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;7T A SUMMARY
M7

U’EPossible fueling concepts were examined to determine which would
providé the highest probability of success for application in the CTHR
(Commercial Tokamak Hybrid Reactor). Cold fueling was chosen with this
idea in mind. Thereafter, the particular scheme chosen was frozen-pellet
fueling, since it provides the advantage of maximum fuel-particle density.
Several methods of frozen-pellet injection were studied to determine their
capabilities, their experimental verification, and projections for the
future. Any characteristiecs which might adversely affect the normal
operation of the tokamak were taken into account. To this effect, the
light-gas gun was tentatively chosen to provide pellet accelerationm.

The ORNL Neutral Gas Shielding llodel is the basic theory used to
determine the required pellet velocity. It has been modified, however,
to account for operation in the commercial temperature regime (as opposed
to experimental devices with temperatures around 1 keV). The required
pellet velocity is a function of the depth at which the pellet has
disappeared as a solid entity.

From this, the pressure level and other essential estimates to be
made on the fuel injector design have been made. This leaves only the
design of a fuel handling system to implement operation. The fuel hand-
ling system has been designed sc that a sufficient fuel-pellet supply is
produced and quality control systems may be integrated into the system at
a later date.

Various ways were studied to locate the fuel injection svstem so as
to minimize the total-system perturbation. The suggested design incorpora-
ting the fuel injector into CTHR accounts for both this aspect and that of

providing the shortest possible path to the plasma center.
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NOMENCLATURE AND NOTATION

Distance from the outer edge of the plasma to the pressure

center (in m). Note that this quantity is taken as 0.9 m for CTHR.

Specific heat (constant pressure) of ablatant.
Sound speed (in m/s).
Charge of the electron (in C) = 1.6021892 x 10-19,

Ablatant enthalpy wvariable.

Fraction of pressure center of tokamak to which pellet is to achieve

penetration; i.e., if (%/a) = 1, pellet penetrates to the
pressure center of the reactor.

Mass of fuel molecule (in kg).
Mass of electron (in kg) = 9.109537 x 10731,
Sum of the mass of a pellet injector shell and the mass of

the fuel pellet (in kg). 1In the present design, this is approxi-
mately 1.947 x 10”3 kg.

Mass of deuteron (in kg) 2 3.344549 x 10727,
Mass of proton (in kg) = 1.673560 x 10™27,

Number density of electrons in the tokamak (in m~3). Note:
This quantity is position dependent, as in Ean. 52b.

Average electron number density in fusion plasma (in a3) =
9.8 x 1019,

Ablatant enthalpy wvariable.

Net heat transfer rate to the ablatant, by electron collisioms.
Position variable in fusion plasma, i.e., (r/a) is dimensionless.
Ratio of distance from pellet center to pellet radius.

Initial pellet radius (in m) = 3.073 x 1073.

Radius of pellet as a function of time (in m).

Time variable. Used in context of drO/dt.

Required pellet velocity to achieve penetration as a solid
entity to (%&/a), (in m/sec).
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Maximum attainable velocity of light-gas-gun-projectile (in
m/sec).

Ablatant velocity variable.
Speed of the ablatant (in m/sec). For the purposes of the
determination of the value of £ (see Eqn. 20), this quantity

is taken to be 400 m/sec.

Surface area of the pellet injector shell exposed to the pro-
pellent gas (in mz), (numerically, w/4 (0.03)2 m?) .

Thermal energy (in eV) of electrons at pellet surface. Note:
This quantity has been taken as 10 eV in Eqn. 51.

Thermal energy (in eV) of electrons in fusion plasma. Note:
This quantity is position dependent as illustrated in Eqn. 52a.

Electron current, further defined in Eqn. 16.

Distance over which the fuel injector shell and pellet are
accelerated (in m), taken here to be 0.30 m.

Electron energy loss function, approximated by Milora and Fosterl
as shown in Eqn. 51, (in eV mz), where E is the electron energy
(in eV).

Average value of L(E) in the ablatant.

Mach number of the ablatant.

Ideal gas comstant (in J/(kg K)).

Ablatant temperature.

Average electron temperature of fusion plasma (in eV) = 1.3 x 10“.
Ratio of specific heats.

Ratio of mass of fuel molecule to the mass of a proton.

Ablatant density variable, function of r.

Ratio of the mass density of the ablatant to the mass demnsity of
the ablatant at the pellet surface.

Mass density of fuel pellet (in kg/m3j.
Mass density of ablatant as a function of time (in kg/m3).
Mass density of solid deuterium (in kg/m3) = 2.059 x 102.

All units are assumed to be MKS unless otherwise stated.



1.0 Introduction

Westinghouse Fusion Power Systems Department is developing a design
for a Commercial Tokamak Hyﬁrid Reactor, referred to henceforth as CTHR.
In the course of the design of the reactor, it became apparent that
fueling system design must be given considerable attention. This is
due to the fact that the fuel must cross magnetic-field lines in order
to effect penetration of the reacting plasma body. In spite of this,
the subject of refueling mechanisms is new to the tokamak-reactor con-
ceptual design. The idea of crossing magnetic field lines leads, basi-
cally to two concepts of fueling. These are hot fueling, wherein the
fuel consists of either ionized particles or neutral particles with a
high thermal energy, and cold fueling, wherein the fuel cconsists of par-
ticles with verv small thermal energy.

In the hot fueling concept, the particle temperatures are generally
above 100 eV. Some examples of this concept are cluster beams, neutral
beams, and plasma guns. The primary disadvantage to using hot ionized-
particle fueling lies in the requireuwent that the refueling "mixture"
must have at least as high a thermal energy as the reacting body; clearly,
in order to allow electricallv charged fuel particles to enter and pene-
trate the confining magnetic field, their average energy must exceed the
energy which the magnetic field was designed to contain. The primary
disadvantage to employing hot neutral-particle fueling is due to the
rather small probability for interaction with the plasma; obviously, a
wastefully excessive amount of fuel would have to be injected to maintain
the necessary plasma density. There requirements also cause a secondary
disadvantage. The inherent inefficiencv of heating the fuel by an elec-

tromechanical device includes both the inefficiencv of the device and the



Carnot /Rankine inefficiencies accompanying the electrical-power genera-
tion upon which the device is operated. Thus, it is probable that ccld

fueling, if feasible, will be a more efficient and a safer process.

There are, basically, three different schemes for implementation of
a cold-fueling concept. These are fueling by frozen D+T pellets, squirting
a jet of liquid D+T, and puffing gaseous D+T from the surface of the reactor.
All three have in common the fact that the fuel particles are unaffected
by the magnetic field since they are electrically neutral. The requirement
for refueling here is that the fuel must penetrate the pressure "wave' of
the reacting body. Obviously, the greater the density of the fuel, the
greater 1s the probability of penetration, provided that the fuel-injection
velocity is held constant. (Remember that, upon injectiom into the reacting
body, the fuel will tend to become very quickly ionized by the surrounding
plasma.} This, effectively, justifies the concentration of the study on
frozen-pellet fueling while, at least temporarily, eliminating further con-
sideration of the liquid-jet and surface-gas schemes.

There have been many methods suggested by which pellet injection may
take place and, presently, some of these will be discussed briefly. How-
ever, a far more pressing question arises to the surface. How fast, i.e.,
with what velocity, must a pellet be injected in order to achieve penetra-
tion of the reacting body and thereby refuel the tokamak? The model used
in this paper to describe the behavior of the pellet is the ORNL Neutral
Gas Shielding Model of Foster and Milora.l The model has been modified,
here, to fit more closely the realities of the CTHR temperature regime of
operation. Explanation of the modification will follow in a later section.

The first method for consideration is that of linear-resonance accelera-

tion. In this method,2 a pellet of frozen D+T receives a metallic coating



and is, subsequently, electronically charged. It is then accelerated through
an electric field to achieve terminal wvelocity. There are several disadvan-

tages to this system, pertaining to use in a fusion-power facility, as the

following illustrates:

1. The metallic coating, received by the pellet initially,
enhances bremsstrahlung losses, which, in turm, increases
the value of the eritical nT required for fusion breakeven
quite dramatically; for example, a 10% increase in brems-
strahlung would be realized from a pellet containing only
0.01% of irom.
2 Very high accelerating potentials are projected for use in
such a reactor (~ 100 MV). To assure that there is no
electric-field breakdown, such a device is expected to
require a length of around 100 m. The drift tube could
be expected to be enormous.
In spite of these disadvantages, however, velocity achievable by this type
of system is predicted to be as high as 104 m/sec, although no experimental
data are available to confirm the theoretical projectiom.

Another method for consideration is that of freezing a jet of liquid
into a rod which is subsequently shattered into pellets.3 The pellets are
then allowed to drift towards the target plasma without further accelerationm.
This method has been tested experimentally to speeds of 100 m/sec and is
expected to deliver an ultimate pellet velocity of 2000 m/sec.3

A third possibility for accelerating the pellet lies in striking it
with a laser beam on one side.4 The resulting ablatant mass causes the
pellet to recoil and to be accelerated into the tokamak with an estimated
pellet velocity of 104 m/sec. Unfortunately, no experiments have been
made to test this idea.4

A fourth possibility is to accelerate the pellet mechanically through

5,6

the use of rotating arbor. The primary disadvantage of this method lies

in the hazard to the integrity of the vacuum caused by the rapidly moving



arbor. This would necessitate a protective shield for the vacuum vessel.
Terminal velocity is anticipated to exceed 1000 m/sec.5
The final method to be discussed here is that of using a light-gas

6,7,8

gun to accelerate the pellet. In this method, a high-pressure

propellent gas strikes a disk and accelerates disk and pellet towards

the reacting body. The experimental velocity achieved thus far by
this method is ~330 m/sec,7 which is higher than that for any other
method studied. This method has been projected to achieve velocities
of 6000 m/sec.8

As this is a conceptual-design paper for a possible fueling system
of CTHR, it is requisite that a choice be made of methods by which the
scheme of pellet-injection may be achieved. On the basis of inherent
advantages and disadvantages (including lack of experimental evidence) and
projected capabilities, a choice has been made for study in this paper.
The system selected and recommended for use in the CTHR design is that

of the light-gas gun for pellet injection.

I~



2.0 Fuel Scheme Modeling

Several models were considered for the purpose of modeling the pellet

ablation process as it pertains to CTHR.I’ 11-13, 21

These models were
studied to determine the most appropriate one for determination of the
pellet-injection velocity requirement. Since the ORNL Neutral Gas Shield
Hodell has a strong theoretical base of physical principles, e.g., conservation
of mass, momentum, and energy laws; and since it has a record of adequacy in
the lower temperature regimes (1 keV) for which it was formulated, this model was
chosen to form the basis of the theory by which the ablation process of a
pellet in CTHR is described. Due to the nature of the model, considerable
reconstruction was required before it could be applied to the problem at hand.
The ORNL Neutral Gas Shield Model was derived to form order of magnitude
estimates based on discrete points at which the pellet would disappear as a
solid entity. The requirement of this study is to examine the continuum of
points at which the pellet will disappear for a particular reactor, namely,

the Commercial Tokamak Hybrid Reactor of Westinghouse. By this, a conceptual

design of a fuel injection system for CTHR may be formulated.
2,1 Laws of Conservation of Mass, Momentum, and Energy

The ORNL Neutral Gas Shield Model is based upon the laws of conservation,

as mentioned previously. These may be expressed as:

d 2 _ -

-a-; [ pvr ] = 0, (1a)

d d .

7 [ ovr? } + r2 % = 0] (1b)
2

[ % } o { ovr? [ h + %— ] J = 4. {lc)



These represent conservation of mass, conservation of momentum, and comservation
of energy, respectively. Here, spherical geometry has been assumed and thus,
the mass flow rate, w may be represented by 4mpvr2, First, let us manipulate

equation (la).
2.1.1 Equation of Conservation of Mass

The solution to the mass conservation equation is almost trivial, but
will prove ugeful in the development of the model. Therefore, we give it
full consideration here. The solution may be expressed in one of two ways,

due to the solid-gas interface, Thus, the solution becomes, at the boundary
(see Figure 1):

. 2 =
pvT OV

But, due to the solid-gaseous interface, this may also be written as:

dr

2 2 o
vr —
A o dt

TPt

Hence, one has the following relationship:

dr
(e}

dt

= v _, ()

p

e 32)
s

Now, we are ready to transform the energy equation into something more easily

solvable (although numerical techniques are still required).

2.1.2 Conservation of Energy

The energy equation was previously described by:

T
R

2 d 2
8 2 ¥y w
] = [ pvre [ h + 3 ] ] 8

Making use of the chain rule, we find:



2

[h+21]

2 ~ d 2 z

— & [ pur<s ] = Q.
Tr

d v2
oV I [ h + E—-] +

However, the last term on the left-hand side of the equation is zero since
mass is conserved (see equation (la)) and thus, the energy equation is given

by the following:

d v2
PV'd—r'[h-i'E—]

[
D

If we diwide both sides of the above equation by the quantity, %% , the result
is that:

. q
d[h+2—] = p_V dr,

Or expressing the above equality in a slightly different manner:
2 qr
v _ 0
d[ h + 5—-} = [ 5 ] de, (3)
Shapirc20 gives as a general solution to the energy equation, the

following, adopting Shapiro's notation temporarily (except for the ratio of
p

specific heats):

2[l+3—;——iM2]

a? [EA—J . 1+ 2 {dQ-dWx+dH}
M2 (1 -wu2) K (1-u2) Cpt
2 = ol
+yM[l+ 5 MI[Af_d_}i_'_ 2dx ‘zyi_w}
(1-M2) YpaM?
201+ M2 y(1+X2 Ly
. ™M= ) ( 5 ) [ﬂJ 1+ ym2 [EEJ ) [11] -
(l_MZ) w (1_M2) W Y !



The sixth bracketed term is due to a possible change in the ratio of specific
heats, y. The fifth term in brackets accounts for a change in the molecular
weight, W. Both of these are zero since we neglect both disassociation of the
molecule and ionization of the gas in the shield. Since we are dealing with a
diatomic ideal gas, in the shield, vy = 7/5. The fourth term in brackets is zero
by virtue of mass conservation. The third bracketed term accounts for frictional
losses. These are negligible in the shield itself. Hence, only the first two

terms are left to consider. The second term in brackets may be Interpreted as?9:
dQ - 4V, +dH = ¢ dT + d(v2/2), (5)

But, the differential specific enthalpy of an ideal gas is simply:

Thus equation (5) may be rewritten as:

2
dQ - dv_+ dH = d(h+-2’f—). (6)

By substituting the above relationship into equatiom (4), we obtain:

dm? [ 2+ (y-1)41 [ da 1+ yM2 d(h+ﬁ)
= = - na [.A—} + === 2 . (7
M2 (1 -M2) 1 - M2 cpT

Now let us evaluate the term, dA/A, The surface area, A, of a sphere is

given by:

A = 4nr2,

Upon differentiating the above equation, it is discovered:

dA = 8mr dr,



combining the above two results, one finds that:
(8)

By
dg

dA _ Brr dr _
A 4ar?
equations (3) and (8) are substituted into equation (7), the energy equation

If
becomes:
2 _ 2 2 (=
a2 [ 2+ (v .l)M][Zfdf] , Lty (4 ae), (9)
M2 (1-M2) 1 - M2 pve T
At this point, consider an ideal gas for which the following holds20:
2 = | = P,
S | 3p/3p | 2 YRT
Then, we have the following relationships:
M2 = v2/c 2 = vz/(yRT); (10a)
LR, (10b)
(11)

Thus, it is seen that:

v
But, the term in the denominator of the right-hand side of equation (11) is
T.
P

given by equation (10b) as simply, c
1 M2

cr T (r-1) = (12)
P v

Substitution of this relationship into equation (9) yields:

M2 [2+(Y~1)M2][2df}+1+m2 4

- - — = _ 2
M2 (l-MZ) 4 l_HZ prov (Y 1 )M< df N
(13)



Upon rearranging equation (2), one obtains:
p

% = pe2 [__0.}
Ps

and thus, equation (13) becomes:

dr
(]

dt

ﬁ=_[2+(y-l)H2J[2df}+l+IM2 ) o gez 3 |dr |7
M2 (1-M2) ¥ 1 - M2 o) ° dt
:

x (y-1)M2 d4¢ L(14)

Using the chain rule on the right-hand side, and multiplying through by the

quantity M(1-M2) /(2 d#), one discovers, upon rearranging terms:

- p 3 . -3
(1-m2) S o Ly 1) o 7 P, |95 1T (pe2)3 a3 (14 )
ps o dt
-éﬁ[l+3£—lnz } (15)

At this time, it is necessary to define further the heat deposition rate,
d. The ORNL Neutral Gas Shield Model assumes that the primary mechanism by
which heat is deposited in the shield is electron collision. This is given byl:

i dE o) eEm
q = el — = eJEL(E), where J

dr (16)*

=n —_— .
w/‘ 31'rme

*L(E) may be approximated byl:

L(E) = (2.35 x 1038 + 4 x 1015 E + 2 x 10%1/E2;7},

10



Thus equation (15) becomes:

3
o} dr
(l_MZ)%=L_E_}.[E_°_} [E_E_(.E_:.?.J}ro'__o_ (ﬁf2)3M3(l+"(M2)
S

L]

-%34-[1-4-151&2] (17)

At this point it becomes useful to define a dimensionless parameter, &:

CIRE dr |73
- y=11% e L(E) o
£ = 2 [pSJ [ m Z } o | T * \28)

Hence, equation (17) becomes, upon substitution of the definition of &:

(1-m2) D - £ a3 (142 - A 1+uu2}, (19a)
de £ 2 )

Or, by performing an algebraic manipulation, one finds:

WMo Ml ae)3IM2 (1 4+ M2 ) -

1 - M2

[ 2+ (y =1
?

(19b)

As it turns out, equation (1lb) will yield a differential equation in terms of

f and M as a function of #; so, momentarily at least, let us turn our attention
to the definition of £ since we shall have two equations of § and M as a
function of # (and thus, though the solution must be numerical, we can solve
for both variables).

Recalling equation (2), we have the relationship:

S L Y
o] s dt

If this result is further applied to equation (18), one discovers:

11



_ vy ~-1 e L(E) EEL. .
E = 5 - J — 3 (20)

The practical application of the ORNL Neutral Gas Shield Model demands that £
be given a numerical value, The resultant set of coupled differential equations
is then solved. Thus r0 is taken to be the initial pellet radius, rp; vy is

taken to be the sound speed of a low temperatire hydrogen gas {about 400 m/sec);

and J is taken to ba the average elz=ctromn current of the plasma.
2.1,3 Equation of Conservation of Momentum

The momentum equation is recalled to be:

Using the ideal gas law, one finds:

a 2,2 2 d( pRT )  _
iz [ pver J + r ar = 0.

Dividing the above equation by IR yields:

4 2,2 2 d( BRT ) _
== [ e ] + ¢ T 0. (21)
Now, recall the definition of the Mach Number, equation (18a):

R
- YRT .

By algebraically rearranging the above equation, one obtains:

2
RT = —— .

M2

1.2



Upon substitution of the above relationship into equation (21), one finds:

d_ 2,2 2 d [ pv2 -
iz [ ptev ] + 2 it [ YMz } 0. (22)

Equation (2) may be rearranged to provide the following relationship:
v

v = _9; " (23)
e

The substitution of equation (23) into equation (22) produces the following:

2 2

a (T}, pd [ S} L
e af 2 aals ST
gp2 M25¢
If the above equation is divided through by voz, one has:
2
Sl =]+ B = = 0. (24)
5f2 Y Mzﬁfh

The chain rule may be applied to equation (24) to yield:

0. (24Db)

ala
2]

=
—
[}

d 1 22 1 d 1 1
e ey I it iy
pe2 M2p2 pp2 g2 M2¢2

Upon rearranging, one finds:

a1 ) e (1), 14 [ 0.
YMZ df ﬁfz vg dt M2p2

13



Again using the chain rule yields:

w2+ 1 1 i 1 1 1
(=) & ] + —= ) +— =) = 0,
9 2 o 32 wape & 2

This may be reexpressed as follows by differentiating and then multiplying

the equation by -yMzﬁfz:

— & eth nwd]+
(827)

e
+
[=1 [= 1
H>|.'3’

= 0.

=0

dat

The following results from using the chain rule of differentiation and com~

bining terms:

aF 5 3 T @

a1+, 204wty 2@ o

If equation (19b) is substituted into the above relationship, we have:
2 2

a aapl, _ 20d) 2| Il)M
at s T s w | 2 |¥F () -

Upon rearranging terms further, the following is found:

2 2 2
14+yM°, dp B 2, (y-1)M M _2]
&2 g6t Wy - 242 ) - AR B aa).
This may be reexpressed in the following form by combining terms:
e iﬁ---—-—mz e ) - £+ 2 - L.
g dg 1- M r T T

Combining terms again in the above equation yields:

2

2z 9 ,
(.1%&1_) % . [E(ﬁfz)?’ - M;D] '
1-M

14



Finally, we have:

ds 223 2y3 1
£ = - =F_ 1t (peH3 - = |[. (25)
dp 1 - M2 b

2,2 Boundary Conditions of the Model

First, let us recall the coupled differential equations which must be
solved in order to evaluate the pellet velocity requirement., These are

equations (19b) and (25).

a 2 .
% = —M—E £ (5f2)3 M2 (THZ + 1) ks (Tf el 3 (19b)
1-M
2
g_g = M (pp2)3 - % ; (25)
1 - M2

The difficulty in solving the above set of differential equations stems
from the fact that the known boundary conditions are insufficient., Specifically,

these boundary conditions are:

(1) se=1) =1,

lim dM

pre gz - O¢

(d1)

It can be shown that through the use of equations (19b) and (24b) that

the second boundary condition is equivalent to the following:

lim M = v¥(5/y),
Py

~

Equation (24b) yields a power law solution for § at large values of ® but,

due to the nature of the equations, integrating from large values of ¢ to the

15



pellet surface, numerically, is unsuccessful in attaining the first boundary
condition. Thus, there are only two possibilities left. The first is to guess
the boundary value. While this possibility works in principle, it can become
very expensive in terms of computer time usage and thus, the second possibility
was explored and found to be fruitful, This possibility was to attempt to
provide a solution for M(f2 = 1) = Mb and will now be exXplained here, in detail.
First, however, let us examine the defining equations in more detail to
determine further boundary conditions. We note that for all finite £:

a8
as < 0.

Any other condition might bring about recoalescence, which is physically
unrealistic for a scheme to effect fuel injection into a fusion plasma. It
may also be noted that, based on physical grounds, for all finite £, the

following is true:

Examination of equation (19b) will reveal that for cases where the Mach
Number is subsonic, the quantity in brackets must be positive and that when
the Mach Number exceeds unity, this same quantity must be negative, In order
to aveld a singularity at M = Ml = 1, the bracketed quantity must be zero.

Thus, we have the following:

E (2 A +y) - (i;ul} = 0.
M=1

The above equality reduces to the following relationship upon dividing through

the equation written above by the quantity, (1 + v):

16



g (223 - %} - 0. (26)
M=1

This provided a motivation to introduce the following definition:

-1/3 -7/3
B = ng £ . (27)

Upon substitution of equation (27) into equation (26), one finds:

=l.

Uy MM =1

Next, we substitute the definition of n into equation (19b) to obtain:

o M n® M2 (1 + M%) 2+ (y - 1M?
l—M2 b o *

Upon combining terms in the above equation, one discovers:

@ _ M 2492 oM - B2 -yt
dg £ f w W .

By rearranging the terms in the above equality, the energy comservation

equation becomes:

a _ M (2+M[A+0n3) -y@ -MH] )} U (28)
a¢ ¢ E - — s
1 -M2 £(1 - HZ)

Again, the definition of n is substituted into one of the conservation
equations. Thus, equation (25) becomes, upon carrying out the differentiation

of the definition of f:

dn _ Tn ) s-ns pm1s o 2MEn g e (a3 o1}
d¢ 3t g .

17



The quantity E'J/e p=7/3 may be eliminated from the above equation immediately

to yield:

dn _ In _ _ 2 {ni-1
df 3t .

If the above equation is solved for dn/d?, directly (placing terms on a common

denominator):

dn _ [-fmzw - 1) +7(1 - MZ)] n
f .

dg 1 - M2

Rearrangement of terms in the above equation yields the following simplification:

de

dn _ [7-M@+6n) | 0o _ v (29)
301 - M2) B e -m2)

Consider, now, the following transformation:
s = 1n £

Therefore, by taking the derivative with respect to £ of both sides of the

above equation, one finds:

ds _ 1
dg £

Upon dividing both sides of equations (28) and (29) by the above, one obtains:

aM _ _M{2 - M2[(1 + nd) - vy - M1} U __

= - — (30a)
ds 1 -2 1-mM2 7
dn _ n[7 - M2(1 + 6n3)] _ v
3(1 - M2) 1-M

18



Thus an autonomous system of differential equations has been developed. Upon
the elimination of the parametric variable, s, from equations (30a) and (30Db),

we discover:

a _ -2 - M2[(1 + n?) - y(a - M2aH)]}

dn al7 - M2(1 + 6n3)] )

<=

. (31)

From equation (27), we can see that when # = 1, i.e., when M = MO, then
n(g =1) = 3/—5_. This means that if equation (31) can be integrated from any
given point on the physically realistic solution, Mb may be determined., There
are two points where the boundary values are known. These are at M = Ml =1
with n = ny = 1; and at M = Y/(5/y) with n = 3/(7y - 5)/30 (see equation (28)).

However, upon inspection, it will be discovered that both of these points result
in an indeterminate derivative and thus equation (31) cannot yet be integrated,
since it is obvious that equation (31) very probably has no simple analytical
solution and for this reason will require a numerical integration.

From numerical considerations, either point would allow for solution of

equation (31), but the point n(M = M.) = n, is chosen as the most appropriate
q P 1

1

since this will preclude numerical discrepancies due to integration through a
critical point., Therefore, in a sufficiently small reqion of the critical

point, linearization will be valid and we find, for M2 1 + pand n =1+ g,

by substitution into equation (31):

dp _ =30+ w2 - A+ WU+ A+ - vA - QA+ w20+ )]}

de (L+e)[7 - (L+ w20 +60Q +¢e)3)]

Upon linearizing M and nx (where x and y are arbitrary integer powers) it is

found that:

du . =30 +wi{2 - 1+ 202 + 3e) - y(I - (1 +2u)( + 3e))]}
de (1 +e)[7 - (T + 27 + 18e)]

19



Linearizing the above equation further, one obtains:

du . =31 + {2 - (1 + 2)[(2 + 3e) + y(2u + 3¢)]7
de (I + e)l7 = (7 + Lap + 18¢)] ’

Upon rearranging terms, one discovers:

du _ =3(1 4+ {2 - (1 +2u)[2 + 3(y + 1)e + 2yull
de (1 + g)[=1l4p - 18¢) :

If we linearize equation (31) once again, the following relationship will be

provided:
du . =30+ w2 - [24+ 3 + De + 2yp + 4uld
de -l4p - 18¢

By rearranging terms in the above equation, we see that:

de . =301 + wi{-3(y + e = 2(y + u}
de -1l4u - 18¢

A final round of linearization yields:

du . _9Gky+ e+ 6y + 2)u , (32)
de 18e + l4yp

Thus, if n and M are very close to the critical point n(M = 1), the above
equation will prove to be mathematically equivalent to equation (31). If we now

consider that for an independent variable t:

dy

el [9(y + L)e + 6(y + 2)ul; and (33a)
dE . <8 4 18 (33b)
AT = =] 2.

We again have an autonomous system of differential equations which are not only

the mathematical equivalent of equation (31) but are also linear. They may be

20



rewritten as a matrix equation, as shown helow:

r r
& 6y + 2 9y + D) | "
g | x (34)
dt -14 -18 e ],

This is a system of equations of the form:

=
X o= IxX. (35)
If the following is hypothesized:
- - -
- - - - Rl -
Ax X = i x X, where X is a diagonal matrix, equation (35) mav be solved in
->
terms of the elements of i. Thus, we have:
6y + 2) - A 9(y + L)
= 0, (36)

=14 -18 - A
i

The characteriscic equarion, obtained by taking the determinant of both sides

of equation (36}, becomes, after algebraic simplification:
A2 = B(y = L)X + 18(y =5) =20; » = A, Xy o (37}

It is important to note here that since 1 < y £ 5/3, by virtue of the fact

that v = (v + 2)/v where the integer v 2 3 is the number of degress of freedom,

LY

and since A.}, = 18(y - 3), the product i,i, must zlways be negative and

therefore, Al and AZ are of opposite sign. The net effect of this is thart the

critical point M = 1, n = 1 {or

u=20, = =20) is a saddls point.

- -

¥a e = i 4 i 3 2y 4

A x X A x X is written in matrix form we have

Now, if the expressicn

(for &, =X, Ay)s

1
S -



-

6(y + 2} 9(y + 1) B AL u
x = X (38)
=14 -18 £ A, £

Rewriting the above expression as a set of coupled algebraic equations, omne

obtains:
6(y + 2)u + 9(y + L) = kiu; (39a)
~l4y - 18¢ = Kis. (39b)

If equation (39b) is solved for the ratio (u/c), onme finds:

A, + 18
i

fe - —i= L2 e

Equation (40) is true for both of the roots of equation (37). At the point
u=0,e=0(rM=1, n=1), the above equation becomes, through the

application of L'Hospital's Rule:

Sy li + 18
— e} - » = A 1
T I ;1 1, 2. (41)

But, du/de = dM/dn and ergo:

A. + 18
H;is% = -1 = 1,2, (42)

M=1,n=1

Thus, upon simultaneous solution of equations (42) and (37), we discover:

3y +3) =Yy = )%+ 7 1/14, (43a)

]
Msl

{33}

|

—
~—
[
o~
]

M, = =3y +35) 4 { by = ZPE =

At this point, we have both the location of the saddle point and two



nossibilities for the slope at the saddle. One of these slcpes must be
physically correct and the other must Be physically impossible.

Considér now Figure 2, serving as an illustrative example for the specific
case of our interest where v = 7/5, However, the general conclusions remain
valid for any physically permissible value of the ratio of specific heats, i.,e.,
l<y=% 5/3; The isocline of U = 0 (see equation (28)) is intersected by the
line M = 1. Since vzlues of M that are greater than /TET?T are not physically
possible, another line is drawn at M = ¥(5/y). This forms five regiomns. The
uppermost region is Region V. The four remaining areas are defined in the
following manner, Starting at the upper left-hand corner of the as yet undefined
ar=2as and numbering clockwise, Region I is where 1:'67?)- >M>1and U > 0;
Region II is where ff??;— >M>1and U < 0; Region III is where M < 1 and U < 03
and Region IV is where M < 1 and U > 0,

It may be seen from equation (28) (and in light of the fact that dM/df
must be positive) that for M < 1, U must be negative and that for M > 1, U
must be positive., This clearly sxcludes Regions II and IV from the physically
realistic solution set. Region V is excludad as well since M must be less
than /ZET;T. Upen further examination of Figure 2, it will be discovered that
the sclution to equation (31) based on M;Z is not valid on either side of the
sonic point since it occupies Region II above the sonic point and Regionm IV
below the sonic point. However, the other solution (based on M;l) never
enters either Region II or IV, This results in the conclusion that the
solution to equation (31) based on H;l must be the only physically possible
solution. This solution is presented graphically in Figure 3. The computer
program that generated these solutioms (Figures 2 and 3) is in Appendix I.

Let us now comsider equation (27). We know that at the point £ = 1,

M=M and 8 = 1. If equation (27) is evaluated at this point, we have the

I~
(%]



seemingly trivial solution of n{¢ = 1) = 51'3. However, if equation (31) is

integrated to this value of n, the corresponding Mach Number will be MO. Hence,
Mo may be readily determined by performing the aforementioned integration.
Finally, having determined Mo’ the equations of conservation may be solved and
the pellet velocity requirement may, in principle, be determined.

The equations of comservation may be scolved in one of two ways. The first
is to integrate directly equations (19b) and (25), utilizing the value of Mo
that has just been determined. The second method is to apply a simple quadrature
to the solution set of M(n). The method chosen for application here is the
former. The equations of conservation were solved for two separate cases.

The reference case (£ = 1000) is shown in Figure 4. The second case solvad
was for CTHR and is showm in Figure 5. The computer program used to generate

these results and those of the next section are contained in Appendix II.
2.3 Pellet Velocity Requirement

As stated previously, the pellet velocity requirement can now be determined,
at least in principle, since the conservation laws may be readily solved.
Actually, only the point at which the pellet disappears a8 a solid entity may
be decermined. The actual pellet velocity requirement will depend upon how far
into the tokamak the pellet must go as a solid entity for the ablated pellet to
travel the rest of the way to the plasma center. This would require a transport
study and is well beyond the capabilities of the KSU computer, Thus, as a
matter of practical compromise, the problem is parameterized so that when the
penetration requirement on the solid entity is determined, the mechanical
requirements of the design will be known.

Recall the definition of q from equation (16). This may be solved Zor

p(r) as follows:



dE _ p L(E) | (186)
dr m !

Upon rearranging the above relationship, one finds:

- mdE
p dr = iE (44)

Integrating from the pellet surface, one has:

r = E,
_ [ m dE | (45)
E

L(E) °’
o] o]

where Eo is the electron energy at the pellet surface and E_ is the electron
energy of the reacting body. We may approximate EO as 10 eV or less and thus,
for all practical purposes in very hot plasmas, Eo is roughly zero. Upon
dividing both sides of equation (453) by P L, wWe may define a new parameter

which may be readily evaluated from the solution of the conservation equations:

E
m J @ dE . (46)
E

£(¢) = [ g d¢ = )
o

J 1 poro

Solving the above equation for p,» Ome discovers:

L(E)
o

E
J MEEL gyt 47)
E

1f we solve the working form of equation (18) for drofdt 1, we find:

Le] Lo
O

/3
] 5_1/3 [ v =1 e <L(E)> 1 ¢ ]

2 m 0

Upcn substitutiorn of equation (47) into the above equality, one may observe:



dr

=2 « & | B 173 # 1 [1-1 e <L(E)> !

d.t [ ps I IE f(.E).] A 2 = J ” J ED L(E)
(48)

The above relaticnship may be rearranged to produce the following equality:

1/3 a1 {y=1 e }/3
[ e o [ 132 2]

dro dr - _[m_

;2/3 0 dr
o] dr dt p
g
E 1/3 E
I = 11 « dE
x [ [ L(E) dE | J —— (49)
B - ) J e IO

Here, a new relationship is introduced:

o . 2?2.
P o

s
Upon substitution of the above relationship into equation (49) and rearranging

(and noting that dr/dt is just the pellet velocity, u}, we discover:

d r
ur 2/3 .rO = ._2 [m,R] [51/3 f(g)}-—l li— le_-J]-/a l
o dr L °y 3 = —7
"3
B 1/3 E
| .
| L(E) dE] E_, -
( E, - Eo EO J Eo L(E)

+ 3 [ -1le e a
Tor¥3 = 2 [in-'i Vs st | 1pte |
5 P pDJ [ 2 m'HJ IJsl./3
1 E 1/3 E s
J @ - f = dE
Tt (S wwa]” [ wm.
(2/a) o o



Solving the above relationship for u, the pellet velocity requirement, we

discover:

1
u - Lgl ;’i[f(a) gl/3)-! IY'I 5—}/3 =

2 1/3
}JS
B E /3 (E
J [--3 o] dE
X JCE/a) [ E:—_—E-; JE L(E) dE J IE L_(E—) d(r/a) 3 (51)
(o] o}

where: J is as given by equation (16);
L(E) 2 (2.35 x 1038 + 4 x 101° E + 2 x 1015 /E2)"1 ov m?;
E is in eV;
£(g) is given by equation (46); and

E is given by equation (20),

Thus, the only things that are now required are the temperature and density

distributions of the plasma. These are taken to bel:

E, = 22 <T> (L - (/a)2]2] (52a)
n, = 3 <o [1- /)2, (52b)

2.4 Results of the Theoretical Treatment

As stated previously, the equations of conservation were solved for two
cases, a reference case (£ = 1000) and the CTHR case. As a means of comparison,
for the reference case, the value of [£(§) £1/31-1 obtained by this study is

1 obtained a value of 1.23, The value of this

1.156 whereas Foster and Milora
parameter for the CTHR case was found to be 1,0978, The penetration dependent

pellet velocity requirement is plotted in Figure 6.
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Earlier, we decided to neglect disassociation and iconization processes.
At a distance of 10 pellet radii from the pellet center, we may observe that
the temperature increase over the pellet surface temperature is é factor of
26,7 for the reference case and 63.5 for the CTHR case, Assuming that the
temperature at the pellet surface is 20 K, we find that for the reference case,

the temperature is ~535 K, and for CTHR, the temperature is ~1270 K. This is

sufficient justification for neglecting the dissociation and ionization processes.
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3.0 Fuel Injector Design

3.1 Gas Gun Design
The light gas gun is the type of design chosen for the fuel-
injection system of CTHR, whose pertinent plasma dimensions are given
by a minor radius of 1.40 m, an aspect ratio of 4.33, and an elongation
of 1.60, The conceptual design ié shown in Figs. 7 and 8., It is a
system which is easily used in rapid-fire mode, say, one to three pellets per
second per gas gun system. Three such systems will be utilized in CTHR. The

pellet radius 1s given by the following:

- Y
£, = L G/Gm) (my/ey) (o, V)76 0)11/3

where: Vpl = volume of the reacting body,

rate at which pellets are: injected into CTHR, and

b

T confinement time for CTHR, equat to 1l.64 sec.
By substituting appropriate values into the above equation, we find that for a

spherical pellet, rp = 3.073 mm.

The final parameter required for this design is the pressure used
by the 1light gas gun. Since the required pellet velocity is a function
of the penetration depth and since the required gas pressure depends om
the velocity needed, the gas pressure may be expressed as a function of
penetration depth.

The gas pressure as a function of injection velocity is given by the

following expression:

,_A

- % i y+l
s+p max v=-1 _ u y-1 _

i 3T (Y+l Y [(1 ) 1]
S max

(assuming that the propellent is an ideal gas, expansion of the propellent is

to zerc pressure and that the injection system is frictionless)., Numerically,

29



with assumed parameters where P is the gas pressure in (Pa) and u is the required

pellet velocity (in m/sec), one has for hydrogen gas:

= - M Nes _
P = 5033.7 u [(1 6578.4) 11,
and for 4T gas:
P = 3187.7 u [(1 - ——)=6 - 1].

4166,0
The required gas pressure is plotted as a function of the penetration
fraction in Figures 9 and 10 for natural hydrogen and a deuterium-tritium

mixture, respectively.

This brings up one final question. What type of performance can we
expect from a light-gas-gun such as that which is conceptualized here? If

: 7
the performance of the gun were limited to that already achieved by others,

i.e., a pellet-injection speed of 330 m/sec, the pellet would disappear
as a solid entity after pemetrating about 25% of the distance to the pres-
sure center (see Fig. 4). The maximum performance to be expected of a

light-gas gun employed in the refueling of CTHR is determined by assuming

that the maximum applicable propellent pressure is 100 GPa. Thus, the
performance limit for the D+T propellent is found from Figs. 10 and 6 to
result in a penetration of about 453% of the pressure-center distance,
achieved with an injection velocity of approximately 3600 m/sec. Based
on Figs. 9 and 6, the limit for the Hg propellent turns out to be some-
what higher, say a maximum penetration of about 50%, corresponding to an
injection velocity of approximately 5500 m/sec. The extremely high
pressure assumed above is justified when one notes that this value may
be decreased by a factor of 5 to 10 were this design modified such that

each shell could be used only for a single shot.
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3.2 Fuel Handling System

The fuel handling system prepares the IM4+T pellets and subsequently,
makes them available to the fuel injection system. To make fuel hand-
ling simpler, the pellets have been given a cylindrical shape in place
of the spﬁefiéal oné assﬁmed earlief in this réﬁért. The net result of
this is a cylinder diameter -ifgfg times the sphere's radius
and a height equal to the diameter. The effects of this geometry shift
on ablation are unknown but, obviously, expected to be small. [Note
that the ratic of surface area to volume is increased only by about 15
percent. ]

The fuel handling system works on the following principles (see Fig-
ure 11}. Initially, the 4T mixture is cocoled by a liquid nitrogen stage.
The next stage, which liquifies the fuel, is a liquid helium stage.
These discrete steps are suggested since the pellets will be mass pro-
duced and liquid helium is more expensive than liquid nitrogen. The
very cold D+T mixture (5 to 10 K) is injected intc a mold whose temp-
erature is maintained at 4.2 K by the licuid helium until the pellets
are frozen. The newly formed pellets are subsequently ejected from the
mold by the liquid D+T for the next cycle of pellets. Several of these
pellet makers could he in operation simultaneously and quality control
may be instituted if and where necessary.

Now that the fuel pellets have been formed, they may be loaded into
the fuel injector mechanically. The remaining problem is to implement

the system into CTHR.
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3.3 Implementation into CTHR

For implementation into CTHR, several criteria must be taken into

account:

L

The pellet must take the shortest path possible to the fusion
plasma.

The amount of radiation shielding used to isoclate the system
from the environment should be minimized within good safety
practices.

The fuel injection system must be located at a position in
the system to make maintenance feasible.

Surrounding systems (and subsystems) must be affected as little
as possible by the introduction of the fuel injection system.

These goals are attained as shown in Figures 12 and '13. Figure 12 1l1lus-

trates the overall system and how each of 3 injector systems may be put

into CTHR.

In Figure 13, a closeup view is provided, to illustrate main-

tenance possibilities and to illustrate better radiation-shield require-

ment and system implementation. As can be seen from Fig. 12, interaction

of the fuel injection systems with CTHR is very limited, indeed.
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4.0 Conclusions

After rejection of several hot-fueling schemes because of inherent
difficulties antiecipated in practical implementation, the three possibilities
of tokamak refueling with cold fuel were considered: liquid-fuel-jet
injection, gas puffing, and frozen-pellet injection. It was concluded that
pellet fueling appeared to be the most likely of these three alternatives
to succeed as a practical scheme. Several methods by which pellet fueling
could be implemented into CTHR were then investigated. This led to the
further conclusion that the light-gas-gun approach entailed probably the
fewest number of real drawbacks. The ORNL Neutral-Gas-Shielding-Model
was used to model pellet ablation in CTHR and a required pellet injection
velocity was determined as a function of required penetration-depth in
the CTHR plasma. On this basis, a conceptual design for a light-gas-gun
fuel-injection system for CTHR was developed and the gas-pressure require-
ment for the device was determined. TFinally, suggested means for imple-
mentation into the overall design of CTHR have been discussed.

It must be recalled, however, that the penetration-depth requirement
for CTHR has not been firmly established. This penetration-depth require-
ment will ultimately determine the potential feasibility of the design pre-

sented in this report. To this end, such a study is highly recommended.

In conclusion, the findings of this study are as follows:

1. 1If it is determined that the required penetration depth must be
50% of the pressure center distance or more, the light-gas gun
will most probably not succeed in refueling CTHR.

2. If the required penetration is between 45% and 50% of the pressure

center distance, the D+T propellent mixture will most likely not
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succeed in achieving the required injection wvelocity, but the
light-gas—gun design might be practically feasible with H2 as the
propellent,

If the required penetration depth is between 257 and 457 of the
pressure center depth, the proposed light-gas-gun injection system
should be able to refuel the CTHR, with either propellent.

If the required penetration depth is less than 253% of the pressure
center distance, the proposed scheme of light-gas gun injection will

be able to achieve the necessary penetration velocity based on

currently tested and proven state-of-the-art technology.
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Figure 2,

The M, n domain is divided into five regicns. In Region V,

M > Y(5/y). In Regions II and III, U < 0. In Regions I and IV,
U > 0. In Regions IIT and IV, M < 1. In Regions I and IT,
¥{5/y) > M > 1. Hence, the physically realistic solution must
lie in Regions I or. III. Furthermore, any sclution in

Regions II, IV, or V must be physically impossible. The dotted:
line represents the sclution te U = 0.
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Figure 3. Solution of differential equation (31) for the
physically realistic sound-barrier conditions.
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Figure 3. Solution to system of coupled differential equations for
CTHR case (£ = 15,301).
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REQUIRED PELLET VELOCITY
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Figure 6. Required pellet velocity is plotted as a

function of the point at which the pellet
will be totally ablated, which is known
as the penetration fraction or depth.
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Figure 8.

6.1468 mm

0.0254 mm

¢ ————

30 mm

The shell for the fuel injector is a
lmm by 30mm dia disk intersected by
a cylindrical shell whose thickness is
0.0254 mm and whose inner diameter is

6.1648 mm.
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Figure 9. The required gas pressure, utilizing Hoy
as propellent, is plotted as a function
of the penetration fraction.

o~
w



108

TTT
A b Jdddds

105

T T
A A A Alal

104

RN

™7 TT

(MEGRPASCAL)

103

T T TTT

102

T™T T T

=777

100

PRESSURE OF OT PROPELLENT
10!

10-1

T T T

a

T TT
i

10-2

e - " s s TS T e

g 2 3 4 s s 7 8 3 Q0
FRACTION OF CTHR PRESSURE CENTER PENETAATED

Figure 10. The required gas pressure, utilizing DT as
propellant, is plotted as a function of the
penetration fraction.
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1, DIVERTOR

2, TF COIL

3, NEUTRAL BEAM

4, FUEL SYSTEM, INCLUDING
DRIFT TUBE

5. SHIELDING

Figure 12, Incorporation of fueling systems into CTHR.
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1, TF COIL
2, FUEL SYSTEM SHIELDING
rd 3, FUEL DRIFT TUBE
4, FUELING MECHANISM
5, NEUTRAL BEAM SHIELDING
6, NEUTRAL BEAM DRIFT TUBE

Figure 13. Closeup view of incorporation of pellet injector into CTHR.
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Appendix I, Computer Program to Determine Mo'
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ILLEGIBLE
DOCUMENT

THE FOLLOWING
DOCUMENT(S) IS OF
POOR LEGIBILITY IN

THE ORIGINAL

THIS IS THE BEST
COPY AVAILABLE



15N
15N
ISN
isN

ISN
I5N
15N
ISN
TSN
I5SN
ISN

ISN

15N
1SN
ISN

15N

ISN
IsN
ISN
ISk
I5N
IsN
1SN
ISN
15N
15N
I SN

ISN
ISN
13N
ISN
1SN
15N

ooo2
0003
0004
agos

0006
€307
0008
oaos
Jelo
aall
3712

oolL2

00l4
a9s1s
00ls

0a17

0018
aole
0020
anzl
0g22
0023
Q024
0025
902&
0027
oaQ0zs8

0029
0030
0031
0032
0033
QQ3s

C5/360 FORTRAN H

CHEEXFXREESE S F L SRR XTSI FEIFIBBEBE IR AP T4 T BRI AR X F IR E IS IS IE ke e b xsk ke M J0]

C*®xx

Cruns

C**s* PROGRAM AND SUBRUOUTINES bY KENNETH DALE MATNEY.
Lx®xx

3384 002
*+x3M 003
sxsuH 004
ex»xMLO05

C**ex TrE PURPUSE CF THIS PROGRAM IS TC CALCULATE THE DEPENJENCE COF THE®***ML006

C*#%% MACH NUMBER ON THE FUNLTION. ETA, ASSUMING THAT LAMBDA-1 IS THE

C*ss= APPRUPRIATE RUDT OF THE CJUADRATIC EQUATICN.
Coanns
CHEdn

*2x¥d Q07
v xxaML 008
wasxM 009
=3xxMLQL0

COFB S XXX FXXFEXLFFPEFERFPTRESEE SR S IEFE R ETF I EFVEFIXIFEFF I EIXNF T2 P00 S50 2k ¥ M 0] ]

IMPLICIT REAL*BlA=H,0-1})

REAL ERR.ESER

REAL*S K1l.K2,K3.K4

DIMENSION X(1905).Y(1005,1),K1(1)sK2IL)eK3{1) sKald)sEL2),
COMDF (L0051 .Y012)+YPLBI.YCLB)ERLB)

COMMON H

COMMON/ HANDAT/CRIT P51 «GAMMA . IFRKG
1 FORMATI{O09.2:0X4023416.TX,111)
2 FORMATLLPD22.15¢8X0022.15,12Xs'L1 NoM DATA ',14)

MLOLl2
MLOl3
MLO1l%
MLOi5
MLO1lS
MLO17
ML0ls
MLT1Y
MLI2S

10 FORMAT(//11X."**THE VALJE GF THE LAST INCREMENT IS:',1PDl2.2.'#%%!] ML22.

11 FORMAT(1IH1.112X.'PAGE *,15])

12 FORMAT(L1x.'THE MACH NUMBER AND DM/DN AS A FUNCTION OF F FOR H

<+1PDF.247.7) '

13 FORMAT(11lX.'THE MACH NUMBEAR AND DM/ON AS A FUMNCTION OF F FGR H

<¢lPD9.2." — CCONTINUED.')
14 FORMATU/ /22X "N o 2TX ' M*, 25X . 'DM/INY /0 X431 5X.231"-2) )]
15 FORMATI/11X,1PD23.16¢5X.022.16,5X,023.16)

22 FORMAT(llXs'N AND DON/OM AS A FUNCTICN OF THE MACH NUMBER FCR H

<¢1PD9.2.%.")

23 FORMAT(l1X«'N AND ON/OM AS A& FUNLCTION OF THZ MACH NUMBER FGR H

<slPD9.2+" — CONTINUED.')
24 FORMAT(//22Xs"M" 3 2TXo"N? o25X, "ON/OM* 46X, 315X, 231"=") 1)
ND=1005
GAMMA=1.400
IPAGE=1
99 CONTINUE
IFRKG==1
WRITE(6.11)IPAGE
IPAGE=IPAGE+]L
X(11=1.00
Y(l.ll=1l.00
N=1
Crsex
Ctass

C**x* READ THE VALUE GF THE INCREMENT TO BE TAKEN. ThE VALUE OF The
C*#93% HEATING PARAMETER« AND IPUNCH. IF IPUNCH IS SET EQUAL TO ZERG.

C***% THE PJINCHING OF THE OUTPUT WILL BE SUPPRESSED.
Cosex
Cxxsa
READ(S5+1 4END=9999 }HePSI . [PUNCH
J=04as(H}
1TAu=H/J.90~1/DABSIH)
H5AV=H
IF(HaLT 40 IWRITE(EGe 22)HSAY
IFIH.GT.0«)WRITElGeL2)HSAV

MLl2Z
U MiL023
MLO24
1 MLO25
MLO26
HLOZ27
MLOZ2B
' MLO29
MLO30
’ MLO31
MLO32
MLO3S
MLO34
MLO3S
MLD3&
MLO3T
MLO38
MLD39
HLO40
MLO&1
ML04%2
MLO43
& EML 044
xax¥M| 045
*ax2MiL] 4o
=2 2ML 04T
52Nl Q40
=x*x3ML 049
#s£xM| 050
HL351
¥.052
MLOS3
MLO54
MLOSS
MLO5e



15N
1SN
I SN
15N
ISN
I 5N
L5N
ISN
ISN
ISN
15N
1SN
1SN
1SN
ISN
ISN
ISN
1SN
15N
ISN
ISN
1SN

ISN
ISN
I8N
13N
I 5N
15N
15N
15N
15N
ISN
IsSN
13N
15N
ISN
IsN
ISN
ISN
LSN
15N
15N
ISN
ISN
1SN
ISN
I5N
ISN
I5N
15N
15N
15N
ISN
ISN
15N
ISN
ISN

0037
0039
0041
0042
0044
0045
004&
0047
0049
0050
0051
0052
0053
0085
0as7
poss
0060
0061
0062
0063
0064
0065

2066
0067
0069
0071
0072
0074
Qota
a077
0079
0080
1082
0084
0086
0087
00&86
Q089
2090
0Qez
0093
0054
0085
a0e?
0098
0099
Q100
aigz
0104
0l10&
alos8
2109
aLlo0
0111
olLlz
RRE]
0ll4

100

200

250
251

299

300
301

IF(HLT.0.)mRITE(GE.24)
IFIH.GT .0, )WRITElBs14)
NINC=5.0=-02/04BS{H}+0. 100
TFININC.LT.1ININC=L

NINC1=]

KO=0

XSAV=P51*%{]1.00/3.00]
IFIH.LT.0.00)X5AV=DSIHTI(5.00/GAMMA)
NTOT=(X5AV-1.u0)/DABS(H) +l .100
NSAV=NTOT

CCNT INUE

NINTER=NTCT
IF(NINTEK-GT.1000ININTER=1003
IF{NTCT.LE.1000)NTOT=0
IFINTOT.6T.1000)NTCT=NTOT=-1000
10=1.00

YOolll=1.D0

NC=1

A1=0.00

A2=0.00

ERR=1.E-14

CALL HAMMIN{XOsYDoNCeNINTER: Da ALy A2+ ERReXe Yo IER s ¥P 2 YCorK1oK24K3 e Kitn

<E+ER.ND)
IFAKG=IFREG+]
IFINTOT.Ew. 0} 0=XSAV-XININT ER=1)

IFINTGTAEC.OICALL REKGSDU(NINTER ¢ XeYoNC2OsE 4K oK2 1K3 4 K4 o ND)

DO 202 J=1:NINTERe1l

IF(HGT 0. JOHOF(JI=FILeX oY 2d)

IF(HLT 0 IDMOFL{JI=FIL o X oY od)

CONT INUE

IF{IPUNCH.EG.O0IG0 TO 251

DG 250 J=1,12300.1

IF(J.GT.NINTERIGO TO 251
IFIA.LT.0.00;PUNCH 2:¥(Jel)eXtJ),ITAG
IF(AGT.0.LAIFUNCR 20XLd) s YT delld o ITAG
ITAS=ITAG+H/9.90—-1/0ABS{ H)

CONTINUE

CONT INUE

DO 200 J=HWINC1.,NINTER.NINC
IFININTER.LT.1000.ANJ.NINTER LLT.NINCL}GO TO 299
WRITELG,153A0J),YiJ+1) DMDFL )
JINTER=J

KO=KO+1

IFIKC.NE.25)G0 TD 300

KO=0

ARITEL6+11)IPAGE

[PAGE=IPAGE+]
IFIHLT a0 IWRITE(6 23] HSAY

IFIHBT 0. IWRITE{Ss13)HS AV
IFlHLT.0.)WRITEL&024)
IFIH.GT D JWARITE (L s 1%)

GG TO 300

CONT INUE

WRITE(6s 1S X{NINTER) ¢ Y ININTER, 1) +DMDF{ NIKTER)
GO TO 301

CONT INUE

CONTINUE

IFINTOT.NE.Q)GOD TO 350

MLOST
MLD58
MLOSY
MLO&O
ML0sL
ML 062
MLO&3
MLOb%
MLOo5
MLOGS
MLO&?
MLO&B
ML Q&9
MLOT70
MLOT1
MLOT72
MLOT3
MLOT4
MLOTS
MLOTS
MLOT?
MLOTB
MLOT9
MLD&2
MLOBL
MLOBZ
HL0O83
MLOB4
MLOBS5
MLO86
MLO37
MLOaB
MLOB89
MLOSO
MLO9L
ML092
MLJ93
MLO94
MLO95
MLO%
MLOGT
MLOSE
MLO9Y
ML100
MLLOL
ML 102
ML103
ML LG
MLLOS
MLLlde
ML1O7
ML1O8
ML1D9
ML110
ML1LL
MLilc
ML113
MLLlw



1SN
I SN
15N
15N
1SN
I SN
I SN
15N
15N
I SN
ISN
ISN

011é
o117
olle
olls
olzo
o121
0122
0123
olz4
ol125
Dl2e
0127

350

400

WRITE(&,101D

Ga TO 99

CONTINUE

DO 400 J=l.4.1

XUJ) =X (NINTER=4+J)
Yldall=YININTER=4+J¢l)
CONTINUE

NIRC1=NINCe¢l

GQ TD LDO

9999 CONTINUE

STOP
END

53

MLilS
MLLLG
ML1l7
MLil8
MLLLY
HML120
MLlzl
ML122
MLLl23
MLLlc%
ML125
HL126



ISN
ISN

I SN
15N

1SN
15N
15N
15N
ISH
ISN
ISN

pooe
0003

0004
0005

000s
0an7
ooas
0009
nol1o0
001l
Jo12

C5/360 FORTRAN H

CHEBSRINREEESIBIIFVERLSERTRSF SEIT I ARSI TEXESEBVIX TS SIS DF XA IS B2 S0 00655 x5 2P N05

C*es
Cxan
Ceex
Crxx
Cesx
C*x®s
Cxax
Casx
Cess
Cxxx
Cxxx
C*sx
Cesn
L%z
(S 1]
Cxns
C*ss
Cxsx
Cxs

C*xar
Cx®e
Cew
Ce¥x
CEx=xx
C*%x
Coxx
Cxas
C*xx
Cxxs
Cexx
CHsx
CaEx
Cxsd
CEsx
Cexx
Cxx¥
Coxx
ok - 12
C*xx
Cxs=

THE PURPLUSE OF HAMMIN IS TG SOLVE A SET OF STMULTANEQUS FIRST
ORDER FUNCTICNALS OF ¥ wITH RESPECT TO X USING HAMMING'S FIFTH
CRDER PREDILTCR=-LORKECTUR. FOURTH CROER RUNGA-KLTTA=-3liL
PROVIDES STARVING VALUES «HICH ARE ITERATED UPCN BY THREE OTHER
INTEGRATIUN FUKMULAES UNTIL A CONSISTENT STARTER IS GoTAINED.
X0 = INITIAL VALUE CF X.

Y0 = ARRAY OF INITIAL Y-VALUES.

NC = NUMBER OF COUPLED ECUAT IONS.

H = INTEGRATION INCREMENT

N = NUMbER GF INTEGRATIJONS TO BE PERFORMED.

AleA2 = PREDICTOR-CORRECTOR PARAMETERS TC BE CHOSEN BY USER.
ERR = CONVERGENGE PARAMETER FCOR STARTER.

X = ARRAY OF X=-VALUES

¥ = 2-DIMENSIONAL ARRAY CF Y-VALUES.

IER = ERRCR PARAMETER. IF IER=0., INTEGRAL INSIDE CF ASSYMPTOTES.

IF 1ER=1., STARTER FAILED TC CONVERGE.
IF 1ER=2, INTEGRAL DIVERGES.

YCoWloW2oW3smbosE = WORK ARRAYS OF LENGTH NC.
YP.ER = WORK ARRAY OF MINIMUM SIZE (4.NCl.

ND = DIMENSICN SIZE CF ¥ iN MAIN PROGRANM.

TO GET DGUBLE PRECISION VERSICN. REMOYE C'S FROM PC240 AND PC245.

#++p(010
“*3pLJ15
vs3pC020
233pP(025
=2PC030
**3PL035
*x2p 040
*25xPC 045
*38pPC050
*#*xpP(255
*x*PL060
***PCJ65
*»*pC0OT70
*»32PL075
*»*PL080
%P 085
*=*pPC090
*=**P( IG5
P 100
**#P (105
*x2PC110
*53PCli5
*=*pC120
*»3pL 125
==xPC130
*#2P(135
*xxP( 140
*2¥PL 145
==xp(150
*x¥P( 155
*>*>¥PL160
*¥2PL 165
==*pPC1lT70
**3PCLT5
*»=pCl30
»xxpP( 185
=P 190
***pPL 1G5
2P 230
**2P( 205

CEFS X XXFXXFXFFFERITXIZRTXIXXXFZIXBFFXXXRXFXL EFIX FARIFIXIFTIT XS IFF X223 23 3P 210

SUBKCUTINE HAMMINI{XQ«Y o sNoHe AL A2+ERReX Yo JERIYP s Yl vlondind s wdr

$.E¢EReNDI

PC215
PCc22o

REAL*B XO+YO o HeAL A2 o XY o YP oYL o WloWZ2 o3 oW4 oLl aC24C30C0%05.C000TEP *¥PL225

S$+ECoAD 00 sBLE2133+BCN1.ECOLBLL1+BL2:CRITHFPSIGAMMA
COMMON/HAMUAT/CRITPS1GAMMALIFRKG

OIMENSION YO(L)aX(1)aY(NDw1doYPL 4ol YCIL)2EQL1)oWl(1)aW2l1)em3l)

S.mell)ERI 44l
IER=0
Cl=9.0+00
C2=15.0+00
C3=5.D0+00
C4=24.D0+00
C5=4.0+00
Cé=3.0+00

**pPC240
*PL235
PL240
PC245
PC2350
PC255
PC2&d
PC205
PC270
PC2T5
PCZBO



I SN
1SN
1SN
[ SN
I5N
ISN
ISN
1SN
ISN
ISN
15N
I5N
I SN
IS
[ SN
1SN
1SN
I 5N
ISN
I SN
I5N
ISN
15N
ISN
ISN

15N
1SN

ISN
1SN
I SN
IsSN
I8N
ISN
1SN
1SN
I5N
I SN
ISN
1SN
I5N
I5N
ISN
I SN
ISN
15N
I SN
ISN
1SN
I5N
15N
15N
15N
15N

1SN
I5N

3013
00l4
0015
09016
o017
oale
Qale
no20
0021
0022
Jg23
coz24
0025
ooz27
0dazs8
0029
0030
0031
0032
0033
0034
0o03s
c036
0037
ao0as

0039
Q040

0041
0042
0043
0044
0045
0046
Q047
oCcs8
o049
0051
0052
2053
0054
0058
Q058
0059
2060
006l
0062
0003
0064
oCeS
0066
0007
0068
00s&%

0070
0071

100

127

125
130

135
140

145

150

155

175

CT=8.0+00
EP={2.510+02-C2%A1l-C72A2)/6.L+00
EC=(=C2+11.u+00*A1-CT*A2)/6.0+00
Ad=l.D+00=-Al=-A2 '
BO={59.0+00+C1#AL+CT*42]1/C4%
B8l=(=-59.u+00+C2*A1+32,D+00*A2)/C4%
B2=(3T7.u+00-C3341+CT%A2) /il4&
B3=(Al-Cl)/C4

BCN1=(L1=Al)/C4

BCO=(C2+iJ3 .D+30»a1l+C7%A2)/C4e
BCl=(=-C3+13.0+00%A1+32.0+00%42)/(%
BC2=11.D+00-Al+CT*A2)/C4
IFUIFRKG.GE.COIGO TO 155

X{(1}=x0

DO 100 L=1.NC,l

Ylle.L) =YOLL)

CONT INUE

00 115 J=244,41

CALL RKGSDQMJ s XsY NCoHIEsnleh2 W3 4W4,ND)
CONT INUE

JCHECK=0

CONT INUE

JCHECK=JCHECK+1

DO 130 L=l.NC.1

YPI2el)=¥11l4l) +n*E{CL*¥FIL e X Yo LI#C2%F{LoXe Yo 2 =C32F(LsXe¥ o3 )+FiL,
$XYed))/Cs

YPU34L)3Y(1lol] +H*{FILoX oY sL)+C5*F(L s XoYe2)+F(LaXsYs3)1)/006
YPC4aL)=Y{Llal] +R®(FILoXeY LI+ OF(FlLeXeYs2)+FiLoeXeYo3)Ie+F(LoXsY
S.4) )1 /CT*Ca

DO 125 J=2.4.1

ER(JsLI=(Y Ldoll=YPIJdol)I}/Y {J L)
ER(J.L)=ABSI(ER(J.L]}

COGNTINUE

CONTINUE

ITEST=0

DO 14Q L=l«NC.1

DA 135 J=2.4.1

IF(ERLJoL) GTLERRIITEST=1
YlJd«LI=YPLJ L)

CONT INUE

CONT INUE

IFLJCHECK .GE.500)G0 TO 145
IF(ITEST.EQ.11G0 TQ 120

00 150 L=1eNCyl

YP{1laL)=0.0+00

YCiLI)=0.D+00

CONT INUE

CONT INUE

20 300 J=4eNel

X{Jd+rll=xXlJdI+H

DO 175 L=1.NCsl

YPL2.L)=YPILaL)

CONT INUE

DO 200 L=1l«NCs1l

YP(Llol 1=AQ*YIJeL)#AL®Y (J=L oL J+A2*Y(J=2,L)I+H*IBO*F{L+sXs Y, JI+BLI*F L,

SXa¥od-1)+B2%F(LsXaYad=2) +338F (Lo XsYsJ=-3}]

200 CONTINJE

DO 225 L=leNCsl

PL285
PC2%0
PC295
PC330
PC305
PL310
PCals
PC320
PL325
PC330
PC335
PC340
PL345
PL3S0
PC355
PC3&0
PC365
PC370
PC375
PC380
PC385
PC390
PC3s5
PC 420
PC405
PC4lo
PC4l5
PC420
PC425
PC430
PC435
PC442
PC445
PL450
PC455
PC4sl
PL4&5
PC4TO
PC4T5
PC480
PC485
PC4S0
PC495
PC500Q
PL505
PC510
PC515
PC520
PC525
PC530
PC535
PL540
PC545
PC55Q
PL555
PL560
PC305
PC570



15N
ISN
ISN
18N

ISN
1SN
1SN
1SN
ISN
I5SN

ISN
ISN
ISN
ISN
I5SN

oovr2
0073
007«
0075

007é
D077
oa7e
0079
0080
J081

onaz
0083
00a4
Q085
oasé

YiJeleL)=YPUloL)=CEP/L{EP=EC) J*(YP(2.LI=YCIL)}
225 CONTINUE
DO 250 L=1«NCal
YCILI=A0®Y(J L) +AL®Y{J=] L)+ AZ2Y (J=2 L) ¢h*E(BOCNLI*F{L Ke Yo J+ 1) ¢BLO*F
SlLoXeYoJ) vl 1®F (L s XeYed=L1) +BC2*F L s XY o Jd=2])
250 CONTINUE
D0 275 L=l.NC.,1
YiJdelol)=YC(L)={EC/(EP=cC) I*(YPL1,L)}=-YCIL)}
275 CONTINUE
IFIJ-N)285,300,400
265 CONTINUE
IFIY(J*1 4l ) oGT o1aD¥00.ORY (J#L,1)elTaY(JW1)IGE TC 500
320 CONTINUE
IER=ITEST
400 N=N+l
RETURN
END
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PC5T5
PC580
PC5a5
Pu590
PL595
PLE00
PCo05
PCalo
PCol5
PCo20
PCo25
PC&30
PCo35
PC&40
PLo4S
PCe350
pPLaTO



ISN
ISN

1SN
I:N
ISN
I5N
I5N
1SN
ISN
1SN
ISN
1SN
ISN
15N
I SN
I SN
1SN
ISN
I3N
15N
I SN
15N
I5N
I 5N
I5N

0302
0003

0004
ooos
0004
ooar
QQo8
0009
galio
0011
ool2
0012
Gol4
oals
00le
0017
gola
o019
go20
g0zl
pozz
0023
00zZ4
0025
0026

057360 FORTRAN H

CHE¥ERXEEXXREXFZIFFSFBFAXBFIX I IF EXE RXRFPH L FX XS XL XL SR EVETSIT L BETEFERE RS PR FERR K

Cxwe
Cxxs
Cr®x
Lan*
Cowx
o 2 1]
Cexs
fof T 1
(o 2 2]
Csak
st 123
g 2 2
L*x®
C=x%x
[ 22
[ 11 J
[of 2 1
C*»2
Cxx®
Coxx
C*Exk
Cmz
Crxx
CexF
o 2 12
Cxxx
Caex
L%

THE PURPGSE OF RKGSDQ IS TO SOLVE, USING RUNGA-KUTTA-GILLs A SET
OF SIMULTANECGUS OIFFERENTIAL EGQUATIDNSe: WwHICH ARE FIRST CROER IN
A COMMON {(DuUdMY) VARIABLE. THE QUADRATURE IS FOURTH OROER.

J IS THE ITERATE OF Y BEING SOLVED.

X{d} 15 THE OUMMY VARIABLE.

Y{L+J) I5 THE SOLUTION TL THE L*TH DIFFERENTIAL EQUATION.

N I5 THE NUMBER OF SIMULTAKECUS DIFFERENTIAL ECUATICONS.

H 15 THE INCREMENT TG 8E ADDED TO X({J=1) TO GET X(J).

E IS A PARAMETER USED IN ThE RULE OF COLLATZ, OF LENGTH.N.

Kl I5 A RcAL WORK ARRAY GF LENGTHe Ne

K2 1S A REAL WORK ARRAY OF LENGTH» Na

K3 IS5 A REAL WORK ARRAY CF LENGTH. ﬁa

K4 IS A REAL WORK ARRAY OF LENGTHs N.

*EERK
*EERK
R RRK
EERK
& &R K
RERK
SEARK
eIRK
TEERK
TERRK
BRBRK
sxFRK
sEBRK
SEIRK
TEERK
SEBREK
*FERK
*IRK
R FRK
rRBRK
*=BERK
EBRK
e K
S IRK
s K
*2ERK
*RFRK
=EERK

CEXESEFFEXBFFFSXF XX RXXXETBEFRER IR FX XX BB IIFAFEET AT XFRRARAB X AN QBT EBE WL EE SRR

130

110

120

130

SUBROUTINE RKGSOQE JaXeYoeNpHeEsKl (K2 0K3 KAy M)
REAL®H XoeYersK1leK2+K3 yKaw AMD, ADDy AMSs AHADe AXF
REAL K1l KZ.K3eKé
OIMENSIGN X{1) o¥dMell o0 1) oK1C(1)oK201) oK2M 13 K&l1)
AMD=2,.0+20
ADD=1.0+00+DSORT(5.0-01)
AMS=5.0=01=-USCAT{5.0-01)
AM=2,0+00-DSGRT12.0+00)
AD=2.0+00+DSQ0RT{2,.0+00)
AX=0..0+00
AlJd)=X{J=1]
DO 100 L=1¢N»l
Yidsll=Y{J=1sl)
CONTINUE
00 110 L=1sN.l
KI(LI=F{LeXeYoJI®H
CONT INVUE
00 120 L=leNsl
Yidal)=Y{JeL)+(KL(L)/AMD)
CONT INUE
AlJi=XlJ)+(H/AMD)
DO 130 L=L+N.l
K2ILI=FlLsXe Vs d)*H
CONTINUE
DO 140 L=1sNel
YiJdoild=Y{JsL)+(K2(L)=K1(L) }*[AMD-ADD]}
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RK
RK
RK
RK
RK
RK
RK
RK
RN
RK
RK
RK
RE
RK
RK
RK
RK
REK
RK
RK
RK
K
R&
RK
RK
RK



ISN
I SN
ISN
15N
15N
15N
TSN
15N
I SN
1SN
I 3N
15N
15N
15N
13N
LsSN

0027
o028
aaz29
0030
BLEDE
0032
0033
00324
0035
0038
0037
0038
04839
0040
0041
0042

140

150

160

170

180

CCNT INUE

DO 150 L=l«Nsl

K3IlLI=FILeXeYsd)*H

CONT INUE

DO 160 L=1l.N.1
YUdald=Y{JdsLl+AMS K1 {L)=KZ2 (L) +ADD*K3 (L)
CONTINUE

X{Jl=xX1J=1)+H

DO 170 L=1,Ael

K&elL)=FIL X:e¥ J)®H

CONT INUE

00 180 L=1.N.l
YIdL)=Y{d=lol)+iK1{L) +aMERZIL )+ ADSK3IL)I+K4(L))/AX
CONT INUE

RETURN

END
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RK
RK
RK
RK
RK
RK
RK
RK
RK
RK
kK
RK
RK
RK
RK
RK

57
EL
59

6l

63
b4
&5
[-1]
a7
&8
&9
72
73
Te



ISN
ISn
ISN
I5N
ISN
I5N
1SN
ISN
I 5N
1SN
I5N
ISN
ISN
ISN
15N
1SN
15N
ISN
iSN
1SN
ISKN
15N
IsN
L5N
156
ISN
15N
ISN
ISN
IEN

0ao2
o003
000«
0005
000&
0Qo7
oopa
oolo
0011
0013
0014
00le
0017
o018
0020
gozz
0023
0024
gozs
00286
0027
oozs
0029
0030
0asz
0033
3034
0035
0036
0037

C5/3¢0 FORTRAN H

CHRAENASHFZIREFF IR IL AR LLX X FRAE DX BEBXF IR BB FSIFTISIIE SR VR SHpu o nr s v knxid , NO]

CHsxx
Cesas
Ce*se
Crxxsx
Cxxa=m
Crexsx

THE PURPLSE ODF THIS FUNCTION IS TO PROVICE DERIVATIVE FUNCTIONS

FOR SUBRLUTINES RKGSDU AND HAMMING

saewM ,NO2
wamEM,hNO3
sxsxM NOS
s3x3M4,NOS
*2eEM NS
®¥e%M,NOT

CEEZ IR X EF T ST EFEF XX TN XX ST FE ISP FAFXFFFXXFX XX IBITIIFI XX XDED S PSP RS9 S g S , NOF

100

200

300

FUNCTIGN FUIL KoY ed)

REAL#*8 XY ¢SeGeMoNUMDENsF3eLlsL2¢FsCRITFREWoH
COMMON

COMMON/HAMDAT/CRIT «5«Go IFRKG

DIMENSICN X(1).Y11005,1)

H=¥{Js1)

IFIH.LT.0.00IN=X(J)

F3=X{Ji*X{J=Xl )
IFIHAT.0.00)1F3=Y(Joli*Y(Jel)*Y(Js1)

FNEW=X(J}

IF(H.LT.0.00}FNEW=Y(Je 11}
NUMe=3.D0%{2.00=-MeM&{[1.0O+F3)-G={1.JC-M*M*F3]))*M
OEN=(T7.D0-M*M%{1.00+5.00#F 2) 1*FNEHW
IF{M.EQ.L.D0.AND. "NEn.EQ.1.D0)GO TO Q0
IF{H.LT.0.00160 TO la0

F=NUM/DJEN

RETURN

CONTINUE

F=DEN/NUN

RETURN

CONTINUE
L1=53.00%{[G-1.D0)-DSQRTI(2.00-G}*{2.00-G)+7.D0QI1}
L2=3.00%((G-1.001+DSCRT((2.00-G}*{2.D0-G)+T7.00}}
IF{H.LT.0.00)G0 TG 300

F=={Ll+l.801)/1.4D1

RETURN

CONT INUE

F=—1.4Dl/(L1+1.8D1)

RETURN

END
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M09
HoNLD
HeNil
MsN12
MaNL3
MyNLé
MoNLS
My N16&
MeNLT
MyNL1B
MyNLS
My N2O
MyN21
MyNZ2
H 'st
Mo N24&
MasN25
MsN26&
MaN2T
MeNZ28
MeNZS
MsN31
H.N30
HeN32
HeN33
MpN3e
MyN35
MeN3e
MyN3T
MeN3B



Appendix II. Computer Program to Solve Equations of Conservation and
Determine the Pellet Injection Velocity Requirement
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15N
ISN
1SN
I5N
ISN
ISN
ISN
15N
I SN
ISN
sy
ISN
LSN
iSN
ISN

I SN
ISN
135N
ISy

ISN
IsN
L5N

15N

I 5N
ISN

I5N
I5N
1SN

ISN
ISN
18N
I SN
13N
1SN
15N
[5N
I 3N

0002
0003
0004
0005
0006
coo7
0008
0009
a0lo
oolL1
golLz
0013
001%
a0ls
001ls

Qol7
2018
2019
0o2a

gozi
aqz2z
o023

00 .4

0025
002s

2027
0o2s
3029

0030
2031
0032
0033
0034
003s
3036
0037
0038

C5/360 FORTRAN H

C‘i*ﬂt#ttl.*tttt‘t‘**t‘*‘*“.‘l*#&*t‘tt*t#l"ttt#'**t‘llt"ttt‘t"t‘*t###.‘AOOO{

(ol 2 1
Cosx
[ 22
Cees
Caex
Cax*
Coex
Cxxx
Coax
(o 120

PROGRAM BY KENNETH D. MATNEY.

THE ULTIMATE PURPGSE OF THIS PROGRAM 15 TO DETERMINE FUEL PELLET
VELOCITY REQUIREMENTS FDOR TLKAMAK TYPE REACTURS USING AN EQUAL
PARTS MIXTURE OF DEUTERIUM AND TRITIUM.

#*3A0002
***A0003
*¥33G00%
***A0005
*=*20206
*=**20007
**+A0008
*EFAQQ09
*=#340010
#4001

CEEE e d R RN EXFR LA TR AN X IR B VL IX XX EF AR AT RFXZEFERPEFERETF IR AR ZINTR TR FIFFAJ0QL 2

> wmd W

10
11
12
13

la
15
17
18

19
20
21
22
23
24

25
26
27

28

$,' TIMES ThHE FRESSURE LENTER 2i5Ta

[MPLICIT REAL*B{A-H,0-1]

REAL EAl 810 ,ER MACH(2005] +0ENSL20Q05},RFLS (2005)
COMMGN/FDATA/ PS4 GAMAAT 1A 4B,C,0ARG
COMMOCN/HAMBAT/CRIT , IFRKG (LG

COMMCN RE10Q51,Y(1005,2) ,0(2),XINIT

CIMENSICN WL(2),H2(2)pW3(2)sn4{2),W(82) 2082170121, YL(2}Y2(8)
FCRMAT(21D34.27,6X%))

FORMAT[1P022.1548%,D22.15,13X,"MACH DATA '.(5])
FCRMAT(1PO22.15,8%,D22.15,13X: *UENS CATA ',15)

FORMATI 4{Cl&a.%5,4X1)

FORMAT(Lo,4X,021.14)

FCAMATL///)

FOGRMAT{1H]1 +115X."PAGE ',15])

FORMAT{1HG,5%,!' THE VYALUE OF THE LOSS FUMCTICN IS ',1PD25.18)
FGRMAT{LHO ,5X, *THE VALUE CF THE PELLET RADIUS [§ ",1P025.18/86%,

$'THE VALUE GF THE ACDLATAN VELCCITY AT Tkt EOJUNGARY IS '.0285.181

FORMAT{LHO.5X,' THE VALLE OF THE HEATING PARAAETER IS ', 1PG25.1481
FCRMATIIHO»5X, *THE STAGSILITY PCIMTS ARE ",1P7025.18,:" AND ',025.18)
FORMAT [LHO+5X,*THE VALUE OF ThE DESIRED CONSTANT 15 'y1P0Z5.18]
FORMAT{LHG 5X,'THE BCuNDARY MACH MUMBER IS ',lFD25.18/

$aX, 'THE CCHVEARGENCE EFFICIENCY [5 ',D025.138]

FORMAT(LIAC5X 140Xy LPU25. 1B 21 LUX,yUdbale))

FORMAT( 6X,'"TApLE'yI4s7s {HILESRATIUN BATAL'/GX,29(LH-))

FORMAT( &X,'TABLE" I4s"s INTEGAATICN BDATA —— CCONTINUED.'/6X4%2(1H
$-1)

FORAATLLIHO,5X, R0y I&, ") = ' ,1F325.18,"%, wHElh A = ",025.13,", AND'
2/6XPRHO = ', D25.134+"s WHERE Gii/54' = 4,025,181}
FOGRMAT(/1HQ/LHO,5X,"*F{PSI) = *,1PD25.18&)

FORMAT(/1HQ, 5X, "STEP 'y 5X,"VALUE CF TiE RELATIVE POSITION'! ;54,'VALU

EE GF THE RELATIVE DENSITY ',5x,'YALJE COF ACLATANT MACH NUMSBER '/
S6X,4('=1),3(54,300'-"]1)}

FORMAT{/6X, ' THE RUMBER OF INTcZRATICNS PERAFOAMEC THIS STer = ', [&)
FORMATI6X, "FCR THE PARAMETER L/A = ',1PL12.10,':11/)
FCRMAT{1HD, 5%, "TeiE WALUE CF ThHC PTLLET YELCCITY imdST €0 ',1PG22.15
E.")
FORMAT(1PD22.15,3X,022.15,11X,"2ELLLT SPEED’, [5)
FLIEI=1.0400/02.350+14+9.0+L5+Cc+Z.0rcL/EVE)

NO=1035

LG=0

IPAGE=1

ITABLE=1

K=0

NSTART=L

WRITEL 6,11} IPAGE
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AQO13
AQQ 14
AQQOLS
AQO01ls
AD017
AQols
AQO01L9
AQQ20
AQQO2L
AQ022
Ad023
AQ024
AQ025
AQQ26
40027
AJ028
A0029
AQQ30
AQ031
AQO22
AQQ33
AU 3%
AGQ35
AJ335
AQQ37
A0033
AQ439
AQd4d
AQO4l
AQ342
A0N43
ADQ4n
A0GA4AS
AQD 46
AJJ47
AQD 4D
AQT4Y
AQ059
ADI51
AQQ5”
AQ053
AQQS4
AJ055
AQQ56



I5N
ISN
1SN
ISN
ISN
ISN
1SN
I 5N
1SN
{SN
ISN
ISN
I5N
1SN
1SN
1SN
i5N
ISN
1SN
ISN
ISN
TSN
1SN

15N
ISN
[ 5N
ISN
ISN
ISN
ISN
ISN

15N
ISN
I SN
1SN
15N
I5N
ISN
I SN
15N
ISN
I SN
15N
15N
15N
ISN

0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
caso
04051
0052
0053
0054
005S
00546
0as7
0058
Q059
0064
ooel

0082
00é&3
0064
0065
0066
0067
0068
Q069

ga70
0071
073
0074
2075
0076
0078
0079
0080
g08l1
o082
goas
0084
0085
0086

100

105

110

Cexn®
Crars
Coxs¥
L#xax
C*%¥
C#ank
Caxxa
Coss®
Cazx®
Cxxxt
CEnes

IPAGE=IPAGE+]

READI(5,6)N

DO 100 J=1sN,l
READ{S,2)x{J) W)
X{J+N)={1.0+00+X(J))/2.0+00
X(d  1=(1.0+00=X(J))/2.0+00
Wid J=W(J)/2.0+00
WlJ+NI=W(J)

CONTINUE

NSAVE=N+N

N=NSAVE
READ(S,5)EMAX DN, VO ,RP
E=1.60218920-19

XM={2.01410222D+00+3.016049720+00}*L.660571D-27

PI=23.14159265358979310+00
GAMMA=1.4D+00

PS1=0.0+00

00 105 J=1,N,1
PSI=PSTI+W(J)*FLIEMAX*X(J)}
CCNTINUE

WRITEL6,12)PS]

Wi TE{6,13)RP,VO

AQOST
AD0S8
AQOS9
AQO0&0
A0O61
ADQ62
AQ063
AQJO64
AQO&S
A0Q&s
AQ0&T
AQ068
AD0&9
AQQ70
AQOT1
40072
AQQT3
AQOTS
ADO75
AQ076
AQOTT
ACOT8

PL:=0SI*(GAMMA-1.0+00) /2 .0+ 0*E/ XM*RP/VO**3*DSQRT{ E*EAAX/3.0+00/P] AQQT9

$/1 660571U~27/548.5790-06) *ON

T= MAX#2.0+00/3.D+00
READIS,21ALSAVE A25AVE
5=~1.0+00/3.0+00
CRIT=DS5QRT(5.0+00/GANMA)
READ(5,6 INSAV, HSAY
READ(S ;4 INTABLE

CONT INUE

READ (5,2 END=999) XMACH, DELTA

THE PURPOSE OF THIS, AN G2VIOUS ADOITION TOQ THE MAIN PROGRAM,
TO REUUCE THE CPU BLUT HAINTAIN THE INTEGRITY IN COMPUTATIUN.
SINCE THE FCGLLOWING SECTICN CNLY LDMPJTES

THE VALUE CF THE

Ad08Q
A0Q81
AQo82
A0083
AQ084
AQ0as
AQC3s
AQ087
AQOSS8
*xEFAQNOL
*2xxA0NO2
¥3FRAONO3
= x%xxAONOS
®&xxA0NGS

VART ABLE, CONST: IT IS SUBMITTED HcRE AS COMPUTED IN CARLIER RUNS2#=3A0NOS

IN THE FCRM OF A DATA STATEMENT.
FOLLGHS IS5 THEREFORE BYPAS.ED,

90%.

DATA CONST/1.0%$776345588615600/

IFI 1PAGE.GT.0IGD TO 337
ROSAV=1.0+00
RHOSAV=1.0+00
NINC=5.D=3/HSAV+5.D-3
IF{NINC.LT.1}NINC=1
NEWT AB=0

INITIL=1

H=HSAV

RO=ROS AV

YO(L]l=XMACH

YO 2)}="HOSAV
FPS1=0.,0+00

NC=2

Al=ALSAVE

THE SECTICN CF PRCGRAM WHICH
FIELDING A LPU SAVINGS OF ABCUT

*F2*A0NOT
*2FxAQNOS
#2¥EAINOG
F#FxAINLO
=#EAONLL
AONL2
AONL3
AQ089
AGA90
AGdsl
AQ092
AQ093
A0N9%
ADJ95
AQ0%6
AGO9T
40094
AQ099
AQl00
AQLOL



ISN

ISN
1SN
ISN
I3N
LSN
15N

LSN
15N
ISN
I SN
ISN
L[SN
1SN
ISN
I SN
I5N
ISN
ISN
1SN
ISN
I SN
ISN
1SN
I SN
15N
ISN
ISN
[SN
18N
ESN
ISN
1SN
TSN
1SN
1SN
ISN
L5SN
ISN
15N
TSN
ISN
15N
1SN
Ish
[ SN
ISN
1SN
[SN
I5N
[ 5N
I 5N
15N
I SN
15N
15N

0087
0088
0089
0090
0091
0092
0093
0054
0095
gase
0097
n099
Qo101
o102
0103
2104
0105
0106
olo7
oLoa
0109
olle
0111
ol12
0113
0ll4
o115
o0lls
o0lLi7
0118
oLls
0120
o121
0122
o123
0124
0125
0126
0127
o128
9129
o130
0131
0132
0133
0134
0135
0136
0137
0138
0140
J141
0142
0143
Dla4
0145
0148
0la?

200

250

275

329

3140

320

330

A2=A25AVE

ER=1.E-14

IFRKG=~1

WRITE{6,141PS]
WRITE(&,15)ALSAVEA2SAVE
WRITE(6,L9)INITIL,ROSAY, RHCSAV ,XMACH
WRITE(6+23)FPSI
WRITE(&,11)IPAGE

IPAGE=IPAGE+]

NSTORE=0
IFINENTAB.EQ.OIWRITELS,20) ITABLE
IFINERTAL.EQ.LIWRITE(6,21) ITABLE
WRITE{4,24)

NEWTAB=1

LINES=0

CONTINUE

N=1003

CALL HAMMIMNIRO,YOsNCyNyHyALy A2,ER R, Y41 oY2, Y1l ,WleH2s03, 4 0,EW,ND)
NSTORE=NSTCRE+1000

N=1001

DO 200 J=3,N.2
FPSI=FPSI+{Y({J=2,2)+4.0+00%Y (J—1,2)+Y{J 2;)=CABS{H}/3.0+00
CONT INUE

00 300 J=KSTART:N.NINC
WRITE(&:19)JyRIJI 1Y {J12) 4Y(J 1)
K=K+1

RPOS(K)=RIN)

MACHIK =Y L], 1}

CENSIKI=Y[J,2)

LINES=LINES+]
IF(LINES-201300,250,2540
CONTINUE

IF{J*L25 =N)2175,300,330

CONT INUE

WRITE{6,L1)1PAGE

IPAGE=IPAGE+]L

WRITE(6,2L) ITABLE

ARITEL6,24)

LINES=0

CONTINUE

N=N-1

IFRKG=IFRKG+]

00 220 J=1l,4.1

DD 310 L=1:NC,1

YOJsLI=Y (J+N, L]

CONT INUE

RIJI=RIJ+N)

CONT INUE

NSTART=NINC+1
IF{NSTDRE.GE.NSAY)GD TO 330

GO TO 120

CONT INUE

WRITE(6,LL}IPAGE

[PAGE=TPAGE+]L
YNEFF=Y(N,1)/CRIT*1.02
WREITE(6,18)XMACH, YNEFF
WRITE(&,25INSTORE

OMDR=F [1,R:Y,N)
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AQLQ2
AOLQ3
AQlQO4
AQLOS
AOl06
AD107
AQLOA
AQl09
AOL10
AQLLL
AOll2
AOLL3
AQLLS
AQlLS
AQLLS
AQLL7
AOlla
AQLll9
A0l20
Adl2l
A0l22
A0123
Adl24
AQL25
AQL26
ACL2T
AOlzZ8
AQL29
AQ130Q
AO131
AOL32
AQ133
AQL3%
AOL3S
AOl3&
AQL37
Ad138
A0139
AQL4Q
AQlal
AQL«2Z
AOL43
AQl44h
ADL4S
ADl4&
ADLAT
AQl4d
AQLl49
AQ150
A0l51
AQl52
AQL53
AQLS4
Aa015%
AOLSe
AQLST
AJL58
AQL159



I SN
I SN

1SN
I SN
ISN
15N
ISN
ISN
1SN
ISN
ISN
L5SN
ISN
1SN
[ SN
I SN
ISN
ISN
I SN
1SN
ISN
ISN

I SN
ISN
I SN
ISN
ISN
I SN
ISN
ISN
ISN
ISN
I SN
SN
ISN
I 5N
[ SN
15N
ISN
ISH
1SN
I SN
ISN
[ 5N
ISH
ISN
I SN
15N
[ SN
1SN
ISN
[ SN
15N
ISN

Qlss
0143

o150
0151
0152
0153
0l54
0156
0157
ol58
0159
0160
olé6l
0162
0le3
0lé4
0165
0l66
0Le7
0le8
0169
o170

0171
172
0173
0174
0175
0176
0177
o178
oL79
PR Y1)
0181
claz
0183
0l84
0185
0136
oL37
n189
0L90
ol9l
oL92
0193
0194
QL95
o197
0198
0199
0200
ga20l
0202
0203
0204

333

336
337

339

340

345

999

WRITE(6,22)NSTORE,RIND o YIN L)y Y{(N,2),OMOR
VALUE=3,D0/4.00/((2.00+{CAMMA-1.031*Y{N,1)1#*2)/PSI/YIN,1}**2/(]1.D0
S+GAMMA®Y (N, 1) #*2] ) *#5
FPSI=FPSI+R(N}**(4,00*S)aVALUE

CONST=PSI*®5/FPS1

WRITE(6,23)FPSI

WRITElo+1TICONST

[FOYNEFF.LT.90.)G0 TO 345

00 333 [P=1,K,l

PUNCH 3,RPGSUIP)MACHIIP), IP

CONT INUE

DO 336 IP=1,K.l1

PUNCH 4,RPOS(IP),DENSLIP),IP

CCNT INUE

CONTINUE

WRITE(6,11)IPAGE

IPAGE=IPAGE+1

XINIT=0.QD0

ICOUNT=0Q

XMD=2.0141022200%1.6605710-27
XME=54B.5790-6%1.560571D-27

XMA=1.0086652200%] .6605710-27
ASCONST/{PI®XME})**(1.00/6,00)*({XMD/2.05902)**(4.D00/9.001*DSQRTIE}*
5(2.35019)%*(2.03/2.00)#( 4. 00#P1/3.00)#*(5.00/9.00)*(1.500/1.600)%=
5(7.00/6.D0)*{3.,D0/XMH)*3(1.00/3.00)/T**(1.00/¢.00C)
B=9.00/3.7603

L=-4.09602/3.807D0

0ARG=2.3208D1/1.057500
FVYOL=%4,D0%P1/3.00%RP*RP*RP*2 ,05902/DN/ XMD

CONT INUE

WRITE(64+26 )1 XINIT

H=1.0-2

V1=G(T HI/ XM/ XMH) **(1.D0/3.00) /FVOL*¥*(5.DC/9.00)/0N#**(2.00/9.00)
WRITE(6,27)V1

H=1.D-3

V2=GIT H)/ (XM XMH)**(1.00/3.CO)V/FYOL#*(5.03/9.00) /ON#%(2.00/9.00)
WATTE(6,2T7)Y2

APENET=1.00-XINIT

ICCUKT=TCGUNT+1

PUNCH 28, XPEMNET,V2,ICOUNT
AIMIT=1.,D0-XPENET#2.,D-1*%*] ,0-2
IF(MCDUICCUNT +6) .EQ.Q1GO TO 339

HRITE(6,10)

GO TQ 34Q

CONTINUE

WRITE(6s L1} IPAGE

[PAGE=[PAGE+L

CONTINUE

[F{V2.6T.1.02)60 TO 338

CONTINUE

WRITEU6,11)IPAGE

IPAGE=]PAGE+1

[TABLE=[TABLE+1

GO TO L10

CCNTINUE

sTOP

END

64

AOlé&0
AO0lel
AQl62
AOl&3
AQle4d
AOl6&5
AQles
AQL67
ADlés
AQl69
AQLTO
AOQLl71
A0172
AD173
AQL74
AO175
AOLT&
AOQLTT
AOLl78
AQLT9
AQL80
AOl81
AQla2
AO1l83
AQl &4
A0Ll85
AO0l8&
A0187
A0188
A0189
Adlsa
AQ191
AQl92
AQl93
AQl94
AQLl95
AQ195
AQL9T
AQ198
AQ199
AD200
AQzal
AQ202
A0203
AQ204
A0205
AQ206
A0207
AQ208
A0239
AQZ10
AQ21L
AQZ212
AQ213
AQ21%4
AQ21%
AO2Le



ISN
[ SN
ISN
IL5N
ISN
ISN
1SN
I5N
[SN
ISN
ISN
ISN
I5SN
ISN
1SN
1SN
ISN
TSN
15N
[ SN
[ SN
ISN
IsN
1SN
ISN
I SN
ISN
I SN
[ SN
I SN
1SN
ISN
ISN
1SN
ISN
1SN
ISN
ISN

0002
00403
0004
0005
0006
0007
o008
0009
0011
ool2
0013
00L&
Q0L5
001&
QQl17
QolLs
0019
0020
goz1
coz2
0023
0024
0025
0026
goz7v
0023
0Q29
Q030
0031
0032
0034
0035
0036
0037
0038
0039
0040
0041

0S/360 FOARTRAN H

Cl**t‘t“.t‘.t"“tt.’t‘t‘##tl".*‘I*tt‘#*att**t#t*t.**ll.tiitt‘*“ttit"l#FUNOl

Coxx
CHen
o 227
Cxen
Crux
Cxxw
Cosx
C*x%
C*ex
(22 ]
Crex
Cessx
L%
[ TT )
Craxn
C*xs

THE PURPOSE OF F IS TOD PROVIDE THE CCUPLED DIFFERENTIAL
EQUATIONS REQUIRED BY RKGSOQ AND HAMMIN. CCMMON BLCLK FDATA IS

REQUIRED. S5 IS THE VALUE GF PSI ANO G IS THE VALUE GF GAMMA.
R 15 THE ODISTANCE FROM PELLET CENTER, RELATIVE TO PELLET RACIUS.
STATEMENT NO. PURPOSE OF STATEMENT
10 DIFFERENT TAL EQUATION FOR MACH NUHMBER, M
20 OIFFERENTIAL EQUATION FGR RELATIVE DENSITY, P
30 TEST FCR CONTINJITY AT M = 1.D+00
40 EQUATIGN FOR GIT,H}

*x=xFUNO2
***FUND3
**¥FUNQS
*x*FUNOS
*2xFUND&
**¥FUNCT
**3FUNQSE
**+*FUNGY
*x+FUN 10
*sx:FUNLL
**IFUNL2
*xFUNL3
*52FUNLS
*5¥FUNLS
*xxFUNLE
*=¥FUNLT

Ct*##t“#‘#*#t***.*"!tttt#*ttt#*‘*#it#*!t#t!**‘#3**#4***‘##‘*#**'##***‘#*#FUNLB

o -

10
20
25

El]

&9

45

FULCTIGN FIL XY, d)
I TLICIT REAL*BLA-H,0~1)

R.aL*a M

Cl YMCN/FDATA/SGsT+A:B,C,0

CC MON/HAMCAT/CRIT,IFAKG LG

DIMENSIGN X(L),Y( 1005,1)
CAPX{T,RA)=(L.DO0-(RA)*+2 )% %2 %T

IF(LG.EQ.4)GO TQ &0

A=1.0+00

B=2.0+00

M=Y(J,1)

P=Y1J,2)

R=X(J)

IF(L-1)1,10,20

WRITE(S,61J4,L

FORMAT(LHO 24y '+oERROR. .. AT STEP = ",[3,', OIFF €G CALLED = ',13)
F=0.C+00Q

RETURN

F={S*{ PEM*RLR ) x 23+ (A+GEMEM ] -M/R* (B+ (G- A ) =H*M) ) /( A-M*N)
RETURN

CCNTINUE

[F{L=-3)25,30,1

F=5#Pxq2M/ (A-MEM) ¥ [A/R-5*( P+RTR) &23)

RETURN

CONT INUE

Fe{S*{ PxM*AXR)*F*I3H [ A+GEMIM )= M/R* (B+(G-A)J+H*M] )
RETURN

CONT INUE

RA=X1{J)

IF(RA.GT.9.995999990-011GC TO 45

DNUM=CAPX (T RA} +B*CAPX (T ,RA)*3%2+C/CAPXIT ,RA)+D
DENC={ 1l DU/CAPXIT,RA)+E=4. COXC/CAPX{T RA)*#3)2%(1.00/3.C0)
F=DNUM/DENDO*A

RETURN

CONTIL..UE

F=0.00

RETURN

END

o
w

FUN19
FUNZ20
FUN21
FUN22
FUN23
FUNZ%
FUN25

FUN26
FUN27

FUN28B
FUNZ29
FUN3Q
FuNn3l
FUN32
FUN33
FUN34
FUN35
Fuh3s
FUN3T
FUN38
FUN39
FUN4Q
FUN&L
FUN&2
FUN43
FUN44
FUN4S
FUN&&
FLHA4T
FuUN438
FUN49
FUNSQ
FUNS1

FuUNS2
FUNS53
FUNS4
FUNS5
FUNS56&



ISN
15N
I5N
ISN
1SN
ISN
ISN
1SN
ISN
I SN
1SN
ISN
ISN
ISN
ISN
ISN
ISN
15N
ISN
ISN
I SN
ISN
ISN
ISK
1SN
ISN
ISN
ISN
I SN

0002
0go3
0004
000S
0004
0007
0008
0009
0010
0GlL1L
oglz
0013
0014
0015
0017
oola
0019
0020
0022
0023
Q0024
Q025
0026
0027
2023
0029
0030
0031
0032

0S/360 FORTRAN H

CEIXFXEFRIFIHAFRI RS IRBESFLFFSFL EI RS FEIENFFSIN I ISR IR FI 02PN S SR a5 224G THOL

Cr*s
Cxe=x
Cosx
C**x
Cexk
C*sx
C*%x

THE PURPOSE OF THIS FUNCTION IS TO AID IN THE CALCULATICN OF THE
REQUIRED PELLET VELCCITY BY CORRECTING FCR TEMPERATURE AND

DENSITY DISTRIBUTION EFFECTS.

#2xGTHO2
*4*GTHO3
#*45THOS
**2;THOS
»xsGTHOG
*x*GTHOT
*=*3GTHO8

CEEFEFXETEXNLXCE XS FERELRIEX KL XT IR I PR A FXSLEFIE RS LN XTI 00k 24D A B * oo s3 2xAGTHOD

50

100

150

FUNCTION G(T,H)

IMPLICIT REAL*8(A-D,F-H,0-21}

REAL*8 KL(1) K201}, ,K3{1),K4(1)
CCHMMON/HAMDAT/CRIT  IFREG 4L

COMMCAN X(1005)4Y(1305,2),E(2),XINIT
M=1005

NC=1

L=%

ALLI=XINIT

¥Y(1,11=0.00
NSAY={(1.00-X{(1))/H+1.100
CONT INUE

N=NSAV

IF{NSAV.CT.1000)N=1000Q

DO 100 J=2,N:1

CALL RKGSLQUJeX oY +NCyHEsK1,K2)K3 K4 M)
CONTINUE

IF(NSAV.LE.LQ00)GO TQ 150

NSAV=NSAV=-999

X(1)=X(N)

Y{lyl)=Y{N,.1l)

GO TO 50

CONT INUE

HNEW=1.00-X(N)

N=&tl

CALL RKGSDQINXyY s NCyHNEHW) Ep KL K2 ,K3 K% M)
G=Y(N,1)

RETURN

END

66

GTH1O
GTHI1
GTH12
GTH13
GTH14
GTHLS
GTHLé
GTHLT
GTHLa8
GTH19
GTH20
GTH21
GTH22
GTH23
GTH24
GTH25
GTHZ26
GTH27
GTHZ28
GTH29
GTH30
GTH3L
GTH32
GTH33
LiH34
GTH35
GTH36
GTH3T
GTH38



ISN
[ 5N

L3N
I SN

ISN
I SN
ISN
[ SN
13N
ISN
15N

0go02
0003

0004
0005

0008
0047
0008
004a9
Qalo
3011
oolez

05/360 FORTRAN H

Cttt*#tttt'*'*‘*'t#.tl‘#**ltl'*‘U*ll*‘l.ti.*it#*.t**t'*t#tl##t**t't*“*‘t‘tPCGQS

Crxs *=*%pC010
C#ss **¥PCQL5
C#¥*+ THE PURPOSE OF HAMMIN S TO SOLVE A SET OF SIMULTANECUS FIRST **xpL020
Cxs* QORDER FUNCTIGNALS OF Y WITH RESPECT TO X USING HAMMING'S FIFTH *$PC025
C*%¢ QORDER PREDICTOR-CCRRECTOR. FOURTH ORDER RUNGA-KUTTA-GILL 2x2p( 030
C#+* PROVIDES STARTING VALJES WHICH ARE ITERATED UPCN BY THREE OTHER *+xpL035
C*** INTEGRATICN FORMULAES UNTIL A CONSISTENT STARTER 1S OBTAINED. *5xP 040
Cexs xxpL 045
[o£ 12 *x¥p 050
Cexs X0 = INITIAL VALUE CF X. *x*PL Q55
CE¥x **¥PL060
C*** Y0 = ARRAY OF INITIAL Y-VALUES. *=*2pL 065
CH¥an **xp(070
C*¥s*x NC = NUMBER OF COUPLED EGQUATIONS. =+=PCOTS
C**%x **¥PCOBHO
C#xx H = INTEGRATION INCREMENT **#pCQ485
Ca%s **%PC0S0
C#+& N = NJMBER OF INTEGRATIONS TO BE PERFCRMED. **¥PC 0S5
C*¥% **3PC100
C**x* Al,AZ2 = PREDICTOR-CORRECTOR PARAMETERS TO BE CHOSEN BY USER. *#¥pC105
Cxxx *x3pC 110
C*sx ERR = CONVERGENGE PARAMETER FOR STARTER. ***PCllS
CEx¥ #x%P(; 120
C*x*x X = ARRAY CF X-VALUES #x#p(125
L% *x¥p(130
C*%% Yy = 2-DIMENSICNAL ARRAY CF Y-VALUES. *#+pPL135
Caax *¥x0C]140
C*#* JER = ERACR PARAMETER. IF IER=0, INTEGRAL INSIDE OF ASSYMPTOTES. #**P(l45
CH¥n IF [ER=1, STARTER FAILED TO CONVERGE. #E%PLL50
Coes IF IER=2, INTEGRAL DIVERGES. *%*xpPC155
C**% ***xPC 160
Crex  YC,Wl,H2,W3,H4,E = WORK ARRAYS OF LENGTH NC. *#=*k0C165
[ 2] *xxp(170
C*##® YP,ER = WCRK ARRAY OF MIMIAUM SIZE {&.NC). w24PC175
C*s% #*=xpL180
C*x% NO = OIMENSICN SIZE OF Y IN MAIN PROGRAM. ®ExpL)LES
Cx*3 232xpC 190
C+*#x T0 GET DOUBLE PRECISICN VERSION, REMOVE C'S FRCM PC240 AHD PC245. #*¥*PLLl95
Cxex *x2P( 200
Cxxx *x¥EPL205

CFF 2 RS2 BT AIXEXEXTIRFELFT PR IXIEFXFXAFTRF I P ITRIIT R SRR kL v s o nkwEIF 22 8PL210
SUBRQUTINE HAMMINCXO,¥0,hC  MoHeAL A2 ERRA Yo TERSYP,YCunleW2en3,ah PL215

$,E4ER.NOD) pC220
REAL#*8 XO YO Hy AL AZ X Y ¥ P, YC oW Lo W2 w34, CLloC24C3+C4,C5,CH.CT,EP *%PL225
$,EC,40,B0,+381,82,B3,8CN1,BLDyBCL1,BC2,LRIT,F 2:pC230
COMMCNAHAMCAT/CRIT , IFRKG,L 53333 *PC235
DIMENSION YOU{L) »X(1)sY4NDs 1) o¥PU 42 1)¢¥YCIL) ECL)ynl(lt, 201, ,u301) PC240
$,H4ll),ERL 4,1) PC24S
12R=0Q PC250
C1=9.0+00 PC255
€2=19.0+00 PC260
C3=5.0+00 PC265
C4=24.0+00 pC270
L5=4.0+00 PC2T75
C6=3.0+00 Pc280

a7



15N
I SN
ISN
ISN
ISN
I SN
ISN
I5N
1SN
ISN
ISN
1SN
1SN
1SN
ISN
ISN
1SN
I5N
ISN
1SN
ISN
ISN
ISN
ISN
ISN

ISN
I SN

I5N
15N
[ SN
ISN
ISN
iS5
I SN
[SN
[ SN
ISN
ISN
13N
1SN
ISN
ISN
ISN
ISN
[ SN
[SN
15N
15N
[SN
I 5N

0013
0014
0015
00ls
0017
ooL8
ool9
0020
0021
o022
0023
co024
0025
ooz27
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
aa3s

Q039
0040

0041
0042
0043
0044
0045
2046
0047
0048
0049
0051
0052
a053
0054
0056
oos58
a059
0060
006l
0Qé2
0063
0064
0065
0085
0067
0068
0069

ao7o0
0071

100

115

120

125
130

135
149

150
155

17

209

C7=8.D0+00
EP=(2.51D+02-C2*A1-CT7*A2)/6.0C+00
EC=(=C2+11.0+00*A1-CT7*A2)/6.0+00
AO0=1.D0+00-Al-A2
BO=(55.D+00+C1*AL+CT=A2) /C4
Bl={=-59.0+00+C2*A1+32.0+00*A2)/C4%
B82={37.0+00~-C3=AL+CT#A2) /C4%
B3=(Al-Cl)/C4

BCN1=(Cl-Al)/C4
BCO={C2+13.D+00*A1+CT#+A2}/C%
BCl={-C3+13.0+00#A1+32.0+00%A2)/C4%
BC2={1.D+00—-AL+CT#*A2)/C4

IF{ IFRKG.GE.QIGO T4 155

X(1)=x0

CO 100 L=1,NC,1

Y(1l,L) =YO(L)

CCNT IHUE

DO 115 J=2,4,1

CALL RKGSDQUJsXsY s NCoHsE WLy W2 W3, W4 ,ND)
CGHTINUE

JC ECK=0

CC..TINUE

JC' SCK=JCHECK+1

00 L30 L=1,NC,1

YPU2Z2,Ld=Y{Llabl) +H¥(CIEF{LeX Yo LI+C2*FILaXs Yr2)=C3*F(LoXaYs3)+F{L,
$XaYr4))/Ch

YPU3,L)=Y(1,L) +H®*(FIL,X,Y,1)+C5%F(L+X,¥,2)4FI(L,X,Y,43))/CH
YP{4 L)=Y(Llsl) +R=(F (L )X Y L) +Coa®(F{LsXe Yy 2)+F (L XsYs3))+FIL XY
$,4))/CT*Ch

00 125 J=23441
ER{JISLI=IY LD, LI=YPLJ,LID/Y (J,L)
ER(JsLI=ABS{ER(J, L)}

CONT INUE

CCGNT INUE

[TEST=0

DO 140 L=LlsNC,1

DO 135 J=2+4.1

IF(ERIJsL) .GT.ERR)ITEST=1
YiJdLI=YPLJ,sL])

CCNTINUE

CONT INUE

1F(JCHECK.GE.500)G0 TO 145
IF(ITEST.EQ.LIGU TO 1249

5 D0 153 L=1iNC,1

YP{Ll.L})=0.0+00
YC(L1=0.0+00
CGONTINUE

CONT INVE

DO 300 J=4 Nl
X(J+1)=X{J}+H
DO 175 L=1,NCs1
YP{24L)=YP{Ll,L)
CCNT INUE

DO 200 L=1.NC,1

YP(L LI=A0®Y (J L) +AL®Y {J-L ,L )+ A2%Y {J=2 LI+HF{2O0%F{L X4 Y, J)+HL*FIL,

$X Y =L +B2%F (L X, Y J-2)+B3*F(L, XY Jd=3))
CONT INUE
DO 225 L=Ll.NC,1

PC285
PC290
PC295
PC300
PC305
PC314Q
PC315
PC320
PC325
PC330
PC335
PC340
PC345
PC350
PC355
PC3é&0
PC365
PC3T0
PC375
PC380
PC385
PC33%0
PC3s5S
PC400
PC405
PC410
PC415
PC420Q
PC425
PC43Q
PC435
PC440
PC445
PC 450
PC455
PC4&0
PLC4ES
PC4T7Q
PCals
PC4B0O
PC485
PC490
PC495
PC3500
PC505
PC510
PC515
PC520
PC525
PC530
PC535
PCS54Q
PLS545
PC550
PC555
PC560
PC545
PC570



ISN 0072 YOJd#l, L)=YPLL,LI-(EP/(EP-ECII*(YPL2,L)-YCIL])) PC57S

ISN 0073 225 CONTINUE PC580
ISN 0074 DO 250 L=1sNCsl PC585
15N 0075 YCILI=AO®Y(J L) #AL*Y(J=1, L)+ A2¥Y (J=2,L) #+H* (BCNLI#F (L, X, Y ,J+1 J+BCO*F PC590

S{L KoY, J)#BCL*FIL X2 Yo J= 1) +BC2*F (L X, Y, d=2]) PL595
[SN 0078 250 CONTINUE PLC&00
1SN 0077 D0 275 L=1:NCy1 PL&0O5
ISN 0078 YOdel, Lh=YCIL)—LEC/{EP-EC) J*(YPLL,L}-YCIL)]) PCs&1Q
ISN 0079 275 CONTINUE PC&1S
ISN 0080 IF(J=-N1285,300,400 PC&e20
1SN 0081 285 CONTINUE PC&25
ISN 0082 300 CONTINUE PL &3S
ISN 0083 IER=ITEST PC640
1SN 0084 400 N=N+1 PC&4S
ISN Q085 RETURN PL&50
I SN 008é& END PC&T0

&9



ISN
I SN

ISy
ISN
ISN
[ SN
iISN
1SN
ISN
[ SN
ISN
[ SN
15N
ISN
15N
ISN
1SN
ISN
ISN
15N
ISN
ISN
I35N
[SN
15N

gooz2
0003

2084
£0o05
2006
aoor
oo
0009
0oL0
001l
0012
00l3
0014
00lLs
nolLé
0017
aols
o4ale
3020
0021
o022
0023
0024
0025
Q026

0S/360 FORTRAN H

C‘t*$**‘ttt*t't‘#*""tt“.l"‘l“"t"lt#**"iﬁ'itttt*l'!.l.tti#.""t"*tRK

ot 21
Crey¥
C*ax
Cees
Cers
Cen¥
Crss
Cxxs
CEes
C#x*
C#xs
Cexsx
e 22
Cr*¥
Crex
Cox¥
o 22 ]
Coxx
C¥ex
[of 2 2
T
Cxx¥
C¥%%
Cous
C*¥*x
CHsx
CH*x
Crsx

THE PURPOSE OF RKGSDQ I5 TO SCLVE, USING RUNGA-KUTTA-GILL.,

OF SIMULTANECUS DIFFERENTIAL EQUATIONS, wHICH ARE FIRST ORDER IN

A COMMON (DUMMY) VARIABLE. THE QUADRATURE IS FOURTH ORDER.

J IS THE ITERATE OF Y BEING SOLVED.

X{J} 15 THE DUMMY VARIABLE.

Y{LsJ} IS THE SCLUTION TO THE L'TH DIFFERENTLIAL EQUATIDN.
N IS THE NUMBER OF SIMULTANEOUS DIFFEREANTIAL EQUATICNS.

H IS THE INCREMENT TC BE ADDED TO x{J-1} TO GET XxUJ).

E IS A PARAMETER USED IN THE RULE COF COLLATZ, GF LENGTH,N.
K1 15 A REAL WORK ARRAY OF LENGTH, N.

K2 IS A REAL WORK ARRAY CGF LENGTH, N.

K3 IS5 A REAL WORK ARRAY OF LENGTH, N«

K& IS A REAL WORK ARRAY OF LENGTHs N«

sESQK
*EIRK
FEIRK
RIRK
FEIRK,
FEBRK
*RZR K
FERRK
*HERK
IEER K
1 2AK
+EIRK
ERK
*EIRK
+RHRE
*EIRK
FEERK
sFFRK
ERBRY
EEFRK
R K
*xBRK
*EFRK
*33RK
rEIRK
FEXRK
#xERK
FEERK

T A X AT E AR IR IR AE R RS E SR IR L L AT BRI BRI BB FE IS IR RITE RN IFIFFEFT IXIRYL

100

110

120

L30

SUBRDUTINE RKGSOQ{Js Xy Yo NeHsE KL K2, K3 K4, M)
REAL*3 X,YsH) KL K2:K3 K%, AMC, ADDs AMSeAMyAD AX,F
REAL K1,K2.K3,K4

SIMINSION RULl3afdMel) ¢S4 1) oK 101 ) RZ11IRIT L) 24l 1)
AMC=2.D+00

ADD=1.D+00+DSQRT(5.0-01)
AMS=5.D-01-0SQRT(5.,0-01]}
AM=2.0+00-05QRT{2.0+00]}
AD=2.D+00+DSQRT(2.0+00})

AX=6.0+00

X{J)=X(J=1}

00 100 L=1.N,s1

YidsL)=Y(J=1,L)

CCNTINUE

DO 110 L=L,Nsl

KI{LI=FILyXs+Y 1 J}*H

CUNT INUE

DD 120 L=L,N.1l

YOJsL)=Y{J LI+ (K1(LIZAND)

CONT INUE

X(J)=X(J)+{H/AMD)

DO 130 L=1,N,1

K2IL)=F(L XY J)I*H

CONTINUE

00 140 L=1,N,1

Y(JaL)=Y{J,LI+{K2(LI-K1({L) I*{AMD-ADD])

R&
RE
RK
RK
RK
RK
RE&
RK
RK
RK
RK
RK
RX
RK
ax
RK
RK
RK
RK
R&
RK
aK
Ak
RK
RK
/K

o1
02
03
04
as
0%
07
ca
09
10
1L
12
13
14
15
15
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
35
37
33
a9
%0
41
42
43
44
45
46
47
43
49
50

52
53
54
55
26



15N
1SN
ISN
15N
1SN
1SN
I SN
1SN
I SN
1SN
ISN
I 5N
1SN

0027
0028
0029
0030
Q031
0032
0033
0034
0035
Q038
0037
0038
0039

0040
0041
0042

140

150

160

170

180

CONT INUE

DO 150 L=1yN,l

K3(LI=F{L X, ¥, J1%H

CONT INUE

DO 160 L=1¢N:l

YUJoL)=Y(J L) +AMS*KL(L)=K2(L )+ADO*K3 (L)
CONTINUE

X{Jd)=X(J=1)+H

DO 170 L=14N,1

Ka{L)=F(LsXsY,yJ)*H

CONT INUE

DO 1BO L=1sNyl

Y{JaL)=Y(J=1, L)+ {KI{L)+AM®K2 (L) +AD®KI(LI+K4(L) )/ AX
ElL)={K2{L)-KIILII/(K2IL}-KLIL))
E(L)=ABS{EIL})

CONT INUE

RETURN

END

el

RK
RK
RK
RK
RK
RK
RK
RK
RK
RK
RK
RK
RK
RK
RK
RK
RK
RK

57

59
60
&1
62
63
&4
65
66
&7
68
69
T0
71
72
73
4
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ABSTRACT

A conceptual design of a fuel injection system for CTHR (Commercial
Tokamak Hybrid Reactor) is discussed. Initially, relative merits of the
cold-fueling concept are compared with those of the hot-fueling concept;
that is, fueling where the electron temperature is below 1 eV is compared
with fueling where the electron temperature exceeds 100 eV. It is con-
cluded that cold fueling seems to be somewhat more free of drawbacks
than hot fueling. Possible implementation of the cold-fueling concept is
exploited via frozen-pellet injection. Several methods of achieving
frozen—-pellet injection are discussed and the light-gas-gun approach is
chosen from these possibilities. A modified version of the ORNL Neutral
Gas Shielding Model is used to simulate the pellet injection process.
From this simulation, the penetration-depth dependent velocity require-
ment is determined. Finally, with the velocity requirement known, a
gas-pressure requirement for the proposed conceptual design is established.
The cryogenic fuel-injection and fuel-handling systems are discussed.

A possible way to implement the conceptual device is examined along with

the attendant effects on the total system.



