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CHAPTERS-1

1. Inftroduction

Through a rapid process of evolution the theory or data base aesign
has reached a state of elegance in the present decaae, The three aata
models, Hierarchical, Network, and Relaticnal, form the basis of wmost of
the seemingly inumerable data base manageuent systeﬁs‘{DBHS) now avallaoble
commercially. Among the "three great data models", as Ullwman (1982) phrases
them, the relational vieur towards data aggregates nas been the foeus‘of

most of the recent researchers.

The relational model is an unstructured model based upon set theoretic
notations, whereas, the hierarchical ana network models are structured and

tied to graph theoretic notations,

The pioneering work on relational data pase theory and normalization
of relations was performed by Codd {1970). Codd introduced the First Horwmal
Form (1NF), Second Normal Form (2NF), ana Thira Horuwal Form (3KF) of rela=-
tions. Each of these normal forms is strictly stronger than the lower nor-
nal forms. Later Codd and Boyce (1972) introduced the Boyce-Coaa HNorwmal
Form (BCNF) which is stronger than 3NF. These normal forus are explainea 1in
section 2,1. Fagin (1977) proposed decomposition into Fourth lormal Forus
(4HF) which includes multivalued dependencies in relational schewes. The
previous normal forms assumed only functional dependence (eaplaineda in sec-
tion 2) between attributes of a relation. In a later paper Fagin (1961)

introduced Domain Key Normal Form (DKNF) and Project dJoin HNormal Form



(PJNF) which are combined under Fifth Normal Form (5NF). An explanation of
YNF and 5NF is beyond the interest of this report. Interested readers mnmay

consult Fagin (1977) and Fagin (1981).

The relational data model, being based upon set theoretic notations,
could be established on strong mathematical foundation and is subjected to
extensive abstract mathematical treatments to improve the model to elim=-
inate all types of anomalies (insertion, deletion,and update) from the
resulting data base schema and to capture more meaning of the data in a
data base., However, instead of a complete abstract mathematical treatment
a graphical representation will always help the designer in viewing the
structure of the relation and communicate more meaning of data to the user.
A pictorial representation of a relation will nelp 1n understanding the
interactions among the attributes of a relation. Properties of functions,
for example, can be identified by examining their graphs. When the data
base grows too large due to inclusion of new attributes it becomes very
difficult to comprehend the interactions among the attributes and obtain
logical meaning., A graphical representation of the relations in the sche-
mata can reveal information otherwise incomprehensible due either to size
or conplexity. This report is an effort to relate the concepts in a rela-
tional data model to a graphical representation. In this report we examine
the relationships between directed graphs (digraphs) and relational data

model.

Grant (1982) made an investigation into the relationships between the
connectedness in digraphs and normal forms in relational data pases. Tne
author of this report examined Grant's work and designed a set of lemmas

which would help in forming a foundation for the representation of rela=-



tional data bases through digraphs., The relational data base and its
related terms are described in section 2. Digraphs and their related terms,
along with a construction methodology of digraphs for the representation of
a relation is described in section 3. In section Y4 several lemmas have been
presented, relating digraphs to tne different normal forms of relational

data bases. Each of the lemmas has been supported by a proof.



CHAPTERS=-2

2. BRelational Data Base

A data base deals with information from entities of the real world. A
personnel data base of an enterprise, for example, wmay contain such enti-
ties as EMPLOYEE, DEPARTMENT, and MANAGER. Each entity again 1s described
by a set of properties. The EMPLOYEE entity, for example, might De
described by such properties as Employee Number (EMP#), Employee Name
(EMP_NAME), Employee Age (EMP_AGE), Employee 3Salary (EMP_SALARY), etc.
These properties of entities are called attributes of the entities. Each
attribute of an entity may have any value at a particular instance from its

domain of values,

If X = ( A1 A2 A3 <veveess An) is a set of attributes with domains
S1, S2y eesseees Sn, not necessarily distinct, then a relation R on these n
domains is a set of n-tuples such that the ith component of each tuple 1is
from domain Si. The Relation R is some times denotea as R = 81 x S2 x S3 x
ssees X Sn, which is a subset of the cross product of the domains on which
it 1is defined., A relational schemata in the relational model consists of a
collection of relational schemes. Each relational scheme again is an inten-
sion or abstract of a relation and is denoted by R(I’ ,F), where I is a set
of attributes and F is the set of functional dependencies that holds in
that relation. Functional dependencies are semantic constraints that
represent relationships among collections of data in the real world and
constrain the tuple values possible in a relation. We say a set of attri-

butes X functionally determines a set of attributes Y, denoted by X ==> Y,



if for each assignment of values to the attributes of X there is only one
value associated with each attribute in the set Y for that particular
assignment of values to X. In other words, if any two tuples of the rela-
tion containing X and Y agree in the values of the atiributes in X they

must also agree in the values of the attributes in Y.

From a given set of functional dependencies it possible to derive a
set of other dependencies among the same set of attributes by following a
set of axioms proposed by Armstrong (1974) which are known as Armstrong's
Axioms. Let R(I,F) be a scheme with attribute set 1 and dependencies F,
Lef F+ denote the closure of F and let the =set of one or more attributes Z,

Y, and W be subsets of I, Then Armstrongs Axioms are:
Axiom-1 (Reflexivity): If Z= Y€ T then Y -=> Z € F+

Axiom-2 (Augmentation): If Y -=> Z € F+ and ¥ $ Y U Z then

YW -=> ZW € F+

Axiom=3 (Transitivity): If ¥ ==> Z and Z -=-> W € F+ then

Y ==> W € F+

Axiom=Y (Pseudotranstivity); If ¥ ==> Z and ZW --> V € F+

then YW ~=> V € F+
&

Axiom-5 (Union): If ¥ —> Z and ¥ --> W € F+, where Z§V and

also W% Z, then Y —-> IW € F+

Axiom=-6 (Decomposition): If Y =-> Z € F+ and W C Z then ¥ ==> W

Using Armstrongs axioms a number of other dependencies can be derived



from the set F of dependencies. The minimal subset of dependencies that can
be derived from F by using Armostrongs axioms is called the closure of F

and is denoted by F+.

In order to be able to determine each tuple of a relation uniquely
each relational scheme has a set of one or more keys. A subset X of the set
of attributes of a relation R is a key for R iff X determines all the

attributes of R =nd no subset of X also determines all of R's attributes.

The keys in a relation are called candidate keys. One of the candidate
keys is arbitrarily chosen as a primary key. A super Key in a relational
scheme is any set of attributes that contain a key. The attributes which

are part of a key are called prime attributes; all the other attributes are

called non-prime attributes,

Relational schemes are normalized to incorporate desirable properties
in the data base. The aims of normalization are to eliminate the update,
insertion, and deletion anomalies1and to remove redundancies in the data
base, The two techniques of normalization are synthesis of the data base
as proposed by Bernstein (1976) and by succesive decouposition proposed by
Codd. Codd introduced the 1NF, 2HF, and 3NF of relatinal scheues. Later on
Codd (1972) introduced a stronger normal form BCNF. In the following sec-—

tion these normal forms are defined and explained briefly.



2.1. Hormal Forms

2.1.1, First and Secopnd Hormal Forms

A relation is in first normal form if all of its attributes have sim-
ple domains., Let R be a relation in first normal form (1NF) with the set of
attributes ' = { A1, A2, A3, A4, ......, An}. Let X be a subset of I' and
let it be a candidate key in R. Then R is in 2NF if there is no non-prime
attribute A in R such that A is partially dependent on X. This implies that
no subset of X can determine a non-prime attribute and any set of attri-
butes Y determining A, where Y does not contain A, is not a proper subset

of any key of H.

2.1.2. Ihird Normal Form

In the relation R above let A and B be sets of one or more attriputes
such that A qﬁ B. Then, according to Codd (1972), A is said to be transi-
tively dependent on the key X if X=->B, B=-/=->X, and B=-=>A, The relation R
is in 3NF if R is in 2HF and there is no non-prime attribute A in R which

is transitively dependent on any candidate key X in R.

2.1.3. Boyce-Codd Normal Form

Boyce=Codd normal form or BCNF is stronger than 3NF. If A is any
attribute in R, then R is in BCNF iff any set of attributes X determining
A, such that A ¢ X, implies that X contains a key. The BCNF is stronger
then 3NF in the sense that BCNF restricts transitivity of both prime and

nonprime attributes on the key whereas 3NF restricts transitivity of only



nonprime attributes.

Clearly BCHF implies 3NF since the implication holding for all attri-
butes forces it to hold for non-prime ones as well, Also, 3NF implies 2NF

because if X contains a key it cannot be a proper subset of a key.

In order to find the relationship between normal forms of relations
and digraphs we need to tie such concepts as keys and normal forms in rela-
tional model to similar concepts in digraphs. In the following section a

brief discussion on digraphs is presented,



CHAPTERS-S3

3. Digraphs

A digraph D is a collection of vertices and directed ares. More for=-
mally, a digraph D is represented as D = (V, T, M) where V is the nonempty
set of vertices that participate in the digraph D and T is the set of
directed ares. M is called the directed incidence mapping that maps every
arc of T onto some ordered pair of vertices (Vi,Vj). An arec t is in
digraph D 1iff there is a pair of vertices in V, not necessarly distinct,
such that t originates from one of the vertices of the pair and terminates
on the other. A vertex is denoted by a point and an arec by a line segment
between a pair of vertices (Vi,Vj) with an arrow directed from Vi to Vj.
The symbolism t ~ (v,w) Will be used to denote an arc t originating from v
and directed towards w. An example of a digraph with four vertices and

seven directed arcs is shown in Fig. 1.

A relation can be represented by a digraph. The attributes of a rela-
tion R can be presented as a set of vertices and the functional dependen=-
cies among the attributes can be represented by a set of directed arcs.
Before we endeavour to present a methodology of constructing a digraph from
a given relation we present some terminology describing the local structure
of a directed graph. Only the terminology that are relevant in this

research are described in the following subsection,
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3.1. Ierminology

If in the set of arcs T there exists two ares t1 and t2 such that
t1 ~ (v,w) and t2 ~ (v,w) then t1 and t2 are said to be strictly parallel,
A digraph D contains a loop if there is an arc t ~ (v,w) in T such that
v = W, ie, the originating vertex and the terminal vertex is the saue ver=-
tex in D. A digraph is simple if it does not contain strictly parallel arcs

and any loop.

The sequence of directed arcs followed to reach from one vertex to
another 1is called a path. If it takes a sequence of n arcs t1, t2,....tn,
not necessarily distinct, to reach from vertex v to w we say the path is of
length n. If v = w then the path is said to be a closed path. A simple path
is one in whiech all vertices are distinet. A closed simple path is called a
cycle. A digraph 1is said to be cyclic if it contains at least one cycle
otherwise it is acyclic. A vertex w is reachable from a vertex v if tnere
is a directed path from v to w; in other words if by following a sequence
of directed arcs from v in the direction of the arrows we can reach w then

w is reachable from v.

If one allows traversing of any arc in the wrong direction in travel=-
ing from one vertex to another, one can define semipaths, simple semipaths,

closed semipaths, and semicycles.

The number of arcs originating from a particular vertex is termed the
out-degree of that vertex and the number of arcs terminating on a vertex is
termed the in-degree of that vertex. A vertex with zero in-degree and zero

out=-degree is termed a free or isolated vertex.

The set of all digraphs can be divided into four classes according to
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the degree of connectedness among the vertices, Connectedness is a measure
of interaction among the vertices of a digraph. There are four types of
connectedness, some times called degrees: 1) strong (degree 3),
2) unilateral (degree 2), 3) weak (degree 1), and U) disconnected (degree
0). The following are the definitions of these categories:

SC. A digraph D is called strongly connected iff for every
pair of vertices (v,W) each one is reachable from the other,

UC. A digraph D is unilaterally connected iff, for any pair
of vertices (v,w) at least one is reachable from the other.

WC. A digraph D is weakly connected iff it is not disconnected
and there is at least one pair of vertices (v,w) such that
they are not reachable from each other.

DC. A digraph D is disconnected iff there exists at least one

pair of vertices (v,w) such that there is no path or
semipath connecting the two vertices.

It is clear from the definitions above that SC implies UC,

The minimal set of vertices in a digraph that reach to all other ver-
tices in the digraph is called a vertex basis, A digraph may contain more
than one vertex basis. Orthogonal to the concept of vertex basis is the
concept of contrabasis, The contrabasis of a digraph is the minimal set of
vertices such that all other vertices in the digraph can reach at least one
vertex in that set, In other words contrabasis is the set of vertices each
of which has a zero out-degree, The concept of vertex basis corresponds to
the notion of a key in relational databases in the sense that every attri-
bute in a relation is in the closure of its key and evry vertex in a
digraph is reachable from the vertex basis. A vertex basis containing a
single vertex in it is called a singleton vertex basis, otherwise the basis
is nonsingleton. The concepts of relational databases and the concepts of

digraphs appear to be isomorphic: attributes map to vertices, functional
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dependencies map to directed arcs, and keys map to vertex bases., It is a
natural outcome of this correspondance to expect that the type of normality

of relations would map to the category of connectedness.

In order to investigate the possible relationships between noraal
forms of relations and connectedness in digraphs it is necessary to formal-
ize the construction methodology of digraphs to represent corresponding
relations unambiguously and consistently. In the next subsection we present

such a construction methodology.

3.2. Diagraph Construction

Given a relation R the corresponding digraph D of the relation can be
obtained by execution of a finite number of steps of the methodology
presented in this section. For any relation R = {I,F} the corresponding
digraph D of R is obtained by following the steps below:

1. For every functional dependency Y --> W where Y ¥.I‘and el
decompose the dependency to obtain ¥ —==> W1, .eeeey, ¥ ==> Wn,

where W1, W2, «esee.e , Wn W and are single attributes,

2. For every attribute A € I’ construct a vertex in the digraph and
label it by the name of the attribute for convenience,

3. For every dependency Y ==> Z in F where each Z is a single
attribute do one of the following:

a) If Y is a single attribute draw a directed arc originating
from the vertex representing Y and terminating on the vertex
representing Z.

b) If Y contains more than one attribute then do the following

b1) construct a new vertex for Y and label it distinctly.

b2) draw a directed arc originating from Y and terminating
on Z,

b3) for each attribute A in Y draw a directed arc from Y
to the vertex representing the attribute A.
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bl4) for each set WEY containing more than one attribute
draw a directed arc from Y onto the vertex representing
W iff there is at least one dependency in F of the form
H ==> Z where ZE€T,

The construction methodology described above will produce an unique
digraph D for a relation R. This methodology produces a few more considera-
tions that we need to mention. If a vertex is constructed from the left
hand side of a dependency and contains more then one attribute then it is
termed a Mconcatenated vertex", Each vertex in the digraph that

corresponds to a proper subset of attributes in a concatenated vertex is

termed a "component vertex" of that particular concatenated vertex.

The connectedness of the resulting digraph will fall in one of the
categories defined in the previous section. By obtaining the connectedness
of the digraph and examining the nature of the vertices in the vertex basis
and its characteristics it is possible to assert the type of normality that
would be obtained in the corresponding relation. A set of lemmas have been
presented in the following chapter which are results of a number of obser=-

vations of the relationship between digraphs and relations.
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CHAPTERS-I

4, BRelationship Between Connectedness and Normality

By examining the characteristics of digraphs of the four categories of
connectedness several interesting results were obtained, These results are

explained under the heading of each category.

4.1. Strong Digraphs

If for a relation R the corresponding digraph D is strongly connected

the relation R is always found to be in BCNF. The following lemma is pro=-

posed from this observation.

L A - 13
let R (I" ,F) be a relation where I is the set of attributes and F is

the set of functional dependencies., Then if G is the digraph of R and is
strongly connected then R is in BCNF.

oF :

Suppose the digraph G of R is strongley connected and R is not in
BCNF., Let X be a key in R. Since R is assumed not to be in BCNF then there
exists sets A and B of one or more attributes in R such that A --> B & F+
and A is not a key in R, Therefore X —> 4 but A =/=> X. Then in the
corresponding digraph D of R, A is reachable from X but X is not reachable
from A and therefore D is not strongly connected. This is a contradiction.
Therefore no two sets of attributes A and B with such property exist in R,

and R is in BCNF.
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The lemma above asserts that strongly connected digraphs represent
relations in BCNF but it does not assert that all BCNF always map to
strongly connected digraph. Infact digraphs of other forms may also

represent BCNF relations which are presented in subsequent lemmas,

As an example of the case of strongly connected digraphs, let us con=-
sider a relation R = (I",F) where I" = (AB CDE) and F = {A-->B, B==>C,
C-->ED, E-=->BA, D=-=->E}. The corresponding digraph D is shown in Figure-2.
By examining the digraph it is clear that starting at any vertex one can
reach to all other vertices in the digraph. Therefore each vertex is a
basis., By mapping the basis to the candidate keys in the relation each
attribute in R is a candidate key since all other attrioutes is in its clo-

sure, Hence it is clear that R is in BCNF.

4.2. Unilateral Digraphs

In ¢case of unilateral digraphs, for every pair of vertices at least
one must reach the other, it implies that the basis must be =singleton. If a
digraph of a relation is unilaterally connected containing a concatenated
vertex then that concatenated vertex must be a vertex basis from the fact
that the unilateral digraphs contain singleton vertex basis and there is an
arc terminating on a concatenated vertex only if the attributes in it are a
proper subset of attributes of another concatenated vertex in the same
relation, Any subset of vertices of an unilaterally connected digraph is
also unilaterally connected with a singleton vertex basis. This suggests
the observation that wunilaterally connected digraphs containing con-
catenated vertices must contain extranecus attributes in the concatenated

vertices, The following lemma states this result,
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LEMMA - 23
Let G be the digraph of R(I" ,F) where I is the set of attributes and
F is the set of functional dependencies, Let G be not strongly connected

but unilaterally connected such that G contains concatenated vertices, Then
R (T" ,F) contains extraneous attributes,

PROCF :

Since G contains concatenated vertices then according to the construc-
tion of G, R contains some functional dependencies with more than one
attribute on the left side of the dependencies which map to the con-
catenated vertices of G. Let X be a concatenated vertex in G. Then by con-
struction of G there exists a component vertex for each attribute X1,
X2,....9%n € X, Since G is unilaterally connected there is a component
vertex Xi such that Xi reaches to all other vertices X1, X2;....,%i=1,
Xi+1,...,Xn. Therefore X1, X2,.....,%0 € (¥i)+, But X = (X1, X2,...,%n)

and so X € (Xi)+.

Let A be the right side of the dependency for which X is the left
side. Then A € (X)+. Since X € (Xi)+ so also is (X)+. Therefore A € (Xi)+

and the attributes X-Xi € X are extraneous in the dependency X ==> A,

The Lemma reveals the presence of extraneous attributes in the rela-
tions represented by unilaterally connected digraphs with concatenated ver-
tices in them. It does not assert, however, that relations with extraneous
attributes always map to an unilateral digraph. In actuality a digraph with
concatenated vertices indicate the presence of extraneous atfributes in the
corresponding relation if one of the following two conditions hold:

1) For a concatenated vertex X there is at least one component
vertex Y such that if Z is the set of attributes obtained by
the union of the attributes of the vertices reachable from Y
then X € Z.
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2) Any of the noncomponent vertices reachable from a concat-
enated vertex X through a path length of 1 is also reachable
from any of the component vertices of X.

A unilateral digraph containing concatenated vertices can be reduced
to an equivalent unilateral digraph without any concatenated vertices in
it. According to the proof of Lemma-2, for a concatenated vertex, say
Y=(ABC), there is one component vertex, say A, which reaches to all other
component vertices of Y., If now for every noncomponent vertex which is
reachable from Y through paths of length 1 we draw an arc from A to those
vertices and delete Y and all arcs originating from ¥ then the resulting
digraph will still be unilateral. Figure=3 depicts this situation. The con=-
catenated vertex Y in digraph D is removed and the resulting digraph D' 1is

still unilaterally connected.

Since any unilateral digraph with concatenated vertices can be reduced
to an equivalent unilateral digraph without any concatenated vertices in
it, Lemma=3 will consider only the simpler case of unilateral digraph with

no concatenated vertex,

LEMMA - 3:
Let D be the digraph of relation R(I" ,F) where I" is the set of
attributes and F 1is the set of functional dependencies, Let D be unila-

terally connected and not strongly connected, and has no concatenated ver-
tex in it. Then R(I ,F) is in 2NF.

PROOF :

Suppose R is not in 2NF, then there exists a key X and an attribute A,
not in X, in I" such that ¥i ==> A and Xi < X. In the corresponding digraph
D of R either the basis Xv corresponding to X is not singleton, i.e., Xv is

a set of vertices or the basis vertex Xv corresponding to X is a con-
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Figure 3: Unilateral Digraphs and Elimination of Extraneous
Attributes
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catenated vertex with component vertex Xi, Since the vertex basis of an
unilateral digraph is a singleton vertex, the basis vertex Xv cannot be
nonsingleton. For the later case, Xv in D cannot be a concatenated vertex
since it contradicts that D does not contain any concatenated vertex in it.
Therefore, there exists no such key X and an attribute A in R with the pro-
perty that Xi ==> A and Xi € X eliminating any possibility of a partial

dependence of a nonprime attribute on a key. Therefore, R is in 2NF,.

NQIE .

In a special case of unilateral digraphs with n vertices and n-1 ver=-
tex bases the digraph will represent a relaticn in BCNF. The nonbasis ver-
tex will be in the contrabasis and must represent the only nonprime attri-

bute of the corresponding relation. The left hand sides of all dependen=-
cies are keys in the relation since each of them map to a vertex basis in

the digraph.

4.3. Heak Digraphs

The weakly connected and disconnected cases have more than one
interpretation. Therefore another avenue of approach is considered to
relate these types of digraphs to the types of normality in corresponding
relations. The way the vertices in a particular vertex basis and the ver-
tices in the corresponding contrabasis partitions the whole digraph and the
type of vertex basis (concatenated or nonconcatenated and singleton or non=-
singleton) determines the type of normality to expect in the corresponding
relation, If the vertex basis and the corresponding contrabasis form a par-
tition in the digraph then the type of normality depends on whether the
basis is singleton or not. The following lemma is proposed from this

observation,
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LEMMA - §;

Let the relation R(I" ,F), where I" is the set of attributes and F is
the set functional dependencies, have the weakly connected digraph D such
that the basis and contrabasis are disjoint and forms a partition of the
vertices in D. Then R is in BCNF if the basis is singleton, it is 1NF oth-
erwise.

PROOF :

Suppose R is ﬁot in BCNF and X is a key of R. Since R is assumed not
to be in BCNF then there exist two sets A and B of one or more attributes
such that A --> B and A is not a Kkey. Therefore X ==> A, A -/=> X, and
4 -=> B. In the corresponding digraph D of R, X is in the basis, B is in
the contrabasis but A is neither in the basis nor in the contrabasis,
Therefore the basis and contrabasis do not form a partition of the vertices
in D, This contradicts the requirement that the basis and contrabasis form
a partition in D. Therefore there are no attributes A and B and no key X

with the property that X-->A, A-/->X, and A-->B in R.

Now we need to show that the basis of D must be singleton for R to be
in BCNF. 3Suppose the basis of D is not a singleton vertex. Then there
exists a path from each vertex in the basis to some vertex in the contra=-
basis. In the corresponding relation R there will be functional dependen=-
cies with attributes in each vertex of the basis as left hand side of a
dependency, Now since each basis of a digraph maps to a key in R then there
exists a key X in R such that Xi < X and Xi --> A, where A is some attri-
bute in R. Hence A is partially dependent on key X and R is not in 2NF and

therefore not in BCNF.

With the basis and contrabasis creating a partition eliminates any

transitivity on prime or nonprime attribute as shown in the first half of
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the proof and in addition to the partitioning a singleton vertex basis
eliminates the possibility of partial dependency on the key. Therefore all

dependencies in R are the result of a key and R is in BCNF.

In Figure-4(a) the vertex bésis of the digraph is A and the contra-
basis Cb = (B C D), In Figure-4(b) the vertex basis is Xv = ( A D) and the
contrabasis is Cb = (B C). In both the cases the union of the vertices in
the basis and contrabasis is the whole digraph but the difference is that
the former one is singleton whereas the basis of the later is nonsingleton.
The relation R(I"1,F1) corresponding to Figure-4(a) with I'1 = (A B C D)
and F1 = {A-->BCD} is in BCNF whereas the relation R(I"2,F2) corresponding

to Figure-i(b) with I'2 = (A B C D) and F2 = {A-->BC, D-->B} is in 1NF.

Weakly connected digraphs with disjoint basis and contrabasis where
their union does not equal the digraph, determine the type of relations
they represent depending upon whether the basis is singleton or not as well
as whether the singleton basis is a concatenated vertex or not. Three dif-
ferent cases may arise. The following three lemmas consider these three
cases, All these three lemmas could be designed as three different cases of
a single lemma, The division into three lemmas is to make the proofs of

these lemmas easier.

If the union of vertices in the vertex basis and contrabasis of a
digraph does not constitute the whole digraph then there are vertices in
the digraph which are neither in the vertex basis nor in the contrabasis.
This set of vertices indicate possibility of transitive dependency in the
corresponding relation, Thus 3NF may not be obtained in the relations of
such digraphs. But if the basis is a singleton nonconcatenated vertex then

there exists no possibility of a partial dependency and the corresponding
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relation will be in 2NF. In fact it can be generalised that whenever the
vertex basis of a digraph is a singleton nonconcatenated vertex the
corresponding relation will at least be in 2NF. The following lemma con-

cerning such weakly connected digraphs is motivated by this observation.

LEMMA = 5:

Let the relation R(I',F), with I" as the set of attributes and F as
the set of functional dependencies, have the weak digraph D. Let D have a
disjoint basis and contrabasis such that the union of their vertices does

not equal the total vertices in the digraph and let the basis be a single-
ton nonconcatenated vertex, then R is in 2NF.

ERQQF :

Suppose R is not in 2NF but is in {NF, Let X be a key in R, Since R is
assumed not to be in 2NF then there exists partial dependencies in R.
Therefore there exists an attribute A € I such that Xi-->A where Xi CX,
Therefore X contains more than one attribute in it. In the corresponding
digraph D the vertex basis Xv corresponding to X is either a concatenated
vertex or the basis is not singleton., Both of these contradicts the fact
that the vertex basis is a singleton, nonconcatenated vertex. Therefore
there is no key X in R that contains more than one attribute and hence

there is no partial dependency on the key in R and R is in 2NF.

We now show that R is not in 3NF, Suppose R is in 3NF and X be a key
in R. Then there exist no two nonprime attributes A,B €I such that X-=>4,
A-/=>X, and A-=>B holds in R. In the corresponding digraph D of R there is
no vertex corresponding to such an attribute A that is neither in the basis
nor in the contrabasis, In other words, the basis and contrabasis form a
partition in D. But this is a contradiction since then the union of the

vertices in the vertex basis and the vertices in the contrabasis will con-
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stitute the whole digraph, Therefore there must at least be one vertex in D
which is not a member of the vertex basis nor is it a member of the contra-
basis, and thus introduces a transitivity involoving the key in R and two

nonprime attributes in R, Therefore R is not in 3NF.

As an illustration of the result we consider the relation R(I;F) with
I = (A B C D E) and F = {A-->DE, B-=->DA, D==>C}. Figure-5 shows the
corresponding digraph D, The vertex basis is B and the contrabais 1is
Cb = (CE). The vertices A and D are non prime and constitutes a transi-
tivity of the vertices C and E on the key., The relation is thus not in 3NF

but clearly is in 2NF.

If the vertex basis is a singleton, . concatenated vertex then for
weakly connected digraphs, with disjoint basis and contrabasis, the
corresponding relation will be in 2NF only if there is no arc from any of
the component vertices to any noncomponent vertex of the corresponding con-
catenated vertex basis. This restricts all the component vertices to be in
the set that forms the contrabasis. This assures no partial dependency in
the relation that the digraph represents. The following lemma is motivated

from this analysis.

Let the relation R(I",F), with the set of attributes 1 and set of
functional dependencies F, have the weak digraph D with disjoint basis and
contrabasis such that the union of their vertices does not equal the total
vertices in the digraph. Let the basis be a singleton, concatenated vertex
with the component vertices in the contrabasis, then R is only in 2NF.

Suppose R is not in 2NF and let X be a key in R. There exists an

attribute A€ I such that Xi-=->A &€ F+ where Xi <€ X. Then in the
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corresponding digraph D there 1s a directed path from vertex Xi to the ver-
tex representing the attribute A. According to the construction of D there
is a directed are from X to its component vertex Xi. Hence, .there is a path
from X to A on which Xi appears. By the definition of contrabasis, Xi can-
not be a member of the contrabasis, This contradicts the fact that all the
component vertices of the concatenated vertex basis is in the contrabasis.
Therefore there is no attribute A in R with the property that for some

XicX, Xi-->A € F+, Therefore R(I",F) is in 2NF,

If the vertex basis of the digraph is a concatenated vertex and all of
its component vertices are in the contrabasis the relation it represents is
in INF. The corresponding key in the relation will be the left side of a
dependency containing more than one attribute. For each component vertex,
which is not in the contrabasis, there would be a dependency in the rela-
tion with the attributes of the component vertex on the left hand side.
This set of attributes is a subset of the key. Therefore the relation con-

tains a partial dependency.

The two situations are illustrated in Figure-6. In digraph D1 the ver-
tex basis is Xv = (AC), and it is a concatenated vertex. The contrabasis is
Cb = (AGFCK). Both the component vertices, A and C, are in the contra-
basis eliminating any possibility of partial dependency of nonprime attri-
butes on either A or C. In digraph D2 the vertex basis is Xv = (MP) and is
a concatenated vertex. The contrabasis is Cb = (M L.0 N). The component
vertex P is not a member of the contrabasis., In the relation R(I' ,F)
represented by the digraph the key is (MP) and F = {MP -=> L, P —=> ON}.
Hence the nonprimes O and N are partially dependent on the key MP. The

relation, therefore, is in 1NF.
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The vertex basis of a digraph is a set of vertices each with a nonzero
out=degree except in case of disconnected digraph. Disconnected digraphs
will be discussed later. Each vertex with a nonzero out-degree, by the con-
struction of the digraph, is the left side of some functional dependency
that holds in the relation it represents, If the vertex basis Xv of a
digraph is not singleton then the set of attributes in the key of the rela=-
tion, to which the basis maps, is a union of the attributes on the left
side of two or more functional dependencies, This obviously means that the
relation exhibits partial dependency. In fact since the vertex basis of
both strongly connected and unilaterally connected digraphs is always sin-
gleton this situation may occur only in cases of weakly connected and
disconnected digraphs, The following lemma concerning weak digraphs is

based upon this fact.

LEMMA - 7:
Let R(T ,F) be a relation with the digraph D. Let D have a disjoint

basis and contrabasis with the basis being nonsingleton, .then R is only in
1NF.

OQF_:

Since the domains of all attributes are considered simple then either
R 1is in 1NF or in some higher normal form. We only need to show that R is

not in 2NF.

Suppose R is in 2NF and let X be a key in R. Then there is no attri-
bute A € I such that Xi --> A € F+ where Xi € X. For that case in the
corresponding digraph D of R there is no path of length 1 or more from the
vertex representing Xi, a member or a component of the corresponding basis

Xv, to any vertex A not in the basis. Then either Xv is a singleton noncon-
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catenated vertex in which case no Xi vertex exists in Xv or Xv is a single-
ton concatenated vertex with all component vertices in the contrabasis.
Either of these conditions contradicts the fact that the basis Xv is not

singleton. Therfore R is not in 2NF.

Disconnected digraphs also show the same behavior whenever the vertex
basis is not singleton, The digraph in Figure-li(b) is weakly connected
since vertices A and D are not reachable from each other. The vertex. basis
is Xv = (A D) and the contrabasis is Cb = (B C). The relation represented
by this digraph is R(I",F) with I'= (A B C D) and F = {A --> BC, D —> B}.
The only key in the relation is AD which clearly shows the existence of

partial dependency of both B and C on the key.

4.4, Disconnected Digraph

All of the lemmas presented concerns digraphs which are connected.
Connected digraphs, however, cannot handle attributes in the relation which
are neither dependent on any attribute nor do functionally determine the
value of any other attribute., These attributes create disconnected
digraphs, Considering the interactions among the attributes a disconnected

digraph can have any of the following combinations of structural elements:

a) all n vertices each with zero in-degree and zero out-degree

b) m vertices with zero in-degree and zero out-degree and one or
more groups of connected vertices such that none of n-m vertices
participates in more than one group of connected vertices.

¢) two or more groups of connected vertices, D1, D2, ....,Dn, .
such that each of n vertices participates in exactly one
connected group.

In Figure-7 one example for each type of disconnected digraph is

presented. In the digraph Da, corresponding to case (a), no pair of
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vertices is connected. The basis and contrabasis are same, Xv = Cb = (A B C
D). They form a duobasis, Since the vertex basis maps to a key in the rela-
tion, the key contains all of the attributes in the relation and the rela-

tion is in BCNF by default.

LEMMA - 8:
Let D be the digraph of relation R(I" ,F), with the set of attributes T

and the set of functional dependencies F, Let D be a disconnected digraph
such that R is its own duobasis., Then R is in BCNF.

Since R is its own doubasis then the basis and contrabasis are the
same, Then all the attributes in the corresponding relation participate in
the vertex basis., Therefore the key in the relation contains all the attri=-
butes of the relation., Since there is no nonprime attribute the relation R

is in BCNF.

In Figure-7 digraphs Db and De, examples of case (b) and case (ec)
respectively, indicate that 4in case (b) and in case (c¢) the vertex basis
cannot be singleton, In digraph Db of Figure-7 the vertex basis Xv = (A F
C) and contrabasis Cb = (B). The key in the corresponding relation is AFC,
Attributes B and C are then certainly partially dependent on the Kkey. A
similar situation exists in digraph De, The vertex basis Xv = (A G) and
contrabasis Cb = (C D F). The only difference is that in digraph D¢ there
is no attribute with in-degree and out-degree both zero. By lemma-7 the

relations corresponding to digraph Db and De are in 1NF.

In fact, whenever a disconnected digraph contains groups of connected
vertices the digraph and thus the corresponding relation can be decomposed

into component digraphs. At most one of the component digraphs may remain
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disconnected containing all the isolated or the free vertices and nothing
else, Steps ¢ and d below for a decomposition can be followed in any order:

a) Set n to the number of vertices in the digraph.
b) Set m to the number of isolated vertices in the digraph.

e) If m = 0 then go to step-b else do the following
1) Create digraph D1 such that number of vertices Nd = 0
2) For each vertex A with in-degree = out-degree = 0 introduce
A in the digraph D1 and set Nd = Nd + 1, When Nd = m go
to step-b,
d) For the n-m connected vertices create digraphs D2, D3,....,Dn
such that each D1+i for i = 1 to n-1 map to a group of connec=
ted vertices,
Combining all the isolated vertices in one digraph will produce a BCNF
relation, The connectivity of the digraphs formed from the sets of con-
nected vertices will fall in any of the three previously discussed

categories and the corresponding relation can be analysed using the lemmas

presented,
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4.5. Normalization of Relations Through Dizraph Representation

In Bernstien's algorithms for normalization of relations, free or iso-
lated attributes are lost from the data base during the process of syn=-
thesis as extraneous attributes, Such relations presented as digraphs will
create disconnected digraphs, Analysis of these relations through discon-
nected digraph representation will prevent elemination of these attributes

from the data base and eliminate inadvertent loss of informations.,

Normalization of relations is possible through analysis of the
digraphs of relations. The conditions that must hold in a digraph for
existence of extraneous attributes in the relation it represents have been
discussed in section-4.2., The elimination of these undesirable properties

from the digraphs is also very simple.

It has been observed that redundant functional dependencies may exist
in a relation only if in its digraph at least one pair of vertices are K-
connected, where K > 1. In other words, if one of the vertices of the pair
is reachable from the other through more than one path. In such cases

redundancy exists iff one of the paths is of length one.

More formally stated, a functional dependency X —> Y between two sets

of attributes X and Y is redundant iff in its digraph D

a) there is an arc originating from X and terminating on Y and

b) Y is reachable from X through a path of length > 1.

This form of redundancy can be eliminated by simply deleting the arc from X

to I and incorporating the equivalent change in the corresponding relation,

Deo (1974) discussed the techniques of identifying the connectivity of
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a digraph by representing the digraph through its adjacency matrix or some
times called relation matrix in the calculus of relations, The author also
presents an algorithm for finding the components of a disconnected digraph

and then examining the connectivity of each component.

Decomposition of a relation into BCNF is possible through decomposi-
tion of the digraph of the relation intc strongly connected components,
Let D= (V,T) be a digraph with vertex set V and arc set T. Ds=(Vs,Ts) is a
generated subgraph of D iff; 1) Vs is a subset of V; and 2) Ts is the set
of all arcs in T connecting the vertices in Vs. A generated subgraph is a
maximal strongly connected component or some times called a fragment, if it
is strongly connected and no superset of the vertices is also strongly con=
nected, Since astrongly connected digraphs represents relations in BCNF,
finding the strongly connected components of the digraph of a relation is a
easy way of decomposing the relation into BCNF relations., Tarjan (1972)
presented an algorithm for decomposing a digraph into strongly connected

components,

Similarly, decomposition into wunilateral components can result in

decomposing the relation into a set of 2NF relations.
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CHAPTER=5

5. Summary and Conclusion

This research is an effort to explore the possibility of explaining
the relational model of data through graph theoretic notations. It is pos-
sible to tie the concepts of data base relations to the concepts in
directed graph theory. Structural mapping between the two can be defined by
1) mapping attributes into digraph vertices; 2) functional dependencies
into arcs connecting pairs of vertices; and 3) candidate keys into vertex
bases. A methodology for constructing a digraph from.the set of attributes
and functional dependencies of a relation is presented. This methodology

will produce an unique digraph for a given relaticn.

Digraphs are classified into four categories according to the connec=
tivity of vertices. These éategories are: 1) strong digraphs, 2) unilateral
digraphs, 3) weak digraphs, and Y4) disconnected digraphs. It is possible to
predict the normality that exists in a relation by examining the connec-
tivity of its digraph and properties of its basis and contrabasis, The
union of the attributes in the vertex bases represents the set of prime
attributes in the relation and each basis represents a candidate key of the
relation, whereas contrabasis represents the set of attributes each of
which does not appear in the left hand side of any dependency indepen-
dently. Several lemmas were presented which formalized the relationship
between the connectivity of digraphs and the normality of the corresponding
relations, Strong digraphs alqays represent relations in BCNF, Unilateral

digraphs represent relations in 2NF. The cases of weak digraphs and
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disconnected digraphs are complex. Whenever the basis and contrabasis par=-
titions the set of vertices and the basis is singleton the corresponding
relation is in BCNF. Whenever the basis is not singleton the relation is in
1NF. Disconnected digraphs indicate the necessity of decomposition of the

relation through decomposition of its digraph into connected components.

The necessary conditions that must hold in a digraph to indicate the
presence of extraneous attributes in the dependencies of the relation and
the conditions for existence of redundant functional dependencies were dis-
cussed. The process of elimination of these undesirable properties is very

easy.

There are many other areas for further research., For example, it would
be worthwhile ¢trying to develope efficient algorithms to decompose a
digraph into components that will result in a decomposition of the relation
into BCNF and still preserve the dependencies and reconstructibilty. It is
possible to develop computer algorithms to detect and eliminate extraneous
attributes and redundant functional dependencies by examining the adjacency

matrix of the digraph.

Present research does not include multivalued dependencies among
attributes. Further research can be performed to investigate the possible

representation of multivalued dependencies in graph theoretic notations,
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The Relational Data Model is based on set theoretic notation, It has
been subjected to extensive mathematical treatment by recent database
theorists, But instead of only abstract mathematical treatment a graphical
representation of the relation will always help the designer view the
interactions among the attributes and can reveal informations otherwise
incomprehensible due either to size or complexity of the database, The
present research investigated possible relationships between graph
theoretic notations and relational data model.LIt has been observed that
attributes in a relation can be mapped to vertices in the corresponding
digraph, the functional dependencies can be mapped to directed edges, .and

the keys in the relation can be mapped to vertex bases in the digraph.

Interesting relationships were observed between connectedness in
digraphs and normal forms of the corresponding reltions, The relations with
strong digraphs are always in BCNF whereas the relations with unilateral
digraph are always in 2NF. The relations with weak or disconnected digraphs
may result in various normal forms but can still be classified considering
the type of their vertex bases and contrabasis. The analysis of relational
data bases through adjacency matrix of the corresponding set digraphs is
possible, The attributes in a relation which do not bear any dependency
with any other attribute of the relation are lost during the process of
synthesis by Bernstien's algorithms. These attributes map to isolated ver-
tices in disconnected digraphs a;d may be possible to retain them in the
normalised data base if analysed through adjacency matrix of the

corresponding digraphsa,

The detection of extraneous attributes and redundant functional depen-

dencies are rather easy tasks and their elimination is simple,



