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1.0 INTRODUCTION; 
A Voltage Step Generator(VSG) was designed and 

developed at the National Bureau of Standards<NBS). The 
VSG was designed for use in automated test systems to 
characterize the transient response of waveform 
recorders, oscilloscopes, and other instruments. The VSG 
was designed to output programmable pulses with one well 
defined transition per period with known beginning and 
terminating levels of transitions CI]. 

The heart of the design of the NBS VSG is its 
control unit, which performs and controls the above 
mentioned functions. An attempt was made to redesign the 
timing circuit of the control unit to achieve the same 
goals, but with different hardware configuration. Hence 
a digitally programmable delay generator chip, AD9500 of 
the Analog Devices was used for the timing control 
functions of the NBS VSG control unit. 

The AD9500 can be used in different 
configurations such as minimum configuration, extended 
pulse-width configuration, ring oscillator configuration 
etc. For each configuration extensive tests were made 
and results were recorded. The section 3.3 of this 
report describes these configurations briefly. Finally 
the ring oscillator configuration was selected for the 
above mentioned purpose. Thus the AD9500 was 



characterized for different configurations using the 

Analog Devices products specification literature. In 

order not to constrict the flow of presenting the 

required material for this report, specifications of 

AD9500 are in Appendix A [33. 

This report contains all the technical 

information and experimental results obtained in the 

attempt to use the AD9500 for the timing control 

functions of the NBS VSG control unit. 
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2.0 Introduction to the NB5 Voltage Step Generator CI]: 
The NBS Voltage Step Generator<VSG) was designed 

to output programmable voltage pulses, with one well-

defined transition per period, with known beginning and 

terminating levels of transitions. The VSG consists of 

the output circuit and the control unit. 

The output circuit is a test-head which connects 

directly to the input terminals of the device under 

test. The control unit provides the power, precision dc 

voltage levels, polarity selection pulses and timing 

pulses necessary to control the parameters of the 

voltage steps generated in the output circuit. Fig. 1 

shows the VSG in an automated test system. 
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2. 1 V5G Requirements [13: 
The minimum requirements of the NBS VSG are as 

follows; 
1) The initial and the final levels of the voltage 
transitions should be independently adjustable, and each 
should have a range of at least •'•5V or -5V for high 
impedance loads and a range of •'•IV or -IV for range of 
50 ohms loads. 
2) The transition duration(10-907. Rise time) of the 
voltage steps should be less than 7 ns. 
3) The voltage step should settle to within iO.1% and 
±0.02% of final level voltage in less than 22 ns and 27 
ns, respectively, measured from the 107, amplitude point. 
4) The output impedance of the VSG should be resistive 
for frequencies ranging from dc to several times the 
upper cut off(-3 dB) frequency of the test instrument. 
5) The VSG output circuit should be directly connectable 
to avoid losses and pulse distortion from a connecting 
cable. 
6) The pulse width and pulse repetition rate should be 
independently selectable, with pulse widths ranging from 
50 ns to 5 ms and repetition rates upto 5 MHz. 
7) All pulse parameters should be programmable, so that 
the VSG may be used in automatic test systems. 
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2.2 VSG Control Unit [1]: 
The Fig. 2 shows a complete block diagram of the 

control unit. The IEEE-488 bus is used to provide 

overall control. The bus interface drives a system bus 

to distribute data for controlling the operating 

parameters of the VSG output circuit. The parameters 

are: the pulse repetition rate, pulse length, voltage 

step polarity, and the initial and final voltage levels 

of the step. The respective ranges for each pulse 

parameters are as follows: 

- pulse repetition rate: 153 Hz to 5 MHz 

- pulse length: 20 ns to @ 6 ms 

- duty cycle: approximately 57. to 95% 

- initial and final voltage levels: +5V or -5V 

- polarity of transition: either + or -

The whole control unit contains the following 

boards(modules): 

1) IEEE-488 interface 

2) TTL Timing board 

3) DAC/OA board 

4) Output board 

5) All the required power supplies 





Fig. 3 shows the timing board circuit, which 
controls the pulse repetition period and the pulse 
length of the voltage steps as well as the 
internal/external clock choice. A brief explanation of 
the circuit in the Fig. 3 is as follows; 

The inputs to the chip address decoder Ull are 
obtained from outputs of the board address decoder of 
the IEEE-488 interface board. 4-bit data words from the 
board data bus are sequentially loaded into registers U1 
through UIO, with change in the input code by 1 bit. 

The data words(codes) that have been latched 
into registers U3-U10 are preset into counters U21-U28. 
The pulse repetition period of the step generator is 
determined by the code value present into counters LI21 
through U24, and equals the complement of this code 
times the<10 MHz) clock period. The code values in 
counters U25-U28 are used to control the pulse length. A 
D-type flipflop with clear and preset, a delay chip and 
a dual 4-line to 1-line MUX are used to achieve the 
above mentioned timing functions. 
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This circuit uses the TTL logic levels only. 
Hence a new approach to gain the control over pulse 
repetition period and the pulse length was attempted 
using Analog Devices digitally programmable delay 
generator chip AD9500, which is discussed in the 
following sections. 
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3.0 Digitally Programmable Delay Generator Chip : AD9500 
3.1 Introduction [3] [43: 

The AD9500 is a digitally programmable delay 

generator which includes virtually all the circuits 

needed for generating time delays for digital pulses. It 

provides 256 programmed delays in a user-specified full 

scale range which can be varied from 2. 5 ns to 100 us 

and more. The 2.5 ns scale can resolve increments as 

small as 10 picoseconds. 

The output of the AD9500 is delayed from the 

input trigger pulse by a time proportional to the 8-bit 

digital input code. In addition, the AD9500 is ECL 

compatible and usable with analog as well as TTL input 

levels. A full scale delay range is very flexible and 

can be set externally by using a proper R-C combination. 

Fig. 4, shows the pin configurations of the 

AD9500. For a detailed description of each pin, please 

refer to the Appendix-A. 

The AD9500 has trigger and reset inputs which 

are differential and are designed primarily for ECL 

signal levels, but they can also function with analog 

and TTL input levels. An on-board ECL reference midpoint 

allows both the inputs to be driven by either single-

ended or differential ECL circuits. The output of the 

AD9500 is a complementary ECL stage, which also provides 

11 



a parallel output(0^ ) circuit to facilitate reset 
timing implementations. The maximum triggering rate for 
the input of the AD9500 is 100 MHz. The digital input 
code is passed to the AD9500 through a transparent latch 
which is controlled by the LATCH ENABLE signal. In the 
transparent mode, the internal DAC of the AD9500 will 
attempt to follow changes at the input, otherwise LATCH 
ENABLE is used to strobe the digital data into the 
AD9500 latches. 

Fig. 4 Pin configurations of the AD9500 
["Digitally Programmable Delay Generator", A technical 
literature by Analog Devices C33, p.1] 
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3.2 How it. works [3] [43: 
The heart of the AD9500 is the linear ramp 

generator. The initiation of a ramp cycle is done by any 
triggering event at the input of the AD9500. An internal 
Digital to Analog Converter<DAC) sets up the threshold 
voltage and hence as the ramp voltage falls down, 
eventually it will definitely fall below the threshold 
level. These levels (linear ramp and DAC threshold) both 
are monitored by a comparator. The output of the AD9500 
is the output of this comparator stage. The time 
interval between the trigger and the output transition 
is the total delay time generated by the AD9500. 

Fig. 5 shows the functional block diagram of the 
AD9500. The important functional modules are the 
reference and the -fiming- control circuit- which form an 
analog integrator; an 8-bit DAC, set by the 8-bit 
digital control input(code); and a high-speed precision 
comparator with complementary ECL outputs. The trigger 
and the reset inputs are differential and the triggering 
rate cannot be greater than 100 MHz for the AD9500. 

The timing diagram in Fig. 6, shows that the 
programmed delay is initiated when the trigger input 
goes high. It initiates a falling ramp from the 
integrator and when it crosses the threshold level set 
by the 8-bit DAC, the comparator output is changed which 
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produces the required delay outputs (Q and Q). A 

parallel Oĵ  output is also made available on the AD9500, 

to control the driving of its own reset input. 

The total delay through the AD9500 is made up of 

the two major components: 

1) the programmed delay(t^ ) - a function of the 

selectable RC time constant and the precision 

threshold set by the DAC. 

2) the propagation delay(tpjj). 

Fig. 7 shows some typical values of the 

programmed delay ranges as a function of resistance and 

capacitance, with the digital input = 255 or $FF(hex). 

The actual programmed delay is directly related 

to both of the digital input data and the RC time 

constant established by and The relationship 

is as follows: 

Total Delay = Minimum propagation + Programmed 
delay delay 

The LATCH ENABLE control pin is active LOW. In 

the logic "LOW" state, the latch is transparent, and the 

internal DAC will attempt to follow the changes at the 

digital data inputs. Both the LATCH ENABLE control and 

the digital data inputs are TTL compatible. 

A pulse of appropriate width applied at the 

reset input resets the integrator and the Q output. This 
15 



is due to discharging of the ramp voltage held in the 

timing capacitor (C^^^ + 10 pF). After the reset input 

goes low, the AD9500 is ready for the next trigger. The 

reset and the trigger inputs of the AD9500 are 

differential and must be driven relative to one another. 

Fig. 7 Typical programmed delay ranges 
["Digitally Programmable Delay Generator", A technical 
literature by Analog DevicesC3], p. 7] 
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3.3 Different Configurations [3] [43: 
The versatility of the AD9500 allows it to be 

configured for a number of different applications. As 

the trigger and the reset inputs can be treated as 

single-ended or as differential, the AD9500 can be 

operated with a wide range of signal sources. There are 

number of possible configurations for the AD9500. Some 

of them are minimum, extended output pulse width, ring 

oscillator, multichannel de-skewing, measurement of 

unknown delays, measuring high-speed AC waveforms. Only 

the ones which are useful for the purpose of this 

report, are discussed in the following sections. For 

information about the non-discussed ones, please refer 

to the references L31 and [43. 

3.3.1 Minimum configuration; 

In this configuration only one of the trigger 

inputs is used. The other is connected to the ECL 

reference midpoint, ECL . The parallel output Q,̂  is 

grounded and Q is used to drive the reset input. Once 

the triggering event occurs, the Q output will go into 

logic "HIGH" state and the Q into "LOW" after the 

programmed delay. As the AD9500 is reset using Q, the 

result is a delayed output pulse which is only as wide 

as the reset propagation delay (t^p). Fig. 8 shows the 

circuit diagram for this configuration and Fig. 9 shows 
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the output. It shows the delay achieved with the digital 

input = 00 and with the OFFSET ADJUST pin tied to +V3 

through a resistor(>220 ohms) value of 2500 ohms. 

Note that in the Fig. 9 , the minimum delay with 

the zero(OO) digital input, can be reduced further by 

not using the pin OFFSET ADJUST. By not using OFFSET 

ADJUST, a delay of about 8 ns was obtained which is the 

minimum delay we can have in this configuration with Rjf-j-

and Cgĵ ^ as in Fig 8. This was confirmed by the 

application engineer at the Analog Devices<Appendix-B). 

3.3.2 Extended Output Pulse Width [3] C43: 
This configuration of the AD9500 is almost the 

same as the minimum configuration, except the output 

pulse width is extended in this case. Triggering the 

AD9500 is also the same but there is a functional 

difference in the resetting circuit. 

In this case the output S^ is used to drive the 

reset input through a resistor-capacitor (R̂ ^ - C^j ) 

charging network. Due to this network, the signal at the 

reset input will fall more slowly which causes the 

output pulse width to be extended. The important 

advantage of this configuration is that the both Q and Q 

outputs are independent and are completely free for 

other uses. 

Fig. 10 shows the circuit diagram for this 
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configuration. The total reset time contributed due to R^ 
and C^ is as follows: 
Reset time = tĵ ĵ  • (RjjCjj/1.85) 
[Note: please refer to the Appendix-B for the derivation 
of the term RjjCjj/1.853 
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Fig. 11 shows the output of the circuit shown 

above, with the values of R^ = 1000 ohms and 100 pF 

and the triggering rate of 100 kHz. In the Fig. 11, 

please note the following: 

1) minimum delay value with the digital input = 00 

2) change in pulse width with the increased digital 

input. 

The above results are naturally not the obvious 

ones i.e one should expect a very low value of delay 

value with the digital input = 00 and the pulse width 

should not change(reduce in this case) with the higher 

value of the digital input. The questions concerning 

these results were asked to the application engineer at 

the Analog Devices and are discussed in the Appendix-B. 

It was found that by simply changing the values of 

R̂ j and C^ appropriately, the output pulse width was 

changing accordingly i.e. one can control the duty cycle 

of the output pulse by controlling the R̂ j and Cj, . 

In both the configurations discussed above(minimum 

and extended pulse width), the frequency of the output 

pulse depends on the rate at which the AD9500 is 

triggered. That means to change the output pulse 

frequency, one has to change the triggering rate 

externally everytime. This is eliminated in the ring 

oscillator(programmable oscillator) configuration as in 
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this configuration the output pulse frequency is 
determined by the digital input data. Also the output 
pulse width can be controlled by applying the output of 
this configuration to a simple logic circuit (e.g. Set-
Reset flipflop). 

3.3.3 Ring oscillator configuration C3] [4]; 
The ring oscillator configuration or the 

programmable oscillator configuration is one of the most 
interesting and important use of the AD9500. As 
mentioned in the section 3.3. "Z, this configuration can 
control both the frequency and the duty cycle, of the 
output pulse of the AD9500. 

Fig. 12 shows the block diagram for this 
configuration. Two AD9500s are used for this 
configuration. The delayed output of the first AD9500 is 
used to drive the trigger input of the second AD9500. 
The output of the second AD9500, in turn, is used to 
drive the trigger input of the first AD9500. Because of 
cascading these two AD9500s in such a back-to-back 
configuration, together the two devices will alternately 
trigger each other creating two pulse chains (trains) 
on the outputs. 
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The total delay through both the AD9500s 
combined, determines the period of the oscillation and 
hence the frequency. By using the outputs of both the 
AD9500S to drive the Set and the Reset inputs of a (S-R) 
flipflop, the duty cycle of the output pulse can be 
controlled. The total delay through the first AD9500 
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will control the flipflop logic LOW output pulse width, 
and the second AD9500 will control the flipflop logic 
HIGH output pulse width. 

Thus in this configuration, as both the pulse 
repetition rate and the pulse length of the output, are 
controlled effectively by the digital input to the 
AD9500, this configuration was used for the timing 
circuit design of the NBS Voltage Step Generator(VSG). 
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4. 0 Timing control circuit for VSG using the AD9500; 
4.1 Introduction: 

One of the basic requirement for the NB5 V5G is 
to have an independent control over the output pulse 
frequency and the duty cycle. As discussed in the 
previous section, in the ring oscillator (programmable 
oscillator) configuration of the AD9500, it is possible 
to have an effective control over the output pulse 
repetition rate(frequency) and the pulse length(duty 
cycle). Hence an attempt was made to use the AD9500 in 
the ring oscillator configuration, which can be used for 
the timing control circuit for the NBS VSG. 

Fig. 13 shows the block diagram of the timing 
control circuit for the VSG using the AD9500, where the 
AD9500 is used in the ring oscillator configuration. 





Fig. 14 shows the complete circuit diagram of the 

system shown in fig. 13. In fig. 14, there are 

two AD3500S connected in the ring oscillator 

configuration. The output (Q^ ) of the first AD9500(A) 

is used to trigger the second AD9500(B) and viceversa. 

As both the AD9500s are triggering each other 

alternately, a pulse train(chain) is created at the 

outputs (Q^ , Q^ , Qg and Qg ). For simplicity, only 

and Qg outputs are used while taking the readings of 

the experiment, for this report. 

Rĵ  and Ĉ ^ are used to delay the resetting of the 

output of the respective AD9500. used to 

extend the full scale delay. As the full-scale delay is 

increased, a component of the minimum propagation delay 

(t pjj ) also increases. To reduce this propagation delay, 

an offset is introduced in the internal DAC threshold 

level by injecting some current through the pin OFFSET 

ADJUST of the AD9500. This is done by connecting OFFSET 

ADJUST to +V5 through a resistor of 4700 ohms. 

The delay through each AD9500 is determined by the 

digital input. The total delay through each AD9500 

combined determines the output pulse repetition rate. 

Hence by changing the digital input to the system, we 

can change the pulse repetition rate and hence the 

output frequency. 
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The circuit in the fig. 14 was constructed on a 

bread-board. To avoid the high frequency noise problems 

and to have a common ground base, only one power supply 

was used to power the whole circuit. The circuit 

requires regulated voltages of the magnitude 5.0 V, -5.2 

V and -2. 6 V. Hence the regulators with the above 

mentioned output voltages were used for the circuit in 

the Fig. 14. The Following section describes briefly the 

circuit and related design calculations of each 

regulator, with the required output. 

4.2 Voltage Regulators [5]: 
Three voltage regulators with the output 

voltages of 5.0 V, -5.2 V and -2.5 V, were required. 

[1] Voltage Regulator with output = 5. 0 V : 
Fig. 15 shows the circuit diagram for this 

regulator. The Ln340-TS (5.0 V, 1.0 A) regulator is 

readily available for this purpose. 
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In the Fig. 15, Cĵ  is used as it helps to reduce 

the noise at the input, if the regulator is far from the 

main power supply. Also, C^ is used as it improves the 

transient response. 

[23 Voltage Regulator output = -5.2 V : 
The LN337T is a programmable -ve output ((?0. 5A ) 

regulator, hence it was used to obtain an output voltage 

of -5.2 Volts. Fig. 16 shows the circuit diagram for 

this regulator. 

Fig. 16 Voltage Regulator with output = -5.2 Volts 

C = C^ = 1 uF (solid tantalum). These are used for 

the noise reduction and the stability of the regulator. 

In the Fig. 15, to find the appropriate value of R 

the following equation was used: 

-VouT = -1.25(1 * (Rjt/120ohms) ) (A) 

30 



We have, "Vqut ~ -5.2 Volts; therefore; 

- 5 . 2 = - 1 . 2 5 ( 1 + R^/120ohTns) ) 

= > R^ = (? 379 ohms 

Hence a potentiometer(pot) of the value of 1 . 0 Kohms was 

used and the output was set exactly to - 5 . 2 Volts. 

Similarly for the regulator with output = -2. 5 V, 

the same configuration as in the Fig. 16, was used. Only 

the value of was changed accordingly. If we follow 

the equation (A) with V^^y = -2.5 V, then the calculated 

value of the R^ = (? 130 ohms. Hence a pot of 1.0 Kohms 

was used to set the output exactly equal to -2.6 Volts. 
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4.3 Experimental Setup; 

The circuit shown in Fig. 14, was 

constructed on a single bread-board(of the type A.C.E. 

236), with a common ground plane. Fig. 17 shows the 

block diagram of the experimental setup. 

The HP-5236B (triple-output power supply) was 

used to power the whole circuit. The HP-1720A, an 

oscilloscope with 275 MHz bandwidth, was used to observe 

the output of the circuit in Fig. 14. Also the 

HP-34S6A; digital multimeter; was used to measure the 

required voltage levels during the experiment. 
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4.3.1 Experimental Results; 

The circuit in Fig. 14 generated the pulse 

trains at the outputs. The frequency of these pulses was 

dependent on the digital input of the system. Though it 

was not possible to obtain good pulse outputs at lower 

digital inputs, the circuit generated very good pulse 

outputs for the value of the digital input greater than 

0000 llOO(hex). (Please refer to the section 4.4 for 

the difficulties during the experiment). 

Table 1 and the Table 2 show the results 

obtained from the circuit shown in Fig. 14. 

Table 1 shows the relevant parameters for the first 

AD9500(A) and Table 2 shows the same for the second 

AD9500<B). 

The resistors and the capacitors used in the 

circuit of Fig. 14 are responsible for the results 

in Table 1 and Table 2. The respective values of 

the resistors and the capacitors are as follows: 

Also, for the readings in the Table 1 and the 

Table 2, refer to Fig. 18, showing the output of the 

circuit shown in Fig. 14. (Fig. 18 shows the symbolic 
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Fig. l8 Output of the circuit shown in the Fig. 14 

output of the circuit while referring to the Table 1 and 

the Table 2) 

Referring to the Fig. 18, for the Table 1 and Table 

2, we have following for all the readings: 

* A = -2.0 Volts 

* B = -1.0 Volts 

» V^ = -2.6 Volts (Fig. 14) 

* V5 = 5. 0 Volts (Fig. 14) 

* -V5 = -5.2 Volts (Fig. 14) 

For the results in the Table 1 and the Table 2, 

the digital input was supplied as the voltage levels, as 

shown below; 

For, logic HIGH (1) = 5.0 Volts 

logic LOW (0) = 0 . 0 Volts (ground) 

34 



The current drawn by the circuit in the 

Fig, 14, including the voltage regulators, is as 

follows: (for max. digital input = 255 or $FF(hex)) 

* 10.0 Volts I? 100 mA , and 

* -11.0 Volts (3 200 mA 

[Note:- The HP 6236B was used as the main power supply,] 
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Table 2 : Output of the AD9500(B) in the circuit of 
the fig. 14 

It can be concluded from the readings in the Table 

1 and the Table 2 that it is possible to change the 

pulse repetition rate at the output of the AD9500 by a 

corresponding change at the digital input. 

In the circuit of the Fig. 14, by changing Rjj or C^ 

or both, it is possible to have variation in the pulse 

width of the output (i.e with the increase in R̂ ^ or Ĉ ^ , 
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the pulse width increases and viceversa). This is the 
control over the duty cycle of the output. There is one 
more efficient way to achieve an effective control over 
the duty cycle. This is achieved by using the outputs Q^ 
and Og of the circuit in the Fig. 14, to drive the RESET 
and the SET inputs of a (RS)flipflop. The block diagram 
and the output of that circuit is shown in the Fig. 19. 

[Note:- By applying a positive (i?5. OV) voltage at the ECL 
COMMON pin of the AD9500, the output pulses at Q^ and Qg 
can be shifted above the ground level] 

The output at Q in the Fig. 19 is the required 
output with the controlled duty cycle. Moreover, by 
simply changing the digital input to both the AD9500s, 
the frequency of the output pulses(Q^ and Qg ) can be 
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controlled, and hence the frequency of the output at Q, 
in the Fig. 19. Hence, an effective control over the 
output frequency and the duty cycle is possible. 

4.4 Difficulties; 
From the results in the table-1 and the table-2, 

it is obvious that the AD9500 was not able to output a 
good pulse train for a digital input between 0000 0000 
to 0000 1100. For these inputs, it was possible to get 
output pulses ,BUT, all the pulses were associated with 
constant high frequency oscillations. All the pulses 
were following the change in the digital input and the 
pulse repetition rate was also changing accordingly. 
Different values of R3e-j. , Cg^j and by-pass capacitors 
(associated with and -Vg ) were tried, with the 
above range of the digital inputs, but the output pulses 
were always associated with constant oscillations. 
Digital inputs of the TTL levels, using a MUX , were 
also tried, but the output was not changed. 

Finally, it was found that by reducing the 
values of Rĵ  , in the circuit of the Fig. 14, it was 
possible to get a good output pulse train for some of 
the digital inputs of the above mentioned range, but not 
all. Too much reduction in the value of R^ is not 
desirable as it can damage the output section of the 
AD9500 and also the -2.6 Volts regulator was getting 
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extremely hot due to the reduction in R̂ ^ . 
These problems were discussed with the application 

engineer of the AD9500 and some of them were answered. 
They are discussed in the Appendix-B. 
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5.0 Conclusions; 
The digitally programmable generator chip, the 

Ang500, by Analog Devices, was characterized and 

tested for the three types of configurations, as 

explained in the section 3.3. The ring oscillator 

configuration was chosen in the design of a timing 

control circuit, which can be used for the NBS Voltage 

Step Generator control unit. 

Using the two AD9500s, a circuit was designed 

and tested to generate two output pulse trains, whose 

frequency can be controlled by the digital input to the 

system. From the results in the Table 1 and the Table 2, 

it was concluded that the output pulse repetition rate 

(i.e. the frequency) was controlled by the digital input 

to the two AD9500S. Also, an effective control over the 

duty cycle of the output is possible by using a RS-

flipflop, as discussed in the section 4.3.1. 

It was found that the system of the Fig. 14, was 

not able to generate a good output pulses for the 

digital inputs in the range from 0000 0000 to 0000 1100. 

The output, with the the digital inputs from the above 

range, was associated with the constant, high frequency 

oscillations. Inspite of a hard effort, these 

oscillations could not be eliminated from the output 

pulses. The application engineer for the AD9500 was 
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informed with the all detailed technical information, 

about the above mentioned problem. 

Finally, in the AD9500 technical literature 

(published by the Analog Devices), some technical errors 

were found and they were discussed with the application 

engineer for the AD9500. The engineer acknowledged those 

errors and provided some useful information about the 

functioning of the AD9500. 
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APPENDIX-B 
Discussion with the Application Engineer of the AD9500 

The digitally programmable delay generator chip 

AD9500, was successfully used in the circuit, to 

generate the output pulse train. The frequency of the 

output pulse train was controlled by the digital input 

to the AD9500. 

During the phase of testing the AD9500 for the 

different configurations (section 3.3 of this report) 

and testing the circuit which can be used as a part of 

the NB5 Voltage Step Generator control unit (section 4.0 

of this report), there were instances where the 

functioning of the AD95OO was doubted. All the questions 

and doubts concerning the AD9500 were discussed with 

Mr. Jim Surber, Marketing(Application) Engineer at the 

Analog Devices, on the phone as well as on paper(mail). 

[Nr. Jim Surber, Marketing Engineer, Computer Labs 

Division, 7910 Triad Center Drive, Greensboro, NC 27409-

9605; Phone:(919) 668-9511] 

Some corrections were suggested for the technical 

literature for the AD9500, published by the Analog 

Devices (reference [33). They are as follows: 

* The literature should specify which configuration 

of the AD9500 is used for the electrical characteristic 

table. 

* It does not clearly indicate whether the ECL^jgp 
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is an output pin or an input pin. In reality, it is an 

output of -1.3 volts D.C. 

* Actually, the AD9500 has 8-bit digital input but in 

all the diagrams, in the literature, it is shown as DO 

to D8! (i.e 9-bit input !) 

* During the discussion of the ring oscillator, in the 

literature, it is shown that two pulse trains are 

produced at the OUTPUT and OUTPUT (corresponding to Q^ 

and Qg of Fig. 14), but in reality both are OUTPUT. 

There cannot be OUTPUT in that diagram. 

* In the graph of "some typical programmed delay 

ranges" (Fig. 7 of this report), it is not stated 

what is the corresponding digital input for the all 

delays shown on that graph. Actually those delays 

correspond to the digital input of 255 or $FF(hex). 

There were some technical questions concerning the 

AD9500; and they are as follows: 

* The first time the minimum configuration (section 

3.3.1) was tested, with a digital input = 00; a 

programmed delay of (? 30 ns was produced which is not 

logical. This was referred to Mr. Surber and he 

suggested not to use the OFFSET ADJUST pin in that 

configuration, as it is used while extending the full 

scale delay only. The reading for the programmed delay 

were taken again, without any connection to the OFFSET 

ADJUST pin, and a delay of (I 8 ns was obtained which is 

correct and was confirmed with Nr. Surber. 
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* Fig. 11 of this report, shows that the output pulse 

width reduces with the increase in the digital input. 

Why? No satisfactory answer yet! 

* It was found that in the ring oscillator configuration 

(circuit in the Fig. 14 of this report), the AD95OO was 

unable to work satisfactorily when a digital input of 

0000 1100 or less is applied. The output pulse train 

with this inputs, was associated with the constant, high 

frequency oscillations. Why? No satisfactory answer yet! 

» In the calculation of the Reset Time (page 20 of this 

report), the following expression was used: 

Reset Time = t^^ + (R^ C^, /I. 85) 

Why the term "(R^^ C^ /I. 85)" is used as the RC-time 

constant? A copy of the answer provided by Mr. Surber, 

is attached at the end of this Appendix. 

Mr. Surber was called quite frequently, for the 

above problems and he has been extremely helpful in 

providing the required information. He was very happy 

with the results and the technical information sent to 

him, regarding the above problems. He also suggested 

that, it is important to have the test circuit built up 

on a circuit board with a low impedance ground plane and 

all ground pin connections should be tied to the common 

ground plane as well as a ground connection for each 

power supply. Unfortunately, due to the time constraint, 

all the questions regarding the functioning of the 

AD9500, were not answered completely. 
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ABSTRACT 

A Voltage Step Generator(VSG) was designed and 
developed at the National Bureau of Standards(NBS). The 
VSG was designed to output programmable pulses. An 
attempt was made to redesign the timing circuit of the 
control unit of the VSG, to achieve the same goals, but 
with different hardware configuration. The digitally 
programmable delay generator chip, AD9500 of the Analog 
Devices was used for the above purpose. 

The AD9500 was characterized and tested for all 
the possible configurations. The ring oscillator 
configuration was chosen for the design of the timing 
circuit. The circuit was built and tested using the 
AD9500 and the results were recorded. There were some 
difficulties due to improper behavior of the AD9500. The 
application engineer at the Analog Devices was asked 
questions concerning the functioning of the AD9500. 


