A FIELD STUDY OF THE EFFECTS OF LEAF RUST AND STEM RUST ON SISTER LINES OF A HARD RED WINTER WHEAT

by

JOHN LEWIS BIEBER

B.S., Purdue University, 1958

A THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Agronomy

KANSAS STATE UNIVERSITY OF AGRICULTURE AND APPLIED SCIENCE

2668																											
T4 1960																											ii
B55																											
CZ						3	CA1	BLI	E (OF	CC	DNI	MER	(TS	5												
Docume	en+																										
INTRODUCTI	ION.		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
REVIEW OF	LITE	RATURI	E .	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	2
MATERALS /	AND M	ETHOD	s.																								5
1958	Proc	edure																									5
	Leaf	Rust		•			٠						٠		٠	٠							•			•	5
	Stem	Rust	•	٠	٠	٠	٠	•	٠	٠	٠	٠	•	•	•	•	٠	۰	•	•	•	•	•	•	٠	•	7
1959	Proc	edure	s.																								8
	Leaf	Rust	ET	ra.	Lua	ati	Los	1.																			10
	Stem	Rust	Ev	rai	Lua	ati	Loi	1.	•	٠	•		•		٠	•	•	•	•	•		٠		•			11
IF VID IF NUMP	TAT D	COTT P	c.											-													11
1958	Resu	lts .		1																							11
	Leaf	Rust		÷																							11
	Stem	Rust		•	•				•	•	•	•	•			•	•	•	•		•	•	•	•	•	•	12
1050	Decu	1+6 .																									13
2777	Leaf	Rust																									13
	Stem	Rust																									16
DISCUSSION	N AND	CONC	LUS	SIC	DN :	5.							•		•				•				•				16
SUMMARY .						•	•	•		•		•	•	•	•	•	•	•		•			•	•	•	•	19
ACKNOWLED	GMENT		•		•	•			•				•	•			•	•	•				•	•		•	21
LITERATUR	E CIT	ED									•	•	•	•	•	•				•	•		•				22
APPENDIX.																											25

10-21-60-0.0.

INTRODUCTION

The importance of a plant disease is determined by the amount of economic damage it produces. It is a function of both frequency and severity of destructiveness. Economic damage may differ from plant to plant. For example, an organism's unsightly blemish upon a flower will be of major importance in floriculture but not necessarily so in wheat production. In a wheat crop the grain is of prime importance. Thus the major criteria for evaluating a wheat pathogen's importance is the effect upon yield, seed quality, and harvestibility.

According to Chester (1946), man has recognized the damage resulting from rust infections since ancient times. Prior to the nineteenth century all rust diseases were considered one disease. By the last part of the nineteenth century the fungus-host relationships had been discovered and different rust species were recognized. After stem rust and leaf rust were recognized as separate diseases, evaluations of the importance of each were made. The damage caused by stem rust was much more striking. Stem rust attacks the wheat crop in the later stages of development, spreads rapidly, brings sudden defoliation, and results in severely shriveled kernels. On the other hand leaf rust occurs earlier in plant development and the plant seems to withstand the attack and produce normal kernels. Several early investigators concluded that leaf rust was of only minor importance. Since then, numerous researchers have shown conclusively that leaf rust causes major damage. In this study an attempt was made to estimate damage produced by the leaf rust organism <u>Puccinia recondita</u> Rob. ex Desm. f. sp. <u>tritici</u> Erikss. (Cald) and the stem rust organism <u>Puccinia graminis</u> Pers <u>tritici</u> Erikss. and E. Henn. () using resistant-susceptible sister lines of hard red winter wheat. Since this approach, using nearly isogenic lines differing in rust reaction, has not been published in America to date, an evaluation of this method was one objective of this research. In other words, this study was set up to evaluate the benefit derived from rust resistance under certain varied conditions.

REVIEW OF LITERATURE

Early in the 20% century the use of sulfur dust as a fungicide enabled researchers to make direct comparisons between rusted and nonrusted plants. Kightlinger (1925) found that uredecopore germination was reduced from 72.9 to 18.8 percent when microscopic slides were dusted with 90-10 sulfur-lead arsenate dust. In a subsequent field trial, stem rust on oats was reduced from 90 percent to below 1 percent by repeated applications of sulfur. Greaney (1928) found that dusting after inoculation failed to control rust. Kightlinger and Whetzel (1926) studied the effect of sulfur treatment on wheat and oats. A wheat yield increase of 18.5 percent was attributed to the reduction of leaf rust by sulfur treatment. Oats protected from both stem rust and leaf rust showed an increase in yield of 19.6 percent. Bailey and Greaney (1928) protected wheat plots from both stem rust and leaf rust with tri-weekly applications at different rates. Yields under all rates tested were over three times the average of the untreated check plots. Lambert and

Stakman (1929) found that at least three applications of sulfur were necessary during a growing season to control stem rust. Yields were increased approximatley 30 percent but the cost was greater than the value of the increased yield.

Other workers set up experiments to determine the direct effect of rust diseases. Murphy (1935) found that the effect of crown rust of oats waried with the degree and type of infection, growth stage of the host, and duration of infection. In further studies Murphy and others (1940) ran correlations between crown rust readings and yields. Correlation coefficients between amount of infection and yield were found to be highly significant and ranged between -.75 and -.80.

In greenhouse comparison, Johnston (1931) measured a 55.71 percent reduction in yield of a leaf-rusted, susceptible variety of wheat as compared to non-infected checks. Severe flecking necrosis reduced yield of a resistant variety 22.05 percent. Johnston and Miller (1934) found that susceptible plant yields were reduced 42.8 to 93.8 percent and the maximum yield reduction of the resistant plants was 15.2 percent. Mains (1927) found yields reduced 15 to 25 percent with severe greenhouse infections lasting from the beginning of heading to maturity. Mains (1930) reduced yields of susceptible, greenhouse plants up to 94.7 percent when infested throughout the growing period. He found that the amount of yield reduction was dependent upon the stage of host development at the time of inoculation and upon level of resistance or susceptibility of the host.

Hayes, et al., (1927) correlated yielding ability with disease reactions and other characters of spring and winter wheats grown in rod

row trials in Minnesota. They found that leaf rust reaction was an important contributing factor to yielding ability but that the negative correlation was greater between stem rust and yield than between leaf rust and yield. In winter wheats over 50 percent of the yield variability was attributed to winterkilling.

Sulfur has been widely used in setting up field experiments specifically designed to evaluate the effects of rust. Goulden and Greaney (1930) varied the amount of stem rust infection with different rates and intervals of sulfur applications. A 10 percent increase in infection was accompanied by a 6.8 percent reduction in yield in one experiment and a 9.7 percent reduction in another. Regressions in yield were said to be linear. From late studies, Greaney <u>et al.</u>, (1941) stated that yield reduction ranged from 6.7 to 9.2 percent for each 10 percent increase in stem rust infection. In 1937 an increase in stem rust severity from 5 to 90 percent reduced yield 84 percent.

Johnston (1931) compared leaf rust infected plots with sulfur treated plots and calculated the reduction in yield due to leaf rust to be 8.13 percent and 7.77 percent for the two years studied. Caldwell and others (1934) found that leaf rust was responsible for decreases in yield of 14.8 to 28.4 percent. In Ganada Peturson and Newton (1939) found a maximum yield reduction due to leaf rust of over 50 percent. Late planting, which produced younger plants at the time of infection, resulted in a heavier reduction in yield. Peturson <u>et al.</u>, (1945) showed that even moderately resistant varieties of spring wheats may suffer a considerable reduction in yield when infected with leaf rust. Yields of susceptible varieties were reduced as much as 56.3 percent.

3a

Hields of susceptible varieties were reduced as much as 56.3 percent. Yields of the varieties Renown and Regent were reduced 22.7 and 16.1 percent, respectively, in 1940 although both had rust readings of only 15 percent. A statistically significant difference was found between the treated and untreated plots of all varieties tested in the 1940, 1941, and 1943 trials. The same workers (1948) continued the study for three more years and obtained similar results. However, in 1946, when rust infections were lighter and later in getting established, yield differences due to infection were not significant. In Australia Phipps (1938) controlled leaf rust with colloidal sulfur and calculated that leaf rust reduced the yield of a susceptible variety 14.5 percent. Martinez (1951) reported a significant difference between protected and rust plots. He stated that a 10 percent increase in infection of leaf rust caused a 4 to 5 percent reduction in yield.

Newton <u>et al.</u>, (1945) found significantly different yields, kernel weights and test weights between artificially leaf rust-inoculated barley varieties and their sulfur treated checks.

Levins and Geddes (1957) measured the intensities of leaf rust and stem rust infections in a percent average rust load. Duration as well as pustule cover was taken into account. Seasonal leaf rust loads were found to be consistently heavier than seasonal stem rust loads. However, an increase of 65.0 percent in the average leaf rust load reduced yield only 33 percent, while an increase of 31.7 percent in the average stem rust load reduced yield 45 percent. Later infections were accompanied by lesser reductions in yield.

Gertain detailed studies have been made into the nature of the yield reduction caused by rusts. Weiss (1924) found that plants infested with stem rust had a significantly higher water requirement than non-infected plants. Johnston and Miller (1934) found that the water requirement of wheat was greatly increased by loaf rust infection. It was also noted that the roots of heavily infected plants were discolored and stunted. Murphy (1935) stated that crown rust of pats reduced water economy and the ratio of roots to topa. Mains (1930) and Johnston (1931) reported that yield reduction could be chiefly attributed to a reduction in kernel number per head. Peturson and Newton (1939) concluded that reduced kernel weight was the most important component of yield reduction. Greeney <u>et al.</u>, (1941) concluded that kernel weight gives the truest measure of stem rust damage.

MATERIALS AND METHODS

This study utilized sister lines of wheat from a Sinvalocho-Pawnee² x Mediterranean-Hope-Pawnee³ cross made in 1952 (Cross No. X 52V). Resistant and susceptible plants were selected in the F_3 generation in segregating families. Each family represents the progeny of an individual F_2 plant that was heterozygous for leaf rust reaction.

1958 Procedures

Leaf Rust. In 1958 there were 323 lines from 29 families grown at the Ashland agronomy farm. A composite of leaf rust races was inoculated into spreader rows. Readings of rust percentages were made according to a modified Cobb scale by Peterson <u>et al.</u>, (1948). At harvest time four

MADE IN CERS

heads were picked randomly from each row, tagged, and boxed for kernel counts to be made later. The rows were harvested individually. Relative test weights and 100-kernel weights were determined from this grain.

Only data from families with both resistant and susceptible lines were used in making kernel weight, test weight, and kernel count comparisons between resistant and susceptible lines. Segregating lines were discarded.

The heads used for kernel counts were threshed by hand. The procedure consisted of rolling the heads inside a piece of flexible rubber hose, then blowing the chaff away from the grain in a small pan. The test weights were taken by measuring out samples of grain in a small cylinder and weighing them. The cylinder used was approximately 2.3 gm. in diameter and 7.1 cm. in height. In calculating 100-kernel weights, kernels were counted by hand and weighed to the nearest 0.01 of a gram.

When the kernel weight, test weight and kernel count data were collected, analyses of variance to test the effects of resistance removing the variation due to families were planned. Accordingly data were collected from the non-segregating rows within families which contained both resistant and susceptible lines. The sub-class numbers were so uneven that the planned F-test was unusable. Analyses of variance were run on these data testing the test weight and kernel weight differences due to family variation among resistant and among susceptible lines. Concerning the same rows, nested analyses of variance were used to test the significance of both family and lines within families variation on the number of kernels per head.

Since the data were not statistically suited to making group comparisons between resistant and susceptible lines within families, t-tests were used to evaluate differences between resistant and susceptible pair members within families. According to the 1958 rust readings, the resistant member of a leaf rust pair represented the highest level of leaf rust resistance present in a family and the susceptible member the lowest. In cases where there were more than one high or low rust reading per family, the lines analyzed were chosen randomly.

Stem Rust. The same 323 lines which were grown at Ashland in 1958 were also planted in the stem rust nursery on the Kansas State University agronomy farm at Manhattan. The rows were artificially infected with race 56 of stem rust. Plants in spreader rows between ranges were inoculated using a hypodermic needle to insert mores under the leaf sheaths. Stem rust readings were taken and the rows were harvested in the rows in the leaf rust nursery. Five heads were randomly picked from each row for kernel number determination. As in the leaf rust trial, only data from families having both resistant and susceptible lines were used. Since there seemed to be only a slight difference between the 30 and 40 percent stem rust readings, rows with the 40 percent readings as well as those segregating for stem rust reaction were discarded. Kernel number per head and 100-kernel weight determination followed the same procedure used in the leaf rust trial. Because more grain was available, cylinder, 2.3 cm. in diameter and 14.2 cm. high, was used for test weight determinations.

Test weights were determined from all the rows in the stem rust nursery. Stem rust percentages were correlated with test weights.

As in the leaf rust trial, the effects of family differences upon test weight and kernel weight were tested with analyses of variance. Again kernel count variations due to both family and lines within families were tested.

Stem rust data also were not suited to evaluating resistant-susceptible lines and removing family differences with analyses of variance. Resistant-susceptible test weight, kernel weight and kernel count differences were analyzed with t-tests as in the leaf rust trial. Paired comparisons were made between the most resistant and the most susceptible rows within families. Stem rust pairs were taken from families in which at least 30 percentage points difference occurred between resistant and susceptible lines.

1959 Procedures

In the fall of 1958, four experiments were planted at three locations --- one on the Hutchinson experiment field, one on the Ashland agronomy farm, and two on the university agronomy farm at Manhattan. Each experiment was composed of two parts, paired single rows and paired, thrice-replicated, four row plots. The paired single rows were planted side by side and the paired plots were planted end to end. The rows were eight feet long.

Seed for the single rows was taken from the study grown at Ashland. Both stem rust and leaf rust pairs were chosen by selecting one resistant and one susceptible line from each family, referring to rust readings

made in 1957 and 1958. Resistant lines with the lowest rust readings were used. An attempt was made to equal the stem rust reactions within leaf rust pairs and the leaf rust readings within stem rust pairs. Pairs were selected only from those families that had both resistant and susceptible lines.

There were 72 paired single rows planted in each experiment in the 1959 trials. Of these 16 pairs were planted to show different leaf rust reactions, 14 were planted to show different stem rust reactions and the members of the remaining 6 pairs differed in both stem rust and leaf rust reactions in 1958.

Seed for the replicated plots was obtained from increase plots of part of the lines grown in the 1958 rust effect study. Corresponding rust readings were referred to in making the selections. Pairs were picked within families as they were for the single row trials. There were no distinct stem rust pairs in the increase plots, therefore only leaf rust pairs were tested in the replicated plots.

The study was planned to give four different rust-host relationships. At Hutchinson the experiment was subjected to a natural rust infection. A composite of leaf rust races was inoculated into spreader rows at Ashland to insure heavy leaf rust infection. Stem rust was inoculated into spreader rows in the stem rust nursery at Manhattan. In the second experiment at Manhattan sulfur was used to minimize rust infection. The sulfur treatment was comprised of fifteen applications, each of approximately sixty pounds of commercial dusting sulfur per acre. Dusting was begun just before jointing stage (May 23) and was continued until kernels were formed. Intervals between dustings varied from one to four days depending upon weather conditions.

Field notes were taken on the date of half bloom and height at maturity at both experiments at Manhattan. Leaf rust readings were taken on all four experiments following a modified Cobb scale (Peterson et al., (1948)). In the stem rust nursery, stem rust readings were made at the telia stage of rust development.

The yields for both the paired single rows and the inner rows of the four row plots were weighed in grams. The single row yields, in grams, may be converted to bushels per acre by multiplying by 0.2 and the plot yields by multiplying by 0.1. Relative test weights were taken using a glass, flat-bottomed tube, 9.4 cm. high and 2.2 cm. in diameter, as a standard measure. The weights were taken in grams. The 500-kernel counts were taken with a mechanical counting device and were weighed to the nearest 0.01 of a gram.

Leaf Rust Evaluation. Yields, test weights, and 500-kernel weights were determined for the leaf rust pairs at all experiments. The pairs used contained clear-cut differences between the resistant and the susceptible members. Paired rows were discarded if one member was segregating for leaf rust reaction. Yield, test weight, and kernel weight differences between resistant and susceptible paired rows were statistically analyzed using one-tailed t-tests. There were 16 leaf rust pairs used at Hutchinson and 17 at the other experiments.

One pair of entries in the replicated yield trials were discarded because its members were both susceptible. The resistant member of another pair contained a few susceptible plants but that pair was retained. Thus data from five pairs of sister lines were subjected to split plot analysis of variance to determine if leaf rust reaction significantly affected yield, test weight and kernel weight in each of the four experiments.

<u>Stem Rust Evaluation</u>. Stem rust was found only in the stem rust nursery experiment. Yield, test weight and kernel weight differences between stem rust resistant and susceptible members of 14 single-row pairs in the stem rust nursery were analyzed with one-tailed t-tests. The 1959 rust readings were consulted in picking the pairs to be analyzed. Pairs were chosen with a minimum of 20 percentage points between members.

EXPERIMENTAL RESULTS

The bulk of the data collected in the 1958 and 1959 rust effect studies makes it advisable to present most of the data in tabular form in an appendix. Accordingly, this section of the thesis is limited to a summarisation of various trial results with references to the proper tables in the appendix.

1958 Results

Leaf Rust. In the 1958 trials, leaf rust readings were made in the leaf rust nursery at Ashland. Leaf rust infection resulted in rust percentage readings of 80 to 90 percent for the susceptible rows. Trace amounts of leaf rust were found on the resistant rows. These data are recorded in Table 1 in the appendix. Although leaf rust built up heavy levels of infection at Ashland it was late in getting established.

Test weight, kernel weight and kernel count data from the 1958 non-segregating rows which were from families showing both leaf rust resistance and susceptibility are presented in Table 3 in the appendix. From each of those families, two rows were picked out to represent the highest and lowest levels of resistance among sister lines. Test weight,

kernel weight and kernel number per head differences between pairs were tested with one-tailed t-tests. Appendix Table 5 contains the data tested. It was found that test weight and kernel weight differences between leaf rust pair members were significant to the .05 level. Leaf rust did not significantly affect the number of kernels per head in the 1958 trial.

Analysis of variance indicated there were highly significant kernel number and test weight differences between families among both leaf rust resistant and leaf rust susceptible rows grown at Ashland in 1958. The families source of kernel weight variation was statistically significant among the resistant rows but not among the susceptible rows. Kernel number was significantly influenced by lines within families among both resistant and susceptible lines.

Stem Rust. Inoculation gave good stem rust infection at Manhattan in 1958. Stem rust readings ranged from trace to 30 percent for the resistant rows and from 40 to 60 percent for the susceptible rows. The stem rust percentages are listed in Table 1 of the appendix.

Test weights of the grain produced by 320 rows in the stem rust nursery in 1958 were correlated with the stem rust percentage reading of those rows. A correlation coefficient of -.6446 was found. It is significant to the .001 level. The test weights are included in Table 2 of the appendix.

Test weight, kernel weight and kernel count data from families having both resistant and susceptible rows are shown in Table 4 in the appendix. Susceptible rows with 40 percent rust readings were not included.

As in the leaf rust trial, stem rust pairs were picked from families to represent the highest and lowest resistance levels present. One-tailed t-tests evaluated test weight, kernel weight and kernel number differences between pair members. The data used are shown in Table 6 in the appendix. Test weight and kernel weight differences between stem rust resistant and susceptible pair members were both significant to the .001 level. The number of kernels per head was not eignificantly influenced by stem rust infection.

At the Manhattan stem rust nursery family kernel weight variation was significant among both resistant and susceptible rows. Families had a significant effect upon test weight among the resistant rows but not among the susceptible rows. Family kernel number differences were not significant among either the resistant or susceptible rows, but the lines within families differences were significant among both.

1959 Results

Leaf Rust. In 1959 leaf rust readings were made at all the experiments of this study. These data are presented in Tables 7 and 9 in the appendix. In general, leaf rust infection was heaviest at Ashland, somewhat lighter at the stem rust nursery, much lighter at Hutchinson, and was reduced by sulfur in the treated experiment to the lowest level. The leaf rust developed earlier in the experiments that had the higher levels of infection; therefore, the amount of the rust at the different experiments varied more than percentage values indicate.

The leaf rust percentage data was examined and pairs were checked. It was found that of 22 pairs of single rows planted to show a difference between leaf rust resistance and susceptibility, 17 pairs showed clear-cut differences with neither row segregating. The readings at the different experiments were not conflicting except for one row at Hutchinson. A check with the planting list showed that another seed source had been used for that row. As a consequence the row was discarded so that there were only 16 paired single row comparisons made at Hutchinson. In the replicated plots 5 pairs were divided on haf rust resistance. The readings at the different experiments supported each other.

Height and maturity data for the leaf rust pairs are recorded in Tables 11 and 12 in the appendix. Leaf rust had no appreciable effect upon height and date of half bloom.

Lodging did not occur in any rows at any of the experiments.

As stated in the introduction, the chief objective of this study was to evaluate the effect of genetic resistance by comparing resistant with susceptible lines. Such comparisons were made using yield, test weight and kernel weight data concerning leaf rust reaction. Two general observations were made: when the inoculum provided for early, heavy infection, grain production was somewhat higher in the leaf rust resistant as compared to the susceptible rows. A significant difference in kernel weight and in test weight was detected within pairs even when yield differences were not significant.

Table 1 gives a condensation of the results expressed as percentage ratios of leaf rust resistant lines compared with susceptible lines.

	.						
Experiment :	Trial	: Tie	ld	Test	Weight	: Kernel	weight
		% R/S -	t or F	% R/S	- torF	% R/S .	- tor F
Manhattan-SRN							
	Single rows Replicated plots	108 127	n.s. 	102		110	***
Manhattan-							
	Single rows Replicated plots	112 98	* n.s.	100 99	n.s.	101 98	n.s. ***
Ashland-LRN		19.1		HUL?	1		_
	Single rows Replicated plots	117 105	n.s.	102	n.s.	116	
Hutchinson	WTO TE !!						
	Single rows Replicated plots	95 106	n.s. n.s.	100 99	n.s. *	103 102	n.s.

Whether the difference is significant is also indicated.

Table 1. Yield, test weight, and kernel weight R/S ratios and levels of significance of the differences from the 1959 leaf rust effect study.

The resistance x family interactions were tested in the split plot trials in 1959. This interaction had significant effects upon kernel weight at all experiments. Its effect upon yield was significant at Ashland and test weight was significantly influenced at both Manhattan experiments.

Detailed yield, test weight and kernel weight data are presented in the appendix. Tables 13 through 16 give the yields, test weights, and 500-kernel weights of the paired single rows at each of the four experiments. The yields, test weights, and kernel weights of the replicated plots are recorded in separate tables. Tables 17, 18 and 19 contain yield, test weight and kernel weight data, respectively, from the Manhattan, stem rust nursery. In a like manner Tables 20, 21 and 22 contain data from the sulfur treated experiment. Tables 23, 24 and 25 list the Hutchinson results and the Ashland replicated plot results are shown in Tables 26, 27 and 28.

Stem Rust. Although stem rust infection occurred too late in the season to cause great damage, stem rust readings were taken and 14 stem rust pairs were studied at the stem rust nursery at Manhattan. The rust readings are listed in Table 29 in the appendix. Stem rust did not occur at the other experiments.

Yields, test weights, and kernel weights of lightly infected rows were compared with those of more heavily infected rows. Resistant plants showed a 2.8 percent yield advantage. The average test weight was 1.2 percent higher for resistant rows than for susceptible rows. The average kernel weight was 5.2 percent higher from the resistant rows than from the susceptible rows. The data were analyzed with t-tests and resistant-susceptible differences were found to be significant for kernel weight and test weight but not for yield.

Single-row yields, test weights, and kernel weights of the 1959 stem rust pairs are listed in Table 29 in the appendix.

DISCUSSION AND CONCLUSIONS

For purposes of discussion the 1958 and 1959 data will be handled separately. The trials during both years are preliminary. Ideally, yield results are the best criteria for evaluating wheat disease damage; however, when yield results are scanty or unobtainable, the study of disease effects upon components of yield gives useful information.

The use of t-tests showed test weight and kernel weight to be significantly different between lines highly resistant and susceptible to both leaf rust and stem rust. The number of kernels per head was not significantly affected by either rust. These results are in disagreement with the findings of Johnston (1931) and Mains (1927) who found that a reduction in kernel number was the chief component of leaf rust yield reduction. However, Peturson's and Newton's statement (1939) that kernel number per head is dependent upon the stage of host development at the time of leaf rust infection offers an explanation. Leaf rust infection was later than usual in getting established in 1958.

The significance of the family sources of variation in test weight and kernel weight among leaf rust and stem rust resistant and/or susceptible lines indicate that other factors besides resistance levels differ from family to family and affect those components of yield. The significance of the lines within families source of variation among both leaf rust resistant and susceptible rows gives indication that the lines are not as nearly iso-genic as would be desirable.

The 1959 results concerning stem rust showed that a light, late infection reduced test weight and kernel weight slightly but had no measurable effect on yield.

The 1959 leaf rust results showed that leaf rust resistance was accompanied by increases in test weight and kernel weight in the presence of a moderate to heavy leaf rust infection. Since neither test weights nor kernel weights were higher for resistant than for susceptible lines under sulfur treatment, it may be assumed that the increases were functions of leaf rust reactions and not some genetically linked but unrelated phenomenon. It was noted that test weight and kernel weight differences between resistant and susceptible lines were greater at the experiments where rust infection was higher. The effect of leaf rust on kernel weight was greater than its effect on test weight. Yield data were inconclusive. At Ashland, differences between resistant and susceptible yields and test weights were not found in the replicated plots. On the other hand these differences at the Manhattan stem rust nursery were highly significant. The results may be partially explained by the soil variation at Ashland. Although the variance between replications was removed in analyzing the effect of resistance in the split plot design, the replications extremely high F value was indicative of a large amount of soil variation. Uneven water supply may have provided additional variation in the Ashland plots. Ranges were laid out parallel to the irrigation sprinkler pipes. The second range yielded 13 percent more than the first. Variation between ranges. An unnamed head blight was also present and could have caused additional variation although the mirs appeared to be equally infected.

Concerning the single row trials it was realized that the yield results would be subject to some error because the rows were in direct competition with each other. The significant difference in yield between the resistant and susceptible rows and the Manhattan sulfur treated block may be questioned. It was the only trial in which leaf rust affected yield and not kernel weight or test weight. Furthermore, it is strange that leaf rust would affect yield in the trial in which the leaf rust level was by far the lowest in any trial and not in trials with higher infection levels. As a consequence the author feels that all the single row yield data must be viewed with utmost skepticism.

Both years' data provide evidence that test weights and kernel weights increase with both leaf rust and stem rust resistance. The 1959 yield data were inconclusive but indicated that a leaf rust resistantsusceptible yield difference could be detected using this method of disease evaluation. For usable yield results larger tests are needed and soil and/or water variation such as was present at Ashland should be avoided.

SUMMARY

In this study leaf rust and stem rust damage was evaluated by comparing resistant and susceptible sister lines of wheat. This method of disease evaluation gives a direct measurement of the benefit derived from rust resistance.

In 1958, test weight, kernel weight, and kernel count data from sister line pairs differing in leaf rust and stem rust reactions showed that there were significant differences between sister pairs for that weight and kernel weight. No rust influence upon kernel number was detected. Analysis of variance of the data from both resistant and susceptible rows at both the leaf rust and the stem rust nurseries showed that families significantly influenced test weight and kernel weight differences among lines. Lines within families were found to significantly influence kernel count variation among heads. A correlation between stem rust infection percentage and test weight in the 1958 stem rust nursery trial produced a correlation coefficient of -.6446 which was significant to the .001 level.

In 1959, infection levels, yields, and rust effects varied between locations. Leaf rust had highly significant effects upon yield, test weight, and kernel weight in the stem rust nursery split plot trial at Manhattan, In the single row trials at that location test weight and kernel weight differences were significant but yield differences were not. At Ashland in the single row comparisons leaf rust resistant and susceptible differences were statistically significant for yield, test weight and kernel weight. In the replicated plot trial only kernel weight differences were significant.

At Hutchinson the only statistically detected effect of leaf rust was upon kernel weight in the replicated plot trial.

Under sulfur treatment a significant difference in yield was detected between resistant and susceptible yields in the paired single rows. Other differences were not detected.

In paired single row comparisons in the stem rust nursery in 1958, test weights and kernel weights were significantly affected by stem rust but yields were not.

It was concluded that this approach to disease evaluation needs further study. Test weight and kernel weight were shown to be influenced by both leaf rust and stem rust reaction. Yield data were inconclusive but showed that significant differences could be detected between resistant and susceptible sister lines.

ACKNOWLEDGMENT

The author wishes to acknowledge sincere appreciation to Dr. E. G. Heyne for the planning of the experiment, his supervision and assistance during the study, and for his guidance in the preparation of this thesis. Thanks are also due to Dr. H. C. Fryer, Mr. C. O. Johnston and Mr. L. E. Browder for technical assistance and advice throughout this study and to Dr. L. C. Hulbert for editing this thesis.

Bailey, D. L. and F. J. Greaney. Dusting with sulfur for the control of leaf rust and stem rust of wheat in Manitoba. Sci. Agr. 8:409-432. March. 1928. Caldwell, R. M., H. R. Kraybill, J. T. Sullivan, and L. E. Compton. Effect of leaf rust (Puccinia triticina) on yield, physical characters and composition of winter wheats. Jour. Agr. Res. 48:1049-1071, 1934. Chester. K. Starr. The nature and prevention of the cereal rusts as exemplified in the leaf rust of wheat. Chronica Botanica Company, Waltham, Mass. 1946. Goulden, C. H., and F. J. Greaney. The relation between stem rust infection and yield of wheat. Sci. Agr. 10:405-410. 1930. Greaney, F. J. Studies on the toxicity and fungicidal efficiency of sulfur dusts in the culture of some cereal rusts. Sci. Agr. 8:316-331. 1928. Greancy, F. J., J. C. Woodward, and A. G. O. Whiteside. The effect of stem rust on the yield, quality, and chemical composition of Marquis wheat. Sci. Agr. 22:1. September. 1941. Hayes, H. K., O. S. Aamodt and F. J. Stevenson. Correlation between yielding ability and the reaction to certain diseases and other characters of spring and winter wheats in rod row trials. Jour. Amer. Soc. Agron. 19:896-910. 1927. Johnston, C. O. Effect of leaf rust on yield of certain varieties of wheat. Jour. Amer. Soc. Agron. 23:1-12. January, 1931. Johnston, C. O., and E. C. Miller. Relation of leaf-rust infection to yield, growth and water economy of two varieties of wheat. Jour. Agr. Res. 49:955-981. December. 1934. Kightlinger. C. V. Preliminary studies on the control of cereal rusts by dusting. Phytopathology 15:611-613. 1925. Kightlinger, C. V., and H. H. Whetzel. Second report on dusting for cereal rust. Phytopathology 16:64. 1926. (Abst.)

Lambert, E. B., and E. C. Stakman. Sulfur dusting for the prevention of stem rust of wheat. Phytopathology 19:631-643. 1929. Levine, M. N., and W. F. Geddes. Effect of leaf and stem rust on productivity, desiccation rate, and kernel weight of spring wheat at successive stages of development. Cereal Chemistry 34:410-421. November, 1957. Mains. E. B. The effect of leaf rust (Puccinia triticina) on seed production of wheat. Phytopathology 17:40, 1927. (Abst.) Mains. E. B. Effect of leaf rust (Puccinia triticina Eriks) on yield of wheat. Jour. Agr. Res. 40:417-446. March. 1930. Martinex, Enrique J. Estimacion de los danos causados por las royas de los cereales. Rev. Inv. Agr. 5:465-482. Octubre, 1951. Murphy. H. C. Effect of crown rust infection on yield and water requirement of oats. Jour. Agr. Res. 50:387-411. March. 1935. Murphy, H. C., L. C. Burnett, C. H. Kingsolver, T. R. Stanton, and F. A. Coffman. Relation of crown rust infection to yield, test weight, and lodging of oats. Phytopathology 30:808-819. 1940. Newton, Margaret, B. Peturson, and W. O. S. Meredith. The effect of leaf rust of barley on the yield and quality of barley varieties. Canad. Jour. Res. (C) 23:212-218. 1945. Peterson, R. F., A. B. Campbell and A. E. Hannah. A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Canad. Jour. Res. (C) 26:496-500. October, 1948. Peturson, B., and Margaret Newton. The effect of leaf rust on the yield and quality of Thatcher and Renown wheat in 1938. Canad. Jour. Res. (C) 17:380-387. 1939. Peturson, B., Margaret Newton, and A. G. O. Whiteside. Effect of leaf rust on yield and quality of wheat. Canad. Jour. Res. (C) 23:105-114. 1945. Peturson, B., Margaret Newton, and A. G. O. Whiteside. Further studies on the effect of leaf rust on yield, grade, and quality of wheat. Canad. Jour. Res. (C) 26:65-70. 1948. Phipps, I. F. The effect of leaf rust on yield and baking quality of wheat. Jour. Australian Inst. Agr. Sci. 4 No. 3:148-151. 1938.

Snedecor, G. W.

Statistical methods. 5% Ed. Iowa State College Press, Ames, Iowa. P. 45. - P. 366. 1956.

Weiss, Freeman.

The effect of rust infection upon the water requirement of wheat. Jour. Agr. Res. 27:107-118. January, 1924.

APPENDIX

	:	: Leaf	:	Stem	:		:	-	: Leaf	:	Stem
Entry	: Family	: rust	:	rust	:	Entry	:	Family	: rust	:	rust
No.	No.	55		%		NO.		NO.	70		70
607	10207	90		-		641		10297	T-90		10
602	10295	00		60		642			TP		10
602		90		20		643			- TP		5
604		90		SAP		644			T		10
605		90		Sac		645			90		10
605				40		646			90		15
600		00		20		647			m		10
609		00		50		648			00		10
000	accel	90		16		640			50		20
609	10294	1-90		19		650			m		20
910		T		20		0,0			T		20
611		80		30		651			T		20
612		T		30		652			T		20
613		T-5		30		653			T		30
614		80		40		654			T		30
615		90		30		655		10298	T-90		30
616		T		30		656			T-80		40
617		T		5		657			т		50
618		T		30		658			Т		40
619	10295	T-90		50		659			T		30
620		T		30		660			T		20
621		T		15		661			90		50
622		T-80		30		662			T		30
623		T		10		663			90		40
624		T-80		30		664			T		30
625		80		20		665		10299	90		40
626		T		15		666			T		40
627		90		30		667			90		50
628		T-90		30		668			T		40
620	10206	90		40		669			90		40
630	10290	90		40		670			T		40
631		T-90		40		671			90		60
632		T-90		40		672			90		50
633		T-80		30		673			T		40
634		T-80		15		674			90		40
635		90		30		675			90		50
636		90		30		676			7-00		30
637		T-80		40		677			10		40
678		T-80		40		678		10300	80		20
630		7-80		40		679		20,00	90		30
640		90		30		680			90		40

Table 1. Leaf rust percentage readings taken at Ashland and stem rust percentage readings taken at Manhattan on the rust effect study on wheat in 1958.

-		-	
	e		

Table 1. (Continued)

	:		:	Leaf	:	Stem	:		:		:	Leaf	:	Stem
Entry	1	Family	:	rust	:	rust	2	Entry	1	Family	\$	rust	:	rust
No.		No.		%		%		No.		No.		%		%
681		10300		90		30		721		10305		T		30
682				90		30		722				T		40
683				00		30		723				T		40
684				or		40		724				T		30
685		10301		-		50		725				T		30
696		40,04		-		40		726				T		20
687				-		40		727				T		30
6007				-		30		728		10206		-		20
600				T		40		720		10,000		00		30
609				T		40		750				-		30
090				T		10		150						70
691				T		40		733				90		20
692				T		50		732				T		20
693		10302		T		30		733				90		20
694				90		40		734				80		30
695				90		40		735				T		20
696				T		40		736		10307		T		20
697				90		30		737				80		40
698				T		40		738				80		30
699				T-90		30		739				T		30
700				90		30		740				T		30
701		10303		90		30		741				T- 30		30
702				90		30		742				90		40
703				90		30		743				80		50
704				90		30		744				T-80		40
705				T-90		30		745				T		30
706				T-90		40		746				90		40
707				T-90		40		747				T		40
708				90		40		748		10308		T		30
709		10304		TP		40		749		-		T		40
710				T		50		750				т		40
711				T		50		751				T		20
712				T		40		752				T		30
713				T		30		753				T		15
714				T		36		754				T		15
715				T		30		755				T		20
716				T		40		756				T		30
717				T		40		757		10309		T		30
718		10305		T		40		758				T		20
719				T		40		759				T		30
720				-		30		760				T		30

Table 1. (Continued)

Fatar	:	Family	: Leaf	:	Stem	: . Future	:	Fandle	1	Leaf	:	Stem
NO	-	No	: rust	•	rust	NO		No		rust	:	rust
			~		~					~		~
761		10309	T		30	801		10312		Т		40
762			90		30	802				80		30
763			T		20	803				T		30
764			т		30	804		10313		T		20
765			т		15	805				T		20
766			T		15	806				90		30
767		-	T		20	807				T		40
768		10310	T-80		20	808				T		40
769			90		20	809				90		50
770			T		20	810				T		40
771			T		15	811				T		30
772			80		15	812				т-80		20
773			90		20	813				80		30
774			T		30	814				T		30
775			T-80		30	815				T		30
776			T		30	816		10314		90		30
777			T		20	817				T-80		20
778			90		20	818				80		20
779		10777	T-90		40	819				T		20
780		10,11	T		50	820				T		20
781			T		50	821				80		30
782			T		50	822				1-80		40
783			т		50	823				T		20
784			T		40	824				T-80		30
785			T		40	825				80		30
786			T-60		40	826				80		30
787			T		30	827		10315		80		15
788			T		60	828				90		15
789			T		50	829				90		30
790			T		50	830				90		30
791			T		40	831				90		20
792		-	T		40	832				80		20
793		10312	90		30	833				90		30
794			90		30	834				80		30
795			90		40	835				80		20
796			90		30	836				80		20
797			90		30	837				80		30
798			90		30	838				80		20
799			90		40	839		-		80		20
800			90		40	840		10316		70		20

Table 1. (Continued)

Patar	1 . Paullar	: Leaf	:	Stem	:	Fature	:	Family	:	Leaf	:	Stem
No.	No.	· 1.436	· ·	%		No.		No.		%	-	%
843	10316	т				881		10319		T		30
842		T				882				T		30
843		T-80				883				80		40
844		T-80				884				T		20
845		7-90				885				T		30
846		- m				886				90		40
847		T				887				T		30
848	10317	80				888		10320		T-90		40
840	20/21	7-90				889				T		30
850		90				890				90		40
851		T				891				T		40
852		T-80				892				90		60
853		T				893				T		50
854		T				894				T		40
855		90				895				90		50
856		T-80				896				90		40
857		90				897				90		40
858		90				898				T		30
859		90				899		7		T		30
860		T				900		10321		T-80		20
861		90				901				T		30
862	10318	T				902				T		40
863		T-80				903				T		30
864		90				904				T-80		30
865		T-80				905				T		30
866		T				906				T		30
867		T				907				T-80		30
868		90				908				T-80		30
869		T-80				909				90		20
870		T				910				T		30
871		T-90				911				90		20
872		90				912		10322		T		20
873		T				913				T		20
874	10319	T				914				T		30
875		T-5				915				T		20
876		T				916				T		20
877		T-87				917				T		20
878		80				918				T		30
879		т				919				T		20
880		T				920				T		30
						921				T		30
						922				T		20
						923				T		20

	1 1		1 1	The Asses M.	2-
Entry No.	: T.W. :	Entry No.	: T.W. :	Entry No.	: T.W.
601	22.1	641	22.6	681	22.8
602	19.0	642	23.0	682	20.0
603	22.7	643	23.1	683	23.5
604	19.6	644	23.4	684	22.0
605	20.3	645	21.5	685	18.8
606	22.0	646	22.9	686	22.5
607	21.8	647	22.6	687	23.8
608	21.5	648	22.4	688	20.4
609	22.8	649	22.8	689	19.9
610	22.1	650	23.4	690	21.1
611	21.0	651	22.6	691	19.9
612	22.5	652	24.0	692	19.4
613	21.5	653	22.4	693	21.5
614	19.7	654	23.6	694	21.4
615	21.0	655	23.5	695	20.0
616	22.6	656	19.8	696	20.6
617	23.1	657	20.3	697	20.6
618	22.2	658	23.0	698	20.3
619	22.1	059	2301	699	23.01
620	22.02	660	23.4	700	21.4
621	22.0	661	19.5	701	21.6
622	22.2	662	23.0	702	20.7
623	21.7	663	20.9	703	20.9
624	21.9	664	23.0	704	21.2
625	22.4	665	18.6	705	21.6
626	22.5	666	21.5	706	21.5
627	22.02	667	missing	707	20.7
620	21.0	666	21.9	708	22.0
629	21.02	609	20.4	709	20 1
050	19.0	670	22.0	710	10.4
631	21.2	671	18.0	711	18.0
032	20.9	672	17.0	712	18.7
033	22.4	673	22.2	713	20.6
654	23.5	674	22.0	714	21.8
035	19.4	675	18.8	715	21.2
630	20.0	076	20.6	716	22.0
670	20.2	677	21.7	717	17.9
670	23.0	078	23.3	718	20.5
640	19.2	690	23.0	719	20.4
040	20.2	000	20.0	720	21.1

Table 2. Relative test weights of single rows grown in the stem rust nursery rust effect study in 1953.

Entry No. I T.W. I Entry No. I T.W. 722 18,9 762 20,6 802 21,6 807 22.0 727 725 23,0 766 23,0 806 22.0 727 728 23,4 768 22.0 808 19.0 721 730 24.0 770 22.4 811 22.9 721 733 23.0 771 23.4 812 22.1 733 23.0 777 723 23.4 812 22.1 733 23.0 777 23.4 812 22.1 735		1		:	-	3		:	The Asses M-	1	m 1.7
72120.376123.780121.872218.976220.680221.672320.276523.180522.072423.976420.880422.272523.076521.880522.072624.076623.080622.072723.376721.580722.072823.476822.080819.072922.776922.780922.173024.077023.481222.873323.077323.681122.973422.877423.981422.173522.077522.981521.873622.277621.281622.073720.977723.181723.073822.277822.681823.073922.177921.782022.974022.778019.782022.974218.478219.682222.074421.978118.282.623.374022.778019.782022.974218.478219.682222.074318.078319.082323.374421.978118.285023.3744	Entry No.	: 1	•We	:	Entry No	. :	Y.W.	1	Entry NO.		Towa
72218.976220.680221.672320.276523.180322.072423.976420.880422.272523.076521.380522.972624.076623.080622.072723.376721.580722.972823.476822.080819.072922.776922.780922.173024.077023.481122.973223.777223.481222.973523.077723.481222.973522.077723.481222.173622.977723.481222.173720.977723.481222.073622.277621.281622.073720.977723.481222.073822.277822.6681823.073922.177921.781923.874022.778019.782022.974121.978118.222.074518.776723.582723.174619.076519.482022.374522.176522.083423.374522.176619.482621.774619.0 <td< td=""><td>721</td><td>2</td><td>0.3</td><td></td><td>761</td><td></td><td>23.7</td><td></td><td>801</td><td></td><td>21.8</td></td<>	721	2	0.3		761		23.7		801		21.8
723 20.2 763 23.1 803 22.0 724 23.9 764 20.8 804 22.2 725 23.0 765 21.8 805 22.9 726 24.0 765 21.8 806 22.9 726 24.0 766 23.0 806 22.0 728 23.5 767 21.5 807 22.0 729 22.7 769 22.7 809 22.1 730 24.0 770 22.4 810 19.1 733 23.0 771 23.4 812 22.8 774 22.7 772 23.4 812 22.6 735 22.0 775 22.9 814 22.1 735 22.6 776 21.2 816 22.0 738 22.2 777 22.9 814 22.1 738 726 22.2 777 22.5	722	1	8.9		762		20.6		802		21.6
724 23.9 764 20.8 804 22.2 725 23.0 765 21.8 805 22.9 726 24.0 766 23.0 806 22.0 727 23.3 767 21.5 807 22.0 729 22.7 769 22.7 809 22.1 730 24.0 770 22.4 810 19.0 730 24.0 770 22.4 810 19.0 731 23.0 811 22.9 773 23.6 813 21.2 733 23.0 775 23.9 814 22.1 8737 734 22.8 774 23.9 815 21.8 774 23.9 815 22.1 735 22.6 776 21.2 815 22.1 876 22.1 876 22.1 876 22.1 876 22.1 876 22.1 876 22.1	723	2	0.2		763		23.1		803		22.0
725 23.0 765 21.8 805 22.9 726 24.0 766 23.0 806 22.0 727 25.5 767 21.5 807 22.0 728 23.4 768 22.0 808 19.1 730 24.0 770 22.4 810 19.1 730 24.0 770 22.4 810 19.1 731 23.0 771 23.0 811 22.9 732 23.7 772 23.4 812 22.7 733 22.0 777 23.4 812 22.9 735 22.0 777 23.4 812 22.1 735 22.0 775 22.9 814 22.1 735 22.6 776 21.2 816 22.0 737 20.9 777 23.1 817 23.0 738 22.2 778 22.6 818 23.0 739 22.1 779 21.7 819 23.8 740 22.7 780 19.7 820 22.9 741 21.9 781 18.2 821 22.0 744 21.0 784 20.0 825 23.6 744 21.0 786 22.0 825 21.7 744 21.0 786 22.0 825 21.7 744 787 23.5 827 23.1 745 22.1 <td< td=""><td>724</td><td>2</td><td>3.9</td><td></td><td>764</td><td></td><td>20.8</td><td></td><td>804</td><td></td><td>22.2</td></td<>	724	2	3.9		764		20.8		804		22.2
726 24_{00} 766 23_{00} 806 22_{00} 727 23_{15} 767 21_{15} 807 22_{10} 728 23_{14} 768 22_{20} 808 19_{10} 729 22_{17} 769 22_{17} 809 22_{11} 730 24_{10} 770 22_{14} 810 19_{11} 731 23_{10} 771 23_{10} 811 22_{19} 732 23_{17} 772 23_{14} 812 22_{18} 735 23_{10} 777 23_{16} 813 21_{15} 735 22_{10} 775 22_{19} 815 21_{16} 736 22_{10} 775 22_{19} 815 21_{16} 736 22_{20} 776 21_{12} 813 21_{16} 736 22_{21} 776 21_{12} 813 21_{16} 737 20_{19} 777 23_{11} 817 23_{10} 738 22_{22} 778 22_{16} 818 23_{10} 740 22_{27} 781 18_{12} 821 22_{20} 744 21_{10} 781 18_{12} 821 22_{20} 744 21_{10} 784 20_{10} 825 23_{17} 746 19_{10} 785 19_{10} 825 23_{11} 746 19_{10} 786 19_{14} 826 22_{10} 744 21_{10} 7	725	2	3.0		765		21.8		805		22.9
72723.376721.580722.072823.476822.080819.072922.776922.780922.173024.077022.481019.173123.077123.081122.973223.777223.481222.873323.077323.681321.573422.877423.981422.173522.077522.981521.673622.277621.281622.073720.977723.181723.073822.277822.681823.073922.177921.781923.874022.778019.682222.074121.978118.282122.074512.078420.082423.374522.177522.082222.074218.478219.682222.074421.078420.082423.374522.178522.082521.774619.078619.482623.174823.078821.182822.775022.379920.183122.975521.879518.585523.07542	726	2	4.0		766		23.0		806		22.0
728 72923,4 22,7 730768 22,7 74022,0 22,7 750808 22,1 81019,1731 73223,0 24,0770 77022,4 22,481019,1733 732 732 735 734 735 734 735 22,0771 23,4 22,8 774 22,3,4 22,6 775 22,0 814 812 22,1,5 22,0 814 22,1,5 22,0 735 22,0 736 22,6 737 737 20,9 22,1 738 22,2,2 738 22,2,2 739 22,1 739 22,1 739 22,1 739 22,1 739 741 21,2 22,7 730 22,7 730 741 21,0 744 21,0 744 21,0 745 21,1 81,0 745 22,1 746 22,1 746 22,1 745 22,1 746 22,1 746 22,1 746 22,1 746 22,1 746 22,1 746 22,1 746 22,1 746 22,1 746 22,1 746 22,1 746 22,1 746 22,1 746 22,1 746 22,1 746 22,1 746 22,1 746 22,1 747 747 746 22,1 746 22,1 747 747 747 748 23,0 745 22,1 746 22,0 744 22,0 22,1 22,0 22,2 23,3 23,0 750 22,3 750 22,3 750 22,3 750 22,3 750 22,3 750 22,3 751 23,5 753 22,5 753 22,5 753 22,5 753 22,5 754 22,5 755 21,3 756 21,3 756 22,4 376 22,5 756 22,5 21,5 756 21,3 756 21,3 756 21,3 756 21,3 756 21,3 756 21,3 756 21,3 756 21,3 756 21,3 756 21,3 756 21,3 756 21,3 756 21,3 756 21,3 756 21,3 756 21,3 756 21,4 376 21,5 376 32,5 336 336 336 336 336 336 336 336 	727	2	3.3		767		21.5		807		22.0
729 73022.7 24.0769 77022.4 22.4809 81122.1 121731 73223.0 23.0771 23.0 23.423.0 811 81222.8 22.8733 734 735 23.623.0 23.7 777 23.1 755 22.9 776 22.4814 22.1 815 22.1 815 22.1 815 22.1 815 22.1 777 777 23.1 781 22.7 776 776 21.2 816 22.6 817 737 738 22.2 729 729 729 720.9 738 22.2 7242 729 738 22.2 7242 738 22.1 779 729 740 22.7 720 740 22.7 740 22.7 740 742 18.4 740 22.7 740 742 18.4 742 18.4 742 18.4 742 743 18.0 744 21.0 744 21.0 745 745 22.1 746 746 23.0 746 22.6 744 23.0 745 22.1 22.1 746 747 747 748 23.0 749 22.5 749 22.5 749 22.5 749 22.5 749 22.5 749 22.6 22.6 744 21.0 820 22.6 824 22.0 825 22.1 22.1 746 22.0 825 22.1 22.1 747 747 748 23.0 750 22.3 749 22.5 749 22.5 749 22.5 749 22.6 22.6 832 22.6 833 22.7 833 22.7 23.1 830 23.0 23.6 23.0 23.6 23.1 23.5 22.0 23.3 23.622.7 23.1 23.4 23.2 23.2 23.5 23.2 23.6 23.3 23.6751 752 22.4 754 22.5 753 22.5 754 22.5 754 22.5 755 22.6 21.5 756 22.5 756 22.5 23.6 23.6 24.3 23.6 23.6 24.3 23.6 23.6 24.3 23.6 23.6 24.3 23.6 24.3 23.6 23.6 23.6 24.3 23.6 24.3 23.6 <br< td=""><td>728</td><td>2</td><td>3.4</td><td></td><td>768</td><td></td><td>22.0</td><td></td><td>808</td><td></td><td>19.0</td></br<>	728	2	3.4		768		22.0		808		19.0
730 24.0 770 22.4 810 19.1 731 23.0 771 23.0 811 22.9 732 25.7 772 23.4 812 22.9 735 23.0 777 23.4 812 22.9 734 22.8 774 23.9 814 22.1 735 22.6 775 22.9 814 22.1 735 22.6 776 21.2 816 22.0 737 20.9 777 23.1 817 23.0 738 22.2 778 22.66 818 23.0 739 22.1 779 21.7 819 23.8 740 22.7 780 19.7 820 22.9 741 21.9 781 18.2 821 22.0 745 18.0 785 19.0 823 23.8 744 21.0 784 20.0 824 23.57 745 22.1 785 22.0 825 21.7 745 22.1 787 23.53 827 23.1 748 23.0 788 21.1 828 22.7 744 23.0 786 21.1 828 22.7 745 22.5 799 20.1 831 22.9 755 22.3 790 18.9 830 23.0 751 23.5 791 21.9 835 22.5 755	729	2	2.7		769		22.7		809		22.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	730	2	4.0		770		22.4		810		19.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	731	2	3.0		771		23.0		811		22.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	732	2	3.7		772		23.4		812		22.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	733	2	3.0		773		23.6		813		21.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	734	2	2.8		774		23.9		814		22.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	735	2	2.2		775		22.9		815		21.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	736	2	2.6		776		21.2		816		22.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	737	2	0.9		777		23.1		817		23.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	738	2	2.2		778		22.0		010		23.0
740 22.7 760 19.7 0.20 22.9 741 21.9 781 18.2 821 22.0 742 18.4 762 19.6 822 22.0 743 18.0 783 19.6 822 22.0 744 21.0 783 19.0 823 23.8 744 21.0 784 20.0 824 23.6 745 22.1 785 22.0 825 21.7 746 19.0 786 19.4 826 23.1 747 18.7 787 23.3 827 23.1 748 23.0 788 21.1 828 22.7 749 22.5 789 20.1 829 21.9 750 22.3 791 21.9 831 22.9 752 22.4 792 22.6 835 20.7 754 23.0 794 21.7 834 23.1 755 21.3 795 18.5 855 24.3 757 20.1 797 22.9 837 21.3 758 22.5 798 21.4 836 23.9 759 21.5 799 20.4 839 23.6 757 20.1 797 22.9 837 21.3 759 21.5 799 20.4 8359 23.6 759 21.5 799 20.4 8359 23.6 759	739	4	2.1		779		2007		019		23.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	740	4	207		700		19.7		020		20.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	741	2	1.9		781		18.2		821		22.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	742	1	8.4		782		19.6		822		22:0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	743	1	8.0		783		19.0		823		23.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	744	2	1.0		784		20.0		824		23.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	745	2	2.1		785		22.0		825		21.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	746	1	.9.0		786		19.4		826		23.1
748 23.0 768 21.1 828 22.7 749 22.5 789 20.1 829 21.9 750 22.8 790 18.9 830 23.0 751 23.5 791 21.9 831 22.9 752 22.4 792 22.6 832 22.5 754 23.0 794 21.7 834 23.1 755 21.8 795 18.5 835 24.3 755 21.3 796 20.6 835 24.3 757 20.1 797 22.9 837 21.8 757 20.1 797 22.9 837 21.8 757 20.1 797 22.9 837 21.8 758 21.5 798 21.4 838 23.9 759 21.5 799 20.4 839 23.6	747	1	8.7		787		23.3		827		23.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	748	2	3.0		788		21.1		828		22.7
750 22.3 790 18.9 650 23.0 751 23.5 791 21.9 831 22.9 752 22.4 792 22.6 832 20.7 753 22.5 793 22.0 833 20.7 754 23.0 794 21.7 834 23.1 755 21.8 795 18.5 835 24.2 756 21.3 796 20.6 836 24.3 757 20.1 797 22.9 837 21.8 758 21.5 798 21.4 838 23.9 759 21.5 799 20.4 839 23.6 759 21.5 799 20.4 8359 23.6	749	2	2.5		789		20.1		829		21.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	750	4	2.8		790		18.9		830		23.0
752 22.4 792 22.6 832 22.5 753 22.5 795 22.0 832 22.5 754 23.0 794 21.7 834 23.1 755 21.8 795 18.5 835 24.3 756 21.3 796 20.6 836 24.3 757 20.1 797 22.9 837 21.8 758 22.5 798 21.4 838 23.9 759 20.1 797 22.9 837 21.8 759 21.5 799 20.4 839 23.6 750 21.5 799 20.4 839 23.6	751	2	3.5		791		21.9		831		22.9
753 22.3 793 22.0 833 20.7 754 23.0 794 21.7 834 23.1 755 21.8 795 18.5 835 24.2 756 21.5 796 20.6 836 24.2 757 20.1 797 22.9 837 21.3 758 21.3 798 21.4 838 23.9 759 21.5 799 20.4 839 23.6	752	2	2.4		792		22.6		832		22.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	753	2	2.3		793		22.0		833		20.7
755 21.3 795 18.5 835 24.2 756 21.3 796 20.6 836 24.3 757 20.1 797 22.9 837 21.8 758 22.3 798 21.4 838 23.9 759 21.5 799 20.4 839 23.6	754	2	3.0		794		21.7		834		23.1
756 21.5 796 20.6 836 24.5 757 20.1 797 22.9 837 21.8 758 22.3 798 21.4 838 23.9 759 21.5 799 20.4 839 23.6 750 21.5 799 20.4 839 23.6	755	2	1.8		795		10.5		835		24.2
757 20-1 797 22-9 037 21-6 758 22-3 798 21-4 838 23-9 759 21-5 799 20-4 839 23-6	750	2	1.3		796		20.6		036		24.3
750 22.5 790 21.4 058 25.9 759 21.5 799 20.4 839 23.6 750 21.0 800 20.8 840 23.6	757	4	1.00		797		22.9		037		21.0
759 21.0 799 20.4 039 23.0	750	4	2.02		790		20.4		000		22.9
110	759	4	1.0		199		20.4		840		22.4

Table 2. (Continued)

Table 2. (Continued)

Entry No.	1	T.W.	1	Entry No.	:	T.W.	:	Entry No.	2	T.W.
847		25.0		877		27 7		001		23-8
842		24.8		872		21.2		902		23.9
843		22.5		873		21.7		903		24.3
844		22.0		874		22.5		904		24.0
845		22.1		875		22.0		905		24.5
846		22.5		876		22.6		906		23.6
847		23:9		877		22.5		907		24.1
848		22.8		878		22.2		908		23.4
849		22.4		879		22.0		909		24.0
850		19.0		880		22.9		910		24.5
851		21.2		881		23.4		911		24.1
852		19.5		882		23.0		912		24.0
853		22.8		883		22.7		913		24.3
854		21.5		884		23.9		914		23.9
855		17.7		885		22.8		915		23.9
856		21.09		000		22.9		910		22.0
057		10.5		888		22.0		917		27.1
850		20.00		880		27.1		010		23.0
860		22.6		890		20.9		920		23.6
0.0-				0.00						alta
861		21.4		891		21.0		921		24.0
862		23.9		892		20.4		922		24.0
003		20.2		804		19.0		923		2401
965		22.0		805		20 1				
866		22 7		806		27.7				
867		22:3		897		22.5				
868		22.2		898		23.3				
869		23.4		899		23.0				
870		24.5		900		24.4				

							home lot
Entry	: %	: : Test	veight*	100-ker	nel weight*	: Average : per	head
and the g		R	: S	R	: \$	R	: S
601	90		10.9		2.62		22.5
602	90		11.3		2.88		29.0
603	90		11.2		2.85		33.0
604	90		11.4		2.80		39.8
605	90		11.5		2.54		26.5
606	T	11.1		2.99		2.42	
607	90		11.1		Missing		25.5
608	90		11.5		3.29		26.2
610	7	11.2		3.46		31.0	
611	80		11.2		3.18		35.2
612	T	11.3		3.26		28.5	
613	7-5	11.5		3.32		28.2	
614	80	>	11.0		2.91		24.2
615	90		11.3		3.12		25.8
616		17-4	>	3.26		MS	esing
617		11.2		3.30		24.8	
618		11.4		3.50		29.2	
010		TTOL		1011		-/	
620	-	11.4		3.26		18-0	
621		11.5		3.63		24.5	
622		11.3		3.60		24.2	
625	80	-++	11.0	2000	2.92		27.8
626		11 6	1100	2.40		27.8	-100
627	00		11 2	2046	3.10		24.0
021	90		TT+)		Jero		
642	- m	11.2		3.25		25.0	
643	-	11.3		3.48		28.2	
644	-	11.1		3.56		MS	ssing
645	00		10:6	2020	2.60		23.5
646	90		11 6		2.82		27.0
647	50	11 7	TTeo	7 72	2002	27:0	-100
61.9		11.07	17 7	2022	z oh	6100	28:22
640	90	11 2	77.07	7 22	2004	264	coine
650	T	11.02		2 04		26 0	COOTUR
653	T	11.02		2.20		20.0	
650	T	10.9		2.19		27.0	
200	T	11.5		2.20		22.2	
053	T	11.1		3.23		20.2	
054	T	11.5		3.23		27.0	

Table 3. Relative test weights and 100-kernel weights in grams and average number of kernels per head for rows grown in the leaf rust nursery at Ashland in 1958 which came from families containing both resistant and susceptible lines and were not segregating for leaf rust reaction.

Table 3.	(Continued,)
----------	-------------	---

The Asses	: % :	march as	:	100 1		: Average	e kernels*
Entry	NO. 5 Lokos	Test W	eight":	TOO-Kernel	weight.	pe.	r neau
		д .	2	A .		A	
65	7 19	11.1		3.48		28:-0	
655		11.2		3.72		23.5	
650	0 10	17.4		3.67		20:2	
660		37 4		7 67		25.0	
669	00	TTAA	11:0	2005	7 00	2000	72 0
66.	90	-	TTOO	7 60	2001	270	70.0
663		77.07		2009	7 99	2200	2010
00	90		TT.O		2021		29.0
004	• T	11.02		2044		PIL	ssing
665			12.1		2 05		27 2
660	5 0	11 2	TTOT	2 76	2071	27 E	JTOL
660	T OO	77.05		2.10	0.00	61.02	20 2
660	90		11.02	7 05	2.00	20 0	29.2
000	2 2	11.02		2.02	2 26	20.02	77 0
005	90		TTOT	7 30	2.90		20102
070	T	11.02		2012	0.00	ML	ssing
07.	90		11.0		2.07		33.0
070	90		TT.0	- 10	3.00		23.0
673	T	11.5		3.42		32.5	0
674	+ 90		10.9		2.99		29.8
67	5 90		11.0		2.74		39.8
677	7 T	11.4		3.50		20.0	
100		22 h		0			
09	T	11.4		3.20	0 50	MIL.	ssing
694	+ 90		11.02		2.70		20.5
09	99		11.5		2.00		23.0
690	T	11.4		3.47		25.0	
69	7 90		11.1		3.29		29.8
698	5 T	11.2		3.40		34.2	
700	90		11.1		3.15		29.2
705	2 1	11.2		7 73		and .	antan
720	00		11:1	1016	7 18	FLA	18-2
720	3 13	11:00	****	7 77	Jero	20-0	TOOL
721	00	dade @ C	110	2022	7 90	20.0	
12	90	77 4	77.02	7000	2010	342	10.0
120	1 00	11.4		2061	7 06	MI	ssing
12:	90		10.0		2.00		22.5
134	00	2011	10.0	- 01	2.00	and in	23.0
735		10.0		2,00		27.2	

	: % :			:		: Average	kernels*
Entry	No. : L.R.:	Test	weight*	: 100-kerne.	L weight*	t per	head
		R	: 5	R :	S	R	: 5
736	-	10.5		2:78		20.2	
737	80	20.00	Haning	2010	2 87	20.2	20 2
778	80	r	100		2:83		20.2
770		11:55	10.9	7 31	2001	24.0	21.0
757	1	77 7		7 50		24.0	
740	00	77.07	ld and an	2+29	7-76	27.0	070
742	90	r	issing		2010		23.0
742	00		TTeT		3.10		50.5
745	T	TTec		3+33	-	20.2	
746	90	-	10.9		3.10		27.8
747	T	11.5	5	3.44		29:0	
757	T	11:0)	3.12		27.5	
758	T	11.9	5	3.23		33.8	
759	T	10.8		3.29		31.5	
760	T	1177	8	2:99		35.0	
761		77:0		3.30		28.8	
762	90		10.7	20.20	2.84	2000	25:02
763	T	2	lissing	2.67		37.2	6706
764	-	11:0	Loozno	3.32		36.0	
765		11.0		3.07		37 3	
766		11:0		3.31		23 5	
767		1320		7 27		70-2	
101	*	77.00		2042		20.02	
769	90		11.0		3.20		28.5
770	T	11.0)	3.14		31.0	
771	T	10.9	1	2.80		29.2	
772	80		10.7		2:99		25.8
773	90		10.5		2.71		30.5
774	T	11.4		3.38		29.5	
776	T	11.7		3.30		27.5	
777	T	11.3		3.58		Mia	sinc
778	90	M	issing	Minci	ne	riLo.	26 8

Table 3. (Continued)

Entry	: %	: t Test	weicht*	: : 100-1-	arnal waicht	: Averag	e kernels*
dir or y	NO H.K.	R	: S	R	: S	R	: S
793	90		11.4		2.96		34.8
794	90		11.1		2.87		35.8
795	90		10.8		2.57		32.0
796	90		10.9		2.92		27.8
797	90		10.8		3.04		20-0
798	90		10.9		2.78		22.8
799	90		10.8		3.23		72.00
800	80		11.1		3.00		71 04
807		77-4	****	7 20	2007	70/0	2010C
802	80	TTAA	11:0	2029	7:00	210C	
802	00	33.45	17.0	7 76	5.00		30.0
003	T	11.02		2013		35.2	
804	T	11:1		3.70		28:5	
805	- m	11.6		3.33		24 8	
806	90		1121	1411	34.0	2400	0000
80%	T	11.3	stands & alb	3.71	5402	72 0	6106
808		11.1		7 51		2602	
800	00	77.0T	11:0	202	2 92	21.02	-
810	90	7757	TTOO	7 40	2.02	70-0	30.2
893	1	22 1		2042		22.2	
917	20	TTet	-	2041		30.2	
914	00		17.07		3023	and the set	26.8
014	T	11.4		3.74		32.5	
012	т	11.2		3.24		29.8	
816	90		11.2		2.95		33.5
818	80		11.1		3.07		34.2
819	T	11.0		3.50		23.8	2.04
820	T	11.4		3.18		34.0	
821	80		10.0		3.23	2.00	3072
823	T	10.9		3.39	24-2	20:8	JUEL
825	80		11.0	2022	3.48	2300	29-9
826	80		11.0		2.08		20.0
					2030		29.6
840	70		11:2		2.90		29:0
841	T	10.9		3.38		33.0	-700
842	T	11.0		3.25		27.8	
846	T	11.1		3.05		38:2	
847	T	10.8		3.10		29.2	
	-					-Jec	

Entry	: % No. : L.R.	: : Test	weight*	: : 100-kern	el weight*	Average	kernels" head
		R	: 5	R	: S	R	: 5
848	80		10.9		3,80		24.8
850	90		11.0		2.89		33.5
851	-	11.0		3.50	2007	25 E)))))
852		17.7		Z Eh		2007	
055	-	11 0		7.04		2406	
074	T	17.00	2017	2+94	0-0-0	Plan	ssing
027	90		10.5		2.07		32.2
050	90		10.0		2057		24.2
859	90		10.6		3.66		29.0
860	T	11.0		3.35		29.8	
861	90		10.6		3.33		42.0
862	7	11.0		3-22		31.8	
864	90		11.0		2.95		20.2
866	1	7724		3.43		25 5	6702
867		71:0		2 49		22.2	
0007	00		10.0	2071	7:00	26.6	0.0
000	90	1180	10.9	1	2009		20.0
070	T	1100	17/10	2020		29.5	
872	90		TToT		3.23		27.5
873	T	11.2		3.27		33.8	
874	T	11.0		3.54		28.8	
875	T-5	11.0		3.19		31.5	
876	T	10.9		3.54		33.2	
878	80		10.8		2.85	2200	27.5
879	T	11:0		3.67		33.5	-102
880	-	11.0		3-04		17 5	
881	Ţ	11.2		3.06		72. 7	
88.2	-	10.8		2 74		22.6	
997	80	2000	10.0	2014	7 08	22.2	
003	00	77 6	10.9		2021		30.5
004		10.0		2019		57.2	
007	T	10.9	10.0	3.00		24.2	
000	90		10.9		3.20		28.5
887	T	11.0		3.63		32.3	
889	т	11.0		3.21		45.5	
890	90		11.0	-	3.00		34.8
891	T	11.0		3.31		33.8	
892	90		10.8		2.84	2200	38.0
893	T	11.0		3-04		38:8	10.0
894	-	11.0		3.21		76 7	
805	00		11:0	Joca	2.07	20.00	20.0
806	90		11.0		2.92		29.0
807	90		11.0		2.20		52.8
202	90	11.4	11.00		2022		33.5
090	T	11.4		3.41		26.5	
899	т	11.1		3.40		37:2	

Table 3. (Continued)

Table 3. (Continued)
------------	------------

Entry	No.	: :	% L.R.	:	Test	we	eight*	:	100-k	ernel	weight	1	Averag	se	kernels head	*
		-			R	:	S		R	:	S		R		: \$	
901			T		M	ise	sing		1	Missi	ng		35.8			
902			T		11.2				3.03				36.8			
903			T		11.4				3.03				31.0			
904			T		11.3				3.50				23.8			
905			T		11.5				3.51				38.5			
906			T		11.0				3.06				28.5		-	
909			90				11.1				3.47				29.5	
910			T		11.0				2.73					M	issing	
911			90				11.1				2.97				40.0	

• Double columns are used to facilitate comparisons between resistant and susceptible row data.

	:	%	:		:		:Average	kernels
Entry	No.:	Stem rust	:Test w	eight	:100-kerne	l weight	: per	head
			R	: 5	R :	S	R	: S
601		-	22.7		7 76		25'0	
602		60	CC +	10.0	7.10	7"27	29.0	20'8
602		20	22.0	73.0	3-66	1.021	25 4	13.0
600		20	22.07		1.00		23.4	
6007		20	21.0		1.52	-	23.2	00 l
600		50		21.3		1.52		22.04
619		50		21.1		1.53		23.8
620		30	22.2		2:00		23.6	
621		15	22.0		1.94		23.6	
622		30	22.2		1.74		24.6	
623		10	21 7		1.76		25 2	
624		30	21 0		1 67		20 4	
625		20	22 /		1 999		23 4	
626		15	22.5		1.00		20 6	
620		13	22.07		1.00		20.0	
621		50	22.02		1.00		23.2	
020		30	21.0		1.87		28.2	
655		30	23.5		2,18		28.8	
657		50		20.3		1.68		25.6
659		30	23.1		2.14		26.6	
660		20	23.4		2.08		20.8	
661		50		19.5		7:44		23.2
662		30	23.0		2.10		26.2	
664		30	23.0		2.09		26.8	
660						1		(
007		50	М	issing		1.16		31.6
671		60		18.0		1.19		30.6
672		50		17.0		1.13		26.8
675		50		18.8		1.24		26.8
676		30	20.6		1.82		Mi	ssing
685		50		18-8		1.25		25.0
688		30	20.4		1953		24.6	-,
692		50		19.4		1.35	6400	23.6
-				- 0		-		
710		50		18.4		1.28		22.4
711		50		18.0		1.21		19.8
713		30	20.6		1.49		24.6	
714		30	21.8		1.96		29.6	
715		30	21.2		1.85		28.8	

Table 4. Relative test weights and 100-kernel weights in grams and average number of kernels per head for rows grown in the stem rust nursery in 1958 which came from families containing both resistent and susceptible lines and were eithor resistant or susceptible with a stem rust reading of 50 percent or higher.

Entry	: No. : Stem rust	: : Test W	aight:	100-kerne	1 weight:	verage k per h	ernels •
Dir Va J	Not Cotta 2 400	R :	S	R :	S	R :	S
176	30	22.6		1.96		30.6	
720	30	22.2		1.85		27.2	
730	30	22.1		2.00		26.0	
739	70	22 7		2:07		23.4	
740	20	22.01		1:00		22.4	
741	50	21.9	- 0 - 0	1.90	11179	CC .T	25-4
743	50		10.0		1.90	30-6	23.4
745	30	22.1		1.02		10.0	
780	50		19.7		1.59		29.2
781	50		18.2		1.30		18.6
782	50		19.6		1.54		23.8
192	50		19.0		1.40		21.2
702	30	23.3		2.26		24.2	
707	60		20.1		1.52		24.6
700	50		18.0		1.42	Mila	ssing
789	50		23 3		1:82		25.6
790	50		27.07		2000		
204	20	22.2		2.02		21.6	
205	20	22.9		2.16		26.0	
005	30	22:0		2.02		20.05	
000	50	60 E 0 0	21:11		1.87		21.6
811	70	22.0	Cab # ab	Rolin		20:8	
812	20	2207		2 06		22.8	
813	20	22.0		2-04		200	
814	50	21.5		1.07		27.00	
815	30	21.8		1.74		20.0	
848	30	22.8		1.94		22:0	-
850	60		19.0		1.43		18.0
851	50		21.2		1.69		24.6
850	60		19.5		1.53		22.4
853	30	22.8		2.16		24.0	
855	50		17.7		1.25		22.8
	20	27:0		2.15		32.0	
862	50	2309	20.0	~**/	1 30	1200	21.8
863	50		20.9	2000	4+)7	27.2	22.00
867	20	2203		2.00		24:2	
869	50	23.4		2.20		2402	
870	- 20	24.5		2024		22.0	
871	30	23.3		1.00		22.0	
889	30	23.1		2:26		25:0	
892	60		20.4		1.55		18.0
803	50		19.0		1.44		21.8
805	50		20:1		1.62		21.6
809	30	23.3		2.55		23.6	
800	30	23.0		2.43		28.6	
099	~	2,00					

*Double columns are used to facilitate comparisons between resistant and susceptible row data.

	19,000			
	: % :	:		: Number of kernels
Entry No.	* : U.R. :	Test weight :]	00-kernel weight	: per four heads
602	90	11/3	2.88	116
603	T	11.2	2.99	97
616-618		1114	7 36	110
615	90	1123	3.12	103
>				
623	T	11.3	3.60	97
627	90	11.3	3.10	96
646	90	11/26	2:82	108
652	T	11.5	3.26	94
11-				
662	90	11.0	3.07	72
002	T	TTAT	2.02	92
672	90	11.0	3.08	103
670-673	T	11.3	3.12	130
700	90	1121	3,15	117
696	T	11.4	3.40	103
752=755	T	11.4	3.27	109
729	90	11.1	3.10	73
747	T	11:5	3.44	116
746	90	10.9	3.18	111
764		11 0	7 79	3.6.6
762	90	10.7	2.84	101
		2001	2007	101
769	90	11.0	3.20	114
770	T	11.0	2.80	124
797	90	10-8	3.04	116
803	T	11.5	3.15	141
	-			
805	T	11.6	3.33	99
806	90	11.5	3.49	109
816	90	11.2	2.95	134
819	T	11.0	3.50	95

Table 5. Test weight, kernel weight and kernel count data used in ttests evaluating the differences between the most resistant and the most susceptible lines grown in the rust nursery in 1958.

	: % :	:		Number of kernels
Entry No.	* : L.R. : !	Test weight: 100)-kernel weight :	per four heads
840	70	11.2	2.90	116
842	T	11.0	3.25	111
851	T	11.0	3.50	102
857	90	10.5	2.87	129
872	90	11.1	3.23	110
873	T	11.2	3.27	135
880	T	11.0	3:04	166
886	90	10.9	3.26	114
893	T	11.0	3.04	155
896	90	11.0	3.20	131
911	90	11.2	2.97	160
910-913	T	11.0	2.73	124
		Ana	lysis	
N		20	20	20
S		3.2	5.39	68
SS		1.408	1.7601	13318.8
Ŧ		.16	.1695	3.4
8		-08698	-60806 2.490*	5.92026 0.5742 n.s.

Mahla 5 (Continued)

• Two entry numbers are listed for pair members on which the kernels per head data was missing for the first lines chosen. In those cases the second entry number refers to the kernel count data only.

	in 1958	•		
Entry No	: % :	:	:	No. of
	.:RS:1	est weight : 100	-kernel weight :)	kernels in five heads
601.	т	22.1	1.76	125
602	60	19.0	1.37	99
619	50	21.1	1.53	119
623	10	21.7	1.76	126
660	20	23°.4	2.08	104
657	50	20•3	1.68	128
671	60	18.0	1.19	No pairs
676	30	20.6	1.82	
787	30	23.3	2.26	121
788	60		1.82	128
809	50	22.1	1.87	108
812	20	22.8	2.06	114
852	60	19.5	1.53	112
848	30	22.8	1.94	110
863	50	20.9	1.39	109
862	20	23.9	2.15	160
892	60	20:4	1.55	90
899	30	23:0	2.43	143
		Ana	lysis	P
N		9	9	8
S		21.2	4.33	110
SS		58.32	2.5117	6800
SS		8.383	.4285	5287.5
x		2.35	.4811	13.75
s		.3412	.07714	9.7169
t		6.887***	6.236***	1.415 п.в.

Table 6	5.	Test weight, kernel weight, and kernel count data used in
		t-tests evaluating the differences between the most resistant
		and the most susceptible lines grown in the stem rust nursery
		in 1950.

Entry	:	% Leaf R	ust•		: Entry	:%	Leaf Rust	-	
No.	: Hutchinso	n:Ashlan	d:SRN	:Sulful	: No.	: Hutchinso	n:Ashland	:SRN:S	Sulfur
921	50	80	60	20	957	0-50	T70	T-80	5
922	60	80	70	20	958	50	-80	80	10
923	0	T	T	0	959	T	T	T	0
924	50	80	70	20	960	50	80	80	5
925	50	80	60	20	961	T	T	T	ō
926	0	T	T	T	962	T	T	T	0
927	50	T	T	T	963	50	80	70	- 20
928	50	80	80	10	964	0	T	T	0
929	0	T	T	T	965	0	T	T	0
930	30	80	50	10	966	50	90	80	30
931	40	80	60	10	967	40	80	70	10
932	0	T	T	T	968	0	T	T	T
933	0	T-80	T-	5	969	50	80	70	10
934	0	T	T	T	970	0	T	T	T
935	0	T	T	0	971	30	80	70	10
936	50	80	60	10	972	0	T	T	T
937	50	80	40-70	10	973	40	80	70	10
938	0	T	T	0	974	0	T	T	T
939	40	80	70	10	975	40	80	70	5
940	50	80	60	10	976	0-50	<u>T</u> -80	T-	5
941	0	T	T	т	977	40	80	70	5
942	•	T	T	0	978	0	T	T	0
943	0	T	T	0	979	0	T-90	T-80	5
944	50	80	70	10	980	30	80	5-70	5
945	0	T	T	0	981	0	T	T	T
946	0	T	T	T	982	0	T	T	T
947	0	T	T	T	983	0-50	T-80	T	T
948	0	T	T	T	984	0	T	T	T
949	40	T	T	10	985	0	T	T -	0
950	40	80	80	10	986	0	T	T	T
951	0	T	T	T	987	0-50	T-70	T-80	10
952	0	T	T	T	988	0	T-80	T-80	T
953	50	80	80	20	989	0-50	<u>T</u> -	T-60	10
954	0-50	T-80	70	20	990	0-	T	T	T
955	50	T-80	80	30	991	0	T	T	T
950	2-50	T-80	Two	10	992	0	T	T	T

Table 7. Leaf rust percentage readings of the paired single rows taken at Eutohinson, Ashland, Manhattan stem-rust nursery, and Manhattan sulfur nursery in 1959.

 Two readings are listed for rows segregating for leaf rust reaction. The underline indicates the predominent reading in the segregating row. The dash indicates that a few susceptible plants were present.

Entry	: ½	: Entry	: <u>%</u>	: Entry :	%
No.	: Stem Rust	: No.	: Stem Rust	: No. :	Stem Rust
921	30	945	70	969	40
922	70	946	70	970	50
923	30	947	30	971	50
924	40	948	20	972	30
925	70	949	15	973	50
926	20	950	30	974	30
92 7	30	951	30	975	40
928	50	952	30	976	20
929	10	953	40	977	15
930	15	954	20	978	10
931	10	955	30	979	30
932	5	956	30	980	30
933	30	957	15	981	50
934	15	958	20	982	15
935	10	959	20	983	10
936	40	960	20	984	60
937	60	961	50	985	20
938	30	962	70	986	5
939	20	963	70	987	50
940	50	964	60	988	20
941	30	965	30	989	5
942	70	966	40	990	T
943	50	967	20	991	T
944	50	968	20	992	5

Table 8. Stem rust percentage readings of the paired single rows in the stem rust nursery at Manhattan, 1959.

THE FAIL PLANE

	:	% Leaf Rust											
Entry No.	:	Hutchinson	: Ashland	1	SRN :	Sulfur							
901		47	83		70	13							
902		T	T		7	T							
903		57	87		83	27							
904		53	77		77	23							
905		50	80		73	27							
906		0	T		T	T							
907		53	90		80	40							
908		T-50	<u>T</u> -77		<u>T-80</u>	8							
909		0	T		T	Т							
910		53	83		73	27							
911		50	80		57	13							
912		T	2		T	T							

Table 9. Average leaf rust percentage readings of the replicated plots taken at Hutchinson, Ashland, Manhattan stem rust nursery, and Manhattan sulfur nursery in 1959.

Table 10. Average stem rust percentage readings of the replicated plots at the Manhattan stem rust nursery in 1959.

Entry	No.	:	% Stem Rust	1	Entry No.	:	% Stem Rust
901 902			17 17		907 908		27 13
903 904			33 37		909 910		30 30
905 906			30 22		911 912		33 37

Entry	No	:	Ht. in	Sulfur	:	Entry	No.	:	Ht. i SRN	n inches Sulfur
901			38	41		937			37	39
902			38	40		938			36	38
905			36	38		943 944			36	37
907 908			37 37	38 38		949 950			37 36	38 39
909 910			36 35	38 38		959 960			35 36	36 36
911 912			36 36	39 40		963 964			36 37	37 38
						965 966		-	37 36	36 37
923 924			36 36	37 38		967 968			36 36	37 36
925 926			36 37	37 37		969 970			37 37	37 37
927 928			37 35	37 36		971 972			36 38	35 38
929 930			38 36	40 39		973 974			37 37	37 38
931 932			37 37	41 40		977 978			39 37	40 38
935 936			37 36	39 37						

Table 11. Height of the leaf rust pairs in both the paired rows and replicated plots in the stem-rust nursery and the sulful nursery in 1959.

Entry	:	Da	te in May	: Entry :	Date	e in May
No.	:	SRN	: Sulfur	: No. :	SRN	: Sulfur
901		22	23	93 7	22	22
902		22	23	938	22	22
905		22	22	943	22	22
906		22	23	944	22	22
907		23	22	949	22	22
908		22	22	950	22	22
910		22	21	959	22	22
909		22	21	960	22	22
911		22	21	963	22	21
912		22	21	964	23	21
92 3		22	21	965	22	21
924		22	23	966	22	21
925		22	23	967	22	21
926		22	21	968	22	21
92 7		22	21	969	22	21
928		22	21	9 70	22	21
929		22	22	971	22	21
930		22	22	972	22	21
931		22	22	973	22	21
932		22	22	974	22	20
935		22	22	977	23	21
936		22	22	978	23	22

Table 12. Dates of ½ bloom of the leaf rust pairs in both the paired rows and replicated plots in the stem rust nursery and the sulfur nursery in 1959.

Entry	:	%	1	Yie	ld	:	Test	Veight	: Kernel	Weight
No.		Leaf Rust	:	Grams	: R-S	:	Grams	: R-S	: Grams	: R-S
923 924		0 50		135 155	-20		26.9	:3	13.70 13.37	*33
925 926		50 0		171 116	-55		26.8	-,1	13.67 14.73	1.06
927 928		0 50		141 104	37		26.8	.2	14.15	1.27
929 930		0 30		119 123	- 4		27.0	1	14.63	1.94
931 932		40 0		180 93	-87		26.6	3	14.23 13.06	-1.17
935 936		0 50		150 92	58		26.7	2	15.02 13.84	1.18
937 938		50 0		159 104	-55		26.8	3	12.95 14.06	1.11
943 944		0 50		153 149	4		27.0	-74	14.88 15.57	69
959 960		0 50		115 123	-8		27.2	1.1	14.53 14.78	25
963 964		50 0		121 151	30		27.0	.1	12.97	1.75
965 966		0 50		112 117	- 5		26.0	-1.4	14.13	1.46
967 968		40 0		141 106	-35		26.7	7	15.01 13.73	-1.28
969 970		50 0		131 95	-36		27.0	0	14.16 15.66	1.50
971 972		30 0		148 157	9		26.9	-11	13.59 14.19	.60
973 974		40 0		72 143	71		26.1	.8	13.98	-1.27
977 978		40 0		146 133	-13		27.8	8	14.02 14.00	02

Table 13. Yields, test weights, and 500 kernel weights of paired single rows at Hutchinson in 1959.

Entry No.	:	% Leaf Rust	:	Yie Grams	ld : R-S	:	Test W Grams	eight : R-S :	Kernel Grams	Weight R-S
923 924		0 20		2 1 9 203	16		26.6	9	14.59 14.54	.05
925 926		20 T		161 215	54		26.1	•7	14.12	.65
92 7 928		T 10		229 238	- 9		27.0	1	15.66 15.36	-30
929 930		т 10		22 1 222	- 1		27.5	.6	16.12	2:05
931 932		10 T		188 246	58		27.0	1:4	14.42 14.54	.12
935 936		010		192 241	-49		27.8	⁶⁻ 8	16.17 15.58	•59
93 7 938		10 0		187 305	118		27.9	0	15.07 15.14	.07
943 944		0		223 199	24		27.5	-3	16.15	15
949 950		10 10		195 256	-61		26.9	5	15.50 16.24	74
959 960		Т 5		208 258	-50		27.4	1	15.39 15.51	12
963 964		20 0		259 230	-29		27.5	3	14.41 15.58	1.17
965 966		0 30		2 77 2 30	47		27.4	-11	15.57 14.93	.64
967 968		10 T		166 243	77		26.9	-4	16.46 15.87	59
969 970		10 T		186 260	74		27.4	13	15.68	·:08
971 972		10 T		214 266	52		27.7	7	16.00	69

Table 14. Yields, test weight, and 500 kernel weights of paired single rows under sulfur treatment at Manhattan in 1959.

Entry No.	: % : Leaf Rust	: Yiel : Grams :	ld : R-S :	Test W Grams	eight : R-S	:Kernel :Gre as	Weight : R-S
973 974	10 T	247 290	43	27.6	5	17.10 14.39	-2.71
977 978	50	193 275	82	27.8	1.3	14.92	1.30

Table 14. (Continued)

Entry	: %	: Yie	ld :	Test	weight	Kernel weight		
No.	: Leaf Rust	:Grams :	R-3 :	Grams	: R-S	Grams	: R-S	
	-					35 00		
923	T	221		26.9		15.00		
924	70	100	55	25.8	1.1	12.81	2.19	
925	60	168		26.0		12.36		
926	Ŧ	159	- 9	26.9	10	13.83	1.47	
120	-		-		•,			
927	T	256		26.5		16.90		
928	80	189	67	26.1	-4	14.37	2.53	
929	T	190	ali	27.0	1.0	16.87		
930	50	214	-24	26.3	•7	14.01	2.86	
031	60	106		26.8		14.45		
932	Ŧ	178	-18	26.5	- 3	14.83	.38	
112	•	-10	-20	2007		2100)	•)0	
935	T	.13		26.9		15.04		
936	60	170	43	26.0	.9	13.05	1.99	
_								
937	40-70	155	-	26.6		13.11		
938	T	161	6	26.4	-•2	14.14	1.03	
043		160		26.5		15 25		
olulu	70	120	40	26.1	.4	14.49	.76	
	10	2		20.02	••	2-10-12	•10	
949	T	165		27.1		14.71		
950	80	139	26	26.1	1.0	14.26	.45	
-								
959	T	129	-0	26.6		14.33		
960	80	167	-38	26.4	2	13.45	.88	
963	70	188		25.1		12 10		
964	The second secon	140	48	25.8	.7	14.25	2:06	
	-				••	2.000	2000	
965	T	190		26.8		15.47		
966	80	193	- 3	26.9	1	13.95	1.52	
967	70	150		26.7		16.17		
968	T	180	30	25.9	8	15.45	72	
969	20	176		26 6		1 / oh		
970	T	178	2	26.2	- 4	15.63	1.30	
	-					2)00)	20/7	
971	70	152		25.6		13.30		
972	T	150	- 2	20.2	•6	14.56	1.26	
973	70	153		25.6		13.59		
974	T	127	-26	25.6	0	13.57	02	
977	70	117		25.0		13.31		
978	T	130	13	26.0	1.0	15.60	2.29	

Table 15. Yields, test weights, and 500 kernel weights of paired single rows with natural leaf rust infection at Manhattan in 1959.

Entry	:	%	1_	Yi	eld	_:_	Test	weight	_:	Kernel	weight
NO.		Leal Rust	:	Grame	R=S	:	Grams	: R-S	:	Grams	: R-S
923		-		242			27.3			12 55	
924		80		125	117		26.2	1.1		10.00	2.55
925		80		137			25.9			9.52	
926		T		150	13		27.0	1.1		11.37	1.85
927		T		150			27.1			12.33	
928		80		123	27		26.7	-4		10.87	1.46
929		T		148			26.6			11.99	
930		80		112	36		25.2	1.4		8.90	3.09
931		80		145			25.6			10.07	
932		T		189	44		27.2	1.6		11.90	1.83
935		T		152			26.7			12.71	
936		80		144	8		25.9	.8		10.75	1.96
937		80		173			27.5			11.07	
938		T		204	31		27.0	5		12.21	1.14
943		T		146			26.4			11.73	
944		80		124	22		26.1	•3		10.56	1.17
949		T		186			26.4			11.40	
950		80		144	42		25.0	1.4		10.39	1.01
959		T		207			27.9			13.98	
960		80		175	32		27.4	.5		11.69	2.29
963		80		168			27.2			11.15	
964		T		142	-26		27.0	2		12.58	1.43
965		T		235			27.7			14.41	
966		90		166	69		27.0	•7		11.83	2.58
967		80		172			27:2			12 00	
968		T		209	37		28.1	-9		14.71	1.71
969		80		192			27.1			11.24	
970		T		165	-27		27.8	-7		14.57	3.33
971		80		191			27.4			11.24	
972		T		225	34		27.7	3		14.35	3.11
973		80		201			27.9			13.06	
974		T		189	-12		27.9	0		13.32	.26
977		80		146			27.5			12.05	
970		T		148	2		26.8	7		11.89	16

Table 16. Yields, test weights and 500 kernel weights of paired single rows at Ashland in 1959.

Entry No.	:	De		т	:	De		TT	:	Par	- T	TT	:	140	10.00
bitty no.	•	R	:	S	•	R	:	S	•	R	:	S	R	Ave.	S
901 902		427		301		386		233		453		336	422	.0	290'.0
905 906		298		282		396		316		431		268	375	.0	288.6
907 908		315		370		357		315		350		269	340	.6	318.0
909 910		418		328		394		303		455		405	455	.6	345.3
911 912		425		289		343		353		373		298	380	•3	313.3

Table 17. Tields in grams of the replicated plots in the stem rust nursery at Manhattan in 1959.

Table 18. Relative test weights from the replicated plots in the stem rust nursery at Manhattan, Kansas in 1959.

Entry No.	1	Ret	De T	:	Rene	TT :	Ren	TTT :	Ave	Pare
901 902		R 26.4	* S 24.8	-	R : 26.6	s 25.0	R 27.0	* S 26.0	R :	S 25.26
905 906		27.0	25:0		26.8	25.0	26.6	26.0	26.80	25.23
907 908		25.9	25.9		26.6	26.0	25.8	26:0	26.10	25.96
909 910		27.0	26.1		26.3	26.3	26.1	25.8	2:.46	26.06
911 912		27.0	26.1		26.5	26.5	26.1	25.7	26.53	26.10

							_							
Entry	:		Rep.	I	:	Rep).	II	1	Rep.	III	1	Aver	age
No.	:	R	:	S	:	R	:	S	:	R	: S	:	R :	S
901 902		13.	87	11.87		14.45		12.04		14.36	13.51		504.3	458.3
905 906		14.	51	12.67		14.52		14.16		14.47	12.36		14.50	13.06
907 908		12.	61	13.40		12.49		13.31		12.89	12.98		12.66	13.23
909 910		15.	81	13.29		15.55		13.26		14.61	13.25		15.32	13.27
911 912		16.	55	14.34		15.35		14.02		15.24	12.10		15.71	13.49

Table 19. 500-kernel weights in grams from the replicated plots at the stem rust nursery in Manhattan, 1959.

Table 20. Nields in grams of the replicated plots in the sulfur nursery at Manhattan, 1959.

Entry	: Rep	. I	: Rej	. II	: Rep	. III	: Aver	age
No.	: R	: 5	: R	: 5	: R	: 5	:R :	S
901 902	486	487	499	443	528	445	504.3	458.3
905 906	344	423	413	437	470	449	409.0	436.3
907 908	496	529	496	444	432	442	465.6	471.6
909 910	427	412	441	488	397	431	421.6	443.6
911 912	414	424	510	531	488	583	470.6	512.6

Entry No.	1	Rep R	. I : S	1	Rep. R :	II	:	R	Rep. III : : S :	Ave	arage 1 S
901 902		27.4	27.3		27.6	27.1		27.6	27.3	27.53	27.23
905 906		26.8	27.4		27.7	27.5		27.5	27.5	27.33	27.46
907 908		27.5	27.5		27.7	27.5		27.6	27.6	27.5	27.60
909 910		26.8	27.4		26.5	27:2		27:2	27.4	26.83	27.33
911 912		27.1	27.4		27.1	27.8		27.3	27.7	27.16	27.63

Table 21. Relative test weights from the replicated plots in the sulfur nursery at Manhattan in 1959.

Table 22. 500-kernel weights from the replicated plots in the sulfur nursery at Manhattan in 1959.

Entry	8	Rep	. I	8	Rep.	II		\$		Rep.	III		1	Av	rer	age
No.	5 k		: 5		R	1	5	-	K			5		R		5
901 902	14	.73	14.9	7	14.70	14	.78		14.80		14.	82		14.7	14	14.86
905 906	14	.01	15.4	7	14.23	15	.73	5	14.15		15.	69		14.1	3	15.63
907 908	14	.16	14.5	9	13.88	14	.49	,	13.85		14.	81		13.9	6	14.63
909 910	14	.30	14.6	4	14.46	15	.04		14.63		14.	72		14.4	6	14.80
911 912	16	.12	15.1	8	15.69	15	.12		15.80		15.	05		15.8	7	15.12

Entry		Rep	. I	1 F	lep. II		Rep	. III		Ave	rage
no.	1	R	: 5	: R	: 5	1	R	: 5	1	R	: 5
901 902		303	216	218	249		233	266		251.3	243.7
905 906		238	149	243	205		247	245		242.7	199.7
907 908		240	265	238	236		256	191		244.7	230.7
909 91.0		244	211	228	214		261	232		244.3	219.0
911 912		273	296	253	265		221	231		249.0	264.0

Table 23. Yields in grams of replicated plots at Hutchinson in 1959.

Table 24. Relative test weights from replicated plots at Hutchinson in 1959.

Entry		Rep.	I		8 F	lep.	II	1	Rep	. 1	III	1	Ave	ora	ge
no.	1	R :	\$	1	: R	1	S	1	R	1	S	1	R	1	S
901 902	2	6.8	27.	0	26.6		26.1		27.0		26.8		26.80		26.63
905 906	2	7.2	26.	6	27.0	,	27.0		27.0		26.7		27.07		26.77
907 908	2	7.2	27.	0	27.0	,	26.5		27.4		26.4		27.20		26.63
909 910	2	6.8	26.	1	26.6	1	26.8		26.9		26.2		26.77		26:37
911 912	2	6.5	27.	0	27.0	,	26.9		27.1		26.8		26.87		26:90

Entry	:	Re	p.	I		:		Rep.	II		:	Rep.	. 11	I	:	A	rer	age
no.	:	R	:	_	S	:	R	:		S	:	R	:	S	:	R	:	S
901 902		13.82		14	.22		13.	95	14.	.00		13.72	1	3.40	3	.3.8	3	13.87
905 906		14:35		14	.14		14.	54	14.	53		14.42	1	5.56	3	4.4	+	14.74
9 07 908		13.63		13	•54		13.	38	13.	.89		13.53	3	3.45	3	.3.5	L	13.63
909 910		14.22		13	.81		14.	19	13.	.19		14.36	1	3.81	3	4.2	5	13.60
911 912		15.20		13	.86		15.	37	13.	56		15.20	1	3.86	1	.5.2	5	13.76

Table 25. 500-kernel weights in grams from replicated plots at Hutchinson in 1959.

A DOUNT

Table 26. Wields in grams of the replicated plots in the leaf nursery at Ashland in 1959.

Entry	:	Re	p.	I		:	R	ep.	II	:	1	Rep.	III		:	A	rer	age
No.	:	R	:	_	S	:	R	:	S	:	R		: 1	S	:	R	:	S
901 902		256			213		368		260		370		23	35	3	31.	3	236.0
905 90 6		270			217		320		276		278		23	32	2	89.	5	241.6
907 908		231			260		345		283		205		26	66	2	60.	3	269.6
909 910		316			262		311		303		318		28	35	3	15.0)	283.3
911 912		226			370		327		433		322		36	50	2	91.0	5	387.6

Entry	: Rep	. T	: Ren	TT	t Ren.	TTT		
No.	: R	: 5	: R	: S	: R	: 5	R R	: S
901 902	26.3	24.6	25.8	25.3	26.3	26.0	26.13	25.30
905 906	25.4	25.4	26.6	26.3	25.8	25.5	25.73	25.73
907 908	26.4	26.6	27.2	26.0	25.8	26.8	26.47	26.47
909 910	26:5	26.5	27.4	26.2	26.9	25.5	26.93	26.07
911 912	26.8	26.9	26.8	27-2	26.2	26.6	26.60	26.90

Table 27. Relative test weights from the replicated plots in the leaf rust nursery at Ashland in 1959.

Table 28. 500-kernel weights in grams from the replicated plots in the leaf rust nursery at Ashland.

Entry	: Rep	• I	: Rep.	II	: Rep.	III :	Ave	rage
No.	: R	: S	: R :	S	: R	: 5 :	R	: 5
901 902	11.54	9.43	12.41	10:78	12.41	9.57	12.12	9.93
905 906	10.55	10.80	12.44	11.74	10.46	11.53	11.15	11.36
907 908	10.42	10.48	11.47	10.44	9.39	10.73	10.43	10.55
909 910	12.00	11.66	12.14	12.09	12.69	10.64	12.28	11.46
911 912	12.34	12.38	12.96	12.39	12.25	11.70	12.52	12.16

	: Stem Rust	:	:		: 500-kernel
Entry No.	8 %	: Yield	:	Test weight	: weight
921	30	173		26.5	13.90
922	70	175		26.0	13.32
925	70	168		26.0	12.36
926	20	159		26.9	13.83
927	30	256		26.5	16.90
928	50	189		26.1	14.37
935	10	213		26.9	15.04
936	40	170		26.0	13.05
937	60	155		26.6	13:11
938	30	161		26.4	14.14
939	20	127		25.8	12.86
940	50	160		27.2	13.76
941	30	196		27.1	14.54
942	70	237		27.0	14.59
953	40	117		26.2	13.42
954	20	142		26.5	12.99
971	50	152		25:6	13.30
972	30	150		26.5	14.56
973	50	153		25.6	13.59
974	30	127		25.6	13.57
975	40	136		25.0	12.60
976	20	173		26.0	14.10
981	50	142		25.8	14.75
982	15	161		26.8	14.84
983	10	178		26.2	13.97
984	60	166		26.1	15.01
987	50	158		26.4	12.93
988	20	128		26.5	14.91

Table 29. Vield, test weight and 500-kernel weight of stem rust paired single rows in the stem rust nursery at Manhattan in 1959.

	:	1		:		:	:	
Source of Variation	: d.f.	1	Ss	: Me	3	I F	:	Sig
	Hutchi	nson	Yield	Eval	atio	27		
			2 40 0 40 00	ATV CLL C	10101010			
Whole Plot:				. 0.				
Femily	2	15	12 20	11.0%	.00			
Error (a)	8	80	78.80	1000	.85			
Cub-nloket	0	00	,0.00	1003				
Sub-plots: Resistance	1	16	87.50	1685	50	7 80		
Resistance x	family 4	27	68.33	692	-08	1.78		1.0.
Error (b)	10	89	14.67	891	.47			
	hest	weig	ht Eva	aluati	on			
Whole Plot:								
Replications	2		.04		.02			
Family	4		.57		.14			
Error (a)	8		.63		.08			
Sub-plots:								
Resistance	1		59		.59	7.38		•
Resistance x	family 4		31		.08	1.00		n.s.
Error (b)	10		82		.08			
	Kerne	l wei	ght En	aluat	ion			
Whole Plot:								
Replications	2		.027	70	.013	55		
Family	4		4.666	58 1	.166	7		
Error (a)	8		\$999	94	.124	9		
Sub-plots:								
Resistance	1		.853	35	.853	5 9.01		
Resistance x	family 4		3.309	99	.827	5 8.74		
Error (b)	10		.947	72	.094	7		

Table 30. Split-plot analyses of variance on data from Hutchinson, Ashland and Manhattan in 1959.

Source of Variat	ion :	d.f.	: S8	1	Ms	: F :	sig
	-	Ashlar	d Yield Eva	aluatio	on		
Whole Plot: Replications Family Error (a)		248	18,485.00 22,886.20 6,573.00		9242.50 5721.55 821.62	11.25	•••
Sub-plots: Resistance Resistance Error (b)	x fami	1y 4 10	1,442.1 31,057.5 9,745.33	3	1442.13 7764.38 974.53	1.48 7.97	n.s.
		Test	weight Eval	Luation	<u>n</u>		
Whole Plot: Replications Family Error (a)		248	•78 4•91 1•84	3	.39 1.23 .23		
Sub-plot: Resistance Resistance Error (b)	x fami	1 1y /5 10	•71 1.59 2.49	7	•77 •40 •24	3.21 1.67	n.s. n.s.
		Kernel	weight Eve	luati	on		
Whole Plot: Replications Family Error (a)		248	3.62 12.55 1.31	286 556 136	1.8142 3.1389 .1642		
Sub-plot: Resistance Resistance Error (b)	x fami	1y 4 10	2.70 5.72 3.85	564 232 513	2.7664 1.4308 .3851	7.18 3.72	
	Stem	Rust N	ursery Yiel	ld Eva	luation		
Whole Plot: Replications Family Error (a)		248	3,201.27 11,681.54 18,191.00		1600.64 2920.38 2273.88		
Sub-plot: Resistance Resistance Error (b)	x fami	1 1y 4 10	44,467.50 9,246.33 16,611.6	5 4	4467.50 2311.58 1661.17	26.77 1.39	*** n.s.

Table 30. (Continued)

Table 30. (Continued)

Source of Variatio	n : d.f.	: : Ss	t Ms	F	Sig
	Test	: weight Ev	aluation		
Whole Plot:					
Replications	2	:01	.005		
Family	4	.56	.14		
Error (a)	8	2.16	.27		
Sub-plots:					
Resistance	1	4.41	4.41	33.92	***
Resistance x	family 4	2.31	-58	4.46	
Error (b)	10	1.27	.13		
	Kerne	l weight E	valuation		
Whole Plot:					
Replications	2	•713	3 .3566		
Family	4	10.095	3 2.7230		
Error (a)	0	5.024	.6289		
Sub-plots:					
Resistance	1	14.310	6 14.3106	49.19	***
Resistance x	family 4	7.660	2 1.9150	6.58	**
Error (b)	10	2.908	8 .2909		
	Sulfur b	lock Tield	Evaluation		
Whole Plots					
Replications	2	3470-60	1735.30		
Family	4	22032.53	5508-13		
Error (a)	8	27923.07	3490.38		
Subenlets:					
Resistance	1	700.55	700 57	· al	
Resistance x	family 4	6930-14	1732.54	2.06	
Error (b)	10	8406.33	840.63	2.00	
	Test	weight Ev	aluation		
1					
MADLE PLOT:	-	•22	in the second se		
Replications	2	f. mat.	-11		
Family	4	•14	.18		
BITOF (a)	0	-30	604		
Sub-plots:					
Resistance	1	.16	.16	5.33	•
Resistance x	Tamily 4	.71	.18	6.00	
Error (b)	10	- 34	-03		

Source of Variation	defe	: : Ss	: : Ms	:	F	:	Sig
Whole Plot:	K	ernel wei	ght				
Replications Family Error (a)	2 4 8	.0022 4.6004 .2700	.0011 1.1501 .0338				
Sub-plots: Resistance Resistance x fam Error (b)	ily 4 10	.8036 4.1268 •3333	.8036 1.0317 .0333		24.13 20.98		•••

Table 30. (Continued)

A FIELD STUDY OF THE EFFECTS OF LEAF RUST AND STEM RUST ON SISTER LINES OF A HARD RED WINTER WHEAT

by

JOHN LEWIS BIEBER

B. S., Purdue University, 1958

AN ABSTRACT OF A THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Agronomy

KANSAS STATE UNIVERSITY OF AGRICULTURE AND APPLIED SCIENCE

This study was an attempt to evaluate the effect of stem rust and the effect of leaf rust using sister lines of a Pawnee-type wheat. Although this method of disease evaluation tends to underestimate damage, it gives a direct measurement of the benefit of genetic rust resistance available for disease control.

Comparisons were made between rust resistant and susceptible sister lines that had been selected as heads from segregating plant rows in the F, generation.

In 1958 there were 323 lines representing 29 families grown in single rows at both the leaf rust nursery at Ashland and the stem rust nursery at Manhattan. Stem rust and leaf rust readings were made, heads were picked from each row, and the rows were harvested individually. Relative test weights, 100-kernel weights and average numbers of kernels per head were determined. Data from families with both resistant and susceptible lines was collected. Resistant-susceptible differences in the above mentioned components of yield were tested with t-tests. Pairs used in the tests represented the highest and the lowest levels present in the same families. Test weight and kernel weight were both significantly increased by both stem rust and leaf rust resistance. A correlation coefficient of -.6446 was found between stem rust reaction and test weight in the stem rust nursery.

In 1959 the rust effect study was comprised of four experiments; at Hutchinson under natural infection, at Ashland with artificial leaf rust infection, at Manhattan with artificial stem rust infection, and another at Manhattan in which sulfur treatments minimized rust infection. Each experiment was made up of two parts--paired single rows and paired replicated plots.

Rust percentages were taken and the trials were harvested. Yields, test weights, and 500-kernel weights were determined. The 1959 rust readings were used to pick the pairs used in statistically analyzing yield, test weight, and kernel weight differences between resistant and susceptible lines. Only pairs with clear-cut resistant level differences were analyzed. Stem rust occurred only at the Manhattan stem rust nursery trials in 1959. Leaf rust damage was evaluated at all the experiments.

Yield, test weight, and 500-kernel weight differences were statistically evaluated using t-tests for the single row data and split plot analyses of variance for the replicated plot data.

The 1959 results showed that test weight and kernel weight were significantly affected by rust reaction. Yield data were inconclusive but indicated that an effect upon yield could be detected by this method.

From this study it appears that sister lines of wheat are adaptable to the evaluation of leaf rust and stem rust damage; however, further study is needed before comparisons can be made between this and other methods of disease damage evaluation.