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Abstract

The web contains a massive amount of information and is continuously growing every

day. Extracting information that is relevant to a user is an uphill task. Search engines like

Google TM , Yahoo! TM have made the task a lot easier and have indeed made people much

more “smarter”. However, most of the existing search engines still rely on the traditional

keyword-based searching techniques i.e. returning documents that contain the keywords in

the query. They do not take the associated semantics into consideration.

To incorporate semantics into search, one could proceed in at least two ways. Firstly,

we could plunge into the world of “Semantic Web”, where the information is represented in

formal formats such as RDF, N3 etc which can effectively capture the associated semantics

in the documents. Secondly, we could try to explore a new semantic world in the existing

structure of World Wide Web (WWW). While the first approach can be very effective when

semantic information is available in RDF/N3 formats, for many web pages such information

is not readily available. This is why we consider the second approach in this work.

In this work, we attempt to capture the semantics associated with a query by first

extracting the concepts relevant to the query. For this purpose, we propose a novel Link

Analysis based Concept Extractor (LACE) that extract the concepts associated with the

query by exploiting the meta data of a web page. Next, we propose a method to determine

relationships between a query and its extracted concepts. Finally, we show how LACE can

be used to compute a statistical measure of semantic similarity between concepts. At each

step, we evaluate our approach by comparison with other existing techniques (on benchmark

datasets, when available) and show that our results are competitive with existing state of

the art results or even outperform them.
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Chapter 1

Introduction

The advent of World Wide Web (WWW) has imposed a deep impact on our way of thinking

and our perspective of ”information”. It was not long ago when people faced problems

because there was not sufficient information available. However, with World Wide Web,

we now face the problem of information explosion. It has become very important to devise

techniques that can be used to extract information that is “relevant” to the user. Search

engines such as GoogleTM , YahooTM have solved this problem to an extent and have provided

indeed smarter solutions to the problem of information extraction. Even though successful,

these search engines until date, are mostly based on plain keyword based searching and

return documents that contain the word present in the query posted by the user. They do

not take the semantics associated with the query into consideration. However, recently top

search engines such as GoogleTM have started working towards displaying results considering

the semantics of the query. For example, if we search on Google for “∼ mobile”, we get

“nokia.com” as the topmost hit.

This work aims to provide a “semantic” touch to modern information retrieval tech-

niques. The power of semantics can be exploited in at least two ways. Firstly, we can

capture semantics by letting our search engine work on documents formally represented in

forms such as RDF, N3 etc which are the de facto standards for representation in the seman-

tic world. The data in such formats can be queried efficiently using formal languages like

SPARQL. Moreover, an inference engine can also generate useful “non-obvious” inferences
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from the data.

Alternatively, we can explore opportunities to infer semantics from the current structure

of the World Wide Web. Because of lack of semantic data available in appropriate formats,

we decided to move with the second approach. We exploit the power of existing search

engines and use the Web as the main knowledge base for all our approaches.

In order to capture the semantics associated with the query, we propose a Link Analy-

sis based Concept Extractor (LACE) that extracts concepts related to a query posted by

the user and generates a concept cloud for the query. After we extract a set of related

concepts to the query, we determine their relationships to the original query. In order to

determine these relationships, we propose to use a collection of three well known knowledge

bases namely, WordNet, Wikipedia and Web Directories. We use Wordnet and Wikipedia

to determine synonym relationships and Web Directories to determine other types of rela-

tionships between words, if found that they are not synonyms of each other. Finally, we

also propose LACE to quantify the semantic relatedness between words. To do that, we

compute the similarity between the concept clouds generated by LACE for the two words to

determine a statistical measure of semantic similarity between them. For each of the above

proposed methods, we perform a comprehensive evaluation by comparison with the existing

techniques to prove that they outperform all of them and also handle some of their flaws.

The rest of the thesis is organized as follows. Chapter 2 gives an introduction of LACE

and shows how it can be used to generate concepts related to the query. Chapter 3 deals with

determining the relationship between the generated concepts and the posted query. Chapter

4 demonstrates the use of LACE to compute degree of semantic relatedness between two

words. Conclusions of the work and some future directions for research are provided in

Chapter 5.
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Chapter 2

Extracting Semantically Related
Concepts

The problem of identifying concepts semantically related to a set of keywords has received a

lot of attention in the recent years. Solutions to this problem can be useful for many practical

applications, from query reformulation in information retrieval to text categorization. In

this chapter, we present a Link Analysis based Concept Extractor (LACE) that identifies

concepts semantically related to a given keyword query. Our approach exploits the richness

of the web as well as the power of top search engines, and combines them with the elegance

of PageRank to obtain high quality results. In particular, the inclusion of PageRank ensures

that the extracted concepts come from high quality pages. A comparison of our method

to other “state of the art” concept detection methods shows that LACE produces results

similar or better than those produced by other methods. At the same time, LACE addresses

some of the limitations of the previous approaches.

2.1 Background and motivation

Keywords and concepts share a many-to-many relationship [Ozcan and Aslandogan, 2005].

That is, a particular keyword can belong to many concepts and similarly, a particular concept

can be represented by several words. Usually, user queries are short and ambiguous, making

the task of differentiating between the relevant and the irrelevant information very difficult.
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Techniques for identifying concepts semantically related to a set of keywords can be very

useful for this and other applications, as described below:

• Knowledge of semantically related concepts can result in better precision and recall,

when answering a user query. This can be achieved by refocusing the search, so

that the retrieved documents do not simply contain the user keywords, however the

meaning intended by the user, hence, eliminating results that do not match the related

concepts.

• Semantically related concepts can also be used for text clustering and categorization

[Hotho et al., 2003; Xu and Gong, 2004]. Similar concepts are, in a broader sense, the

categories into which the generated results can be grouped.

• Furthermore, we can address the problem of ambiguity of keywords by handling the

ambiguous word(s) in the context of the neighbors [Canas et al., 2003; Lee et al., 2000].

• At last, concepts related to the query issued by the user can be used to identify and

display only the most relevant advertisements.

2.2 Related work

The problem of identifying semantically related concepts from keywords has received con-

siderable attention in the last few years, and as a result, has seen continuous improvements.

The initial work on predicting semantic relatedness and deriving similar concepts was

done using existing lexical databases such as Roger’s Thesaurus [Jarmasz and Szpakow-

icz, 2003] and WordNet [Banerjee and Pedersen, 2003; Finkelstein et al., 2002; Wu and

Palmer, 1994]. However, Strube and Ponzetto [2005] have shown that Wikipedia can easily

outperform WordNet in calculating the semantic similarity, when a variety of approaches

to semantic relatedness, including paths in graph and the text content in the articles, are

employed.
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In fact, Wikipedia has been used as a source of concepts by many researchers. Syed

et al. [2008] have used the articles from Wikipedia along with the category and link graphs

to identify concepts which are common to a set of documents. The category graph in

Wikipedia helps to predict the general concepts, whereas the article link graph can be used

to predict concepts which are not in the category graph. Gabrilovich and Markovitch [2007]

have proposed an approach called “Explicit Semantic Analysis (ESA)” in which concepts

derived from Wikipedia are used to represent the meaning of any text and compute the

semantic relatedness between parts of natural language text. In particular, machine learning

techniques are used to “explicitly” represent the meaning of any text as a weighted vector.

According to Gabrilovich and Markovitch [2007], the ESA results are better than the results

of other existing state of art approaches. Milne [2007] has used an approach similar to the

ESA approach. In Milne’s approach, the semantic relatedness between terms is computed

on the basis of links found between terms’ corresponding articles on Wikipedia, however the

underlying text within an article is not processed. Although successful, the above approaches

make use of Wikipedia as knowledge base, and thus, face the following issues: (1) Not every

word has a category graph associated with it; (2) Links from a relevant document may not

always point to another relevant document.

The technique of link analysis has been widely used to tackle a variety of problems. Cai

et al. [2004] have used it to extract the semantics of a web page, by first dividing a web page

into blocks using vision-based segmentation, followed by the creation of a semantic graph,

where each node represents exactly one semantic topic. Nakayama et al. [2008b] have applied

a similar approach to the link structure of Wikipedia to extract the semantic relationships

between terms. Moreover, link analysis has also been used for query reformulation and

query expansion purposes.

Our approach is similar in spirit to the approach proposed by Leelapatra and Netisopakul

[2008], who have used the HITS algorithm for the purpose of query expansion. One main

difference is that we use the PageRank algorithm to extract concepts related to the given
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query keywords, as the effectiveness of PageRank to compute semantic relatedness has

already been demonstrated by its use on existing lexical databases [Mihalcea et al., 2004].

In case the relatedness results need to be further used for query expansion or reformulation,

we also show how to minimize the amount of computation to be done after the query is

issued by the user, so that the final results can be returned as quickly as possible. However,

as described in the Chapter 1, the relatedness results can be used with other applications

as well. In addition to the related concepts, we also return the PageRank scores of the

corresponding web pages to ensure that concepts from high-quality web pages receive higher

weighs compared to the weights of the concepts from lower quality web pages. To the best

of our knowledge, a link analysis approach over the whole web graph structure, making

use of PageRank and meta data of a web page, has not yet been used for the purpose of

identification of related concepts to a given query.

2.3 Link Analysis based Concept Extractor (LACE)

The steps of the concept extraction process are shown in Figure 2.1. The process starts by

taking a query (i.e., set of keywords) from a user via the User Interface as shown in Figure

2.7 and Figure 2.8. The Query Reformulation module constructs various combinations of

keywords for the given query. To understand the importance of this step, consider the

following scenario: two users, user A and user B, are interested in learning about the

president of USA.

User A enters the keywords “President USA”, whereas user B enters the keywords “USA

President”. Surprisingly, by analyzing the top 10 results returned by GoogleTM for the two

searches, we see that a simple word swap results in three unique relevant links in each search.

Hence, by considering all possible combinations of keywords, we ensure that a larger area

in the concept space, relevant to the given query, is covered. Hence, in the above example,

the output of Query Reformulator is President USA USA President. Once the initial query

is reformulated, in the next step of the process, the Link Extractor feeds all possible query

6



Figure 2.1: Concept extraction pipeline

Figure 2.2: Output of Link extractor

reformulations to a search engine and extracts the resulting links, thus creating a document

corpus (which is stored locally). Yahoo!TM Search engine was used at this step. The number

of pages to be extracted for each possible query formulation can be set by the user. The

output for the link extractor is as shown in Figure 2.2. The created document corpus

is accessed by the PageRank Calculator module, which extracts the links associated with

the documents in the corpus and first creates a graph from them. It then calculates the

7



Figure 2.3: Output of PageRank calculator

PageRank scores from this graph. The default PageRank values for each of the web pages

is 1. The output for the PageRank Calculator for the query “President USA” is as shown

in Figure 2.3. For the given query, in the created graph for a set of 30 web pages(top

30 extracted results), 15 were found to be interlinked. Next, the Term Extractor module

extracts the terms from the top n pages (i.e., those with highest PageRank scores). The

parameter n can also be set by the user. Its default value is 5. Rather than extracting all

terms from the text of a web page, we exploit the meta information of a web page. More

precisely, we extract the meta keywords along with the title of a web page, as preliminary

experimentation with the system has shown that these terms capture the context of a web

page in most cases. The output for Term Extractor module for the given example is as

shown in Figure 2.4. The terms collected by the Term Extractor are next sent to the Weight

Calculator module. This module uses the PageRank scores of the corresponding web pages

to calculate the weights of the terms. Specifically, the weight of a term is calculated as

follows: Let t be a term and wt the weight corresponding to the term. Let Pi denote the

PageRank score of the web page i containing the term t. Let k be the number of web

pages containing the term t. Then: wt =

(∑k
i=1 Pi

)
N

, where N denotes the total number of

documents in the document corpus. Finally, the Concept Ranker module ranks the terms

8



Figure 2.4: Output of Term extractor

in the descending order of their weights. The number of concepts to be displayed depends

on the threshold value set by the user. The Concept Ranker module takes the concepts and

their weights as input and ranks them in decreasing order of their weights. The output for

the Weight Calculator and Concept Ranker module is as shown in Figure 2.5.

In order to speed up the retrieval of the results, we propose to crawl the pages offline and

calculate the PageRank scores before taking the query from the user. Figure 2.2 specifies

the architecture of such a model. It is assisted by a Crawler that can crawl a large number

of web pages for a specific domain from a knowledge base (e.g., DMOZ) and then feeds the

collected corpus to the Graph Builder. The Graph Builder creates a graph from the corpus

by accounting for all incoming and outgoing links from each web page. The created graph is

then fed to the PageRank Calculator module, which calculates the PageRank for each web

page as follows: Let A be a web page in the collection. The PageRank of A is calculated

recursively by the PageRank of the pages that point to A. That is,

PR(A) =
(1− d)

N
+ d

n∑
i=1

PR(wi)

C(wi)

9



Figure 2.5: Output of Weight calculator and Concept ranker

where w1, w2, · · · , wn specify the pages that point to the page A, PR(wi) denotes the PageR-

ank of the web page wi and C(wi) denotes the number of outgoing links from the page. The

PageRank algorithm is based on a random surfer model. This model assumes an imaginary

surfer who randomly goes from one link to another on a webpage. The probability of the

person continuing is given by the damping factor ’d’. Since the surfer jumps to another

page at random after he stopped clicking links, the probability therefore is implemented as

a constant (1-d) into the algorithm. In our system, the value of d is set to 0.85.

Our current implementation is based on the architecture shown in Figure 2.1. However,

if the PageRank Scorer system shown in Figure 2.2 would be implemented, the PageRank

Calculator module in Figure 2.1 would be replaced by the PageRank Scorer system in Figure

2.2. The benefit of the architecture in Figure 2.2 is that we get a better connectivity of

the graph as we now consider a larger set of links to form the graph. Hence, the PageRank

scores are more reliable.

10



Figure 2.6: The PageRank scorer system

Figure 2.7: LACE web interface. The user can post the query using the interface and
extract associated concepts to the query

11



Figure 2.8: Output of LACE for the query “Chicago”. The semantically related concepts
to the query are displayed to the user

12



2.4 Experimental design and results

To evaluate our approach, we conducted six experiments, each experiment aiming at testing

the system under a different scenario. In the first experiment, we used a single well-defined

concept as the query. In the second experiment, we provided the system with similar key-

words from a specific domain. In the third experiment, we tested the system by providing

the name of a person as the query. In the fourth experiment, we provided a query with a

spelling error in it. The goal of the fifth experiment was to test the ability of the system

to perform word sense disambiguation. In the last experiment, we tested the ability of the

system to find concepts related to a considerably long query. More details on the six experi-

ments are provided below. The results for the experiments are presented in Table 1 to Table

6, respectively. For each of the results, we see that as we move down in the ranking list, the

extracted concepts become less relevant to the original query. Further experimentation can

be carried out in order to determine the best threshold value for the concepts. The results

for the concept data collected is as of March 9th, 2009.

Query = “Flu”

1 Influenza
2 Flu
3 Flu shot
4 Flu vaccine
5 Avian flu
6 Cold
7 Acetaminophen
8 Amantadine
9 Antigenic drift
10 Antigenic shift

Query = “Mars Venus Earth”

1 Mars
2 Earth
3 Moon
4 Sun
5 Jupiter
6 Mercury
7 Neptune
8 Pluto
9 Saturn
10 Solar System

Table 1: Single-word query Table 2: Set-based query

13



Experiment 1: Single-word specific query

In this basic experiment, we tested our system on a single-word query, specifically “Flu”.

Concepts related to “Flu” were extracted. The results of the experiment are shown in Table

1.

Experiment 2: Set-based query

In the second experiment, the system was tested on a query formed with similar keywords

belonging to a single specific domain. The purpose of this experiment was to simulate the

behavior of Google Sets1. For example, for the query “Mars Venus Earth”, the common

domain is “Heavenly bodies”. We expect the system to give us the names of other heavenly

bodies, as they belong to the same domain. The results are shown in Table 2 and they are

comparable with the results obtained with Google Sets.

Experiment 3: Name query

In this experiment, we provided the system with the name of a person and expected to

extract all possible concepts which are related to that person. For example, the input in

this experiment was ”Christopher Manning IR”.

Query = “Christopher Manning IR”

1 Chris manning
2 Christopher d. manning
3 Computer science
4 Data mining
5 Ergativity: argument structure and grammatical relations
6 Foundations of statistical natural language processing
7 Introduction to information retrieval
8 IRS
9 Retrieval
10 Search

Table 3: Name query

1http://labs.google.com/sets
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Query = “Contectiivtis”

1 Conjunctivitis
2 Pinkeye
3 Allergic conjunctivitis
4 Chlamydia
5 Eye infection
6 Infectious
7 Bacterial conjunctivitis
8 Eyelid
9 Infectious
10 Itching

Table 4: Misspelled-word query

He is the first author of an information retrieval textbook. We expect the related concepts

to include his field of study, his publications topics or any other concepts related to him.

The results of this query are displayed in Table 3.

Experiment 4: Misspelled-word query

In this experiment, we provided the system with a query consisting of a misspelled word

and analyzed its behavior on such an input. As expected, the system was able to determine

Query = ”Leopard OS”

1 Apple
2 Leopard
3 Mac OS X
4 Mac OS History
5 Operating System
6 32-bit
7 64-bit
8 Software
9 .mac
10 10.5

Query = ”Leopard Animal”

1 Animals
2 Leopard
3 Snow Leopard
4 Mammals
5 Wildlife
6 Aardwolf
7 Acinonyx
8 Reptiles
9 Snakes
10 2005

Table 5: Ambiguous word query
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Query = ”New York Statue of Liberty Manhattan”

1 Statue of liberty
2 Ellis island
3 Liberty
4 New york tour
5 New york city
6 Staten island
7 Statue of liberty ticket
8 Tourism
9 Travel
10 Tickets

Table 6: Long Query

the correct version of the query and to extract concepts related to the correct version.

The results of such a query, specifically “Contectiivtis”, which is a misspelling of the term

“Conjunctivitis”, are displayed in Table 4.

Experiment 5: Ambiguous word query

In the fifth experiment, we tested the power of our system to analyze the meaning of an

ambiguous word on the basis of its neighbors. For example, in the given query, the term

“Leopard” is an ambiguous term as it can refer to an operating system as well as an animal.

As expected, our system is able to accurately extract concepts related to the term “Leopard”

on the basis of its neighboring terms. The results are shown in Table 5.

Experiment 6: Long query

In this final experiment, the system was tested on a longer query and was expected to

extract concepts which are related to all the terms in the query and not just a few of them.

The results for this experiment are shown in Table 6.
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2.5 Comparison with other approaches

In addition to the evaluation described in the previous section, we also compared our sys-

tem, LACE, with two other similar existing “state of the art” systems, specifically ESA

[Gabrilovich and Markovitch, 2007] and WikiRelate! [Strube and Ponzetto, 2005], along

several dimensions. The comparison is shown in Table 7.

Criteria LACE ESA Wiki

KB specific No Yes Yes
Error correction Yes No No
Length of query Multiple Multiple Single
Handle name query Many Few Few

Table 7: Comparison with other approaches

As we can see, LACE not only provides results which are comparable to the results

provided by other similar concept detection systems, however it is also able to handle some

of the limitations of these approaches. The biggest strength of LACE is that it is not

dependent on a single knowledge base. Therefore, in theory, it should work on an “infinite”

vocabulary. Moreover, as our results show, LACE is capable of handling errors in the

user query and also gives accurate results for considerably long queries. Lastly, it also has

the capability to generate results for many name queries, which other concept detection

algorithms are not able to do as their vocabulary is limited (e.g., to names described in

Wikipedia). LACE is able to extract concepts for many name queries, as there is always

a higher probability to find information about any person on the web than in any specific

vocabulary such as Wikipedia.

2.6 Discussion

The effectiveness of the proposed method has been proved by comparing it to other “state

of art” concept detection algorithms. Our approach has the following advantages :

• It is not specific to a particular knowledge base such as Wikipedia or WordNet as we

use the web as our underlying knowledge base.
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• It is capable of handling the user spelling mistakes made when providing the input to

the system.

• There is no limit on the length of the query to be fed in by the user.

• The inclusion of PageRank scores in calculation of weights of concepts makes our

approach resistant against techniques such as “keyword stuffing”, which are sometimes

employed by web pages to achieve a higher rank in search results.

• It is a simple approach with high quality results which are comparable to the results

of other “state of the art” approaches.

In our approach, we have used the meta information of a web page for extraction of

concepts, as we have observed that the meta tags capture the context of a web page well

in most cases. However, in few other cases, with techniques such as “keyword stuffing”,

misleading keywords can easily be inserted into the meta tags of a web page. We implicitly

handle this issue in two ways. Firstly, our system is based on the results returned by existing

search engines and modern search engines have the capability to combat such techniques.

Secondly, our system is based on the PageRank approach. Hence, we do value concepts

from high quality pages more than concepts from lower quality pages. Therefore, in every

case, we ensure that only the best quality results are returned to the user.
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Chapter 3

Predicting relationships between pair
of words

In the previous chapter, we showed how search engines and PageRank can be used to

determine semantically related concepts to the query. In this chapter, we propose R-LACE

i.e. Relationship predictor LACE that finds the relationships between the generated concepts

and the given query and represents them in the form of a graph. Moreover, it also stores

the generated results formally, in the form of RDF triples, to enable better inferences from

them as compared to a traditional search engine. We evaluate our system by comparing it

with other similar ’state of art’ relationship identification systems and prove that R-LACE

produces results which are either similar or better than those generated by these systems.

3.1 Background and motivation

The Semantic Web is an extension of the present web, with the representation of the in-

formation in machine readable format. It can be seen as a platform for information and

knowledge exchange for both, humans and machines [Minack et al., 2008]. It involves adding

’metadata’ to the existing information and express it in more formal structures such as RDF

and FOAF. RDF, schemas and inference languages represent all the data in the form of a

huge database that can be queried efficiently using languages such as SPARQL. The World

Wide Web is the present whereas the Semantic Web is the future. Both hold immense
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potential in them and this is the reason why the problem of developing a bridge between

the two has allured a lot of researchers.

3.2 Related work

Accurately determining relationships between words can be useful in a wide range of appli-

cations such as query expansion [Buckley et al., 1994; Mitra et al., 1998; Vlez et al., 1997]

in which the synonymous words can be used to modify the query posted by the user or to

suggest a newer query, based on its similarity with the previous queries. Moreover, they

can also be used for community mining [Matsuo et al., 2006a; Mika, 2005] and for natu-

ral language processing tasks such as language modeling [Rosenfield, 1996] and word sense

disambiguation [Resnik, 1999]. Many approaches have been used to identify relationship

between words from a given text using manually compiled semantic database such as Word-

Net [Jiang and Conrath, 1998; Lin, 1998a,b]. However, because of limitations on the size

of the vocabulary of WordNet, recently researchers have started exploiting power of Web

as the Knowledge Base. Sun et al. [2007] used the web to acquire semantic relationships

between words. Turney [2001] identified synonyms based on the number of hits returned

by a Web Search Engine. Matsuo et al. [2006b] used a similar approach to determine the

similarity between words and applies their approach for graph based clustering algorithms.

Web search engines were used by Sahami and Heilman [2006] to address the problem

of determining similarity between texts that do not share any word in common. Bollegala

et al. [2007a] exploit the page counts and text snippets generated by a Web Search engine to

determine the semantic similarity between words. Their approach calculates the similarity

by using automatically extracted lexico-syntactic patterns from text snippets. PageRank-

like techniques have also been used to calculate the similarity measure. Chen et al. [2006]

proposed to exploit the text snippets returned by Web Search Engine as an important mea-

sure in computing the semantic similarity between words. In order to determine semantic

similarity between two words A and B, the text snippets for the two words are collected and
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the occurrence for word A is counted in the snippet for word B and vice versa. However,

for two words A and B to be similar, they need not always appear in the text snippets of

each other.

Some work has also been done on the problem of bridging the gap between the Web and

the Semantic Web. Angeletou et al. [2007] propose enrichment of folkosonomy tags by har-

vesting the Semantic Web for explicit relations. They use online ontologies to dynamically

collect and combine bits of knowledge. To the best of our knowledge, an approach to bridge

the gap between the Web and the Semantic web by making use of web search engines and

relationship identification algorithms has not been proposed yet.

3.3 System architecture

A Pipeline approach has been used to identify concepts for a given query, extract their

relationships to the original query and then represent it as an RDF Graph. The architec-

ture for R-LACE is shown in Figure 3.1. The System consists of four modules: Concept

Extractor, Relationship Identifier, Graph Builder and RDF Generator. The system takes

the query from the user via the User Interface. The query is fed to the Concept Extractor

module that extracts the concepts related to the given query. After all the concepts have

been extracted for a given query, the query and its generated concepts are used by the

Relationship Identifier module which determines a relationship between the query and its

associated concepts.

The Graph Builder takes the relationships identified by the Relationship Identifier and

generates a semantic graph from it that is presented to the user. The RDF Generator

interprets the identified relationships in the form of a ”triple” and creates an RDF document

out of it, which can be queried by R-LACE at a later stage using languages such as SPARQL

to generate “meaningful” inferences from it.

Now we describe each of the modules of the processing pipeline in detail.
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Figure 3.1: R-LACE architecture

3.3.1 Concept extractor

The Concept Extractor is used to extract concepts that are semantically related to the

query. The details for the Concept Extractor are given in Chapter 2.

3.3.2 Relationship identifier

The architecture for the Relationship Identifier is shown in Figure 3.2. In our approach, we

make use of three well known knowledge bases namely WordNet, Wikipedia and Yahoo!TM

Directories in order to identify the relationships between concepts.

The system gets the generated concepts from the Concept Extractor as an input. Each

of the concept is paired with the original query to form several word pairs. The formed pair

is sent to the WordNet database. We installed WordNet 3.0 locally and used the available

API to access the database efficiently. If a relationship can be determined, the relationship

is displayed to the user and the program terminates. However, if a relationship could not

be determined but the concept was found on WordNet, we store all the available infor-

mation from WordNet such as hypernyms, hyponyms and antonyms and move to a larger

data source, Wikipedia to determine the relationship. If Wikipedia also fails to determine
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Figure 3.2: Architecture for Relationship identifier

a relationship, we use the category structure of Yahoo!TM Directory for the relationship

identification task. We now demonstrate using examples, how the unique capability of each

data source can be useful in developing a system that has the power to function accurately

and with high efficiency in almost all cases.

Determining relationship using WordNet

Consider the following example: The system gets as input the query ”Flu”. The Concept

Extractor generated concepts for the query as: Influenza, Flu Shot, Oseltamivir, Avian

influenza, Hong Kong flu, Cold and Acetaminophen. We start by determining whether the

extracted concept is a synonym, hypernym or hyponym of the original query. We take the

first concept ”Influenza” and search for it on WordNet. Because it is present on WordNet,

all possible synonyms, hypernyms and hyponyms for it are extracted and matched with the

given query to identify a relationship. Since, Flu is present as synonym for Influenza on

WordNet, it is tagged as a synonym. Hence, in this case, we were able to return the results

efficiently without the need to look in larger data sources.

23



Figure 3.3: Flowchart for Relationship identifier showing how relationships can be predicted
between query concepts and the related concepts

Determining relationship using Wikipedia

Consider the query: Kansas State University. The generated concepts are: K-State, Kansas

State, CIS, Ahearn field , Kansas, powercat, courses. Using Wikipedia, we first only check

whether the extracted concept and the query are synonyms of each other or not. If by

searching for two concepts on Wikipedia, we retrieve the same page, we conclude that the

two words are synonyms of each other. When the generated concept K-State and the query

Kansas State University are searched on Wikipedia, they are redirected to the same page.

Hence, we conclude that K-State is actually a synonym of Kansas State University.

In order to determine other relationships using Wikipedia, we extract the first sentence

of the Wikipedia article as our preliminary experiments show that it usually well defines

the title of the article in most cases. We then try to find the query word in the sentence

so as to determine a relationship between the words. If we are able to do so, we return the

relationship, otherwise we move to a larger data source, Yahoo! Directory.
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In cases, when we are able to find the concept on WordNet but are unable to determine

it’s relationship to the query using it, we store the available information before moving to

a higher data source because this information can be useful when we use the bigger data

source. As an example, we wish to determine a relation between the query Watery Eyes

and its related concept Conjectivitis. We could not determine a relation between them

using WordNet but we found the term Conjectivitis and we stored its synonym Pinkeye.

Now, when we moved to Wikipedia, we were able to determine the relation between Watery

Eyes and Conjectivitis from the sentence Watery eyes is a symptom of Pinkeye because our

system knows that Pinkeye is actually a synonym for Conjectivitis.

Determining relationship using Yahoo! Directory

Again, consider the query: Kansas State University and its associated concepts. We now

show how a relationship can be determined using the category graph structure of Yahoo!

Directories. We post Kansas as a query onto Yahoo!TM Directories and extract the displayed

categories from the results. We then search for the given words in the extracted categories

and try to determine a relation between them. In our example, when the two concepts

were posted onto Yahoo! Directories in the form of ”Kansas State University””Kansas”,

we extract the relationship between them as Kansas State University –> Manhattan –>

Kansas.

Hence, the triple layer in our model helps us to determine relationships in most of the

cases. Specifically, we use WordNet to determine whether the concept and the query are

synonyms, hypernyms and hyponyms of each other. We use Wikipedia mainly to determine

if two words are synonyms or not, as Wikipedia is more comprehensive than WordNet. We

still have WordNet in our model because if a word is found on WordNet, it is much easier and

faster to determine its synonyms, hypernyms and hyponyms as compared to Wikipedia and

Yahoo! Directories. Finally, we use Yahoo! Directories to determine a relationship between

two concepts if it is found that they do not share a synonymy, hyponymy or hypernymy

relationship.
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3.3.3 Graph builder

Unlike traditional search engines that display results to the users in the form of relevant

documents to the given query, we propose a more ”semantic” way of representing the results.

We present results to the users in the form of a Semantic Relationship Graph (SRG). The

Semantic Relationship graph is a graph that displays the query and the associated concepts

to the users in the form of a graph structure clearly displaying how each concept is related

to the given query. An SRG is similar to a Semantic Network with the difference that in

a Semantic Network, the relationship is plotted between every two nodes. However, in our

case, we just present to the user how the query is related to its generated concepts. The

generated SRG contains the query as the central node surrounded by its associated concepts

and the edges representing the relationship between the nodes.

The Graph Builder takes the pairs of the concepts and the query and their relationships

as input and builds an SRG from it that is presented to the user.

3.3.4 RDF generator

The final step of our pipeline is to generate an RDF from the identified relationships among

concepts and store them, so that generated RDF can be queried by R-LACE. The relation-

ships are represented in the form of triples <Subject,Predicate,Object>, where the Subject

is the given query, Object is a related concept and the Predicate is the relationship between

the Subject and the Object.

The RDF Generator takes the concepts and their relationships as input and creates an

RDF document from them by using the determined relationships as name space values.

3.4 Experimental design and results

In order to evaluate our approach, we performed several set of experiments on individual

modules of our system i.e. the Relation Identifier, the Graph Builder and the RDF Gener-

ator. We will present here the results from the Relationship Identifier, Graph Builder and
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the RDF Generator. The results are shown in Table 3.1, Figure 3.4(a) and Figure 3.4(b)

respectively.

3.4.1 Identifying relationships between query and the extracted
concepts

The generated concepts along with the associated query are provided as input to the Re-

lationship Identifier. The results generated from the Relationship Identifier are displayed

in Table 3.1. Subject refers to the query posted by the user and the generated concepts

are referred as Objects. As demonstrated by the results, with our approach we are able to

determine the relationship between the Subject and the Object. We are not only able to

determine synonyms, hypernyms and hyponyms with a good accuracy, but were also able

to identify other types of relationships.

3.4.2 Building an SRG

The output of the Graph Builder is shown in Figure 3.4. The Graph Builder takes the

generated concepts and their relationships to the original query and displays them as a

graph to the user. The results for the query “Harry Potter” are shown. The user even has

the ability to explore the graph by clicking on a particular generated concept. The system

then would display the graph to the user considering the clicked concept as a query and

re-iterating it through the pipeline.

3.4.3 Representation in RDF format

The RDF generator also takes as input the identified relationships between the query and its

extracted concepts and generates an RDF representation for it which is saved by the system.

This generated RDF could be queried by an extension of LACE, R-LACE using formal query

languages such as SPARQL and hence, can be used to perform “semantic” inferences from

the generated result. For example, consider the sample RDF representation shown in Figure

3.4(b). For instance, it can answer the query - Which English Actors have acted in Harry
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Figure 3.4: (a) Output of Graph builder and (b) Generated RDF
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Subject Predicate Object Subject Predicate Object
Sun Microsystems programming

languages
Java Flu synonym Influenza

Sun Microsystems microprocessors Sparc Flu immunizations Flu shot
Sun Microsystems computer

networking
protocols

Jini Flu immunizations Oseltamivir

Sun Microsystems software OpenOffice Flu super type Avian In-
fluenza

Sun Microsystems computer
hardware

Server Flu super type Hong Kong
flu

Sun Microsystems unix Solaris Flu diseases and
conditions

Cold

Sun Microsystems computer
training

Training Flu drugs and
medications

Acetaminophen

Subject Predicate Object Subject Predicate Object
Kansas State University synonym K-state Harry Potter english actor Daniel Rad-

cliffe
Kansas State University synonym Kansas

state
Harry Potter english actor Rupert

Grint
Kansas State University departments

and programs
CIS Harry Potter fictional char-

acter
Albus
dumbeldore

Kansas State University athletics Ahearn field
house

Harry Potter british author JK Rowling

Kansas State University manhattan Kansas Harry Potter setting Hogwarts
Kansas State University athletics Powercat Harry Potter fictional char-

acter
Hermione
granger

Kansas State University departments
and programs

Courses Harry Potter english actor Emma Wat-
son

Table 3.1: Results of Relationship identifier showing the relationships determined between
the query concepts and the related concepts

Potter? or a query such as Who is Albus Dumbeldore? using the generated RDF. The above

queries can be answered by converting them into a “triplet” format that can be queried by

an inference engine. For example, the query Which English Actors have acted in Harry

Potter? can be converted into triplet format as <X,EnglishActor,Harry Potter>. Similarly,

the query Who is Albus Dumbeldore? can be converted as <X,Y,Albus Dumbeldore>. The

variables can be determined using the generated RDF and an inference engine. Details

about the representation of RDF and querying the RDF to generate inferences from it will
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Terms Reln by R-LACE Reln by WikiC!

Apple - Fruit is is
Cat - Mammal is is
Bird - Biped no relation is
Computer - Machine is is
Jimmy Snuka - Wrestler is is
Colorado - U.S.A is in is one of
Sharon Stone - Model is actor
Flintstones - Animated TV show is no relation
1980’s music - Pat Benatar Rock and Pop no relation

Table 3.2: R-LACE vs. WikiC!

be published elsewhere.

3.5 Comparison to other approaches

We compared the performance of Relationship Identifier to other similar relationship de-

termining algorithms [Nakayama et al., 2008a]. Since, the relation detection technique of

R-LACE makes use of combination of three well known knowledge bases in a “smart” way,

R-LACE outperforms other similar systems in identification of relationships between con-

cepts. We compared our system to the one described in [Nakayama et al., 2008a], which is

a Wikipedia based relationship extraction system, which we term as “WikiC!”’. We used

several queries from [Nakayama et al., 2008a] and tested them on R-LACE including queries

where WikiC! fails. The comparison is shown in Table 3.2.

We see that in most of the cases, R-LACE is able to identify the relationships similar to

WikiC!. However, we could not find a relation in case of “Bird-Biped” because the category

Biped was not present in Yahoo! Directory structure. R-LACE outperforms WikiC! when a

relationship between terms is to be determined whose definition is not present on Wikipedia.

For example, consider the two terms as Animated TV Show and Flintstones. We find a

document for the latter but do not find one for the former on Wikipedia. Hence, in this
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case WikiC! does not return a relationship. However, since Animated TV Show is present

in Yahoo! Directories, R-LACE returns a relationship as Flintstones is Animated TV Show.

As another example, consider the terms - 1980’s music and Pat benatar. Wikipedia has no

article for 1980’s music, hence WikiC! does not return a relationship. However, in this case

too, R-LACE returns the relationship as rock and pop.

Hence, we see that the relation detection algorithm of R-LACE outperforms other similar

relation detection algorithms.

3.6 Discussion

In this chapter, we proposed a systematic approach to bridge the gap between the Web

and Semantic Web. We make use of the power of existing search engines to extract the

concepts and well known knowledge bases to determine relationships between the query

and the generated concepts. We evaluate our results by comparing them with some of the

already existing state of the art approaches that use Wikipedia as the knowledge base for the

identification of concepts and identification of relationships between them. Our approach

has the following advantages :

• The use of this approach in identification of relationships between concepts help in

identifying not only the stronger relationships accurately, but also gives distant rela-

tionship between weakly related concepts.

• The displaying of results in a graphical format makes them easier to interpret for the

user.

• Storing of the results in machine interpretable RDF format makes them easy to query

for future similar queries and also to infer “semantic” from them.

• Our approach is a simple approach with high quality results which are comparable to

the results of other state of art approaches.
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However, our system also has some drawbacks. Most importantly, the identification

of the relationship between the concept and the query is heavily dependent on the phrases

used in the category graph structure. Hence, in few cases, the identified ′relationship′ phrase

might loosely capture the “relationship” between two terms. As an example, when we try

to determine a relationship between Sparc and Sun Microsystems (as shown in Table 3.1),

R-LACE returns the relationship as microprocessors. This is because microprocessors is

present as a category name in the category graph on Yahoo! Directories. However, the

precise relationship is that Sparc is actually a “processor architecture” designed by Sun

Microsystems. Hence, in this case, we were able to loosely capture the relationship, but we

could not determine the exact relationship.
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Chapter 4

Computation of the semantic
relatedness between words

Determining the semantic relatedness between two words refers to computing a statistical

measure of similarity between those words. Computation of similarity measures is useful

in a wide range of applications such as natural language processing, query recommenda-

tion, relation extraction, spelling correction, document comparison and other information

retrieval tasks. Although several methods that address this problem have been proposed in

the past, effective computation of semantic relatedness still remains a challenging task. In

this chapter, we propose a new technique for computing the relatedness between two words

by using their concept clouds. In our approach, instead of computing the similarity between

the two words directly, we propose to first compute the similarity measure between their

generated concept clouds using web-based coefficients. Next, we map the obtained measure

to determine the similarity between the original words. To generate the concept clouds, we

make use of LACE. We perform an evaluation on the Miller-Charles benchmark dataset and

obtain a high correlation coefficient of 0.882, which outperforms all other existing state of

art methods, hence providing evidence for the high effectiveness of our method.
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4.1 Background and motivation

Semantic metrics between words have been used by researchers to define semantic related-

ness, semantic similarity and semantic distance, as described in [Gracia and Mena, 2008].

For completeness, we provide brief definitions of these concepts here. Semantic relatedness

considers any type of relationship between two words (including hypernymy, hyponymy,

synonymy and meronymy relationships, among others) and is usually a statistical similar-

ity measure between the two words. Semantic similarity is a more specialized version of

semantic relatedness that considers only synonymy and hypernymy relationships between

words. Semantic distance is a distance-based measure of semantic relatedness. That is, the

more related two words are, the smaller is the semantic distance between them.

Compared to machines, humans are able to accurately determine the similarity between

two words based on their common sense knowledge. For example, in order to determine that

the words <apple, computer> are more closely related than the words <apple, car>, humans

would use their knowledge that apple is the name of a company that manufactures computer

hardware and software, to determine that apple is semantically more related to computer

than to car. Our goal is to provide machines with such power by using an automated

concept-based approach to determine semantic relatedness.

In our approach we propose Q-LACE i.e quantitative LACE that computes the semantic

relatedness between two words by computing the similarity between their concept clouds.

To automatically generate concept clouds, we make use of LACE to generate a concept cloud

for the query, by extracting its associated concepts from the web. Thus, for a given pair

of words, we first extract the concepts associated with each word in the pair and generate

their concepts clouds. We then compute a semantic relatedness between the two concept

clouds and use it to determine the similarity between the initial word pair.
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4.2 Related work

4.2.1 Determining semantic relatedness

The problem of determining the semantic relatedness between two words has been an area of

interest to researchers from several areas for long time. Some very preliminary approaches

[Rada et al., 1989] calculated the similarity between two words on the basis of the number

of edges in the term hierarchy created by indexing of articles. Similar edge-counting based

methods were also applied on existing knowledge repositories such as Roget’s Thesaurus

[Jarmasz and Szpakowicz, 2003] or WordNet [Hirst and St-Onge, 1998] to compute the

semantic relatedness.

To improve the preliminary approaches to calculating the semantic relatedness between

words, more sophisticated methods have been proposed. Instead on simply relying on the

number of connecting edges, Leacock and Chodorow [1998] have proposed to take the depth

of the term hierarchy into consideration. Others groups have proposed to use the description

of words present in dictionaries [Lesk, 1986] and techniques such as LSA [Deerwester et al.,

1990] to compute semantic relatedness. However, due to the very limited size of WordNet

as a knowledge base and the absence of well known named entities (e.g Harry Potter) in

WordNet, researchers have started to look for a more comprehensive knowledge base.

The advent of Wikipedia in 2001 has fulfilled the need for a more comprehensive knowl-

edge base. Many techniques that used Wikipedia to compute semantic relatedness have

been developed in the recent years. Among others, Strube and Ponzetto [2005] have used

Wikipedia to determine semantic relatedness. Their results outperform those obtained us-

ing WordNet, hence showing the effectiveness of Wikipedia in determining the similarity

between two words. Gabrilovich and Markovitch [2007] have developed a technique, called

Explicit Semantic Analysis (ESA), to represent the meaning of words in a high dimensional

space of concepts derived from Wikipedia. Experimental results show that ESA outperforms

the method given by [Strube and Ponzetto, 2005]. Chernov et al. [2006] have suggested to

make use of the links between categories present on Wikipedia to extract semantic informa-
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tion. Milne and Witten [2008] have proposed the use of links between articles of Wikipedia

rather than its categories to determine semantic relatedness between words. Zesch T. [2008]

have proposed to use Wiktionary, a comprehensive wiki-based dictionary and thesaurus for

computation of semantic relatedness. Although Wikipedia has proved to be a better knowl-

edge base than WordNet, many terms (e.g., 1980 movies) are still unavailable on Wikipedia.

This has motivated the use of the whole web as the knowledge base for calculating semantic

relatedness.

Bollegala et al. [2007b] have proposed to use page counts and text snippets extracted

from result pages of web searches to measure semantic relatedness between words. They

achieve a high correlation measure of 0.83 on the Charles-Miller benchmark dataset. Sahami

and Heilman [2006] have used a similar measure. Cilibrasi and Vitanyi [2007] have proposed

to compute the semantic relatedness using the normalized google distance (NGD), in which

they used GoogleTM to determine how closely related two words are on the basis of their

frequency of occurring together in web documents. Chen et al. [2006] have proposed to

exploit the text snippets returned by a Web search engine as an important measure in

computing the semantic similarity between two words.

The approach in [Salahli, 2009] is the closest to our approach, as it uses the related

terms of two words to determine the semantic relatedness between the words. However,

the major drawback of the approach proposed in [Salahli, 2009] is that the related terms

are manually selected. As opposed to that, our approach automatically retrieves the most

relevant terms to a given word query. Furthermore, Salahli [2009] compares the related

terms to the original query. In our approach, we compute the semantic relatedness between

two words using the semantic similarity between their generated concept clouds. To the

best of our knowledge, such an approach has not been proposed yet.
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Figure 4.1: System architecture

4.3 System architecture

The complete system architecture for Q-LACE is shown in Figure 4.1. We use a two-phase

approach to proceed with the computation of semantic relatedness between words. The first

phase involves the use of LACE to extract concepts related to the given pair of words and to

generate their concept clouds. In the second phase, we use web-based coefficients (Cosine,

Jaccard, Dice, Overlap) to compute the semantic relatedness between the generated concept

clouds, and use the resulting score to determine the relatedness between the original words.

We will next describe LACE, followed by the description of the algorithm that determines

the semantic relatedness between the generated concept clouds.

4.3.1 Input pre-processor

The Input Pre-Processor module takes the given word-pair as input and divides it into

two separate words. Each word is then pre-processed, i.e., converted to lower case letters.

Furthermore, any special characters such as “@”, if present, are removed from the words.

Finally, the two words are provided as input to the concept extractor (one at a time).

37



4.3.2 Cloud comparator

The function of the Cloud Comparator module is to perform a statistical comparison of

the concept clouds corresponding to two words, using web based coefficients such as Dice

and Jaccard coefficients. To achieve that, the Cloud Comparator computes a statistical

similarity measure between all pairs of concepts < A,B >, where A belongs to the cloud of

one term and B belongs to the cloud of the second term, and calculates the average of all

similarity scores to determine the relatedness between the original words.

We will use the example in Figure 4.2 to illustrate the functionality of the Cloud Com-

parator module. We assume that we want to find the semantic relatedness between the

words automobile and car. After executing the first two modules in our system, the concept

Figure 4.2: An example illustrating the functionality of the Cloud comparator module.

cloud for automobile is {Car, Auto, Subaru, Technology, Vehicles}, while the concept cloud

for car is {Used Cars, New Cars, Auto, Buy a Car, Automobile}. The comparator takes

each concept from the first cloud, e.g., Car and finds its similarity with concepts in the

second cloud, using web-based coefficients. Preliminary experiments have shown that the

Jaccard’s coefficient produces the best results. Hence, we have used the Jaccard’s coefficient

to compute semantic relatedness between two concept clouds.

Traditionally, the Jaccard’s coefficient is used to determine the similarity between two

given sets, A and B, by taking the ratio between the size of the intersection of the two sets

and the size of the union of the two sets. That is: Jaccard(A, B) =
|P ∩Q|
|P ∪Q|

.
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However, Bollegala et al. [2007b] have modified the Jaccard’s coefficient definition to

make it possible to compute the similarity between two words, P and Q, using web search

results. Thus:

Jaccard(P, Q) =
H(P ∩Q)

H(P ) + H(Q)−H(P ∩Q)
.

where H(P ) and H(Q) refer the number of pages retrieved when the query “P” and the

query “Q” are posted to a search engine, respectively; and H(P ∩Q) is the number of pages

retrieved when the query “P”“Q” is posted to a search engine.

To compute the similarity between a term i from the first concept cloud A, denoted

conA(i), and the second concept cloud B, we compute the Jaccard’s coefficient between

conA(i) and all concepts conB(j) in the concept cloud B and then take the average of all

scores obtained. That is:

sim(conA(i), cloud(B)) =

∑n
j=1 Jaccard(conA(i), conB(j))

n
,

where n is the total number of concepts in cloud(B).

Consider the example in Figure 4.2. The similarity between the concept car and the

cloud car is computed as:

sim(car, cloud(car)) =

∑5
j=1 Jaccard(car, concar(j))

5
.

We calculate this score for each concept in first cloud A and then pass on the array of

scores to the Score Generator module.

4.3.3 Score generator

The Score Generator is the simplest module in our framework. It takes as input the array

of scores received from the Cloud Comparator and computes the average of the scores to

obtain a final score for the two initial words. That is,
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score(A, B) =

∑m
i=1 sim(conA(i), cloud(B))

m
.

where m refers to the total number of concepts in cloud(A). It can be seen that:

score(A, B) =

∑m
i=1

∑n
j=1 Jaccard(conA(i), conB(j))

m ∗ n
.

The calculated score is reported to the user as the semantic relatedness score between

the given words.

4.4 Experimental results and evaluation

4.4.1 Evaluation on Miller-Charles data

In the second phase of our evaluation, we are primarily interested in evaluating our system by

comparison with other existing systems. We performed this evaluation of the Miller-Charles

benchmark dataset, described below. Table 4.4.1 summarizes the results of the comparison.

Some of the results shown in Table 4.4.1 have been obtained from [Bollegala et al., 2007b].

Please note that all scores, except for the Miller-Charles scores, have been scaled to [0,1] by

dividing all scored by the maximum score (such that the best score becomes 1). The page

count and the concept data collected is as of May 4th, 2009.

Miller-Charles dataset

The Miller-Charles dataset is a data set of 30 word pairs, which have been evaluated for

semantic relatedness, on a scale of 0-4, by a group of 38 human subjects. However, most

researchers have used only 28 word pairs, as two pairs are not available in WordNet. A scale

of 0 implies no synonymy, while a scale of 4 implies perfect synonymy. The Miller-Charles

dataset is considered as a reliable platform to evaluate measures of semantic relatedness.
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Word Pair Miller-
Charles

Web
Dice

Web
Over-
lap

Sahami CODC BollegalaOur
ap-
proach

cord-smile 0.13 0.108 0.036 0.090 0 0 0.023
rooster-voyage 0.08 0.012 0.021 0.197 0 0.017 0.027
noon-string 0.08 0.133 0.060 0.082 0 0.018 0.034
glass-magician 0.11 0.124 0.408 0.143 0 0.180 0.027
monk-slave 0.55 0.191 0.067 0.095 0 0.375 0.029
coast-forest 0.42 0.870 0.310 0.248 0 0.405 0.078
monk-oracle 1.1 0.017 0.023 0.045 0 0.328 0.052
lad-wizard 0.42 0.077 0.070 0.149 0 0.220 0.012
forest-graveyard 0.84 0.072 0.246 0 0 0.547 0.062
food-rooster 0.89 0.013 0.425 0.075 0 0.060 0.121
coast-hill 0.87 0.965 0.279 0.293 0 0.874 0.010
car-journey 1.16 0.460 0.378 0.189 0.290 0.286 0.186
crane-implement 1.68 0.076 0.119 0.152 0 0.133 0.035
brother-lad 1.66 0.199 0.369 0.236 0.379 0.344 0.307
bird-crane 2.97 0.247 0.226 0.223 0 0.879 0.009
bird-cock 3.05 0.162 0.162 0.058 0.502 0.593 0.518
food-fruit 3.08 0.765 1 0.181 0.338 0.998 0.566
brother-monk 2.82 0.274 0.340 0.267 0.547 0.377 0.460
asylum-madhouse 3.61 0.025 0.102 0.212 0 0.773 0.849
furnace-stove 3.11 0.417 0.118 0.310 0.928 0.889 0.502
magician-wizard 3.5 0.309 0.383 0.233 0.671 1 0.493
journey-voyage 3.84 0.431 0.182 0.524 0.417 0.996 0.596
coast-shore 3.7 0.796 0.521 0.381 0.518 0.945 0.649
implement-tool 2.95 1 0.517 0.419 0.419 0.684 0.524
boy-lad 3.76 0.196 0.601 0.471 0 0.974 0.911
automobile-car 3.92 0.668 0.834 1 0.686 0.980 0.898
midday-noon 3.42 0.112 0.135 0.289 0.856 0.819 1.000
gem-jewel 3.84 0.309 0.094 0.211 1 0.686 0.884
Correlation 1 0.267 0.382 0.579 0.693 0.834 0.882

Table 4.1: Semantic relatedness results obtained with our approach and several related
methods, by comparison with the Miller-Charles scores. The results of the methods called
Web Dice and Web Overlap [Bollegala et al., 2007b], Sahami [Sahami and Heilman, 2006],
CODC [Chen et al., 2006] and Bollegala [Bollegala et al., 2007b] are obtained from [Bollegala
et al., 2007b]. Pearson correlation coefficients between the scores obtained with each method
and the Miller-Charles scores are also reported.

Results

The results of our experiments on the Miller-Charles dataset are shown in Table 4.4.1 by

comparison with the Miller-Charles scores and the results of several previous methods as
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reported in [Bollegala et al., 2007b]. The correlations between the scores obtained with

each method and the benchmark scores are also reported. As can be seen, our approach

outperforms similar existing methods by achieving a high Pearson correlation coefficient of

0.882. The highest scoring pair was midday-noon while the lowest scoring pair was bird-

crane. Moreover, another advantage of our approach is that it is not dependent on a single

knowledge source such as WordNet or Wikipedia and hence, has the capability to determine

semantic relatedness between almost any word-pair.

4.5 Discussion

In this chapter, we have proposed a method for computing the semantic relatedness between

two given words. Our approach relies on LACE for finding related concepts based on web

searches (i.e., concept clouds for the two words). We obtained a high correlation coefficient

of 0.882 on benchmark dataset of Miller Charles dataset showing the high effectiveness of

our approach.

The success of our approach can be explained as follows: LACE forms the basis for the

proposed method. The LACE works by extracting concepts using the top links returned

by a search engine. Hence, there is a high probability that these links are related to the

most popular meaning of the posted query. For example, if the query “Apple” is posted to

Yahoo!TM , 28 links out of the top 30 links are related to the “company” Apple rather than

the “fruit” apple. Therefore, the extracted concepts are related to the most popular meaning

of the term. If we analyze the Miller-Charles dataset, we note that the word pairs that are

related to the most popular meaning of the words get a higher rating by the human subjects.

For example, between the word pairs magician-wizard and glass-magician, magician-wizard

gets a higher rating by the human subjects (3.5) as compared to glass-magician (0.11). This

is because wizard is a more popular meaning of the term magician as compared to glass.

Our systems also assigns a higher score to magician-wizard, as the concepts extracted for

magician are closer to concepts extracted for wizard than to concepts extracted for glass.
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Chapter 5

Conclusion and Future Work

We live in an era where information holds a lot of importance. Thus, the task of retrieving

“relevant” information from the huge pool of information has gained lot of attention. This

has in fact fueled the success of web search engines such as Google, Yahoo, Altavista etc.

They have helped the users in retrieving the most relevant information.

The information retrieval era began with introduction of algorithms such as Vector Space

model that were primarily based on searching a set of documents on the basis of the key-

words in the query. More sophisticated algorithms such as PageRank and HITS helped

improve the quality of search results by taking into consideration the graph structure of the

web. However, these algorithms still rely on the ”keyword-based” search techniques and

are able to return only those documents that contain the keywords given by the user in the

query. However, the increasing needs of the user has made it necessary to also consider the

associated semantics with the query. So, in order to provide the user with a better set of

results, it has become mandatory to get a feel of what the user actually meant when he

posted the query.

In this thesis, we deal with the this problem. We proposed a novel way of presenting the

results to the user - the Concept Relationship graph (CRG). We proposed Link Analysis

based Concept Extractor (LACE) that extracts associated concepts related to the query

posted by the user. Hence, by using LACE, we confirm that we do not limit the search

space to the words in the query but we also cover a larger concept space. We compared
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our approach to some of the existing concept extraction algorithms and proved that it

outperforms them by not only providing high quality results but also addressing some of

the flaws in the existing approaches.

Moreover, after extraction of associated concepts related to the query, we also showed

how each of these concepts are related to the original query. For this purpose, we proposed

a novel “Relationship prediction” algorithm, R-LACE, that makes use of a collection of

three well known knowledge bases, WordNet, Wikipedia and Yahoo! Web Directory to

predict the relationship between given two words. We used WordNet and Wikipedia mainly

to determine whether two words are synonyms of each other or not. The category graph

structure of the web directories was used to determine the relationship between the two

words if it is found that the two words are not synonyms of each other. Moreover, instead of

just representing the results in a plain textual formats as a collection of links to the user, we

proposed to present the results in the form of a Semantic Relationship Graph (SRG). Finally,

we also showed how we can convert the generated relationships into formal languages such

as RDF. The generated RDF can be given as an input to an inference engine to perform

some semantic inferences. We compared the results of our approach with the results of some

of the existing “state of art” approaches and proved the effectiveness of our approach.

Finally, we used LACE to determine a statistical measure of semantic relatedness be-

tween words. For a given pair of words, our task was to determine on a scale of 0-1, how

similar the two words are. For this purpose, we generated the concept clouds of the two

words using LACE and then calculated the semantic relatedness between the two words

using the relatedness between the generated concept clouds. Web based coefficients such

as Dice and Jaccard were used in order to determine the relatedness between words. The

semantic relatedness of the concept clouds was used to implicitly determine the semantic

relatedness between the original word pair. In order to evaluate our approach, we used the

benchmark Miller-Charles dataset and obtained a high correlation coefficient of 0.882 which

outperformed all other existing state of art approaches.
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Hence, this work is mainly focused on opening new vistas to the world of information

retrieval by changing the way web search engines work and present results to the user today

and make the tough task of retrieving the relevant information more efficient.

Future Work

We shall now highlight a few directions in which the existing work can be extended:

Extraction of semantically related concepts:

As illustrated in Chapter 2, the proposed approach is based on the assumption that the

meta data information present on a webpage captures the context of the webpage well,

in most of the cases. However, additional natural language processing techniques can be

incorporated to extract relevant keywords present in the text of the document. Moreover,

additional experimentation can be done to optimize the existing parameterssuch as the

optimal number of pages to be extracted for a given query and the optimal value of the

threshold level. Finally, the approach can be employed in the areas of text categorization

and text mining.

Predicting relationship between words

The proposed approach makes use of three knowledge bases namely, Wordnet, Wikipedia

and Yahoo! Web directory in order to predict relationships between words. Using this

approach, we are able to predict the relationships with a good accuracy. However, in order

to further improve the accuracy, we plan to replace the three knowledge bases with a single

knowldege base, Wikipedia and apply natural language processing techniques on the text

present in the wikipedia document to gather inference rules. These inference rules can be

used to determine the relationship between any two words.
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Computation of semantic relatedness between words

With our approach to compute semantic relatedness using concept clouds, we obtained a

high correlation coefficient of 0.882 on the benchmark Miller-Charles dataset. The Miller-

Charles dataset is a collection of 28 word pairs rated by human subjects on a scale of 0-4.

In order to further test the effectiveness of our approach, we plan to test it on a more

comprehensive dataset. Moreover, we also plan to use this technique to perform ontology

mapping. Also, we plan to extend this approach to calculate a similarity measure between

two documents.
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