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Abstract 

Gap junctions (GJ) are intercellular channels connecting adjacent cells, allowing small 

molecules to transport between cells, thereby maintaining all homeostasis. Loss of gap junctional 

intercellular communication (GJIC) and/or connexins, the gap junction proteins, is a hallmark of 

cancer. Restoration of GJIC and/or increase of connexin expression have been related to the 

reduction of tumorigenesis. Connexins have been reported as tumor suppressors due to both 

GJIC-independent and -dependent mechanisms. Therefore, development of effective agents or 

methods to enhance GJIC and restore connexin expression in cancer cells is a new strategy in 

cancer treatment. PQ1, 6-Methoxy-8-[(3-aminopropyl)amino]-4-methyl-5-(3-trifluoromethyl-

phenyloxy)quinoline, has been demonstrated to increase GJIC, restore connexin expression, and 

exert anti-cancer effects on T47D breast cancer cells. Studies of apoptotic pathways showed that 

PQ1 activated both extrinsic and intrinsic apoptotic pathways, indicating that PQ1 exerts its anti-

cancer effects via a GJIC-independent mechanism through the induction of apoptosis. 

Combinational treatment of PQ1 and cisplatin showed that PQ1 counteracted cisplatin-induced 

inhibition of GJIC and reduction of connexin expression, thereby increasing the efficacy of 

cisplatin in T47D cancer cells via a GJIC-dependent mechanism. Further studies of drug 

distribution and toxicity revealed that administration of PQ1 by oral gavage can be achieved with 

low toxicity to normal vital organs. All the results suggest that PQ1, a gap junction enhancer, can 

function as an anti-cancer agent and potentiate the efficacy of antineoplastic drugs via both 

GJIC-independent and -dependent pathways.  
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Chapter 1 - Review of Literature 

1.1 Gap Junctions and Connexins 
Gap junctions are intercellular channels connecting adjacent cells, allowing small 

molecules of less than 1.2 kDa in size to transport between cells. Gap junctions are 

formed by the gap junction protein known as connexins. Six connexins oligomerize into a 

hexameric structure known as connexon. Connexon docks with another connexon from 

the adjacent cell to form a gap junction. Gap junctions have been found in nearly all 

animal organs and tissues.  In normal cells and tissues, gap junctions play an important 

role in controlling cell growth, regulating cell differentiation, and maintaining 

homeostasis. 

 1.1.1 Nomenclature and Distribution of Connexins 
Connexins are found only in vertebrates. Recently, the screening of the mouse and 

human genomic databases has revealed 21 human and 20 mouse connexin genes, each 

encoding a protein [1-4]. Two systems have been used for the connexin nomenclature. 

The most widely used nomenclature system is based on the predicted molecular mass of 

connexin polypeptide [5]. For example, connexin 43 (Cx43) is a connexin with a 

predicted mass of 43 kDa. The other system, the Greek nomenclature system, is based on 

evolutionary considerations [6]. In this system, connexins are divided into subgroups (α, 

β, γ or δ) with respect to a combination of gene structure, overall sequence homology, 

and matching of specific sequence motifs [7], such as α1 represents for Cx43, β1 

represents for connexin 32 (Cx32), and so on. Connexins have a near-ubiquitous 

distribution in the tissues of vertebrates. However, different connexins have been 

observed in different tissues, indicating the tissue specific expression of connexins [1]. 

The connexin genes, the nomenclature of connexins based on two systems, and the 

representative tissues in human are shown in Table 1.  

 

Gene 
Molecular Mass 

Nomenclature 

Greek Letter 

Nomenclature 

Representative 

Tissues/Organs 
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GJA1 Cx43 α1 Heart, skin, breast 

GJA3 Cx46 α3 Lens 

GJA4 Cx37 α4 
Blood vessels, 

endothelium 

GJA5 Cx40 α5 Heart, endothelium 

GJA6 

(GJA6P) 
Cx33 α6 Pseudogene in humans 

GJA8 Cx50 α8 Lens 

GJA10 Cx59 α9[8] Lens (retina)[9] 

GJA10 Cx62 α10 Lens (retina)[9], ovary 

GJB1 Cx32 β1 Liver, brain 

GJB2 Cx26 β2 
Liver, breast, Cochlea, 

skin 

GJB3 Cx31 β3 Skin, placenta 

GJB4 Cx30.3 β5 Thymus, Skin 

GJB5 Cx31.1 β4 Skin 
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GJB6 Cx30 β6 Skin, cochlea, brain 

GJB7 Cx25 β7[8] N.D. 

GJC1/GJA7 Cx45 α7 or γ 
Pancreas, small 

intestine 

GJC2/GJA12 Cx47 γ Oligodendrocytes 

GJC3 Cx30.2 γ Ear 

GJD2/GJA9 Cx36 α9 or γ Pancreas, neurons 

GJD3/GJC1 Cx31.9 β 
Liver, spleen, kidney, 

heart, colon 

GJD4 Cx39 α2 Developing muscle 

GJD4 Cx40.1 δ N.D. 

GJE1 Cx23 δ5[8] N.D. 

GJE1 Cx29 δ Brain 

N.D.= Not determined 

Table 1. Summary of published human connexin genes, connexin nomenclatures, 

and representative organs  
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 1.1.2 Structures of Connexins and Gap Junctions 
Examination of amino acid sequences and the locations of different domains 

revealed the structure of connexins [10-13]. The members of connexin family usually 

weigh between 26 and 60 kDa with an average length of 380 amino acids. Despite the 

variations in weight and length, several features of connexins are common to all. Each 

connexin has four hydrophobic transmembrane domains (M1- M4) (Figure 1.1). Studies 

of Cx43 showed that the transmembrane domains are α-helical, on the basis of a 7 Å 

structure [14]. Two loops, between M1 and M2, as well as M3 and M4, are accessible 

from extracellular side [12]. A hydrophilic loop between M2 and M3, the carboxy-

domain (C-terminus) and the amino-domain (N-terminus) are accessible from the 

cytoplasmic side [15]. The conserved regions are located in transmembrane domains and 

extracellular loops [3]. The length of the C-terminus varies among connexins, and is 

responsible for the molecular weight of the connexin. The C-terminus contains several 

sites related to connexin phosphorylation, chemical gating, and protein binding [16-18].  

 

 
 

Figure 1.1 Structure of connexin.  
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The cylinders represent transmembrane domains (M1- M4). The loops between the first 

and second, as well as the third and fourth, transmembrane domains are predicted to be 

extracellular (E1 and E2, respectively). Both the C and N cytoplasmic termini are shown 

in the figure.  

 

Connexins oligomerize into hexamers, the connexons. After formation, connexon 

stays at plasma membrane or docks with another connexon from the adjacent cell to form 

a complete gap junction channel [19]. The two extracellular loops (E1 and E2) are 

considered to be involved in the docking of connexons. In each of the extracellular loops, 

a set of three cysteine residues exists with high reserved order (except for Cx31): [C-X6-

C-X3-C] for the first loop and [C-X5-C-X5-C] for the second loop. Opposing cysteines in 

both loops were reported to form disulfide-bridges enabling two connexons to dock with 

each other [7]. Connexons can be formed with uniform connexins (homomeric) or 

differing connexins (heteromeric) (Figure 1.2). The gap junctions channels contain two 

identical connexons are called homotypic, whereas gap junctions with differing 

connexons are called heterotypic (Figure 1.2). Based on different combinations, gap 

junctions show great variations of channel subtypes. Co-expressions of two compatible 

connexins in the same cells make it possible to assemble heteromeric connexons. Many 

heteromeric connexons have been reported in different organs. Cx26/Cx32 connexons 

have been shown to exist in the liver [20], Cx26/Cx30 connexons in the cochlea[21], 

Cx46/Cx50 connexons in the lens [22], and Cx43/Cx45 connexons in the myocardium 

[23, 24]. However, not all co-expressed connexins can form heteromeric connexons. For 

example, Cx26 is able to co-oligomerize with Cx32 but unable to co-oligomerize with 

Cx43 [20, 25]. The imcompatibility between connexins is suggested to be related to the 

second extracellular domain (E2) [26, 27] and tempers the diversities of gap junction 

channels.  
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Figure 1.2 Possible arrangements of connexons and gap junctions. 

Connexons are composed of six identical connexin subunits (homomeric) or different 

species of connexins (heteromeric). Connexons dock with each other to form gap 

junction channels. Gap junction channels formed with identical connexons are called 

homotypic, while those with different connexons are called heterotypic. Connexins are 

indicated by cylinders (red and blue). 

 

 1.1.3 Regulation Pathways of Connexins 

 1.1.3.1 Biosynthesis of Connexin 

 1.1.3.1.1 Connexin Genes 

Some connexin genes are clustered together within the genome [28]. Human 

chromosome 1 codes for eight connexins, chromosome 6 for four connexins, 

chromosome 13 for 3 connexins, chromosome 17 for two connexins, and chromosomes 

7, 10, 15, and the X chromosome for one connexin each [29]. The general structure of 

connexin genes is very simple. The gene is composed of a separate 5’-untranslated region 

(5’-UTR) which is designated as exon 1, as well as an exon 2 which contains complete 

protein coding sequence and the 3’-untranslated region (3’-UTR) (Figure 1.3 A) [29]. 

Subsequently, exceptions from the initial structure have been described. For example, 

GJB1 (Cx32) has multiple 5’-UTR exons that are spliced in an alternate manner due to 
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transcription from tissue-specific promoters (Figure 1.3 B) [29]. GJC1 (Cx45) has three 

exons, including two 5’-UTR exons with one coding exon. GJC1 transcripts can be 

differentially spliced so that 5’-UTR can be generated from exon 1 and 2 or only from 

exon 2 after transcription driven from a single promoter (Figure 1.3 C) [29]. Additionally, 

in some connexin genes, such as GJD2 (Cx36) and GJE1 (Cx23), the coding region can 

be interrupted by introns (Figure 1.3 D) [29].  

 1.1.3.1.2 Gene Transcription of Connexin 

The transcription of connexin DNAs is regulated by a variety of transcription 

factors, biological substances, and signal transduction pathways, which are cell type-

independent (ubiquitous) or –dependent. The investigations of all factors that regulate 

expression of connexin genes have been reviewed previously [30]. In most connexin 

genes, the basal promoter P1 is located ≤ 300 bp upstream from the transcriptional 

initiation site in exon 1. Within this region, binding sites for transcription factors have 

been identified in several connexin genes. For instance, it contains binding sites for cell 

type-independent transcription factors, including TATA box-binding protein, Sp1/Sp3 

and AP-1, as well as for cell type-dependent factors, containing cardiac-specific 

transcription factors (Nkx2-5, GATA4, Tbx5) and HNF-1 [30]. Binding of these factors 

is not only important for basal expression of connexins, but also important for large 

changes in expression. In addition to the transcription factors, regulation of connexin 

transcription is related to many biological substances and signal transduction pathways. 

For example, cyclic adenosine monophosphate (cAMP) and retinoids have been reported 

to active connexin expression [31-33]. Over-expressions of Wnt1 and H-Ras increase 

expression of Cx43 mRNA and protein, indicating that Wnt pathway and Ras-Raf-MAPK 

pathway are involved in the regulation of Cx43 expression [31, 34].  
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Figure 1.3 Structure of the connexin genes. 

Diagrams show the structures of different connexin genes with the noncoding regions 

(dark blue boxes) and coding regions (light blue boxes). The variations occur in the 5’-

UTR. A. The general structure of connexin gene contained only one 5’-UTR exon. B. 

Some connexin genes contain two or more 5’-UTR exons (1A and 1B) that are 

alternatively utilized due to transcription from tissue-specific promoters. C. Connexin 

genes contain two or more 5’-UTR exons (1 and 2) that may be present with the coding 

exon (3) in the mature mRNA or that may be alternatively spliced to generate multiple 

mRNA variants. For these connexin genes, multiple mRNAs can be generated after 

transcription driven from a single promoter. D. In a few connexin genes, the coding 

region is interrupted by an intron.  

 1.1.3.1.3 Translation of Connexin 

After transcription, the connexin protein is synthesized by translation in the 

ribosomes that are bound to the endoplasmic reticulum (ER) membrane. The encoded 

hydrophobic domains are recognized by a signal recognition particle (SRP) to form the 

SRP/ribosome/nascent-polypeptide-chain/mRNA complex [35]. The complex dock to a 
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protein-channel in the ER membrane which allows the translation of the nascent chain to 

proceed until polypeptide is synthesized [36]. Once complete, connexins are translocated 

from the hydrophilic channel lumen of the translocon to the hydrophobic ER membrane 

environment [37]. The charged residues within the hydrophobic transmembrane regions 

of connexins might be shielded from the hydrophobic bilayer environment through 

oligomerization.  

Although connexin gene expression is considered to be dominantly regulated at 

the transcriptional level, many studies found that alternative regulation at the translational 

level could be in place as well [38]. It has been reported that in addition to the Cap-

dependent translation using the 5’-Cap recognition site, some mRNAs containing internal 

ribosome entry site (IRES) are translated through the Cap-independent translation in cells 

[39, 40]. IRESs have been identified in the 5’-UTRs of some connexin genes, including 

Cx43, Cx32, and Cx26 [41-43], highlighting the potential role of Cap-independent 

translation of connexins especially under the conditions when Cap-dependent translation 

is suppressed. The IRES-mediated translation makes it possible to regulate connexin 

expression at the translational level. For example, Lahlou et al. reported that the existence 

of IRES in Cx26 mRNA permits connexin expression in density-inhibited or 

differentiated cells, where Cap-dependent translation is generally reduced [43]. They also 

found that Cx26 expression is increased at the level of translation in density inhibited 

human pancreatic cells, and the increased translation is not sensitive to rapamycin, an 

inhibitor of Cap-dependent translation, suggesting that the IRES-dependent synthesis is 

an important mechanism of the endogenous expression of Cx26 [43]. In addition to the 

IRES-mediated translational control, regulation of connexin expression through short 

upstream open reading frames (uORFs), which are located between 5’ end of the mRNA 

and the beginning of the main ORF is another type of translational control. The uORF on 

an mRNA generally decreases translation of the downstream genes. uORFs have been 

identified in mRNAs of Xenopus laevis Cx41 as well as mouse Cx31, Cx45, Cx46, and 

Cx47 [44, 45]. Meijer et al. reported that mutation of each of three uAUGs into AAG 

codons of Xenopus laevis Cx41 significantly enhanced translation compared to the wild-

type Cx41 5’-UTR, indicating that the three uORFs play an important role in the 

regulation of Cx41 expression [44]. Pfeifer et al. found that among various mouse Cx43 
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transcripts, the Cx43 5’-UTRs lacking uAUG have higher translation efficiencies than 

those with uAUGs.  

 1.1.3.1.4 Connexin Assembly and Gap Junction Formation 

The newly synthesized polypeptides of connexins are cotranslationally inserted 

into the ER membranes and transported via the Golgi apparatus and the trans-Golgi 

network to the plasma membrane [46]. During this process, connexin peptides are 

posttranslationally modified and oligomerized into connexons. For example, pulse-chase 

studies show that Cx43 is initially synthesized as a 40 to 42 kDa polypeptide which is 

subsequently posttranslationally modified by phosphorylation of serine residues in a 

serine-rich sequence near the carboxy terminus [47, 48]. The phosphorylation occurs 

soon after translation, even before the Cx43 exit from the Golgi apparatus [49, 50].  

Six connexins oligomerize into one connexon before they transport to the plasma 

membrane. The intracellular location where connexins assemble into connexons is 

connexin-specific. Das Sarma et al. provided evidence for the assembly of Cx32 in the 

ER [51]. Musil and Goodenough reported that the assembly of Cx43 occurs after exit 

from the ER, probably in the trans-Golgi network [52]. Ahmad and Evans demonstrated 

that Cx26 hemichannels are integrated directly into plasma membranes in a 

posttranslational manner [53]. For the heteromeric connexons, Diaz et al. provided 

evidence for the assembly of Cx26 and Cx32 in Golgi membranes, while the oligomeric 

intermediates of Cx26 are in the ER-Golgi-intermediate subcellular fraction [54]. In the 

cells expressing two connexins, it is possible to form either homomeric connexons or 

heteromeric connexons or both. Not any connexins are compatible to form heteromeric 

connexons. Until now, all reported heteromeric connexons are composed of two members 

of the same subgroup. For example, Cx46 hetero-oligomerize with Cx50 (all α-group) 

[22], Cx32 hetero-oligomerize with Cx26 (all β-group) [55], and Cx43 hetero-

oligomerize with Cx40, Cx37, and Cx46 (all α-group), but not with Cx32 (β-group) [56-

58]. It is still unclear that how the selective compatibility between different connexins is 

achieved. Results of co-immunoprecipitation of full-length and truncated Cx43, Cx32, 

and Cx26 polypeptides indicated that hetero-oligomerization might be based on intrinsic 

signals [59, 60]. The signals that allow connexins isoforms to recognize each other might 
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be located in the C-terminus, while the signals that regulates subunit compatibility might 

be located in the N-terminus of the connexin polypeptides. Recent studies using the 

CLUSTAL W algorithm of the OMIGA sequence analysis package suggested that the N-

terminal amino-acid residues at position 12/13 are involved in the oligomerization 

compatibility of α and β connexins [61].  

The trafficking of connexin polypeptides from ER to Golgi is through membrane 

vesicles. Transportation of connexins follows the general intracellular transport route. 

The membrane vesicles containing polypeptides is budded from the ER and fused with 

subsequent intracellular membrane compartments, such as Golgi stacks, [49]. After 

transportation, the membrane vesicles shuttle back to the membrane compartments that 

they originated [62]. The delivery of connexons to plasma membrane has also been 

studied. Lauf et al. reported that Cx43 connexons were delivered in vesicular carriers that 

traveled along microtubules from the Glogi to the plasma membrane [63]. Martin et al. 

reported that Cx26 connexons traffic in a microtubule independent pathway [64]. The 

observations of very short distance between the locations of ER membranes and plasma 

membrane suggested that connexons might be able to transfer directly into the plasma 

membrane from the ER. In addition to microtubules, intact actin filaments have also been 

reported to be involved in the plasma membrane delivery of Cx26 [65].  

After trafficking, the connexons are ready to insert into the plasma membrane. 

Connexons are inserted into the plasma membrane in a closed configuration [66]. Freeze-

fracture electron microscopic studies showed that the insertion is through fusion of 

particle-bearing cytoplasmic vesicle couriers [67]. Lauf et al. reported that insertion of 

Cx43 connexons in non-polarized HeLa cells were distributed over the entire non-

junctional plasma membrane surface [63]. The results of Fluorescence Recovery After 

Photo-bleaching (FRAP) experiments indicated that the inserted connexons can move 

laterally in the plasma membrane. The connexons are distributed in the plasma membrane 

as single particles, or small groups, but not aggregates.  

After insertion, the connexons stay in the plasma membrane as hemichannels or 

dock with another connexon on the adjacent cell to form double-membrane spanning gap 

junction channels (as described in section 1.1.2). The gap junction channels aggregate to 

form plaques instead of staying as single channels on the plasma membrane, and the 
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plaques keep growing by addition of individual gap junction or fusion of small 

aggregates [68, 69]. The number of individual channels in a single plaque varies from 

less than a dozen to several thousands. The newly synthesized gap junctions are added 

along the outer margins of plaques [63, 70]. When removal of older gap junctions in the 

center of plaques and accrual of newly synthesized gap junctions to the margins of 

plaques reach a balance, the size of the plaques keep constant. The mechanisms of the 

gap junction aggregation into plaques are not completely clear. 1.1.3.2 Gap Junction and 

Connexin Degradation 

The half-life of connexins is very short, ranging from 1 to 5 hours [71-73]. Gap 

junctions cannot be separated into connexons during the internalization [74]. 

Morphological and biochemical studies showed that the entire junctions were internalized 

into one of the adjacent cells via endocytosis, and formed double-membrane vacuoles 

named “annular gap junctions” or “connexosomes” [75, 76]. Following internalization of 

gap junctions, connexins are degraded through lysosomal or proteasomal degradation 

pathways [71]. Many regulations, including phosphorylation and ubiquitination have 

been reported to be involved in the degradation process [77, 78]. 

 1.1.3.2.1 Phosphorylation of Connexins 

All connexin isoforms are phosphoproteins, except Cx26 [79, 80]. Connexin 

phosphorylation plays an important role in multiple steps in the life cycle of gap 

junctions, including connexin biosynthesis, trafficking, assembly, membrane insertion, 

channel gating, internalization, and degradation [1]. Several protein kinases, such as 

mitogen-activated protein kinase (MAPK), protein kinase C (PKC), protein kinase A 

(PKA), cdc2/cyclinB, casein kinase 1, v-src and c-src have been identified to target 

different phosphorylation sites on connexins [81]. Most of the consensus sites for 

phosphorylation on connexins are located in the carboxy terminus. For example, on 

Cx43, the phosphorylation sites are Ser-255, Ser-279, and Ser-282 for MAPK, Ser-368 

and Ser-372 for PKC, and Tyr-247 and Tyr-265 for v-src [82-85].  

Cx43 is the most widely studied connexin. The activation routes of protein 

kinases in Cx43 phosphorylation can be generally divided into three pathways (Figure 

1.4) [16, 82, 85]:  
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1. Epidermal growth factor (EGF) binds to its receptor (EGF-R), which induce the 

dimerization and autophosphorylation of EGF-R. The phosphorylated EGF-R interacts 

with Grb2 adaptor protein and SOS guanine nucleotide exchange protein. Membrane-

localized SOS activates ras from GDP-bound form (p21ras-GDP) to GTP-bound form 

(p21ras-GTP), initiating the phosphorylation of raf-kinase (c-Raf). Phosphorylation of c-

Raf activates MAPK kinase (MEK ½) and MAPK. Active MAPK directly 

phosphorylates Cx43 on serine residues (Ser-255, Ser-279 and Ser-282). Binding of 

lysophosphatidic acid (LPA) to its receptor (LBP) also leads to the activation of ras 

through interaction with a heterotrimeric G-protein (Gi), and initiates activation of c-Raf, 

MEK 1/2, and MAPK.  

2. Other ligands (L) bind to their membrane receptors (R), which activates Gq 

proteins. Activation of Gq proteins induces activation of phospholipase C (PLC), and 

subsequently converts phosphatidylinositol 4,5-bisphosphate (PIP2) to diacylglycerol 

(DAG) and inositol 1,4,5-trisphosphate (IP3). DAG directly activates PKC, while IP3 

activates PKC through induction of Ca2+ release from ER. PKC can directly 

phosphorylate Cx43 on serine residues, or activate MEK ½ and MAPK to phosphorylate 

Cx43.  

3. Expression of v-src tyrosine kinase can also phosphorylate Cx43. The tyrosine 

kinase v-src interacts directly with Cx43 via its SH3 and SH2 domains, and 

phosphorylates Cx43 on two tyrosine residues.  

In general, connexin phosphorylation is not a generic prerequisite for connexin 

degradation as evidenced by the fact that Cx26 is not phosphorylated but still appears to 

be degraded in a short time [86]. However, increasing number of reports provide 

evidence that for some connexins, notably Cx43, phosphorylation may trigger its 

internalization and degradation. It has been reported that phosphorylation is correlated 

with Cx43 internalization when cells exit the G2 phase and entering mitosis. At the onset 

of mitosis, p34cdc2 protein kinase-dependent phosphorylation of Cx43 correlated with 

cells rounding and gap junction internalization into large structures which resemble 

internalized annular junctions  [87, 88]. In addition to p34cdc2 protein kinase, PKC 

activation and EGF-induced MAPK activation have also been shown to be tightly 

associated with Cx43 internalization and eventual degradation. Ruch et al. reported that 
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in WB-F344 rat liver cells, PKC-induced phosphorylation was related to gap junction 

internalization [89]. Lampe found that the PKC activator TPA had a significant inhibition 

of Cx43 assembly in Novikoff cells and caused the Cx43 half-life to decrease from 3.1 to 

2 h [90]. Leithe and Rivedal provided evidence to show that EGF-induced 

phosphorylation of Cx43 in IAR20 rat liver epithelial cells resulted in the increased 

ubiquitination of Cx43 which may act as a signal of Cx43 internalization [91]. Although 

the role of phosphorylation in connexin degradation is still controversial, it is reasonable 

to propose that the internalization of connexins, especially Cx43, is regulated by select 

and specific phosphorylation events. Furthermore, the phosphorylation may also regulate 

the ubiquitination of connexins.  

 

 
Figure 1.4 Schematic presentation of three phosphorylation pathways of Cx43. 

1. Binding of EGF to EGF-R induces the receptor dimerization, autophosphorylation and 

interaction with Grb2 and SOS. Membrane-bound SOS transforms ras from GDP-bound 

form (p21ras-GDP) to GTP-bound form (p21ras-GTP). Binding of LPA to its receptor LBP 

which is coupled to Gi protein also activates ras. After activation, ras phosphorylates c-

Raf and subsequently activates MEK ½ and MAPK. MAPK phosphorylates Cx43 on 

serine residues. 2. Other ligands L bind to their receptors R, which induces activation of 

Gq proteins. Gq proteins activate PLC which subsequently converts PIP2 to DAG and IP3. 
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DAG directly activates PKC, while IP3 induces Ca2+ release from ER which also 

promotes PKC activation. Active PKC phosphorylates Cx43 directly or indirectly 

through activation of MEK ½ and MAPK. 3. Tyrosine kinase v-src interacts directly with 

Cx43 through its SH3 and SH2 domains, and phosphorylates Cx43 on tyrosine residues.  

 1.1.3.2.2 Ubiquitination of Connexins 

Some reports suggest that Cx43 is a substrate for ubiquitination [91, 92]. 

Ubiquitination of  Cx43 is important in regulating Cx43 degradation [78]. Ubiquitination 

of Cx43 occurs at the plasma membrane, indicating that ubiquitin might be involved in 

the internalization and intracellular trafficking of Cx43. Since Laing and Beyer reported 

the involvement of ubiquitin in Cx43 degradation in 1995 [92], many studies have 

provided evidence for the role of ubiquitination in Cx43 degradation. Laing and Beyer 

used the Chinese hamster ovary cell line CHO-ts20 with the expression of a thermolabile 

E1 ubiquitin-activating enzyme. They found that Cx43 was increased when the ubiquitin-

activating enzyme is defective, indicating the involvement of ubiquitin in Cx43 

degradation [92]. They also provided evidence that the ubiquitinated Cx43 is mainly 

degraded via the proteasomal pathway [92]. Subsequent experiments performed by 

Leithe and Rivedal suggested that EGF-induced phosphorylation is a signal for 

conjugation of ubiquitin to Cx43 [91]. The EGF-induced hyperphosphorylation, 

ubiquitination, internalization and degradation of Cx43 were found to be mediated by 

MAPK pathway [91]. By using the 12-O-tetradecanoylphorbol-13-acetate (TPA), a 

tumor-promoting PKC activator, to study the effects of PKC on Cx43 ubiquitination, 

Leithe and Rivedal found that TPA-induced degradation of Cx43 was associated with 

strongly increased ubiquitination of Cx43 [93]. Results of coimmunoprecipitation and 

Western blotting showed that the TPA-induced ubiquitination involved both PKC and 

MAPK pathways [93]. Leykauf et al. reported that in the rat liver epithelial cell line WB-

F344, Cx43 binds to the WW domains of E3 ubiquitin ligase Nedd4 through the PY 

motif, a proline-rich region on the Cx43 C-terminal sequence [94]. Depletion of Nedd4 

by RNA interference caused accumulation of Cx43 gap junctions at the plasma 

membrane, indicating that ubiquitination may play a role in the internalization of Cx43 

[94]. Girao et al. further reported that Nedd4-mediated ubiquitination of Cx43 is required 
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to recruit Eps15, an endocytic adaptor containing ubiquitin-binding domains, through its 

ubiquitin-interacting motif, and targets ubiquitinated Cx43 to the endocytic pathway [95]. 

Based on all the evidence, the degradation pathway of Cx43 can be described: 

Activation of MAPK or PKC phosphorylates Cx43, which subsequently recruits E3 

ubiquitn ligase, such as Nedd4. Nedd4 binds to Cx43 via WW domains and ubiquitinates 

Cx43. In the ubiquitination process, the recruitment of Eps15 is required. After 

ubiquitination, Cx43 is degraded through proteasomal pathway. Nedd4 can also bind to 

Cx43 independently of the Cx43 phosphorylation state. In addition to a ubiquitin-

dependent pathway for Cx43 endocytosis, a ubiquitin-independent pathway exists, in 

which the YXXΦ motif in the Cx43 C terminus is important.  

No direct evidence exists that other connexins are ubiquitinated prior to 

internalization and degradation, except Cx43. Henzl et al. have reported that OCP1 

(organ of Corti protein1) harbors a consensus F-box motif which is a subunit of a SCF E3 

ubiquitin ligase and that OCP1 binds to Cx26 in the Corti [96, 97]. However, further 

studies are needed to determine the role of this interaction in Cx26 trafficking and 

degradation. 

 1.1.3.2.3 Degradation of Connexins 

Both lysosomal and proteasomal degradation pathways have been reported to be 

involved in connexin degradation [98]. The role of lysosomes in degrading connexins is 

prominent. Electron microscopic studies showed that connexosomes are able to fuse 

directly with lysosomes, providing convincing evidence that lysosomes play a critical 

role in connexin degradation [76, 99, 100]. Based on inmmunoelectron microscopic 

experiments, Leithe et al. suggested that internalized Cx43 gap junctions undergo a 

maturation process from double-membrane vacuoles to multivesicular endosomes with a 

single limiting membrane [101]. This transformation is associated with trafficking of 

Cx43 from early endosome to late endosome, prior to lysosomal degradation of Cx43 

[101]. Proteasomal degradation pathway plays a critical role in some cell types as 

evidenced by the fact that lysosomal inhibitors, such as chloroquine, leupeptin, and 

NH4Cl, do not cause as much of an increase in the half-life of Cx43 as proteasomal 

inhibitors [102]. For example, in CHO cells, lysosomal inhibitors have modest effects on 
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the half-life of Cx43 while proteasomal inhibitors are more potent at extending the life of 

connexins [103]. In some cells types, such as MDA-MB-231 breast cancer cell line, both 

lysosome and proteasome play distinct roles in the life cycle of Cx43. Qin et al. 

demonstrated that in MDA-MB-231 cells, secretory Cx43 and internalized gap junctions 

were degraded by lysosomes, while destabilization of phosphorylated gap junctions at the 

plasma membrane were associated with proteasomes [104]. How the cells select the 

degradation pathways of connexins is still not clear. Girao and Perira showed that 

phosphorylation of Cx43 stimulates proteasome-dependent degradation in lens epithelial 

cells [105]. Thomas et al. found a tyrosine-based sorting signal in the C-terminus of Cx43 

that appears to be a prime determinant of Cx43 stability by targeting Cx43 for 

degradation in the endocytic/lysosomal compartment [106].  

 

 
Figure 1.5 The life cycle of a connexin. 

The connexin is synthesized in the ribosomes that are bound to the endoplasmic 

reticulum (ER) membrane and entered the classical secretory pathway. Connexin 
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topology is established in the ER where the protein is observed traversing the membrane 

four times. Connexin transport vesicles bud from exit sites of ER and fuse with the cis 

Golgi network of the Golgi apparatus. Oligomerization of connexins into connexons 

occurs in the ER, Golgi or trans Golgi network (TGN). Mis-folded connexins are 

translocated from ER membranes and degraded by proteasome. In some transformed cells 

with defective protein trafficking characteristics, connexins may be able to enter 

lysosomes for degradation. Closed connexons are delivered by transport vesicles to the 

cell surface with the help of microtubules. Connexon remains closed and diffuse 

throughout the plasma membrane until docking with another connexon in the adjacent 

cell to form a gap junction channel. The docking of connexons is facilitated by cadherin-

based cell adhesion. Connexin binding proteins are proposed to play a role in regulating 

gap junction assembly and function. Gap junctions aggregate into plaques. The gap 

junction plaque is assembled from the outer rim and the inner gap junctions become 

internalized as double-membrane structures termed annular junctions or connexosomes. 

Other mechanisms of gap junction disassembly and internalization using clathrin, 

caveolae and endosomes have not been ruled out. Degradation of gap junctions is 

complex and evidence suggests roles for both proteasomes and lysosomes. Gap-junction-

like membrane fragments have been identified in lysosomes. Connexin phosphorylation 

and ubiquitination have been reported to play important role in the proteasomal-

degradation of Cx43. The life cycle of connexins has a very short life-time, ranging from 

1 to 5 h.  

 

 1.1.4 Functions of Gap Junctions 

 1.1.4.1 Function of Gap Junction Channels 

Gap junctional channels connect the cytoplasm of two cells, and provide a means 

for adjacent cells to exchange small molecules of less than 1.2 kDa, including H2O, ions 

(K+ and Ca2+), second messengers (cAMP, cGMP, and inositol 1,4,5-triphosphate (IP3)), 

and small metabolites (glucose), allowing electrical and biochemical coupling between 

cells [107, 108]. According to the properties of the molecules transported by the gap 
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junctional cell-cell communication, the functions of gap junctions in tissues can be 

categorized as follows: 

1) Rapid exchange critical ionic electrical signals, such as Ca2+, and their 

regulators. By gap junctional communication, waves of Ca2+ ions can move from a 

disturbance point in a field of cells through cells to neighboring cells in order to signal 

the disturbance, so that the regional tissue reaction can occur in coordinated manner 

[109].  

2) Allow the distributions of critical metabolites, such as cAMP, among tissue 

cells. Because all of the cells in a tissue do not possess the same metabolic capacity, gap 

junctional communication can help the cells of lower capacity benefit from those with 

higher capacity [110]. Therefore, gap junction-mediated sharing of essential metabolites 

is beneficial to the tissue as a whole.  

3) Nourish the sick or deprived cells by healthy neighboring cells. When the gap 

junctional intercellular communication is not compromised and the toxicity limit is not 

exceeded, the cell injured is remediated with assistance from healthy neighboring cells, 

so that a tissue can recover after a toxic insult, keeping the homeostasis of the tissue.  

4) Alleviate the harmful effects of xenobiotic chemicals. By dispersing 

xenobiotic molecules from the exposure entrance point into the tissue via gap junctions, 

the local concentration of offending xenobiotics are diluted and easy to be metabolized in 

more cells and in a steady-state fashion. 

5) Eliminate unwanted byproducts. By gap junctional communication, 

byproducts are eliminated from tissue interior cells to the vascular system in a gradient 

fashion for purpose of excretion.  

 1.1.4.2 Function of Hemichannels 

In addition to gap junctional intercellular communication, connexin-forming 

hemichannels function as independent entities between intra- and extracellular milieus, 

which play critical roles in modulating cellular functions. Many functions have been 

reported to be related to hemichannels, including isosmotic cell volume regulation, 

inhibition of the activity of Ca2+-channels and glutamate release in the retina, rescue from 

apoptosis, regulation of glutamate and aspartate release in astrocytes, and differentiation 
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of teratocarcinama progenitor cells into neuronal and nonneuronal cells [111-116]. 

Hemichannels regulate cellular functions probably by the factors released through the 

open hemichannels. The released factors bind to the receptors on cell surface, which 

accordingly lead to the activation of intracellular signaling pathways and regulation of 

cellular function and physiology through gene transcription, translation, or post-

translation. Recent studies showed that connexin hemichannels release molecules like 

PGE2, ATP and NAD+ in response to stimuli such as mechanical stimulation, lower 

extracellular calcium, lower pH or metabolic inhibition [117]. ATP mediates cochlear 

homeostasis, ischemic preconditioning, and cell cycle through G-protein coupled 

purinergic receptor signaling [117]. PGE2 activates β-catenin, and subsequently induces 

Cx43 transcription [117]. NAD+ mediates cADPR, a factor related to cell cycle 

progression [117]. Detailed signaling pathways associated with hemichannel 

communication are still under investigation.  

 1.2 Gap Junctions and Diseases 

 1.2.1 Overview 
Mutations in connexins and dysregulation of gap junctions are associated with 

many diseases. At present, ten distinct diseases have been linked to gene mutations of 

connexin family members, such as demyelinating neuropathies, various skin disorders, 

cataracts, sensorineural deafness, oculodentodigital dysplasia (ODDD), and so on. The 

first discovered human disease caused by gene mutation in connexin is chromosome-X-

linked Charcot-Marie-3 Tooth disease, a peripheral neuropathy [118]. This disease is 

related to over 270 mutations in Cx32 and clinically manifested by progressive peripheral 

axon demyelination and limb weakness [119-121]. After that, a broad scope of human 

diseases has been reported to be induced by connexin mutations. Up to 40-50% of all 

cases of inherited neurosensory deafness are associated with mutations in the genes 

encoding Cx26, Cx30, Cx31, Cx32 and Cx43 [122]. Pelizaeus-Merzbacher-like disease is 

associated with gene mutations of Cx47 [123]. Skin disorders, including keratitis-

ichthyosis and palmoplantar keratoderma are linked to mutations in Cx26, Cx30, Cx30.3, 

Cx31, and Cx43 [124]. The skin diseases caused by the connexin mutations are always 
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accompanied by other diseases, like deafness, erythrokeratodermia variabilis, hidrotic 

ectodermal dysplasia and Clouston’s syndrome [124]. Congenital cataracts are related to 

mutations of Cx46 and Cx50 in lens [125]. ODDD which is occasionally accompanied by 

palmoplantar keratoderma is associated with Cx43 mutations [126]. Lastly, atrial 

fibrillation is reported to be associated with somatic mutations in Cx40 [127]. The 

connexin-linked diseases and the related connexin mutations are listed in Table 2. 

 

Connexin-linked diseases Gene mutations in connexins 

Peripheral neuropathy (X-linked Charcot-

Marie-Tooth disease) 
Cx32β1 

Deafness 
Cx26β2, Cx30β6, Cx31β3, Cx32β1, and 

Cx43α1 

Skin disorders 
Cx26β2, Cx30β6, Cx31β3, Cx30.3, and 

Cx43 

Cataracts Cx50α8 and Cx46α3 

Oculodentodigital Dysplasia (ODDD) Cx43α1 

Atrial fibrillation Cx40 

Pelizaeus-Merzbacher-like disease Cx47 

Table 2 Connexin-linked diseases and the connexins with related gene mutations 

 

Apart from the connexin-linked disease associated with gene mutations, many 

diseases, termed connexin-dysregulated diseases, are related to changes in connexin 

expression level, assembly state, localization, and deficiency in gap junctional 

intercellular communication. One example of the connexin-dysregulated diseases is 

illustrated by cardiovascular disease which is caused by the changes in the gap junction 

distribution and remodeling. In advanced ischemic disease, the normal distribution of gap 

junctions in the narrow zone consisting of 5 layers of cells bordering healed myocardial 
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infarctions was disrupted with a shift of Cx43-containing spots to the lateral cell borders 

[128]. In a guinea pig model of congestive heart failure, a 37% reduction of Cx43 was 

observed at the congestive heart failure stage [129]. Matsushita et al. found that in rat 

ventricular cells bordering healed infarcts, many of the lateral gap junction plaques have 

no contributions to cell-to-cell communication, suggesting that lateralization of gap 

junctions is a prominent feature of diseased myocardium [130]. Other studies showed that 

protein kinases and phosphatases play an important role in disease state. In myocardial 

ischemia, Cx43 becomes increasingly less phosphorylated, redistributes to the lateral cell 

surfaces and accumulates in intracellular compartments [131]. Later studies by Solan et 

al. revealed that Cx43 phosphorylation at S365 was lost in ischemic hearts, while 

phosphorylation at S368 was increased [132]. Kieken et al. reported that scaffolding to 

Cx43 by ZO-1 is competed by active c-Src binding to ZO-1, leading to Cx43 

relocalization to lateral cell surface and finally result in arrhythmogenesis [133]. All these 

examples reveal that cardiac pathologies are closely related to connexin redistribution 

and remodeling. 

Another important example of connexin-dysregulated diseases is cancer. 

Numerous reports have provided evidence to establish the relationship between connexin 

dysregulation and cancer.  

 1.2.2 Gap Junctions and Cancer 
Cancer is a complicated disease which is caused by multiple different 

mechanisms related to cell differentiation, regulation and growth control. Because gap 

junctional intercellular communication (GJIC) has been associated with control of cell 

growth, development, differentiation and homeostasis, it is supposed that there may be a 

link between cancer and GJIC.  The assumption first originated from Loewenstein and his 

colleagues who found the lack of cell coupling in rat and human hepatoma cells, tumors 

of the thyroid in rodents, and carcinoma of the stomach in humans [134-136]. Based on 

several studies in 1960s, Loewenstein hypothesized that lacking of gap junctions or GJIC 

is a prerequisite to the dysregulation of growth control, and is related to tumorigenesis. 

This hypothesis was formulated and documented into a prescient review in 1979 [137]. 
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Since then, a tremendous accumulation of results have been reported to demonstrate the 

important roles of connexins and GJIC in cancer. 

Through the years, a phenotypically heterogeneous population of neoplastic cells 

generates, forming a tumor. Considering the progression of solid tumors, cancer 

development can be schematically separated into three fundamental stages: growth of the 

primary tumor, invasion, and dissemination (metastasis). These three fundamental stages 

of solid tumor progression are representative of three very different phenotypes of cancer 

cells: deregulated growth (tumor formation), motility (invasive tumor), and interaction 

with both the endothelial barrier of blood or lymphatic vessels and the cells of the 

colonized organs (metastatic tumor). Because of the different phenotypes, it is possible 

that the junctional behavior of cancer cells is different at every stage. For example, 

disruption of intercellular junctions may be necessary for cell detachment and motility 

during cancer invasion, whereas establishment of cell-cell contact between cancer cells 

and endothelial cells would be needed during cancer metastasis. Thus, the role of gap 

junctions might be different depending on the cancer stage.  

 1.2.2.1 Gap Junctions and Primary Tumor Growth 

Over the past four decades, a considerable amount of studies exploring the link 

between gap junctions and tumor growth have reported that gap junctions and/or 

connexins play a tumor suppressing role. Using various tumor cell lines and transgenic 

mouse strains, many kinds of evidence have been provided to support the idea of a tumor 

suppressor function for gap junctions and/or connexins. For example, gap junctions 

and/or connexins are absent or greatly reduced in many primary tumors as well as in cell 

lines that are derived from primary tumors [138-140]. Additionally, it has been known for 

a long time that multiple tumor-promoting agents (such as 12-O-tetradecanoylphorbol-

12-acetate (TPA) and cigarette components) and oncogenes (such as ras, v-mos, neu, src, 

little and large T, and E1A) down-regulate connexin expression and inhibit GJIC in 

cancer cells, whereas antitumor agents (such as retinoic acid and retinol) up-regulate 

GJIC [141-144]. Furthermore, reintroduction of connexins into tumor cells reduces cell 

proliferation and tumor growth, and partially re-differentiates transformed cells [145-

148]. Transfection of connexin 32 cDNA into communication-deficient human 
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hepatocellular carcinoma SKHep1 cells significantly retarded xenograft tumor growth in 

vivo [149]. Differential or subtractive gene profiling, as well as gene knockdown studies, 

also identified connexins as potential tumor suppressors [150, 151]. Lastly, recent studies 

using transgenic and mutant mouse models showed that connexin-knockout mice, as well 

as mice expressing reduced or dominant-negative connexins, have an increased incidence 

of tumor onset when challenged with a carcinogen [152-155]. The maintenance of a full 

complement of connexins is likely to be protective against tumor onset. This might be 

illustrated by the evidence that mice lacking Cx32 are more susceptible to chemical- and 

radiation-induced liver and lung carcinomas [152, 153], as well as the evidence that 

Cx43+/- mice have an increased incidence of chemically induced lung neoplasm [154]. 

Collectively, these studies provide evidence that connexins and/or gap junctions exhibit 

tumor suppressive properties in tumorigenesis. 

The mechanisms by which connexins play a tumor suppressing role in 

tumorigenesis were originally proposed to be GJIC-dependent  [156, 157]. The primary 

role of connexins is linked to the formation of gap junction channels which mediate the 

intercellular exchange of small molecules. Therefore, it is not surprising that the 

mechanism associated with tumor suppressing role of connexins is supposed to be related 

to the specific molecules that are exchanged among healthy cells through GJIC compared 

with the lack of such exchanges in cancer cells without GJIC. This leads to the studies, 

identifying molecules that need to be exchanged for cells to maintain a normal cell cycle 

and inhibit the transformation of cells into invasive cell types. However, so far, few 

molecules have been identified to transport through gap junctions. Among them, some 

molecules are involved in very fundamental and metabolic pathways of the cells, such as 

adenosine diphosphate, and cannot help to understand any putative role of connexins in 

carcinogenesis [158], whereas other molecules play a more informative role. For 

example, the glutathione, a tripeptide, has high permeability through gap junction 

channels. Its antioxidant properties protect cells from reactive oxygen species, thus 

protecting cells from DNA damage, as well as detoxifying carcinogens [159, 160]. In 

addition, the gap junctions transport second messengers, such as cAMP and IP3, 

suggesting that gap junctions are involved in the tissue homeostasis and in the 

intercellular diffusion of hormonal information [161, 162].  
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Studies using inhibitors of GJIC and connexin mutants lacking the ability to form 

gap junction channels suggest that at least in some cases, connexins exhibit the tumor 

suppressing functions through a GJIC-independent pathway [163-166]. For example, 

Moorby and Patel reported that wild-type Cx43 inhibited growth of Neuro2a cells under 

conditions where gap junctions were unable to form [167]. Moreover, the C-terminus of 

Cx43 which could not form gap junctions was as effective as the wild-type in suppressing 

the growth of Neuro2a cells [167]. This study provide direct evidence suggesting that 

growth regulation by Cx43 is independent of gap junction formation in Neuro2a cells. 

The mechanism of GJIC-independent function of connexins remains unknown. Several 

possible mechanisms have been hypothesized. First, the carboxyl terminus of Cx43 

interacts with transcription factors and regulates gene expression. The connexins that 

exhibit cell growth suppression function have been localized to the cytoplasm or nucleus 

and the putative nuclear-targeting sequence encoded within the carboxyl terminus [167, 

168].  Second, the inhibition of cell and tumor growth by connexins could be related to 

the involvement of connexins in the cell cycle regulation. Zhang et al. reported that over-

expression of Cx43 contributed to an accumulation of the lypophosphated retinoblastoma 

(Rb) protein and an increase in the level of cyclin-dependent kinase inhibitor p27 [169]. 

The same group also reported that Cx43 inhibited expression of S phase kinase-

associated protein 2 (skp2), a human F-box protein that promotes the ubiquitination of 

p27 [170]. Both Skp2 and p27 were required for Cx43 to inhibit cell proliferation, 

because Cx43 barely inhibited cell proliferation of Skp2-/- and p27-/-  cells [170]. 

Furthermore, inhibition of skp2 expression was observed by using C-terminal domain of 

Cx43, a truncated Cx43 that cannot form gap junctions, and the inhibitory effect cannot 

disrupted by the coupling inhibitors, indicating the GJIC-independent mechanism of 

Cx43 in the cell cycle [163, 170]. Third, phosphorylation of connexins may be another 

factor associated with the GJIC-independent mechanism. Phosphorylation of Cx43 on 

S262 by protein kinase C (PKC) counteracted the inhibition of HEK-293 cell growth by 

Cx43 through a GJIC-independent pathway [171]. Studies of Cx43 transfection in human 

glioblastoma cell revealed that transfected Cx43 normalized cell phenotype through an 

accumulation of the unphosphorylated Cx43 in the cytoplasm and even in the nucleus 

[172]. Last, the GJIC-independent effect of connexins may be related to the interactions 
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with tumor-suppressing molecules responsible for important signaling pathways. For 

example, Cx43 has been reported to interact with tumor-suppressing molecule, caveolin 1, 

in keratinocytes and suppress tumor growth [173, 174]. Cx43 has also been reported to 

interact with nephroblastoma overexpressed (NOV), a matricellular protein involved in 

cell signaling and communication that has been shown to suppress tumorigenesis [175, 

176].  

 1.2.2.2 Gap Junctions and Cancer Invasion 

The strong non-covalent links between docked connexons affords adhesive 

properties, suggesting that connexins may have effects on cell adhesion and migration 

[177, 178]. In the rat C6 glioma model, the level of Cx43 expression has been shown to 

be related to the mobility capacity of glioma cells. Results of wound healing and 

transwell assays demonstrated that cell migration was increased by the over-expression of 

Cx43 [179]. Lin et al. reported that Cx43 expression induced the morphological 

transformation of glioma cells into an epithelial phenotype, increased the competence of 

glioma cells to aggregate, enhanced the cell adhesivity, and mediated the invasion of 

malignant glioma cells [177]. The use of antibodies specific against the extracellular 

domain of Cx43 reduced cell aggregation in glioma cells and restored the connexin-

deficient phenotype [177]. Further studies by Zhang et al. showed that when co-culture 

Cx43-C6 glioma cells and astrocytes, the astrocytic phenotype was modified [180]. It was 

suggested that this phenotypic transformation of astrocytes may contribute to their 

susceptibility to Cx43-C6 glioma invasion [180]. The acquired migration capacity is 

related to the presence of matrix metalloproteinases (MMP-2 and MMP-9) in culture 

medium from Cx43-C6 glioma cells [181]. Overall, a model using glioma cells provides 

evidence that connexins are associated with cancer cell migration and invasion. 

In skin and prostate cancer cells, cell migration is associated with gap junctions 

and Cx26 expression [182, 183], suggesting that the connexin-mediated migration is not 

cell type or connexin isoform specific. Collectively, although the mechanism is not clear, 

all the studies provide evidence that increase of connexin expression and gap junctions 

can enhance cell migration and invasion in many cancer cell types. There are also some 

exceptions. One of the exceptions is that in Hs578T breast cancer cells, silencing Cx43 
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increased the cell migration capacity [151]. These studies add to the complexity in 

understanding the relationship between connexin expression and cancer cell motility.  

 1.2.2.3 Gap Junctions and Cancer Metastasis 

In addition to the functions of connexins in tumorigenesis, a role for connexins in 

tumor metastasis is also suggested by many studies; however, they are controversial. One 

of the first steps of metastasis is that cancer cells interact with endothelial cells to pass 

through the vascular barrier and transport into lymph or blood flow. In this step, gap 

junction channels may be needed for the invasive cells to interact with endothelial cells. 

Actually, GJIC has been observed between vascular endothelial cells and malignant cells 

from various tumor types, such as glioma, melanoma, and breast cancer cells [184-186]. 

These observations indicate that the connexins and gap junctions, which are frequently 

lost in the primary tumors, may appear at later stage of cancer progression. This has been 

illustrated by the evidence that in mouse skin carcinogenesis, the reduced Cx26 at the 

early stage is restored in tumor metastases in lymph nodes [187]. Same results were also 

observed in breast cancer. During the progression of human breast cancer, Cx26- and 

Cx43-negative primary tumors were found to develop Cx26- and Cx43-positive 

metastases in lymph nodes [188].  

Angiogenesis is a preliminary and crucial step of the metastatic process. The role 

of connexins in angiogenesis remains controversial. Studies using breast cancer cells 

indicate that connexin expression plays a protective role against angiogenesis. For 

example, Shao et al. reported that the decreased expression of Cx43 in Hs578T breast 

cancer cells resulted in decreased levels of thrombospondin-1 (TSP-1, an 

antiangiogenesis molecule) and increased expression of VEGF [151]. Further studies by 

Qin et al. showed that Cx26 down-regulated the expression of connective tissue growth 

factor (CTGF), an angiogenesis-related gene, and increased TSP-1 [189]. These data 

suggest that connexins are function as inhibitors of angiogenesis in breast cancer cells. 

However, studies using glioma cells have a completely different result. Cx43 expression 

in Cx43-transfected T98G human malignant glioma cells has been reported to 

significantly increase tubulogenesis of co-cultured human umbilical vascular endothelial 

cells (HUVECs) [184]. The reason why Cx43 has opposite effects on angiogenesis in 
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breast cancer cells and glioma cells is not clear. However, even if they are contradictory, 

these results provided evidence for the complex functions of connexins in angiogenesis.  

 Cancer metastasis in part is involved in the interactions between metastatic cells 

and the cells of the targeting colonized tissue. Studies exploring cell-to-cell 

communication between MDA-MB-435 breast carcinoma cells and hFOB1.19 human 

osteoblastic cells indicated that gap junctions may play a role in these interactions. 

Kapoor et al. reported that MDA-MB-435 cells formed heterotypic gap junctions with 

osteoblastic cells [190]. This heterotypic GJIC was even quantitatively greater than the 

homotypic communication in bone [190]. Furthermore, the heterotypic GJIC was not 

significantly affected by the transfection of BRMS1, a breast cancer metastasis-

suppressor gene [190]. Further studies are needed to check whether the heterotypic GJIC 

between metastatic cells and cells of the target tissue play a role in the dormancy of 

metastasis. 

  1.2.3 Gap Junctions and Breast Cancer 
Breast cancer is one of the most malignant diseases that threaten the health of 

women all over the world, especially in western countries. It ranks the second leading 

cause of cancer deaths among women in the United States [191]. Mammary development 

is a process with the contributions of many factors. Recent studies showed that gap 

junctions play an important role in the mammary development and breast carcinogenesis.  

 1.2.3.1 Development of Mammary Gland 

Human mammary glands and mouse mammary glands have similar structure, 

except the relative abundance of connective tissue to epithelial cells [192]. This similarity 

as well as the accessibility makes the mouse mammary gland as a good model to study 

the development and differentiation of human mammary glands. Studies showed that 

mammary gland development can be generally divided into four stages [193]. The first 

stage is from birth to puberty. In this stage, the gland is only composed of a rudimentary 

collection of small ducts, and the growth of the rudimentary tree is restricted until 

puberty. The second stage is from puberty to pregnancy. At the onset of puberty, 

systemic hormones induce the ducts to branch and elongate into the surrounding adipose 

tissue. Upon pregnancy, the third stage, full differentiation of the gland induces further 
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ductal branching and proliferation. The alveologenesis, in which lobulo-alveolar milk-

secreting buds sprout at the forefront of the ducts, occurs in this stage. In the mature 

gland, a series of alveoli join up to form a group known as lobules, and each lobule drains 

into openings in the nipple through a common ductal system. The ducts and alveoli are 

lined by single layers of mammary epithelial cells. An outer layer of myoepithelial cell 

surrounds the alveoli and provides contractile strength for milk ejection when the alveolar 

luminal cells secrete milk into the lumen during lactation. The fourth stage is post-

weaning. After weaning, the structure of the glands returns to the pre-pregnancy 

architecture due to the extensive apoptosis and autophagy. The third and fourth stages are 

cyclic with each pregnancy and birth. Figure 1.6 shows all the stages of mammary glands 

development.  

 
Figure 1.6 Scheme of mammary gland development. 

Four stages are included in mammary gland development. Before puberty, the gland 

mainly consists of rudimentary ductal system. On the set of puberty, ductal elongation 

and bifurcation occur. At pregnancy, the gland undergoes alveologenesis and lactogenic 

differentiation, changing the mammary gland to a structure that is suitable for lactation. 

After weaning, during the involution, the gland remodels to regain a pre-pregnancy 

structure.  

 1.2.3.2 Role of Gap Junction in the Development of Mammary Gland 

Many factors contribute to the regulation of mammary gland development and 

differentiation, including systemic hormones and paracrine factors, tight and adherens 

junctions, and gap junctions. Both the function of gap junction channels and connexin 
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expression are regulated throughout the development of mammary gland. The functions 

of gap junctions in mammary development and differentiation are not only related to the 

GJIC, which is important to the cross-talk between cells, but also concerned with the 

signaling cascades regulated by connexin-associated molecules.  

 1.2.3.2.1 Connexin Expression in Mammary Gland 

Up to date, only two connexins, Cx26 and Cx43 were identified in human 

mammary gland [194]. Both the Northern analysis and immunocytochemistry showed the 

expressions of Cx26 and Cx43 in normal mammary epithelial cells [195]. Further studies 

of dye transfer indicated a functional channel formed by connexins between epithelial 

cells [195]. Monaghan et al. reported a localization of Cx43 in myoepithelial cells and a 

predominant expression of Cx26 between the luminal cells of ducts [196]. Cx43 was also 

reported to express in normal human mammary fibroblasts [195].  

Unlike the human mammary gland, in addition to Cx26 and Cx43, another two 

connexins, Cx32 and Cx30, were reported in the mouse mammary gland [197]. In the 

mouse mammary gland, Cx43 channels were identified between myoepithelial cells and 

Cx26 channels were found between luminal cells, which are similar to the locations in 

human mammary cells. However, Cx30 and Cx32 were also reported to express in 

luminal cells, peaking during lactation [194]. In vitro studies showed that Cx32, Cx30 

and Cx26 had abilities to form heteromeric connexons [198].  In the study by Talhouk et 

al., Cx43 was also found to form gap junction between myoepithelial cell and epithelial 

cell at several developmental stages; however, this finding is somewhat controversial 

[197].  

 1.2.3.2.2 Connexin Function in the Stages of Mammary Gland Development 

The expression profiles of various connexins in different stages of mammary 

gland development suggest the possible functions of connexins. For example, Cx43 is 

expressed throughout development, indicating it may play a role in the growth and 

differentiation of myoepithelial cells. Cx43 is down-regulated at mid-pregnancy and 

almost disappears during lactation but is re-expressed after involution [199]. However, 

expressions of Cx26, Cx30, and Cx32 increase throughout pregnancy, peak at the onset 

of lactation, and then decline in involution, suggesting that these connexins may be 
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essential to milk production and/or secretion [197]. To further study the distinct functions 

of connexins and gap junctions in the mouse mammary gland, knockout and transgenic 

mouse models are used. Cx43 knockout mice were lethal; however, the Cx43KI32 mice, 

in which Cx43 was replaced with Cx32, sheds some light on Cx43 function. The 

Cx43KI32 mice had normal mammary gland development and milk production, but had 

impaired milk ejection, indicating that Cx43 played a role in providing contractile force 

to the myoepithelial cells for milk ejection [200]. The mouse model (Gja 1Jrt/+), which has 

an autosomal dominant mutation in Cx43 and is used to mimic the human disease 

oculodentodigital dysplasia (ODDD), also provided a sight to the role of Cx43. In this 

model, Cx43 mutation induced a delay in mammary gland development, a failure in milk 

delivery, but no changes in morphology of the gland, indicating the involvement of Cx43 

in milk ejection. Cx26 knockout mice were lethal too.  However, a conditional knockout 

of Cx26 in the mammary epithelium before puberty led to deficiency in lobuloalveolar 

development and function during lactation, whereas ablation of Cx26 during the 

pregnancy had no effects on alveolar development and function [201]. Similarly, Cx32-

null mice had normal development and function of mammary gland, indicating that Cx26 

and Cx32 may compensate for each other during later stages of pregnancy and lactation 

[201]. Further studies by Locke at al. showed that Cx26 and Cx32 formed heteromeric 

Cx26-Cx32 connexons in the luminal epithelial cells of the mouse mammary gland [198, 

202]. Locke and his colleagues found that at the onset of parturition, Cx26 was 

predominant in the heteromeric connexon; however, the Cx32 ratio increased throughout 

the lactation and heteromeric connexons were finally shifted into homomeric Cx32 

channels, which have wider pores than homomeric Cx26 channels [202]. Cx30 can form 

heteromeric channels with both Cx26 and Cx32. Compared to Cx26 channels, both Cx32 

homomeric channels and Cx26-Cx30/Cx30-Cx32 heteromeric channels are more 

insensitive to taurine, an amino acid used for osmolytic balance during milk protein 

synthesis, indicating an important role for Cx30 or Cx32 at the lactation stage [203].  

Both the GJIC-dependent and GJIC-independent functions of connexins have 

been found to involve in the regulation of mammary gland development. El-Sabban et al. 

reported that enhanced GJIC induced partial differentiation of mammary epithelial cells, 

in the absence of exogenouly provided basement membrane [204]. The same group also 
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reported that heterocellular interaction between SCg6 cells and SCp2 cells increased the 

association of connexins with α-catenin and ZO-2, leading to the recruitment of β-catenin 

into the gap junctional complex, which prevented translocation of β-catenin to the 

nucleus, stabilized gap junctions, and contributed to the GJ-induced functional 

differentiation of mammary epithelial cell [205].  

Collectively, all these findings indicate that connexins have stage-specific roles in 

the development and differentiation of normal mammary glands.  

 1.2.3.3 Role of Connexin in Breast Cancer 

 
Human breast tumors are diverse in the epidemiological risk factors, the 

development histories, and the responses to therapies. The tumors could be classified into 

subtypes by genetic array testing or immunohistochemistry [206-209]. Based on global 

gene expression analyses, four molecular intrinsic subtypes of breast cancer, including 

Luminal A, Luminal B, HER2-enriched (HER2 is also known as ERBB2), and Basal-like, 

have been identified and intensively studied [206]. These subtypes are different in 

genomic complexity including key genetic alterations and clinical prognosis [210, 211]. 

Although genetic array testing is a powerful tool to recognize the subtype of breast cancer, 

it is not always feasible to obtain gene expression array information. Recently, a 

simplified classification proposed by Cheang et al. has been adopted [212]. The new 

classification is based on clinicopathological criteria, using immunohistochemical 

definition of estrogen receptor (ER) and progesterone receptor (PR), the detection of 

overexpression and/or amplification of the human epidermal growth factor receptor 2 

(HER2) oncogene, and Ki-67 labeling index, a marker of cell proliferation, to identify 

tumor subtypes. Breast cancer subtypes defined by this method are similar to but not 

identical to intrinsic subtypes. Intrinsic breast cancer subtypes and their clinicopathologic 

definitions are listed in Table 3.  

Subtypes of Breast Cancer 

The diversity of the subtypes results in different metastatic behaviors. Follow-up 

studies of patients with early-stage breast cancer showed that the median durations of 

survival with distant metastasis were 2.2 years for Luminal A, 1.6 years for Luminal B, 

1.3 years for Luminal/HER2 (Luminal B/HER2 positive), 0.7 years for HER2-enriched, 
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and 0.5 years for Basal-like [213]. The metastatic sites vary among different subtypes. 

Bone was the most common metastatic site in all subtypes except Basal-like [213]. Both 

HER2-enriched and Basal-like tumors have higher rate of brain and lung metastases, and 

HER2-enriched tumors has high rate of liver metastasis [213].  

Because the factors of breast cancer, including histological grade, invasiveness 

and metastasis, hormone receptor and HER2 status, and proliferation, are determinants 

for the chemotherapy, the diversity of these factors in subtypes makes the response to 

chemotherapy differed by subtype. Recently, it has been widely accepted that Luminal A 

subtype is less responsive to chemotherapy [214]. For Luminal B disease, both 

anthracyclines and taxanes have been considered to be used in the chemotherapy. These 

anti-cancer agents were also recommended to the treatment of HER2 positive disease. 

Moreover, the use of trastuzumab, a specific antibody which targets HER2/neu protein on 

the surface of HER2 positive cells, is a standard adjuvant treatment for patients with 

HER2 positive disease [215]. One year of trastuzumab therapy has been regarded as an 

optimal adjuvant therapy for HER2 positive patients [215]. For Basal-like (triple negative) 

disease, in addition to the anthracyclines and taxanes, an alkylating agent is also used, 

especially for triple negative tumors with BRCA1 mutation [216]. Treatment 

recommendations for all subtypes are listed on Table 3.  

 

Intrinsic 

Subtypes 
Clinicopathologic Definition Type of Therapy 

Luminal A 

Luminal A 

ER and/or PR positive, HER2 negative, Ki-

67 low 

Endocrine therapy 

alone 

Luminal B 

Luminal B (HER2 negative) 

ER and/or PR positive, HER2 negative, Ki-

67 high 

Endocrine ± cytotoxic 

therapy 

Luminal B (HER2 positive) 

ER and/or PR positive, HER2 over-

expressed or amplified, any Ki-67 

Cytotoxics + anti-

HER2 + endocrine 

therapy 
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HER2-enriched 

HER2 positive (non luminal) 

ER and PR absent, HER2 over-expressed or 

amplified 

Cytotoxics + anti-

HER2 

Basal-like 
Triple negative (ductal) 

ER and PR absent, HER2 negative 
Cytotoxics 

Table 3. Intrinsic subtypes of breast cancer, clinicopathologic definitions, and 

relative type of therapy. 

 
Because gap junctions and connexins play stage-specific functions in the 

development and differentiation of normal mammary glands (as discussed above), it is 

not surprising that loss of connexin expression and deficiency of GJIC may contribute to 

breast carcinogenesis. Mammary gland a valuable model for the investigations of gap 

junction and/or connexin functions in every stage of cancer, from onset to progression 

and metastasis.   

Breast Cancer and Connexin 

In breast carcinogenesis, connexins have long been considered as tumor 

suppressor genes, due to the aberrant expression or localization of connexins and the 

deficiency of GJIC in breast cancer cell lines and tissues. However, recent data reported 

that invasive breast carcinomas express high levels of connexins, indicating that 

connexins may play a different role at the late stage of carcinogenesis [188, 217, 218]. 

Until now, it is generally accepted that aberrant connexin expression and impaired GJIC 

promote tumorigenesis at the initial steps of this process [194, 219], whereas, although 

some contradictory results have been reported [220, 221], expression of connexins and 

functional GJIC are found to be crucial, at later stages, for migrating cells to invade, 

interact with endothelial cells, and metastasis [186, 217, 219].  

Several studies using both primary breast cancer cell lines and breast cancer 

patient tissue samples reveal a loss of overall connexin protein expression or a re-

localization of the connexin to intracellular compartments, resulting in a loss of GJIC 

compared to normal mammary cells and breast tissues [139, 150, 222, 223]. For example, 

Cx26 and Cx43 have been reported to be down-regulated in primary cells derived from 

human breast tumors as well as in rat mammary tumors and breast cancer cell lines [139, 
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224]. Over-expression of Cx26 in GJ-deficient human MCF-7 breast cancer cells, which 

maintain the phenotype of early-stage cancers, restored cell-cell communication and 

reduced cell malignant properties, including the proliferation rate, the saturation density, 

and the anchorage-independent growth capacity [225]. Retroviral delivery of Cx26 and 

Cx43 to HBL100 breast cancer cell line that lacks connexin expression resulted in a 

dramatic inhibition of tumor growth in vivo [226]. Interestingly, this inhibition is 

independent of the formation of gap junctions [226]. All these results suggest a tumor-

suppressive role for connexins at the early stage of carcinogenesis.  

Contrary to a tumor-suppressive role for connexins, several studies have reported 

an increased connexin expression in breast cancer tissue. Cx26 and Cx43 expression was 

detected in more than 50% of the invasive breast carcinomas, as compared to normal 

tissue samples, although the location of connexins were cytoplasmic [227]. In addition, 

phosphorylated form of Cx43 was up-regulated in all cells of invasive breast carcinomas 

as well as in myoepithelial cells and transformed luminal cells of in situ carcinomas [228]. 

Furthermore, the levels of cytoplasmic Cx43 and Cx26 expressions have been correlated 

to advanced histological grade of the tumor, larger tumor size and poor prognosis in 

breast cancer patients [217, 229]. These results challenge the notion of connexins as 

tumor suppressors and lead to re-evaluation of connexin functions at the late stage of 

carcinogenesis. At metastatic stage, connexins have been shown to be highly implicated 

at intravasation and extravasation sites. For instance, Cx43 expression increased in tumor 

cell/endothelial cell contact areas in vitro and in vivo, where it marked the sites of 

metastases to the lungs [230]. In addition, GJIC via Cx43 increased the adhesion of breast 

cancer cells to lung endothelial cells. However, the adhesion was decreased in breast 

cancer cells with a dominant-negative Cx43 mutation, which has non-functional GJIC, 

indicating the importance of Cx43 and GJIC in metastasis [230]. Other studies showed 

that expressions of Cx26, Cx32 and Cx43 were up-regulated in lymph nodes metastases 

compared to primary tumors [188, 231]. 70% of Cx26, Cx32 and Cx43-negative primary 

tumors developed Cx26, Cx32, and Cx43-positive lymph node metastases, suggesting an 

increase of connexin expression during breast cancer progression resulting in a more 

malignant phenotype [231].  
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Collectively, all these reports indicate that connexins and gap junctions can 

function as either suppressor or enhancer in breast tumorigenesis, depending on the stage 

of tumor formation. The stage-specific roles of connexins and GJIC suggest that 

restoration of connexin expression and GJIC at primary stages of tumorigenesis might 

have beneficial effects in breast cancer therapy. However, considering the promotion 

function of connexins and GJIC on the late-stage disease, down-regulation of connexin 

and reduction of GJIC should be applied to inhibit the metastasis. 

 1.3 Connexins and Gap Junctions as Therapeutic Targets 
As discussed above, connexins have both GJIC-dependent and GJIC-independent 

functions in the formation and regulation of connexin-related diseases, especially cancer, 

suggesting that they are potential therapeutic targets. Therefore, development of 

molecules and methods that can modulate connexin expression and GJIC has become a 

strategy in cancer treatment.  

 1.3.1 Therapeutic Approaches Related to GJIC 
Although GJIC has paradoxical roles in carcinogenesis, either as a suppressor or 

facilitator, increasing evidence showed that up-regulation of GJIC at primary stages of 

tumorigenesis had beneficial effects in cancer therapy. The main strategy in GJIC-based 

cancer therapies relied on the “bystander effect”, a mechanism by which cytotoxic 

molecules or signals are transferred from target cells to neighboring cells. When there is 

lack of GJIC in cancer cells, the effects of drugs are limited to the target cells, whereas 

bystander effect provides a route for drugs to spread throughout a tumor mass and induce 

more cell death. It is an important factor which is related to drug sensitivity and efficacy. 

Bystander effect has been applied in gene therapy, radiation therapy, immunotherapy and 

chemotherapy. For example, in gene therapy, after enhancing connexin 43 (Cx43) and 

GJIC by 8-bromo-cyclic-AMP treatment, gene therapy effect was strengthened by herpes 

simplex virus thymidine kinase/gancyclovir (HSV-TK/GCV) system [232]. In radiation 

therapy, the bystander effect amplified cells’ responsiveness to radiation therapy through 

the transmission of damage signals (such as superoxide radicals, reactive nitrogen 

species, and other DNA damage molecules) from irradiated cells to non-irradiated cells 
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[233]. In immunotherapy, MCL (melanoma cell lysate)/TNF-stimulated human dendritic 

cells (hDCs) allowed melanoma antigen transfer via bystander effect, which facilitated 

antigen cross-presentation and dendritic-cell-mediated melanoma-specific T cell response 

[234]. The MCL/TNF-stimulated hDCs have been used in melanoma immunotherapy in 

patients and triggered tumor-specific immune responses [235]. In chemotherapy, 

bystander effect has been shown to potentiate the efficacy of anti-cancer drugs not only 

through transduction of the drugs, but also through the transmission of drug-induced 

death signals. A cisplatin-induced death signal involving the Ku70, Ku80 and DNA-

dependent protein kinase complex, has been reported to be transmitted from the target 

cells to neighboring cells through gap junctions [236].  

Several molecules, natural or synthesized, have been reported to up-regulate 

GJIC. The natural molecule resveratrol reversed the GJIC-blocking effects of TPA and 

DDT [237]. (-)-Epicatechin, a flavonoid found in green tea, stimulated GJICand 

counteracted GJIC inhibition by TPA in rat liver epithelial cells [238]. Combination of 

dibutyryl-cyclic AMP (db-cAMP) and all-trans-retinoic acid (tRA) enhanced GJIC and 

increased Cx43 expression [232]. 4-phenylbutyrate (4-PB), a HDAC inhibitor (HDACi) 

increased GJIC in pancreatic cancer cells [239]. In addition, diverse carotenoids have 

been reported to induce GJIC in fibroblast cells [240].  

 1.3.2 Therapeutic Approaches Related to Connexin Expression 
Based on the anti-tumor growth effect of connexins in cancer, especially in 

primary cancer, restoration of connexin expression has been considered as a therapeutic 

approach in cancer treatment. Over-expression of connexins by molecules targeting 

transcriptional and post-transcriptional regulation pathways has been achieved in some 

cancer cell lines.  

On the transcriptional level, inhibitors of HDAC, a group of enzymes involved in 

chromatin remodeling, have been reported to restore Cx43 expressions as well as GJIC. 

For example, The HDAC inhibitor Trichostatin A (TSA) restored Cx43 expression and 

GJIC in prostate cancer cells [241]. Another factor that correlates with connexin gene 

regulation is DNA methylation. The DNA demethylating agent 5-aza-2’-deoxycytidine 

(5-aza-C), was reported to restore Cx32 expression in human renal cell carcinoma (RCC), 
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and subsequently inhibit the xenograft tumor growth [242]. Connexin transcription is also 

regulated by proteins via specific signaling pathways. For instance, the AML1-ETO 

fusion protein was shown to transcriptionally up-regulate Cx43 expression through JNK 

signaling pathway [243]. Furthermore, a protein complex containing HSP90 and c-Myc 

was reported to interact with Cx43 promoter and up-regulate Cx43 through Ras-Raf-

MAPK pathway [34].  

On the post-translational level, studies of connexin restoration focus on the 

phosphorylation and degradation. BQ123, an antagonist of ETA receptor (ETAR), was 

shown to counteract Cx43 phosphorylatin and GJIC inhibition induced by endothelin-1 

(ET-1), a ligand for the ETAR, indicating the role of phosphorylation in connexin 

expression and GJIC function. [244]. Treatment with the proteasome inhibitor MG132 

decreased Cx43 degradation, increased Cx43 expression, and sensitized cells to the pro-

apoptotic effect of MG132, suggesting that inhibition of degradation pathways is an 

alternative strategy to restore connexin expression.  

 1.3.3 PQ1 as a Gap Junction Enhancer 
In search of effective gap junction enhancers, we collaborated with Dr. Duy H. 

Hua in the Department of Chemistry at Kansas State University who synthesized a series 

of quinoline derivatives (named PQs). Computational docking studies showed that PQ1, 

6-methoxy-8-[(3-aminopropyl)amino]-4-methyl-5-(3-

trifluoromethylphenyloxy)quinoline, interacts with the partial crystal structure of 

connexon, indicating the potential role of PQ1 in gap junction [245]. Further biological 

studies showed that PQ1 increased GJIC and had cytotoxicity in human breast cancer 

cells. 200 nM PQ1 significantly increased GJIC in T47D breast cancer cells, but had no 

effect on the GJIC in normal mammary epithelial cells [245]. In addition to the effect on 

GJIC, PQ1 decreased cell viability, inhibited colony growth, and attenuated xenograft 

tumor growth of T47D cells; however, no cytotoxic effects of PQ1 were detected on 

HMECs [245, 246]. Combinational treatment of T47D cells with Tamoxifen and PQ1 

synergistically decreased cancer cell proliferation, viability and colony growth [246]. All 

these reports suggest that PQ1 is a gap junction enhancer as well as a potential anti-

cancer agent. However, there are still many questions which need to be answered before 
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we have a comprehensive understanding of the mechanism and function of PQ1: How 

PQ1 exerts its anti-cancer function? Can PQ1 potentiate the efficacy of anti-cancer drugs 

through bystander effect? Does PQ1 have side effects? What is the mechanism of PQ1 in 

the regulation of gap junction? Further studies are needed to answer these questions.  
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Chapter 2 -  Hypotheses and Objectives 

 2.1 Hypotheses 
1. The anti-cancer effects of PQ1, 6-methoxy-8-[(3-aminopropyl)amino]-4-methyl-5-(3-

trifluoromethylphenyloxy)quinoline, on T47D breast cancer cells have been reported; 

however, the mechanism of the anti-cancer effect is unclear. Many quinoline derivatives have 

been shown to induce apoptosis in cancer cells. PQ1 is a quinoline derivative; therefore, the 

hypothesis is that the anti-cancer effect of PQ1 is mediated via the apoptotic pathways in 

T47D breast cancer cells. 

2. Further studies demonstrated that PQ1 acts as a gap junction enhancer by increasing GJIC in 

T47D cells. Therefore, the second hypothesis is that PQ1 can be used in the combinational 

treatment with anti-cancer drugs to increase the efficacy of anti-cancer drugs through 

bystander effect. 

3. Minimal toxicity of PQ1 on normal human mammary epithelial cells (HMECs) was observed 

within the effective doses of anti-cancer effects and GJIC-mediated responses. Thus, the 

hypothesis is that PQ1 can be administered with low toxicity to normal organs. 

 2.2 Objectives 
1. To determine the mechanism of  PQ1 anti-cancer effect in T47D breast cancer cells 

2. To evaluate the combinational effects of PQ1 and cisplatin 

3. To examine the effects of PQ1 on normal organs 
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Figure 2.1 Schematic presentation of hypotheses and objectives  
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Chapter 3 - PQ1, a Quinoline Derivative, Induces Apoptosis in 

T47D Breast Cancer Cells through Activation of Caspase-8 and 

Caspase-9 

 3.1 Abstract 
Apoptosis, a programmed cell death, is an important control mechanism of cell 

homeostasis. Deficiency in apoptosis is one of the key features of cancer cells, allowing cells to 

escape from death. Activation of apoptotic signaling pathway has been a target of anti-cancer 

drugs in an induction of cytotoxicity. PQ1, 6-methoxy-8-[(3-aminopropyl)amino]-4-methyl-5-

(3-trifluoromethylphenyloxy)quinoline, has been reported to decrease the viability of cancer 

cells and attenuate xenograft tumor growth. However, the mechanism of the anti-cancer effect is 

still unclear. To evaluate whether the cytotoxicity of PQ1 is related to induction of apoptosis, 

the effect of PQ1 on apoptotic pathways was investigated in T47D breast cancer cells. PQ1-

treated cells had an elevation of cleaved caspase-3 compared to controls. Studies of intrinsic 

apoptotic pathway showed that PQ1 can activate the intrinsic checkpoint protein caspase-9, 

enhance the level of pro-apoptotic protein Bax, and release cytochrome c from mitochondria to 

cytosol; however, PQ1 has no effect on the level of anti-apoptotic protein Bcl-2. Further studies 

also demonstrated that PQ1 can activate the key extrinsic player, caspase-8. Pre-treatment of 

T47D cells with caspase-8 or caspase-9 inhibitor suppressed the cell death induced by PQ1, 

while pre-treatment with caspase-3 inhibitor completely counteracted the effect of PQ1 on cell 

viability. This report provides evidence that PQ1 induces cytotoxicity via activation of both 

caspase-8 and caspase-9 in T47D breast cancer cells.  
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 3.2 Introduction 
Quinoline is a heterocyclic aromatic nitrogen compound which is often used for the 

design of many synthetic compounds with diverse medical benefits [1]. Recent studies found that 

numerous quinoline derivatives display potent anti-cancer activity by targeting different cellular 

pathways, including multidrug resistance, proliferation, and apoptosis [2-4]. Apoptosis is a 

programmed cell death, an important control mechanism of normal cell physiology [5, 6]. 

Deficiency in apoptosis is one of the key features of cancer cells [7]. Restoring and activating 

apoptosis in cancer cells is a major target of cancer treatment [8]. By using cell- and caspase-

based high-throughput screening assays, Kemnitzer et al. found a new series of apoptosis 

inducers, the 1-benzoyl-3-cyanopyrrolo[1,2-α]quinolines, among which the compound 1-(4-(1H-

imidazol-1-yl)benzoyl)-3-cyanopyrrolo[1,2-α]quinoline displayed high cytotoxic activity in 

T47D human breast cancer cells, HCT116 human colon cancer cells, and SNU398 hepatocellular 

carcinoma cancer cells [9]. Sharma et al. reported that a quinoline derivative, 8-methoxy 

primido[4’,5’:4,5]thieno(2,3-b)quinolin-4(3H)-one (MPTQ), induces apoptosis in K562 myeloid 

leukemia cell line and inhibits tumor progression in mice bearing different types of tumors [4]. 

These reports indicate that quinoline derivatives are potential anti-cancer drugs, targeting the 

induction of apoptosis.  

Caspases, a class of proteases, play an essential role in the induction and execution of 

apoptosis. Caspase-dependent apoptosis can be generally divided into two signaling pathways: 

the intrinsic pathway and the extrinsic pathway [10]. The intrinsic pathway is initiated from 

within the cell and depends on the balance of the pro- and anti-apoptotic members of Bcl-2 

family proteins. The internal signal, like DNA damage or severe cellular stress, causes pro-

apoptotic protein, Bax, to migrate to the surface of the mitochondrion, where it inhibits the 

protective effect of anti-apoptotic protein Bcl-2. Bax generates holes in the mitochondrial 

membrane, which permits the leakage of cytochrome c to the cytoplasm. Cytochrome c activates 

caspase-9 and subsequently results in the cleavage of caspase-3 as the cell death executioner 

[11]. In contrast, the extrinsic pathway is triggered by a signal outside of the cells. These signals 

are pro-apoptotic ligands that bind to their specific receptors on the plasma membrane and 

activate the checkpoint protein caspase-8 [12]. Caspase-8 signal transduction eventually activates 

the caspase-3 to initiate cell death [12]. Some compounds trigger only one apoptotic pathway, 



64 

 

while others can activate both pathways. For example, the MPTQ is reported to trigger two 

signaling pathways by activating both caspase-8 and caspase-9 [4].  

PQ1, 6-methoxy-8-[(3-aminopropyl)amino]-4-methyl-5-(3-trifluoromethylphenyloxy)-

quinoline, has been reported to possess anti-cancer activity in breast cancer cells but not in normal 

human mammary epithelial cells (HMECs) (Fig. 3.1). Previous studies showed that one µM of 

PQ1 decreased cell viability to 50% in T47D breast cancer cells and attenuated 70% of T47D 

xenograft tumor in nude mice [13]. In the present study, we investigated whether the cytotoxicity 

induced by PQ1 is mediated through apoptosis. The results of Western blotting and 

immunofluorescence assays showed that PQ1 activated mitochondrial intrinsic pathways by 

increasing Bax, releasing cytochrome c from the mitochondria to cytosol, and subsequently 

activating caspase-9. Furthermore, PQ1 increased the level of active caspase-8. This report 

demonstrates that PQ1 induces cytotoxicity in T47D cells via both caspase-8 and caspase-9 

mediated apoptotic pathways. 

 
Figure 3.1 Effects of PQ1 on T47D breast cancer cell colony and human mammary 

epithelial cell (HMEC) colony 

Base agar plates were prepared containing 0.8% agar and 0.4% agar in Ham’s F12. HMECs and 

T47D cells (5 x 104 cells/33 mm2 well) were suspended in 100 µl of Ham’s F12 with 0.4% agar 

and plated. These plates were maintained at 37°C for 7 days and examined for the presence of 

colonies. Individual colonies of 50 µm or greater were examined. HMECs and T47D cells were 



65 

 

treated with 1, 10 and 100 nM PQ1 and SA (succinic acid). Individual colonies of 50 µm or 

greater were examined. Statistical significance, *p<0.05, of at least three experiments. (Cited 

from dissertation of Aibin Shi, Kansas State University, http://hdl.handle.net/2097/1638) 

http://hdl.handle.net/2097/1638�
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 3.3 Meterial and Methods 

 3.3.1 Reagents and Antibodies 
PQ1, 6-methoxy-8-[(3-aminopropyl)amino]-4-methyl-5-(3-trifluoromethylphenyloxy)-

quinoline, was obtained as described by Shi at al. [14] and graciously provided by Dr. Duy Hua 

(Kansas State University). Acridine orange/propidium iodide (AO/PI) dye for viability assay was 

purchased from Nexcelom Bioscience (Lawrence, MA, USA). Anti-cleaved caspase-3, anti-

caspase-8 p18 (H-134), anti-caspase-9 p35 (H-170), anti-Bax, and anti-Bcl-2 antibodies were all 

obtained from Santa Cruz Biotechnologies (Santa Cruz, CA, USA). Rabbit anti-cytochrome c, 

HRP-linked anti-rabbit/mouse, anti-cleaved caaspase-8 (Asp391), and anti-cleaved caspase-9 

(Asp315) antibodies were purchased from Cell Signaling Technology (Danvers, MA, USA). 

Mouse anti-cytochrome c and rabbit anti-Cox IV antibodies were obtained from Abcam 

(Cambridge, MA, USA). Alexa-568-conjugated anti-rabbit IgG and Alexa-488-conjugated anti-

mouse IgG antibodies were obtained from Invitrogen (Camarillo, CA, USA). Caspase-3 inhibitor 

(Ac-DMQD-CHO), caspase-8 inhibitor (Ac-IETD-CHO), and caspase-9 inhibitor (Ac-LEHD-

CHO) were purchased from Enzo Life Sciences (Enzo Life Sciences, Farmingdale, NY, USA).  

 3.3.2 Cell Line and Cell Culture 
T47D human breast cancer cell line was purchased from American Type Cell Culture 

(ATCC) (Manassas, MA, USA). Cells were grown in RPMI-1640 (Sigma-Aldrich, St Louis, 

MO, USA) supplemented with 10% fetal bovine serum (Atlanta Biological, Lawrenceville, GA, 

USA), 1 mM sodium pyruvate, 10 mM hepes, 4.5 g/L glucose, 2 g/L sodium bicarbonate, and 

0.2 units/ml bovine insulin. Cells were maintained in T-75 flasks at 37 °C with 5% CO2 and 

cultured in 6-well plates or T-25 flasks for experimental analysis.  

 3.3.3 Cell Morphology 
T47D cells were cultured in T-25 flasks until 80% confluent state. Cells were treated with 

DMSO and 100, 200, and 500 nM PQ1 for 24 and 48 hours. Cells without any treatment were 

used as controls. Cell morphology was captured using Nikon 80i light microscope.  
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 3.3.4 Cell Viability Assay 
Cell viability was measured using Acridine Orange/Propidium Iodide (AO/PI) staining 

method. T47D cells were cultured into 6-well plates until 80% confluent state. Cells were treated 

with DMSO and 100, 200, and 500 nM PQ1 for 24 and 48 hours. Cells without treatment were 

used as controls. Detached and trypsinized cells were combined to access the total cell viability 

after treatment. Samples were centrifuged at 2,000 rpm using a HERMLE Z300K centrifuge with 

rotor 221.05 V01 (Labnet, Woodbridge, NJ, USA) for 5 minutes. Media and trypsin supernatant 

were discarded and cell pellet was resuspended in 1 X phosphate-buffered saline (PBS). A cell 

suspension was mixed with AO/PI dye (5 µg/mL AO and 100 µg/mL PI in PBS) at 1:1 ratio. 

Viable and dead cells were visually examined by the Cellometer Auto 2000 (Nexcelom 

Bioscience, Lawrence, MA, USA). AO is a nuclear stain that is used to stain live cells and emits 

in the “green” range. PI is a fluorescent stain that only penetrates dead cells and emits in the 

“red” range. After taking both “green” and “red” fluorescent images, all fluorescent cells in each 

channel were counted and the concentration of live (green) and dead (red) cells as well as 

viability were determined. 

 3.3.5 Flow Cytometry 
Apoptotic cells were analyzed by flow cytometry using the Alexa Fluor 488 Annexin 

V/Dead Cell Apoptosis Kit (Invitrogen, Camarillo, CA, USA). T47D cells were treated with 

DMSO and various concentrations of PQ1 for 24 and 48 hours. Cells were harvested and washed 

with cold PBS. After centrifugation, supernatant was discarded and cell pellets were resuspended 

in 1 X annexin-binding buffer to the final concentration at 1 x 106 cells/ml. After adding 1 µL of 

Alexa Fluor 488 annexin V and 1 µL of 100 µg/ml PI working solution into each 100 µL cell 

suspension, cells were incubated at room temperature for 15 minutes. 400 µL of 1 X annexin-

binding buffer were added into the cell suspension after incubation. Stained cells were detected 

by flow cytometry measuring the fluorescence emission at 530 nm and 575 nm. 

 3.3.6 Mitochondria Isolation 
Mitochondria were isolated by using Mitochondria Isolation Kit from Thermo Scientific 

(Rockford, IL, USA). Followed the manufacturer’s instructions, control and treated cells were 

trypsinized and centrifuged at 850 x g using an Eppendorf centrifuge 5415R with rotor F-45-24-

11 for 2 minutes. Cell pellets were treated with mitochondria isolation reagents. Cytosol and 
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mitochondria fractions were isolated by two consecutive centrifugation steps (700 x g and 12,000 

x g, respectively) at 4 °C. After isolation, expressions of cytochrome c in mitochondria and 

cytosol were examined by western blot analysis. 

 3.3.7 Western Blot Analysis 
T47D cells were cultured in T-25 flasks until 80% confluent state and then treated with 

DMSO and PQ1 as indicated for 48 hours. Cells without treatment were used as controls. Cells 

were washed with PBS for three times and harvested in lysis buffer (Cell Signaling Technology, 

Danver, MA, USA). Cell lysates were sonicated using Vibra-Cell sonicator (Sonics & Materials 

Inc, Danbury, CT, USA) and then centrifuged at 13,000 rpm using an Eppendorf centrifuge 

5415R with rotor F-45-24-11 for 30 minutes at 4 °C. Supernatants were collected and measured 

for its total protein concentration. Thirty µg of samples were separated by 4-20% gradient SDS-

PAGE for 35 minutes at 200 Volts, and transferred to nitrocellulose membranes (Midwest 

Scientific, Saint Louis, MO, USA). After blocked with 5% milk for 30 minutes, membranes were 

immunoblotted against protein of interest. Immunoreactions using chemiluminescence were 

visualized by FluoChem E Imaging Instrument (ProteinSimple, Santa Clara, CA, USA). 

Intensities of the bands were digitized using Un-Scan-It software (Silk Scientific Inc., Orem, 

Utah, USA).  

 3.3.8 Immunofluorescence and Confocal Microscopy 
T47D cells cultured on coverslips in 6-well plates were treated with DMSO and PQ1 for 

48 hours.  Cells were rinsed by warm PBS and fixed with 2% paraformaldehyde for 20 minutes 

at room temperature. Fixed cells were washed 3 times with PBS and then permeabilized with 

0.1% Triton X-100 for 8 minutes. Cells were washed 3 times with PBS again, and blocked with 

2.5% BSA in PBS for 1 hour at room temperature. After blocking, cells were incubated with 

primary antibodies overnight at 4°C and Alexa-conjugated secondary antibodies for 1 hour at 

room temperature. DAPI was used for nuclei stain. The slides were mounted with prolong-

antifade reagent (Invitrogen, Camarillo, CA, USA), sealed and observed under a confocal 

microscope (Carl Zeiss LSM 700 META, Narashige, MN, USA).  
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 3.3.9 Caspase Inhibitor Assay 
T47D cells were cultured into 6-well plates until 80% confluent state. Cells were 

pretreated with caspase-3 inhibitor (Ac-DMQD-CHO), caspase-8 inhibitor (Ac-IETD-CHO), or 

caspase-9 inhibitor (Ac-LEHD-CHO) at concentration of 20 µM for 1 hour, and then treated with 

500 nM PQ1 for 23 hours. Cells without any treatments or treated with 500 nM PQ1 for 24 hours 

were used as controls. After treatment, cell viability was assessed by trypan blue method. Cells 

floated in the media were collected and cells attached to the wells were trypsinized. Two parts of 

cells were combined together, centrifuged and resuspended. A cell suspension was mixed with 

trypan blue dye (0.2% in PBS) at 1:1 ratio and viable cells were examined by the Cellometer 

Auto 2000 (Nexcelom Bioscience, Lawrence, MA, USA). 

 3.3.10 Statistical Analysis 
Statistical analysis of data was performed using student’s t-test Data presented were 

expressed as mean ± standard deviation (S.D.) of at least three independent experiments. 

Significance was considered at p-value < 0.05.  
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 3.4 Results 

 3.4.1 PQ1 Changes Cell Morphology and Induces Cell Death in T47D Breast Cancer 

Cells 
Cytotoxicity of PQ1 on T47D breast cancer cells was determined by observed 

morphological change and dual-fluorescence viability assay. T47D breast cancer cells were 

treated with DMSO and 100, 200, and 500 nM of PQ1 for 24 and 48 hours. Cells without 

treatment were used as controls. Differences in cell morphology were observed between PQ1-

treated and control cells under 20X magnification of light microscopy. Morphological changes 

including cell rounding, shrinkage, and detachment were found in PQ1-treated cells in a dose-

dependent manner (Fig. 3.2). Compared with cells treated with PQ1 for 24 hours, cells treated 

with the same concentration of PQ1 for 48 hours had more significant morphological changes 

(Fig.3.2). These results suggested that PQ1 induces morphological changes in a dose- and time-

dependent manner. To determine if the changes of morphology were associated with cell death, 

cell viability was examined using dual-fluorescence (AO/PI) viability assay. The results showed 

that PQ1 decreased cell viability in a dose- and time-dependent manner as well. 100 nM PQ1 did 

not significantly reduce cell viability with 24-hour of treatment, but significantly reduced cell 

viability to 85% with 48-hour of treatment (Fig. 3.3). 500 nM PQ1 showed a 37% and 47% 

reduction of cell viability at 24- and 48-hour of treatment, respectively (Fig. 3.3). DMSO, a PQ1 

solvent, showed no changes on cell morphology and viability at any time points (Fig. 3.2, 3.3). 

All these results indicate that PQ1 induces morphological changes and decreases cell viability in 

T47D breast cancer cells. 
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Figure 3.2 Effect of PQ1 on cell morphology in T47D breast cancer cells  

T47D cells were treated with DMSO and various concentrations of PQ1 for 24 and 48 hours. 

Cells without treatments were used as controls. Cell morphology was captured using the light 

microscope under 20X magnification. The scale bar represents a 100 µm in size. 
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Figure 3.3 Effect of PQ1 on cell viability in T47D breast cancer cells  

T47D cells were treated with DMSO and various concentrations of PQ1 for 24 and 48 hours. 

Cells without treatments were used as controls. Cell viability was determined by the AO/PI 

staining method. Data were obtained in three independent experiments and are represented as the 

mean ± S.D. * P-value is <0.05 compared to control. **P-value is <0.05 compared to 24 hours 

treatment. 

 3.4.2 PQ1 Induces Apoptosis in T47D Breast Cancer Cells 
Morphological features of apoptosis including cell shrinkage and detachment were 

observed in Figure 3.2.  Here, the effects of PQ1 on apoptosis were further determined by flow 

cytometry. T47D cells were treated with various concentrations of PQ1 for 24 and 48 hours, and 

cell death was characterized using flow cytometry with propidium iodide (PI) and Alexa Fluor 

488 annexin V staining. The Annexin V-FITC positive /PI negative cells located in the lower 

right quadrant of the histogram represent early apoptotic cells, and the Annexin V-FITC 

positive/PI positive cells in the upper right quadrant represent late apoptotic cells. Figure 3 

shows that 24-hour treatment of 500 nM PQ1 increased the early apoptotic cell population from 

0.44% to 9.25% and the late apoptotic cell population from 0.27% to 12.69%, compared with the 
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control. Same concentration of PQ1 resulted in a higher increase in the percentage of early 

apoptotic cells (from 0.69% to 11.68%) and late apoptotic cells (from 0.57% to 20.23%) at 48-

hour treatment (Fig. 3.4). The results of flow cytometry suggest that PQ1 induces cell death 

through apoptotic pathways in T47D cells.  

 
Figure 3.4 Effect of PQ1 on apoptosis in T47D breast cancer cells  

T47D cells were treated with DMSO and various concentrations of PQ1 for 24 and 48 hours. 

Cells without treatments were used as controls. Apoptotic cells were determined by flow 

cytometry using an Alexa Fluor 488 Annexin V/Dead Cell Apoptosis Kit. Percentages of 

apoptotic cells were showed in quadrants of the histogram. The results represent one of three 

independent experiments. 

 3.4.3 PQ1 Activates Caspase-3 in T47D Breast Cancer Cells 
Caspase-3 is an important executioner at the convergence of multiple caspase-dependent 

apoptotic pathways [15]. Activation of caspase-3 is considered to be the last step of caspase-

dependent apoptosis [16, 17]. To evaluate if PQ1 induces caspase-3 activation of apoptotic 

pathways, expression of active caspase-3 was examined by confocal immunofluorescence 

microscopy. No detectable staining of cleaved caspase-3 was found in cells without treatment or 

cells treated with DMSO (Fig. 3.5). Relative to control, a significant increase of cleaved caspase-

3 staining was detected in the treated cells with 200 and 500 nM PQ1 for 48 hours, indicating 

that 200 and 500 nM PQ1 is sufficient to activate caspase-3 (Fig. 3.5). 
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Figure 3.5 Effect of PQ1 on caspase-3 activation in T47D breast cancer cells  

T47D cells were treated with DMSO and various concentrations of PQ1 for 48 hours. Cells 

without treatments were used as controls. Expression of cleaved caspase-3 was determined by 

confocal microscopic analysis using immunofluorescence staining. Red indicates cleaved 

caspase-3 and blue indicates nuclei stained by DAPI. 
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 3.4.4 PQ1 Activates Caspase-9 Related Intrinsic Apoptotic Pathway in T47D Breast 

Cancer Cells 
The intrinsic mitochondrial apoptotic pathway is characterized by mitochondrial 

membrane permeabilization, cytochrome c release, and caspase-9 activation [17]. The anti-

apoptotic protein Bcl-2 and pro-apoptotic protein Bax are two important members of the Bcl-2 

family involved in the mitochondrial apoptotic pathway. It has been reported that the ratio of 

Bcl-2 to Bax is crucial to the mitochondrial membrane permeabilization and cytochrome c 

release [18]. Here, expression levels of Bcl-2, Bax, cytochrome c, and active caspase-9 were 

studied using both Western blot analysis and confocal microscopy to examine the effect of PQ1 

on the activation of intrinsic apoptotic pathway. Western blot results showed a gradual increase 

in Bax protein with an increase of PQ1; interestingly, there was no change in Bcl-2 level (Fig. 

3.6a, 3.6b). In contrast to control, 200 and 500 nM of PQ1 significantly increased the level of 

Bax to 156% and 176%, respectively (Fig. 3.6b). The results were further confirmed by confocal 

images. PQ1 increased the Bax staining in a dose-dependent manner as well, but again there was 

no change in Bcl-2 staining (Fig. 3.6d). The effects of PQ1 on the levels of Bax and Bcl-2 

subsequently resulted in a decrease of Bcl-2-to-Bax protein ratio. 48-hour treatment with 200 and 

500 nM PQ1 decreased the ratio of Bcl-2 to Bax by 33% and 40%, respectively (Fig. 3.6c). 

These results suggested that PQ1 caused a significant increase of Bax with no change in Bcl-2 

expression, leading to a decrease of the Bcl-2/Bax ratio. 
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Figure 3.6 Effect of PQ1 on the levels of Bax and Bcl-2 in T47D breast cancer cells 

 T47D cells were treated with DMSO and various concentrations of PQ1 for 48 hours. Cells 

without treatments were used as controls. (a) Levels of Bax and Bcl-2 were examined by 

Western blot analysis. Actin was used as a loading control. (b) Graphical presentation of three 

independent experiments shows the pixel intensities of Bax and Bcl-2 normalized to the controls. 

* P-value is <0.05 compared to control. (c) Graphical presentation shows the ratio of Bcl-2 to 

Bax. Data were obtained in three independent experiments and are represented as the mean ± 

S.D. * P-value is <0.05 compared to control. (d) Immunofluorescence was performed to examine 



77 

 

expression levels of Bax and Bcl-2. Red indicates Bax or Bcl-2 as indicated and blue indicates 

the nuclei. 

 

To investigate the cytochrome c release, mitochondrial and cytosolic fractions for 

cytochrome c were isolated after treatment with PQ1 for 48 hours. Western blot analysis showed 

a decrease of cytochrome c in the mitochondria fraction and an increase of cytochrome c in the 

cytosol of the PQ1-treated cells, indicating that PQ1 can trigger the release of cytochrome c from 

the mitochondria into cytosol (Fig. 3.7a). Cytochrome c release was also visualized by confocal 

immunofluorescence microscopy with double-staining of cytochrome c and mitochondrial 

marker. In the untreated and DMSO-treated cells, a significant colocalization of cytochrome c 

and mitochondria was observed (Fig. 3.6b). However, the colocalization signal decreased when 

cells were treated with 500 nM PQ1 (Fig. 3.7b). The reduction of cytochrome c in the 

mitochondria is consistent with the translocation of cytochrome c from the mitochondria to the 

cytosol.  
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Figure 3.7 Effect of PQ1 on the release of cytochrome c from mitochondira to cytosol in 

T47D breast cancer cells 

T47D cells were treated with DMSO and various concentrations of PQ1 for 48 hours. Cells 

without treatments were used as controls. (a) Mitochondria and cytosol were separated by using 

mitochondria isolation protocol as described in Materials and Methods. Western blot analysis of 

cytochrome c was performed. GAPDH and Cox IV were used as loading control in the cytosolic 

and mitochondrial fractions, respectively. Cox IV in the cytosol and GAPDH in the mitochondria 

were used as negative controls. Pixel intensities of protein bands were normalized to pixel 

intensities of loading controls. The results represent one of three independent experiments. 
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Numbers above the blot show fold changes in expression of cytochrome c normalized to control. 

(b) Colocalization of cytochrome c and mitochondria was determined by confocal microscopy. 

Red indicates cytochrome c, green indicates the mitochondrial marker Cox IV, and blue indicates 

nuclei stained by DAPI. Colocalization of cytochrome c and mitochondria is shown in yellow 

color as indicated by arrows. 

 

Released cytochrome c is a critical activator of caspase-9 in intrinsic apoptotic pathway. 

When caspase-9 is activated, the procaspase-9 (approximately 45 kDa) is cleaved into a fragment 

of caspase-9 p35 (approximately 35 kDa) [19, 20]. Therefore, expression level of caspase-9 p35, 

the active form of caspase-9, was examined by both Western blot analysis and confocal 

microscopy using anti-caspase-9 p35 antibodies. Immunoblotting results showed that PQ1 can 

cause a decrease of procaspase-9 and an increase of caspase-9 p35 (Fig. 3.8a, 3.8b). Compared 

with the control, the level of caspase-9 p35 was increased by 34% in cells treated with 500 nM 

PQ1 for 48 hours (Fig. 3.8b). The ratio of active caspase-9 to pro-caspase-9 was increased to 

250% after treated with 500 nM PQ1 for 48 hours (Fig. 3.8c). Confocal images further supported 

that the increase of active caspase-9 was due to the presence of PQ1 (Fig. 3.8d). All the results 

indicate that PQ1 can activate intrinsic apoptotic pathway in T47D cells.  



80 

 

  
Figure 3.8 Effect of PQ1 on the activation of caspase-9 in T47D breast cancer cells  

T47D cells were treated with DMSO and various concentrations of PQ1 for 48 hours. (a) Levels 

of procaspase-9 and caspase-9 p35 were examined by Western blot analysis using anti-caspase-9 

p35 (H-170) antibody which detects the p35 subunit and precursor of caspase-9. Actin was used 

as a loading control. (b) Graphical presentation of three independent experiments shows the pixel 

intensities of caspase-9 p35 normalized to the controls. * P-value is <0.05 compared to control. 

(c) Graphical presentation of three independent experiments shows the ratio of active caspase-9 

(caspase-9 p35) to pro-caspase-9. Results are normalized to the control. * P-value is <0.05 
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compared to control. (d) Immunofluorescence was performed using anti-cleaved caspase-9 

(Asp315) antibody, a rabbit polyclonal antibody specific to the 35 kDa large fragment of 

caspase-9 following cleavage at aspartic acid 315. Red indicates caspase-9 p35 and blue 

indicates the nuclei. Percentages of cells with positive staining were labeled on top of relative 

images. 

 3.4.5 PQ1 Activates Caspase-8 in T47D Breast Cancer Cells 
Caspase-8 is a key reporter of extrinsic apoptotic pathway. When extrinsic pathway is 

initiated, procaspase-8 will be activated and cleaved into active form, leading to the activation of 

caspase-3 [21]. Thus, the activation of capase-8 was examined by comparing the cleaved 

caspase-8 in the presence and absence of PQ1. The results showed that 200 and 500 nM PQ1 can 

significantly cause a cleavage of  procaspase-8 (55 kDa) into 43 kDa, 41 kDa, and 18 kDa 

fragments (Fig. 3.9a). Quantification analysis of caspase-8 p18 showed that 48-hour treatment 

with 500 nM PQ1 increased the level of caspase-8 p18 to 152% relative to control (Fig. 3.9b). 

The results of immunofluorescent staining confirm that 200 and 500 nM PQ1 can cause an 

increase of active caspase-8 (Fig. 3.9c). Overall, the effect of PQ1 mediates not only the 

activation of caspase-9 but also the activation of caspase-8.  
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Figure 3.9 Effect of PQ1 on the activation of caspase-8 in T47D breast cancer cells 

T47D cells were treated with DMSO and various concentrations of PQ1 for 48 hours. (a) Levels 

of procaspase-8 and cleaved caspase-8 (caspase-8 p43, p41 and p18) were examined by Western 

blot analysis using anti-caspase-8 p18 (H-134) antibody, a rabbit polyclonal antibody which 

detects cleaved subunits and precursor of caspase-8. Actin was used as a loading control. (b) 

Graphical presentation of three independent experiments shows the pixel intensities of caspase-8 

p18 normalized to the controls. * P-value is <0.05 compared to the control. (c) 

Immunofluorescence was performed using anti-cleaved caaspase-8 (Asp391) antibody, a rabbit 

monoclonal antibody which detects p18 subunit after cleavage at Asp391 of human caspase-8. 
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Red indicates caspase-8 p18 and blue indicates the nuclei. Percentages of cells with positive 

staining were labeled on top of relative images. 

 3.4.6 Cytotoxicity of PQ1 is Counteracted by Caspase Inhibitors 
To examine if activation of caspases is necessary for PQ1 cytotoxicity, T47D cells were 

pre-treated with 20 µM inhibitor of caspase-3/-8/-9 for 1 hour, and then treated with 500 nM 

PQ1 for 23 hours. Cell viability results showed that the cytotoxicity of PQ1 was completely 

inhibited by the pre-treatment of Ac-DMQD-CHO, a caspase-3 inhibitor (Fig. 3.10). The pre-

treatment of Ac-IETD-CHO, a caspase-8 inhibitor, and Ac-LEHD-CHO, a caspase-9 inhibitor, 

partially inhibited the cytotoxicity of PQ1 (Fig. 3.10). Compared with 500nM PQ1 treatment, 

pre-treatment of Ac-IETD-CHO and Ac-LEHD-CHO increased the cell viability from 64% to 

87% and 84%, respectively. The effects of caspase inhibitors indicate that the cytotoxicity of 

PQ1 is related to the activation of caspase cascade.  

 
Figure 3.10 Effects of caspase inhibitors on the cytotoxicity of PQ1 
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T47D cells were pre-treated with 20 µM caspase-3 inhibitor (Ac-DMQD-CHO), caspase-8 

inhibitor (Ac-IETD-CHO), or caspase-9 inhibitor (Ac-LEHD-CHO) for 1 hour, and exposed to 

500 nM PQ1 for 23 hours. Cells without treatments and cells treated with 500 nM PQ1 for 24 

hours were used as controls. Cell viability was determined by trypan blue method. Data were 

obtained in three independent experiments and are represented as the mean ± S.D. * P-value is 

<0.05 compared to control. **P-value is <0.05 compared to treatment with 500 nM PQ1 for 24 

hours. 
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 3.5 Discussion 

Cancer is a complex disease with multiple deregulated signaling pathways, including 

apoptosis. Targeting apoptotic pathways has emerged as an attractive approach for cancer 

treatment. So far, numerous quinoline derivatives, both in natural and synthetic products, have 

been reported to possess anticancer activities through induction of different pathways of 

apoptosis [1]. By investigating the effect of quinoline anti-malarials on MCF-7 breast cancer 

cells, Zhou et al. reported that quinidine, a natural alkaloid, and chloroquine, a synthetic alkaloid, 

trigger apoptosis via a p53-dependent pathway [22]. Studies of another quinoline derivative, 

QBS (2-amino-N-quinoline-8-yl-benzenesulfonamide), revealed that QBS induces apoptosis in 

Jurkat cells via a caspase-dependent pathway [23]. The quinoline ring by itself showed no 

evidence of apoptosis induction [22], indicating that this activity is conferred by addition of the 

side chain substituents. The properties of side chains and the steric structures of the derivatives 

may be related to apoptotic pathways selection. In this report, effect of PQ1, 6-methoxy-8-[(3-

aminopropyl)amino]-4-methyl-5-(3-trifluoromethylphenyloxy)quinoline, on apoptosis was 

examined in T47D breast cancer cells. The results showed that PQ1 induces apoptosis by 

initiating caspase cascade. It is not clear that which specific substituent of PQ1 is responsible for 

the activation of apoptosis. More studies are needed to establish the relationship between 

structure and function. 

The present study demonstrated that 200 and 500 nM PQ1 for 48 hours significantly 

increased the population of apoptotic cells (Fig. 3.4) and activated caspase-3, -9 and -8 (Fig. 3.5, 

3.8 and 3.9), indicating that the  effective concentrations of PQ1 in apoptosis induction fall in the 

nM range. 

Caspases are a group of ICE (interleukin 1 β-converting enzyme)-like proteases that play 

a crucial role in apoptosis mediation [24]. Currently, 14 caspases have been identified in humans 

[25, 26], and among them caspase-3 is frequently activated and serves as the executioner. 

Activation of caspase-3 by cleavage of procaspase-3 is considered to be a hallmark of apoptosis 

[27]. By examining the expression of cleaved caspase-3 after PQ1 treatment, we provide 

evidence that PQ1 can induce the activation of caspase-3. Caspase-3 is activated both by 

extrinsic and intrinsic pathways via interacting with two initiator caspases, caspase-8 and 

caspase-9 [28]. In intrinsic pathway, activation of caspase-9 is regulated by cytochrome c and 
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two members of Bcl-2 family, Bax and Bcl-2. The pro-apoptotic factor Bax has been reported to 

form heterodimers with the anti-apoptotic factor Bcl-2, which consequently induce cytochrome c 

release and accelerate apoptosis [29]. Overexpressed Bax counteracts the activity of Bcl-2 [29]. 

However, this view has been questioned due to the fact that the dimeric interaction of Bax and 

Bcl-2 can only be detected in the presence of nonionic detergents, such as Triton X-100 and 

Nonidet P-40 [30]. Furthermore, Knudson and Korsmeyer reported that although there is an in 

vivo competition between Bax and Bcl-2, they are able to regulate apoptosis independently [31]. 

Consistent with this report, our results showed that PQ1 can cause an increase in Bax without 

any changes in Bcl-2, indicating that PQ1 can activate intrinsic apoptotic pathway through Bax-

dependent but Bcl-2 independent mechanisms. Activation of caspase-8 is a crucial step in 

extrinsic apoptotic pathway. 200 and 500 nM PQ1 can cause a cleavage of procaspase-8 into 

active caspase-8 fragments, suggesting that PQ1 can also mediate the activation of extrinsic 

pathway reporter. However, the cleaved caspase-8 can activate caspase-3 through two alternative 

signaling pathways [32, 33]. One pathway is through the activation of caspase-3 directly. 

Another pathway is through the cleavage of BID, a Bcl-2 interacting protein, and the truncation 

of BID (tBID) to translocate to the mitochondria where tBID induces mitochondrial damage and 

releases cytochrome c. The released cytochrome c activates caspase-9 and sequentially activates 

caspase-3. It is not clear which downstream pathway is dominant in caspase-8 mediated 

apoptotic pathway. Further studies are needed to elucidate the downstream events after caspase-8 

activation.  

In conclusion, this study showed that the quinoline derivative, PQ1, exerts its anti-cancer 

effects in T47D breast cancer cells through the induction of both caspase-8 and caspase-9 

mediated pathways of apoptosis. PQ1 can significantly increase bax, cause the release of 

cytochrome c, activate caspase-9 and caspase-8, and subsequently induce caspase-3-mediated 

apoptosis.  
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Chapter 4 - Gap Junction Enhancer Potentiates Cytotoxicity of 

Cisplatin in Breast Cancer Cells 

 4.1 Abstract 
Cisplatin is one of the most widely used anti-cancer drugs due to its ability to damage 

DNA and induce apoptosis. However, increasing reports of side effects and drug resistance 

indicate the limitation of cisplatin in cancer therapeutics. Recent studies showed that inhibition 

of gap junctions diminishes the cytotoxic effect and contributes to drug resistance. Therefore, 

identification of molecules that counteract gap junctional inhibition without decreasing the anti-

cancer effect of cisplatin could be used in combinational treatment, potentiating cisplatin 

efficacy and preventing resistance. This study investigates the effects of combinational treatment 

of cisplatin and PQ1, a gap junction enhancer, in T47D breast cancer cells. Our results showed 

that combinational treatment of PQ1 and cisplatin increased gap junctional intercellular 

communication (GJIC) as well as expressions of connexins (Cx26, Cx32 and Cx43), and 

subsequently decreased cell viability. Ki67, a proliferation marker, was decreased by 75% with 

combinational treatment. Expressions of pro-apoptotic factors (cleaved caspase-3/-8/-9 and bax) 

were increased by the combinational treatment with PQ1 and cisplatin; whereas, the pro-survival 

factor, bcl-2, was decreased by the combinational treatment. Our study demonstrates for the first 

time that the combinational treatment with gap junction enhancers can counteract cisplatin 

induced inhibition of gap junctional intercellular communication and reduction of connexin 

expression, thereby increasing the efficacy of cisplatin in cancer cells.  
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4.2 Introduction 
Cisplatin is a potent agent used in cancer chemotherapy. Since the anti-cancer properties 

of cisplatin were discovered in 1960s, it has been widely employed for treating various cancers, 

including testicular, ovarian, bladder, cervical, head and neck, esophageal, lung and breast cancer 

[1-4]. Numerous studies have provided information to elucidate the molecular mechanism of 

cisplatin cytotoxicity. It is widely accepted that the anti-tumor action of cisplatin is attributed to 

the formation of cisplatin-DNA adducts, inducing several signal pathways and subsequently 

leading to cell cycle arrest, necrosis or/and apoptosis [5]. Recently, other mechanisms without 

DNA-damaging effect have added to the complexity of cisplatin, including the binding of 

cisplatin to cellular proteins and other constituents [6]. Although cisplatin is widely used in 

practice due to its success in the treatment of malignancies; unfortunately, increasing drug 

resistance and side effects of cisplatin evoke a lot of concerns about the application [7].  

Gap junctions (GJ) are intercellular channels connecting adjacent cells to allow small 

molecules of less than 1.2 kDa in size to transport between cells, thereby keeping homeostasis of 

cells and tissues [8, 9]. Many molecular processes including proliferation, differentiation, 

migration and apoptosis, are reported to be affected by this communication [10, 11]. Loss of gap 

junctional intercellular communication (GJIC) and connexins, the gap junction proteins, is a 

hallmark of malignancy [12]. Connexins have been viewed as therapeutic targets in cancer 

treatment due to two important mechanisms: the GJIC-independent mechanism and GJIC-

dependent mechanism [13]. By interacting and regulating tumor-suppressing molecules and 

tumor susceptible genes, connexins exhibit their tumor suppressive functions in a GJIC-

independent manner [14]. A growing amount of reports suggest that over-expressing connexins 

can reduce cancer proliferation and attenuate tumor growth [15]. In addition to this GJIC-

independent mechanism, GJ-based therapies mainly rely on the GJIC-dependent bystander 

effect, a mechanism by which cytotoxic molecules are transferred from target cells to 

neighboring cells [16]. Restoration and/or activation of GJIC have been applied in gene therapy, 

radiation therapy and chemotherapy [17-19]. In chemotherapy, up-regulation of GJIC and 

overexpression of connexins have been used to potentiate drug efficacy and reduce drug 

resistance [20].  
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Cisplatin-induced cytotoxicity has been reported to be transduced to neighboring cells 

through gap junctions. Jensen and Glazer found that the DNA-PK-mediated cytotoxic signal 

triggered by cisplatin was transmitted between cells via gap junctions [21]. The ability of 

activated oncogene, src, to induce cisplatin resistance by producing tyrosine phosphorylation of 

connexin 43 (Cx43) and decreasing GJIC, can be transmitted to adjacent cells by GJIC, even 

when these cells lack src activity. Moreover, this cisplatin resistant effect on neighboring cells 

can be counteracted by overexpression of Cx43 [22]. The analgesics, tramadol and flurbiprofen, 

used in combinational treatment with cisplatin, were shown to depress the cytotoxicity of 

cisplatin via the inhibition effects on gap junctions [23]. Furthermore, cisplatin was reported to 

inhibit GJIC by directly inhibiting the channel activity and decreasing expression of connexins 

[24]. This evidence indicates that inhibition of GJIC and reduction of connexins would decrease 

cytotoxicity of cisplatin and result in cisplatin resistance. Therefore, development of novel agents 

or methods to enhance or restore GJIC in combinational treatment with cisplatin is a new 

strategy to potentiate cisplatin effect and decrease drug resistance.  

PQ1, a derivative of quinoline, was reported as a gap junction enhancer [25]. Gakhar et 

al. reported that 200 nM of PQ1 showed a significant increase in the GJIC in T47D breast cancer 

cells [25]. Combinational treatment of PQ1 and tamoxifen indicated that PQ1 potentiated the 

effect of tamoxifen in T47D cells, indicating the synergistic effect of PQ1 in combinational 

treatment in breast cancers [26].  

In this report, the effects of PQ1 on the cytotoxicity of cisplatin in breast cancer cells 

were examined. Our results showed that PQ1 counteracted the inhibition of GJIC and reduction 

of connexins caused by cisplatin, subsequently enhancing the cytotoxic effect of cisplatin. 
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 4.3 Materials and Methods 

 4.3.1 Reagents and Antibodies 
PQ1, a quinoline derivative, was obtained as described by Shi at al. [27] and graciously 

provided by Dr. Duy Hua (Kansas State University). Cis-Diamminedichloro-platinum, trypan 

blue, Lucifer yellow dye and Rhodamine-dextran dye were all purchased from Sigma (St Louis, 

MO, USA). Anti-Cx43, Alexa-568-conjugated anti-rabbit IgG, and Alexa-594-conjugated anti-

mouse IgG antibodies were obtained from Invitrogen (Camarillo, CA, USA). Anti-Cx32, anti-

Cx26, anti-Ki67, anti-cleaved caspase-3, anti-caspase-8 p18, anti-caspase-9 p35, anti-Bax, and 

anti-Bcl2 antibodies were all purchased from Santa Cruz Biotechnologies (Santa Cruz, CA, 

USA). The HRP-linked anti-rabbit/mouse antibodies were purchased from Cell Signaling 

Technology (Danvers, MA, USA).  

 4.3.2 Cell Line and Cell Culture 
The T47D human breast cancer cell line was purchased from American Type Cell 

Culture (ATCC) (Manassas, MA, USA). The cells were grown in RPMI-1640 (Sigma-Aldrich, 

St Louis, MO, USA) supplemented with 2 g/L sodium bicarbonate, 1 mM sodium pyruvate, 10 

mM hepes, 4.5 g/L glucose, 0.2 units/ml bovine insulin, and 10% fetal bovine serum (Atlanta 

biological, Lawrenceville, GA, USA). Cells were maintained in T-75 cm2 flasks at 37 °C with 

5% CO2 and cultured in 6-well plates or T-25 cm2 flasks for experimental analysis.  

 4.3.3 Cell Morphology 
T47D cells were cultured in six-well plates until 80% confluent state and treated 

according to the following conditions: untreated, PQ1 (100, 200, and 500 nM) alone for 28 

hours, cisplatin (40 µM) alone for 24 hours, and PQ1 (100, 200, and 500 nM) for 4 hours 

followed by addition of cisplatin for 24 hours. Cell morphology was captured using Nikon 80i 

light microscope.  

 4.3.4 Cell Viability Assay 
Cell viability was measured using trypan blue excision method. T47D cells were cultured 

into 6-well plates until 80% confluent state (high density) or 40% confluent state (low density), 
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corresponding to the conditions in which junctional channel formation was permitted or not, 

respectively. Cells were treated with PQ1 and cisplatin as discussed for the cell morphology 

protocol. Cells floated in the media were collected and cells attached to the wells were 

trypsinized. Two parts of cells were combined together, centrifuged and resuspended. A cell 

suspension was mixed with trypan blue dye and viable cells were examined by the Cellometer 

Auto 2000 (Nexcelom Bioscience, Lawrence, MA, USA). 

 4.3.5 Scrape Load/ Dye Transfer Assay 
T47D cells were seeded on coverslips in 6-well plates and cultured until the confluency 

reached 80% - 100%. Cells were treated with PQ1 (100, 200, and 500 nM) and cisplatin (40 µM) 

alone for 4 hours or sequential combinational treatment, treating PQ1 for 4 hours followed by 

cisplatin for 4 hours. After treatments, cells were rinsed three times with PBS. Then, 2.5 µl 

mixtures of 1% (w/v) Lucifer yellow and 1% (w/v) Rhodamine-dextran were added in the center 

of the coverslips and a scrape was made on the coverslips. The dye solution was left on the 

coverslips for 3 minutes, after which coverslips were washed by PBS for three times. The cells 

were incubated in RPMI medium at 37 °C for 20 minutes, washed by PBS, and then fixed with 

2.5% paraformaldehyde for 10 minutes. Cells were mounted and image of dye transfer was 

captured using Nikon TE2000U fluorescence microscope. The distance of dye transfer from 

cutting site to the farthest visual uptake of dye was measured using ZEN 2010 software.  

 4.3.6 Western Blot Analysis 
T47D cells were cultured in T-25 cm2 flasks until 80% confluent state. Cells were treated 

with PQ1 alone for 28 hours, cisplatin alone for 24 hours, or PQ1 for 4 hours followed by 

addition of cisplatin for 24 hours. Cells without any treatments or DMSO as vehicle were used as 

controls. After treatments, cells were washed with PBS for three times and harvested in lysis 

buffer (Cell Signaling Technology, Danver, MA, USA). Cell lysates were sonicated using Vibra-

Cell sonicator (Sonics & Materials Inc, Danbury, CT, USA) and then centrifuged at 13,000 rpm 

for 30 minutes at 4 °C. After centrifugation, supernatants were collected as whole cell extracts. 

Thirty ug of samples were separated by 4-20% gradient SDS-PAGE for 35 minutes at 200 V, and 

transferred to nitrocellulose membranes (Midwest Scientific, Saint Louis, MO, USA). 

Membranes were blocked with 5% milk for 30 minutes and immunoblotted against protein of 

interest. Immunoreactions using chemiluminescence were visualized by FluorChem E Imaging 
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Instrument (ProteinSimple, Santa Clara, CA, USA). Intensities of the bands were digitized using 

Un-Scan-It software.  

 4.3.7 Immunofluorescence and Confocal Microscopy 
T47D cells cultured on coverslips in 6-well plates were treated with PQ1 and cisplatin 

alone or in combination as described in Western blot analysis protocol. After treatment, cells 

were rinsed with PBS and fixed with 2% paraformaldehyde for 20 minutes at room temperature. 

Fixed cells were washed 3 times with PBS and then permeabilized with 0.1% Triton X-100 for 8 

minutes. Cells were washed 3 times with PBS again, and blocked with 2.5% BSA in PBS for 1 

hour at room temperature. After blocking, cells were incubated with primary antibodies 

overnight at 4 °C. Samples were incubated with Alexa-conjugated secondary antibodies for 1 

hour at room temperature. DAPI was used to stain nuclei. The slides were mounted by prolong-

antifade reagent (Invitrogen, Camarillo, CA, USA) and sealed. Image was captured using a 

confocal microscope (Carl Zeiss LSM 700 META, Narashige, MN, USA).  

 4.3.8 Statistical Analysis 
Data were statistically analyzed by using student’s t-test. Data presented were expressed 

as mean ± S.D. of at least three independent experiments. Significance was considered at p < 

0.05. 
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 4.4 Results 

 4.4.1 Combinational Treatment of PQ1 and Cisplatin Has a Synergistic Effect on Cell 

Morphology and Proliferation in T47D Cells  
Cisplatin and PQ1 separately have been reported to inhibit cell proliferation and induce 

cell death in breast cancer cells via different mode of action [25, 28]. To address whether 

cisplatin and PQ1 can work synergistically to attenuate cell proliferation, cell morphology and 

proliferation were first examined with the combinational treatment of PQ1 and cisplatin. T47D 

breast cancer cells were treated with PQ1 and cisplatin alone and in combination as PQ1 for 4 

hours followed by addition of cisplatin for 24 hours. Cells without any treatment were used as 

controls. Morphological evaluation showed that both PQ1 and cisplatin changed cell morphology 

and decreased the number of adherent cells (Fig. 4.1). Combinational treatment of PQ1 and 

cisplatin induced more significant morphological changes compared to PQ1 and cisplatin alone. 

Changes including irregular shape, shrinkage, rounding, and detachment were found in PQ1-

pretreated cells in a dose-dependent manner (Fig. 4.1). Combinational treatment of T47D cells 

with 40 µM cisplatin and 200 or 500 nM PQ1 caused a significant change in the morphology 

with less than 50% of cells attached to the bottom of flasks (Fig. 4.1). The proliferation of cells 

was examined by the staining of Ki67, a nuclear protein as a proliferation marker. 24 hours 

treatment of 40 µM cisplatin did not significantly decrease expression of Ki67, indicating that 24 

hours treatment of cisplatin is not sufficient for the inhibition of cell proliferation (Fig. 4.2A, 

4.2B). However, Ki67 staining was decreased in the presence of PQ1 in a dose-dependent 

manner. The combinational treatment of 500 nM PQ1 and 40 µM cisplatin has a significant 

decrease of 23.6% of Ki67 stained cells compared to 92.5% with cisplatin alone and 47.1% with 

PQ1 alone (Fig. 4.2B), indicating a synergistic effect of the combinational treatment on anti-

proliferation. DMSO, a PQ1 vehicle, was used as solvent control, showing no changes on cell 

morphology and proliferation induced by the solvent (Fig. 4.1, 4.2A, 4.2B). These results suggest 

that combinational treatment of PQ1 and cisplatin has a synergistic effect on the changes of cell 

morphology and the inhibition of cell proliferation.  
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Figure 4.1 Synergistic effect of the combinational treatment of PQ1 and cisplatin on cell 

morphology 

T47D cells were treated with PQ1 and cisplatin alone and in combination as indicated. Cells 

without treatment were used as controls. DMSO, a PQ1 vehicle, was used as solvent control. 

Cell morphology was captured using the light microscope under 20X magnification. The scale 

bar is 100 µm in size. 
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Figure 4.2 Synergistic effect of the combinational treatment of PQ1 and cisplatin on cell 

proliferation 

T47D cells were treated with PQ1 and cisplatin alone and in combination. (A) Ki67 staining was 

used to examine cell proliferation under confocal microscope. Red indicates Ki67 and blue 

indicates nuclei stained by DAPI. (B) Percentages of Ki67 in treated cells were calculated and 

the results of each treatment were normalized to its controls. Data were obtained in three 

independent experiments and are represented as the mean ± S.E. * P-value is <0.05 compared to 

control. **P-value is <0.05 compared to cisplatin treatment. *** P-value is <0.05 compared to 

PQ1 treatment. 

 

 4.4.2 PQ1 Increases Cytotoxicity of Cisplatin and the Enhancement Depends on Cell 

Density 
The cytotoxicity of cisplatin in part is due to the bystander effect via GJIC at high cell 

density [24]. Cisplatin-induced cytotoxicity is transduced to neighbor cells through gap junction 

and accordingly induces more cell death under high cell density condition [24]. Since PQ1 has 

been reported as a gap junction enhancer [25], the effect of PQ1 on GJIC raised the possibility 
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that the cytotoxicity of cisplatin could be potentiated by PQ1 via GJIC mediation. Here, 

cytotoxicity of combinational treatment was examined under low and high cell density 

conditions. At low density, cells were well dispersed as single cells without touching the 

neighboring cells, in which a condition with few gap junctions could be formed. However, at 

high density, cells were confluent enough to contact with adjacent cells, allowing the formation 

of gap junctions. Consistent with previous reports [24], the density-dependent toxicity of 

cisplatin was also observed in this study. 24 hours treatment of cisplatin decreased cell viability 

to 85% at low density and 75% at high density, indicating that the cytotoxicity of cisplatin is 

GJIC-dependent (Fig. 4.3A, 4.3B). PQ1 enhanced the cytotoxicity of cisplatin at low and high 

density in a concentration-dependent manner, but the increase of toxic effects at high density is 

more significant (Fig. 4.3A, 4.3B, 4.3C). Compared with cisplatin treatment alone, a 33% 

decrease (75% to 42%) of cell viability was observed in the combinational treatment of cisplatin 

and 500 nM PQ1 under high density condition; whereas, same combinational treatment only 

caused a 24% decrease (85% to 61%) under low density condition (Fig. 4.3A, 4.3B, 4.3C). 

Relative to cisplatin treatment alone, quantification of differences in survival, caused by the 

combinational treatment at different PQ1 concentrations between low and high densities, were 

showed in Fig. 4.3C. PQ1 had a constant effect on cell toxicity regardless on cell density (Fig. 

4.3A, 4.3B). Therefore, the fact that PQ1 had a greater effect on the cytotoxicity of cisplatin at 

high density suggested an enhanced toxic effect of cisplatin via up-regulated GJIC mediated by 

PQ1.   
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Figure 4.3 Effect of PQ1 on cytotoxicity of cisplatin 

T47D cells were treated with PQ1 and cisplatin alone or in combination as indicated. Cell 

viability was measured under high density (A) and low density (B). Graphical presentation of 

three independent experiments is presented with statistical significance. * P-value is <0.05 

compared to control. **P-value is <0.05 compared to cisplatin treatment. *** P-value is <0.05 

compared to PQ1 treatment. (C) Quantification of differences in survival, caused by PQ1 at 

different concentrations in the combinational treatment between low density and high density. 

The viabilities of cells treated with cisplatin alone at high and low density were used as controls. 

Data were obtained in three independent experiments and are represented as the mean ± S.E.  * 

P-value is <0.05 compared to treatment at high density. 

 

 4.4.3 PQ1 Counteracts Cisplatin Inhibition of GJIC and Reduction of Connexins  
Effects of PQ1 on GJIC mediation in the combinational treatment was further 

investigated by examining the activity of the gap junction channels and the expression of 

connexins. From previous findings, 24 hours treatment with PQ1 and cisplatin can cause cell 

death, which subsequently reduces the cell density and gap junctions (Fig. 4.1, 4.3A, 4.3B). 



103 

 

Therefore, 4 hours incubation was used to avoid the substantial cell death in the SL/DT 

experiment. T47D cells were treated with PQ1 and cisplatin alone or in combination, and then 

scrap load/dye transfer (SL/DT) was performed. As a gap junction enhancer, PQ1 significantly 

increased GJIC. 500 nM PQ1 increased the distance of dye transfer by 3.7 times compared to 

control (Fig. 4.4B). In contrast, cisplatin treatment alone decreased 60% of the dye transfer from 

cell to cell compared to control, indicating that cisplatin can cause an inhibition of GJIC (Fig. 

4.4B). When cells were incubated with PQ1 prior to cisplatin treatment, a decrease of dye 

transfer induced by cisplatin was rescued (Fig. 4.4A, 4.4B). Combinational treatment of 500 nM 

PQ1 and cisplatin caused a 7.4-fold increase in the distance of dye transfer compared with 

cisplatin treatment alone, as well as a 2.6-fold increase of dye transfer compared to control (Fig. 

4.4B). This implies that not only does 500 nM PQ1 restore cisplatin-inhibited GJIC, but also 

increases the overall GJIC activity in T47D cells. The dye transfer increased with an increase in 

PQ1, suggesting that PQ1-mediated GJIC is concentration dependent (Fig. 4.4A, 4.4B).  
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Figure 4.4 Effect of PQ1 on cisplatin inhibition of GJIC 

T47D cells were treated with PQ1 and cisplatin alone and in combination as indicated. Cells 

without treatment were used as controls. (A) Scrape load/dye transfer assay was performed. 

Green indicates lucifer yellow and red indicates rhodamine-dextran. Gap junction activity is 

examined by measuring the distance of Lucifer yellow dye transfer. Image of dye transfer was 

captured using a fluorescence microscope under 4X magnification. The scale bar is 100 µm in 

size (B) The distance of dye transfer from cutting edge to the farthest cells with the dye uptake 

was measured using Zen 2010 software. The distance of dye transfer for treated cells was 

normalized to the distance of dye transfer of its control group and the graphical presentation of 

three independent experiments was showed with statistical significance. * P-value is <0.05 

compared to control. ** P-value is <0.05 compared to cisplatin treatment.  

 

Gap junctional proteins such as connexin 26 (Cx26), connexin 32 (Cx32), and connexin 

43 (Cx43) are reported to express in human breast cancer cells [29]. Here, levels of these 

connexins were measured by Western blotting. The results showed that 500 nM PQ1 alone 

increased the levels of Cx26, Cx32 and Cx43 by 44%, 55% and 18%, whereas 40 µM cisplatin 

alone showed a decrease in Cx26, Cx32 and Cx43 by 47%, 54%, and 42%, respectively. These 

indicate that the effect of PQ1 and cisplatin treatment is on the level of connexin expression (Fig. 

4.5B). When cells were treated with both PQ1 and cisplatin, the downregulation of connexin by 

cisplatin was reversed by PQ1 (Fig. 4.5A, 4.5B). Relative to cisplatin alone, combinational 

treatment of 500 nM PQ1 and cisplatin significantly increased Cx26, Cx32, and Cx43 by 151%, 

189%, and 74%, respectively (Fig. 4.5B). These results provide evidence that PQ1 can rescue 

cisplatin-induced connexin downregulation and thus subsequently increase the overall GJIC 

activity in T47D cells.  
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Figure 4.5 Effect of PQ1 on cisplatin reduction of connexins 

T47D cells were treated with PQ1 and cisplatin alone and in combination as described. (A) 

Expression of connexin 26 (Cx26), connexin 32 (Cx32), and connexin 43 (Cx43) were examined 

by Western blot analysis. Actin was used as loading control. (B) Graphical presentation of three 

independent experiments shows levels of connexins normalized to control. Pixel intensities of 

protein bands were normalized to pixel intensities of actin, and the results of treated cells are 

normalized to the results of the controls. * P-value is <0.05 compared to control. ** P-value is 

<0.05 compared to cisplatin treatment. 

 4.4.4 Combinational Treatment of PQ1 and Cisplatin Enhances Apoptosis  
Cisplatin is involved in multiple mechanisms after the formation of cisplatin-DNA 

adducts to induce cell death [6]. One mechanism is the induction of apoptosis, a programmed 

cell death [30]. The intrinsic and extrinsic pathways of apoptosis are reported to be activated in 
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response to cisplatin in different cell lines. In human osteosarcoma, cisplatin activates caspase-8, 

the initiator of extrinsic pathway, and subsequently activates caspase-3 to cause cell death [31]. 

However, in many other cell lines (like human SCC-25 squamous carcinoma and cisplatin-

sensitive human testicular cancer cell lines), cisplatin was found to activate the intrinsic pathway 

of apoptosis by releasing cytochrome c and sequentially activating caspase-9 (the intrinsic 

initiator) and caspase-3 [32, 33]. In this study, both intrinsic and extrinsic pathways of apoptosis 

were examined to evaluate the effect of combinational treatment on apoptosis.  

T47D cells were treated with PQ1 and cisplatin individually or in combination as 

described in Materials and Methods. Activation of caspase-8 and -9 were determined by Western 

blotting using antibodies specific to cleaved caspase-9 subunit p35 (caspase-9 p35) and cleaved 

caspase-8 subunit p18 (caspase-8 p18). Our results showed that 24 hours treatment of 40 µM 

cisplatin did not significantly change the level of caspase-9 p35, but slightly increased the level 

of caspase-8 p18 by 13%, indicating that cisplatin induced apoptosis through extrinsic pathway 

within 24 hours (Fig. 4.6A, 4.6B). However, 500 nM PQ1 increased the levels of both cleaved 

caspase-8 and -9, indicating that the activation of both pathways can be induced by PQ1 (Fig. 

4.6A, 4.6B). Interestingly, the combinational treatment of 500 nM PQ1 and 40 µM cisplatin had 

a synergistic effect on both caspase-8 and -9 compared to the treatment of PQ1 or cisplatin alone. 

The relative percentage of caspase-8 p18 expression for the combinational treatment of 500 nM 

PQ1 and 40 µM cisplatin is 185% compared to 113% for cisplatin and 138% for PQ1 (Fig. 

4.6B). Similarly, the combinational treatment also significantly increased the relative percentage 

of caspase-9 p35 expression to 149% compared to 94% for cisplatin and 124% for PQ1 (Fig. 

4.6B).  

To further investigate the intrinsic pathway, expression of two important effectors: Bcl-2, 

an anti-apoptotic protein, and Bax, a pro-apoptotic protein, were examined. The ratio of Bcl-2 to 

Bax is crucial to the release of cytochrome c and subsequently determines if the cell will enter 

the execution phase [34]. Cisplatin is reported to increase the levels of Bax and keep the 

expression of Bcl-2 unchanged in cisplatin-sensitive ovarian cells [35, 36]. However, in some 

cisplatin-resistant ovarian cells, cisplatin-treated cells overexpress Bcl-2 and the high level of 

Bcl-2 protects cells from apoptosis by suppressing Bax [37]. Our results showed that 24 hours 

treatment of 40 µM cisplatin did not significantly change the level of Bax and Bcl-2, compared 

to control (Fig. 4.6B). 200 and 500 nM PQ1 increased the level of Bax, but had no significant 
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effect on Bcl-2. Interestingly, the combinational treatment with PQ1 and cisplatin synergistically 

increased Bax and decreased Bcl-2. Combinational treatment with 500 nM PQ1 and 40 µM 

cisplatin increased the level of Bax to 189.8% compared to 101.9% for cisplatin alone and 

127.7% for PQ1 alone. However, the combinational treatment decreased the level of Bcl-2 to 

23.3% compared to 119.8% for cisplatin alone and 101.6% for PQ1 alone (Fig. 4.6B). The 

results of Bax and Bcl-2 are consistent with the expression of caspase-9 p35, indicating that an 

activation of intrinsic pathway can be induced by the combinational treatment of PQ1 and 

cisplatin. 

Caspase-3 is an executioner at the convergence of multiple apoptotic signaling pathways, 

and activation of caspase-3 is considered to be the last step of apoptosis. The apoptotic effect of 

combinational treatment was further investigated by examining the expression of cleaved 

caspase-3 using confocal microscopy. The staining of cleaved caspase-3 was faint with 40 µM 

cisplatin for 24 hours treatment (Fig. 4.6C). After combinational treatment of 200 or 500 nM 

PQ1 and 40 µM cisplatin, a significant increase of cleaved caspase-3 staining was detected (Fig. 

4.6C). All the results of apoptotic factors suggest that the combinational treatment with PQ1 and 

cisplatin greatly enhanced apoptosis by activating both intrinsic and extrinsic pathways. 
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Figure 4.6 Effect of the combinational treatment of PQ1 and cisplatin onapoptosis 

T47D cells were treated with PQ1 and cisplatin alone and in combination as indicated. Cells 

without treatment were used as controls. (A) Expression of procaspase-9, caspase-9 p35, 

procaspase-8, caspase-8 p18, Bax and Bcl-2 were examined by Western blot analysis. Actin was 

used as loading control. (B) Graphical presentation of three independent experiments shows 

levels of apoptotic factors normalized to control. Pixel intensities of protein bands were 

normalized to pixel intensities of actin, and the results of treated cells are normalized to the 

results of the controls. * P-value is <0.05 compared to control. **P-value is <0.05 compared to 

cisplatin treatment. *** P-value is <0.05 compared to PQ1 treatment. (C) Immunofluorescence 

was performed to examine expression levels of cleaved caspase-3. Red is cleaved caspase-3 and 

blue indicates the nuclei. 
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 4.5 Discussion 
Drug resistance and detrimental side effects are two major problems in platinum-based 

chemotherapy in cancer treatment [38]. Many mechanisms have been reported to contribute to 

cisplatin resistance, including DNA repair, signaling pathway regulation, and tumor 

microenvironment modulation [7]. In addition to these widely-accepted mechanisms which have 

been studied for many years, recent studies found that cisplatin-induced resistance is also 

associated with deficiency in cell-cell communication, the GJIC [7]. Deficiency of GJIC in 

cancer cells and inhibition of GJIC by cisplatin depress the cytotoxicity of cisplatin by 

preventing the cytotoxic molecules or signals from spreading throughout a tumor mass. 

Therefore, strategies to regulate gap junctions are needed to circumvent or decrease cisplatin 

resistance.  

PQ1, a derivative of quinoline, has been reported to enhance GJIC, inhibit cell and tumor 

growth, and increase potential of combinational treatment with tamoxifen in T47D breast cancer 

cells [25, 26]. Studies about the effects of PQ1 on normal tissues further showed that PQ1 

administration can be achieved with low toxicity to normal organs [39]. All these results indicate 

that PQ1 is a promising agent in GJ-based cancer therapy. The present study investigated the 

influence of PQ1 on the cytotoxicity of cisplatin in T47D breast cancer cells. The results showed 

that combinational treatment of PQ1 and cisplatin counteracted the cisplatin-induced inhibition 

of GJIC and decrease of connexins, and subsequently enhanced cytotoxic effects. 

Formation and degradation of gap junctions are dynamic processes with a half-life of 

connexin not exceeding 5 hours [40]. Therefore, short-term pretreatment is used in current 

experiments, examining the effect of communication activity before the degradation of 

connexins. Current study demonstrated that 4 hours treatment is sufficient for PQ1-increasing 

GJIC in T47D cells. To optimize the activation of GJIC by PQ1 as well as minimize the 

inhibition of GJIC by cisplatin, PQ1 was dosed 4 hours prior to cisplatin in the combinational 

treatment.  

The GJIC-mediated bystander effect has been demonstrated to play an important role in 

transferring toxic effects. For example, the application of bystander effect in gene therapy 

showed that after enhancing connexin 43 (Cx43) and GJIC by 8-bromo-cyclic-AMP treatment 

the toxic effect was strengthened by herpes simplex virus thymidine kinase/gancyclovir (HSV-



112 

 

TK/GCV) system [17]. Consistent with previous reports [24], our studies showed that the 

toxicity of cisplatin was greater at high density when there is opportunity for gap junctional 

contacts between the cells (Fig. 4.3A, 4.3B), indicating that the cytotoxicity of cisplatin is 

mediated by GJIC. Therefore, inhibition of gap junctional activity and reduction of connexin 

expressions by cisplatin (Fig. 4.4, 4.5) may be in part the cause of low cisplatin cytotoxicity in 

T47D cells. The present data showed that 4 hours pretreatment of PQ1 counteracted inhibition of 

GJIC induced by cisplatin (Fig. 4.4). The direct effect of PQ1 on GJIC suggested a GJIC-

dependent mechanism for the effect of PQ1 on cisplatin cytotoxicity. Moreover, the bystander 

effect of PQ1 on cisplatin reveals that PQ1 has a direct involvement in cisplatin toxicity in high 

cell density cultures (Fig. 4.3C).  

In addition to GJIC-dependent mechanism, PQ1 also adds tumor-suppressing component 

to the combinational treatment by GJIC-independent mechanisms. PQ1 inhibited cell 

proliferation, decreased cell viability and induced apoptosis (Fig. 4.2, 4.3, 4.6). The findings also 

showed that the cytotoxicity of PQ1 is cell density independent, supporting that PQ1 can mediate 

cytotoxic effect via GJIC-independent mechanism. In primary breast tumors, Cx26 has been 

reported to affect cellular process by GJIC-independent functions [41]. In literature, genistein 

and quercetin increase Cx43 and suppress breast cancer cell proliferation in a GJIC-independent 

way [42]. All these studies demonstrate that connexins can function as tumor suppressors via 

GJIC-independent mechanism. Therefore, the GJIC-independent cytotoxicity of PQ1 may be 

related to the overexpression of connexins by PQ1. In the combinational treatment, Cx26, Cx32, 

and Cx43 protein levels were increased in the presence of PQ1 (Fig. 4.5). 500 nM of PQ1 not 

only rescued cisplatin-induced decreases of Cx26 and Cx32, but also increased Cx26 and Cx32 

to a level higher than control (no treatment) (Fig. 4.5). Cell viability results showed that PQ1 

increased toxicity of cisplatin at low cell density when there is no gap junction formation (Fig. 

4.3B). Current findings established a GJIC-independent mechanism for the effect of PQ1 on 

cisplatin-mediated response.  

This report showed that combinational treatment of PQ1 and cisplatin had a synergistic 

effect on apoptosis by activating both the intrinsic and extrinsic apoptotic pathways (Fig. 4.6A, 

4.6B). Both the bystander effect and GJIC-independent mechanism may be responsible for the 

apoptosis induction. The cisplatin-DNA adducts have been reported to activate caspases and 

induce apoptosis [5]. Therefore, one hypothesis related to bystander effect is that PQ1 restores 
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gap junction channels in the combinational treatment, allowing increasing amounts of cisplatin-

induced cytotoxic signals to enter the neighboring cells, which accordingly trigger the apoptosis 

by a GJIC-dependent mechanism. The other hypothesis related to GJIC-independent mechanism 

depends on connexins. Expressions of Cx26 and Cx43 have been reported to be correlated with 

the expression level of the proapoptotic factor Bax, suggesting that connexins may participate in 

apoptotic pathways [43]. Therefore, the second hypothesis is that apoptosis induced by 

combinational treatment may attribute to the overexpression of connexins in the presence of 

PQ1.  

Cisplatin resistance has been widely reported in many cancer treatments, including 

testicular, ovarian, and cervical cancers. Studies of gap junctions revealed that GJIC and 

connexin expressions are dramatically reduced in these cancer cells. In ovarian cancer cell lines, 

expressions of Cx26 and Cx43 are reduced [44]. Chemosensitivity studies found that loss of 

Cx43 proteins may be associated with sensitivity to anticancer drugs [44]. In dysplastic 

ectocerivix, a premalignant lesion which can turn cancerous, Cx26, Cx30 and Cx43 display a 

loss of expression [45]. The characteristic loss of connexins in these cancers as well as the results 

of this study implies that the application of the combinational treatment of PQ1 and cisplatin can 

be expanded to the therapy of various cisplatin-resistant cancers.  

The present study showed that combinational treatment of PQ1 and cisplatin activates the 

activity of gap junction channels, increases the expression of connexins, and potentiates the 

cytotoxicity of cisplatin by inducing apoptosis. PQ1 is a promising molecule for combinational 

therapy aimed at potentiating cisplatin efficacy, decreasing cisplatin resistance and reducing side 

effects.   
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Chapter 5 - The Effect of the PQ1 Anti-breast Cancer Agent on 

Normal Tissues 

 5.1 Abstract 
Gap junctions are intercellular channels connecting adjacent cells, allowing cells to 

transport small molecules. Loss of gap junctional intercellular communication (GJIC) is one of 

the important hallmarks of cancer. Restoration of GJIC is related to the reduction of 

tumorigenesis and increase of drug sensitivity. Previous reports showed that PQ1, a quinoline 

derivative, increases GJIC in T47D breast cancer cells, and subsequently attenuates xenograft 

breast tumor growth. Combinational treatment of PQ1 and tamoxifen can lower the effective 

dose of tamoxifen in cancer cells. In this study, effects of PQ1 were examined in normal 

C57BL/6J mice, evaluating the distribution, toxicity and adverse effects. Distribution of PQ1 

was quantified by HPLC and mass spectrometry. Expressions of survivin, caspase-8, cleaved 

caspase-3, aryl hydrocarbon receptor (AhR), and gap junction protein, connexin 43 (Cx43), were 

measured using Western blot analysis. Our results showed that PQ1 absorbed and distributed to 

vital organs within one hour and the level of PQ1 diminished after 24 hours. Furthermore, PQ1 

increased the expression of survivin, while decreased the expression of caspase-8 and caspase-3 

activity. Interestingly, expression of AhR increased in the presence of PQ1, suggesting that PQ1 

may be involved in AhR-mediated response. Previously, PQ1 caused an increase in Cx43 

expression in breast cancer cells; however, PQ1 induced a decrease of Cx43 in normal tissues. 

Hemotoxylin and eosin staining of the tissues showed no histological change between treated 

and untreated organs. Our studies indicate that PQ1 administration by oral gavage can be 

achieved with low toxicity to normal vital organs.  
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 5.2 Introduction 
Gap junctional intercellular communication (GJIC) plays an important role in controlling 

cell growth, regulating cell differentiation, and maintaining homeostasis in normal cells and 

tissues [1, 2]. Gap junction is a hydrophilic channel which is formed by transmembrane proteins, 

connexins [3]. Six connexins oligomerize into a hexameric structure known as connexon. 

Connexon at the plasma membrane may stand alone as a hemichannel or may dock with another 

connexon of an adjacent cell to form a gap junction [4]. The gap junction channel allows cells to 

exchange small molecules of less than 1.2 kDa in size including small metabolites, electrical 

signals, and secondary messengers including cAMP, Ca2+, K+, etc [5]. This maintenance of 

communication keeps cells at homeostasis. Literature shows that mutations in connexin genes or 

deficiency in GJIC are related to various human diseases, such as deafness, peripheral 

neuropathy, skin disorders, cataracts, and even cancers [6, 7].  

Diminished connexin expression and deficiency in GJIC are considered to be two 

characteristics of tumorigenesis [8, 9]. Although it is still controversial about the function of 

connexins in invasion, intravasation, extravasation and metastasis, it has been widely accepted 

that connexins are tumor suppressors due to both the GJIC-dependent and GJIC-independent 

mechanisms [10-14]. Restoration or/and activation of GJIC in cancer cells are suggested to have 

the ability to reduce cancer cell proliferation and tumor growth [15, 16]. In addition to directly 

suppressive function, upregulation of GJIC in cancer cells is also important to increase efficacy 

of anticancer drugs. Re-establishment of GJIC is helpful in the delivery of drug or pro-drug 

throughout a tumor, and subsequently mediates bystander effect, a mechanism by which 

cytotoxic molecules are transported from a treated cell to a neighboring cell [13]. This 

mechanism has demonstrated to be an effective way to potentiate drug effect. The application of 

bystander effect in gene therapy showed that after enhancing connexin 43 (Cx43) and GJIC by 8-

bromo-cyclic-AMP treatment, gene therapy effect was strengthened by herpes simplex virus 

thymidine kinase/gancyclovir (HSV-TK/GCV) system [17]. Besides gene therapy, bystander 

effect is also responsible for improving radiation therapy and chemotherapy [18, 19]. Therefore, 

development of novel agents or methods to enhance or restore GJIC in cancer cells is a new 

research strategy in cancer treatment.  
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PQ1 is a quinoline derivative which has been reported as a gap junction enhancer in 

T47D breast cancer cells. Previously, PQ1 increased GJIC in T47D cells, whereas it had no 

effect on GJIC in normal human mammary epithelial cells (HMECs) [20]. One µM of PQ1 

decreased cell viability to 50% in T47D cells and attenuated 70% of xenograft tumor in nude 

mice [20]. Combinational treatment of PQ1 and tamoxifen showed that PQ1 potentiated the 

effect of tamoxifen in T47D cells [21]. All these studies imply therapeutic potential of PQ1 in 

breast cancer treatment. However, data of PQ1 on normal tissues are needed prior to preclinical 

trial of PQ1.  

In this study, effect of PQ1 was evaluated in healthy C57BL/6J mice. Drug distribution to 

vital organs was determined and effect of PQ1 on apoptosis was analyzed. We also examined the 

expression of aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that 

regulates transcription and activity of several important drug-metabolizing enzymes. Further 

analysis using histological observation of PQ1-treated tissues showed no alteration in structure 

change. Our results showed that the distribution of PQ1 via oral administration in mice can be 

assessed and low toxicity in vital organs was found.    
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 5.3 Material and Methods 

 5.3.1 PQ1 
PQ1. A quinoline derivative, PQ1, was obtained as described by Shi et al. [22]. 

 5.3.2 Animals 
Female C57BL/6J mice were purchased from Jackson Laboratories (Bar Harbor, Maine). 

All mice were housed together in a temperature controlled environment (72°F) with a 12-hour 

light-dark cycle and unlimited access to standard mouse chow and water. Five-week-old mice, 

with an average weight of 24 grams, were used. Twenty-five mg/kg PQ1 was administered by 

oral gavage to each animal. Animal care and use protocols were approved by the Institutional 

Animal Care and Use Committee (IACUC) at Kansas State University, following NIH 

guidelines. 

 5.3.3 Extraction of PQ1 from Organs   
Organs were diced into small pieces and diluted with 4 ml of deionized water and 10 ml 

of a solution of 9:1 ratio of ethyl acetate and 1-propanol. Tissue mixture was sonicated for 40 

minutes, and the organic layer was separated from a separatory funnel. The aqueous layer was 

extracted twice with 10 ml of a 9:1 mixture of ethyl acetate and 1-propanol. The organic layers 

were combined, washed with 5 ml of brine, dried over anhydrous MgSO4, and concentrated to 

dryness on a rotary evaporator. The residue was diluted with 1 ml of 1-propanol, filtered through 

a 0.2 µm filter disc (PTFE 0.2 µm, Fisherbrand), and analyzed using high-performance liquid 

chromatography (HPLC) and mass spectrometry as described below. 

 5.3.4 Quantification of PQ1 in Tissue Extracts using HPLC 
HPLC analysis was carried out on a Varian Prostar 210 with a UV-Vis detector and a 

reverse phase column (250 x 21.20 mm, 10 micron, Phenomenex Inc.). A flow rate of 4 ml/min 

and detection wavelength of 254 nm were used. A gradient elution of solvent A, containing 

deionized water and 0.01% of trifluoroacetic acid, and solvent B, containing acetonitrile and 

0.01% of trifluoroacetic acid, was applied for the analysis. 1,2,4,5-Benzenetetracarboxylic acid 

(BTA) was used as an internal standard to quantify the amount of PQ1 in the tissue extracts. 
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Solutions of 100 μl of various mixtures of authentic PQ1 and BTA were injected into a HPLC 

instrument, the peak areas corresponding to PQ1 and BTA were integrated from the HPLC 

chromatogram, and the ratios of the peaks were obtained.  Results of the ratios of HPLC peak 

areas and ratios from PQ1 and BTA concentrations were plotted, and a linear correlation line was 

obtained from the graph. Hence using this correlation diagram, the ratio of HPLC peak areas of 

PQ1 and BTA from tissue extract and the added known amount of BTA to the tissue extract, the 

amount of PQ1 in the tissue extract was determined. Moreover, the peak that has the same 

retention time as that of PQ1 from the injection of the tissue extract was collected, and its mass 

was determined using a mass spectrometer. The mass spectrum acquired from collected peak of 

PQ1 from the tissue extract was identical to that of the authentic PQ1 mass spectrum. Hence, the 

molecular identity of PQ1 in the tissue extract was verified by mass spectrometry. 

 5.3.5 Mass Spectroscopy  
An Applied Biosystem API 2000 LS/MS/MS mass spectrometer was used in the analysis. 

The eluent corresponding to PQ1 peak from the HPLC was collected and injected into the mass 

spectrometer. A mass of 406 corresponding to M+1 of PQ1 was found in the mass spectra, and 

the fragmentation pattern of this M+1 mass is identical to that of authentic PQ1. 

 5.3.6 Western Blot Analysis 
Organs from treated or untreated mice were collected and homogenized with lysis buffer 

(Cell Signaling Technology, Inc, Danver, MA) using Vibra-Cell sonicator (Sonics & Materials 

Inc, Danbury, CT). The mixture was centrifuged at 13,000 rpm (15,700 x g using an Eppendorf 

centrifuge 5415R with rotor F-45-24-11) for 30 minutes at 4°C, and the supernatant was 

collected. Total protein concentration was determined by a Bio-Rad protein assay kit. Forty µg 

of protein extract were separated by 4 - 20% sodium dodecylsulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) for 35 minutes at 200 Volts and proteins separated were transferred 

to nitrocellulose membrane. The membrane was immunoblotted against protein of interest. The 

goat anti-survivin antibody and mouse anti-caspase-8 antibody were purchased from Santa Cruz 

Biotechnology (Santa Cruz, CA). The rabbit anti-cleaved caspase-3 and rabbit anti-connexin 43 

antibodies were obtained from Cell Signaling Technology (Danvers, MA). The rabbit anti-AhR 

and rabbit anti-actin antibodies were purchased from Sigma-Aldrich (St. Louis, MO). 

Immunoreactions using chemiluminescence were visualized by FluoChem E Imaging Instrument 
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(Cell Biosciences, Inc, Santa Clara, CA). Intensities of the bands were digitized using Un-Scan-It 

software.  

 5.3.7 Hematoxylin and Eosin (H&E) Staining 
H&E staining was performed on paraffin-embedded tissues by following standard 

protocol. Five µm sections were dewaxed and rehydrated in xylene and decreasing ethanol 

concentrations to water. Sections were stained with hematoxylin and eosin and mounted for 

microscopic imaging. 

 5.3.8 Statistical Analysis  
Pixel intensities of protein bands were normalized to pixel intensities of loading control 

protein, actin or GAPDH. All protein expression data presented were expressed as mean ± S.D. 

of at least three independent experiments from different animals. Significant differences were 

analyzed by comparing the data between treated animals and control (untreated) animals. 

Significance was considered at p < 0.05 using student’s t-test.  
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 5.4 Results 

 5.4.1 Distribution of PQ1  
Examination of distribution is important for the development of PQ1 as an anti-cancer 

drug. Twenty-five mg/kg of PQ1 were administered to five-week-old female C57BL/6J mice by 

oral gavage. The total amount of PQ1 administered to each animal was defined as 100%. One-

hour post-treatment the majority of PQ1 was detected in liver and brain at levels of 10% and 5% 

of the total amount administered, respectively. PQ1 was at a low detectable level in the heart 

with 1%, lung with 1.5%, kidney with 1%, and uterus with 2.5% (Fig. 5.1A). Interestingly, PQ1 

distribution changed after 12 hours of administration. The percentage of PQ1 in liver decreased 

from 10% to 5%, and percentage of PQ1 in brain dropped from 5% to 2%. On the contrary, PQ1 

in kidney increased from 1% to 3%, indicating a shift of PQ1 from liver to kidney had occurred. 

Amounts of PQ1 in heart, lung and uterus remained consistent at 12 hours of administration (Fig. 

5.1B). After 24-hour treatment, no PQ1 was found in brain and heart. Percentage of PQ1 

decreased to 3% in liver and 1% in kidney. The average percentage of PQ1 in uterus stayed at 

3%. PQ1 in lung had a slight increase from 1.5% to 2.6% at 24-hour time point (Fig. 5.1C).  
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Figure 5.1 PQ1 distribution in mice 
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Mice, treated with 25 mg/kg of PQ1, were sacrificed at 1hr (A), 12hrs (B), and 24hrs (C). The 

total amount of PQ1 administered to each animal was defined as 100%. Percentages of PQ1, 

normalized to total amounts of PQ1 in brain, heart, lung, liver, kidney, and uterus, were 

presented. Data of each experiment were obtained from four mice. Data points represent the 

percentage of PQ1 in an organ of each mouse, and the dash lines show the average of PQ1 in 

four mice.  

 5.4.2 Effect of PQ1 on Apoptosis in Normal Tissues 
Apoptosis is a programmed cell death, an important event in homeostasis of healthy 

organs [23, 24]. Drugs, affecting apoptosis in healthy organs, are concerned, because they may 

cause apoptosis-related side effects [25]. Cell proliferation or cell death often depends on the 

balance of pro- and anti-apoptotic factors. Thus, expressions of survivin, an anti-apoptotic factor, 

and caspases, pro-apoptotic proteins, were evaluated. Two specific members of caspase family 

were examined in the presence of PQ1: cleaved caspase-3 is the checkpoint protein of both 

intrinsic and extrinsic apoptotic pathways and caspase-8 is the key reporter of extrinsic apoptotic 

pathway [26].  

The results showed that the level of survivin increased in PQ1-treated organs, while both 

cleaved caspase-3 and caspase-8 decreased in these organs (Fig. 5.2A, 5.2B, 5.2C). The level of 

survivin increased by 14% in liver, 28% in heart, and 44% in lung at 1 hour after PQ1 

administration, compared to controls. These effects are consistent with the detected level of PQ1. 

Interestingly, the level of survivin in these organs was reduced to the same level as the controls 

at 24-hour time point. In brain and kidney, there were no detectable changes in survivin 

expression at any time point. Uterus was the only exception in which survivin decreased more 

than 25% after PQ1 treatment (Fig. 5.2A). As for caspase 8 expression, brain, heart, lung, liver, 

and uterus of the treated animals had a slight decrease in expression ranging from 12% to 37% 

compared to untreated animals; however, there was no significant change in the kidney (Fig. 

5.2B). Cleaved caspase-3 was only detected in the uterus, liver, and lung of untreated animals; 

thus, the change in cleaved caspase-3 upon PQ1 treatment was measured in these three organs.  

A significant decrease ranging from 37% to 45% of cleaved caspase-3 at 12-hour post-treatment 

was observed, compared to the control (Fig. 5.2C). Results of caspases and survivin suggest that 
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PQ1 inhibits pro-apoptotic factors and promotes anti-apoptotic proteins in different normal 

organs. 
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Figure 5.2 Effect of PQ1 on apoptosis in normal tissues. 

Vital organs from PQ1-treated and untreated animals were subjected to Western blot analysis, 

examining the effect of 1hr, 12hrs, and 24hrs treatments of PQ1 on the levels of survivin (A), 

caspase-8 (B), and cleaved caspase-3 (C). Immunblotting images and graphical data are 

presented. “C” indicates the control animals without treatment and “T” indicates PQ1-treated 

animals. Two fragments of activated caspase-3 were detected in uterus and liver. The upper band 

is 19 kDa fragment and the lower band is 17 kDa fragment. In the bar graph, pixel intensities of 

protein bands were normalized to pixel intensities of loading control protein, actin, and the 

results of treated animals are normalized to the results of control animals. Graphical presentation 

of three experiments are presented with ±SD and statistical significance, *p<0.05.  

 5.4.3 Effect of PQ1 on AhR Levels in Normal Tissues 
Aryl hydrocarbon receptor (AhR) is a transcriptional factor involved in the metabolic 

pathway of aromatic hydrocarbon compounds [27]. The main adaptive response of AhR is the 

binding of AhR and hydrocarbon compounds, inducing metabolizing enzymes that are involved 

in its metabolic pathway [27]. Aromatic hydrocarbon compounds have been demonstrated to 

trigger AhR-mediated pathway for its metabolism; thus, the effect of PQ1, an aromatic 

hydrocarbon compound, on AhR was examined.    
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The results showed that the level of AhR in brain, heart, and liver increased significantly 

at 12-hour post-PQ1 treatment, 161%, 167%, and 124% compared to controls, respectively; 

however, there was a delay in detecting AhR in the kidney. A 114% AhR was detected in the 

kidney at 24-hour point (Fig. 5.3A). From the drug/tissue distribution data, the amounts of PQ1 

peaked at 1 hour in brain, heart and liver, but peaked at 12-hour point in kidney (Fig. 5.1A, 

5.1B). These suggest that there is a time-delay response in AhR in these organs. Interestingly, the 

level of AhR fluctuated from 117% at 1-hour of dosing to 63% at 12-hour of dosing. 

Furthermore, only 57%, 61%, and 54% of AhR were detected in the treated uterus at 1-, 12-, and 

24-hour time points, respectively, compared to controls (Fig. 5.3A). An early onset of AhR 

downregulation after PQ1 administration implies that PQ1 might be involved in a different mode 

of action in the uterus. At 1 hour of PQ1 administration, level of AhR proportionally changed 

along with the amount of PQ1 in liver, indicating a direct dependent function of AhR to PQ1 in 

liver (Fig. 5.3B). The data demonstrated that PQ1 can trigger the change in expression of AhR in 

brain, heart, liver, and kidney.  

 

A 
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Figure 5.3 Effect of PQ1 on AhR levels in normal tissues. 
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(A) Western blot analysis, examining the effect of 1hr, 12hrs, and 24hrs treatments of PQ1 on 

the level of AhR, was performed. Mice without PQ1 treatment were used as control. 

Immonoblotting images and graphical data are presented. “C” indicates the control animals 

without treatment and “T” indicates PQ1-treated animals. In the bar graph, pixel intensities of 

protein bands were normalized to pixel intensities of loading control protein, actin. Graphical 

presentation of three experiments are presented with ±SD and statistical significance, *p<0.05. 

(B) The level of AhR changes proportionally along with the amounts of PQ1 in liver after 1-hour 

treatment. Immnoblotting images are also shown above the graph. A line indicates percentage of 

PQ1 normalized to the amount of PQ1 in the liver of a corresponding animal. AhR level 

normalized to control group are shown by the bar graph. All the data have been normalized with 

the body weight of each mouse as well. 

 5.4.4 Effect of PQ1 on Connexin in Normal Tissues 
Since PQ1 has been shown to enhance GJIC [20] and increase Cx43 expressions (data not 

shown) in breast cancer cells, expressions of Cx43 in PQ1-treated and -untreated organs was 

measured. Cx43 was detected in heart, brain, and lung in the absence of PQ1 treatment; however, 

the level of Cx43 diminished in all PQ1-treated organs. A statistically significant decrease of 

31% compared to control was found at 24-hour point in the heart. A constant level of Cx43 in the 

lung was observed at all-time points. Interestingly, level of Cx43 in brain gradually declined over 

time (Fig. 5.4). These results suggest that the function of PQ1 in normal cells may involve in 

different mode of action as compared to previously observed in cancer cells.  
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Figure 5.4 Effect of PQ1 on connexin 43 expression in normal tissues. 

Brain, heart and lung from treated and untreated mice were subjected to Western blot analysis, 

examining the effect of 1hr, 12hrs, and 24hrs treatments of PQ1 on the level of connexin 43. 

Mice without PQ1 treatment were used as control. Both immunoblotting images and graphical 

data are presented. Both the phosphorylated Cx43 and unphosphorylated Cx43 were detected in 

heart. The upper band indicates the phosphorylated Cx43, and the lower band indicates the 

unphosphorylated Cx43. Pixel intensities of protein bands were normalized to pixel intensities of 

loading control protein, GAPDH, in the bar graph. Graphical presentation of three experiments 

are presented with ±SD and statistical significance, *p<0.05.   
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 5.4.5 Histological Analysis of Normal Tissues  
Liver is an important organ in drug metabolism. Hematoxylin and eosin (H&E) staining 

of PQ1-treated organs was performed. All twenty-four mice were assessed grossly or 

microscopically for histological changes. Histological results showed that PQ1-treated liver 

remained unchanged compared to control, which indicate no observable toxicity of PQ1 to liver 

at the treated dosage and time (Fig. 5.5A). Other tissues including heart, adrenal gland, kidney, 

and reproductive tract were also examined and no histological change was observed (Fig. 5.5B). 

Twenty-one of the histologically PQ1-treated mice had no evidence of hemorrhage or 

inflammatory cells. These mice had no histological evidence of lesion compared to control mice 

without PQ1 treatment at any time point. 
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Figure 5.5 A H&E staining of whole organs. 

(A) PQ1-treated tissues were examined by H & E staining. A. Liver sections from untreated 

animal (a) and PQ1-treated animals at 1hr (b), 12hrs (c), and 24hrs (d) are presented. Toxicity of 

PQ1-treated liver was examined by H & E staining using 40X magnification. Histological results 

showed that PQ1-treated liver had no change compared to control. (B) Histology of PQ1-treated 

animals for heart (a), adrenal gland (b), and reproductive tract (d) were observed under 4X 

magnification, and kidney (c) was observed under 10X magnification. The results show no 

histological alteration in the treated animals compared to control. 

B 
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 5.5 Discussion 
Cancer is a complicated disease with multiple deregulation pathways, necessitating 

cancer treatment with multiple and combinational approaches [28]. The deficiency of GJIC in 

cancer cells adds to the complexity of cancer treatment in which the lack of drug transfer to the 

surrounding area creates challenges to cancer therapy [14]. Some anticancer drugs are reported to 

inhibit GJIC and reduce connexin expression [29, 30]. Hence, restoration of GJIC in cancer cells 

is a focal point in combinational treatment by potentiating the effect of anticancer drugs. In 

addition to combinational treatment, overexpression of connexin and activation of GJIC also 

play a suppressive role to tumors [13]. Therefore, the development of molecules and agents 

increasing the connexin expression and GJIC can be a useful therapeutic strategy in cancer 

therapy.  

Quinolines are known for their anticancer effects by targeting tumor hypoxia and 

modulating multidrug resistance [31, 32]. Previous reports showed that PQ1, a quinoline 

derivative, enhances GJIC, inhibits cell and tumor growth, and increases potential of the 

combinational treatment with tamoxifen in T47D breast cancer cells [20, 21]. Therefore, the 

current study provides data of drug/tissue distribution and examines key factors of apoptotic 

pathways in normal mice.  

Oral gavage, a desirable and safe route of administration, is used in this study. Uptake of 

any drug is depending on the rate of blood flow; thus, the level of PQ1 was evaluated in five vital 

organs (brain, heart, lung, kidney, and liver) that have high rate of blood flow. PQ1 was 

measured in each vital organ after oral administration. The effective dosage of PQ1 falls in nM 

range in cells and xenograft tumors [20]. To investigate the toxicity in normal organs, a higher 

concentration of PQ1 was administered at 25 mg/kg body weight, which is equivalent to 47.7 

µM. The concentrations of PQ1 in organs examined were more than 20-fold higher than the 

effective dosage. PQ1 was detected in all tested organs after 1-hour treatment and diminished at 

24-hour post-treatment, suggesting that PQ1 can be eliminated or excreted after 24 hours (Fig. 

5.1). The highest concentrations of PQ1 were found in the liver and kidney at different time 

points (Fig. 5.1A and 5.1B). A high percentage of PQ1 was detected in the brain at 1 hour. This 

detectable level may be due to the processing of tissue in which PQ1 in the blood vessels could 
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not be excluded during the whole tissue extract (Fig. 5.1A). Our results show that PQ1 can be 

absorbed, distributed to vital organs, and metabolized in C57B/6J mice.   

A serious side effect of therapeutic drugs is a potential activation of apoptosis pathway in 

normal cells. For example, diarrhea, a common side effect of chemotherapy, is partly caused by 

induced apoptosis in normal cells of the small intestinal epithelium [25]. It has also been reported 

that both chemotherapeutic drugs and irradiation can induce apoptosis in normal thymocytes [33, 

34]. In this report, the presence of PQ1 via oral gavage caused a decrease in cleaved caspase-3 

and an increase in survivin of normal tissues, indicating the inactivation of apoptosis (Fig. 5.2A, 

5.2C). Further study of extrinsic apoptotic pathway showed a decrease of caspase-8 after 

treatment of PQ1, which further elucidates that PQ1 cannot activate the extrinsic pathway of 

apoptosis in normal tissues (Fig. 5.2B). The effect on apoptosis in normal organs indicates a 

minor, apoptosis-related side effect caused by PQ1. Interestingly, PQ1 increased caspase-3 

cleavage [20] and the level of caspase-8 protein in T47D cells. The opposing aspect of PQ1 on 

apoptosis in cancer cells compared to normal tissues implies that PQ1 may have a different 

mechanism in cancer cells. The difference between cancer and normal cells is also shown by the 

function of PQ1 on connexin expression. PQ1 enhances GJIC [20] and increases connexin 

expression in T47D breast cancer cells; however, it decreases the expression of Cx43 in a normal 

heart, brain, and lung (Fig. 5.4). PQ1 mechanism of opposing effects in normal and cancer cells 

is not clear. Further studies are needed to clarify the causes of anti-tumor effects. 

AhR, a ligand-dependent transcription factor involved in the transcription of many 

important drug-metabolizing enzymes [35], is widely expressed in rodent and human tissues 

[36]. Increase of AhR protein level in PQ1-treated mice was observed in vital organs, indicating 

the possible involvement of PQ1 in the activation of ligand-dependent transcription of AhR 

pathway (Fig. 5.3A). The proportional relation between AhR expression and detected level of 

PQ1 in liver at 1 hour showed a direct impact of PQ1 on AhR expression. However, AhR was 

decreased by PQ1 treatment in the lung compared to control. Previous report demonstrated that 

increase of AhR was found in the early stage of lung adenocarcinoma [37], suggesting that low 

level of AhR in PQ1-treated lung is due to tissue specificity. Furthermore, increase of AhR in 

PQ1-treated organs implies that PQ1 is involved in AhR-mediated pathway. Further analysis of 

gene regulation and enzyme activities in AhR-mediated pathways is needed to elucidate the 

metabolism of PQ1.  
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Gap junction has been studied for more than forty years. Until recently, the involvement 

of gap junction in cancer has been reported and widely discussed. Although several molecules 

have been developed to modulate different levels of gap junctional proteins and GJIC [13], none 

of these molecules has reached clinical trials for the treatment of cancer. Our present findings 

support the notion that PQ1 is a promising anti-breast cancer candidate and may serve as a lead 

compound for drug development.   
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Chapter 6 - General Discussions  

Cancer is a disease characterized by deregulated cell proliferation and suppressed cell 

apoptosis. To develop strategy for the prevention and treatment of cancers, it is necessary to 

understand the mechanisms of carcinogenesis. Carcinogenesis is a multi-step, multi-mechanism 

process, which can be divided into at least three steps: initiation, promotion, and progression [1, 

2]. In principle, prevention and treatment of cancer can occur at each step. Avoiding known risk 

factors can prevent cancer initiation but can never reduce the initiation step to zero. Recent 

studies shed some light on the treatment of metastatic cells by uncovering the biological 

mechanisms of cancer cells; however, it is still a big challenge to inhibit the progression step. 

Compared to the initiation and progression steps, promotion step is a reversible and rate limiting 

step of carcinogenesis. Therefore, developing methods to block this step makes the most sense 

[3]. 

Considering GJIC has been linked in normal cells to regulation of growth control, 

differentiation, and apoptosis, it is not surprising that disruption of GJIC is related to 

carcinogenesis. Mounting research indicates that GJIC is involved in every step of 

carcinogenesis, especially in cancer promotion [4]. A wide variety of tumor promoters, such as 

drugs, environmental pollutants, dietary chemicals, heavy metals, natural plant and animal 

toxins, solvents, metabolites, growth factors, hormones, and neurotransmitters, has been shown 

to inhibit GJIC in vitro and/or in vivo [5]. On the contrary, several anti-tumor promoting natural 

and synthetic chemicals have been shown to restore GJIC with the loss of tumorigenicity [5]. In 

addition to the channel activity of GJIC, connexin proteins, especially Cx43, is considered as a 

tumor suppressor in the promotion step. Loss of connexin expression has been observed in most, 

if not all, non-metastatic cancer cells. Over-expression of connexins has been reported to inhibit 

cancer cell proliferation and re-gain the growth control, even though the connexins are failed to 

form gap junctions [6]. Therefore, developing methods or molecules to restore the connexin 

expression and/or the GJIC in the cancer promotion stage is a strategy in cancer treatment.  

PQ1 has been considered as a gap junction enhancer as well as an anti-cancer agent in 

T47D breast cancer cells and xenograft tumors. In the current study, the anti-cancer effect of 

PQ1 was examined in T47D breast cancer cells. T47D is a non-metastatic human breast cancer 

cell line [7]. PQ1 decreased cell viability in a time- and dose-dependent manner, indicating the 
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cytotoxicity of PQ1 on T47D cells. Mechanism studies showed that PQ1 exerted its anti-cancer 

effect by inducing apoptosis through caspase cascade. In the presence of PQ1, both caspase-8, an 

extrinsic apoptotic pathway reporter, and caspase-9, an intrinsic apoptotic pathway reporter, were 

activated, which subsequently activated caspase-3.  

It is not clear that how PQ1 induce the caspase cascade. Krutovskikh et al. have reported 

that GJIC propagates cell death in rat bladder carcinoma BC31 cells by spreading cell-killing 

signals (such as Ca2+) from apoptotic cells to healthy surrounding cells [8]. Because PQ1 is a gap 

junction enhancer which increases GJIC in T47D cells [9], initial hypothesis is that the apoptosis 

induced by PQ1 is related to GJIC. However, later studies provided some evidence that PQ1-

mediated apoptosis is through GJIC-independent pathway. The critical evidence of this effect 

was demonstrated via cell density method. The toxic effect of PQ1 was examined at both high 

cell density and low cell density. At high cell density, there are cell-cell contacts for the 

formation of gap junctions, while at low cell density, few gap junctions could be formed due to 

the lack of cell-cell contacts. Results showed that the cytotoxicity of PQ1 on T47D cells was not 

cell density dependent. Cell viabilities decreased by PQ1 have no significant difference between 

high and low cell density, indicating that the cytotoxicity of PQ1 is GJIC-independent. However, 

the possibility cannot be ruled out that the caspase cascade induced by PQ1 is related to connexin 

via a GJIC-independent mechanism. Expressions of connexins have been reported to be related 

to expressions of apoptotic markers. Using immunohistochemical staining, Kanczuga-Koda et al. 

found the positive correlation between Cx26 and Bax expression, as well as Cx26 and Bcl-XL 

expression in colorectal cancer [10]. The same group also reported a positive correlation between 

Cx26 and Bak expression, as well as between Cx43 and Bak, but not between connexins and 

Bcl-2 in breast cancer [11]. The associations between connexin expression and apoptotic marker 

expression suggest that connexins might be a target for modulations of apoptosis. PQ1 has been 

shown to increase expressions of Cx26, Cx32, and Cx43 in T47D cells [12]. Studies of intrinsic 

apoptotic pathway showed that PQ1 increased expression of Bax, but had no effects on the 

expression of Bcl-2. Based on all the studies, one explanation of PQ1 induced apoptosis is that 

PQ1 over-expresses connexins which modulate the caspase cascade via a channel activity 

independent mechanism.  

Another explanation is related to the chemical structure of PQ1. PQ1 is a quinoline 

derivative. Many quinoline derivatives have been reported as DNA intercalators with the abilities 
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to induce apoptosis in cancer cells. For example, the quinoline derivative, 8-methoxy 

pyrimido[4’,5’:4,5]-,50:4,5]thieno (2,3-b)quinoline-4(3H)-one (MPTQ), has been reported to 

induce the activation of  caspase-3 through both intrinsic and extrinsic pathways [13]. MPTQ has 

a small alkyl methoxy group and the substituted oxygen in the aromatic ring that may facilitate 

its entry into the cells [13]. After entering the cells, MPTQ has been shown to intercalate into 

double-stranded DNA, as well as induce intracellular reactive oxygen species (ROS), which 

subsequently affect major physiological functions [13]. Similar to MPTQ, PQ1 has a small alkyl 

methoxy group in the aromatic ring. Therefore, the second explanation of PQ1 induced apoptosis 

is that after entering the cells with the help of methoxy group, PQ1 intercalates into DNA or 

interacts with regulatory proteins, which may cause DNA-strand breaks, cytokinesis disruptions, 

and apoptosis. More studies are needed to figure out which explanation is correct.  

In addition to the anti-cancer effect, the interest with PQ1 may be its function on gap 

junctions, which is distinct from other quinoline derivatives with anti-cancer effects. PQ1 acts as 

a gap junction enhancer by increasing GJIC in T47D cells [9]. The main strategy in GJIC-based 

cancer therapies relied on bystander effect. Therefore, combinational effect of PQ1 and cisplatin 

was examined in T47D cells to evaluate the bystander effect induced by PQ1. Cisplatin is a 

common used anti-cancer drug. Cisplatin-induced cytotoxicity has been reported to be 

transduced to neighboring cells through GJIC [14]. Recent studies showed that cisplatin inhibits 

GJIC by direct decrease of channel activity and by reduction of connexin expressions, thereby 

counteracting its cytotoxic efficacy [15]. Therefore, one of the strategies to potentiate cisplatin 

effect is increase of GJIC. Studies showed that combinational treatment with PQ1 and cisplatin 

counteracted cisplatin reduction of  GJIC and connexin expressions, thus increasing cytotoxic 

effects on T47D cells [12]. Consisting with previous reports, the cytotoxicity of combinational 

treatment was greater at high cell density with cell-cell contacts of gap junction formation, 

indicating that GJIC is an important factor involved in the enhancement of cytotoxic effects [12]. 

Further studies would be required to identify the toxic molecules or signals that transmitted from 

target cells to neighboring cells via GJIC in the combinational treatment. Overall, the 

combinational study suggests that PQ1 as a gap junction enhancer can be used to potentiate 

efficacy of anti-cancer drugs.  

Prior to the transition from basic research of drug development to translation medicine, a 

major concern of anti-cancer drugs is the side-effect, an adverse effect resulted from damage to 
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normal cells. In the previous study, minimal toxicity of PQ1 on normal human mammary 

epithelial cells (HMECs) was observed within the effective doses of anti-cancer effects and 

GJIC-mediated responses [9]. Compared to controls, treatment of 200 nM PQ1 has 67% cell 

viability in T47D cells, but has 103% cell viability in HMECs [9]. Based on this study, the 

effects of PQ1 on normal organs were evaluated in healthy C57BL/6J mice via oral 

administration. Results showed that PQ1 can be absorbed, distributed to vital organs, and 

diminished after 24 hours [16]. In most, if not all, tested organs, PQ1 increased the expression 

level of anti-apoptotic marker, survivin, while decreased the expression levels of pro-apoptotic 

markers, cleaved caspase-3 and caspase-8 [16]. In the organs with Cx43, the expression of Cx43 

was decreased in the presence of PQ1 [16]. No histological changes were observed after PQ1 

treatment [16]. All these results suggest that PQ1 administration by oral gavage can be achieved 

with low toxicity to normal vital organs. It is very interesting that PQ1 has opposite effects on 

apoptosis in normal organs and cancer cells. The causes of PQ1 opposing effects are not clear. 

Because PQ1 up-regulates Cx43 in cancer cells while down-regulates Cx43 in normal organs, a 

possibility is that PQ1 acts as a modulator of connexin expression and subsequently mediates 

apoptosis. More studies are needed to identify the primary molecular targets or signaling 

pathways that are involved in the PQ1-induced regulation of connexin expressions.  

Overall, studies in this dissertation have provided information that PQ1 is an effective 

tool to enhance GJIC in combinational chemotherapy, as well as a promising anti-cancer 

candidate for drug development due to its high cytotoxicity on cancer cells and low toxic effects 

on normal organs.  
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