite state diagram for the Ada constructs, and found that
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a state was missing in the individual state diagram for the accept statement. The SM

state was not in the original individual state diagram, but the composite state diagram

needed the state to show that the statements enclosed by the accept statement were

executed, and that the process was to send a response back to the caller. The caller

would be blocked until the response message was received. Without the additional state,

the composite state diagram did not correctly show the point where the caller was

unblocked and allowed to continue execution.

The composite state diagram clearly shows the structure of the communication primitives

for each language. Examining the composite diagram for Ada in Figure A-3, it is evident

where the rendezvous occurs, and that the calling and called processes are synchronized

for the duration of the rendezvous. When the composite state diagram for CHILL in

Figure B-3 is examined, it is obvious that there is less synchronization between the

sending and receiving processes. Very few pairs of states are not allowed in CHILL,

when compared to Ada. Three state pairs out of a total of 36 are not possible in CHILL,

compared to ten out of 56 in Ada.

5.2 Impacts on Language Interface

Because the Language Interface translates the communication primitives in a language to

the services available in a communication system, it can be significantly impacted if either

the primitives or the communication system changes. The functions performed by the

Language Interface are driven both by the requirements placed upon it by the language

primitives and by the capabilities of the communication system. This section reviews the

potential impacts on the Language Interface, as a result of different types of changes.

It has been shown that the Language Interface can successfully support the

communication primitives of Ada, Concurrent C and CHILL, using the communication

system presented in Chapter Three, provided that the distributed database issues in the
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Directory Server, and the error handling issues, discussed in Chapter Four are resolved.

The author believes that they are resolvable, because extensive research has occurred in

these areas.

We have examined two types of communication primitives in this paper. One is the

synchronous style of communication in the rendezvous communication mechanism in Ada

and Concurrent C, where the sender and receiver are synchronized when the rendezvous

occurs. The other type is asynchronous in nature, as displayed in the communication

primitives of CHILL, where only the receiver is blocked while waiting for a message.

Other styles of communication, such as totally asynchronous communication, where the

receiving of messages is also asynchronous, would require corresponding changes in the

Language Interface.

Presumably, the Directory Server would not change drastically, because the mapping

service provided by it would probably be required by other languages. The flexibility

offered by the incorporation of the Directory Server is a major feature in the design. It

requires the Language Interface to be concerned about the location of a destination

process, and relieves the application programmer of that burden.

Changes in the communication system would also impact the Language Interface. A

more reliable communication system may be used, but the overhead required to ensure

message delivery may be greater than the overhead that results from the current design.

In other words, the reliable communication system may provide more reliability than is

actually needed, or, because of its general applicability, may provide features that are not

needed by the Language Interface. These unnecessary features may incur an undesirable

performance penalty. Because the languages that the Language Interface supports are

intended for real-time applications, performance is an important consideration for the

run-time routines.
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The communication system used in the proposed implementation provides a number of

different types of receive operations. It allows asynchronous and synchronous receive

operations, as well as alternatives in the synchronous case, such as timeouts and no wait

receive operations. If another communication system is used that does not offer this

variety of receive operations, the Language Interface would have to change.

In essence, any change in the communication system, that does not offer the same

capabilities in performance or allowable operations as the current Communication System

provides, would cause changes in the design of the Language Interface. Depending upon

the capabilities in the new communication system, it may be possible that the Language

Interface may not be able to meet its requirements, particularly if the performance of the

replacement communication system is not acceptable, or the operations available do not

allow the Language Interface to function properly.
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execute else

statements

Figure A-l. State Diagram for Ada Accept Select Statement
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Table A-l. State Transition Table for Ada Accept Select Statement

Current Next

State Event State Action

START
a

evaluate GE
a

The when clause is

guards evaluated for each alter-

native.

The Directory Server is

called with true alter-

natives.

GE. else

selected

EE. No processes available

for a rendezvous, and

an else clause is

specified.

wait WR. The process waits for a

rendezvous on one of the

true alternatives.

alternative

selected

EA, The Directory Server

informs the process that

another process is ready

for a rendezvous on an

accept statement.

EE. execute

else

CE. The statements assoc-

iated with the else

clause are executed.

WR. alternative

selected

EA. The Directory Server

informed the process

that another process

is ready for a rendez-

vous on an accept

statement.

timeout ED The process specified

a delay, and it expired

before a rendezvous

started.
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Table A-l. State Transition Table for Ada Accept Select Statement (Continued)

Current

State Event
Next
State Action

EA. execute

accept

statements

SM. Execute the statements

associated with the

accept that was
completed.

ED execute

delay

statements

CE. The statements associated

with the delay alter-

native are executed.

SM. send

message

CE. The response message is

sent back to the process

involved in the rendez-

vous.

CE. The end of the select

statement has been reached.

The process continues exe-

cution.
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wait for

rendezvous

else

selected

execute

else

statements

Figure A-2. State Diagram for Ada Entry Call Select Statement
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Table A-2. State Transition Table for Ada Entry Call Select Statement

Current Next
State Event State Action

START
e

execute EE
e

The process called the

else
w

Directory Server for

statements available processes for

a rendezvous, and no
process is available.

An else clause is

specified.

wait for a

rendezvous

WR. Waiting for a rendezvous

because none is available,

and no else clause is

specified.

rendezvous

starts

SM, The Directory Server

identifies a process

available for a rendez-

vous.

This process sends a

message to the desig-

nated process.

It then waits for a

response message from
the other process.

EE execute

else

statements

CE. The statements associated

with the else clause are

executed.

WR. timeout ED. The process timed out

before a rendezvous started.

rendezvous SM
started

The Directory Server

process sent a message

indicating that a process

is ready for a rendezvous.

The process sends a message

to the other process.
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Table A-2. State Transition Table for Ada Entry Call Select Statement (Continued)

Current

State Event
Next

State Action

ED. execute

delay

statements

CE. The statements associated

with the delay alter-

native of the select

statement are executed.

SM. receive

response

RM The response message has

been received from the

other process.

RM execute

statements

CE. The statements following

the entry call are exe-

cuted.

CE. Continue execution of the

process with the statement

following the end of the

select statement.
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(CE
e
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processes are
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e
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e
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Figure A-3. Composite State Diagram for Ada Rendezvous
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( START ]

determine

receiver

receiver

available

send message
to receiver

Figure B-l. State Diagram for CHILL Send Statements
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Table B-l. State Transition Table for CHILL Send Statements

Current

State Event
Next

State Action

START. determine

receiver

CD. The sending process sends

a message to the Directory

Server process to deter-

mine if a process has an

outstanding receive on
the buffer or signal.

CD. receiver

available

no receiver

available

SM.

CM.

A receiver is available

to take the message immed-
iately.

No receiver is available.

buffer

full

SD. The buffer is full.

The sender is blocked,

waiting for a receiver

to either remove a mess-

age, or take its message.

SM. send

message

CE. The message is sent to

the selected process.

CM. copy

message

CE. Copy the message into a

storage area to hold it

for an ultimate receiver.

SD. receiver

available

buffer

available

SM.

CM.

A receiver is available,

and the priority of the

send is higher than any

other messages available.

The message is sent from

sender process to the

receiver process.

Buffer space is available

to hold the message.
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Table B-l. State Transition Table for CHILL Send Statements (Continued)

Current Next

State Event State Action

CE — — The sender is allowed to
s .

continue execution after

the send statement.

B-3



APPENDIX B

else

selected

(START )W
determine

status

message
available

execute

statements

associated with

buffer or signal

Figure B-2. State Diagram for CHILL Receive Statements
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Table B-2. State Transition Table for CHILL Receive Statements

Current

State Event

Next
State Action

START, determine

sender

CD. The receiver sends a mess-

age to the Directory Server

process to determine if a

message is available for

reception.

CD message
available

RM. A message is available.

Receive it from the

indicated buffer or sig-

nal.

wait for

message
WS,

else

clause

selected

ES.

The process waits for a

message to be sent to

any of the buffers or

signals specified.

It waits for a message
from the Directory Server

to determine the source

of the message.

No messages are available

in any of the buffers or

signals specified, and an

else alternative is spec-

ified.

RM execute

receive

statements

CE If a signal was specified,

and, an IN clause

was specified, the values

in the message are copied

to the variables specified.

If a buffer was specified,

and the IN clause was spec-

ified, copy the message
into the variable identi-

fied in the IN clause.

The statements associated

with the buffer or signal

that the message was rec-

eived from are executed.

B-5



APPENDIX B

Table B-2. State Transition Table for CHILL Receive Statements (Continued)

Current Next

State Event State Action

WS message ^^ ^ message is available

available from one of the alterna-

tive buffers or signals.

ES execute CE Execute the statements
c c

else associated with the

statements else alternative.

CE — — Continue execution of the

process with the statement

following the receive case

statement.
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Figure B-3. Composite State Diagram for CHILL Communications
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ADDITIONAL DETAILS ON THE COMMUNICATION SYSTEM

C.l Major Software Components

The following subsections describe the Device Driver and Network Server in more detail

than the discussion of these components in Section 3.4.

Miscellaneous operations are available in the communication system are presented in

Section C.2. These operations are presented to show the additional services that are

available in the Communication System, which can aid the applications programmers.

C.l.l Device Driver

A device driver is a system-level process that operates in kernel mode to manipulate the

data structures for which it is responsible. Interrupts are received by a device driver

when a service is requested from it. Refer to [DEC 86b] and [Kenah 88] for information

on the capabilities of device drivers in the VMS operating system.

If the processor is in a VAXcluster, the Device Driver will also attempt to connect to the

other members of the cluster when the processor is first booted. Also, if connection

requests are delivered from other processors, it will respond to them, and establish the

connection. This allows all device drivers in a VAXcluster to be completely

interconnected. Each Device Driver maintains a table of all processors to which it is

connected, and it is responsible only for those service queues that are resident on its

processor.
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C.1.2 Network Server

The Network Server only connects to processors that cannot be connected through the

Device Driver. Processors that can only be connected through DECnet use the Network

Server to pass messages. Processors that are in the cluster group communicate with

processors in the net group through the Network Server.

C.1.2.1 Establishing Connections A configuration table is used by the Network Server to

determine the processors to which it must attempt to connect. The configuration table

contains the maximum configuration of the processors, including processors that only

connect to the network occasionally.

If the Network Server cannot connect to a specified processor in a number of connection

attempts, it will log an alarm message. 3 Even after issuing the alarm message, it will still

attempt to connect, but at a slower rate.
4 This method allows for machines that enter and

leave the network at different times. It also handles cases where the physical connection

between machines may be down for an extended period of time.

C.1.2.2 Maintaining Connections If the Network Server is connected to another machine,

and then subsequently loses the connection, it will attempt to reconnect, using the

algorithm mentioned above.

If it cannot reconnect within two attempts, it assumes the other processor has crashed,

3. The alarm message is a warning to the operator. If the processor is known to be down, the operator can
ignore the message. If the processor is functioning normally, the operator will need to analyze and correct

the problem.

4. The normal rate to attempt connections is once every 2 minutes, while the long-term rate is once every 10
minutes. The normal rate is adjustable, whereas the long-term rate is always 5 times as long as the normal
rate.
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and issues a major alarm to alert the operator. If it can reconnect immediately, it

assumes the connection loss was transitory.

C.l.2.3 Special Routing Algorithms The Network Server can receive messages either

from processes on the local machine, or from any of its partner Network Servers. When

it receives a message from a local process, it needs to determine to which processor(s) to

send the message.

The algorithms used to map logical names to physical names are described in Section 3.5.

C. 1.2.3.1 Locally Received Messages The Network Server receives messages locally

from a service queue, much as any other process in the system. When a message is

received, the Network Server is interrupted to process the message.

If the destination processor is the local processor, the Network Server will send the

message to the indicated service queue directly.

If the destination processor is a symbolic name, the Network Server determines how to

identify the processor(s) that constitute the set for the symbolic name.

If the destination is a processor to which the Network Server is connected, it sends the

message to its partner Network Server on the destination processor. The Network Server

on the other processor will process the message in the manner described in the next

section.

C.l.2.3.2 Remotely Received Messages When a message is received from a remote

processor, the Network Server is interrupted to process the message. The server then

determines if the ultimate destination is the local machine, or another processor. The

message may have been directed to a site other than its final destination for one of the
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following reasons.

— An alternate route was selected by the sending Network Server, because it was not

connected to the specified destination processor.

— The Network Server believed that the coordinator processor is the local processor5
.

If the ultimate destination is another processor, the Network Server attempts to send the

message to the correct processor. If it cannot, it discards the message. Note that in this

case the original sender of the message is not notified of this action.

If the message is destined for the local processor, the Network Server sends the message

to the service queue specified in the header of the message.

C.2 Miscellaneous Operations

In addition to the operations described in Sections 3.5 and 3.6, a number of operations

are available. They had been developed to aid the applications developers in the

common functions that they perform.

The two operations, DRAIN_QUE and CANCEL_IO, are described in the following

subsections. These are the only additional operations available at the present time.

C.2.1 Empty Service Queue of Messages

One operation, DRAIN_QUE, removes and discards all the messages in a service queue.

This operation allows the developer to empty a queue of old messages that are not

meaningful to it. They may be messages intended for an old incarnation of the process,

5. The coordinator processor is a special logical designation, and is discussed in Section 3.5.
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and the new instantiation does not have any state information to correctly interpret the

information in the messages. Or, they may be responses to old request messages and the

process timed out waiting for the response. In the latter case, the process will normally

drain the queue before making a new request.

The format of the DRAIN_QUE is shown in Figure C-l.

DRAIN_QUE( que );

where:

que The name of the service queue to be emptied.

Figure C-l. DRAIN_QUE Call Format

C.2.2 Cancel 110 for a Service Queue

This operation is useful in the case where a process issues receive requests on a number

of service queues. The requests are all done through calls to ASYNC_RECV. The

completion of the call will occur inside an AST, as specified in Section 3.6.1. The

process is interested in receiving a message on any of the queues, but only needs one

message. When a message is received on a queue, the outstanding requests on the other

queues are canceled.

Outstanding requests that are canceled return to the caller, through the AST, with a

special status. The AST must handle this status correctly, which in most cases means to

ignore the receive operation.
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The format of the operation is given in Figure C-2.

CANCEL_IO( que );

where:

que The name of the service queue on which the process has

outstanding receive requests.

Figure C-2. Format of CANCEL_IO Operation
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A PROPOSED IMPLEMENTATION OF COMMUNICATION PRIMITIVES
IN ADA AND CHILL FOR DISTRIBUTED SYSTEMS

by John William Unger

AN ABSTRACT OF A MASTER'S THESIS

As computing systems have become more distributed, communications between processes

have become more important. Languages have been developed which include

communication primitives as part of their syntax, to provide for communicating

processes. These primitives are not always suitable for distributed communicating

processes.

This paper examines the communication primitives in a number of these languages,

namely Ada, Concurrent C and CHILL. It also presents a communication system that

had been developed for homogenous computer networks consisting of processors using

the Digital Equipment Corporation's VMS operating system and DECnet network

protocol.

The paper introduces a sample implementation which maps the communication primitives

of Ada and CHILL into the communication system described, to illustrate the issues

involved with distributed processing. Possible alternative solutions are discussed in order

to show that tradeoffs need to be examined when the opposing requirements for

reliability and performance conflict.




