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Abstract 

Soil moisture is listed as an Essential Climate Variable by the Global Climate Observing 

System Program. This is because soil moisture is a key factor in controlling the exchange of 

water and energy fluxes between the hydrosphere, biosphere, and the atmosphere through its 

impact on the partitioning of moisture for evapotranspiration and surface-sensible and latent heat 

fluxes. This characteristic of soil moisture also plays an important role within the hydrologic 

cycle due to its ability to control the rainfall-runoff response. Therefore, soil moisture is 

important in determining available water content and can have implications on water resources 

management for food and energy production. Thus, the evaluation of surface soil moisture at 

basin-scale is needed to understand spatiotemporal soil moisture trends and their implications on 

water resources management. Soil moisture To evaluate basin-level soil moisture trends, surface 

soil moisture estimates from SPoRT-LIS (0-10 cm layer) were used. Managed by NASA’s Short-

term Prediction Research and Transition (SPoRT) Center, the SPoRT-LIS is an observation-

driven, real-time simulation of the Noah land surface model at a 3-km resolution over the full 

continental United States. This soil moisture product is at a higher spatial and temporal 

resolution than is currently available with remotely sensed satellite estimates or in situ 

measurements of the same product. Seasonal trend analysis was done using TIMESAT to 

determine soil moisture hydrometrics. Hydrometrics characterize the important seasonal 

components of soil moisture such as the start and end of the season and the corresponding levels 

of soil moisture throughout the season. To determine the TIMESAT parameter settings, a 

sensitivity analysis was done using soil hydrologic groups. Results from the TIMESAT analysis 

captured intra-annual soil moisture variability and highlighted the impact of soil texture and 

climate on the availability of soil moisture.  



  

Next, the hydrometrics were compared to climate and soil variables to determine the 

impact that they have on the seasonality trends. This was done using a regression model with a 

space site effect. The results showed that all three variables, precipitation, temperature, and 

hydrologic soil groups significantly impacted hydrometrics. Precipitation had the largest impact 

on the available water content, field capacity, and wilting point of the soil where temperature had 

the largest impact on the start, middle, and end of season dates. This shows that precipitation 

drives soil water storage capacity where temperature is the driver of the seasonal timing of soil 

water storage. However, season length was the only hydrometric that was impacted the most by 

hydrologic soil groups. Ecoregions were also compared to the hydrometrics. This showed that 

there are additional drivers that impact hydrometrics which could include land cover, land use, 

and topography. From this, there is a better understanding of the spatiotemproal soil moisture 

variations throughout the Great Plains region which can help scientists, land managers, and 

policy makers to make decisions concerning reservoir management, irrigation applications, and 

farming practices. 
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Chapter 1 - Introduction 

 1.1 Problem Statement 

Soil moisture is listed as an Essential Climate Variable by the Global Climate Observing 

System Program (GCOS, 2010). It is a key factor in controlling the exchange of water and 

energy fluxes between the hydrosphere, biosphere, and the atmosphere through its impact on the 

partitioning of moisture for evapotranspiration and surface-sensible and latent heat fluxes (Wang 

et al., 2016; Blankenship et al., 2016; Griesfeller et al., 2016). Soil moisture also plays an 

important role in the hydrologic cycle due to its control of the rainfall-runoff response (Dobriyal 

et al., 2012; Al-Shrafany et al., 2014; Alvarez-Garreton et al., 2014; Grillakis et al., 2016; Li et 

al., 2018; Meng et al., 2017). Soil moisture is important in determining available water content 

and can influence the productivity of natural and agricultural ecosystems (Dobriyal et al., 2012). 

 By understanding soil moisture variations in space and time, scientists can better improve 

flood and drought forecasting, weather and climate predictions, and crop growth modeling and 

monitoring (Wang et al., 2015, An et al., 2016; Blankenship et al., 2016; Dobriyal et al., 2012; 

Fascetti et al., 2016; Griesfeller et al., 2016). One promising way to examine the spatiotemporal 

variability of soil moisture on a large scale is to use soil moisture values derived from remote-

sensing platforms. This powerful tool has enhanced our ability to understand land-atmosphere 

processes (Griesfeller et al., 2016) by providing global coverage at regular time intervals 

(Alvarez-Garreton et al., 2014). It has also improved streamflow prediction (Alvarez-Garreton et 

al., 2014; Brocca et al., 2012; Li et al., 2018) and has demonstrated the potential to advance 

short-term flood forecasting (Meng et al., 2017).  

In addition to satellite-derived soil moisture, land surface models can simulate soil 

moisture based upon forcing variables, such as precipitation and wind speed, and physical 
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properties such as soil texture and land cover (Koster et al., 2009; Blankenship et al., 2016). One 

major advantage of model-based soil moisture estimates is the ability to use real-time weather 

and climate information (Xia et al., 2015) and provide estimates of soil moisture to several 

meters of depth at hourly, daily, and monthly time steps (Moran et al., 2004; Cammalleri et al., 

2015). Satellite observations have been combined with land surface models to improve surface 

soil estimates through data assimilation (Pinnington et al., 2018). These improved land surface 

models, with fine to moderate temporal scale, are useful for understanding the seasonality trends 

of soil moisture throughout large aerial extents.  

 1.2 Objectives 

The overall goal of this research is to characterize the intra- annual variations of near-surface 

soil moisture throughout the Missouri and Arkansas-White-Red river basins using model-derived 

soil moisture estimates from the SPoRT-LIS software. SPoRT-LIS is managed by NASA’s 

Short-term Prediction Research and Transition (SPoRT) Center. It produces surface soil moisture 

estimates (0-10 cm layer) from an observation-driven, real-time simulation of the Noah land 

surface model at a 3-km resolution over the full continental United States 

(https://weather.msfc.nasa.gov/sport/modeling/lis.html).  

TIMESAT, a software package designed to analyze time-series satellite sensor data, is used 

for seasonal trend analysis, (Jonsson and Eklundh, 2002; 

http://web.nateko.lu.se/timesat/timesat.asp). This produces hydrometrics which characterize the 

important seasonal components of soil moisture, this includes when the start, middle, and end of 

the season occurs which defines the time when the soil is drying down. The hydrometrics also 

provide the available water content (AWC), wilting point (WP), and field capacity of the soil 

(FC; Figure 1.1). Field Capacity defines the maximum amount of water the soil can hold after 
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excess drainage and WP defines the minimum amount of water the soil can hold before the plant 

wilts (NRCS, 1998). Available water content is defined as the amount of water that is available 

for plant uptake and is determined by the difference between FC and WP (NRCS, 1998). This 

method of characterizing the soil water storage is in contrast with the traditional method of using 

the rainfall-runoff approach because instead of estimating the amount of water within a system 

by measuring the inputs (precipitation and runon) and outputs (runoff and evapotranspiration) of 

the system, there is now the ability to measure and analyze soil moisture over large aerial 

extents. 

 

Figure 1.1.  A graphical depiction of soil water holding capacity showing saturation, field 

capacity (FC), wilting point (WP), and available water content (AWC). 

 

From the soil moisture seasonality trend analysis, it is hypothesized that the soil dry season 

will follow the growing season. Three different environmental variables are then used to 
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characterize the hydrometrics to determine the individual influence each has on the region's soil 

moisture. These include: 

 Hydrologic soil groups (HSG) from USDA-NRCS STATSGO2 summarizes soils into 4 

different classifications, A, B, C, and D based upon the ability for water to enter the soil and 

the soil’s retention capacity and ranges from sandy, loose soils (HGS A) to tighter clay soils 

(HSG D). 

 30-year normal (1981-2010) mean annual precipitation and temperature from PRISM 

Climate Group (2015). Precipitation and temperature can impact the soil moisture by 

impacting the amount of water that infiltrates into the soil as well as controlling 

evapotranspiration which extracts water from the soil (Akuraju et al., 2016). 

 Level III ecoregions are classified based upon the biotic and abiotic phenomena that define 

ecosystems and their function (EPA, 2013). This includes topography, land cover, soil type, 

and climate which all impact soil moisture (Famiglietti et al., 1998).  

 HSGs are used to determine the influence the physical component of the soil has on soil 

moisture seasonality trends. The physical component of the soil is summarized into HSG based 

upon the soil type, particle size, and water retention capacity. It is hypothesized that the HSG 

will determine the AWC of the soil, the WP, and the FC values throughout the region. Following 

this, climate variables and soil characteristics are used to find out what impact they have on 

defining hydrometrics and if temperature, precipitation, or HSG play a larger role in the spatial 

patterns of each hydrometric. With this, it is hypothesized that precipitation and temperature will 

be the driving factor for the soil moisture characteristics of the region. Finally, level III 

ecoregions are used to determine if the seasonal soil moisture trends can be distinguished 
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between each ecoregion. It is hypothesized that there will be variability between each ecoregion 

to support the different biotic and abiotic phenomena for the region. 
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Chapter 2 - Literature Review 

 2.1 Soil Moisture and its Role within the Hydrologic Cycle 

  Earth is known as the “Blue Planet” since approximately 70% of its surface is covered in 

water. Even though water mass only makes up 0.02% of Earth’s mass, it is essential for the 

survival of all organisms (Oki and Kanae, 2006). Unlike most natural resources, water circulates 

naturally creating a continuous movement of water throughout the Earth’s system. This cycling 

of water in and out of the atmosphere plays a significant role in regional and global weather 

patterns.  

The hydrologic cycle follows a series of processes to circulate water in the form of a 

liquid, solid, or gas and ties together the major parts of the Earth’s climate system, air, clouds, 

oceans, lakes, vegetation, snowpack, and glaciers (Oki and Kim, 2016). To begin the water is 

evaporated from the surface of the ocean turning it from a liquid state to a gas phase (Figure 1). 

From there the moist air condenses due to colder temperatures in the atmosphere where it forms 

clouds. The moisture is transported throughout the atmosphere until it returns to the surface as 

precipitation in the form of rain, snow, or ice. Once the water reaches the ground it could 

penetrate the surface and become groundwater or could be moved on top of the surface via 

runoff. For both groundwater and runoff, the water is then transported back to the oceans, rivers, 

and streams completing the cycle. However, water can also be returned to the atmosphere from 

the surface by evapotranspiration (ET). ET is a combination of moisture evaporated from the soil 

and moisture transpired from plants. ET approximately accounts for 66% of the precipitation 

while also making up 15% of the atmosphere’s water vapor (Oki and Kim, 2016). 
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Figure 2.1. The global water cycle and its major components. 

 

Earth’s water can be stored in various reservoirs and various states throughout the 

hydrologic cycle. Oceans make 96.5% of the Earth’s water, where 2.5% is considered freshwater 

(Shiklomanov, 1993; Figure 2.2). Of the small fraction of water on Earth that is considered 

freshwater, 68.7% is stored in glaciers and ice caps, 30.1% is groundwater, and 1.2% is surface 

water. The surface water can then be further divided into ice and permafrost, lakes, soil moisture, 

swamps and marshes, rivers, atmosphere, and living things.   
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Figure 2.2. The distribution of Earth’s water in the percentage of total water (adapted from 

Shiklomanov, 1993).  

 

Since the 1980s and the start of four-dimensional data assimilation (4DDA) of the global 

atmosphere, the water cycle has been characterized by the water budget to determine the amount 

of water within the surface soil system (Oki and Kim, 2016). The water budget consists of inputs 

into the system such as precipitation and infiltration subtracted by the outputs of the system, 

including runoff, evapotranspiration, and deep seepage to determine the change in water storage 

(Figure 2.3). The equation is most often defined as,  

                                                               
𝑑𝑆

𝑑𝑡
= 𝑃 − 𝑅 − 𝐸𝑇,                                                       (2.1) 

where  
𝑑𝑆

𝑑𝑡
 is the change in water storage over time, P is precipitation, R is runoff, and ET is 

evapotranspiration. Throughout time, there has been the ability to measure the inputs and outputs 

of the system but what water remains in the system has been estimated.  
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Figure 2.3. The water balance showing the inputs into the soil water system in blue (surface 

runon and infiltration), the outputs of the system in red (runoff, evapotranspiration, and 

deep water seepage), and the change in water storage in green.  

 

It is important to accurately understand the amount of water in the soil. This is because it 

is a controlling factor in the exchange of water and energy fluxes between the hydrosphere, 

biosphere, and the atmosphere through its impact on the partitioning of moisture for 

evapotranspiration and surface-sensible and latent heat fluxes (Famiglietti et al., 1998; Wang et 

al., 2015; Chen et al., 2016; McDonough et al., 2018). Soil moisture also provides thermal inertia 

within the climate system, sorts and later releases heat, and dampens out diurnal and seasonal 

variation in surface temperature (Famiglietti et al., 1998). This is why soil moisture is listed as an 

Essential Climate Variable by the Global Climate Observing System Program (GCOS, 2010). 

 Soil moisture variability is influenced by many factors including topography, soil 

properties, vegetation type and density, mean moisture content, depth to the water table, 
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precipitation depth, solar radiation, and other meteorological factors (Famiglietti et al., 1998). 

Topography influences soil moisture by affecting the infiltration, drainage, and runoff through 

the slope and angle of the landscape. The curvature of the landscape also influences the 

convergence of lateral flow and the upslope surface area influences the distribution of soil 

moisture by controlling the potential volume of subsurface moisture flowing past a particular 

point on the landscape. Soil properties affect soil moisture through variations in color, organic 

matter content, structure, and the existence of macroporosity. Soil texture also impacts soil 

moisture through the rate of evaporative drying. This is supported by Fernandez-Illesca et al., 

(2001) which found that sandy soils tend to have the lowest mean levels of ET while silty loam 

soils have the highest ET. 

 Surface soil moisture also shows a significant response to rainfall and temperature. A 

study by Akuraju et al., (2016), found that ET is strongly constrained when soil moisture is 

between the wilting point and field capacity but if soil moisture is below the wilting point, ET is 

not constrained by soil moisture. It was also shown that under energy-limited conditions ET is 

not strongly related to soil moisture. However, under water-limited conditions, the variability in 

ET is constrained by soil moisture and crop growth stage. Energy-limited conditions impact the 

rate of ET through limited atmospheric energy controlled by incoming radiation (Eagleson, 

1978). For water-limited conditions, the rate of ET is limited by water availability and not 

energy.  

 Land cover also plays an important role in controlling spatial patterns of soil moisture by 

influencing infiltration, runoff, and ET, particularly during the growing season (Chen et al., 

2016). Vegetation influences the pattern of rainfall that is intercepted by the canopy. It also 

shades the land surface affecting the rate of evaporative drying along with impacting soil 
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hydraulic conductivity through root activity and the addition of an organic matter layer. 

Vegetation then extracts moisture from the soil profile through transpiration (Famiglietti et al., 

1998). This is especially true in water-limited regions where vegetation and soil moisture play a 

coupled role in the ecosystem dynamics (Fernandez-Illesca et al., 2001). Therefore, soil moisture 

is important in determining available water and can dictate the productivity of natural and 

agricultural ecosystems; especially since 75% of the global freshwater is used for agriculture 

annually with a majority of the water being returned to the atmosphere via ET (Akuraju et al., 

2016). Feng (2016) found that vegetation expansion has the potential to mitigate soil wetting 

trends where vegetation degradation in these wetting regions has the potential to lengthen the dry 

season and increase streamflow, thus decreasing rainfall infiltration. When looking at drying 

regions, the opposite was found where vegetation degradation can help mitigate the drying trend. 

It is thus important to assess the long-term and large-scale historical patterns and trends in 

regional soil moisture, which provides useful information to understand the individual effects 

from land cover and climate variability.  

 2.2 Soil Moisture and Climate Change 

Global climate change is having a direct impact on the global water and energy cycles 

(Rasul and Sharma, 2015; Ehsani et al., 2017). Climate change is increasing global average 

surface temperatures, increasing the frequency and intensity of heat waves and droughts, 

impacting precipitation frequency and intensity, reducing snow cover, and causing widespread 

melting of ice. All of which impact the soil moisture content and make it increasingly important 

to understand the amount of soil moisture within the system and the variability across the 

landscape. This is particularly critical since the global water and energy cycles are driven by 
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certain soil moisture-controlled land-atmosphere interactions, including latent and sensible heat 

fluxes (Dorigo et al., 2012; Qiu et al., 2016; Lai et al., 2016).  

 Soil moisture also has an impact on floods and droughts (Ault et al., 2016; Albergel et al., 

2013) because soil moisture integrates the effects of moisture supply, storage, and atmospheric 

demand (Ault et al., 2016). Under future climate projections, droughts are expected to become 

more prevalent as it has been found that higher temperatures shift the moisture balance toward 

conditions that are drier on average (Famiglietti and Rodell, 2013a; Cook et al., 2014; Cook et 

al., 2015; Ault et al., 2016; Ehsani et al., 2017). This is caused by the projected increases in 

atmospheric demand for moisture from the land’s surface, thus increasing the ET rates and 

shifting the soil moisture baseline (Cook et al., 2014; Ault et al., 2016).  

 Over the central plains, drying is driven primarily by the increased evaporative demand 

during the spring and summer seasons (Hoerling et al., 2012; Cook et al., 2015). This increased 

evaporative demand is likely to be sufficient to overcome precipitation increases and result in a 

decrease of 3 to 12 percent annual water availability throughout the United States (Ehsani et al., 

2017). With this decline, existing dams and reservoirs are incapable of storing the added water in 

the wet season to supplement lower flows in the dry months, affecting the ability of the system to 

meet human and environmental water demands as well as hydropower production targets and 

thermoelectric generation. All of this can have a long-term impact on critical water resources, 

agricultural production, and economic activity, presenting major adaption challenges for 

managing ecological and anthropogenic water needs in the region. (Cook et al., 2014; Cook et 

al., 2015). Also, the human population in the region, and their associated water resource 

demands, have been increasing rapidly in recent decades, and these trends are expected to 

continue for years to come (Cook et al., 2015). 
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 On the other hand, in some regions, extreme flooding is becoming more frequent and 

with greater intensity. There is an expected increase in global precipitation by 1 to 3 percent and 

an expected increase in extreme precipitation by 5 to 10 percent (Famiglietti and Rodell, 2013; 

Berghuijs, et al., 2016; Swain et al, 2020) Models project that areas that are already dry will 

become drier and wet areas will get wetter (Cook et al., 2014; Greve et al., 2014; Roderick et al., 

2014; Feng and Zhang, 2015) This has implications on portions of the Gulf Coast, the 

southeastern United States, and the Carolinas which have all seen catastrophic floods between 

2015 and 2020 (Swain et al., 2020). Throughout most of the United States, snowmelt and soil 

moisture are thought to be the controlling factor of flood response (Berghuijs, et al., 2016).  

 All of these results brought on by climate change can have long-term impacts on 

critical water resources, agricultural production, and economic activity, presenting major 

adaption challenges for managing ecological and anthropogenic water needs in the region. (Cook 

et al., 2014; Cook et al., 2015; Berghuijs et al., 2016). Thus, it is important to be able to measure 

the water storage within a region. Feng and Zhang (2015) found that using derived indices such 

as Palmer Drought Severity Index (PDSI), Standardized Precipitation Index (SPI), or Soil 

Moisture Percentiles (SMP) resulted in significant errors and uncertainties and overestimated 

future drought conditions. Using a hydrologic variable such as soil moisture that connects 

precipitation and ET can result in better predictions of drying and wetting trends (Greve et al., 

2014; Feng and Zhang, 2015). Thus, by understanding soil moisture variation in space and time, 

scientists can better improve flood and drought forecasting, weather and climate prediction, and 

crop growth modeling and monitoring (Albergel et al., 2013; Wang et al., 2015; Qui et al., 2016). 
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 2.3 Soil Moisture Assessment Methods 

Soil moisture data is primarily collected via three methods: in situ observations, remotely 

sensed satellite observations, and climate and land surface models (Xia et al., 2015). Due to the 

varying assessment methods, the spatial and temporal scale of soil moisture data varies widely.  

 2.3.1 In-Situ Observations 

In situ data provides point-scale estimates of soil moisture by measuring the soil moisture 

content at a specific location in space and time. One method for doing this is gravimetric 

sampling which takes a fresh soil sample or soil core. The soil sample is weighed, then oven-

dried, and weighed again. The difference between the fresh soil weight and the dried soil weight 

provides the mass of water per mass of dry soil (Erback, 1987). This can also be done on a 

volumetric basis where the soil water content is measured as a percentage of soil water volume. 

This process is relatively easy to achieve but can require extensive sampling time. For larger 

study areas, such as field sites, automated probes are a more viable option (Srivastava et al., 

2016). Automated sampling probes are placed in the field and measure the soil water content at 

the location and depth of the sensor (Sample et al., 2016). The ease of this method comes with its 

inaccuracies and concerns such as calibration difficulties due to salinity, temperature, and soil 

texture (Escoriheula et al., 2006; Vaz et al., 2013).  

 In situ data has been useful for the evolution of remotely sensed and modeled soil 

moisture data (Albergel et al., 2013; Xia et al., 2015). It is also valuable in validating other soil 

moisture estimates (Jacobs et al., 2004; Albergel et al., 2013; Xia et al, 2015; McDonough et al., 

2018). However, this method of data collection lacks large-scale applications because of very 

limited in situ hydrologic observation networks that have global coverage and representativeness 

across space and time (Dorigo et al., 2012). This type of representativeness requires dense 
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ground-based networks that would be necessary to truly capture the spatial and temporal 

variations of soil moisture due to soil characteristics, precipitation patterns, temperature patterns, 

landcover, and other physical and climatological factors (Dobriyal et al., 2012; Dorigo et al., 

2012; Al-Shrafany et al., 2014). Thus, it is a challenge to infer spatiotemporal patterns of total 

water stored throughout a region with in situ observations alone (Famiglietti and Rodell, 2014). 

This lack of robust data has caused fine-scaled soil moisture variations and the impacts of 

regional patterns of precipitation, temperature, and ET to not be well understood (Cook et al., 

2014).  

 2.3.2 Remotely Sensed Soil Moisture Observations 

Soil moisture estimates derived from remotely sensed platforms provide a path for 

analyzing spatial-temporal variability of soil moisture over regional or global scales, unlike in 

situ observations alone (Wang et al., 2015; McDonough, 2020). The satellite-derived soil 

moisture data provides global coverage at regular time intervals from 1979 onwards (Dorigo, et 

al., 2012; Srivastava et al., 2013; Alvarez-Garreton et al., 2014). This has allowed for the 

continued understanding of land-atmosphere interactions and processes along with an insight 

into climate change (Griesfeller et al., 2016; Srivastava et al., 2015).  

 The first set of remotely sensed soil moisture estimates were obtained through short wave 

measurements and relied on the fact that soils get darker when wet (Srivastava et al., 2016). This 

method resulted in measurement error due to atmospheric effects, cloud cover, and vegetation 

cover (Kerr 2007). Another method for soil moisture measurement included latent heat effects 

where wet soils have higher thermal inertia compared to dry soils (Srivastava et al., 2016). This 

too had inaccuracies due to atmospheric effects, cloud masking, vegetation cover opacity, and 

atmospheric interactions with the soil's surface layer. An improvement to this method, 
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microwave systems, can be used to measure the dielectric constant of soils that relates directly to 

the water content. Microwave systems also offer the ability to be used in all weather conditions, 

can penetrate vegetation, and operate at nighttime (Srivastava et al., 2015).   

 Several satellites have been launched to perform global soil moisture observations. One 

of these satellites, the European Remote Sensing satellite (ERS), offers a fine spatial resolution 

of ten meters but a low temporal resolution of 35 days (Wagner et al., 2007). Another includes 

the advanced scatterometer (ASCAT) which gives a freely available global soil moisture data set 

derived from backscatter measurement with an active microwave remote sensor (Wagner et al., 

1999). Also, the Soil Moisture and Ocean Salinity (SMOS) mission were launched in 2009 (Kerr 

et al., 2001). Similarly, NASA launched the Soil Moisture Active Passive (SMAP) in 2015 

(Entekhabi et al., 2010). Both SMOS and SMAP are passive remote sensors that have a spatial 

resolution of 40 km and a 3-day revisit time. Another passive microwave instrument is the 

Advanced Microwave Sounding Radiometer (AMSR-E; Reichle et al., 2007). This satellite was 

not specifically designed for soil moisture retrieval but has shown good performance (Al-Yaari 

et al., 2014).  

 These satellites allow for the global observation of soil moisture, but the accuracy of the 

data is variable through both space and time (Brocca et al., 2012). There are also concerns over 

the coarse spatial and temporal resolution along with the capability to only measure the first few 

centimeters of the soil layer with these products (Al-Shrafany et al., 2014; Alvarez-Garreton et 

al., 2014; Brocca et al., 2012). 

 2.3.3 Modeled Soil Moisture Data 

Land surface models (LSMs) are another method for soil moisture observation. LSMs 

work to solve the coupled fluxes of water, energy, and carbon between the land surface and the 
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atmosphere (Fisher and Koven, 2020). This is done through forcing variables including 

precipitation, wind speed, and physical properties such as soil texture and land cover (Koster et 

al., 2009; Blankenship et al., 2016). As LSMs progress, the proposal of additional axes of 

variation has been introduced to represent particular land surface processes, including the 

representation of soil moisture dynamics beginning in the 1980s (Fisher and Koven, 2020). This 

has allowed for LSMs to provide global coverage of soil moisture data, similar to satellite-

derived data, but it can provide estimates of soil moisture to several meters of depth at hourly, 

daily, and monthly time steps (Moran et al., 2004; Cammalleri et al., 2015).  

 A major advantage to LSMs is that they can use real-time climate and weather data (Xia 

et al., 2015). However, it has been shown that modeling soil moisture can be very complex along 

with large sensitives to meteorological forcing data and LSM parameterization (Pitman et al., 

1999; Koster et al., 2009; Camalleri et al., 2015; Xia et al., 2015; Yang et al., 2016). Satellite 

observations and LSMs have been combined to improve surface soil moisture estimates through 

data assimilation (Pinnington et al., 2018). This has allowed for LSMs to be a valuable tool in 

measuring soil moisture at a high spatial and temporal resolution (McDonough et al., 2018).  

 2.4 Soil Moisture Trend Analysis 

Soil moisture trend analysis is important for understanding climate change effects along 

with helping manage water resources to combat global water security challenges (Dobriyal et al., 

2012; Albergel et al., 2013; Qui et al., 2016). McDonough et al., (2020) noted that a majority of 

the past research over soil moisture trend analysis has been conducted at the global and 

continental scales. This is seen in a study by Dorigo et al., (2012) which looked at the merged 

microwave-based surface soil moisture dataset, SM-MW (Liu et al., 2011), from 1988 to 2010. 

Intra-annual trend analysis was conducted using the non-parametric Mann-Kendall test along 
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with defined seasons from December-February, March-May, June-August, and September-

November. It was found that a majority of the significant trends were drying trends were not 

explained by precipitation alone. Instead, other drivers of soil moisture variations such as 

evaporation, soil type, irradiation, vegetation, and topography had an impact on the trend. 

Albergel et al., (2013) found similar results by using soil moisture values from ERA-Land and 

MERRA-Land and averaged them across the defined seasons stated above. These trends were 

investigated with the Koppen-Geiger climate classification to understand precipitation and 

temperature impacts.  

 Also, Feng and Zhang (2015) along with Feng (2016) defined global climate regions of 

wetting and drying using the Climate Change Initiative data set of the European Space Agency 

that contains fusion data of active and passive microwave satellite observations at a resolution of 

25 km from 1978 to 2013. Feng (2016) analyzed these trends with climate change and vegetation 

data. It was found that climate change dominates the soil moisture trends, but vegetation can 

have a negative effect on soil moisture trends in the dry and sparsely vegetated regions but has 

an opposite impact in wet and densely vegetated regions.  

 This research has shown the long-term soil moisture trends at the global scale ranging in 

spatial resolution from 25 km to 80 km, which helps in understanding regions that are becoming 

wetter or dryer (Dorigo et al., 2012; Albergel et al., 2013; Feng and Zhang 2015; Feng 2016). 

This has implications on global climate change impacts and contributes to improved land 

components of climate models and global circulation models (Grayson et al., 1997). However, 

these global soil moisture trend analysis studies, along with coarse spatial resolutions, are not 

capable of capturing details of local and regional water availability (Hall, 2014; Mekonnen and 

Hoekstra, 2016).  
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 To better understand regional soil moisture trends, McDonough et al., (2020) 

characterized the long-term trend in soil moisture across the Missouri and Arkansas-White-Red 

River basins in the United States. This was done using SPoRT-LIS near-surface soil moisture 

estimates with a 3 km spatial resolution from 1987 to 2016. It was found that there is a drying 

trend in soil moisture throughout most of the region. This long-term trend analysis of basin-scale 

soil moisture has implications on important hydrological processes and water resources 

management, but there is evidence that average soil water content changes seasonally and that 

seasonal changes in precipitation and ET tend to lead to periods where soils are persistently 

wetter or drier than average (Grayson et al., 1997; Deliberty and Legates, 2003). Soil moisture 

can be extremely dynamic and heterogeneous with large day-to-day variability over relatively 

small areas. The seasonal variability of soil moisture plays a role critical role in irrigation and 

reservoir management, flood and drought predictions, impacts fire frequencies, and has an effect 

on the development of perennial vegetation (Deliberty and Legates, 2003).   

 Soil moisture trend analysis had been made possible through recent advancements 

in satellite and modeling technology that has shifted our ability from measuring soil moisture at a 

single point scale with in situ data to now having coarse soil moisture data over large aerial 

extents (Moran et al., 2004; Alvarez-Garreton et al., 2014; Cammalleri et al., 2015; Griesfeller et 

al., 2016; Pinnington et al., 2018). This new technology has allowed soil moisture to be 

characterized at different spatial and temporal scales (Table 2.1) allowing for a better 

understanding of the soil water storage within a system. This is in contrast to the traditional 

rainfall-runoff approach that considers the water budget and measures the inputs and outputs of 

the system to estimate the soil water storage. 
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Table 2.1. A summary of the reviewed soil moisture trend analysis studies and the soil 

moisture datasets. 

Soil moisture 

dataset 

Spatial 

Resolution 

Spatial 

Extent  

Temporal 

Resolution 

Temporal 

Extent Source 

ERA-Land 
80 km 

Global 

Scale 
6-hourly  

1980-

2010 
Albergel et al., 2013 

MERRA-Land 

1/2 degree 

and 2/3 

degree in 

latitude and 

longitude 

Global 

Scale 
2-3 days 

1980-

2010 
Albergel et al., 2013 

SM-MW 

0.25 

degrees 

Global 

Scale 
Daily 

1988-

2010 
Dorigo et al., 2012 

Climat Change 

Initiative (CCI) 

data set of the 

European Space 

Agency (ESA) 

25 km 
Global 

Scale 
Daily 

1987-

2013 

Feng and Zhang, 

2015; Feng, 2016 

SPoRT-LIS 
3 km  Basin Scale Daily 

1987-

2016 

McDonough et al., 

2020 
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Chapter 3 - Methods and Materials 

 3.1 Study Area 

The Missouri and Arkansas-White-Red River basins are located in the central part of the 

United States and cover most of the Great Plains region, and portions of Montana, South Dakota, 

Nebraska, Kansas, Oklahoma, and portions of Wyoming, North Dakota, Colorado, Iowa, 

Missouri, Arkansas, Texas, New Mexico, and Louisiana (Figure 3.1). The basins are 

characterized by varying climate, topology, geology, and land cover. 

 

Figure 3.1. The location of the Missouri and Arkansas-White-Red river basins within the 

United States.  

 

Throughout the study area, the climate is transitional between humid in the east and arid 

conditions in the west (Cook et al., 2007). The region experiences multiple climate and weather 

extremes including floods, droughts, severe storms, tornadoes, and winter storms (Antle, et al., 

2014). The mean annual precipitation ranges from 142 mm in the northwest to 2077 mm in the 
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southeast portion of the region (Figure 3.1; PRISM, 2015); throughout most of the Great Plains, 

this is not enough to replace the water demands of humans, plants, and animals (Antle et al., 

2014). The Great Plains features relatively flat plains that increase in elevation from 20 m to 

more than 3,900 m at the base of the mountain ranges along the Continental Divide (Figure 3.3). 

This is mirrored by mean annual temperature where the mountainous regions to the north and 

west have an average annual temperature less than 0 °C and the southern portion of the plains 

experience mean annual temperatures greater than 19 °C (Figure 3.4). This varying climate 

results in challenges for climate change adaption and sustainable water resources management 

that add to already stressed communities (Antle et al., 2014).  
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Figure 3.2. The 30-year-normal (1981-2010) mean annual precipitation (mm) across the 

Missouri and Arkansas-White-Red river basins (PRISM, 2015).  
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Figure 3.3. Elevation (m) throughout the Missouri and Arkansas-White-Red river basins 

(PRISM, 2014).  
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Figure 3.4. The 30-year-normal mean annual temperature (°C) over the Missouri and 

Arkansas-White-Red river basins (PRISM, 2015).  

 

The land cover for the Great Plains region is predominantly herbaceous grassland which 

makes up approximately 35% of the study area (Figure 3.5; Dewitz, 2019). Cultivated cropland 

along with hay and pasture make up 25% and 7% of the area respectively with only 3% of the 

area classified as urban. The agricultural, municipal, and industrial water needs for the region are 

dependent on the accessibility as well as the availability of water resources (Moore et al., 2015). 

Less than 10% of the farmland area in the region is irrigated (Figure 3.6; USDA-NASS, 2012). 
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The area with the most irrigation is in Kansas and Nebraska, overlaying the Ogallala Aquifer. 

The Ogallala Aquifer is considered the largest contiguous area of local water stress in the United 

States due to declining groundwater and surface water availability (Moore et al., 2015). As for 

surface water storage, there are more than 1,500 reservoirs throughout the Missouri and 

Arkansas-White-Red River basins (Figure 3.7; USGS, 2006). These reservoirs provide flood 

protection, hydropower, electricity, and recreation. However, reservoirs in the area are threatened 

due to declining storage capacity from siltation, degraded streambanks, and increases in annual 

flood magnitudes (Melillo et al., 2014; Contant et al., 2018). With declining groundwater and 

surface water availability, research is needed to understand the patterns of regional intra-annual 

hydrologic variability to maintain the water resources that provide the livelihood of the people 

within the area.  
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Figure 3.5. The land cover classification for the Missouri and Arkansas-White-Red river 

basins (Dewitz, 2019).  
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Figure 3.6. Irrigated land per county, as a percentage of farmland, for the Missouri and 

Arkansas-White-Red river basins (USDA-NASS, 2012).  
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Figure 3.7. Maximum storage capacity (km3) of major dams in the study area. This figure 

shows dams that are 15 m or more in height, or with a normal storage capacity of 0.006 

km3 or more, or with a maximum storage capacity of 0.03 km3 or more from the U.S. 

Army Corps of Engineers National Inventory of Dams (USGS, 2006). 

 3.2 SPoRT-LIS 

NASA’s Marshall Space Flight Center’s Short-term Prediction Research and Transition 

(SPoRT) Center (Jedlovec, 2013) has developed a real-time application of the NASA Land 

Information System (LIS) for use in experimental operations by both domestic and international 

operational weather forecasters (Chen and Dudhia, 2001; Ek et al., 2003Case, 2016; Case et al., 

2016; Case and Zavodsky, 2018; Zavodsky et al., 2013). LIS is a high-performance land surface 

modeling and data assimilation system that can be used to run a variety LSMs. This is done by 

integrating satellite-derived datasets, ground-based observations, and model re-analyses (Kumar 
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et al., 2006; Peters-Lidard et al., 2007). LIS features an Ensemble Kalman Filter algorithm 

(Evensen, 2003) to conduct land surface data assimilation (Kumar et al., 2008; Kumar et al., 

2009) for a variety of datasets and variables such as soil moisture, land surface temperature, and 

snow (e.g. Liu et al., 2013). 

The SPoRT-LIS provides soil moisture estimates with a 3-km grid over a 2-meter deep soil 

column for the full contiguous United States (McDonough et al., 2018). The SPoRT-LIS top-layer 

volumetric soil moisture (0-10 cm) estimate was selected for analysis because surface soil moisture 

provides insight into the structural moisture changes for the entire soil column (Dorigo et al., 

2012). The SPoRT-LIS surface soil moisture values were validated and shown to provide accurate 

volumetric soil moisture estimates at a higher spatial and temporal resolution than is currently 

provided by other datasets (McDonough et al., 2018). The soil moisture estimates were obtained 

on a daily scale from 1987 to 2018.  

 3.3 TIMESAT 

TIMESAT is a software package designed to analyze time-series satellite sensor data 

(Jonsson and Eklundh, 2002). In particular, TIMESAT was created to model the seasonality of 

dynamic properties of vegetation from NOAA Advanced Very High-Resolution Radiometer 

(AVHRR) Normalized Difference Vegetation Index (NDVI) data. To do this, TIMESAT 

implements three processing methods based upon the least-squares fits to the upper envelope of 

the data (Jonsson and Eklundh, 2004). The three methods include the Savitzky-Golay filter that 

uses a local polynomial function in the fitting, asymmetric Gaussian, and double logistic which 

both use ordinary least squares fitting.  

TIMESAT was originally designed to analyze satellite-derived vegetation data to 

estimate seasonality parameters where it is assumed that there would be a peak of greenness 
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during the growing season (Jonsson and Eklundh, 2002). However, the research objective was to 

analyze the seasonality trends of soil moisture data. The soil moisture seasonality curve mirrors 

the vegetation curve because increasing leaf area index or greening of vegetation decreases soil 

water content  (Zeng et al., 2018). To modify the SPoRT-LIS soil moisture data to best fit the 

TIMESAT assumptions made for NDVI data analysis which looks for a concave curve to define 

the season, the original soil moisture data were inverted using a conversion of one minus the 

original value (Figure 3.9). This conversion was made so that TIMESAT analyzes the “drying 

season” of soil moisture that corresponds to the growing season of vegetation. This is important 

since TIMESAT is designed to look for a concave curve to define the seasonality parameters, 

where the non-inverted soil moisture data results in a convex curve during the soil drying season. 

From there, the seasonality parameters, or hydrometrics, were computed for soil moisture. There 

are 13 hydrometrics computed from TIMESAT that give a range of important seasonal 

characteristics such as the start and end of the soil drying season and the AWC of the soil during 

that season (Table 3.1).  
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Figure 3.8. The inverted soil moisture data showing the peak of soil moisture dryness along 

with the corresponding hydrometrics computed in TIMESAT (Shawn Hutchinson, 

personal communication, 24 Septemenber 2020).  
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Table 3.1. List, description, and biological significance of TIMESAT soil moisture 

seasonality parameters (Eklundh and Jonsson, 2015). 

Hydrometric TIMESAT Definition Soil Moisture Interpretation 

Seasonal 

Amplitude (AWC) 

The difference between the maximum 

value and base value. 

The difference in moisture content 

between Maximum and Base Value can 

also be described as the available water 

content.  

Base Level (FC) Average of the left and right 

minimum values. 

The highest percent of soil wetness 

where 1- soil moisture content is the 

field capacity point. 

End of Season 

(EOS) 

Time at which the right edge has 

decreased to a user-defined level 

measured from the right minimum 

value 

End of soil drying season where the 

evapotranspiration demand is less than 

the precipitation inputs.  

Season Length 

(SL) 

Time from start to end of season. Length of soil drying season. Defined 

between Start of Season and End of 

Season. 

Rate of Increase at 

the Beginning of 

Season 

The ratio of the difference between 

the left 20% and 80% levels and the 

corresponding time difference. 

Rate of soil drying. 

Large Seasonal 

Integral 

Integral of the function describing the 

season from season start to season 

end. 

Proxy for the 1-soil moisture content 

without regarding minimum values. 

Middle of Season 

(MOS) 

The mean value of the times at which 

the left edge has increased to the 80% 

level and the right edge has decreased 

to the 80% level. 

The day when the middle of the season 

occurs. 

Maximum Value 

(WP) 

The largest data value for the fitted 

function during the season. 

The highest percent of soil dryness 

where 1-soil moisture content 

corresponds to the wilting point. 

Rate of Decreasing 

at the End of 

Season 

The absolute value of the ratio of the 

difference between the right 20% and 

80% levels and the corresponding 

time difference. 

.Rate of soil wetting 

Small Season 

Integral 

Integral of the difference between the 

function describing the season and the 

base level from season start to season 

end. 

.Proxy for the 1-soil moisture content 

while regarding minimum values 

Start of Season 

(SOS) 

Time at which the left edge has 

increased to a user-defined level 

measured from the left minimum 

value. 

Beginning of soil drying season where 

the precipitation inputs into the soil 

become less than evapotranspiration.  

Value End of 

Season 

The value at the season end point. The value of 1-soil moisture content at 

the End of Season day. 

Value Start of 

Season 

The value at the season start point. The value of 1-soil moisture content at 

the Start of Season day. 

aThe Timesat parameters selected for analysis in this study are highlighted in grey 
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3.3.1 Sensitivity Analysis 

To determine the model settings, a sensitivity analysis was conducted based upon the soil 

hydrologic groups. Hydrologic soil properties determine the ability of water to enter the soil and 

the soil’s retention capacity (USDA, 2015). HSGs summarize the soil physical properties that 

can also impact soil moisture (Famiglietti et al., 1998; Fernandez-Illesca et al., 2001). Soil 

properties affect soil moisture through the distribution of water by variations in texture, organic 

matter content, structure, and the existence of macroporosity, thus impact the soil water holding 

capacity and infiltration rates. Hydrologic soil properties are categorized into four groups (HSG-

A, B, C, D) ranging from sandy, loose soils (HSG A) to tighter clay soils (HSG D). The main 

HSG within the Missouri and Arkansas-White-Red River basins, covering 49% of the area, is 

HSG B which corresponds to soils with moderate infiltration rates that have moderately well-

drained fine to moderately coarse texture (Figure 3.10). Type A soil covers 6% of the study area 

and is characterized by having a high infiltration rate and well-drained sandy soil. Type C soil 

covers 17% of the area and has a slow infiltration rate with a slow rate of water transmission. 

Type D soil covers 22% of the study area and has very slow infiltration rates with a high-water 

holding capacity. 
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Figure 3.9. The hydrologic soil groups (HSG) throughout the Missouri and Arkansas-

White-Red river basins (USDA-NRCS, 2019). 

 

The HSG data was retrieved from the Digital General Soil Map of the United States, 

STATSGO2, which is broad-based inventory of soils and non-soil areas that occur in a 

repeatable pattern on the landscape (USDA-NRCS, 2019). STATSGO2 was chosen over 

SSURGO data because it provides coarse vector data at a spatial resolution of 1:250,000 

(approximately 125 m raster resolutaion) where the Soil Survey Geographic Database 

(SSURGO) provides vector data at a spatial resolution of 1:12,000 (approximately 6 m raster 

resolution). The HSG data was then transformed into a raster form with a 3-km spatial resolution 

by defining a threshold where the pixel was classed by a specific HSF if 80% of the HSG 
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polygon layer was within the 3-km pixel. If one of the four HSG did not cover at least 80% of 

the 3 km area, then the pixel was labled as no data and was not considered in future analysis. 

A power analysis was performed to determine the number of cells of each soil type that 

was necessary for the sensitivity analysis. The sample size was calculated with a 95% confidence 

interval with a 5% margin of error (Cohen, 1992). The power analysis showed that 371 pixels 

were required for A HSG, 383 pixels for B HSG, 380 for C HSG, and 381 for D HSG. Pixels for 

each soil type were randomly selected throughout the study area and used to extract the SPoRT-

LIS surface soil moisture data.  

 The sensitivity analysis was performed using the selected pixels for each HSG as the 

input for TIMESAT. Different smoothing parameters were tested (Table 3.2). These include 

selecting between three smoothing algorithms, Gaussian, Logistic, or Savitsky-Golay, common 

settings, and class-specific settings. The parameters that showed the largest impact on the data 

were the Savitzky-Golay window size and the season start, and season stop values (Pockrandt, 

2012). The window size determines the number of days that the curve is smoothed over and the 

season start and stop values determine the point along the curve that defines when the soil drying 

season begins and ends. The parameters that were kept constant throughout the sensitivity 

analysis were amplitude cutoff of 0,  median spike method with a spike parameter of 4, 

seasonality parameter of 1, number of envelope iterations of 2, adaption strength of 3, and a 

Savitzky-Golay fitting method (Eklundh and Jonsson, 2010; Pockrandt, 2012).  
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Table 3.2. TIMESAT setting parameters and their descriptions (Eklundh and Jonsson, 

2015). 

Setting Description 

Fitting Method 
Asymmetric Gaussian Fitting with least-squares where data is fitted to a Gaussian function 

Double Logistic Fitting with least-squares where data is fitted to a double logistic function 

Savitsky-Golay Fitting with local polynomial functions 

Common Settings 

Data range The lower and upper data values for the valid range. Data outside the range 

will be assigned weight 0 

Amplitude value Cutoff for low amplitude. Series with amplitude smaller than this value 

will not be processed. 0 processes all data 

Spike method 3 = weights from STL multiplied with original weights, 2 = weights from 

STL, 1 = method based on median filtering, 0 = no spike filtering 

Spike value If spike method = 1 the spike value determines the degree of spike 

removal. A low value will remove more spikes 

Class-Specific Settings 

Seasonal parameter A value of 1 will attempt to fit one season per year, a value of close to zero 

will attempt to fit two seasons 

No. of envelope iterations No. of iterations for the upper envelope adaptation 1, 2, 3 

Adaption strength Strength of the envelope adaptation. 10 is the maximum strength 

Window size Half window for the Savitzky-Golay filtering. A large value of the window 

will give a high degree of smoothing.  

Start of season method Method for determining start/end of season. 2 = start and end where the 

fitted curve crosses a threshold value. 1 = start and end where the fitted 

curve reaches a proportion of the seasonal amplitude measured from the 

left/right minimum value 

Season start Value for determining the season start. If start method = 1 the values must 

be between 0 and 1 

Season stop Value for determining the season stop. If start method = 1 the values must 

be between 0 and 1 

 

Fourteen different iterations of smoothing parameters were tested for each HSG, and the 

top five iterations that resulted in the least number of no data seasons within the TIMESAT 



38 

Graphical User Interface were selected for further analysis (Figure 3.11). The iterations ranged in 

window size from 2-30 days and the season start and stop values ranged from 0.7-0.85 

volumetric soil moisture content (Figure 3.12). The selected iterations were then compared based 

upon 5 hydrometrics including, season start day, season stop day, amplitude value, base value, 

and maximum value. The final TIMESAT smoothing parameters were determined by which 

smoothed curve fit the data well along if the hydrometrics resulted in reasonable values based 

upon the physical characteristics of the soil.  

 

Figure 3.10. The TIMESAT Graphical User Interface showing the three types of settings, 

smoothing curve algorithms, common settings, and class-specific settings, that users select 

from. The red box shows the smoothing curve window where the blue curve is the raw data 

and the orange curve is the smoothed curve. The green box also shows the resulting 

hydrometric values for each season where a zero shows that the parameters are not 

capturing that season. 
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Figure 3.11. The variation in the TIMESAT window size parameter and the season start 

and top values for the fourteen iterations in the sensitivity analysis. The curved lines show 

different window size smoothing curves and the dotted black lines show the thresholds 

selected for the season start and stop values. 

 

From the sensitivity analysis, the smoothing parameters used for HSG A were a window 

size of 2, a season start value of 0.8, and a season stop value of 0.85 volumetric soil moisture 

content. For HSGs B, C, and D the parameters used were a window size of 2 and a season start 

and stop of 0.75 volumetric soil moisture content. From there, TIMESAT ran with the inverted 

surface soil moisture values along with a mask layer defining each pixel’s set smoothing 

parameters based upon the sensitivity analysis. TIMESAT then defined 13 hydrometrics for 

surface soil moisture throughout the Missouri and Arkansas-Red-White River basins for each 

year from 1987-2018, however, the focus of this research is only on 7 of those hydrometrics 

(Table 3.1). From there, the median value from 1987-2018 for each pixel was calculated since 

the temporal distribution for each hydrometric was non-normal. The summary hydrometrics were 

then used for statistical analysis.  
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 3.4 Statistical Analysis 

To better understand what factors are impacting the hydrometric results, statistical 

analysis was completed to determine the impact that climate and HSG have on hydrometrics. 

Climate variables such as precipitation and temperature can have a major impact on the water 

balance and soil moisture by impacting ET rates, runoff, and soil water storage capacity 

(Famiglietti et al., 1998; Akuraju et al., 2016). Soil physical properties impact soil moisture 

through the distribution of water by variations in texture, organic matter content, structure, and 

the existence of macroporosity, thus impact the soil water holding capacity and infiltration rates 

(Famiglietti et al., 1998; Fernandez-Illesca et al., 2001).    

Therefore, mean annual temperature and mean annual precipitation from the PRISM 

Climate Group (2015) were chosen as independent variables along with HSG. Mean annual 

temperature and precipitation were chosen over seasonal temperature and precipitation because 

the soil water storage is being characterized over an annual water budget by assuming an annual 

hydrologic cycle. From there, seven hydrometrics were chosen for the analysis based upon their 

importance to plant growth where amplitude defines the AWC of the soil, base value shows the 

FC of the soil, and maximum value defines the WP of the soil (Table 3.1). Also, the season start, 

middle, and end provide information on when and how long the soil is drying. For AWC, FC, 

and WP, the statistical model was given by a beta distribution 

                                             [𝑦𝑙|𝜇𝑙 , 𝜙] ≡ 𝐵𝑒𝑡𝑎(𝜇𝑙, 𝜙),                                                  (3.1) 

with a logistic link function, and the SOS, MOS, EOS, and SL hydrometrics are represented by a 

gamma distribution 

                                                       [𝑦𝑙|𝜇𝑙 , 𝜙] ≡ 𝐺𝑎𝑚𝑚𝑎(𝜇𝑙, 𝜙) ,                                              (3.2) 
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with a log link function where y is the true median value of the hydrometric over the years1987-

2018 at the lth location. The median value of the hydrometric was used instead of the mean 

because the temporal distribution was not normally distributed. The location, l, is defined as the 

central point in each three-kilometer grid cell given a latitude and longitude. The dispersion 

parameter is given by ϕ. The expected value of the hydrometric is represented by µl and is 

defined as  

                                            𝜇𝑙 = 𝛽0 +  𝛽1𝑥1,𝑙 + 𝛽2𝑥2,𝑙 + 𝛽3𝑥3,𝑙 + 𝜂𝑙,                                      (3.3) 

where x1,l  is the mean annual precipitation value in mm for the three-kilometer grid cell at 

location l, x2,l is the mean annual temperature in °C for the three-kilometer grid cell at location l, 

x3,l is the HSG for the three-kilometer grid cell at location l, and 𝜂𝑙,𝑡 is the site level effect at the 

lth location. 

 The beta distribution was chosen as the distribution for the AWC, FC, and WP 

hydrometrics because the support is continuous from 0 to 1 and these hydrometrics are measured 

in volumetric soil moisture content. The gamma distribution was then chosen as the distribution 

for the SOS, MOS, EOS, and SL because these hydrometrics are represented by the number of 

days, and the gamma distribution has positive continuous support.  

 3.4.1 Ecoregions and Hydrometrics 

In addition to looking at the impact of climate and soil variables, ecoregions were 

compared to the hydrometric results to determine if hydrometrics can be distinguished between 

each ecoregion. Ecoregions are defined by the biotic and abiotic phenomena that define 

ecosystems and their function (Omernik 1987). This includes geology, topography, soils, 

vegetation, climate, and land use. There are 25 level III ecoregions within the study area (Figure 

3.13).  
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Figure 3.12. Level III ecoregions within the Missouri and Arkansas-White-Red river basins 

(EPA, 2013). 

 

To be able to determine if the hydrometrics can be distinguished between each ecoregion, 

density plots were created to represent the distribution of the median SOS, MOS, and EOS for 

each ecoregion within the study area. Then the hydrometrics were analyzed with the Kruskal 

Wallis test to determine if there is a significant difference between each ecoregion. The Kruskal 
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Wallis test was used because of the non-uniform distribution of the hydrometrics temporal 

component. From there, the pairwise Wilcox test was performed to determine what pairs are 

significantly different from each other. 
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Chapter 4 - Results and Discussion 

Results from the TIMESAT analysis showed that it captured intra-annual soil moisture 

variability and that the seasonal soil moisture characteristics can be characterized at a coarse 

spatial resolution of 3 km. Furthermore, the statistical analysis highlighted the impact of soil 

texture and climate on the availability of soil moisture where it was shown that precipitation 

drives soil water storage capacity and temperature is the driver of the seasonal timing of soil 

water storage. Additionally, it was found that for a majority of the ecoregions, the seasonal soil 

moisture characteristics can be distinguished between each region, highlight the impact of soil 

moisture availability on the biotic and abiotic phenomena.  

 4.1 Field Capacity, Wilting Point, and Available Water Content TIMESAT 

Analysis 

The results from the TIMESAT analysis showed that A soils had the lowest WP (ƟWP 

median = 0.03 m3/m3, range 0-0.07 m3/m3) and lowest FC (ƟFC median = 0.25 m3/m3, range 0.20-0.31 

m3/m3; Figure 4.1). HSGs B and D have similar WP and FC values with C soils having the 

highest WP (ƟWP median = 0.13 m3/m3, range 0.04-0.22 m3/m3) and FC (ƟFC median = 0.36 m3/m3, 

range 0.23-0.48 m3/m3). 
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Figure 4.1. The median available water content (AWC), field capacity (FC), and wilting 

point (WP) from 1987-2018 showing the spatial median values for each hydrologic soil 

group (HSG) with error bars showing the upper and lower extreme values. 

 

The permanent WP happens at approximately -1500 kPa which is the stage at which the 

soil contains some water, but it is difficult for the roots to extract from the soil. The median 

values for each HSG fell within expected values, except for HSG D where the WP is less than 

the assumed range (Table 4.1). This could be because D soil groups have small particle sizes that 

are held tightly together resulting in them being less responsive to precipitation impacts (USDA, 

2015). Also, clay soils are typically found at higher elevations and on hillslopes compared to 

sandier soils (Collins and Foster, 2008). This variation in HSG D location and structure impact 

the model's ability to accurately fit a smoothing curve over the variations of soil moisture. 
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Table 4.1. Field capacity (FC), wilting point (WP), and available water content (AWC) for 

different hydrologic soil groups (HSG) comparing the expected values (NRCS, 1998; 

Saxton and Rowls, 2006) and the observed upper and lower extreme values from the 

TIMESAT analysis.  

  ƟFC (m
3/m3) ƟWP (m

3/m3) ƟAWC (m
3/m3) 

HSG Expected Observed Expected Observed Expected Observed 

A 0.10-0.15 0.20-0.31 0.0-0.05 0.0-0.07 0.0-0.10 0.15-0.28 

B 0.15-0.20 0.19-0.48 0.05-0.10 0.02-0.20 0.10-0.15 0.086-0.36 

C 0.25-0.40 0.23-0.48 0.05-0.20 0.04-0.22 0.10-0.20 0.12-0.32 

D 0.35-0.45 0.19-0.48 0.25-0.30 0.02-0.20 0.15-0.25 0.13-0.30 

 

Field capacity is assumed to be approximately -33 kPa which defines the point where the 

soil contains the maximum amount of water after excess drainage has occurred (Figure 1.1; 

NRCS, 1998). The median values of FC for HSGs C and D fell within the expected range, but 

the median FC for HSGs A and B fell above the expected range (Table 4.1). The results also 

showed that for all HSGs, the median AWC was approximately the same (ƟAWC median = 0.22 

m3/m3) where HSG A had the shortest range between the upper and lower extreme values from 

the box-plot (Figure 4.1; Appendix A). It was unexpected that all soil types would have roughly 

the same AWC value. This could be because of the varying scales of soil moisture observations 

and the scale at which soil water movement occurs. The expected values of soil moisture for FC, 

WP, and AWC is observed with in situ soil samples and looks at the soil pore scale (Saxton and 

Rowls, 2006) where the SPoRT-LIS data considers a spatial scale of 3 km at the near-surface soil 

layer (0-10 cm). This demonstrates the limitation of characterizing the soil storage capacity using 

coarse soil moisture observations. 

 4.2 Soil Moisture Start, Middle, and End of Season TIMESAT Analysis 

The soil dry season was hypothesized to follow the growing season. The growing season 

is defined by the period between the last frost of spring and the first frost of fall, where the air 
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temperature drops below the freezing point (Kukal and Irmak, 2018). This shows that for the 

Missouri and Arkansas-White-Red River basins, the last spring frost occurs between March 2nd 

to May 30th, and the first fall frost occurring September 8th to November 20th. The results show 

that the median soil moisture start of season for each HSG lags behind the growing season start, 

but the median soil moisture end of season occurs before the end of the growing season (Figure 

4.2; Appendix A). The results also showed that the lower extreme MOS values are later in the 

year than the EOS values, however when looking at the full set of data, only 3 MOS pixels 

(0.0005% of the study area) are greater than the EOS. Also, the median MOS and EOS values 

are closer than expected for all HSGs. This is showing that the soil is wetting up quicker than it 

dries down. 
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Figure 4.2. Box-plots and density plots showing the distribution of the median soil season’s 

start (SOS), middle (MOS), and end (EOS) for each hydrologic soil group (HSG).   
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Density plots and box-plots of the SOS, MOS, and EOS demonstrate the range and 

distribution of each hydrometric (Figure 4.2). For HSG A, all three are right-skewed with a tri-

modal EOS and a long season length. B soil SOS, MOS, and EOS distributions are normally 

distributed with each occurring close in time to each other showing a short season length. C soil 

distributions are slightly left-skewed with a bimodal SOS. Then for HSG D, the SOS, MOS, and 

EOS are normally distributed and show a shorter season length. For B, C, and D groups, EOS 

has a narrow distribution where the A soil group SOS has a narrower distribution. The SOS, 

MOS, and EOS hydrometrics were then analyzed with the Kruskal Wallis test to determine if 

there is a significant difference between the HSGs. This showed that all HSGs were significantly 

different from each other, demonstrating the impact that the physical characteristics of the soil 

have on soil moisture. The box-plots also gave insight into what values are considered outliers 

for each hydrometric within each HSG (Appendix A).    

 4.3 Statistical Analysis 

To further understand the impact of soil and climate characteristics and address the 

variations in results from what was hypothesized, the regression model with a space site effect 

was used. The results show that for season length (SL), there was a non-significant negative 

impact for precipitation where every unit increase of precipitation would result in a log decrease 

of season length day by -1.211 x 10-5 (Table 4.3). All other impacts were significant.   
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Table 4.2. A summary of each hydrometrics estimated regression coefficients and their 

corresponding p-values. 

Hydrometric Independent variable Regression Coefficient Estimate p-value 

SOS 

Precipitation β1 6.17E-05 <2e-16 

Temperature β2 6.48E-03 <2e-16 

HSG β3 2.63E-02 <2e-16 

MOS 

Precipitation β1 -1.47E-04 <2e-16 

Temperature β2 -1.14E-02 <2e-16 

HSG β3 -7.11E-03 <2e-16 

EOS 

Precipitation β1 2.81E-05 <2e-16 

Temperature β2 4.18E-03 <2e-16 

HSG β3 -7.61E-03 <2e-16 

SL 

Precipitation β1 -1.21E-05 0.467 

Temperature β2 -1.55E-02 <2e-16 

HSG β3 -1.96E-01 <2e-16 

AWC 

Precipitation β1 3.54E-04 <2e-16 

Temperature β2 -2.58E-02 <2e-16 

HSG β3 4.53E-03 <2e-16 

FC 

Precipitation β1 5.51E-04 <2e-16 

Temperature β2 -2.30E-02 <2e-16 

HSG β3 6.96E-02 <2e-16 

WP 

Precipitation β1 4.63E-04 <2e-16 

Temperature β2 -1.01E-02 <2e-16 

HSG β3 1.68E-01 <2e-16 

 

Three model checking techniques were performed to determine if any assumptions were 

violated. The first model checking technique performed was the test the assumption of normally 

distributed residuals with a mean of zero. This assumption was violated by MOS, SL, AWC, and 

WP hydrometrics which all had a residual mean of zero but were not normally distributed 

(Appendix A). However, it is found that violating the normaility of residuals assumption is rarely 

problematic for hypothesis testing and parameter esitamtes (Warton et al., 2016). The second 

assumption tested was spatially auto-correlated residuals by looking at the semivariograms for 

each model. This showed that all seven models violated this assumption. This assumptions is 
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often violotated for environmental and ecological data because the data itself is inheratnly 

spatially autocorrelated as observations closer in space are more similar than those farther apart 

and (Miralha and Kim, 2018; Gaspard et al., 2019). The third assumption tested was that the 

space site effect is independent of the predictor variables, xi,l. The concurvity test showed that all 

seven models violated this assumption, however, all models converged successfully. Given that 

the soil moisture data is representing the natural system, it was expected that some model 

assumptions would be violated, thus it was determined that even with the violation of 

assumptions, the results were valid and can be used for further analysis. 

 4.3.1 Field Capacity, Wilting Point, and Available Water Content Statistical 

Analysis 

The results showed that precipitation and HSG had positive impacts on WP and FC 

hydrometrics where the temperature had a negative impact, however, the precipitation has the 

largest impact (Table 4.2). These results align with what is hypothesized since precipitation 

would increase soil moisture (Appendix B). Similarly, the opposite is true for temperature where 

an increase in temperature results in a decrease in soil moisture content due to increased ET rates 

(Famiglietti et al., 1998; Cook et al., 2014; Ault et al., 2016). As for HSG, the finer the soil is the 

more water holding capacity it has, increasing the soil moisture content (NRCS, 1998; Saxton 

and Rowls, 2006; USDA, 2015).  

These trends can be seen in Figures 4.3 and 4.4 where HSG A stands out for having the 

lowest FC and WP and HSG D stands out for having high WP and FC values. In the western 

portion of the study area, there are high FC values and low temperatures (Figure 3.4), aligning 

with the results from the statistical analysis. This region also experiences low precipitation 

(Figure 3.2), which does not align with the results. From this, the temperature is shown to be the 
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main driver of FC in the western portion of the study area compared to precipitation. As for WP 

(Figure 4.4), a majority of the region follows HSG patterns (Figure 3.9). However, for each 

hydrometric, some areas cannot be explicitly explained by increased precipitation, decreased 

temperature, or HSGs alone. This is seen in the eastern portion of the study area for FC where 

high soil moisture values occur that cannot be seen in the climate and soil trends. Additionally, 

developed land cover were deemed outliers and were masked out of the WP map (Figure 3.5). 

This shows that additional variables such as land cover, land management, elevation, and slope 

should be considered in future analysis. 

 
Figure 4.3. A map of the spatial variations of the median field capacity (1-BAS) in 

volumetric soil moisture content (m3/m3) for the Missouri and Arkansas-White-Red river 

basins with outliers exluded. 
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Figure 4.4. A map of the spatial variations of the median wilting point (1-MXF) in 

volumetric soil moisture content (m3/m3) for the Missouri and Arkansas-White-Red river 

basins with outliers exluded. 

 

The AWC of the soil, shown with the AMP hydrometric, resulted in positive impacts 

from precipitation and HSG but a negative impact from temperature (Table 4.2). These results 

align with what was hypothesized since precipitation would increase the amount of water in the 

soil where the temperature would result in the opposite (Appendix B). Also, as you go from A, 

B, C, to D soil groups, the water holding capacity of the soil increases. However, the largest 

impact was seen with precipitation.  
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These trends can be seen in the southwestern portion of the region (Figure 4.5). The area 

shows that a combination of low mean annual precipitation (142-469 mm; Figure 3.2) and high 

mean annual temperatures (10.1-13.9 °C; Figure 3.4) play a role in the low AWC (0.12-0.17 

m3/m3). However, in other areas, these trends do not explicitly stand out by looking at the 

spatial variations of the median AWC. For example, the northwestern and eastern portions of the 

study show the greatest AWC. The increased AWC trend in the west aligns with the decreased 

temperature trend for that region but does not demonstrate the positive impact from precipitation 

similarly to the FC. As for the increased AWC in the eastern portion of the river basins, neither, 

temperature, precipitation, or HSG patterns seem to play a dominant role. Instead, the land cover 

could the driving factor since the area is defined as cropland (Figure 3.5). From this, land 

management might be causing irrigation and other farming practices to out weight the natural 

climate drivers of soil moisture (Jasa, 2013; Lawston, et al., 2017). Also supporting the impact of 

land cover on the AWC of the soil are the areas defined as being developed, which show the 

least amount of AWC for the region. This could be because urban areas have decreased 

infiltration and evapotranspiration rates due to surface sealing and increased impervious areas 

(Wessolek and Facklam 1997; Easton et al., 2007). 
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Figure 4.5. A map of the spatial variations of the median available water content (AMP) in 

volumetric soil moisture content (m3/m3) for the Missouri and Arkansas-White-Red river 

basins with outliers excluded. 

 4.3.2 Start, Middle, and End of Season Statistical Analysis 

The start of season hydrometric begins when the soil moisture wets up to 0.2 volumetric 

soil moisture content and ends when it dries back down to 0.15 volumetric soil moisture content 

for A soils, and for B, C, and D soils, the season begins at 0.25 volumetric soil moisture content 

ends when it dries back down to this level. A positive impact on the start of the season would 

mean that the soil season started later where a negative impact would mean that the independent 

variable is resulting in the soil season beginning earlier in the year.  
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The results showed that precipitation, temperature, and HSG all had positive effects on 

the SOS (Table 4.2). The greater the mean annual precipitation an area receives, the earlier in the 

year the SOS occurs supporting what was hypothesized since the soil season is defined by the 

soil drying down (Appendix B). As for temperature, the hotter an area is on average throughout 

the year, the later in the year the soil dry season begins. It was expected that the SOS would 

occur earlier as the hotter temperatures would dry the soil out sooner. This variation in what was 

expected and what occurred could be because the temperature variable represents average annual 

temperature, and it is says nothing about the seasonal variations in temperature that would drive 

soil moisture drying (Famiglietti et al., 1998; Cook et al., 2014; Ault et al., 2016). As For HSG, 

the finer the soil particles, the later in the year that the soil dry season occurred. This is because a 

more clayey soil has increased water holding capacity showing that the soil stays wetter, thus 

taking longer for the dry season to begin.  

The middle of season is defined as the average of the days between the last 20% of the 

start of season and the first 20% of the end of season days (Figure 3.8; Table 3.1). A positive 

impact on the MOS would mean that it is occurring later in the year, but a negative impact would 

show that the climate or soil variables are causing the MOS to happen earlier in the year. The 

results showed that all of the variables had a negative impact on the MOS (Table 4.2). It was 

hypothesized that precipitation and HSG would have a positive impact resulting in the MOS 

occurring later in the year, where the temperature would have a negative impact resulting in the 

MOS occurring sooner in the year. The hypothesis was only met for temperature (Appendix B). 

One reason for the MOS to occur earlier in the year with increased precipitation is that the 

increased precipitation would shorten the season length, thus causing the MOS to happen earlier. 
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As for HSG, the negative impact was significant but the magnitude of the impact between an A 

soil and a D soil was approximately 8 days. 

For the end of the season, a positive impact from an independent variable would mean 

that the soil is staying dry later in the year, but a negative impact would mean that it starts to wet 

up earlier in the year. For the EOS hydrometric, precipitation and temperature both had positive 

effects where HSG showed a negative effect (Table 4.2). The positive impact from precipitation 

shows that the soil is wetting back up later in the year (Appendix B). This is the opposite of what 

is hypothesized since increased precipitation would cause the soil to wet up not stay dry for 

longer. But, the precipitation is an annual average and says nothing in regards to the seasonal 

variations of precipitation. As for the positive impact from temperature, it shows that increased 

temperatures drive the soil to stay dry longer. This goes along with what is to be expected since 

increased temperatures can result in increased ET rates, thus a decrease in soil moisture. The 

negative impact from HSG on EOS aligns with the positive impact on the SOS showing that a 

sandier soil is more responsive to precipitation due to its larger particle size and increased pore 

space in the soil, however, sandy soils do not hold water well, thus resulting in a long dry season 

(USDA, 2015).  

For the SOS, MOS, and EOS hydrometrics the largest impact was seen with the 

temperature where precipitation showed a slightly smaller impact on the SOS. This aligns with 

the climatologic growing season that is defined by temperature gradients (Kukal and Irmak, 

2018). For these three hydrometrics, the earlier days occurred on the western portion of the study 

area (Figures 4.6; Figure 4.7; Figure 4.8) where the cooler temperatures occur along with higher 

elevations (Figure 3.4; Figure 3.3). An exception to this was seen with SOS where HSG A stands 

out for having the earliest start of season day of the study area. Another distinct feature that 
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shows up in all three hydrometrics is the southwestern portion of the study area that shows the 

hydrometrics occurring later in the year. It is hypothesized that a combination of hotter 

temperatures and decreased precipitation could be a cause for this.  

 

Figure 4.6. A map of the spatial variations of the median start of season (SOS) in Julian 

days for the Missouri and Arkansas-White-Red river basins with outliers excluded. 
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Figure 4.7. A map of the spatial variations of the median middle of season (MOS) in Julian 

days for the Missouri and Arkansas-White-Red river basins with outliers excluded. 
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Figure 4.8. A map of the spatial variations of the median end of season (EOS) in Julian 

days for the Missouri and Arkansas-White-Red river basins with outliers excluded. 

 

Another interesting feature of the median SOS, MOS, and EOS maps is that urban areas 

stand out, in the SOS and MOS maps where the hydrometrics occur earlier but in the EOS map 

the urban areas were deemed outliers and masked out of the map. The reason that urban areas are 

considered outliers is because the amount of impervious areas in developed regions is impacting 

TIMESAT’s ability to capture the hydrometrics accurately for those areas. An improvement to 

the TIMESAT model would be to exclude all developed areas from the analysis.  
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To be able to determine if the hydrometrics can be distinguished between each ecoregion, 

density plots were created to represent the distribution of the median SOS, MOS, and EOS for 

each ecoregion within the study area (Appendix D). From this, it can be seen that some 

ecoregions start, middle, and end of season hydrometrics are normally distributed, where others 

are right or left-skewed (Table 4.4). Also, there are differences in the number of peaks for each 

distribution where the Nebraska Sand Hills SOS shows the greatest number of peaks with 4. 

Additionally, for the SOS, seven pairs were not significantly different from each other (Figure 

4.9). For the MOS hydrometric, there are six non-significant pairs and for the EOS hydrometric, 

there are five pairs. This shows that for a majority of the ecoregions, the seasonal hydrometrics 

can be distinguished between each region, supporting the different biotic and abiotic phenomena 

for the region.  
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Table 4.3. A summary of the start (SOS), middle (MOS), and end of season (EOS) median 

distribution for each level III ecoregion within the Missouri and Arkansas-White-Red river 

basins. 

Ecoregion Distribution 
Number of peaks 

SOS MOS EOS 

Idaho Bathalith Normal 1 2 2 

Middle Rockies Normal 1 1 1 

Wyoming Basin Normal 3 2 2 

Southern Rockies Right-skewed 1 2 2 

High Plains Normal 2 3 3 

South West Tablelands Left-skewed 2 3 3 

Central Great Plains Right-skewed 3 2 3 

Flint Hills Normal 2 1 2 

Cross Timbers Normal 1 2 2 

Texas Blackland Prairies Right-skewed 1 1 3 

East Central Texas Plains Right-skewed; Normal SOS 1 1 1 

South Central Plains Left-skewed 2 2 2 

Ouachita Mountains Right-skewed 2 1 1 

Arkansas Valley Right-skewed 1 1 1 

Boston Mountains Normal 1 2 3 

Ozark Highlands Normal 2 2 3 

Central Irregular Plains Normal 2 1 2 

Canadian Rockies Normal 1 1 1 

North West Glaciated Plains Normal 1 1 1 

North West Great Pains Left-skewed 2 2 1 

Nebraska Sand Hills Right-skewed 4 1 3 

North Glaciated Plains Normal 1 1 1 

Interior River Valleys & Hills Right-skewed 2 2 2 

Mississippi Alluvial Plains Left-skewed; Right-skewed EOS 1 2 1 

Western Corn Belt Plains Normal 1 1 1 
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Figure 4.9. The mean start (SOS), middle (MOS), and end (EOS) values in Julian days for 

each level III ecoregion within the Missouri and Arkansas-White-Red river basins. The 

letters above plots indicate similarities among dates (same letters stand for no statistical 

difference). 
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 4.3.3 Season Length Statistical Analysis 

The SL is defined as the number of days between the SOS and EOS (Figure 3.8; Table 

3.1). A positive impact would show a longer season and a negative impact would result in a 

shorter season. The results of the statistical analysis showed that all three variables had a 

negative effect on the SL (Table 4.2). The precipitation and HSG negative effects align with 

what was hypothesized. This shows that the more precipitation an area receives and the finer the 

soil for the area, the shorter the SL (Appendix B). The negative impact on the SL from 

temperature does not align with what was hypothesized since increased temperature results in 

increased ET rates, but like what has been mentioned, the seasonal temperature variations are not 

represented in the statistical model. The SL hydrometric was the only hydrometric that showed 

the largest impact from the HSG variable, β3. This is shown in Figure 4.10 where HSG A stands 

out to have a significantly longer SL than the rest of the study area. 
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Figure 4.10.A map of the spatial variations of the median soil season length (SL) in Julian 

days for the Missouri and Arkansas-White-Red river basins with outliers excluded. 

 

There is also a trend of shorter SL in the southeastern portion of the study area with 

increased SL in the northwestern portion where there is higher elevation (Figure 3.3), decreased 

temperatures (Figure 3.4), and decreased precipitation (Figure 3.2). However, the negative 

impact on SL from temperatures shows that precipitation could be the cause for this trend. 

Topography could also play a role in this trend. In general, higher elevations and steeper slopes, 

like what is found in mountain regions in the western portion of the study area, resulting in 

decreased soil moisture where recharge occurs from snowmelt during the spring (Osenga, et al., 
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2019). To further understand this trend, elevation and slope would need to be added to the 

statistical model as independent variables.  

The SL hydrometric was then compared between each ecoregion. The results showed that the 

ecoregions with the longest SL were located in the northwestern portion of the study area and 

those with the shortest SL are in the southeast (Figure 4.11). This supports the results above 

where decreased precipitation and temperature resulted in a long dry season. Also, the ecoregion 

with the longest SL was the Nebraska Sand Hills which is characterized by HSG A. This also 

aligns with the results showing a negative trend for SL for finer soil particles.  
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Figure 4.11. The season length (SL) rank for each level III ecoregion within the Missouri 

and Arkansas-White-Red river basins where a rank of 1 shows the shortest season and a 

rank of 25 shows the ecoregion with the longest season. 

 

However, the ecoregions that do not follow these trends are Texas Blackland Prairie and East 

Central Texas Plains (Figure 3.12). The Texas Blackland Prairie is distinguished by its clay soils 

where the land cover for the area is cropland and rangeland with large portions of the area being 

converted to industrial and urban use (EPA, 2013). The East Central Texas Plains are mostly 

clay soils as well but the area is mainly used for rangeland and pasture and is distinguished by 

the post oak savanna vegetation that surrounding areas do not have. The Interior River Valley 
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and Hills do not appear to follow the precipitation and temperature distributions. This could be 

because the Interior River Valley and Hills is mainly covered in cropland, about 30 percent of 

the area is pasture, and the rest is forested. The topology of the area could also play a role in the 

increased season length compared to the surrounding ecoregions since this region is made up of 

many wide, flat-bottomed terraced valleys, forested valley slopes, and dissected glacial till 

plains. 
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Chapter 5 - Conclusion 

The goal of this research was to characterize the intra- annual variations of near-surface 

soil moisture throughout the Missouri and Arkansas-White-Red river basins. This was done with 

model-derived soil moisture estimates from the SPoRT-LIS software and TIMESAT to define 

soil moisture hydrometrics. Results from the TIMESAT analysis showed that it captured intra-

annual soil moisture variability and that the seasonal soil moisture characteristics can be 

characterized at a spatial resolution of 3 km. However, the soil water storage capacity is not 

captured well at this spatial resolution. Additionally, the mean soil start and end of season 

occurred earlier than was hypothesized. This shows that refinement of the model smoothing 

parameters is necessary to accurately capture the soil moisture seasonality trends. This 

refinement can be done by adjusting the parameters based on different environmental variables 

such as land cover, topography, and climate.  

The statistical analysis highlighted the impact of soil texture and climate on the 

availability of soil moisture. The results also showed that precipitation, temperature, and HSG all 

significantly impact hydrometrics except a non-significant impact on SL from precipitation. 

However, precipitation showed to have the largest impact on AMP, BAS, and MXF 

hydrometrics, where the temperature had the largest impact on SOS, MOS, and EOS 

hydrometrics. This shows that precipitation drives soil water storage capacity where temperature 

is the driver of the seasonal timing of soil water storage. The SL hydrometric was the only 

hydrometric where HSG had the largest impact. When comparing these results to the spatial 

variation in the median hydrometric values across the study area, some areas do follow these 

trends showing that additional biological or physical characteristics are playing a role in the soil 

moisture for that area. Additionally, it was found that for a majority of the ecoregions, the 
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seasonal soil moisture characteristics can be distinguished between each region, highlight the 

impact of the biotic and abiotic phenomena on soil moisture availability. To further understand 

the magnitude of this impact, elevation, slope, land cover, and land management are needed to be 

analyzed.   

Overall, this research used a novel approach to define soil water storage by characterizing 

the seasonality of water storage capacity using model-derived estimates compared to the 

traditional rainfall-runoff approach. This showed that soil moisture varies temporally throughout 

the year and that it also varies spatially given climate and HSG variations. From this research, 

there is a better understanding of the soil moisture variations throughout a majority of the Great 

Plains region which can help scientists, land managers, and policy makers to make decisions 

concerning reservoir management, irrigation applications, and farming practices. This is 

especially important as climate change impacts are expected to cause increased demands for 

water and energy within the Great Plains region (Melillo et al., 2014). This can result in shifts 

from irrigated cropland to dryland farmland, causing a predicted reduction in crop yields by a 

factor of 2 (Melillo et al., 2014; Deines et al., 2020). This can further cause serious impacts on 

the global economy and global food security systems since more than 30 percent of the U.S. ag 

land area along with more than 30 percent of the beef production for the United States is 

produced within the Great Plains which generates exports with an estimated total market value of 

$92 billion (NASS, 2012; Milello et al., 2014). 
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Chapter 6 - Future Work 

Future work will include additional sensitivity analyses where land cover, land use, and 

topography are considered in defining the TIMESAT smoothing parameters. This is necessary 

because land cover impacts the rate of infiltration by the number of impervious materials there 

are in an area (Wessolek and Facklam 1997; Easton et al., 2007). Additionally, vegetation and 

ecosystems soil moisture have a coupled relationship that is basic to ecosystem dynamics where 

vegetation impacts the rate of ET, causes shading underneath the tree canopy, and intercepts 

rainfall from reaching the ground surface (Fernandez-Illesca et al., 2001; Lozano-Parra et al., 

2018). Feng (2016) also found that vegetation degradation in wetting regions, can lengthen the 

dry season and increase the streamflow, which subsequently decreases the rainfall infiltration. As 

for land-use practices, the use of irrigation and farming practices such as no-till and crop residue 

can all impact soil moisture (Jasa, 2013; Lawston, et al., 2017). The topography is shown to 

influence soil moisture by affecting the infiltration, drainage, and runoff through the slope and 

angle of the landscape where high elevations and steeper slopes result in decreased soil moisture 

(Famiglietti et al., 1998; Osenga, et al., 2019). The curvature of the landscape also influences the 

convergence of lateral flow and the upslope surface area influences the distribution of soil 

moisture by controlling the potential volume of subsurface moisture flowing past a particular 

point on the landscape (Famiglietti et al., 1998). Furthermore, extending the study area to the 

contiguous United States will provide soil moisture trends over more diverse climates, 

topography, and land use. This in turn will allow for a better understanding of the soil moisture 

seasonality drivers. 
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Appendix A - TIMESAT Analysis 

 

Figure A.6.1. Box-plot of the median available water content (AWC) for the Missouri and 

Arkansas-White-Red River basins. 
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Figure A.6.2. Box-plot of the median base value (1-Field Capacity) for the Missouri and 

Arkansas-White-Red River basins. 

 

Figure A.6.3. Box-plot of the median maximum value (1-Wilting Point) for the Missouri 

and Arkansas-White-Red River basins. 

 

Figure A.6.4. Box-plot of the median start of season (SOS) for the Missouri and Arkansas-

White-Red River basins. 



91 

 

Figure A.6.5. Box-plot of the median middle of season (MOS) for the Missouri and 

Arkansas-White-Red River basins. 

 

Figure A.6.6. Box-plot of the median end of season (EOS) for the Missouri and Arkansas-

White-Red River basins. 
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Figure A.6.7. Box-plot of the median season length (SL) for the Missouri and Arkansas-

White-Red River basins. 

 

Table A.6.1. The median soil moisture season start (SOS), middle (MOS), and end (EOS) 

by hydrologic soil group (HSG) over 30 years showing the spatial upper extreme, median, 

and lower extreme values 

    A B C D 

UPPER 

EXTREME 

SOS 20-May 23-Jun 10-Jun 21-Jun 

MOS 20-Jun 14-Jul 25-Jul 19-Jul 

EOS 19-Aug 11-Aug 9-Aug 17-Aug 

MEDIAN 

SOS 12-Jun 16-Aug 14-Aug 11-Aug 

MOS 15-Sep 1-Sep 1-Sep 29-Aug 

EOS 21-Sep 10-Sep 8-Sep 9-Sep 

LOWER 

EXTREME 

SOS 5-Jul 4-Oct 9-Oct 25-Sep 

MOS 6-Jan 25-Oct 9-Oct 9-Oct 

EOS 29-Oct 9-Oct 5-Oct 29-Sep 
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Appendix B - Results of the Statistical Analysis 

 

Figure B.6.8. A histogram plot showing the start of season (SOS) residuals. 

 

Figure B.6.9. A histogram plot showing the middle of season (MOS) residuals.  
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Figure B.6.10. A histogram plot showing the end of season (EOS) residuals. 

 

Figure B.6.11. A histogram plot showing the season length (GSL) residuals. 
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Figure B.6.12. A histogram plot showing the available water content (AMP) residuals. 

 

Figure B.6.13. A histogram plot showing the field capacity (BAS) residuals. 
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Figure B.6.14. A histogram plot showing the wilting point (MXF) residuals. 

 

Figure B.6.15. A plot showing the impact of HSG (1=A, 2=B, 3=C, 4=D) on the expected 

value of the start of season (SOS) in Julian days for the Missouri and Arkansas-White-Red 

river basins. The grey region shows 95% confidence intervals. 
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Figure B.6.16. A plot showing the impact of mean annual precipitation (mm) on the 

expected value of the start of season (SOS) in Julian days for the Missouri and Arkansas-

White-Red river basins. The grey region shows 95% confidence intervals. 
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Figure B.6.17. A plot showing the impact of mean annual temperature (°C) on the expected 

value of the start of season (SOS) in Julian days for the Missouri and Arkansas-White-Red 

river basins. The grey region shows 95% confidence intervals. 
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Figure B.6.18. A plot showing the impact of HSG (1=A, 2=B, 3=C, 4=D) on the expected 

value of the middle of season (MOS) in Julian days for the Missouri and Arkansas-White-

Red river basins. The grey region shows 95% confidence intervals. 
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Figure B.6.19. A plot showing the impact of mean annual precipitation (mm) on the 

expected value of the middle of season (MOS) in Julian days for the Missouri and 

Arkansas-White-Red river basins. The grey region shows 95% confidence intervals. 
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Figure B.6.20. A plot showing the impact of mean annual temperature (°C) on the expected 

value of the middle of season (MOS) in Julian days for the Missouri and Arkansas-White-

Red river basins. The grey region shows 95% confidence intervals. 

 



102 

 

Figure B.6.21. A plot showing the impact of HSG (1=A, 2=B, 3=C, 4=D) on the expected 

value of the end of season (EOS) in Julian days for the Missouri and Arkansas-White-Red 

river basins. The grey region shows 95% confidence intervals. 
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Figure B.6.22. A plot showing the impact of mean annual precipitation (mm) on the 

expected value of the end of season (EOS) in Julian days for the Missouri and Arkansas-

White-Red river basins. The grey region shows 95% confidence intervals. 
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Figure B.6.23. A plot showing the impact of mean annual temperature (°C) on the expected 

value of the end of season (EOS) in Julian days for the Missouri and Arkansas-White-Red 

river basins. The grey region shows 95% confidence intervals. 
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Figure B.6.24. A plot showing the impact of HSG (1=A, 2=B, 3=C, 4=D) on the expected 

season length (GSL) in days for the Missouri and Arkansas-White-Red river basins. The 

grey region shows 95% confidence intervals. 
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Figure B.6.25. A plot showing the impact of mean annual precipitation (mm) on the 

expected season length (GSL) in days for the Missouri and Arkansas-White-Red river 

basins. The grey region shows 95% confidence intervals. 
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Figure B.6.26. A plot showing the impact of mean annual temperature (°C) on the expected 

season length (GSL) in days for the Missouri and Arkansas-White-Red river basins. The 

grey region shows 95% confidence intervals. 
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Figure B.6.27. A plot showing the impact of HSG (1=A, 2=B, 3=C, 4=D) on the expected 

value of the available water content (AMP) in m3/m3 for the Missouri and Arkansas-White-

Red river basins. The grey region shows 95% confidence intervals. 
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Figure B.6.28. A plot showing the impact of mean annual precipitation (mm) on the 

expected value of the available water content (AMP) in m3/m3 for the Missouri and 

Arkansas-White-Red river basins. The grey region shows 95% confidence intervals. 
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Figure B.6.29. A plot showing the impact of mean annual temperature (°C) on the expected 

value of the available water content (AMP) in m3/m3 for the Missouri and Arkansas-White-

Red river basins. The grey region shows 95% confidence intervals. 
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Figure B.6.30. A plot showing the impact of HSG (1=A, 2=B, 3=C, 4=D) on the expected 

value of the base value (BAS) in m3/m3 for the Missouri and Arkansas-White-Red river 

basins. The grey region shows 95% confidence intervals. 
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Figure B.6.31. A plot showing the impact of mean annual precipitation (mm) on the 

expected value of the base value (BAS) in m3/m3 for the Missouri and Arkansas-White-Red 

river basins. The grey region shows 95% confidence intervals. 
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Figure B.6.32. A plot showing the impact of mean annual temperature (°C) on the expected 

value of the base value (BAS) in m3/m3 for the Missouri and Arkansas-White-Red river 

basins. The grey region shows 95% confidence intervals. 

 



114 

 

Figure B.6.33. A plot showing the impact of HSG (1=A, 2=B, 3=C, 4=D) on the expected 

value of the maximum value (MXF) in m3/m3 for the Missouri and Arkansas-White-Red 

river basins. The grey region shows 95% confidence intervals. 
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Figure B.6.34. A plot showing the impact of mean annual precipitation (mm) on the 

expected value of the maximum value (MXF) in m3/m3 for the Missouri and Arkansas-

White-Red river basins. The grey region shows 95% confidence intervals. 
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Figure B.6.35. A plot showing the impact of mean annual temperature (°C) on the expected 

value of the maximum value (MXF) in m3/m3 for the Missouri and Arkansas-White-Red 

river basins. The grey region shows 95% confidence intervals. 
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Appendix C - Statistical Analysis R Code 

Emily Nottingham 

1/29/2021 

library(sf) 

library(dplyr)  

library(rgdal) 

library(mgcv) 

library(maps)        

library(maptools)  

library(plotrix) 

library(gstat) 

library(ggplot2) 

library(jtools) 

library(raster) 

#load directories and subset dataframes 
 

sos_median <- raster(x = "C:/Users/emiro/Stat764 Dropbox/Emily Nottingham/HSG_HUC_IN/Media

n/SOS_0130_MEDIAN.tif") 

mos_median <- raster(x = "C:/Users/emiro/Stat764 Dropbox/Emily Nottingham/HSG_HUC_IN/Media

n/MOS_0130_MEDIAN.tif") 

eos_median <- raster(x = "C:/Users/emiro/Stat764 Dropbox/Emily Nottingham/HSG_HUC_IN/Media

n/EOS_0130_MEDIAN.tif") 

gsl_median <- raster(x = "C:/Users/emiro/Stat764 Dropbox/Emily Nottingham/HSG_HUC_IN/Median

/GSL_0130_MEDIAN.tif") 

amp_median <- raster(x = "C:/Users/emiro/Stat764 Dropbox/Emily Nottingham/HSG_HUC_IN/Medi

an/AMP_0130_MEDIAN.tif") 

bas_median <- raster(x = "C:/Users/emiro/Stat764 Dropbox/Emily Nottingham/HSG_HUC_IN/Media

n/BAS_0130_MEDIAN.tif") 

mxf_median <- raster(x = "C:/Users/emiro/Stat764 Dropbox/Emily Nottingham/HSG_HUC_IN/Media

n/MXF_0130_MEDIAN.tif") 

Precip <-raster(x="C:/Users/emiro/Stat764 Dropbox/Emily Nottingham/temp_precip/Precip_30yr_PRI

SM_AOI1.tif") 

Temp <-raster(x="C:/Users/emiro/Stat764 Dropbox/Emily Nottingham/temp_precip/Tmean_prism_AO

I1.tif") 

HSG <- raster (x="C:/Users/emiro/Stat764 Dropbox/Emily Nottingham/HSG_HUC_IN/test/TIMESAT

_CODES1.tif") 

 

stack_All <- stack(sos_median, mos_median, eos_median, gsl_median, amp_median,  

                   bas_median, mxf_median, Precip, Temp, HSG) 

median_All <- as.data.frame(stack_All) 

median_All <- na.omit(median_All) 
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#get lat and long 
sos_pts <- rasterToPoints(sos_median) 

mos_pts <- rasterToPoints(mos_median) 

eos_pts <- rasterToPoints(eos_median) 

gsl_pts <- rasterToPoints(gsl_median) 

amp_pts <- rasterToPoints(amp_median) 

bas_pts <- rasterToPoints(bas_median) 

mxf_pts <- rasterToPoints(mxf_median) 

precip_pts <- rasterToPoints(Precip) 

temp_pts <- rasterToPoints(Temp) 

HSG_pts  <- rasterToPoints(HSG) 

head(sos_pts) 

all_merge <- merge(data.frame(sos_pts, row.names=NULL),  

                   data.frame(mos_pts, row.names=NULL), all = TRUE) 

all_merge <- merge (data.frame(all_merge, row.names=NULL),  

                    data.frame(eos_pts, row.names=NULL), all = TRUE) 

all_merge <- merge (data.frame(all_merge, row.names=NULL),  

                    data.frame(gsl_pts, row.names=NULL), all = TRUE) 

all_merge <- merge (data.frame(all_merge, row.names=NULL),  

                    data.frame(amp_pts, row.names=NULL), all = TRUE) 

all_merge <- merge (data.frame(all_merge, row.names=NULL),  

                    data.frame(bas_pts, row.names=NULL), all = TRUE) 

all_merge <- merge (data.frame(all_merge, row.names=NULL),  

                    data.frame(mxf_pts, row.names=NULL), all = TRUE) 

all_merge <- merge (data.frame(all_merge, row.names=NULL),  

                    data.frame(precip_pts, row.names=NULL), all = TRUE) 

all_merge <- merge (data.frame(all_merge, row.names=NULL),  

                    data.frame(temp_pts, row.names=NULL), all = TRUE) 

all_merge <- merge (data.frame(all_merge, row.names=NULL),  

                    data.frame(HSG_pts, row.names=NULL), all = TRUE) 

# Fit model to data for sos 

 
#Assign model variables 
y <- all_merge$SOS_0130_MEDIAN 

x1 <- all_merge$Precip_30yr_PRISM_AOI1 

x2 <- all_merge$Tmean_prism_AOI1 

x3 <- all_merge$TIMESAT_CODES1 

x4 <- all_merge$x 

x5 <- all_merge$y 

 

 

mSos <- bam(y~x1+x2+x3+ 

            s(x4,x5,bs="gp"),family = Gamma(link="log")) 

summary(mSos) 
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# Fit model to data for mos 
 
#Assign model variables 

y <- all_merge$MOS_0130_MEDIAN 

x1 <- all_merge$Precip_30yr_PRISM_AOI1 

x2 <- all_merge$Tmean_prism_AOI1 

x3 <- all_merge$TIMESAT_CODES1 

x4 <- all_merge$x 

x5 <- all_merge$y 

 

 

mMos <- bam(y~x1+x2+x3+ 

            s(x4,x5,bs="gp"),family = Gamma(link="log")) 

summary(mMos) 

# Fit model to data for eos 
 
#Assign model variables 

y <- all_merge$EOS_0130_MEDIAN 

x1 <- all_merge$Precip_30yr_PRISM_AOI1 

x2 <- all_merge$Tmean_prism_AOI1 

x3 <- all_merge$TIMESAT_CODES1 

x4 <- all_merge$x 

x5 <- all_merge$y 

 

 

mEos <- bam(y~x1+x2+x3+ 

            s(x4,x5,bs="gp"),family = Gamma(link="log")) 

summary(mEos) 

# Fit model to data for gsl 
 
#Assign model variables 

y <- all_merge$GSL_0130_MEDIAN 

x1 <- all_merge$Precip_30yr_PRISM_AOI1 

x2 <- all_merge$Tmean_prism_AOI1 

x3 <- all_merge$TIMESAT_CODES1 

x4 <- all_merge$x 

x5 <- all_merge$y 

 

 

mGsl <- bam(y~x1+x2+x3+ 

            s(x4,x5,bs="gp"),family = Gamma(link="log")) 

summary(mGsl) 

# Fit model to data for amp 
 
#Assign model variables 
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y <- all_merge$AMP_0130_MEDIAN 

x1 <- all_merge$Precip_30yr_PRISM_AOI1 

x2 <- all_merge$Tmean_prism_AOI1 

x3 <- all_merge$TIMESAT_CODES1 

x4 <- all_merge$x 

x5 <- all_merge$y 

 

 

mAmp <- bam(y~x1+x2+x3+ 

            s(x4,x5,bs="gp"),family = betar(link="logit")) 

summary(mAmp) 

# Fit model to data for bas 

 
#Assign model variables 
y <- all_merge$BAS_0130_MEDIAN 

x1 <- all_merge$Precip_30yr_PRISM_AOI1 

x2 <- all_merge$Tmean_prism_AOI1 

x3 <- all_merge$TIMESAT_CODES1 

x4 <- all_merge$x 

x5 <- all_merge$y 

 

 

mBas <- bam(y~x1+x2+x3+ 

            s(x4,x5,bs="gp"),family = betar(link="logit")) 

summary(mBas) 

# Fit model to data for MXF 

 
#Assign model variables 
y <- all_merge$MXF_0130_MEDIAN 

x1 <- all_merge$Precip_30yr_PRISM_AOI1 

x2 <- all_merge$Tmean_prism_AOI1 

x3 <- all_merge$TIMESAT_CODES1 

x4 <- all_merge$x 

x5 <- all_merge$y 

 

 

mMxf <- bam(y~x1+x2+x3+ 

            s(x4,x5,bs="gp"),family = betar(link="logit")) 

summary(mMxf) 

# Examine regression coefficient estimates and 95% CI 

beta.1.hat <- c(coef(mSos)[2], coef(mMos)[2], coef(mEos)[2], coef(mGsl)[2],  

                coef(mAmp)[2], coef(mBas)[2], coef(mMxf)[2]) 

beta.1.hat # order is sos, mos, eos, gsl, amp, bas, mxf 

 

beta.2.hat <- c(coef(mSos)[3], coef(mMos)[3], coef(mEos)[3], coef(mGsl)[3],  
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                coef(mAmp)[3], coef(mBas)[3], coef(mMxf)[3]) 

beta.2.hat 

 

beta.3.hat <- c(coef(mSos)[4], coef(mMos)[4], coef(mEos)[4], coef(mGsl)[4],  

                coef(mAmp)[4], coef(mBas)[4], coef(mMxf)[4]) 

beta.3.hat 

#uncertainty for Precipitation 

ucl2 <- c(confint.default(mSos,parm="x1")[2],confint.default(mMos,parm="x1")[2],  

          confint.default(mEos,parm="x1")[2],confint.default(mGsl,parm="x1")[2],    

          confint.default(mAmp,parm="x1")[2],confint.default(mBas,parm="x1")[2],  

          confint.default(mMxf,parm="x1")[2]) 

 

lcl2 <- c(confint.default(mSos,parm="x1")[1],confint.default(mMos,parm="x1")[1],  

          confint.default(mEos,parm="x1")[1],confint.default(mGsl,parm="x1")[1],  

          confint.default(mAmp,parm="x1")[1],confint.default(mBas,parm="x1")[1],  

          confint.default(mMxf,parm="x1")[1]) 

 

par(mar=c(4,7,1,1)) 

plotCI(c(1:7), beta.1.hat, ui=ucl2, li=lcl2, pch=20, xaxt="n",xlab="", 

       ylab="Estimated regression coefficient \n (Precipitation)") 

lines(c(0,7),c(0,0),col="gold",lwd=3) 

axis(at=c(1:7),lab=c("SOS", "MOS", "EOS", "GSL", "AMP", "BAS", "MXF"),side=1) 

#uncertainty for Temperature 
ucl2 <- c(confint.default(mSos,parm="x2")[2],confint.default(mMos,parm="x2")[2],  

          confint.default(mEos,parm="x2")[2],confint.default(mGsl,parm="x2")[2],    

          confint.default(mAmp,parm="x2")[2],confint.default(mBas,parm="x2")[2],  

          confint.default(mMxf,parm="x2")[2]) 

 

lcl2 <- c(confint.default(mSos,parm="x2")[1],confint.default(mMos,parm="x2")[1],  

          confint.default(mEos,parm="x2")[1],confint.default(mGsl,parm="x2")[1],    

          confint.default(mAmp,parm="x2")[1],confint.default(mBas,parm="x2")[1],  

          confint.default(mMxf,parm="x2")[1]) 

 

par(mar=c(4,7,1,1)) 

plotCI(c(1:7), beta.2.hat, ui=ucl2, li=lcl2, pch=20, xaxt="n",xlab="", 

       ylab="Estimated regression coefficient \n (Temperature)") 

lines(c(0,7),c(0,0),col="gold",lwd=3) 

axis(at=c(1:7),lab=c("SOS", "MOS", "EOS", "GSL", "AMP", "BAS", "MXF"),side=1) 

#uncertainty for HSG 

ucl2 <- c(confint.default(mSos,parm="x3")[2],confint.default(mMos,parm="x3")[2],  

          confint.default(mEos,parm="x3")[2],confint.default(mGsl,parm="x3")[2],    

          confint.default(mAmp,parm="x3")[2],confint.default(mBas,parm="x3")[2],  

          confint.default(mMxf,parm="x3")[2]) 

 

lcl2 <- c(confint.default(mSos,parm="x3")[1],confint.default(mMos,parm="x3")[1],  
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          confint.default(mEos,parm="x3")[1],confint.default(mGsl,parm="x3")[1],   

          confint.default(mAmp,parm="x3")[1],confint.default(mBas,parm="x3")[1],  

          confint.default(mMxf,parm="x3")[1]) 

 

par(mar=c(4,7,1,1)) 

plotCI(c(1:7), beta.3.hat, ui=ucl2, li=lcl2, pch=20, xaxt="n",xlab="", 

       ylab="Estimated regression coefficient \n (HSG)") 

lines(c(0,7),c(0,0),col="gold",lwd=3) 

axis(at=c(1:7),lab=c("SOS", "MOS", "EOS", "GSL", "AMP", "BAS", "MXF"),side=1) 

#plot expected value of y vs individual predictor variables 

effect_plot(mSos, pred = x1, interval = TRUE,  

            main.title="Precipitation vs Expected SOS", 

            x.label="Precipitation (mm)",  

            y.label="Start of Season (days)") 

effect_plot(mSos, pred = x2, interval = TRUE,  

            main.title ="Temperature vs Expected SOS",x.label="Temperature (C)",  

            y.label="Start of Season (days)") 

effect_plot(mSos, pred = x3, interval = TRUE,  

            main.title = "HSG vs Expected SOS", x.label ="HSG Rank",  

            y.label="Start of Season (days)") 

#MOS 
effect_plot(mMos, pred = x1, interval = TRUE,  

            main.title = "Precipitation vs Expected MOS",  

            x.label ="Precipitation (mm)",  

            y.label="Middle of Season (days)") 

effect_plot(mMos, pred = x2, interval = TRUE,  

            main.title ="Temperature vs Expected MOS",x.label="Temperature (C)",  

            y.label="Middle of Season (days)") 

effect_plot(mMos, pred = x3, interval = TRUE,  

            main.title = "HSG vs Expected MOS", x.label ="HSG Rank",  

            y.label="Middle of Season (days)") 

#EOS 
effect_plot(mEos, pred = x1, interval = TRUE,  

            main.title = "Precipitation vs Expected EOS",  

            x.label ="Precipitation (mm)",  

            y.label="End of Season (days)") 

effect_plot(mEos, pred = x2, interval = TRUE,  

            main.title ="Temperature vs Expected EOS",x.label="Temperature (C)",  

            y.label="End of Season (days)") 
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effect_plot(mEos, pred = x3, interval = TRUE,  

            main.title = "HSG vs Expected EOS", x.label ="HSG Rank",  

            y.label="End of Season (days)") 

#GSL 

effect_plot(mGsl, pred = x1, interval = TRUE,  

            main.title = "Precipitation vs Expected Season Length",  

            x.label ="Precipitation (mm)",  

            y.label="Season Length (days)") 

effect_plot(mGsl, pred = x2, interval = TRUE,  

            main.title ="Temperature vs Expected Season Length", 

            x.label="Temperature (C)",  

            y.label="Season Length (days)") 

effect_plot(mGsl, pred = x3, interval = TRUE,  

            main.title = "HSG vs Expected Season Length", x.label ="HSG Rank",  

            y.label="Season Length (days)") 

#AMP 
effect_plot(mAmp, pred = x1, interval = TRUE,  

            main.title = "Precipitation vs Expected Available Water Content",  

            x.label ="Precipitation (mm)",  

            y.label="Available Water Content (m3/m3)") 

effect_plot(mAmp, pred = x2, interval = TRUE,  

            main.title = "Temperature vs Expected Available Water Content",  

            x.label ="Temperature (C)",  

            y.label="Available Water Content (m3/m3)") 

effect_plot(mAmp, pred = x3, interval = TRUE,  

            main.title = "HSG vs Expected Available Water Content",  

            x.label ="HSG Rank",  

            y.label="Available Water Content (m3/m3)") 

#BAS 
effect_plot(mBas, pred = x1, interval = TRUE,  

            main.title = "Precipitation vs Expected Base Value",  

            x.label ="Precipitation (mm)",  

            y.label="Base Value (m3/m3)") 

effect_plot(mBas, pred = x2, interval = TRUE,  

            main.title = "Temperature vs Expected Base Value",  

            x.label ="Temperature (C)",  

            y.label="Base Value (m3/m3)") 

effect_plot(mBas, pred = x3, interval = TRUE,  

            main.title = "HSG vs Expected Base Value", x.label ="HSG Rank",  

            y.label="Base Value (m3/m3)") 
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#MXF 
effect_plot(mMxf, pred = x1, interval = TRUE,  

            main.title = "Precipitation vs Expected Maximum Value",  

            x.label ="Precipitation (mm)",  

            y.label="Maximum Value (m3/m3)") 

effect_plot(mMxf, pred = x2, interval = TRUE,  

            main.title = "Temperature vs Expected Maximum Value",  

            x.label ="Temperature (C)",  

            y.label="Maximum Value (m3/m3)") 

effect_plot(mMxf, pred = x3, interval = TRUE,  

            main.title = "HSG vs Expected Maximum Value", x.label ="HSG Rank",  

            y.label="Maximum Value (m3/m3)") 

#Checking model assumptions 

 
#Semivariogram to check for spatial autocorrelation among residuals 
sos_pts_df <- data.frame(sos_pts) 

vg1 <- variogram(residuals.gam(mSos, type = "response") ~ 1, loc = ~x + 

                   y, data = sos_pts_df) 

plot(vg1, main = "SOS Semivariogram") 

mos_pts_df <- data.frame(mos_pts) 

vg2 <- variogram(residuals.gam(mMos, type = "response") ~ 1, loc = ~x + 

                   y, data = mos_pts_df) 

plot(vg2, main = "MOS Semivariogram") 

eos_pts_df <- data.frame(eos_pts) 

vg3 <- variogram(residuals.gam(mEos, type = "response") ~ 1, loc = ~x + 

                   y, data = eos_pts_df) 

plot(vg3, main = "EOS Semivariogram") 

gsl_pts_df <- data.frame(gsl_pts) 

vg4 <- variogram(residuals.gam(mGsl, type = "response") ~ 1, loc = ~x + 

                   y, data = gsl_pts_df) 

plot(vg4, main = "GSL Semivariogram") 

amp_pts_df <- data.frame(amp_pts) 

vg5 <- variogram(residuals.gam(mAmp, type = "response") ~ 1, loc = ~x + 

                   y, data = amp_pts_df) 

plot(vg5, main = "AMP Semivariogram") 

bas_pts_df <- data.frame(bas_pts) 

vg6 <- variogram(residuals.gam(mBas, type = "response") ~ 1, loc = ~x + 

                   y, data = bas_pts_df) 

plot(vg6, main = "BAS Semivariogram") 
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mxf_pts_df <- data.frame(mxf_pts) 

vg7 <- variogram(residuals.gam(mMxf, type = "response") ~ 1, loc = ~x + 

                   y, data = mxf_pts_df) 

plot(vg7, main = "MXF Semivariogram") 

#Concurvity 

concurvity(mSos) 

concurvity(mMos) 

concurvity(mEos) 

concurvity(mGsl) 

concurvity(mAmp) 

concurvity(mBas) 

concurvity(mMxf) 

 
#check if residuals mean is zero 
sos_pts_df$residuals <- residuals(mSos) 

mean(sos_pts_df$residuals) 

hist(sos_pts_df$residuals, freq = FALSE, xlab = "residuals", ylab =  

       "Residual Frequency", main = "SOS Residuals") 

mos_pts_df$residuals <- residuals(mMos) 

mean(mos_pts_df$residuals) 

hist(mos_pts_df$residuals, freq = FALSE, xlab = "residuals", ylab =  

       "Residual Frequency", main = "MOS Residuals") 

eos_pts_df$residuals <- residuals(mEos) 

mean(eos_pts_df$residuals) 

hist(eos_pts_df$residuals, freq = FALSE, xlab = "residuals", ylab =  

       "Residual Frequency", main = "EOS Residuals") 

gsl_pts_df$residuals <- residuals(mGsl) 

mean(gsl_pts_df$residuals) 

hist(gsl_pts_df$residuals, freq = FALSE, xlab = "residuals", ylab =  

       "Residual Frequency", main = "GSL Residuals") 

amp_pts_df$residuals <- residuals(mAmp) 

mean(amp_pts_df$residuals) 

hist(amp_pts_df$residuals, freq = FALSE, xlab = "residuals", ylab =  

       "Residual Frequency", main = "AMP Residuals") 

bas_pts_df$residuals <- residuals(mBas) 

mean(bas_pts_df$residuals) 

hist(bas_pts_df$residuals, freq = FALSE, xlab = "residuals", ylab =  

       "Residual Frequency", main = "BAS Residuals") 

mxf_pts_df$residuals <- residuals(mMxf) 

mean(mxf_pts_df$residuals) 

hist(mxf_pts_df$residuals, freq = FALSE, xlab = "residuals", ylab =  

       "Residual Frequency", main = "MXF Residuals") 
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Appendix D - Results of the Ecoregion Statistical Analysis 

 

Figure D.6.36. A histogram plot showing the median soil season’s start (SOS), middle 

(MOS), and end of season (EOS) for the Idaho Bathalith ecoregion. 
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Figure D.6.37. A histogram plot showing the median soil season’s start (SOS), middle 

(MOS), and end of season (EOS) for the Middle Rockies ecoregion. 

 

Figure D.6.38. A histogram plot showing the median soil season’s start (SOS), middle 

(MOS), and end of season (EOS) for the Wyoming Basin ecoregion. 
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Figure D.6.39. A histogram plot showing the median soil season’s start (SOS), middle 

(MOS), and end of season (EOS) for the Southern Rockies ecoregion. 

 

Figure D.6.40. A histogram plot showing the median soil season’s start (SOS), middle 

(MOS), and end of season (EOS) for the Central Great Plains ecoregion. 
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Figure D.6.41. A histogram plot showing the median soil season’s start (SOS), middle 

(MOS), and end of season (EOS) for the Flint Hills ecoregion. 

 

Figure D.6.42. A histogram plot showing the median soil season’s start (SOS), middle 

(MOS), and end of season (EOS) for the Cross Timbers ecoregion. 
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Figure D.6.43. A histogram plot showing the median soil season’s start (SOS), middle 

(MOS), and end of season (EOS) for the Texas Blackland Prairies ecoregion. 

 

Figure D.6.44. A histogram plot showing the median soil season’s start (SOS), middle 

(MOS), and end of season (EOS) for the East Central Texas Plains ecoregion. 



131 

 

Figure D.6.45. A histogram plot showing the median soil season’s start (SOS), middle 

(MOS), and end of season (EOS) for the South Central Plains ecoregion. 

 

Figure D.6.46. A histogram plot showing the median soil season’s start (SOS), middle 

(MOS), and end of season (EOS) for the Ouachita Mountains ecoregion. 
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Figure D.6.47. A histogram plot showing the median soil season’s start (SOS), middle 

(MOS), and end of season (EOS) for the Arkansas Valley ecoregion. 

 

Figure D.6.48. A histogram plot showing the median soil season’s start (SOS), middle 

(MOS), and end of season (EOS) for the Boston Mountains ecoregion. 
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Figure d.6.49. A histogram plot showing the median soil season’s start (SOS), middle 

(MOS), and end of season (EOS) for the Ozark Highlands ecoregion. 

 

Figure D.6.50. A histogram plot showing the median soil season’s start (SOS), middle 

(MOS), and end of season (EOS) for the Central Irregular Plains ecoregion. 
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Figure D.6.51. A histogram plot showing the median soil season’s start (SOS), middle 

(MOS), and end of season (EOS) for the Canadian Rockies ecoregion. 

 

Figure D.6.52. A histogram plot showing the median soil season’s start (SOS), middle 

(MOS), and end of season (EOS) for the Northwest Glaciated Plains ecoregion. 
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Figure D.6.53. A histogram plot showing the median soil season’s start (SOS), middle 

(MOS), and end of season (EOS) for the Northwest Great Plains ecoregion. 

 

Figure D.6.54. A histogram plot showing the median soil season’s start (SOS), middle 

(MOS), and end of season (EOS) for the Nebraska Sand Hills ecoregion. 
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Figure D.6.55. A histogram plot showing the median soil season’s start (SOS), middle 

(MOS), and end of season (EOS) for the North Glaciated Plains ecoregion. 

 

Figure D.6.56. A histogram plot showing the median soil season’s start (SOS), middle 

(MOS), and end of season (EOS) for the Interior River Valley and Hills ecoregion. 
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Figure D.6.57. A histogram plot showing the median soil season’s start (SOS), middle 

(MOS), and end of season (EOS) for the Mississippi Alluvial Plains ecoregion. 

 

Figure D.6.58. A histogram plot showing the median soil season’s start (SOS), middle 

(MOS), and end of season (EOS) for the Western Corn Belt Plains ecoregion. 
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Appendix E - Ecoregion Statistical Analysis R Code 

Emily Nottingham 

1/15/2021 

#load libraries 

library(sf) 

library(dplyr)  

library(rgdal) 

library(mgcv) 

library(maps)        

library(maptools)  

library(plotrix) 

library(gstat) 

library(ggplot2) 

library(raster) 

library(sm) 

library(multcompView) 

#load directories and subset dataframes 

 

sos_median <- raster(x = "C:/Users/emiro/Stat764 Dropbox/Emily Nottingham/HSG_HUC_IN/Median/

SOS_0130_MEDIAN.tif") 

mos_median <- raster(x = "C:/Users/emiro/Stat764 Dropbox/Emily Nottingham/HSG_HUC_IN/Median/

MOS_0130_MEDIAN.tif") 

eos_median <- raster(x = "C:/Users/emiro/Stat764 Dropbox/Emily Nottingham/HSG_HUC_IN/Median/

EOS_0130_MEDIAN.tif") 

Ecoregions <-raster(x="C:/Users/emiro/Stat764 Dropbox/Emily Nottingham/HSG_HUC_IN/test/eco_ras

ter_1.tif") 

 

stack_eco <- stack(sos_median, mos_median, eos_median, Ecoregions) 

median_eco <- as.data.frame(stack_eco) 

median_eco <- na.omit(median_eco) 

 

flint_hills <- subset(median_eco, median_eco$eco_raster_1 == 21) 

flint_hills <- subset(flint_hills, select = -c(eco_raster_1)) 

 

Idaho_Bathalith <- subset(median_eco, median_eco$eco_raster_1 == 8) 

Idaho_Bathalith <- subset(Idaho_Bathalith, select = -c(eco_raster_1)) 

 

Middle_Rockies <- subset(median_eco, median_eco$eco_raster_1 == 9) 

Middle_Rockies <- subset(Middle_Rockies, select = -c(eco_raster_1)) 

 

Wy_basin <- subset(median_eco, median_eco$eco_raster_1 == 10) 

Wy_basin <- subset(Wy_basin, select = -c(eco_raster_1)) 

 

S_Rockies <- subset(median_eco, median_eco$eco_raster_1 == 14) 

S_Rockies <- subset(S_Rockies, select = -c(eco_raster_1)) 

 

High_Plains <- subset(median_eco, median_eco$eco_raster_1 == 18) 
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High_Plains <- subset(High_Plains, select = -c(eco_raster_1)) 

 

SW_Tablelands <- subset(median_eco, median_eco$eco_raster_1 == 19) 

SW_Tablelands <- subset(SW_Tablelands, select = -c(eco_raster_1)) 

 

Central_Great_Plains <- subset(median_eco, median_eco$eco_raster_1 == 20) 

Central_Great_Plains <- subset(Central_Great_Plains, select = -c(eco_raster_1)) 

 

Cross_Timbers <- subset(median_eco, median_eco$eco_raster_1 == 22) 

Cross_Timbers <- subset(Cross_Timbers, select = -c(eco_raster_1)) 

 

Tx_Blacklands_Prairies <- subset(median_eco, median_eco$eco_raster_1 == 26) 

Tx_Blacklands_Prairies <- subset(Tx_Blacklands_Prairies,  

                                 select = -c(eco_raster_1)) 

 

EC_Tx_Plains <- subset(median_eco, median_eco$eco_raster_1 == 27) 

EC_Tx_Plains <- subset(EC_Tx_Plains, select = -c(eco_raster_1)) 

 

SC_Plains <- subset(median_eco, median_eco$eco_raster_1 == 29) 

SC_Plains <- subset(SC_Plains, select = -c(eco_raster_1)) 

 

Ouachita_Mountains <- subset(median_eco, median_eco$eco_raster_1 == 30) 

Ouachita_Mountains <- subset(Ouachita_Mountains, select = -c(eco_raster_1)) 

 

Ak_Valley <- subset(median_eco, median_eco$eco_raster_1 == 31) 

Ak_Valley <- subset(Ak_Valley, select = -c(eco_raster_1)) 

 

Boston_Mountains <- subset(median_eco, median_eco$eco_raster_1 == 32) 

Boston_Mountains <- subset(Boston_Mountains, select = -c(eco_raster_1)) 

 

Ozark_highlands <- subset(median_eco, median_eco$eco_raster_1 == 33) 

Ozark_highlands <- subset(Ozark_highlands, select = -c(eco_raster_1)) 

 

C_Irregular_Plains <- subset(median_eco, median_eco$eco_raster_1 == 35) 

C_Irregular_Plains <- subset(C_Irregular_Plains, select = -c(eco_raster_1)) 

 

Can_Rockies <- subset(median_eco, median_eco$eco_raster_1 == 36) 

Can_Rockies <- subset(Can_Rockies, select = -c(eco_raster_1)) 

 

NW_Glaciated_Plains <- subset(median_eco, median_eco$eco_raster_1 == 37) 

NW_Glaciated_Plains <- subset(NW_Glaciated_Plains, select = -c(eco_raster_1)) 

 

NW_Great_Plains <- subset(median_eco, median_eco$eco_raster_1 == 38) 

NW_Great_Plains <- subset(NW_Great_Plains, select = -c(eco_raster_1)) 

 

Ne_Sand_Hills <- subset(median_eco, median_eco$eco_raster_1 == 39) 

Ne_Sand_Hills <- subset(Ne_Sand_Hills, select = -c(eco_raster_1)) 

 

N_Glaciated_Plains <- subset(median_eco, median_eco$eco_raster_1 == 41) 

N_Glaciated_Plains <- subset(N_Glaciated_Plains, select = -c(eco_raster_1)) 
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W_Corn_Belt_Plains <- subset(median_eco, median_eco$eco_raster_1 == 42) 

W_Corn_Belt_Plains <- subset(W_Corn_Belt_Plains, select = -c(eco_raster_1)) 

 

Int_River_Valleys_Hills <- subset(median_eco, median_eco$eco_raster_1 == 70) 

Int_River_Valleys_Hills <- subset(Int_River_Valleys_Hills,  

                                  select = -c(eco_raster_1)) 

 

Ms_Alluvial_Plains <- subset(median_eco, median_eco$eco_raster_1 == 71) 

Ms_Alluvial_Plains <- subset(Ms_Alluvial_Plains, select = -c(eco_raster_1)) 

#Retrieve median values 

sapply(Idaho_Bathalith, median, na.rm=TRUE) 

sapply(Middle_Rockies, median, na.rm=TRUE) 

sapply(Wy_basin, median, na.rm=TRUE) 

sapply(S_Rockies, median, na.rm=TRUE) 

sapply(High_Plains, median, na.rm=TRUE) 

sapply(SW_Tablelands, median, na.rm=TRUE) 

sapply(Central_Great_Plains, median, na.rm=TRUE) 

sapply(flint_hills, median, na.rm=TRUE) 

sapply(Cross_Timbers, median, na.rm=TRUE) 

sapply(Tx_Blacklands_Prairies, median, na.rm=TRUE) 

sapply(EC_Tx_Plains, median, na.rm=TRUE) 

sapply(SC_Plains, median, na.rm=TRUE) 

sapply(Ouachita_Mountains, median, na.rm=TRUE) 

sapply(Ak_Valley, median, na.rm=TRUE) 

sapply(Boston_Mountains, median, na.rm=TRUE) 

sapply(Ozark_highlands, median, na.rm=TRUE) 

sapply(C_Irregular_Plains, median, na.rm=TRUE) 

sapply(Can_Rockies, median, na.rm=TRUE) 

sapply(NW_Glaciated_Plains, median, na.rm=TRUE) 

sapply(NW_Great_Plains, median, na.rm=TRUE) 

sapply(Ne_Sand_Hills, median, na.rm=TRUE) 

sapply(N_Glaciated_Plains, median, na.rm=TRUE) 

sapply(Int_River_Valleys_Hills, median, na.rm=TRUE) 

sapply(Ms_Alluvial_Plains, median, na.rm=TRUE) 

sapply(W_Corn_Belt_Plains, median, na.rm=TRUE) 

#create Density Plots 

 

den <- apply(Idaho_Bathalith,2,density) 

plot(NA, ylab="Desnity", xlab = "Days",main = " Median Dry Season for the Idaho  

     Bathalith Region",xlim=range(sapply(den, "[", "x")),  

     ylim=range(sapply(den, "[", "y"))) 

mapply(lines, den, col=1:length(den)) 

 

legend("topright", c("SOS","MOS","EOS"), lty = c(1,1),  

       col = c("black","red", "green")) 

den <- apply(Middle_Rockies,2,density) 

plot(NA, ylab="Desnity", xlab = "Days",main = " Median Dry Season for the Middle  

     Rockies Region",xlim=range(sapply(den, "[", "x")),  
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     ylim=range(sapply(den, "[", "y"))) 

mapply(lines, den, col=1:length(den)) 

legend("topright", c("SOS","MOS","EOS"), lty = c(1,1),  

       col = c("black","red", "green")) 

den <- apply(Wy_basin,2,density) 

plot(NA, ylab="Desnity", xlab = "Days",main = " Median Dry Season for the  

     Wyoming Basin Region",xlim=range(sapply(den, "[", "x")),  

     ylim=range(sapply(den, "[", "y"))) 

mapply(lines, den, col=1:length(den)) 

legend("topright", c("SOS","MOS","EOS"), lty = c(1,1),  

       col = c("black","red", "green")) 

den <- apply(S_Rockies,2,density) 

plot(NA, ylab="Desnity", xlab = "Days",main = " Median Dry Season for the  

     Southern Rockies Region",xlim=range(sapply(den, "[", "x")),  

     ylim=range(sapply(den, "[", "y"))) 

mapply(lines, den, col=1:length(den)) 

legend("topright", c("SOS","MOS","EOS"), lty = c(1,1),  

       col = c("black","red", "green")) 

den <- apply(High_Plains,2,density) 

plot(NA, ylab="Desnity", xlab = "Days",main = " Median Dry Season for the High  

     Plains Region",xlim=range(sapply(den, "[", "x")),  

     ylim=range(sapply(den, "[", "y"))) 

mapply(lines, den, col=1:length(den)) 

legend("topright", c("SOS","MOS","EOS"), lty = c(1,1),  

       col = c("black","red", "green")) 

den <- apply(SW_Tablelands,2,density) 

plot(NA, ylab="Desnity", xlab = "Days",main = " Median Dry Season for the SW  

     Tablelands Region",xlim=range(sapply(den, "[", "x")),  

     ylim=range(sapply(den, "[", "y"))) 

mapply(lines, den, col=1:length(den)) 

legend("topright", c("SOS","MOS","EOS"), lty = c(1,1),  

       col = c("black","red", "green")) 

den <- apply(Central_Great_Plains,2,density) 

plot(NA, ylab="Desnity", xlab = "Days",main = " Median Dry Season for the  

     Central Great Plains Region",xlim=range(sapply(den, "[", "x")),  

     ylim=range(sapply(den, "[", "y"))) 

mapply(lines, den, col=1:length(den)) 

legend("topright", c("SOS","MOS","EOS"), lty = c(1,1),  

       col = c("black","red", "green")) 

den <- apply(flint_hills,2,density) 

plot(NA, ylab="Desnity", xlab = "Days",main = " Median Dry Season for the Flint  

     Hills Region",xlim=range(sapply(den, "[", "x")),  

     ylim=range(sapply(den, "[", "y"))) 

mapply(lines, den, col=1:length(den)) 

legend("topright", c("SOS","MOS","EOS"), lty = c(1,1),  

       col = c("black","red", "green")) 
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den <- apply(Cross_Timbers,2,density) 

plot(NA, ylab="Desnity", xlab = "Days",main = " Median Dry Season for the Cross  

     Timbers Region",xlim=range(sapply(den, "[", "x")),  

     ylim=range(sapply(den, "[", "y"))) 

mapply(lines, den, col=1:length(den)) 

legend("topright", c("SOS","MOS","EOS"), lty = c(1,1),  

       col = c("black","red", "green")) 

den <- apply(Tx_Blacklands_Prairies,2,density) 

plot(NA, ylab="Desnity", xlab = "Days",main = " Median Dry Season for the Tx  

     Blackland Prairies Region",xlim=range(sapply(den, "[", "x")),  

     ylim=range(sapply(den, "[", "y"))) 

mapply(lines, den, col=1:length(den)) 

legend("topright", c("SOS","MOS","EOS"), lty = c(1,1),  

       col = c("black","red", "green")) 

den <- apply(EC_Tx_Plains,2,density) 

plot(NA, ylab="Desnity", xlab = "Days",main = " Median Dry Season for the E  

     Central TX Plains Region",xlim=range(sapply(den, "[", "x")),  

     ylim=range(sapply(den, "[", "y"))) 

mapply(lines, den, col=1:length(den)) 

legend("topright", c("SOS","MOS","EOS"), lty = c(1,1),  

       col = c("black","red", "green")) 

den <- apply(SC_Plains,2,density) 

plot(NA, ylab="Desnity", xlab = "Days",main = " Median Dry Season for the S  

     Central Plains Region",xlim=range(sapply(den, "[", "x")),  

     ylim=range(sapply(den, "[", "y"))) 

mapply(lines, den, col=1:length(den)) 

legend("topright", c("SOS","MOS","EOS"), lty = c(1,1),  

       col = c("black","red", "green")) 

den <- apply(Ouachita_Mountains,2,density) 

plot(NA, ylab="Desnity", xlab = "Days",main = " Median Dry Season for the  

     Ouachita Mountains Region",xlim=range(sapply(den, "[", "x")),  

     ylim=range(sapply(den, "[", "y"))) 

mapply(lines, den, col=1:length(den)) 

legend("topright", c("SOS","MOS","EOS"), lty = c(1,1),  

       col = c("black","red", "green")) 

den <- apply(Ak_Valley,2,density) 

plot(NA, ylab="Desnity", xlab = "Days",main = " Median Dry Season for the  

     Arkansas Valley Region",xlim=range(sapply(den, "[", "x")),  

     ylim=range(sapply(den, "[", "y"))) 

mapply(lines, den, col=1:length(den)) 

legend("topright", c("SOS","MOS","EOS"), lty = c(1,1),  

       col = c("black","red", "green")) 

den <- apply(Boston_Mountains,2,density) 

plot(NA, ylab="Desnity", xlab = "Days",main = " Median Dry Season for the Boston  

     Mountains Region",xlim=range(sapply(den, "[", "x")),  

     ylim=range(sapply(den, "[", "y"))) 
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mapply(lines, den, col=1:length(den)) 

legend("topright", c("SOS","MOS","EOS"), lty = c(1,1),  

       col = c("black","red", "green")) 

den <- apply(Ozark_highlands,2,density) 

plot(NA, ylab="Desnity", xlab = "Days",main = " Median Dry Season for the Ozark  

     Highlands Region",xlim=range(sapply(den, "[", "x")),  

     ylim=range(sapply(den, "[", "y"))) 

mapply(lines, den, col=1:length(den)) 

legend("topright", c("SOS","MOS","EOS"), lty = c(1,1),  

       col = c("black","red", "green")) 

den <- apply(C_Irregular_Plains,2,density) 

plot(NA, ylab="Desnity", xlab = "Days",main = " Median Dry Season for the  

     Central Irregular Plains Region",xlim=range(sapply(den, "[", "x")),  

     ylim=range(sapply(den, "[", "y"))) 

mapply(lines, den, col=1:length(den)) 

legend("topright", c("SOS","MOS","EOS"), lty = c(1,1),  

       col = c("black","red", "green")) 

den <- apply(Can_Rockies,2,density) 

plot(NA, ylab="Desnity", xlab = "Days",main = " Median Dry Season for the  

     Canadian Rockies Region",xlim=range(sapply(den, "[", "x")),  

     ylim=range(sapply(den, "[", "y"))) 

mapply(lines, den, col=1:length(den)) 

legend("topright", c("SOS","MOS","EOS"), lty = c(1,1),  

       col = c("black","red", "green")) 

den <- apply(NW_Glaciated_Plains,2,density) 

plot(NA, ylab="Desnity", xlab = "Days",main = " Median Dry Season for the NW  

     Glaciated Plains Region",xlim=range(sapply(den, "[", "x")),  

     ylim=range(sapply(den, "[", "y"))) 

mapply(lines, den, col=1:length(den)) 

legend("topright", c("SOS","MOS","EOS"), lty = c(1,1),  

       col = c("black","red", "green")) 

den <- apply(NW_Great_Plains,2,density) 

plot(NA, ylab="Desnity", xlab = "Days",main = " Median Dry Season for the NW  

     Great Plains Region",xlim=range(sapply(den, "[", "x")),  

     ylim=range(sapply(den, "[", "y"))) 

mapply(lines, den, col=1:length(den)) 

legend("topright", c("SOS","MOS","EOS"), lty = c(1,1),  

       col = c("black","red", "green")) 

den <- apply(Ne_Sand_Hills,2,density) 

plot(NA, ylab="Desnity", xlab = "Days",main = " Median Dry Season for the  

     Nebraska Sand Hills Region",xlim=range(sapply(den, "[", "x")),  

     ylim=range(sapply(den, "[", "y"))) 

mapply(lines, den, col=1:length(den)) 

legend("topright", c("SOS","MOS","EOS"), lty = c(1,1),  

       col = c("black","red", "green")) 
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den <- apply(N_Glaciated_Plains,2,density) 

plot(NA, ylab="Desnity", xlab = "Days",main = " Median Dry Season for the N  

     Glaciated Plains Region",xlim=range(sapply(den, "[", "x")),  

     ylim=range(sapply(den, "[", "y"))) 

mapply(lines, den, col=1:length(den)) 

legend("topright", c("SOS","MOS","EOS"), lty = c(1,1),  

       col = c("black","red", "green")) 

den <- apply(Int_River_Valleys_Hills,2,density) 

plot(NA, ylab="Desnity", xlab = "Days",main = " Median Dry Season for the  

     Interior River Valley and Hills Region",xlim=range(sapply(den, "[", "x")),  

     ylim=range(sapply(den, "[", "y"))) 

mapply(lines, den, col=1:length(den)) 

legend("topright", c("SOS","MOS","EOS"), lty = c(1,1),  

       col = c("black","red", "green")) 

den <- apply(Ms_Alluvial_Plains,2,density) 

plot(NA, ylab="Desnity", xlab = "Days",main = " Median Dry Season for the Ms  

     Alluvial Plains Region",xlim=range(sapply(den, "[", "x")),  

     ylim=range(sapply(den, "[", "y"))) 

mapply(lines, den, col=1:length(den)) 

legend("topright", c("SOS","MOS","EOS"), lty = c(1,1),  

       col = c("black","red", "green")) 

den <- apply(W_Corn_Belt_Plains,2,density) 

plot(NA, ylab="Desnity", xlab = "Days",main = " Median Dry Season for the W  

     Corn Belt Plains Region",xlim=range(sapply(den, "[", "x")),  

     ylim=range(sapply(den, "[", "y"))) 

mapply(lines, den, col=1:length(den)) 

legend("topright", c("SOS","MOS","EOS"), lty = c(1,1),  

       col = c("black","red", "green")) 

#Kruskal Wallis test for ecoregions 

 

S_eco <- pairwise.wilcox.test(median_eco$SOS_0130_MEDIAN,  

                              median_eco$eco_raster_1, p.adjust.method = "BH") 

M_eco <- pairwise.wilcox.test(median_eco$MOS_0130_MEDIAN,  

                              median_eco$eco_raster_1, p.adjust.method = "BH") 

E_eco <- pairwise.wilcox.test(median_eco$EOS_0130_MEDIAN,  

                              median_eco$eco_raster_1, p.adjust.method = "BH") 

 

S_eco 

M_eco 

E_eco 

 

S_eco_let <-multcompLetters(S_eco$p.value) 

M_eco_let <-multcompLetters(M_eco$p.value) 

E_eco_let <-multcompLetters(E_eco$p.value) 

 

S_eco_let 

M_eco_let 

E_eco_let 
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Appendix F - Hydrologic Soil Group Statistical Analysis R Code 

Emily Nottingham 

1/15/2021 

#load libraries 
library(sf) 
library(dplyr)  
library(rgdal) 
library(mgcv) 
library(maps)        
library(maptools)  
library(plotrix) 
library(gstat) 
library(ggplot2) 
library(raster) 
library(sm) 
library(multcompView) 

#load directories and subset dataframes 
 
sos_median <- raster(x = "C:/Users/emiro/Stat764 Dropbox/Emily Nottingham/HSG
_HUC_IN/Median/SOS_0130_MEDIAN.tif") 
mos_median <- raster(x = "C:/Users/emiro/Stat764 Dropbox/Emily Nottingham/HSG
_HUC_IN/Median/MOS_0130_MEDIAN.tif") 
eos_median <- raster(x = "C:/Users/emiro/Stat764 Dropbox/Emily Nottingham/HSG
_HUC_IN/Median/EOS_0130_MEDIAN.tif") 
Ecoregions <-raster(x="C:/Users/emiro/Stat764 Dropbox/Emily Nottingham/HSG_HU
C_IN/test/eco_raster_1.tif") 
 
stack_eco <- stack(sos_median, mos_median, eos_median, Ecoregions) 
median_eco <- as.data.frame(stack_eco) 
median_eco <- na.omit(median_eco) 
 
flint_hills <- subset(median_eco, median_eco$eco_raster_1 == 21) 
flint_hills <- subset(flint_hills, select = -c(eco_raster_1)) 
 
Idaho_Bathalith <- subset(median_eco, median_eco$eco_raster_1 == 8) 
Idaho_Bathalith <- subset(Idaho_Bathalith, select = -c(eco_raster_1)) 
 
Middle_Rockies <- subset(median_eco, median_eco$eco_raster_1 == 9) 
Middle_Rockies <- subset(Middle_Rockies, select = -c(eco_raster_1)) 
 
Wy_basin <- subset(median_eco, median_eco$eco_raster_1 == 10) 
Wy_basin <- subset(Wy_basin, select = -c(eco_raster_1)) 
 
S_Rockies <- subset(median_eco, median_eco$eco_raster_1 == 14) 
S_Rockies <- subset(S_Rockies, select = -c(eco_raster_1)) 
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High_Plains <- subset(median_eco, median_eco$eco_raster_1 == 18) 
High_Plains <- subset(High_Plains, select = -c(eco_raster_1)) 
 
SW_Tablelands <- subset(median_eco, median_eco$eco_raster_1 == 19) 
SW_Tablelands <- subset(SW_Tablelands, select = -c(eco_raster_1)) 
 
Central_Great_Plains <- subset(median_eco, median_eco$eco_raster_1 == 20) 
Central_Great_Plains <- subset(Central_Great_Plains, select = -c(eco_raster_1
)) 
 
Cross_Timbers <- subset(median_eco, median_eco$eco_raster_1 == 22) 
Cross_Timbers <- subset(Cross_Timbers, select = -c(eco_raster_1)) 
 
Tx_Blacklands_Prairies <- subset(median_eco, median_eco$eco_raster_1 == 26) 
Tx_Blacklands_Prairies <- subset(Tx_Blacklands_Prairies,  
                                 select = -c(eco_raster_1)) 
 
EC_Tx_Plains <- subset(median_eco, median_eco$eco_raster_1 == 27) 
EC_Tx_Plains <- subset(EC_Tx_Plains, select = -c(eco_raster_1)) 
 
SC_Plains <- subset(median_eco, median_eco$eco_raster_1 == 29) 
SC_Plains <- subset(SC_Plains, select = -c(eco_raster_1)) 
 
Ouachita_Mountains <- subset(median_eco, median_eco$eco_raster_1 == 30) 
Ouachita_Mountains <- subset(Ouachita_Mountains, select = -c(eco_raster_1)) 
 
Ak_Valley <- subset(median_eco, median_eco$eco_raster_1 == 31) 
Ak_Valley <- subset(Ak_Valley, select = -c(eco_raster_1)) 
 
Boston_Mountains <- subset(median_eco, median_eco$eco_raster_1 == 32) 
Boston_Mountains <- subset(Boston_Mountains, select = -c(eco_raster_1)) 
 
Ozark_highlands <- subset(median_eco, median_eco$eco_raster_1 == 33) 
Ozark_highlands <- subset(Ozark_highlands, select = -c(eco_raster_1)) 
 
C_Irregular_Plains <- subset(median_eco, median_eco$eco_raster_1 == 35) 
C_Irregular_Plains <- subset(C_Irregular_Plains, select = -c(eco_raster_1)) 
 
Can_Rockies <- subset(median_eco, median_eco$eco_raster_1 == 36) 
Can_Rockies <- subset(Can_Rockies, select = -c(eco_raster_1)) 
 
NW_Glaciated_Plains <- subset(median_eco, median_eco$eco_raster_1 == 37) 
NW_Glaciated_Plains <- subset(NW_Glaciated_Plains, select = -c(eco_raster_1)) 
 
NW_Great_Plains <- subset(median_eco, median_eco$eco_raster_1 == 38) 
NW_Great_Plains <- subset(NW_Great_Plains, select = -c(eco_raster_1)) 
 
Ne_Sand_Hills <- subset(median_eco, median_eco$eco_raster_1 == 39) 
Ne_Sand_Hills <- subset(Ne_Sand_Hills, select = -c(eco_raster_1)) 
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N_Glaciated_Plains <- subset(median_eco, median_eco$eco_raster_1 == 41) 
N_Glaciated_Plains <- subset(N_Glaciated_Plains, select = -c(eco_raster_1)) 
 
W_Corn_Belt_Plains <- subset(median_eco, median_eco$eco_raster_1 == 42) 
W_Corn_Belt_Plains <- subset(W_Corn_Belt_Plains, select = -c(eco_raster_1)) 
 
Int_River_Valleys_Hills <- subset(median_eco, median_eco$eco_raster_1 == 70) 
Int_River_Valleys_Hills <- subset(Int_River_Valleys_Hills,  
                                  select = -c(eco_raster_1)) 
 
Ms_Alluvial_Plains <- subset(median_eco, median_eco$eco_raster_1 == 71) 
Ms_Alluvial_Plains <- subset(Ms_Alluvial_Plains, select = -c(eco_raster_1)) 

#Retrieve median values 
sapply(Idaho_Bathalith, median, na.rm=TRUE) 
sapply(Middle_Rockies, median, na.rm=TRUE) 
sapply(Wy_basin, median, na.rm=TRUE) 
sapply(S_Rockies, median, na.rm=TRUE) 
sapply(High_Plains, median, na.rm=TRUE) 
sapply(SW_Tablelands, median, na.rm=TRUE) 
sapply(Central_Great_Plains, median, na.rm=TRUE) 
sapply(flint_hills, median, na.rm=TRUE) 
sapply(Cross_Timbers, median, na.rm=TRUE) 
sapply(Tx_Blacklands_Prairies, median, na.rm=TRUE) 
sapply(EC_Tx_Plains, median, na.rm=TRUE) 
sapply(SC_Plains, median, na.rm=TRUE) 
sapply(Ouachita_Mountains, median, na.rm=TRUE) 
sapply(Ak_Valley, median, na.rm=TRUE) 
sapply(Boston_Mountains, median, na.rm=TRUE) 
sapply(Ozark_highlands, median, na.rm=TRUE) 
sapply(C_Irregular_Plains, median, na.rm=TRUE) 
sapply(Can_Rockies, median, na.rm=TRUE) 
sapply(NW_Glaciated_Plains, median, na.rm=TRUE) 
sapply(NW_Great_Plains, median, na.rm=TRUE) 
sapply(Ne_Sand_Hills, median, na.rm=TRUE) 
sapply(N_Glaciated_Plains, median, na.rm=TRUE) 
sapply(Int_River_Valleys_Hills, median, na.rm=TRUE) 
sapply(Ms_Alluvial_Plains, median, na.rm=TRUE) 
sapply(W_Corn_Belt_Plains, median, na.rm=TRUE) 

#create Density Plots 
 
den <- apply(Idaho_Bathalith,2,density) 
plot(NA, ylab="Desnity", xlab = "Days",main = " Median Dry Season for the Ida
ho  
     Bathalith Region",xlim=range(sapply(den, "[", "x")),  
     ylim=range(sapply(den, "[", "y"))) 
mapply(lines, den, col=1:length(den)) 
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legend("topright", c("SOS","MOS","EOS"), lty = c(1,1),  
       col = c("black","red", "green")) 

den <- apply(Middle_Rockies,2,density) 
plot(NA, ylab="Desnity", xlab = "Days",main = " Median Dry Season for the Mid
dle  
     Rockies Region",xlim=range(sapply(den, "[", "x")),  
     ylim=range(sapply(den, "[", "y"))) 
mapply(lines, den, col=1:length(den)) 
legend("topright", c("SOS","MOS","EOS"), lty = c(1,1),  
       col = c("black","red", "green")) 

den <- apply(Wy_basin,2,density) 
plot(NA, ylab="Desnity", xlab = "Days",main = " Median Dry Season for the  
     Wyoming Basin Region",xlim=range(sapply(den, "[", "x")),  
     ylim=range(sapply(den, "[", "y"))) 
mapply(lines, den, col=1:length(den)) 
legend("topright", c("SOS","MOS","EOS"), lty = c(1,1),  
       col = c("black","red", "green")) 

den <- apply(S_Rockies,2,density) 
plot(NA, ylab="Desnity", xlab = "Days",main = " Median Dry Season for the  
     Southern Rockies Region",xlim=range(sapply(den, "[", "x")),  
     ylim=range(sapply(den, "[", "y"))) 
mapply(lines, den, col=1:length(den)) 
legend("topright", c("SOS","MOS","EOS"), lty = c(1,1),  
       col = c("black","red", "green")) 

den <- apply(High_Plains,2,density) 
plot(NA, ylab="Desnity", xlab = "Days",main = " Median Dry Season for the Hig
h  
     Plains Region",xlim=range(sapply(den, "[", "x")),  
     ylim=range(sapply(den, "[", "y"))) 
mapply(lines, den, col=1:length(den)) 
legend("topright", c("SOS","MOS","EOS"), lty = c(1,1),  
       col = c("black","red", "green")) 

den <- apply(SW_Tablelands,2,density) 
plot(NA, ylab="Desnity", xlab = "Days",main = " Median Dry Season for the SW  
     Tablelands Region",xlim=range(sapply(den, "[", "x")),  
     ylim=range(sapply(den, "[", "y"))) 
mapply(lines, den, col=1:length(den)) 
legend("topright", c("SOS","MOS","EOS"), lty = c(1,1),  
       col = c("black","red", "green")) 

den <- apply(Central_Great_Plains,2,density) 
plot(NA, ylab="Desnity", xlab = "Days",main = " Median Dry Season for the  
     Central Great Plains Region",xlim=range(sapply(den, "[", "x")),  
     ylim=range(sapply(den, "[", "y"))) 
mapply(lines, den, col=1:length(den)) 
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legend("topright", c("SOS","MOS","EOS"), lty = c(1,1),  
       col = c("black","red", "green")) 

den <- apply(flint_hills,2,density) 
plot(NA, ylab="Desnity", xlab = "Days",main = " Median Dry Season for the Fli
nt  
     Hills Region",xlim=range(sapply(den, "[", "x")),  
     ylim=range(sapply(den, "[", "y"))) 
mapply(lines, den, col=1:length(den)) 
legend("topright", c("SOS","MOS","EOS"), lty = c(1,1),  
       col = c("black","red", "green")) 

den <- apply(Cross_Timbers,2,density) 
plot(NA, ylab="Desnity", xlab = "Days",main = " Median Dry Season for the Cro
ss  
     Timbers Region",xlim=range(sapply(den, "[", "x")),  
     ylim=range(sapply(den, "[", "y"))) 
mapply(lines, den, col=1:length(den)) 
legend("topright", c("SOS","MOS","EOS"), lty = c(1,1),  
       col = c("black","red", "green")) 

den <- apply(Tx_Blacklands_Prairies,2,density) 
plot(NA, ylab="Desnity", xlab = "Days",main = " Median Dry Season for the Tx  
     Blackland Prairies Region",xlim=range(sapply(den, "[", "x")),  
     ylim=range(sapply(den, "[", "y"))) 
mapply(lines, den, col=1:length(den)) 
legend("topright", c("SOS","MOS","EOS"), lty = c(1,1),  
       col = c("black","red", "green")) 

den <- apply(EC_Tx_Plains,2,density) 
plot(NA, ylab="Desnity", xlab = "Days",main = " Median Dry Season for the E  
     Central TX Plains Region",xlim=range(sapply(den, "[", "x")),  
     ylim=range(sapply(den, "[", "y"))) 
mapply(lines, den, col=1:length(den)) 
legend("topright", c("SOS","MOS","EOS"), lty = c(1,1),  
       col = c("black","red", "green")) 

den <- apply(SC_Plains,2,density) 
plot(NA, ylab="Desnity", xlab = "Days",main = " Median Dry Season for the S  
     Central Plains Region",xlim=range(sapply(den, "[", "x")),  
     ylim=range(sapply(den, "[", "y"))) 
mapply(lines, den, col=1:length(den)) 
legend("topright", c("SOS","MOS","EOS"), lty = c(1,1),  
       col = c("black","red", "green")) 

den <- apply(Ouachita_Mountains,2,density) 
plot(NA, ylab="Desnity", xlab = "Days",main = " Median Dry Season for the  
     Ouachita Mountains Region",xlim=range(sapply(den, "[", "x")),  
     ylim=range(sapply(den, "[", "y"))) 
mapply(lines, den, col=1:length(den)) 
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legend("topright", c("SOS","MOS","EOS"), lty = c(1,1),  
       col = c("black","red", "green")) 

den <- apply(Ak_Valley,2,density) 
plot(NA, ylab="Desnity", xlab = "Days",main = " Median Dry Season for the  
     Arkansas Valley Region",xlim=range(sapply(den, "[", "x")),  
     ylim=range(sapply(den, "[", "y"))) 
mapply(lines, den, col=1:length(den)) 
legend("topright", c("SOS","MOS","EOS"), lty = c(1,1),  
       col = c("black","red", "green")) 

den <- apply(Boston_Mountains,2,density) 
plot(NA, ylab="Desnity", xlab = "Days",main = " Median Dry Season for the Bos
ton  
     Mountains Region",xlim=range(sapply(den, "[", "x")),  
     ylim=range(sapply(den, "[", "y"))) 
mapply(lines, den, col=1:length(den)) 
legend("topright", c("SOS","MOS","EOS"), lty = c(1,1),  
       col = c("black","red", "green")) 

den <- apply(Ozark_highlands,2,density) 
plot(NA, ylab="Desnity", xlab = "Days",main = " Median Dry Season for the Oza
rk  
     Highlands Region",xlim=range(sapply(den, "[", "x")),  
     ylim=range(sapply(den, "[", "y"))) 
mapply(lines, den, col=1:length(den)) 
legend("topright", c("SOS","MOS","EOS"), lty = c(1,1),  
       col = c("black","red", "green")) 

den <- apply(C_Irregular_Plains,2,density) 
plot(NA, ylab="Desnity", xlab = "Days",main = " Median Dry Season for the  
     Central Irregular Plains Region",xlim=range(sapply(den, "[", "x")),  
     ylim=range(sapply(den, "[", "y"))) 
mapply(lines, den, col=1:length(den)) 
legend("topright", c("SOS","MOS","EOS"), lty = c(1,1),  
       col = c("black","red", "green")) 

den <- apply(Can_Rockies,2,density) 
plot(NA, ylab="Desnity", xlab = "Days",main = " Median Dry Season for the  
     Canadian Rockies Region",xlim=range(sapply(den, "[", "x")),  
     ylim=range(sapply(den, "[", "y"))) 
mapply(lines, den, col=1:length(den)) 
legend("topright", c("SOS","MOS","EOS"), lty = c(1,1),  
       col = c("black","red", "green")) 

den <- apply(NW_Glaciated_Plains,2,density) 
plot(NA, ylab="Desnity", xlab = "Days",main = " Median Dry Season for the NW  
     Glaciated Plains Region",xlim=range(sapply(den, "[", "x")),  
     ylim=range(sapply(den, "[", "y"))) 
mapply(lines, den, col=1:length(den)) 
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legend("topright", c("SOS","MOS","EOS"), lty = c(1,1),  
       col = c("black","red", "green")) 

den <- apply(NW_Great_Plains,2,density) 
plot(NA, ylab="Desnity", xlab = "Days",main = " Median Dry Season for the NW  
     Great Plains Region",xlim=range(sapply(den, "[", "x")),  
     ylim=range(sapply(den, "[", "y"))) 
mapply(lines, den, col=1:length(den)) 
legend("topright", c("SOS","MOS","EOS"), lty = c(1,1),  
       col = c("black","red", "green")) 

den <- apply(Ne_Sand_Hills,2,density) 
plot(NA, ylab="Desnity", xlab = "Days",main = " Median Dry Season for the  
     Nebraska Sand Hills Region",xlim=range(sapply(den, "[", "x")),  
     ylim=range(sapply(den, "[", "y"))) 
mapply(lines, den, col=1:length(den)) 
legend("topright", c("SOS","MOS","EOS"), lty = c(1,1),  
       col = c("black","red", "green")) 

den <- apply(N_Glaciated_Plains,2,density) 
plot(NA, ylab="Desnity", xlab = "Days",main = " Median Dry Season for the N  
     Glaciated Plains Region",xlim=range(sapply(den, "[", "x")),  
     ylim=range(sapply(den, "[", "y"))) 
mapply(lines, den, col=1:length(den)) 
legend("topright", c("SOS","MOS","EOS"), lty = c(1,1),  
       col = c("black","red", "green")) 

den <- apply(Int_River_Valleys_Hills,2,density) 
plot(NA, ylab="Desnity", xlab = "Days",main = " Median Dry Season for the  
     Interior River Valley and Hills Region",xlim=range(sapply(den, "[", "x")
),  
     ylim=range(sapply(den, "[", "y"))) 
mapply(lines, den, col=1:length(den)) 
legend("topright", c("SOS","MOS","EOS"), lty = c(1,1),  
       col = c("black","red", "green")) 

den <- apply(Ms_Alluvial_Plains,2,density) 
plot(NA, ylab="Desnity", xlab = "Days",main = " Median Dry Season for the Ms  
     Alluvial Plains Region",xlim=range(sapply(den, "[", "x")),  
     ylim=range(sapply(den, "[", "y"))) 
mapply(lines, den, col=1:length(den)) 
legend("topright", c("SOS","MOS","EOS"), lty = c(1,1),  
       col = c("black","red", "green")) 

den <- apply(W_Corn_Belt_Plains,2,density) 
plot(NA, ylab="Desnity", xlab = "Days",main = " Median Dry Season for the W  
     Corn Belt Plains Region",xlim=range(sapply(den, "[", "x")),  
     ylim=range(sapply(den, "[", "y"))) 
mapply(lines, den, col=1:length(den)) 
legend("topright", c("SOS","MOS","EOS"), lty = c(1,1),  
       col = c("black","red", "green")) 
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#Kruskal Wallis test for ecoregions 
 
S_eco <- pairwise.wilcox.test(median_eco$SOS_0130_MEDIAN,  
                              median_eco$eco_raster_1, p.adjust.method = "BH"
) 
M_eco <- pairwise.wilcox.test(median_eco$MOS_0130_MEDIAN,  
                              median_eco$eco_raster_1, p.adjust.method = "BH"
) 
E_eco <- pairwise.wilcox.test(median_eco$EOS_0130_MEDIAN,  
                              median_eco$eco_raster_1, p.adjust.method = "BH"
) 
 
S_eco 
M_eco 
E_eco 
 
S_eco_let <-multcompLetters(S_eco$p.value) 
M_eco_let <-multcompLetters(M_eco$p.value) 
E_eco_let <-multcompLetters(E_eco$p.value) 
 
S_eco_let 
M_eco_let 
E_eco_let 

 


