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Abstract

We study the problem of determining when metric surfaces can be mapped quasisym-

metrically onto a circle domain with uniformly relatively separated boundary components.

Mario Bonk1 completely characterized this for domains in Ĉ. He proved that if the boundary

components of a domain in Ĉ are uniformly relatively separated uniform quasicircles then

the domain is quasisymmetric to a circle domain. However, Merenkov and Wildrick2 showed

the existence of a metric surface whose boundary components are uniformly relatively sepa-

rated uniform quasicircles which fails to be quasisymmetric to a circle domain. They offered

an alternative characterization for metric surfaces using properties which are not invariant

under quasisymmetries, and they expressed interest in replacing these with properties which

are.

In this dissertation, we introduce what we call the 2-transboundary Loewner property.

This first appeared in Bonk’s work1. It is an analog of the Loewner property of Heinonen

and Koskela3 in terms of Schramm’s4 transboundary modulus. Using recent quasiconfor-

mal uniformization results of Rajala5 and Ikonen6, we prove that under some mild as-

sumptions, a metric surface is quasisymmetric to a circle domain with uniformly relatively

separated boundary components if and only if it is 2-transboundary Loewner. Since the

2-transboundary Loewner property is invariant under quasisymmetries, this answers the

question posed by Merenkov and Wildrick. It is also a natural generalization of Bonk’s

result to metric surfaces, as it is equivalent to his theorem for domains in Ĉ. Applying our

results, we give new examples of metric surfaces which we show are quasisymmetric to circle

domains.
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Chapter 1

Introduction

The quasisymmetric uniformization problem is one of the central problems of contemporary

geometric function theory and analysis on metric spaces. In his 2006 address to the Inter-

national Congress of Mathematicians, Mario Bonk (7, p. 1353) formulated the problem as

follows.

“Quasisymmetric Uniformization Problem. Suppose X is a metric space homeo-

morphic to some ‘standard’ metric space Y . When is X quasisymmetrically equivalent to

Y ?”

This question was answered for Y = S1 by Tukia and Väisälä8; they showed X is qua-

sisymmetric to Y if and only if X is doubling and linearly locally connected. Here, doubling

means that every ball of radius r can be covered by N balls of radius r/2 where N is some

fixed constant. Linear local connectivity rules out cusp-like behavior by requiring any two

points inside a ball of radius r can be connected inside the ball of radius λr and any two

points outside the ball can be connected outside the ball of radius r/λ for some fixed λ ≥ 1.

See Section 1.4 for a precise definition.

When Y = Ĉ, the quasisymmetric uniformization problem was given a partial answer

by Bonk and Kleiner9. They showed that X is quasisymmetric to Y if X is linearly locally

connected and Ahlfors 2-regular. Ahlfors 2-regularity requires the Hausdorff measure of

every ball to be comparable to the square of its radius. Rajala5 gave an alternative proof of
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the characterization which required only that the Hausdorff measure of every ball is bounded

above by a constant multiple of its radius squared.

If Y is a domain in Ĉ whose complementary components are closed disks or points

(called a circle domain), which is finitely connected, then Merenkov and Wildrick2 gave

the following characterization. X is quasisymmetric to Y if X is Ahlfors 2-regular, linearly

locally connected, and X is compact. More details on the latter results are given in Section

1.5.

This dissertation investigates this question with Y being a countably connected circle

domain in Ĉ. A consequence of the main result (Theorem 1.5.7) is as follows.

Theorem 1.0.1. Suppose (X, d) is a metric space homeomorphic to a domain in Ĉ with

∂0X countable. Suppose X is Ahlfors 2-regular and linearly locally connected. Then X is

quasisymmetric to a circle domain with uniformly relatively separated bounding circles if and

only if

• X is compact and

• X is 2-transboundary Loewner.

The term above, 2-transboundary Loewner, is introduced in this work. It is analogous

to the Loewner property of Heinonen and Koskela3 in terms of Schramm’s4 transboundary

modulus. Intuitively, it requires that the space X support rich families of transboundary

curves: curves going through the holes in the space. See Chapter 3 for a precise formulation.

1.1 Motivating Remarks

A natural question to ask is of what relevance this question has to mathematics as a whole. To

answer this, we will outline some of the topics where the theory of quasisymmetric mappings

proved useful.

In 1968, Mostow 10 proved that if two compact hyperbolic manifolds with dimension

n ≥ 3 are homeomorphic, then they are isometric. The homeomorphism lifts to a homeo-

morphism between their universal covering spaces, which can be extended to infinity. This
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creates a homeomorphism from the sphere of dimension n − 1 to itself. The assumptions

on the manifolds will imply that this map is in fact a quasisymmetry. It is the behavior

of quasisymmetries in dimension 2 or above that gives the result; moreover, the fact that

quasisymmetries are not well-behaved in dimension 1 explains why the result is not true for

2 dimensional manifolds.

A natural generalization of this topic arises in geometric group theory. Cannon 11 con-

jectured that every hyperbolic group whose boundary is homeomorphic to the 2-sphere is

isomorphic to a Kleinian group. Due to a result of Sullivan 12 , this is equivalent to the fol-

lowing statement. If G is a hyperbolic group with boundary homeomorphic to the 2-sphere,

then the boundary (equipped with a proper metric) is quasisymmetric to the 2-sphere. Thus

it becomes very natural to ask when a space is quasisymmetric to the sphere.

It is also natural to ask when a space is quasisymmetric to the Sierpiński carpet because

of a result of Kapovich and Kleiner13. For certain hyperbolic groups with one dimensional

boundary, they classified the boundary as homeomorphic to either a Menger curve, Sierpiński

carpet, or S1.

The details of the results just discussed are beyond the scope of this document and won’t

be elaborated; they are listed here to convince the reader that the problems discussed in this

document are of interest to many mathematicians. With that being said, more motivations

for the subject will be discussed in detail in the sections that follow. Section 1.2 outlines the

theory of conformal uniformization, and Section 1.3 connects conformal maps to quasisym-

metric maps by introducing quasiconformal maps. The introduction ends with Section 1.5

giving an overview of many results pertaining to the quasisymmetric uniformization problem;

all the definitions needed to state these results are given in Section 1.4.

1.2 Conformal Maps

Let Ω,Ω′ ⊂ C be domains. A function f : Ω → Ω′ is called a conformal map if it is a

holomorphic homeomorphism. The reader may be familiar with conformal maps as maps

which preserve angles. This definition fits this description; indeed, having non-zero derivative
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means that at that point, f is locally a non-zero C-linear map, and all of these maps are

angle preserving. However, emphasis should be placed on the fact that we require f to be

injective. Under this definition, f : C → C given by f(z) = ez is not a conformal map,

despite the fact that it is angle preserving. For the entirety of this document, when we say

a map is conformal, we mean to imply it is also a homeomorphism.

Our discussion of conformal uniformization begins with the following theorem first for-

mulated by Riemann in 1851.

Theorem 1.2.1 (Riemann Mapping Theorem). Let Ω ⊂ C be a simply connected domain

with Ω ̸= C. Fix z0 ∈ Ω. There is a unique conformal map f : Ω → D with f(z0) = 0 and

f ′(z0) > 0.

We are less concerned with the uniqueness of the map than with its existence. A related

result in the classical theory is a classification of simply connected Riemann surfaces.

Theorem 1.2.2 (Koebe-Poincaré Uniformization Theorem). Let X be a simply connected

Riemann surface. Then X is conformal to either D, C, or Ĉ.

For domains which fail to be simply connected, a natural model space to consider are

circle domains.

Definition 1.2.3. We say a domain Ω ⊂ C or Ω ⊂ Ĉ is a circle domain in case every

connected component of ∂Ω is a circle or a point.

For example, an annulus is a circle domain. The complement of the middle-thirds Cantor

set in the plane is also a circle domain, showing that circle domains can have uncountably

many boundary components. For a domain in the sphere, we say it is finitely connected if it

has finitely many boundary components. We say a domain in the plane is finitely connected

if its image under stereographic projection is finitely connected.

Theorem 1.2.4 (Koebe14). Let Ω ⊂ C be a finitely connected domain. Then there is a

conformal map f : Ω → Ω′ where Ω′ ⊂ C is a circle domain.
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It took 75 years for this result to be extended to the countable case. We say a domain in

the sphere is countably connected if its boundary has countably many connected components.

We say a domain in the plane is countably connected if the corresponding domain in the

sphere is.

Theorem 1.2.5 (He-Schramm15). Let Ω ⊂ C be a countably connected domain. Then there

is a conformal map f : Ω → Ω′ where Ω′ ⊂ C is a circle domain.

As we have seen already, there are circle domains which are neither finitely connected

nor countably connected. We say a domain in the sphere is uncountably connected if its

boundary has uncountably many connected components. We say a domain in the plane is

uncountably connected if the corresponding domain in the sphere is. Every domain in the

plane or the sphere fits into these connectivity categories. One of the main motivations for

the topic we’re discussing is the conjecture formulated by Koebe in 1908.

Conjecture 1.2.6 (Koebe16). Every domain in the plane is conformal to a circle domain.

Koebe’s conjecture is still open. One avenue of difficulty for proving the conjecture is that

uncountably connected circle domains can only have countably many non-trivial boundary

components; whereas, general domains may have uncountably many non-trivial boundary

components. This is evident in the fact that one can obtain a conformal uniformization by

switching the model space to what follows.

Definition 1.2.7. We say Ω ⊂ C is a slit domain if every connected component of the

complement is either a point or a closed, vertical line segment. These line segments are

referred to as slits.

The requirement that the slits be vertical is for simplicity; one could require only that

the slits are all parallel. However, these are conformally equivalent to having vertical slits

via rotation. Unlike circle domains, slit domains can have uncountably many non-trivial

boundary components. For example, if C denotes the middle-thirds Cantor set, then the

complement of C× [0, 1] is a slit domain. Slit domains make a nice model space for conformal

uniformization because of the following result.
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Theorem 1.2.8 (de Possel17, Grötzsch18). Every domain in the plane is conformal to a slit

domain.

1.3 Quasiconformal Maps

Let Ω ⊂ R2 be open and let u, v : Ω → R2 be differentiable. Let f(z) = w where z = x+ iy

and w = u(x, y) + iv(x, y). Define

fz =
1

2
(fx − ify) =

1

2
((ux + ivx)− i(uy + ivy)) =

1

2
((ux + vy) + i(vx − uy))

fz =
1

2
(fx + ify) =

1

2
((ux + ivx) + i(uy + ivy)) =

1

2
((ux − vy) + i(vx + uy))

The Cauchy-Riemann equations can be formulated as fz = 0. If f is an orientation-preserving

diffeomorphism, we can say that locally, f sends circles to ellipses whose eccentricity we call

the dilatation , and it is given by

Df =
|fz|+ |fz|
|fz| − |fz|

.

Notice that if f is conformal, then fz ̸= 0 and fz = 0, and Df ≡ 1. In general, Df ≥ 1

at each point. The diffeomorphism f is called K-quasiconformal if Df (z0) ≤ K for all

z0 ∈ Ω. Intuitively, this definition states that quasiconformal maps send infinitesimal circles

to infinitesimal ellipses of bounded eccentricity.

This is, however, the classical formulation of analytic quasiconformality, and we will need

it to be formulated for general metric spaces. The idea is the same: we want the ratio of the

maximum stretch of the image of a circle to the minimum to be bounded uniformly as the

radius of the circle goes to zero.

Definition 1.3.1. Let (X, dX), (Y, dY ) be metric spaces, f : X → Y a homeomorphism, and
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K ≥ 1. We say f is (metrically) K-quasiconformal in case for all x0 ∈ X

Df (x0) := lim sup
r→0+

sup
dX(x,x0)≤r

dY (f(x), f(x0))

inf
dX(x,x0)≥r

dY (f(x), f(x0))
≤ K.

If a map is 1-quasiconformal, we say it is conformal. We say a map is quasiconformal if

it is K-quasiconformal for some K.

In the case that X and Y are both planar domains, and f is orientation-preserving

diffeomorphism, the metric definition coincides with the classical definition. Indeed, as the

radius of a circle goes to zero, the image looks like an ellipse; thus, the major axis will be

the maximum distance achieved within the disk and the minor axis will be the minimum

distance achieved without. It is also worth observing that Df ≥ 1 since

Df (x0) = lim sup
r→0+

sup
dX(x,x0)≤r

dY (f(x), f(x0))

inf
dX(x,x0)≥r

dY (f(x), f(x0))
≥ lim sup

r→0+

sup
dX(x,x0)=r

dY (f(x), f(x0))

inf
dX(x,x0)=r

dY (f(x), f(x0))
≥ 1.

Thus we can say that f is conformal if and only if Df ≡ 1. We will establish more properties

of quasiconformal maps in Chapter 2. However, one thing we will establish here is their

relationship to quasisymmetric mappings.

Definition 1.3.2 (8). Let (X, dX), (Y, dY ) be metric spaces, f : X → Y a homeomorphism,

and η : [0,∞) → [0,∞) a homeomorphism. We say f is η-quasisymmetric if for all

pairwise distinct a, b, c ∈ X, we have

dY (f(a), f(b))

dY (f(a), f(c))
≤ η

(
dX(a, b)

dX(a, c)

)
.

We say f is quasisymmetric if it is η-quasisymmetric for some η. We say X and Y are

quasisymmetric if there is a quasisymmetric map f : X → Y .

Quasisymmetric mappings are the main focus of this dissertation, and many of their

properties will be detailed in Chapter 2.
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Quasisymmetries exhibit the property of quasiconformality, but on a more global level.

The dilatation of a quasisymmetry is not only uniformly bounded, but the limiting ratio can

be bounded independent of r.

Proposition 1.3.3. Quasisymmetric maps are quasiconformal. More precisely, an η-quasisymmetry

is an η(1)-quasiconformality.

1.4 Terminology

The goal of this section is to define all the terms used in the statements of the theorems in

Section 1.5. Their properties will be established in greater detail in Chapter 2.

Let (X, d) be a metric space. Given x ∈ X and r > 0 we denote the open ball of radius

r centered at x by

B(x, r) := {y ∈ X | d(x, y) < r},

and the closed ball is denoted by

B[x, r] := {y ∈ X | d(x, y) ≤ r}.

Given x ∈ X and R > r ≥ 0 we denote the open annulus of inner radius r and outer radius

R centered at x by

A(x, r, R) := {y ∈ X | r < d(x, y) < R},

and the closed annulus is denoted by

A[x, r, R] := {y ∈ X | r ≤ d(x, y) ≤ R}.

We denote the completion of (X, d) by (X, d). We denote the metric boundary of X by

∂X := X \ X, and may just refer to it as the boundary of X . The set of connected

components of ∂X will be denoted ∂0X.

8



Given A ⊂ X we define its diameter as

diam(A) := sup{d(x, y) | x, y ∈ A}.

Note that diam(A) = 0 if and only if A is a singleton. We do allow for diam(A) = ∞, in

which case we say A is unbounded . Given another subset B ⊂ X we define the distance

between A and B to be

d(A,B) := inf{d(a, b) | a ∈ A, b ∈ B}.

It should be noted here that this is not a metric on the subsets of X. However, if A,B are

closed, and at least one of them is compact, then d(A,B) = 0 if and only if A∩B ̸= ∅. The

following concept is useful when discussing quasisymmetric mappings as it has controlled

distortion under quasisymmetries (see Proposition 2.1.9).

Definition 1.4.1 (19). Let (X, d) be a metric space and E,F ⊂ X be closed and disjoint.

Define their relative distance by

∆(E,F ) :=
d(E,F )

min(diam(E), diam(F ))
.

If E or F is a singleton, we define their relative distance to be ∞. If E and F are unbounded,

we define the relative distance to be 0.

This definition is well-formulated as d(E,F ) < ∞, and if d(E,F ) = 0 for closed, disjoint

sets, then neither can have 0 diameter.

Definition 1.4.2. Let (X, d) be a metric space and E = {Ei}i∈I be a collection of pairwise

disjoint, closed subsets of X. We say E is uniformly relatively separated if there exists

some α > 0 such that

∆(Ei, Ej) ≥ α

for all i, j ∈ I, i ̸= j.
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Often, we will be concerned with the relative distance between connected sets. We say

E ⊂ X is a continuum if it is compact and connected, and we say E is non-degenerate

if it contains at least two distinct points. Thus for disjoint, non-degenerate continua, their

relative distance is always non-zero and finite. The following property quantifies connectivity

properties of a space and is invariant under quasisymmetries (see Proposition 2.1.7).

Definition 1.4.3 (9). Let (X, d) be a metric space. We say (X, d) is linearly locally

connected if there exists a λ ≥ 1 such that for all a ∈ X and r > 0 the following properties

hold:

(i) for each x, y ∈ B(a, r) there exists a continuum E ⊂ B(a, λr) with x, y ∈ E,

(ii) for each x, y ∈ X \B(a, r), there exists a continuum E ⊂ X \B(a, r
λ
) with x, y ∈ E.

There is a similar property which essentially demands that both properties hold with the

same continuum.

Definition 1.4.4. Let (X, d) be a metric space. We say (X, d) is annularly linearly

locally connected if there exists a λ ≥ 1 such that for all a ∈ X and R > r ≥ 0 the

following property holds: for each x, y ∈ A(a, r, R) there exists a continuum E ⊂ A(a, r
λ
, λR)

with x, y ∈ E.

Annular linear local connectivity is stronger than linear local connectivity. For example,

S1 is linearly locally connected with λ = 1, as every ball is connected, and the complement

of every ball is connected. However, it is not annularly linearly locally connected as for all

x ∈ S1 and 0 < r < R < diam(S1), A(x, r, R) is disconnected. In order to obtain a continua

connecting the two connected components, one would need λ > diam(S1)/R, which goes to

∞ as R → 0.

Now we recall the definition of Hausdorff measure.

Definition 1.4.5 (20). Let (X, d) be a metric space and A ⊂ X. For all s ≥ 0 and δ > 0,

we write

Hs
δ(A) = inf{

∞∑
i=1

diam(Ai)
s | A ⊂ ∪∞

i=1Ai, diam(Ai) ≤ δ for all i}.
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Notice that Hs
δ decreases in δ, so we can define

Hs(A) = lim
δ→0+

Hs
δ(A) = sup

δ>0
Hs

δ(A).

We call this quantity the s-dimensional Hausdorff measure of A.

We will assume the reader is familiar with the basic properties of the Hausdorff measure.

The following proposition won’t be proved, but is used to define the dimension.

Proposition 1.4.6. Let (X, d) be a metric space and A ⊂ X. There exists a unique s ∈

[0,∞] such that for all t > s,

Ht(A) = 0,

and for all 0 ≤ t < s,

Ht(A) = ∞.

We define the Hausdorff dimension of A to be s, denoted dimH(A) := s.

If we ever refer to the Hausdorff measure of A without specifying the dimension, we mean

the dimH(A)-dimensional Hausdorff measure of A. When a metric space (X, d) is equipped

with a Borel measure µ, we call the triple (X, d, µ) a metric measure space . Many of the

properties of metric measure spaces can be defined on metric spaces by using the Hausdorff

measure.

Definition 1.4.7. Let (X, d, µ) be a metric measure space. We say µ is doubling if there

exists a constant C ≥ 1 such that for every x ∈ X and r > 0,

µ(B(x, 2r)) ≤ Cµ(B(x, r)).

Also, we require 0 < µ(B(x, r)) < ∞ for all balls.

Definition 1.4.8. Let (X, d, µ) be a metric measure space. Let s > 0, we say (X, d, µ) is

Ahlfors s-regular in case there exists a C ≥ 1 such that for every x ∈ X and 0 < r <

11



diam(X),
1

C
rs ≤ µ(B(x, r)) ≤ Crs.

We say (X, d) is Ahlfors s-regular if (X, d,HdimH(X)) is. If we say a space is Ahlfors regular,

we mean it is Ahlfors s-regular for some s > 0.

Ahlfors regular measures are doubling: µ(B(x, 2r)) ≤ 2sCrs ≤ 2sC2µ(B(x, r)). Notice

that a necessary condition for (X, d) to be Ahlfors s-regular is that dimH(X) = s; although,

it is not sufficient. Indeed look at the planar set (x, x sin(1/x)) for −1 ≤ x ≤ 1 equipped with

the euclidean metric; it has Hausdorff dimension 1, but every ball around (0, 0) has infinite

H1 measure, so it isn’t Ahlfors 1-regular. We will point out that if X is locally compact

and Ahlfors s-regular for some Borel µ, then Hs is comparable to µ21. Thus (X, d, µ) being

Ahlfors regular implies (X, d) is Ahlfors regular. Also note that quasisymmetries can change

the Hausdorff dimension (see Section 2.2), and thus they can also map a space which is

Ahlfors s-regular to one that is not.

The notion of a metric doubling measure, introduced by David and Semmes22, arises

in the theory as a way to quasisymmetrically deform metrics. While we will not use this

concept directly, we define a weakened version of it below for reference, as it appears in

Section 1.5.

Definition 1.4.9 (23). Let (X, d, µ) be a metric measure space. For convenience, define for

x, y ∈ X,

Bxy := B(x, d(x, y)) ∪B(y, d(x, y)).

A finite sequence of points x0, ..., xm ∈ X is called a δ-chain from x to y if x0 = x, xm = y,

and d(xj, xj−1) ≤ δ for all j = 1, ...,m. Now fix s > 0 and define

qδµ,s(x, y) := inf

{ m∑
j=1

µ(Bxjxj−1
)1/s | (xj)

m
j=0 is a δ-chain from x to y

}
.
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The µ-length is defined to be

qµ,s(x, y) := lim sup
δ→0

qδµ,s(x, y).

The µ-length can be infinite. We say µ is a weak metric doubling measure of di-

mension s on (X, d) if µ is doubling, and if there exists a 0 < c ≤ 1 such that for all

x, y ∈ X,

cµ(Bxy)
1/s ≤ qµ,s(x, y).

1.5 Literature Review and Main Result

The goal of this section is to give the current state of affairs regarding the problem of

quasisymmetric embeddability of metric surfaces into the sphere. The first case we will

consider is when our space is homeomorphic to the sphere.

Theorem 1.5.1 (Bonk-Kleiner9). Let (X, d) be an Ahlfors 2-regular metric space homeo-

morphic to Ĉ. Then X is quasisymmetric to Ĉ if and only if X is linearly locally connected.

The Bonk-Kleiner Theorem was motivated by questions in Geometric Group Theory (see

discussion at the beginning of this chapter), and it has been applied there24. This also

yielded progress in Complex Dynamics25. Interest in this result has generated alternative

proofs5;26;27 which demonstrate how deep the result is from multiple perspectives.

We’ve already alluded to the fact that linear local connectivity is a quasisymmetrically

invariant property. However, we also observed that Ahlfors 2-regularity is not quasisym-

metrically invariant; indeed, there are quasisymmetric images of the sphere which fail to be

Ahlfors 2-regular. Bonk and Kleiner9 did give a complete characterization, however, in terms

of discrete modulus. The following theorem also captures non-Ahlfors 2-regular examples

by replacing Ahlfors regularity with the quasisymmetrically invariant weak metric doubling

measure.

Theorem 1.5.2 (Lohvansuu-Rajala-Rasimus23). Let (X, d) be a metric space homeomorphic
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to Ĉ. Then X is quasisymmetric to Ĉ if and only if it is linearly locally connected and carries

a weak metric doubling measure of dimension 2.

When considering cases which are not simply connected, one has to adjust the model

space. The model space chosen here is motivated by Geometric Group Theory, as work

by Kapovich and Kleiner13 generated interest in classifying quasisymmetric images of the

Sierpiński Carpet. So we are interested in equivalence to model spaces which are connected

subsets of the sphere whose boundary components are circles or points which aren’t neces-

sarily domains. Quasisymmetric images of such sets into the sphere have countably many

non-degenerate complementary components which are disjoint Jordan regions.

Theorem 1.5.3 (Bonk1). Let {Si} be a countable collection of uniformly relatively separated

uniform quasicircles in Ĉ bounding disjoint Jordan regions. Then there is a quasisymmetric

map f : Ĉ → Ĉ such that f(Si) is a round circle for all i.

It should be noted that this theorem applies not only to domains, but also to sets like

the Sierpiński Carpet.

Regarding more general metric spaces, we restrict our discussion to uniformizing with

respect to circle domains. We will first consider finitely connected domains.

Theorem 1.5.4 (Merenkov-Wildrick2). Let (X, d) be a metric space that’s Ahlfors 2-regular

and homeomorphic to a finitely connected circle domain Ω ⊂ Ĉ. Then X is quasisymmetric

to Ω if and only if X is linearly locally connected and X is compact.

Similar to the Bonk-Kleiner theorem (1.5.1), this has been generalized to include examples

which aren’t Ahlfors 2-regular.

Theorem 1.5.5 (Rajala-Rasimus28). Let (X, d) be a metric space homeomorphic to a finitely

connected circle domain Ω ⊂ Ĉ. Then X is quasisymmetric to Ω if and only if X is linearly

locally connected, X is compact, and X carries a weak metric doubling measure of dimension

2.

It should be noted that Theorems 1.5.4 and 1.5.5 do not extend directly to infinitely

many boundary components, because the key estimates depend on the number of boundary
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components. As such, the countably connected case lacks a complete characterization; with

the following theorem being the most general statement so far.

Theorem 1.5.6 (Merenkov-Wildrick2). Let (X, d) be a metric space homeomorphic to a

countably connected circle domain Ω ⊂ S2. Suppose that the collection of boundary compo-

nents of X has finite rank. Suppose that

(a) X is Ahlfors 2-regular,

(b) The following condition holds
∞∑
k=0

nk2
−2k < ∞

where

nk := sup
x∈X

0<r<2diam(X)

#{E ∈ ∂0X | E ∩B(x, r) ̸= ∅, 2−kr < diam(E) ≤ 2−k+1r}.

Then X is quasisymmetric to a uniformly relatively separated circle domain if and only

if

(1) The boundary components of X are uniformly relatively separated,

(2) X is compact,

(3) X is annularly linearly locally connected.

See Merenkov and Wildrick 2 for a definition of rank. While most properties given here

are quasisymmetric invariants, conditions (a) and (b) above are not invariant under qua-

sisymmetries, and the authors expressed interest in rectifying that. This was the primary

motivation for the following result, where the only property which is not invariant under

quasisymmetries is requiring H2 locally finite.

Theorem 1.5.7. Suppose (X, d) is a metric space homeomorphic to a domain in Ĉ with H2

locally finite and ∂0X countable. Suppose X is locally reciprocal. Then X is quasisymmetric

to a circle domain with uniformly relatively separated bounding circles if and only if

15



• X is compact,

• X is (metric) doubling,

• X is LLC-1, and

• X is 2-transboundary Loewner.

By LLC-1, we mean condition (i) of linear local connectivity. We prove this by first using

local reciprocality and the machinery of Rajala5 and Ikonen6 to obtain a quasiconformal map

to a circle domain. We then use the 2-transboundary Loewner property to say that this map

is, in fact, quasisymmetric. The rest of the properties are used in the finer details of the

argument. In Section 4.4, we establish a class of domains where Theorem 1.5.7 applies, and

the other theorems discussed in this section do not.

One might be interested on how these questions have been addressed for uncountably

connected circle domains. We will end this section by pointing out that answering this

question is equivalent to answering the question for countably connected circle domains.

Proposition 1.5.8. Let (X, d) be a metric space with uncountably many boundary compo-

nents which is homeomorphic to an uncountably connected circle domain in the sphere. Let

X̃ = X ∪ C where C = {c ∈ ∂X | {c} ∈ ∂0X}. X is quasisymmetric to an uncountably

connected circle domain if and only if X̃ is quasisymmetric to a countably connected circle

domain.

Proof. ⇒) Let Ω ⊂ Ĉ be an uncountably connected circle domain, and suppose f : X → Ω

is a quasisymmetry. Then by Remark 2.1.6 f extends as a quasisymmetry to the bound-

ary. Thus the extension of f is defined on C, and f(C) must be the union of degenerate

complementary components of Ω. So f(X̃) must be a circle domain with no degenerate

complementary components, and hence must be countably connected.

⇐) Let Ω̃ ⊂ Ĉ be a countably connected circle domain, and suppose f : X̃ → Ω̃ is

a quasisymmetry. Then X̃ must have countably many boundary components, and so C

must be uncountable. Also, since X is homeomorphic to a circle domain, f(X) must be
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homeomorphic to a circle domain. Hence, f(X) is an open, connected subset of Ĉ whose

complementary components include the complementary components of Ω̃, as well as f(C),

which is a totally disconnected, uncountable set. f(X) must be an uncountably connected

circle domain.

The outline of the rest of the document is as follows. Chapter 2 will discuss the established

theory of quasisymmetric mappings and quasiconformal mappings, as well as modulus and

the Loewner property. Chapter 3 contains new information which will be needed for the

results; including transboundary modulus, as defined for general metric spaces, and various

transboundary analogs of the Loewner property. Chapter 4 will be the proof of the main

theorem, and it contains some applications of the main result to particular examples.
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Chapter 2

Quasisymmetric Mappings,

Quasiconformal Mappings, and

Modulus of Curves

The goal of this chapter is to review the theory of quasisymmetric and quasiconformal

mappings. Specifically, their various definitions and equivalence, as well as a few properties.

Modulus of curve families will also be introduced, as it is used in defining quasiconformal

maps and establishing their properties. Many of the arguments in this chapter are well-

known, and are given for completeness.

2.1 Properties of Quasisymmetries

Here we will discuss basic properties of quasisymmetric maps and their pertinence to the

quasisymmetric equivalence of spaces (see Definition 1.3.2). First we will observe that if

f : X → Y is ηf -quasisymmetric and g : Y → Z is ηg-quasisymmetric, then g ◦ f : X → Z

is ηg ◦ ηf -quasisymmetric. This is because ηg must be increasing, so that for all pairwise
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distinct a, b, c ∈ X,

dZ(g(f(a)), g(f(b)))

dZ(g(f(a)), g(f(c)))
≤ ηg

(
dY (f(a), f(b))

dY (f(a), f(c))

)
≤ ηg

(
ηf

(
dX(a, b)

dX(a, c)

))
.

This implies transitivity of quasisymmetry as a relation between spaces (if X is quasisym-

metric to Y and Y is quasisymmetric to Z then X is quasisymmetric to Z). This relation

is reflexive, since the identity map is quasisymmetric. Symmetry follows from the following

proposition, so that it is an equivalence relation.

Proposition 2.1.1. The inverse of a quasisymmetric map is quasisymmetric. More pre-

cisely, if (X, dX) and (Y, dY ) are metric spaces and f : X → Y is an η-quasisymmetry, then

f−1 : Y → X is an ν-quasisymmetry, where ν(t) = 1
η−1(1/t)

for t > 0 and ν(0) = 0.

Proof. Notice that η and η−1 must be increasing functions. Pick any pairwise distinct a, b, c ∈

Y . Then there are pairwise distinct a′, b′, c′ ∈ X with f(a′) = a, f(b′) = b, f(c′) = c. We

have

dY (f(a
′), f(c′))

dY (f(a′), f(b′))
≤ η

(
dX(a

′, c′)

dX(a′, b′)

)
dY (a, c)

dY (a, b)
≤ η

(
dX(f

−1(a), f−1(c))

dX(f−1(a), f−1(b))

)
η−1

(
dY (a, c)

dY (a, b)

)
≤ dX(f

−1(a), f−1(c))

dX(f−1(a), f−1(b))

η−1

(
dY (a, c)

dY (a, b)

)−1

≥ dX(f
−1(a), f−1(b))

dX(f−1(a), f−1(c))
.

In other words,

dX(f
−1(a), f−1(b))

dX(f−1(a), f−1(c))
≤ η−1

((
dY (a, b)

dY (a, c)

)−1)−1

= ν

(
dY (a, b)

dY (a, c)

)
.

We will now give some necessary conditions for spaces to be quasisymmetrically equiva-

lent. We say a metric space, (X, d), is bounded in case diam(X) < ∞.
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Proposition 2.1.2. A bounded metric space is never quasisymmetric to an unbounded one.

Proof. Let (X, dX) and (Y, dY ) be metric spaces and f : X → Y an η-quasisymmetry.

Suppose by way of contradiction that one of the spaces is bounded and the other is un-

bounded; without loss of generality, suppose X is bounded and Y is unbounded (apply

same argument to f−1 if reversed). Fix distinct a, c ∈ X, and call δX := dX(a, c) > 0 and

δY := dY (f(a), f(c)) > 0. Since Y is unbounded, for every n ∈ N with n > δY , we have

B(f(a), n) ̸= Y , which means there exists some bn ∈ Y with dY (f(a), bn) > n and bn ̸= f(c).

Then we can say for all n > max(δY , δY η(diam(X)/δX)),

n

δY
<

dY (f(a), bn)

dY (f(a), f(c))
≤ η

(
dX(a, f

−1(bn))

dX(a, c)

)
≤ η

(
diam(X)

δX

)
;

which is a contradiction.

Proposition 2.1.3 (19). Let (X, dX) and (Y, dY ) be metric spaces with f : X → Y a

quasisymmetry. Let A ⊂ B ⊂ X be such that 0 < diam(A) ≤ diam(B) < ∞. Then the

following holds

(
2η

(
diam(B)

diam(A)

))−1

≤ diam(f(A))

diam(f(B))
≤ η

(
2diam(A)

diam(B)

)
.

Proof. First note that diam(f(B)) ≥ diam(f(A)) > 0 because f is a homeomorphism. Also

note that by Proposition 2.1.2, we must have diam(f(B)) < ∞. Let (bn)n∈N and (b′n)n∈N be

sequences of points in B such that 1
2
diam(B) ≤ dX(bn, b

′
n) for all n ∈ N and

lim
n→∞

dX(bn, b
′
n) = diam(B).

For all a ∈ A we have

dX(bn, b
′
n) ≤ dX(bn, a) + dX(b

′
n, a).

Hence we must have dX(bn, a) ≥ 1
2
dX(bn, b

′
n) or dX(b

′
n, a) ≥ 1

2
dX(bn, b

′
n). Without loss of

generality, suppose dX(bn, a) ≥ 1
2
dX(bn, b

′
n). Pick any other a′ ∈ A and use quasisymmetry
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to say

dY (f(a), f(a
′)) ≤ η

(
dX(a, a

′)

dX(bn, a)

)
dY (f(bn), f(a))

≤ η

(
2dX(a, a

′)

dX(bn, b′n)

)
diam(f(B))

≤ η

(
2diam(A)

dX(bn, b′n)

)
diam(f(B)).

Taking a limit on both sides gives

dY (f(a), f(a
′)) ≤ η

(
2diam(A)

diam(B)

)
diam(f(B)),

and then taking a supremum over all a, a′ ∈ A yields

diam(f(A)) ≤ η

(
2diam(A)

diam(B)

)
diam(f(B)).

This gives one side of the inequality, to obtain the other, apply the upper inequality to f−1

(see Proposition 2.1.1). Let ν(t) = 1
η−1(1/t)

,

diam(f−1(f(A)))

diam(f−1(f(B)))
≤ ν

(
2diam(f(A))

diam(f(B))

)
diam(A)

diam(B)
≤ η−1

(
diam(f(B))

2diam(f(A))

)−1

η

(
diam(B)

diam(A)

)
≥ diam(f(B))

2diam(f(A))(
2η

(
diam(B)

diam(A)

))−1

≤ diam(f(A))

diam(f(B))
.

Corollary 2.1.4. Quasisymmetric maps send Cauchy sequences to Cauchy sequences. More

precisely, if (X, dX) and (Y, dY ) are metric spaces, f : X → Y a quasisymmetry, and (xn)n∈N

a Cauchy sequence, then (f(xn))n∈N is a Cauchy sequence.

Proof. Let B = {xn | n ∈ N} and for each N ∈ N, let AN = {xn | n > N}. If diam(AN) = 0
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for any N ∈ N, then the sequence is eventually constant, which means its image is Cauchy.

So suppose diam(AN) > 0 for all N ∈ N. Observe that the sequence being Cauchy implies

limN→∞ diam(AN) = 0; moreover, if limN→∞ diam(f(AN)) = 0 then (f(xn))n∈N is a Cauchy

sequence. Now, diam(B) < ∞ because, if it wasn’t, then diam(AN) = ∞ for all N ∈ N. So

we can apply Proposition 2.1.3 on AN ⊂ B to say, for all N ∈ N,

diam(f(AN))

diam(f(B))
≤ η

(
2diam(AN)

diam(B)

)
.

Observe that by Proposition 2.1.2, diam(f(B)) < ∞. Now take a limit,

lim
N→∞

diam(f(AN))

diam(f(B))
≤ lim

N→∞
η

(
2diam(AN)

diam(B)

)
limN→∞ diam(f(AN))

diam(f(B))
≤ η

(
2 limN→∞ diam(AN)

diam(B)

)
limN→∞ diam(f(AN))

diam(f(B))
≤ 0

lim
N→∞

diam(f(AN)) = 0.

Corollary 2.1.5. Quasisymmetric maps always extend quasisymmetrically to the comple-

tion; that is, if (X, dX) and (Y, dY ) are metric spaces and f : X → Y a quasisymmetry, then

there is a quasisymmetry f : X → Y with f(x) = f(x) for all x ∈ X.

Proof. For each x ∈ ∂X there is a Cauchy sequence (xn) ⊂ X converging to it. By Corollary

2.1.4, yn := (f(xn)) is a Cauchy sequence in Y , which means it converges to some y ∈ Y .

Define f(x) = y for all x ∈ ∂X and f(x) = f(x) for all x ∈ X. Then f : X → Y is a well-

defined continuous map. It is surjective, as every Cauchy sequence in Y has a corresponding

Cauchy sequence in X whose limit point is mapped to the limit point in Y . Suppose f fails

to be injective: let a ̸= b ∈ X satisfy f(a) = f(b). Let (an), (bn) ⊂ X be Cauchy sequences

converging to a, b respectively. Since f(a) = f(b), we must have (f(an)) and (f(bn)) converge

to the same point in Y . Consider the sequence (f(a0), f(b0), f(a1), f(b1), ...) ⊂ Y and notice
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that this sequence must converge to f(a) = f(b); hence, it must be Cauchy. Since f−1 sends

Cauchy sequences to Cauchy sequences, by Corollary 2.1.4, we must have (a0, b0, a1, b1, ...) is

Cauchy. However, it isn’t because eventually, dX(an, bn) >
1
2
dX(a, b). So the contradiction

gives us injectivity. We conclude f is invertible, and the symmetry of the construction allows

us to conclude f is a homeomorphism.

To see that f is quasisymmetric, pick any distinct a, b, c ∈ X with corresponding Cauchy

sequences (an), (bn), (cn) ⊂ X converging to them. By passing to subsequences if necessary,

assume an, bm, ck are pairwise distinct for all n,m, k. Then

dY (f(a), f(b))

dY (f(a), f(c))
= lim

n→∞

dY (f(an), f(bn))

dY (f(an), f(cn))
≤ lim

n→∞
η

(
dX(an, bn)

dX(an, cn)

)
= η

(
dX(a, b)

dX(a, c)

)
.

Remark 2.1.6. If (X, dX), (Y, dY ) are metric spaces and f : X → Y a quasisymmetry, then

f (as in Corollary 2.1.5) quasisymmetrically maps ∂X onto ∂Y . This gives rise to a bijection

F : ∂0X → ∂0Y that satisfies the following claim: if C ∈ ∂0X then f quasisymmetrically

maps C onto F (C).

The fact that the boundaries of metric spaces being quasisymmetric is necessary for

the spaces to be quasisymmetric is useful. For example, a Jordan region in the plane is

quasisymmetric to a disk only if the Jordan curve is quasisymmetric to a circle. Moreover, if

one has multiple boundary components, then each component must have a quasisymmetric

counterpart. We will often abuse notation and just refer to f as f .

For the remainder of this section, we establish the quasisymmetric invariance of some

geometric properties of metric spaces.

Proposition 2.1.7. Let (X, dX), (Y, dY ) be metric spaces and f : X → Y a quasisymmetry.

If X is linearly locally connected, then Y is linearly locally connected.

Proof. Let β ≥ 1 be the constant given by the linear local connectivity of X. We claim Y is

linearly locally connected with λ := η(β). Note η(β) ≥ η(1) ≥ 1.
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(i) Pick any y ∈ Y and r > 0. Let a, b ∈ B(y, r). We must find a continuum E ⊂ B(y, λr)

containing a, b. Let x := f−1(y), c := f−1(a), d := f−1(b), and δ := supf(v)∈B(y,r) dX(v, x).

Notice that c, d ∈ B(x, δ), and thus there is a continuum F ⊂ B(x, βδ) containing c and

d. Let E := f(F ). Notice that E contains a, b and is contained in f(B(x, βδ)). We claim

that f(B(x, βδ)) ⊂ B[y, λr]. To show this, let (vn) ⊂ f−1(B(y, r)) be a sequence such that

dX(vn, x) → δ. Pick any u ∈ B(x, βδ). Use quasisymmetry of f to say

dY (f(u), y)

dY (f(vn), y)
≤ η

(
dX(u, x)

dX(vn, x)

)
< η

(
βδ

dX(vn, x)

)
.

So for all u ∈ B(x, βδ) and all n we have

dY (f(u), y) < dY (f(vn), y)η

(
βδ

dX(vn, x)

)
< rη

(
βδ

dX(vn, x)

)
.

Take a limit of both sides in n to obtain

dY (f(u), y) ≤ rη

(
βδ

δ

)
= rη(β).

Thus E ⊂ f(B(x, βδ)) ⊂ B[y, λr] and therefore E ⊂ B(y, λr).

(ii) Pick any y ∈ Y and r > 0. Let a, b ∈ Y \ B(y, r). We must find a continuum

E ⊂ Y \ B(y, r
λ
) containing a, b. Let x := f−1(y), c := f−1(a), d := f−1(b), and δ :=

inff(v)∈Y \B(y,r) dX(v, x) > 0. Then notice c, d ∈ X \ B(x, δ), so by linear local connectivity,

there is a continuum F ⊂ X \ B(x, δ
β
) containing c and d. Let E := f(F ) and notice that

a, b ∈ E ⊂ f(X \ B(x, δ
β
)) = Y \ f(B(x, δ

β
)). Now we wish to show that Y \ f(B(x, δ

β
)) ⊂

Y \B(y, r
λ
). To this end, let (vn) ⊂ f−1(Y \B(y, r)) be a sequence satisfying dX(vn, x) → δ,

and pick any u ∈ X \B(x, δ
β
). Quasisymmetry gives

r

dY (f(u), y)
≤ dY (f(vn), y)

dY (f(u), y)
≤ η

(
dX(vn, x)

dX(u, x)

)
≤ η

(
βdX(vn, x)

δ

)
→ η(β).
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We arrive at the conclusion

dY (f(u), y) ≥
r

λ
.

Thus E ⊂ f(X \B(x, δ
β
)) ⊂ Y \B(y, r

λ
).

It’s worth noting that the same argument shows that annular linear local connectivity is

a quasisymmetric invariant. For domains in the plane, notice that satisfaction of condition

(ii) of linear local connectivity means that the space doesn’t have any outward pointing

sharp cusps. Also satisfaction of condition (i) of linear local connectivity means that the

space doesn’t have any inward pointing sharp cusps. So this result is one way of saying that

quasisymmetries cannot create cusps.

Now we’ve already seen that quasisymmetries take sets of diameter 0 or ∞ to sets of

diameter 0 or ∞ respectively. The same is true of relative distance, though the following

proposition is needed to establish that.

Proposition 2.1.8. Let (X, dX), (Y, dY ) be metric spaces with f : X → Y a quasisymmetry.

Let A,B ⊂ X be closed sets satisfying dX(A,B) = 0, then dY (f(A), f(B)) = 0.

Proof. If A,B intersect, then the claim is obvious. Suppose that they are disjoint, and notice

then that neither diameter can be finite. There exists sequences (an) ⊂ A and (bn) ⊂ B

such that dX(an, bn) → 0. Now, we claim there is a point b ∈ B, b ̸= bn for all sufficiently

large n, satisfying the following claim. There exists an ϵ > 0 such that dX(b, an) > ϵ and

dY (f(b), f(an)) > ϵ for all sufficiently large n. If the first inequality is false, then that would

mean a subsequence of (an) converges to b, but A is closed, so we would have b ∈ A violating

disjointness. Similarly, the second inequality failing means f(A) and f(B) fail to be disjoint.

Obtain ϵ by taking half the minimum distance between b and the two sequences. Alright,

now that we are armed with appropriate points, we can say for sufficiently large n,

dY (f(an), f(bn))

ϵ
≤ dY (f(an), f(bn))

dY (f(an), f(b))
≤ η

(
dX(an, bn)

dX(an, b)

)
≤ η

(
dX(an, bn)

ϵ

)
→ 0.

Thus, dY (f(an), f(bn)) → 0.
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Proposition 2.1.9. Relative distance is η-quasi-preserved under quasisymmetries; meaning,

if (X, dX), (Y, dY ) are metric spaces, f : X → Y a quasisymmetry, and A,B ⊂ X disjoint,

closed sets, then
1

2η(∆(A,B)−1)
≤ ∆(f(A), f(B)) ≤ η(2∆(A,B))

Proof. First note that if A and B are unbounded, then ∆(A,B) = 0, but Proposition 2.1.2

implies f(A) and f(B) are unbounded, so ∆(f(A), f(B)) = 0 too. Similarly, if either A or

B is a singleton, then f(A) or f(B) is as well and ∆(A,B) = ∆(f(A), f(B)) = ∞. Thus the

conclusion holds in these cases. Moving forward, assume ∞ > min(diam(A), diam(B)) > 0.

This will imply 0 < min(diam(f(A)), diam(f(B))) < ∞. The final problematic case to

address, is that it is possible for dX(A,B) = 0, even for bounded A. In this case, the claim

holds if and only if dY (f(A), f(B)) = 0, which is the case by Proposition 2.1.8. We will

assume now that dX(A,B) > 0 and dY (f(A), f(B)) > 0.

Suppose, without loss of generality, that diam(f(A)) ≤ diam(f(B)). Let (an) be a

sequence of points in A and (bn) be a sequence of points in B with dX(an, bn) → dX(A,B).

Fix any ϵ > 0. We claim that, for all n, there is some a′n ∈ A with dX(an, a
′
n) ≥ diam(A)/2−ϵ.

To see this, note that

diam(A) = sup
a,a′∈A

dX(a, a
′) ≤ sup

a,a′∈A
(dX(a, an) + dX(a

′, an)) ≤ 2 sup
a∈A

dX(a, an).

Now for all n,

∆(f(A), f(B)) =
dY (f(A), f(B))

diam(f(A))
≤ dY (f(an), f(bn))

dY (f(an), f(a′n))
≤ η

(
dX(an, bn)

dX(an, a′n)

)
≤ η

(
dX(an, bn)

diam(A)/2− ϵ

)
.

Take n → ∞ and ϵ → 0 to say

∆(f(A), f(B)) ≤ η

(
2
dX(A,B)

diam(A)

)
≤ η(2∆(A,B)).
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Now apply the same argument to f−1. Let ν(t) = 1
η−1(1/t)

. Then

∆(A,B) = ∆(f−1(f(A)), f−1(f(B))) ≤ ν(2∆(f(A), f(B)))

Doing some inequality flips gives us

1

∆(A,B)
≥ η−1

(
diam(f(A))

2dY (f(A), f(B))

)
η

(
1

∆(A,B)

)
≥ diam(f(A))

2dY (f(A), f(B))

1

2η(∆(A,B)−1)
≤ dY (f(A), f(B))

diam(f(A))
= ∆(f(A), f(B)).

Corollary 2.1.10. Let (X, dX), (Y, dY ) be metric spaces and f : X → Y a quasisymme-

try. Let {Ei}i∈I be a collection of pairwise disjoint, closed subsets of X which is uniformly

relatively separated. Then {f(Ei)}i∈I is uniformly relatively separated.

Proof. Let α > 0 satisfy ∆(Ei, Ej) ≥ α for all i ̸= j. Then for all i ̸= j,

∆(f(Ei), f(Ej)) ≥
1

2η(∆(Ei, Ej)−1)
≥ 1

2η(α−1)
.

We will end this section by considering when weaker requirements on functions give

quasisymmetry. The following condition will characterize this well.

Definition 2.1.11. Let (X, d) be a metric space. We say X is (metric) doubling in case

there is some constant N0 ∈ N with the following property. For all x ∈ X and r > 0, there

exists S ⊂ X with #(S) ≤ N0 such that

B(x, r) ⊂ ∪y∈SB(y, r/2).
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Proposition 2.1.12 (Heinonen19 (Theorem 10.18)). Let (X, dX) and (Y, dY ) be metric

spaces and f : X → Y a quasisymmetry. If X is doubling then Y is doubling.

Definition 2.1.13. Let (X, dX) and (Y, dY ) be doubling metric spaces and f : X → Y a

homeomorphism. We say f is weakly quasisymmetric if there is some H > 0 such that

for all pairwise distinct a, b, c ∈ X

dX(a, b) ≤ dX(a, c) ⇒ dY (f(a), f(b)) ≤ HdY (f(a), f(c)).

Quasisymmetries are weak quasisymmetries with H = η(1). The converse is true in

doubling metric spaces.

Lemma 2.1.14 (Heinonen19 (Theorem 10.19)). Let (X, dX) and (Y, dY ) be doubling metric

spaces and f : X → Y a homeomorphism. If f is H-weakly quasisymmetric, then f is

η-quasisymmetric, where η depends only on H and the doubling constant.

2.2 Examples of Quasisymmetries

In this section, we’ll give some examples of quasisymmetric maps. We’ll also establish

that some of the properties we’ve discussed are not quasisymmetrically invariant through

counterexamples.

Example 2.2.1. Isometric and bi-Lipschitz maps are quasisymmetric.

Proof. Let (X, dX), (Y, dY ) be metric spaces and f : X → Y a homeomorphism.

• If f is an isometry , then dY (f(a), f(b)) = dX(a, b) for all a, b ∈ X. Thus for all distinct

a, b, c ∈ X
dY (f(a), f(b))

dY (f(a), f(c))
=

dX(a, b)

dX(a, c)
,

and f is quasisymmetric with η(t) = t.
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• If f is bi-Lipschitz , then there is some L > 0 such that 1
L
dX(a, b) ≤ dY (f(a), f(b)) ≤

LdX(a, b) for all a, b ∈ X. Thus for all distinct a, b, c ∈ X

dY (f(a), f(b))

dY (f(a), f(c))
≤ LdX(a, b)

(1/L)dX(a, c)
,

and f is quasisymmetric with η(t) = L2t.

Proposition 2.2.2. Let (X, d) be a metric space. For any 0 < α ≤ 1, (X, dα) is also a

metric space. Moreover, the Hausdorff dimension of (X, dα) is dimH(X)
α

.

Proof. The fact that (X, dα) is a metric space follows from the fact that for any s, t ≥ 0,

(s+ t)α ≤ sα + tα. Thus, for any a, b, c ∈ X,

dα(a, c) = (d(a, c))α ≤ (d(a, b) + d(b, c))α ≤ d(a, b)α + d(b, c)α = dα(a, b) + dα(b, c).

To see the change in Hausdorff dimension, note that for any A ⊂ X, diam(A) (with respect

to dα) is diam(A)α (with respect to d).

We say we’re snowflaking the metric d when we replace it with dα for 0 < α < 1. This is

because if we take X to be the unit circle and d the planar metric, then (X, dα) is bi-Lipschitz

to the von Koch snowflake with the planar metric for α = log(3)
log(4)

.29 Indeed, snowflaking often

generates fractal spaces.

Example 2.2.3. Snowflaking is a quasisymmetric process. That is, the identity map id :

(X, d) → (X, dα) is a quasisymmetry.

Proof. Pick any distinct a, b, c ∈ X.

dα(id(a), id(b))

dα(id(a), id(c))
=

(
d(a, b)

d(a, c)

)α

.

So it is quasisymmetric with η(t) = tα.
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This example illustrates that quasisymmetries do not preserve Hausdorff dimension; con-

sequently, they also don’t preserve Ahlfors regularity. Snowflaking the sphere is an example

of a quasisymmetric image of the sphere that isn’t Ahlfors 2-regular. If one defines f on Ĉ

as a snowflaking map on the northern hemisphere and lets f be the identity on the southern

hemisphere, the resulting image won’t be Ahlfors s-regular for any s.

Any quasiconformal map f : R2 → R2 is quasisymmetric30. Likewise, any quasiconformal

map f : Ĉ → Ĉ or f : D → D will be quasisymmetric. We will elaborate on this in Section 2.5,

where conditions under which one can conclude that a quasiconformal map is quasisymmetric

are given.

2.3 Modulus

An interval is a non-empty, connected subset of R (note this includes singletons). Given a

metric space (X, d), a curve in X is a continuous function γ : I → X where I is an interval.

We call the curve open, closed, or compact if I is open, closed, or compact respectively. If

I ′ ⊂ I is an interval, we call the restriction of γ to I ′ a subcurve of γ. We will often abuse

notation and denote γ(I) as γ; moreover, we will abuse language and refer to γ(I) as a curve.

If γ is a singleton, we say the curve is constant .

Definition 2.3.1 (31). Let (X, d) be a metric space and I ⊂ R a compact interval. Then

I = [a, b] for some a ≤ b. Given a curve γ : I → X, we define its length to be

ℓ(γ) := sup
a=t0<t1<...<tn=b

n∑
k=1

d(γ(tk−1), γ(tk)).

If a = b we define the length to be 0. Note the length may be infinite. For non-compact I,

we define the length to be

ℓ(γ) := sup
γ′∈CS(γ)

ℓ(γ′),

where CS(γ) is the collection of all compact subcurves of γ.

The following result we will not prove here, but we will state it for reference.

30



Proposition 2.3.2 (Proposition 5.1.1131). Let (X, d) be a metric space, I ⊂ R an interval,

and γ : I → X a curve. Then

diam(γ(I)) ≤ H1(γ(I)) ≤ ℓ(γ).

Moreover, if γ is injective, then H1(γ(I)) = ℓ(γ).

One thing this illustrates in particular, is that length of a curve doesn’t depend on the

parameterization of the curve if it’s injective. Also, recall that in our abuse of notation, we

may refer to H1(γ(I)) as H1(γ).

We say a curve γ is rectifiable in case ℓ(γ) < ∞. We say γ is locally rectifiable if every

compact subcurve of γ is rectifiable. For every rectifiable curve, γ : [a, b] → X, we can

define its associated length function sγ : [a, b] → [0, ℓ(γ)] by sγ(t) := ℓ(γ|[a,t]). The length

function is increasing and continuous31. The arc length parameterization of a rectifiable

curve γ : [a, b] → X, is another curve γs : [0, ℓ(γ)] → X which is the unique curve satisfying

γ(t) = γs(sγ(t)) for all t ∈ [a, b].

Definition 2.3.3 (31). Let (X, d) be a metric space, I a compact interval, and γ : I → X a

rectifiable curve. Let ρ : X → [0,∞] be a Borel function; this will imply ρ ◦ γs is measurable.

The path integral of ρ over γ is defined to be

∫
γ

ρ ds :=

∫ ℓ(γ)

0

ρ(γs(t)) dt.

For I non-compact and γ locally rectifiable, we define the path integral of ρ over γ to be

∫
γ

ρ ds := sup
γ′∈CS(γ)

∫
γ′
ρ ds,

where CS(γ) is the collection of all compact subcurves of γ. For convenience, we will some-

times refer to the path integral of ρ over γ as the ρ-length of γ and denote it

ℓρ(γ) :=

∫
γ

ρ ds.
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Observe that path integrals over a constant curve are 0. Also observe that if ρ ≡ 1 then

ℓρ(γ) = ℓ(γ). Path integrals are not defined for curves which are not locally rectifiable. We

now introduce an important tool: modulus of curve families. While modulus is frequently

defined with a parameter p, it suits our purposes to just define it for p = 2.

Definition 2.3.4 (31). Let (X, d, µ) be a metric measure space with (X, d) separable and µ a

locally finite Borel regular measure. Let Γ be a collection of curves in X, and ρ : X → [0,∞]

a Borel function. We say ρ is admissible for Γ , denoted ρ ∧ Γ, in case for all locally

rectifiable γ ∈ Γ,

ℓρ(γ) ≥ 1.

The modulus of Γ is defined as

mod(Γ) := inf
ρ∧Γ

∫
X

ρ2dµ.

In general, modulus takes on values in [0,∞]. We draw attention to the fact that if

there are no admissible functions for Γ, then mod(Γ) = ∞. This happens, for example, if

Γ contains a constant curve. We also draw attention to the fact that if Γ has no locally

rectifiable curves, then the zero function is admissible for Γ and mod(Γ) = 0.

It will be convenient to define the following short hand notation when the ambient mea-

sure space is clear,

A(ρ) :=

∫
X

ρ2dµ.

For Γ1,Γ2 families of curves in X, we say Γ1 minorizes Γ2, denoted Γ1 < Γ2, if every curve

in Γ2 contains a subcurve in Γ1. The following properties of modulus are standard, but we

include their proofs to parallel a later discussion on transboundary modulus (Proposition

3.1.2).

Proposition 2.3.5. Let (X, d, µ) be a metric measure space with (X, d) separable and µ a

locally finite Borel regular measure. For each k ∈ N, let Γk be a collection of curves in X.

(i) mod(∅) = 0.
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(ii) If Γ1 ⊂ Γ2, then mod(Γ1) ≤ mod(Γ2). (Monotonicity)

(iii) If Γ1 < Γ2, then mod(Γ1) ≥ mod(Γ2). (Overflowing)

(iv) mod(∪k∈NΓk) ≤
∑

k∈N mod(Γk). (Subadditivity)

(v) If there are pairwise disjoint Borel sets, Bk ⊂ X, such that γk ⊂ Bk for all γk ∈ Γk,

then mod(∪k∈NΓk) =
∑

k∈N mod(Γk).

Proof. (i) Notice that the zero function is admissible for ∅, which will attain the infimizing

quantity of 0.

(ii) Pick any ρ ∧ Γ2. Then for all γ ∈ Γ1, we have γ ∈ Γ2 and hence ℓρ(γ) ≥ 1. Thus,

ρ∧Γ1. Thus the set of admissible functions for Γ2 is a subset of the set of admissible functions

for Γ1. The infimum of a subset is larger than the infimum of the superset.

(iii) Pick any ρ ∧ Γ1. Every curve γ2 ∈ Γ2 has a subcurve γ1 ∈ Γ1, and by virtue of

being a subcurve, ℓρ(γ2) ≥ ℓρ(γ1) ≥ 1. Thus ρ ∧ Γ2, and infimizing over the superset gives a

smaller quantity.

(iv) Let Γ = ∪k∈NΓk. Observe that the claim holds if the right hand side is infinite, so

suppose that it is finite. Fix ϵ > 0. For each k, choose ρk ∧ Γk such that

mod(Γk) + ϵ2−k ≥ A(ρk).

Let ρ =
√∑

k∈N ρ
2
k. Notice that ρ ∧ Γ, because for each γ ∈ Γ, there is some N ∈ N with

γ ∈ ΓN , and thus

∫
γ

ρ ds =

∫
γ

√∑
k∈N

ρ2k ds ≥
∫
γ

√
ρ2N ds =

∫
γ

ρN ds ≥ 1.

That means

mod (Γ) ≤
∫
X

ρ2dµ =

∫
X

∑
k∈N

ρ2kdµ =
∑
k∈N

A(ρk) ≤
∑
k∈N

( mod (Γk)+ϵ2−k) = 2ϵ+
∑
k∈N

mod (Γk).

Taking the limit as ϵ → 0 gives the result.
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(v) Let Γ = ∪k∈NΓk. By (iv) we need only show

mod(Γ) ≥
∑
k∈N

mod(Γk).

Let ρ ∧ Γ, and for each k, let ρk = ρIBk
. Notice that ρk are all Borel because Bk are.

Moreover, for each γk ∈ Γk, since γk ⊂ Bk,

∫
γk

ρk ds =

∫
γk

ρ ds ≥ 1.

Hence ρk ∧ Γk for all k. Since the Bk are pairwise disjoint, we can say

∑
k∈N

mod(Γk) ≤
∑
k∈N

∫
X

ρ2kdµ =
∑
k∈N

∫
Bk

ρ2dµ =

∫
∪Bk

ρ2dµ ≤
∫
X

ρ2dµ.

Thus by infimizing over admissible functions for Γ, we obtain the result.

Proposition 2.3.6 (31). Let (X, d, µ) be a metric measure space with (X, d) separable and

µ locally finite. Let Ω ⊂ X be a Borel set and Γ a collection of curves in Ω. If there is some

L > 0 such that, for all γ ∈ Γ, we have ℓ(γ) ≥ L then

mod(Γ) ≤ L−2µ(Ω).

Proof. Let ρ = L−1IΩ. Then for all γ ∈ Γ,

∫
γ

ρ ds = L−1

∫
γ

1 ds = L−1ℓ(γ) ≥ 1.

Thus

mod(Γ) ≤
∫
X

ρ2dµ = L−2µ(Ω).

For X, Y metric spaces, f : X → Y a continuous function, and Γ a collection of curves

in X, we define f(Γ) = {f ◦ γ | γ ∈ Γ} which is a collection of curves in Y .

34



Proposition 2.3.7. Let Ω,Ω′ ⊂ R2 be domains and f : Ω → Ω′ a (classically) conformal

map. If Γ is a family of curves in Ω, then mod(f(Γ)) = mod(Γ).

Proof. Pick any ρ ∧ f(Γ). Let ρ′ = (ρ ◦ f)|f ′|. We claim ρ′ ∧ Γ, as for all γ ∈ Γ,

∫
γ

ρ′ ds =

∫
f(γ)

(ρ′(f−1))|(f−1)′| ds =
∫
f(γ)

ρ|f ′(f−1)||(f−1)′| ds =
∫
f(γ)

ρ ds ≥ 1.

Thus we can say

mod(Γ) ≤
∫
Ω

(ρ′)2dA =

∫
Ω′
(ρ′(f−1))2J(f−1) dA =

∫
Ω′
ρ2|f ′(f−1)|2|(f−1)′|2dA =

∫
Ω′
ρ2dA.

This works for any ρ, thus by infimizing, we get mod(Γ) ≤ mod(f(Γ)). Applying the same

argument to f−1 gives equality.

Quite often, we will be concerned with the modulus of curves connecting continua in a

metric space. Given a metric space (X, d), disjoint, closed, and connected E,F ⊂ X, and

Ω ⊂ X, we define the family of curves connecting E and F in Ω as

Γ(E,F ; Ω) := {γ | γ is a curve, γ ∪ E ∪ F is connected, γ ⊂ Ω}.

Bear in mind that this set could be empty. When looking at the modulus of this family,

one can restrict the discussion from X to Ω. This is because for all ρ ∧ Γ(E,F ; Ω), we

have ρIΩ ∧ Γ(E,F ; Ω), and thus the infimum of A(ρ) is the same as the infimum of
∫
Ω
ρ2dµ.

When it is clear that all the curves are living in some subset Ω, we may use A(ρ) to refer

to integrating over Ω instead of X. The following examples illustrate why these particular

families are of interest when it comes to modulus.

Example 2.3.8. Consider R2 with the standard metric and Lebesgue measure. Let R ⊂ R2

be defined as R = [0, a]× [0, b] for a, b > 0. Let E = {0} × [0, b] and F = {a} × [0, b], then

mod(Γ(E,F ;R)) =
b

a
.
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Proof. Let ρ∧Γ(E,F ;R). By considering the horizontal line segments in Γ(E,F ;R), we can

say for all y0 ∈ [0, b], ∫ a

0

ρ(x, y0) dx ≥ 1,

and by integrating both sides with respect to y,

∫ b

0

∫ a

0

ρ(x, y)dx dy ≥ b.

Now apply Cauchy-Schwarz to the area integral:

∫
R

ρ2dA =

∫ b

0

∫ a

0

ρ(x, y)2dx dy ≥ 1

ab

(∫ b

0

∫ a

0

ρ(x, y)dx dy

)2

≥ b2

ab
=

b

a
.

This shows that mod (Γ(E,F ;R)) ≥ b
a
. To see equality, notice that the curves all have length

at least a, and so by Proposition 2.3.6, we have the mod(Γ(E,F ;R)) ≤ a−2(ab) = b
a
.

Similarly, if one looks at the connecting curves between the horizontal sides of the rect-

angle, one can see that it is a
b
. This gives rise to a more general fact which is useful for

computing lower bounds on the modulus when in the plane. It is sometimes formulated in

terms the modulus of connecting curves and separating curves of a quadrilateral. Here, we

formulate it in terms of curves connecting different parts of the boundary.

Proposition 2.3.9 (Duality of Modulus). Let Q ⊂ R2 be homeomorphic to [0, 1]2. Let

AL, AR, AB, AT ⊂ Q correspond to {0}× [0, 1], {1}× [0, 1], [0, 1]×{0}, [0, 1]×{1} respectively.

Then

mod(AL, AR;Q) mod (AB, AT ;Q) = 1.

Proof. Let C be the four points in the boundary of Q corresponding to the vertices of [0, 1]2.

Use the Riemann Mapping Theorem (Theorem 1.2.1) to get a conformal map from the

interior of Q to D. This map will extend to be a homeomorphism of the boundary, and thus

will send C to four points on the unit circle; the collection of these four points will be called

C ′. Let R = [0, x]× [0, 1]. The Riemann Mapping Theorem gives a conformal map from the

interior of R to D which also extends as a homeomorphism of the boundary. By composing
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with a Möbius transformation, and selecting the proper point to be mapped to 0, we can

guarantee three of the vertices of R get mapped to C ′; indeed, with an appropriate choice of

x, we can get all four vertices to map onto C ′ (this fact is not obvious, and we don’t include

the details here; see Lehto-Virtanen32 Chapter 2). This gives a map from Q to R which is

conformal on the interior and sends AL, AR to the left and right sides of R respectively. The

conformal invariance of modulus (Proposition 2.3.7) reveals that

mod(AL, AR;Q) = mod({0} × [0, 1], {x} × [0, 1];R) =
1

x
.

The last equality is applying Example 2.3.8. Similarly, mod (AB, AT ;Q) = x. We obtain the

result.

Example 2.3.10. Consider R2 with the standard metric and Lebesgue measure. For all

0 < R′ < R < ∞, let E = B[0, R′] and F = R2 \ B(0, R). For fixed θ1 ∈ (0, 2π], let

A = {(r, θ) | R′ ≤ r ≤ R, 0 ≤ θ ≤ θ1}, a polar rectangle . We have

mod(Γ(E,F ;A)) =
θ1

log(R/R′)
.

Proof. Suppose ρ ∧ Γ(E,F ;A). For fixed θ0 ∈ [0, θ1), consider the path γ(r) = (r, θ0), we

can say ∫ R

R′
ρ(r, θ0) dr =

∫
γ

ρ ds ≥ 1,

and can integrate both sides to say

∫ θ1

0

∫ R

R′
ρ(r, θ) dr dθ ≥ θ1.

Now use Cauchy-Schwarz to say

∫
A

ρ2dA =

∫ θ1

0

∫ R

R′
ρ(r, θ)2r dr dθ ≥

(∫ θ1

0

∫ R

R′
ρ(r, θ) dr dθ

)2(∫ θ1

0

∫ R

R′
r−1 dr dθ

)−1

≥ (θ1)
2 1

θ1 log(R/R′)
=

θ1
log(R/R′)

.
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And by infimizing, we get a lower bound on the modulus. To see the upper bound, let

ρ(r, θ) = 1
log(R/R′)r

. Pick any γ ∈ Γ(E,F ;A). Fix θ0 ∈ [0, θ1). Notice that ℓ(γ) ≥ R − R′,

and for any (r, θ), we have ρ(r, θ) = ρ(r, θ0). This means ρ(γs(t)) = ρ(|γs(t)|, θ0). Moreover,

|γs(t)| ≥ R′ + t. Thus

∫
γ

ρ ds =

∫ ℓ(γ)

0

ρ(γs(t)) dt =

∫ ℓ(γ)

0

ρ((|γs(t)|), θ0) dt ≥
∫ R−R′

0

ρ(R′+t, θ0) dt =
1

log(R/R′)

∫ R

R′

1

r
dr = 1.

Thus,

mod(Γ(E,F ;A)) ≤
∫ θ1

0

∫ R

R′

r

log(R/R′)2r2
dr dθ =

θ1
log(R/R′)

.

In general metric spaces, computing the modulus exactly is frequently infeasible. How-

ever, the following result gives an upper bound on the modulus of an annulus. It, unsurpris-

ingly, bears resemblance to the planar case.

Proposition 2.3.11 (31). Let (X, d, µ) be a metric measure space with (X, d) separable and

µ a locally finite Borel regular measure. Fix some x0 ∈ X. Suppose there exists constants

C0, R0 > 0 such that

µ(B(x0, r)) ≤ C0r
2

for all 0 < r < R0. Then

mod(Γ(B[x0, r], X \B(x0, R);X)) ≤ 128 log(2)C0

log(R/r)

whenever 0 < 2r < R < R0.

Proof. Fix r, R as in the statement. For all x ∈ A[x0, r, R], let

ρ(x) =
4 log(2)

log(R/r)d(x, x0)

and let ρ(x) = 0 otherwise. We claim that ρ ∧ Γ(B[x0, r], X \ B(x0, R);X). To see this, let

k be the smallest integer such that 2kr ≥ R, and notice k ≥ 2. Pick any γ ∈ Γ(B[x0, r], X \
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B(x0, R);X). Since for all x ∈ γ, ρ(x) ≥ 4 log(2)(log(R/r)R)−1, we have ℓρ(γ) = ∞ if γ

isn’t rectifiable. Suppose γ is rectifiable. For all j ∈ {1, ..., k − 1}, there is a subcurve γj of

γ lying in A(x0, 2
j−1r, 2jr) with ℓ(γj) ≥ 2j−1r; this follows from Proposition 2.3.2. We now

show admissibility:

∫
γ

ρ ds ≥
k−1∑
j=1

∫
γj

ρ ds ≥ 4
log(2)

log(R/r)

k−1∑
j=1

∫
γj

1

2jr
ds = 4

log(2)

log(R/r)

k−1∑
j=1

ℓ(γj)

2jr
≥ 2 log(2)

log(R/r)
(k− 1),

but recall 2kr ≥ R, so k ≥ log(R/r)
log(2)

. Thus,

2 log(2)

log(R/r)
(k − 1) ≥ log(2)

log(R/r)
k ≥ 1.

Now using k as above, we can say

A(ρ) ≤
∫
A[x0,r,R]

ρ2dµ ≤
k∑

j=1

∫
A[x0,2j−1r,2jr]

ρ2dµ

≤
(

4 log(2)

log(R/r)

)2 k∑
j=1

µ(B[x0, 2
jr])

4j−1r2

≤
(

4 log(2)

log(R/r)

)2 k∑
j=1

C04
jr2

4j−1r2

=
64k log(2)2C0

log(R/r)2
.

Recall that k was the smallest integer satisfying 2kr ≥ R, thus k < 1 + log(R/r)
log(2)

< 2 log(R/r)
log(2)

.

And so

mod(Γ(B[x0, r], X \B(x0, R);X)) <
128 log(2)C0

log(R/r)
.

Corollary 2.3.12 (31). Let (X, d, µ) be a metric measure space with (X, d) separable and

µ a locally finite Borel regular measure. Fix some x0 ∈ X. Suppose there exists constants

C0, R0 > 0 such that

µ(B(x0, r)) ≤ C0r
2
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for all 0 < r < R0. Suppose Γ is a family of curves satisfying every γ ∈ Γ passes through x0

and is non-constant. Then mod(Γ) = 0.

Proof. For n ∈ N, n ≥ 1, let Γn = {γ ∈ Γ | γ ⊈ B(x0,
1
n
)}. Since every γ ∈ Γ is non-constant,

then γ contains some x ∈ X with d(x, x0) > 0. This means that γ ⊈ B(x0, d(x, x0)), hence

γ ∈ Γn for sufficiently large n. So for all N ∈ N, Γ ⊂ ∪n≥NΓn. This means, by subadditivity,

mod(Γ) ≤
∞∑

n=N

mod(Γn).

Thus it suffices to show mod(ΓN) = 0 for all N sufficiently large. Fix N such that 1
N

< R0.

Let n > 2N . Then for all γ ∈ ΓN , we have that γ contains a subcurve, γ′, with

γ′ ∈ Γ(B[x0,
1

n
], X \B(x0,

1

N
);X) =: Γn

N .

By the overflowing and monotonicity properties of modulus, we have mod(ΓN) ≤ mod(Γn
N)

for all n > 2N . But, by Proposition 2.3.11, for some constant C > 0, we have

mod(Γn
N) ≤

C

log(n/N)
→ 0

as n → ∞. Thus mod(ΓN) = 0.

You may recall that Ahlfors regularity plays an important role in quasisymmetric uni-

formization. However, as these results just illustrated, one can say some interesting things

about spaces which only satisfy the upper bound; therefore, we give the following definition.

Definition 2.3.13 (cf Definition 1.4.8). Let (X, d, µ) be a metric measure space. We say X

is upper Ahlfors 2-regular if there is some C ≥ 1 such that, for all x ∈ X and r > 0, we

have

µ(B(x, r)) ≤ Cr2.

Upper Ahlfors 2-regularity doesn’t give strong information about the Hausdorff dimen-

sion. For example, if one looks at the unit ball B ⊂ Rn, n ≥ 2, equipped with the standard
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metric and measure, it is upper Ahlfors 2-regular: for r < 1, µ(B(x, r) ∩ B) ≤ Crn ≤ Cr2,

and for r ≥ 1 µ(B(x, r) ∩ B) ≤ µ(B) ≤ µ(B)r2. However, the mass distribution principle

does imply that dimH(X) ≥ 2 if X is upper Ahlfors 2-regular for some Borel µ20.

Corollary 2.3.14. Let (X, d, µ) be a metric measure space with (X, d) separable and µ a

locally finite Borel regular measure. Suppose X is upper Ahlfors 2-regular with constant C0.

Let E,F ⊂ X be disjoint continua with ∆(E,F ) > 2. Then,

mod(Γ(E,F ;X)) ≤ 128 log(2)C0

log(∆(E,F ))
.

Proof. Without loss of generality, suppose min(diam(E), diam(F )) = diam(E). By Corollary

2.3.12, we can assume diam(E) > 0. Notice for all x ∈ E, we have E ⊂ B[x, diam(E)]. For

all y ∈ F we have

d(x, y) ≥ d(E,F ) > 2diam(E),

and so F ⊂ X \ B[x, 2diam(E)] for all x ∈ E. Thus, for each x ∈ E, we can say that

Γ(E,F ;X) is minorized by Γ(B[x, diam(E)], X \ B(x, d(E,F )), X). Thus by Proposition

2.3.11, there is a constant C > 0 such that

mod(Γ(E,F ;X)) ≤ C

log(∆(E,F ))
.

2.4 Loewner Spaces

A natural question to ask is if one can bound mod(Γ(E,F ;X)) from below by a function of

the relative distance. This is not possible in general, however. Consider X ⊂ R2 defined by

X = R2 \ ({0} × [−1, 1]), a slit domain, equipped with the standard Euclidean metric and

Lebesgue measure. For n ≥ 1, let En = {− 1
n
} × [− 1

n
, 1
n
] and Fn = { 1

n
} × [− 1

n
, 1
n
]. Notice

∆(En, Fn) = 1 for all n ≥ 1. However, we claim that mod(Γ(En, Fn;X)) → 0 as n → ∞.

Indeed, for n ≥ 3, one can define the polar rectangle An = {(r, θ) | 2
n
< r < 1, π

2
< θ < 3π

2
},
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and since En ⊂ B(0, 2
n
), we can say that Γ(B(0, 2

n
),R2 \B(0, 1);A) minorizes Γ(En, Fn;X).

So, referring to Example 2.3.10, we can say mod(Γ(En, Fn;X)) ≤ π
log(n/2)

→ 0.

In some spaces, however, we can bound mod(Γ(E,F ;X)) from below by a function of

the relative distance. For example, this can be done in the plane33. If this lower bound

exists, it gives deep insight into the geometry of the space.

Definition 2.4.1 (Heinonen-Koskela3). Let (X, d, µ) be a metric measure space with (X, d)

separable and µ a locally finite Borel regular measure. We say X is a Loewner space (or

X is Loewner) , in case there is a decreasing function Ψ : (0,∞) → (0,∞) such that for all

disjoint continua E,F ⊂ X we have

mod(Γ(E,F ;X)) ≥ Ψ(∆(E,F )).

If X is Loewner and upper Ahlfors 2-regular, then by Corollary 2.3.14, we must have

Ψ(t) → 0 as t → ∞. This is good since, if E or F is a singleton, the modulus is 0 (Corollary

2.3.12) and the relative distance is ∞.

Loewner33 observed that disjoint, non-degenerate continua in R2 have positive capacity,

implying that the plane is Loewner; which is why the property is named after him. We will

state without proof that R2,D, and Ĉ are Loewner. Heinonen and Koskela3 were the first to

define the Loewner property as it appears here. They showed that upper Ahlfors 2-regular,

Loewner spaces were Ahlfors 2-regular and linearly locally connected, among other proper-

ties. They introduced it because it is a sufficient condition to conclude that a metrically

quasiconformal map is quasisymmetric; we go into more details on this result in Section 2.5.

We conclude by remarking that removing countably many points doesn’t change whether or

not a space is Loewner.

Proposition 2.4.2. Let (X, d, µ) be a metric measure space with (X, d) separable and µ a

locally finite Borel regular measure. Suppose X is upper Ahlfors 2-regular. Let S ⊂ X be a

countable set. If X is Loewner then X \ S is Loewner.
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Proof. Let E,F ⊂ X \ S be disjoint, non-degenerate continua. We claim that

mod(Γ(E,F ;X) \ Γ(E,F ;X \ S)) = 0.

Let S = {si}i∈I where I is countable. Let

Γi = {γ ∈ Γ(E,F ;X) | si ∈ γ}.

By Proposition 2.3.12, we have mod(Γi) = 0 for all i ∈ I. Thus, we can use subadditivity

mod(Γ(E,F ;X) \ Γ(E,F ;X \ S)) = mod

(
∪i∈I Γi

)
≤

∑
i∈I

mod(Γi) = 0.

Now, by monotonicity, we have mod(Γ(E,F ;X \ S)) ≤ mod(Γ(E,F ;X)), and by subaddi-

tivity

mod (Γ(E,F ;X)) ≤ mod (Γ(E,F ;X\S))+ mod (Γ(E,F ;X)\Γ(E,F ;X\S)) = mod (Γ(E,F ;X\S)).

Thus we conclude

mod(Γ(E,F ;X)) = mod(Γ(E,F ;X \ S)).

Thus, if X is Loewner, this equality gives that X \ S is Loewner.

2.5 Definitions of Quasiconformality

In the first chapter, we gave a definition for quasiconformality (Definition 1.3.1), which we

referred to as metric quasiconformality. We showed that quasisymmetric maps are metrically

quasiconformal. Indeed, quasisymmetries have globally bounded metric dilatations. Thus, it

is very useful to know under what conditions quasiconformal maps are quasisymmetric. One

may reasonably be skeptical that such an equivalence would be widespread, but Heinonen

and Koskela30 proved that they are equivalent when mapping between Euclidean spaces.
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They famously showed that the lim sup in the definition of metric quasiconformality can be

replaced with lim inf in the Euclidean setting. They went on to prove the following, much

more general result.

Theorem 2.5.1 (Heinonen-Koskela3). Let (X, dX), (Y, dY ) be separable metric spaces. Sup-

pose (X, dX ,H2) and (Y, dY ,H2) are Ahlfors 2-regular, X is Loewner, and Y is linearly

locally connected. Let f : X → Y be metrically quasiconformal. Then the following hold.

(1) If X and Y are bounded, then f is quasisymmetric.

(2) If X and Y are unbounded and f sends bounded sets to bounded sets, then f is qua-

sisymmetric.

There are other definitions of quasiconformality. This section is to discuss what they are

and how they relate; although we will restrict our discussion to 2 dimensions: these definitions

have natural extensions for general p-modulus, Ahlfors s-regularity, etc.. If X and Y are

planar domains and f is conformal in the classical sense, then mod(f(Γ)) = mod(Γ) for all

curve families Γ (Proposition 2.3.7). Indeed, the converse turns out to be true as well34 for

orientation preserving homeomorphisms. Thus, an alternative definition of a conformal map

is a homeomorphism that preserves modulus. This gives rise to the following definition of

quasiconformality, which was first given by Ahlfors34 in the planar setting.

Definition 2.5.2. Let (X, dX , µX), (Y, dY , µY ) be a metric measure spaces with (X, dX), (Y, dY )

separable and µX , µY locally finite Borel regular measures. For K ≥ 1, we say a homeomor-

phism f : X → Y is (geometrically) K-quasiconformal in case for all families of

curves Γ in X, we have

1

K
mod (Γ) ≤ mod(f(Γ)) ≤ K mod (Γ).

The geometric definition is the one we will find most useful for our purposes, since

modulus is the main tool used in this work. The following proposition illustrates one instance

of this utility.
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Proposition 2.5.3. Let (X, dX , µX), (Y, dY , µY ) be a metric measure spaces with (X, dX), (Y, dY )

separable and µX , µY locally finite Borel regular measures. Suppose f : X → Y is quasisym-

metric and geometrically quasiconformal. Then if X is Loewner, Y is Loewner.

Proof. Pick any disjoint continua E,F ⊂ Y . We must find some decreasing function Ψ :

(0,∞) → (0,∞) such that

mod(Γ(E,F ;Y )) ≥ Ψ(∆(E,F )).

Notice that E ′ := f−1(E) and F ′ := f−1(F ) are disjoint continua, and so, because X is

Loewner, there exists a decreasing function Ψ′ : (0,∞) → (0,∞) such that

mod(Γ(E ′, F ′;X)) ≥ Ψ′(∆(E ′, F ′)).

Let f−1 be ν-quasisymmetric. Now we apply Definition 2.5.2 and Proposition 2.1.9 (on f−1)

to say

mod(Γ(E,F ;Y )) ≥ K−1 mod (Γ(E ′, F ′;X)) ≥ K−1Ψ′(∆(E ′, F ′)) ≥ K−1Ψ′(ν(2∆(E,F ))).

Thus, let Ψ(t) = K−1Ψ′(ν(2t)). It is decreasing since Ψ′ decreases and ν increases.

This proposition illustrates one reason why we’re concerned about when quasisymmetric

maps are geometrically quasiconformal. Since quasisymmetric maps are always metrically

quasiconformal, one might hope that quasisymmetric maps are always geometrically quasi-

conformal. However, one needs geometric conditions on the space to draw this conclusion.

Theorem 2.5.4 (Tyson21). Let (X, dX , µX), (Y, dY , µY ) be separable, locally compact, and

connected metric measure spaces with locally finite Borel measures µX and µY . Suppose

(X, dX , µX) and (Y, dY , µY ) are Ahlfors 2-regular. If f : X → Y is quasisymmetric then f

is geometrically quasiconformal.

There’s another definition of quasiconformality that will be mentioned. When we dis-
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cussed the classical notion of analytic quasiconformality in Chapter 1, we said that the

diffeomorphic image of infinitesimal balls were ellipses whose eccentricity was given by

|fz |+|fz |
|fz |−|fz | ≤ K; this can be rewritten as |Df |2 ≤ KJ(f) where Df is the derivative and

J(f) is the Jacobian. That inequality, when paired with the requirement that f be abso-

lutely continuous on almost every line, gives another definition of quasiconformality34. The

following definition generalizes this by appealing to the theory Newton-Sobolev class of func-

tions to discuss notions of derivative and Jacobian on metric measure spaces. We will not

define the Newton-Sobolev class here, as we aren’t going to use it directly.

Definition 2.5.5 (35). Let (X, dX , µX) be a metric measure space with (X, dX) separable

and µX a locally finite Borel regular measure. Let (Y, dY , µY ) be a metric measure space. Let

f : X → Y be a homeomorphism. Let g : X → R be a Borel function. Define Γg to be the

collection of all rectifiable curves γ : [a, b] → X such that

∫
γ

g ds ≥ dY (f(γ(a)), f(γ(b))).

Let Γ be the set of all rectifiable curves γ : [a, b] → X. We say g is an upper gradient of

f if Γg = Γ. We say g is a weak upper gradient of f if mod(Γ \ Γg) = 0. We say g is

a minimal weak upper gradient if for all weak upper gradients, h, we have h ≥ g µX-almost

everywhere.

Let K ≥ 1 be given. We say f is (analytically) K-quasiconformal in case f ∈

N1,2
loc (X : Y ) (the Newton-Sobolev class, see36), and

gf (x)
2 ≤ KJf (x)

for µX-almost every x ∈ X, where gf is the minimal weak upper gradient and

Jf (x) := lim sup
r→0

µY (f(B(x, r)))

µX(B(x, r))
.

The following theorem shows that the analytic and geometric definitions of quasiconfor-
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mality are equivalent in remarkable generality: there are practically no assumptions on the

spaces.

Theorem 2.5.6 (Williams35). Let (X, dX , µX), (Y, dY , µY ) be a metric measure spaces with

(X, dX), (Y, dY ) separable and µX , µY locally finite Borel regular measures. Let f : X → Y

be a homeomorphism. Then the following are equivalent with the same constant K ≥ 1.

• f ∈ N1,2
loc (X : Y ), and for µX-almost every x ∈ X,

gf (x)
2 ≤ KJf (x).

• For every collection of curves, Γ, in X, we have

mod(Γ) ≤ K mod (f(Γ)).

Now, it is of interest to know under what conditions all these definitions are equivalent.

Indeed, it would be rather counter-intuitive to call them alternative definitions if they weren’t

equivalent in reasonable generality. The following geometric condition will give equivalence.

Definition 2.5.7 (Heinonen-Koskela-Shanmugalingam-Tyson36). Let (X, d, µ) be a metric

measure space with (X, d) separable and µ a locally finite Borel regular measure. We say X

is said to be of locally 2-bounded geometry if X is path connected, locally compact, and

satisfies the following conditions. There is a constant C ≥ 1 such that every point in X has

a neighborhood U with

µ(BR) ≤ CR2

whenever BR ⊂ U is a ball of radius R. There is a constant λ ≤ 1 and decreasing function

Ψ : (0,∞) → (0,∞) such that every point x0 ∈ X has a neighborhood U with the following

property. For all B(x,R) ⊂ U , if E,F ⊂ B(x, λR) are disjoint and non-degenerate continua,

then

mod(Γ(E,F ;X)) ≥ Ψ(∆(E,F )).
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If X is locally upper Ahlfors 2-regular and locally Loewner, then X will be of locally

2-bounded geometry. We say f is locally η-quasisymmetric in case every point has a neigh-

borhood where f is η-quasisymmetric.

Theorem 2.5.8 (Heinonen-Koskela-Shanmugalingam-Tyson36). Let (X, dX , µX), (Y, dY , µY )

be a metric measure spaces with (X, dX), (Y, dY ) separable and µX , µY locally finite Borel

regular measures. Let f : X → Y be a homeomorphism. Suppose X and Y are of locally

2-bounded geometry. Then the following are equivalent.

• f is metrically quasiconformal.

• f is geometrically quasiconformal.

• f is analytically quasiconformal.

• f is locally quasisymmetric.

Moreover, if f satisfies one (all) of these conditions, then f is absolutely continuous in

measure, and mod(Γ) = 0, where Γ is the collection of curves, γ, in X where f fails to be

absolutely continuous along γ.

Corollary 2.5.9. Let (X, dX , µX), (Y, dY , µY ) be metric measure spaces with (X, dX), (Y, dY )

separable and µX , µY locally finite Borel regular measures. Let f : X → Y be a homeomor-

phism. Suppose X and Y are path connected, locally compact, upper Ahlfors 2-regular, and

locally Loewner. Then f the conclusions of Theorem 2.5.8 hold.

As an example, domains in R2 are always upper Ahlfors 2-regular and locally Loewner.

Thus this implies that all definitions of quasiconformality are equivalent for homeomorphisms

between planar domains. The same can be said for domains in Ĉ.

For the remainder of this dissertation, we will chiefly use the geometric definition of

quasiconformality. Past this point, if a map is ever referred to as quasiconformal without

specifying the definition, geometric quasiconformality is what is meant to be implied.
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Chapter 3

Transboundary Modulus and

Transboundary Loewner Properties

The main tool our results will use is that of transboundary modulus. In this chapter, we

define it in the context of metric spaces homeomorphic to planar domains. Since it has only

been previously defined for Euclidean settings (see4,1,37,38), we will need to establish the

theory in this broader context.

3.1 Transboundary Modulus

Allow us to start with an important terminological clarification. Whenever we say a set is

countable, we mean that it is either countably infinite, finite, or empty. So a countable set

may have finitely many elements.

As the last few sections of Chapter 2 have demonstrated, modulus is a useful tool in

building geometric arguments between metric measure spaces. This is largely due to its

quasi-invariance under quasiconformal maps. This section, we introduce a similar tool which

is also quasi-invariant under quasiconformal maps, and thus provides additional utility.

Transboundary modulus was first introduced as transboundary extremal length by Schramm4

and was used for giving an alternative proof to the countable case of Koebe’s conjecture (The-
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orem 1.2.5). He defined it for domains in the sphere; the definition given here will be more

general.

Let (X, d) be a metric space and K = {Ki}i∈I be a countable collection of pairwise disjoint

continua in X. Let K = ∪i∈IKi and D = X \ K. Suppose that D is homeomorphic to a

domain in Ĉ. Define an equivalence relation onX as follows. For all a ∈ X, a ∼ a; if a, b ∈ Ki

for some i ∈ I, then a ∼ b. We will consider the quotient space, XK := X/ ∼, equipped

with the quotient topology. We will call XK the K-quotient of X . Let πK : X → XK

be the quotient map. Notice πK is injective on D; thus, πK|D is a homeomorphism. Let

DK := πK(D). For each i ∈ I, πK(Ki) is a singleton in XK; define ki = πK(Ki). Let

k = ∪i∈Iki. Suppose we equip (X, d) with a Borel measure µ. We can define a Borel

measure µK on XK by

µK(E) = µ(π−1
K (DK ∩ E)) +

∑
i∈I

δki(E) = µ(π−1
K (E \ k)) +

∑
i∈I

δki(E ∩ k)

for measurable E ⊂ XK. Notice that we only need µ to be defined on D for µK to be

well-defined.

By a curve in XK, we mean a continuous function γ : J → XK where J ⊂ R is an

interval. We may also call γ a transboundary curve . We will often abuse notation and write

γ(J) = γ. If γ ⊂ DK, then there is a curve γ′ ⊂ D with γ = πK(γ
′). Sometimes we will

abuse notation and write γ = γ′ if it’s clear the curve is in DK. Since DK is homeomorphic

to a domain, it must be open in XK. Hence γ−1(DK) must be a relatively open subset of J ;

thus, it is a union of relatively open subintervals. Let {Jm}m∈Iγ be the collection of relatively

open subintervals of J such that

∪m∈IγJm = γ−1(DK).

Notice that Iγ is countable. It’s empty if and only if γ is a constant curve in k: γ(t) = ki

for some i ∈ I. If Iγ has one element, then γ ⊂ DK. For each m ∈ Iγ, define the curve

50



γm : Jm → D so that

γm(t) = π−1
K (γ(t)).

Notice that

∪m∈IγπK(γm) = γ \ k.

If γ is non-constant, then γm is non-constant for all m ∈ Iγ. We say γ is locally rectifiable

relative K in case γm is locally rectifiable for all m ∈ Iγ. Given a Borel ρ : D → [0,∞], we

will say the ρ-length of γ relative K is

ℓKρ (γ) :=
∑
m∈Iγ

ℓρ(γm).

For a curve γ in X, we will often use the following notational shortcuts for {γm} correspond-

ing to πK(γ).

ℓ(γ \K) =
∑

m∈IπK(γ)

ℓ(γm)

ℓρ(γ \K) =
∑

m∈IπK(γ)

ℓρ(γm)∫
γ\K

ρ ds =
∑

m∈IπK(γ)

∫
γm

ρ ds

Definition 3.1.1. Let (X, d) be a metric space and µ a locally finite Borel measure on

X. Let K = {Ki}i∈I be a countable collection of pairwise disjoint continua in X, and let

K = ∪i∈IKi. Suppose X \ K is homeomorphic to a domain in Ĉ. Let ki = πK(Ki) and

k = πK(K). Let Γ be a family of curves in XK. By a transboundary mass distribution,

we mean a tuple, P = (ρ; {ρi}i∈I), where ρ : X \K → [0,∞] is a Borel function, and ρi ≥ 0

is a real number for each i ∈ I (we will call ρi the weight corresponding to Ki). We say P

is admissible for Γ relative K , denoted P ∧K Γ, in case for all γ ∈ Γ which are locally
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rectifiable relative K, we have

ℓKP (γ) := ℓKρ (γ) +
∑
ki∈γ

ρi ≥ 1.

Let ρP : XK → [0,∞] be a Borel function defined as ρP (x) = ρ((πK)
−1(x)) for x ∈ XK \ k

and ρP (ki) = ρi. We then define the transboundary modulus of Γ to be

modK(Γ) := inf
P∧KΓ

∫
XK

ρ2P dµK = inf
P∧KΓ

(∫
X\K

ρ2dµ+
∑
i∈I

ρ2i

)
.

If Γ is a family of curves in X, we say P ∧K Γ if P ∧K (πK(Γ)), and we define

modK(Γ) := modK(πK(Γ)).

In general, transboundary modulus takes on values in [0,∞]. We point out that if K is

empty, or if every γ ∈ Γ is disjoint with K, then this definition coincides with the definition

of modulus. Much like modulus, if there are no admissible mass distributions for Γ, then

modK(Γ) = ∞. This happens, for example, if Γ contains a constant curve outside of K. We

also draw attention to the fact that if Γ has no curves which are locally rectifiable relative

K, then the zero distribution is admissible for Γ and modK(Γ) = 0.

We will use the following notation when convenient,

AK(P ) :=

∫
XK

ρ2P dµK =

∫
X\K

ρ2dµ+
∑
i∈I

ρ2i .

Proposition 3.1.2. Let (X, d, µ) be a metric measure space with µ a locally finite Borel

regular measure. Fix a countable collection of pairwise disjoint continua K = {Ki}i∈I , let

K = ∪i∈IKi, and suppose X \K is homeomorphic to a domain in Ĉ. For each n ∈ N, let

Γn be a collection of curves in X.

(i) modK(∅) = 0.

(ii) If Γ1 ⊂ Γ2, then modK(Γ1) ≤ modK(Γ2). (Monotonicity)
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(iii) If Γ1 < Γ2, then modK(Γ1) ≥ modK(Γ2). (Overflowing)

(iv) modK(∪n∈NΓn) ≤
∑

n∈N modK(Γn). (Subadditivity)

(v) Suppose there are pairwise disjoint Borel sets, Bn ⊂ X, such that for all i ∈ I there is

at most one n ∈ N with Ki ∩ Bn ̸= ∅. If, for all n ∈ N, γn ⊂ Bn for all γn ∈ Γn, then

modK(∪n∈NΓn) =
∑

n∈N modK(Γn).

Proof. (i) Notice that the zero distribution is admissible for ∅, which will attain the infimizing

quantity of 0.

(ii) Pick any P ∧K Γ2. Then for all γ ∈ Γ1, we have γ ∈ Γ2 and hence ℓKP (γ) ≥ 1. Thus,

P ∧K Γ1. Thus the set of admissible distributions for Γ2 is a subset of the set of admissible

distributions for Γ1. The infimum of a subset is larger than the infimum of the superset.

(iii) Pick any P ∧K Γ1. Every curve γ2 ∈ Γ2 has a subcurve γ1 ∈ Γ1. Since every Ki

intersecting γ1 also intersects γ2, we have ℓ
K
P (γ2) ≥ ℓKP (γ1) ≥ 1. Thus P ∧KΓ2, and infimizing

over the superset gives a smaller quantity.

(iv) Let Γ = ∪n∈NΓn. Observe that the claim holds if the right hand side is infinite, so

suppose that it is finite. Fix ϵ > 0. For each n, choose Pn = (ρn; {ρi,n}i∈I) ∧K Γn such that

modK(Γn) + ϵ2−n ≥ AK(Pn).

Let ρ =
√∑

n∈N ρ
2
n. For each i ∈ I, define ρi =

√∑
n∈N ρ

2
i,n. Define P = (ρ; {ρi}i∈I). Notice

that for all n ∈ N, ρ ≥ ρn and ρi ≥ ρi,n. Thus, we have ℓ
K
P (γ) ≥ ℓKPn

(γ) for all n ∈ N and any

curve γ. Given any γ ∈ Γ, we have γ ∈ Γn for some n ∈ N, and ℓKP (γ) ≥ ℓKPn
(γ) ≥ 1. Thus

P ∧K Γ. That means

mod K(Γ) ≤
∫
X\K

ρ2dµ+
∑
i∈I

ρ2i =

∫
X

∑
n∈N

ρ2ndµ+
∑
i∈I

∑
n∈N

ρ2i,n =
∑
n∈N

AK(Pn) ≤ 2ϵ+
∑
n∈N

mod K(Γn).

Taking the limit as ϵ → 0 gives the result.
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(v) Let Γ = ∪n∈NΓn. By (iv) we need only show

modK(Γ) ≥
∑
n∈N

modK(Γn).

Let P = (ρ; {ρi}i∈I) ∧K Γ. For each n, let ρn = ρIBn . Notice that ρn are all Borel because

Bn are all Borel. Let ρi,n = ρi if Ki ∩ Bn ̸= ∅ and set ρi,n = 0 otherwise. For each n ∈ N,

define Pn = (ρn; {ρi,n}i∈I). For each γn ∈ Γn, since γn ⊂ Bn,

ℓKPn
(γn) = ℓKρn(γn) +

∑
γn∩Ki ̸=∅

ρi,n = ℓKρ (γn) +
∑

γn∩Ki ̸=∅

ρi = ℓKP (γn) ≥ 1.

Hence Pn ∧K Γn for all n ∈ N. Since the Bn are pairwise disjoint and every Ki intersects at

most one, we can say πK(Bn) are disjoint.

∑
n∈N

mod K(Γn) ≤
∑
n∈N

∫
XK

ρ2Pn
dµK =

∑
n∈N

∫
πK(Bn)

ρ2Pn
dµK =

∫
∪n∈NπK(Bn)

ρ2P dµK ≤
∫
XK

ρ2P dµK.

Thus by infimizing over admissible distributions for Γ, we obtain the result.

We remark that one can make corresponding statements about families of curves in XK

by pulling them back to X. For example, if Γ1,Γ2 are collections of curves in XK with

Γ1 ⊂ Γ2, then one can find curve families Γ′
1,Γ

′
2 in X with Γ′

1 ⊂ Γ′
2 and πK(Γ

′
1) = Γ1 and

πK(Γ
′
2) = Γ2, so that modK(Γ1) ≤ modK(Γ2).

These statements resemble statements made about modulus. A natural question to ask

is if, like modulus, transboundary modulus is preserved under conformal maps. It turns out

that maps distort transboundary modulus exactly as much as they distort modulus, as the

following result shows.

Lemma 3.1.3. Let (X, dX , µX), (Y, dY , µY ) be a metric measure spaces with µX , µY locally

finite Borel regular measures. Pick any countable collection of pairwise disjoint continua,

K = {Ki}i∈I in X and J = {J1}i∈I in Y . Let ki = πK(Ki), K = ∪i∈IKi and ji = πJ (Ji),

J = ∪i∈IJi. Suppose X \K and Y \ J are homeomorphic to domains in Ĉ. Suppose there
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is a homeomorphism f : XK → YJ with f(ki) = ji for all i ∈ I. Suppose π−1
J ◦ f ◦ πK :

X \K → Y \ J is geometrically H-quasiconformal for H ≥ 1. Let Γ be any family of curves

in XK. Then

H−1 mod K(Γ) ≤ modJ (f(Γ)) ≤ H mod K(Γ).

Proof. Throughout this proof, we will mildly abuse notation and just call (π−1
J ◦ f ◦πK)|X\K

the much shorter name, f . First we use Theorem 2.5.6 to say that f is analytically qua-

siconformal on X \ K. Williams35 showed that if γ is any absolutely continuous curve in

X \K, f is absolutely continuous on γ, and ρ is a non-negative Borel function on Y \J with

A(ρ) < ∞, then we have that

∫
γ

(ρ ◦ f)gf ds ≥
∫
f(γ)

ρ ds.

Every compact rectifiable curve has an absolutely continuous arc-length parameterization

(Proposition 5.1.831). Thus every locally rectifiable γ in X \K satisfies

∫
γ

(ρ ◦ f)gf ds ≥
∫
f(γ)

ρ ds,

with f absolutely continuous on every compact subcurve of γ and A(ρ) < ∞. Let Γf be the

collection of curves in X \K on which f fails to be absolutely continuous. Shanmugalingam

(Proposition 3.139) showed that if f ∈ N1,2
loc (X \ K : Y \ J), then mod(Γf ) = 0. Now, let

ΓK
f be the family of curves in XK which contain a subcurve in πK(Γf ). We can use the

overflowing property to say

modK(Γ
K
f ) ≤ modK(πK(Γf )) = modK(Γf ) = mod(Γf ) = 0.

Notice that monotonicity gives modK(Γ \ ΓK
f ) ≤ modK(Γ), and subadditivity gives

modK(Γ) ≤ modK(Γ \ ΓK
f ) + modK(Γ

K
f ) = modK(Γ \ ΓK

f ).
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So we have equality: modK(Γ \ ΓK
f ) = modK(Γ).

Now, pick any P = (ρ; {ρi}i∈I) ∧J f(Γ). Suppose, for the moment, that modJ (f(Γ)) <

∞. Then we can suppose that A(ρ) < ∞. Let ρ′ = (ρ ◦ f)gf and P ′ = (ρ′; {ρi}i∈I). Pick

any locally rectifiable γ ∈ Γ \ ΓK
f . Since X \K is homeomorphic to a domain in Ĉ, we can

construct countably many curves γm in X \K such that

ℓKρ′(γ) =
∑
m

ℓρ′(γm),

where γm are locally rectifiable (see the discussion preceding Definition 3.1.1). Since γ /∈ ΓK
f ,

we can say f is absolutely continuous on any compact subcurve of γm for all m. Thus, for

all m, we can say ℓρ′(γm) ≥ ℓρ(f(γm)). Thus, we can say ℓKρ′(γ) ≥ ℓJρ (f(γ)), and since the

weights are the same, ℓKP ′(γ) ≥ ℓJP (f(γ)) ≥ 1. So P ′ ∧K Γ \ ΓK
f . Thus we can apply analytic

quasiconformality to say

modK(Γ) = modK(Γ \ ΓK
f ) ≤

∫
X\K

(ρ ◦ f)2g2f dµX +
∑
i∈I

ρ2i

≤ H

(∫
X\K

(ρ ◦ f)2Jf dµX +
∑
i∈I

ρ2i

)
≤ H

(∫
Y \J

ρ2 dµY +
∑
i∈I

ρ2i

)
.

By infimizing over P , we obtain that modK(Γ) ≤ H mod J (f(Γ)). Note that this inequality

still holds if mod J (f(Γ)) = ∞. Apply the same argument to f−1 to get the other inequality.

The conditions on the statement may seem like obscure circumstances; after all, we

usually work with a metric space X directly and not X \K. However, these conditions can

be met by considering X as the ambient space and K = ∂0X. Then any f quasiconformal

on X can have this lemma applied, provided it gives rise to a homeomorphism on XK.

Similar lemmas on the quasiconformal quasi-invariance of transboundary modulus were

given by Bonk1 as well as Hakobyan and Li37. Their proofs assumed K was finite; however,
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this assumption isn’t a significant ingredient in the argument, since the weights on the

constructed transboundary mass distributions are unchanged. However, their proofs were

for domains in Ĉ or R2, and this is where the generality of Lemma 3.1.3 is significant.

A statement for general metric spaces (as argued here) wouldn’t be possible without the

work of Williams35 showing general equivalence of the analytic and geometric definitions of

quasiconformality.

We will end this section with some example computations of transboundary modulus,

and a discussion of its properties. Like modulus, transboundary modulus has nice properties

for upper Ahlfors 2-regular spaces.

Proposition 3.1.4. Let (X, d, µ) be a metric measure space with µ a locally finite Borel

regular measure. Fix some x0 ∈ X. Suppose there exists constants C0, R0 > 0 such that

µ(B(x0, r)) ≤ C0r
2

for all 0 < r < R0. Let K be any countable family of disjoint continua in X, none of which

contain x0, and suppose X \K is homeomorphic to a domain in Ĉ. Then if Γ is a family of

curves satisfying the property that every γ ∈ Γ passes through x0 and is non-constant, then

modK(Γ) = mod(K∪{{x0}})(Γ) = 0.

Proof. First, notice that there is some r > 0 such that B(x0, r) ∩K = ∅. Notice that every

curve in Γ contains a non-constant subcurve in B(x0, r) that goes through x0, call the family

of these subcurves Γ′. Then

modK(Γ) ≤ modK(Γ
′) = mod(Γ′) = 0

by Proposition 2.3.12. Now, let J = K∪{{x0}} and let Γn = {γ ∈ Γ | γ ⊈ B(x0, 1/n)} and

notice that Γ = ∪nΓn since no curves are constant. Thus, it suffices to show, for sufficiently

large n, that modJ (Γn) = 0. Take N > n > 1/r. Then every γ ∈ Γn contains a subcurve in
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Γn,N := Γ(B[x0, 1/N ], X \B(x0, 1/n);X) and so

modJ (Γn) ≤ modJ (Γn,N) = mod(Γn,N) ≤
C

log(N/n)

for some constant C by Proposition 2.3.11. Taking N → ∞ shows then that modJ (Γn) =

0.

We remark that for modulus, one stipulates the curves be non-constant because, for

γ(t) = x0, mod({γ}) = ∞. However, for transboundary modulus, if K contains {x0} we

have modK({γ}) = 1 as the only admissible distributions give weight 1 to {x0}. We wrap

up our discussion of singletons in the following result.

Corollary 3.1.5. Let (X, d, µ) be a metric measure space with µ locally finite. Suppose X

is upper Ahlfors 2-regular. Let K,J be countable collections of disjoint continua in X with

K ⊂ J . Suppose X \K and X \ J are homeomorphic to domains in Ĉ. Suppose that J \K

consists only of singletons which are all isolated in J . Then for any family of non-constant

curves Γ in X,

modK(Γ) = modJ (Γ).

Proof. Let J \ K = {{si}}i∈I . Let Γi be the family of non-constant curves in X which go

through si. Define Γ
′ = Γ\∪i∈IΓi. Since none of the curves in Γ′ intersect anything in J \K,

we have

modJ (Γ
′) = modK(Γ

′).

Thus it suffices to show that modJ (Γ) = modJ (Γ
′) and modK(Γ) = modK(Γ

′). Since Γ′ ⊂

Γ, monotonicity gives one direction on both equalities. By Proposition 3.1.4, we have

modK(Γi) = 0.

Subadditivity gives

modK(∪i∈IΓi) ≤
∑
i∈I

modK(Γi) = 0.
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Hence

modK(Γ) ≤ modK(Γ
′) + modK(Γ \ Γ′) ≤ modK(Γ

′) + modK(∪i∈IΓi) = modK(Γ
′).

For J , notice that because each si is isolated, we can say that X \ Ji is homeomorphic to a

domain where Ji = J \ {si}. Hence by Proposition 3.1.4, we have

modJ (Γi) = 0.

Subadditivity gives

modJ (∪i∈IΓi) ≤
∑
i∈I

modJ (Γi) = 0.

Hence

modJ (Γ) ≤ modJ (Γ
′) + modJ (Γ \ Γ′) ≤ modJ (Γ

′) + modJ (∪i∈IΓi) = modJ (Γ
′).

Now we will focus our attention to explicit examples in the planar case.

Example 3.1.6. Let a, b > 0 and R = (0, a)× (0, b) ⊂ R2 with the standard metric and area

measure. Let K be a countable collection of points and pairwise disjoint, closed squares in R

with sides parallel to the coordinate axes, and suppose R\K is a domain. Let E = {0}× [0, b]

and F = {a} × [0, b]. Then

modK(Γ(E,F ;R)) =
b

a
.

Proof. Pick any P = (ρ; {ρi})∧KΓ(E,F ;R). For each Ki ∈ K call its side length si (si = 0 if

Ki is a point). By considering horizontal paths, γ(t) = (t, y0), we can say for each y0 ∈ [0, b],

∫ a

0

ρ(x, y0)IR\K(x, y0) dx+
∑
i

ρiIπ2(Ki)(y0) =

∫
γ\K

ρ ds+
∑

Ki∩γ ̸=∅

ρi ≥ 1.
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Now integrate both sides with respect to y to say

b ≤
∫ b

0

∫ a

0

ρ(x, y)IR\K(x, y) dx dy +
∑
i

ρi

∫ b

0

Iπ2(Ki)(y) dy =

∫
R\K

ρ dA+
∑
i

ρisi.

Let P ′ = (ρ; {ρisi}), and notice that the above quantity is AK(
√
P ′). Recall that Cauchy-

Schwarz gives us

(∫
RK

ρP ′ dµK

)2

≤
(∫

RK

ρ2P dµK

)(∫
RK

ρ(1;{si}) dµK

)
=

(∫
RK

ρ2P dµK

)(
A(R\K)+

∑
i

s2i

)
,

but since each Ki is a square (or point), we can say

A(R \K) +
∑
i

s2i = ab.

So we conclude that ∫
RK

ρ2P dµK ≥ 1

ab

(∫
RK

ρP ′ dµK

)2

≥ b

a
.

Infimize over all P to get the lower bound.

To see the upper bound, let ρ = a−1 and let ρi = a−1si. Then for all γ ∈ Γ(E,F ;R), we

have ∫
γ\K

ρ ds+
∑

γ∩Ki ̸=∅

ρi = a−1(ℓ(γ \K) +
∑

γ∩Ki ̸=∅

si) ≥ 1.

So we can say

modK(Γ(E,F ;R)) ≤
∫
R\K

ρ2 dµ+
∑
i

ρ2i =
1

a2
(A(R \K) +

∑
i

s2i ) =
b

a
.

From here, it’s not hard to see that the transboundary modulus of curves connecting the

horizontal sides with respect to a collection of squares is a/b. Thus, in this example, one can

see that transboundary modulus also has a duality property. Just like with modulus, we can

establish general duality of transboundary modulus using this special case; however, we will
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need a result stronger than the Riemann Mapping Theorem.

Theorem 3.1.7 (Schramm4 (Theorem 7.1)). Let Q ⊂ R2 be homeomorphic to D. Let C ⊂ Q

correspond to ∂D, and let Q0, Q1 ⊂ C be disjoint continua. Let K be a countable collection

of pairwise disjoint continua in the interior of Q such that Q \ (K ∪ C) is a domain. Then

there is a conformal map f : Q \ (K ∪ C) → Ω where Ω ⊂ R2 is a domain satisfying

Ω = R \ ∪i∈IJi

where R = (0, a)× (0, b), for some a, b > 0, and Ji are all points or pairwise disjoint, closed

squares with sides parallel to the coordinate axes. Moreover, f extends as a homeomorphism

f : Q \K → Ω ∪ ∂R with f(Q0) and f(Q1) corresponding to the left and right sides of ∂R.

We also have that f extends as a homeomorphism from Q∂0(Q\(K∪C)) to Ω∂0Ω.

Proposition 3.1.8 (Duality of Transboundary Modulus). Let Q ⊂ R2 be homeomorphic to

[0, 1]2. Let C correspond to ∂[0, 1]2. Let AL, AR, AB, AT ⊂ C correspond to {0}× [0, 1], {1}×

[0, 1], [0, 1]×{0}, [0, 1]×{1} respectively. Let K be any countable collection of pairwise disjoint

continua in the interior of Q, and suppose Q \ (K ∪ C) is a domain. Then

modK(AL, AR;Q) mod K(AB, AT ;Q) = 1.

Proof. Use Theorem 3.1.7 to conformally map the interior of Q \ K onto a subdomain of

a rectangle, R = (0, a) × (0, b), whose relative complement consists of closed squares and

points, which also sends AL and AR to the left and right sides of R respectively. Apply

Lemma 3.1.3 and Example 3.1.6 to say that

modK(Γ(AL, AR;Q)) =
b

a
.

Similarly, Γ(AB, AT ;Q) gets mapped to the family of curves connecting the horizontal sides

of the rectangle and modK(Γ(AB, AT ;Q)) = a/b.

One may be interested in analyzing what happens to the transboundary modulus when
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one varies K. One can say rather trivial things on this topic; for example, if J ⊂ K are all

the continua which intersect any curve in Γ, then modJ (Γ) = modK(Γ). One also can refer

to our discussion on adding or removing singletons. However, more general statements are

inaccessible, as the following example illustrates.

Example 3.1.9. Let R = (0, a)×(0, b) ⊂ R2 with the standard metric and area measure. Let

K = {Ki} be a countable collection of disjoint continua in the interior of R, and suppose R\K

is a domain. For each i, let wi = diam(π1(Ki)) and hi = diam(π2(Ki)). Let E = {0}× [0, b]

and F = {a} × [0, b] We have

b2(A(R \K) +
∑
i

h2
i )

−1 ≤ modK(Γ(E,F ;R)) ≤ a−2(A(R \K) +
∑
i

w2
i ).

Proof. Let ρ = 1/a. Let ρi = wi/a. We claim that P = (ρ; {ρi})∧K Γ(E,F ;R). This is true

because π1 is 1-Lipschitz, and so for any γ ∈ Γ(E,F ;R),

ℓ(γ \K) ≥ ℓ(π1(γ \K)) ≥ a−
∑

Ki∩γ ̸=∅

wi.

Thus we can say

∫
γ\K

ρ ds+
∑

γ∩Ki ̸=∅

ρi = a−1(ℓ(γ \K) +
∑

γ∩Ki ̸=∅

wi) ≥ 1.

So, we obtain the upper bound by applying this P ,

modK(Γ(E,F ;R)) ≤
∫
R\K

ρ2 dA+
∑
i

ρ2i = a−2(A(R \K) +
∑
i

w2
i ).

To obtain the lower bound, similarly use (1/b;hi/b) on the curves connecting the horizontal

sides and use duality.

Notice that if each Ki is a square with sides parallel to the coordinate axes, then A(R \

K)+
∑

w2
i = A(R\K)+

∑
h2
i = ab, and the estimates compute the transboundary modulus:
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b/a. Also, if one widens one of the squares to a horizontal rectangle, then A(R\K)+
∑

h2
i <

ab; so

modK(f(Γ(E,F ;R))) >
b

a
.

Similarly if one lengthens the heights of one of the squares to a vertical rectangle then

A(R \K) +
∑

w2
i < ab and

modK(f(Γ(E,F ;R))) <
b

a
.

Thus we can see that making each Ki “bigger” doesn’t necessarily increase nor decrease the

transboundary modulus. Also, adding more continua to K or taking some away may increase

or decrease the transboundary modulus (or leave it the same in the case of squares).

3.2 Transboundary Loewner Property

As we’ve seen, transboundary modulus has many similarities to modulus, and its properties

shown here have largely paralleled those of modulus. Therefore, it seems natural to direct

our attention to the transboundary analog of the Loewner property discussed in Chapter

2. While this has appeared in the literature implicitly (1,38), the first to name it and

explicitly define it was Hakobyan and Li37. The definition given below differs slightly from

that appearance.

Definition 3.2.1. Let (X, d, µ) be a metric measure space with µ locally finite. Suppose

X is homeomorphic to a domain in Ĉ, ∂X is compact, and that ∂0X is countable. X

is transboundary Loewner in case there is a decreasing function Ψ : (0,∞) → (0,∞)

satisfying the following property. For all disjoint, non-degenerate continua, E,F ⊂ X,

mod∂0X(Γ(E,F ;X)) ≥ Ψ(∆(E,F )).

If X is Loewner, then it will be transboundary Loewner, as

mod∂0X(Γ(E,F ;X)) ≥ mod∂0X(Γ(E,F ;X)) = mod(Γ(E,F ;X)).
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Proposition 3.2.2. Let (X, dX , µX), (Y, dY , µY ) be metric measure spaces with µX and µY

locally finite. Suppose X and Y are homeomorphic to domains in Ĉ, ∂X, ∂Y are compact,

and ∂0X, ∂0Y are countable. Suppose f : X → Y is quasisymmetric and geometrically

quasiconformal. If X is transboundary Loewner, then Y is transboundary Loewner.

Proof. Pick any non-degenerate, disjoint continua A,B ⊂ Y . Let A′ = f−1(A) and B′ =

f−1(B), noticing that they are disjoint, non-degenerate continua in X. Since X is trans-

boundary Loewner,

mod∂0X(Γ(A
′, B′;X)) ≥ Ψ′(∆(A′, B′))

for some decreasing function Ψ′. Since f is quasisymmetric, f extends to a homeomorphism

of the completions (see Remark 2.1.6). This means that f gives rise to a homeomorphism

f : (X)∂0X → (Y )∂0Y , and thus we can apply Lemma 3.1.3 on X and Y . Letting f−1 be

ν-quasisymmetric and f be H-quasiconformal, and recalling Proposition 2.1.9, we conclude

mod ∂0Y (Γ(A,B;Y )) ≥ H−1 mod ∂0X(Γ(A
′, B′;X)) ≥ H−1Ψ′(∆(A′, B′)) ≥ H−1Ψ′(ν(2∆(A,B))).

Ψ(t) := H−1 Ψ′(ν(2t)) is decreasing since Ψ′ is decreasing and ν is increasing, so Y is

transboundary Loewner.

In Section 3.3, we will show that circle domains are transboundary Loewner. This fact,

combined with the quasisymmetric invariance of the transboundary Loewner property, means

that the property is necessary for quasisymmetric equivalence to a circle domain. Before we

establish examples of transboundary Loewner spaces, however, we wish to establish some

non-examples of transboundary Loewner spaces. In particular, Merenkov and Wildrick2 gave

an insightful example of a “nice” metric space which fails to be quasisymmetrically equivalent

to a circle domain. We will show that this space fails to be transboundary Loewner.

Bonk1 showed that, for domains in the sphere, the boundary consisting of uniformly rel-

atively separated uniform quasicircles was sufficient to conclude quasisymmetric equivalence

to a circle domain. Merenkov and Wildrick2 showed that this condition was not sufficient for

general metric spaces. They did so by constructing a counterexample. Here we will define a
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class of examples which contain the one given by Merenkov and Wildrick. It will show that

the boundary consisting of uniformly relatively separated uniform quasicircles is insufficient

to conclude transboundary Loewner.

For each n ∈ N , let

Dn = {[i2−n, (i+ 1)2−n]× [j2−n, (j + 1)2−n] : i, j ∈ N, 0 ≤ i, j ≤ 2n − 1};

that is, the collection of all dyadic squares of generation n. Let D = ∪n∈NDn. For Q ∈ D,

let c(Q) denote the center of Q. Let L = (ℓn)n∈N be a sequence of real numbers satisfying

0 ≤ ℓn < 2−n. For each n ∈ N and Q ∈ Dn, let

sQ(L) =

(
{0} ×

[
− ℓn

2
,
ℓn
2

])
+ c(Q),

and

sn(L) = {sQ(L) | Q ∈ Dn}.

Notice that sn(L) is a collection of 4n disjoint vertical slits, each with length ℓn and centered

at a dyadic square of generation n. Notice also, that ∆(sQ(L), sQ′(L)) ≥ 1 for all Q,Q′ ∈ D.

Let

Sk(L) := (0, 1)2 \ (
k⋃

n=0

⋃
Q∈Dn

sQ(L)).

Notice that Sk(L) is a slit domain (with the exception of the bounding square). Equip Sk(L)

with its internal path metric. Notice then that each component of ∂Sk(L) is a 1-quasicircle.

Let E = {0} × [0, 1] and F = {1} × [0, 1]. Let Sk(L) = ∪k
n=0sn(L). We would like a

bound on modSk(L)(Γ(E,F ;Sk(L))). By Corollary 3.1.5, we can ignore slits of length zero.

Hakobyan and Li37 showed that

lim
k→∞

modSk(L)(Γ(E,F ;Sk(L))) = 0

if
∑∞

n=0(2
nℓn)

2 = ∞. Let Γk be the collection of curves γ in Sk(L) with non-zero horizontal
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Figure 3.1: S3

(
1
2
, 1
16
, 3
16

)

movement: diam(π1(γ)) > 0. It follows from the estimates of Hakobyan and Li37 that

lim
k→∞

modSk(L)(Γk) = 0

if
∑∞

n=0(2
nℓn)

2 = ∞. We will now use this to construct a slit domain which is not trans-

boundary Loewner. Define the set

S(L) =
∞⋂
k=0

(
(2−kSk(L)) ∪ (0, 2−k−1)2 ∪ ((0, 1)2 \ (0, 2−k)2)

)
.

In other words, for each k, scale Sk(L) down to a square of side length 2−k, and place it in

the lowest, leftmost dyadic square. Then fill in the open bottom left quarter of that square,

and repeat for k + 1. Equip S(L) with its inner metric, and notice that it is homeomorphic

to a domain in the plane.

Example 3.2.3. S(L) is not transboundary Loewner for
∑∞

n=0(2
nℓn)

2 = ∞.

Proof. Let Ek and Fk be the left and right sides of the dyadic square Qk := (2−k, 2−k+1)2

respectively. Let f : Qk ∩ S(L) → Sk(L) be the conformal map (onto its image) obtained

through translation and dilation. Let E ′
k = Ek + (3−100k, 0) and F ′

k = Fk − (3−100k, 0). The

transboundary modulus of curves going through the endpoints of E ′
k and F ′

k is 0 (Proposition

3.1.4). Every other transboundary curve, γ, connecting E ′
k and F ′

k satisfies f(γ) contains a
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Figure 3.2: S

(
1
2
, 1
16
, 3
16
, ...

)

subcurve in Γk. Hence

mod∂0S(L)(Γ(E
′
k, F

′
k;S(L))) ≤ modSk(L)(Γk).

Notice that ∆(E ′
k, F

′
k) ≤ 1. Thus for all decreasing functions Ψ, we can find some k ∈ N

such that modSk(L)(Γk) < Ψ(1). It then follows that

mod∂0S(L)(Γ(E
′
k, F

′
k;S(L))) < Ψ(1) ≤ Ψ(∆(E ′

k, F
′
k)).

Thus S(L) is not transboundary Loewner.

Merenkov and Wildrick2 took ℓn = 1/2n+1 for all n. It turns out that if
∑∞

n=0(2
nℓn)

2 <

∞, then one can apply the techniques of Merenkov-Wildrick2 to say S(L) will be qua-

sisymmetric to a circle domain. See Hakobyan-Li37 for more details. Example 3.3.7 and

Proposition 3.2.2 imply that it will then be transboundary Loewner.

3.3 Transboundary Loewner Property in R2 and Ĉ

Because the transboundary Loewner property is a quasisymmetric invariant, it can be used

to classify when spaces are quasisymmetrically equivalent. It is, therefore, of interest to
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generate some examples of model spaces which are transboundary Loewner. Our goal will

be to derive conditions on K, a collection of pairwise disjoint continua in some Loewner Ω,

which are sufficient to conclude Ω\K is transboundary Loewner. Intuitively, these conditions

will prohibit the continua in K from being too “thin”. In particular, we will show that circle

domains are transboundary Loewner, which was first shown by Merenkov38 (it follows from

Proposition 5.3).

Definition 3.3.1 (Schramm4). Let A ⊂ R2 be Borel and 1 ≥ τ > 0. We say A is τ -fat if,

for all x ∈ A and r > 0 with A ⊈ B(x, r), we have

H2(A ∩B(x, r)) ≥ τH2(B(x, r)).

It’s not hard to see that disks are 1/4-fat. Rectangles are (2πc)−1-fat where c is the ratio

of the larger side length to the shorter one. Similarly, ellipses are fat with τ depending on

the eccentricity.

For a general estimate on transboundary modulus, we will need the continua through

which the curves go to be fat. This, however, won’t be enough. We will also need the

following property.

Definition 3.3.2. Let A ⊂ R2 and λ ≥ 1. We say A is λ-quasiround if, there is some

x ∈ A and r > 0 with

B(x, r) ⊂ A ⊂ B(x, λr).

A set is λ-quasiround for some λ if and only if it is bounded and has non-empty interior.

What’s important is that we keep track of how thick an annulus containing the boundary

must be. Disks are λ-quasiround for any λ > 1. Like with fatness, rectangles and ellipses are

quasiround with constants depending on their eccentricity. However, in general quasiround

sets are not fat: take a Jordan domain with an outward pointing cusp; moreover, not all

bounded fat sets are uniformly quasiround. That is, for sufficiently small τ and for all λ ≥ 1,

there is a bounded τ -fat set which is not λ-quasiround. Take, for instance, D \ αZ × R for

small α. With more effort, one can come up with a family of Jordan domains which are τ -fat
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but not uniformly quasiround.

Proposition 3.3.3 (1,38,37). Let E ⊂ R2 be a continuum, λ ≥ 1, and τ > 0. Let K =

{Ki}i∈I be a collection of pairwise disjoint, τ -fat subsets of the plane satisfying Ki ∩ E ̸= ∅

and

λdiam(Ki) ≥ diam(E)

for all i ∈ I. Then #(K) ≤ (λ2 + 6λ+ 1)/τ .

Proof. Fix any point e ∈ E. Since E is a compact, diam(E) < ∞. Notice E ⊂ B[e, diam(E)],

and thus Ki ∩B[e, diam(E)] ̸= ∅ for all i ∈ I. Define

I1 = {i ∈ I | Ki ⊈ B(e, (1 + λ−1)diam(E))}.

Define I2 = I \ I1. For i ∈ I1, we can say there is some xi ∈ ∂B(e, diam(E)) ∩Ki. Notice

that

B(xi, λ
−1diam(E)) ⊂ B(e, (1 + λ−1)diam(E));

indeed, for y ∈ B(xi, λ
−1diam(E)), we can say

|y − e| ≤ |y − xi|+ |xi − e| ≤ λ−1diam(E) + diam(E).

Therefore, for i ∈ I1, we can say B(xi, λ
−1diam(E)) does not contain Ki. We can use fatness

to say

H2(Ki ∩B(xi, λ
−1diam(E))) ≥ τH2(B(xi, λ

−1diam(E))).

Now, for each i ∈ I1, we can sayB(xi, λ
−1diam(E)) ⊂ A[e, (1−λ−1)diam(E), (1+λ−1)diam(E)].

Since each Ki is disjoint, we can say

π(((1 + λ−1)diam(E))2−((1− λ−1)diam(E))2) = H2(A[e, (1− λ−1)diam(E), (1 + λ−1)diam(E)])

≥ H2(∪i∈I1B(xi, λ
−1diam(E)))

≥ H2(∪i∈I1Ki ∩B(xi, λ
−1diam(E)))
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=
∑
i∈I1

H2(Ki ∩B(xi, λ
−1diam(E)))

≥ τ
∑
i∈I1

H2(B(xi, λ
−1diam(E)))

= τ
∑
i∈I1

π(λ−1diam(E))2

= πτλ−2diam(E)2#(I1).

Thus

#(I1) ≤ τ−1λ2((1 + λ−1)2 − (1− λ−1)2) = τ−1λ2(4λ−1) =
4λ

τ
.

To estimate #(I2), notice that, by compactness of Ki there exists xi, yi ∈ Ki with

d(xi, yi) = diam(Ki) ≥ λ−1diam(E).

Thus, B(xi, λ
−1diam(E)) does not contain Ki. Use fatness to say

H2(B(xi, λ
−1diam(E)) ∩Ki) ≥ τH2(B(xi, λ

−1diam(E))).

For i ∈ I2, we have Ki ⊂ B(e, (1 + λ−1)diam(E)). Therefore, using disjointness of Ki,

π((1 + λ−1)diam(E))2 = H2(B(e, (1 + λ−1)diam(E)))

≥ H2(∪i∈I2Ki)

=
∑
i∈I2

H2(Ki)

≥
∑
i∈I2

H2(Ki ∩B(xi, λ
−1diam(E)))

≥ τ
∑
i∈I2

H2(B(xi, λ
−1diam(E)))

= τ
∑
i∈I2

π(λ−1diam(E))2

= πτλ−2diam(E)2#(I2).
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Hence,

#(I2) ≤ τ−1λ2(1 + λ−1)2 = τ−1(λ+ 1)2.

Thus we have

#(K) = #(I) = #(I1) + #(I2) ≤ τ−1(4λ+ (λ+ 1)2) = τ−1(λ2 + 6λ+ 1).

The following result, first shown by Bojarski40, is well known. However, it is usually

formulated for finite sums, and we’ll need it for infinite sums; we give an argument here

which mimics a proof given by Merenkov38.

Lemma 3.3.4 (Bojarski’s Lemma). Let {B(xi, ri)}i∈I be a countable collection of pairwise

disjoint open balls in R2 and {ai}i∈I a countable collection of non-negative real numbers. Let

λ ≥ 1 be given. There exists a constant, cλ, depending only on λ, such that

∫
R2

(∑
i∈I

aiIB(xi,λri)

)2

dA ≤ cλ

∫
R2

(∑
i∈I

aiIB(xi,ri)

)2

dA = cλπ
∑
i∈I

a2i r
2
i .

Proof. Let ϕ ∈ L2(R2). Define the uncentered maximal operator of ϕ by

M(ϕ)(x, y) = sup
(x,y)∈B(z,r)

1

πr2

∫
B(z,r)

|ϕ| dA.

Notice that, in particular, for (x, y) ∈ B(xi, ri), we have

M(ϕ)(x, y) ≥ 1

πλ2r2i

∫
B(xi,λri)

|ϕ| dA.

Hence, ∫
B(xi,ri)

M(ϕ) dA ≥ 1

λ2

∫
B(xi,λri)

|ϕ| dA.

Recall that M is a bounded operator (see Duoandikoetxea41 Theorem 2.5 and following
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remarks): there exists a constant, C, such that

||M(ϕ)||2 ≤ C||ϕ||2

for all ϕ ∈ L2(R2).

∫
R2

∑
i∈I

aiIB(xi,λri)|ϕ| dA =
∑
i∈I

ai

∫
R2

IB(xi,λri)|ϕ| dA (Monotone Convergence Theorem)

=
∑
i∈I

ai

∫
B(xi,λri)

|ϕ| dA

≤
∑
i∈I

aiλ
2

∫
B(xi,ri)

M(ϕ) dA

≤ λ2

∫
R2

∑
i∈I

aiIB(xi,ri)M(ϕ) dA (Disjointness)

≤ λ2||M(ϕ)||2
∣∣∣∣∣∣∣∣∑

i∈I

aiIB(xi,ri)

∣∣∣∣∣∣∣∣
2

(Cauchy-Schwarz)

≤ Cλ2||ϕ||2
∣∣∣∣∣∣∣∣∑

i∈I

aiIB(xi,ri)

∣∣∣∣∣∣∣∣
2

for all ϕ ∈ L2(R2). With no loss of generality, suppose I ⊂ N and let In = {1, ..., n} ∩ I.

Let ϕn =
∑

i∈In aiIB(xi,λri). Notice ϕn ∈ L2(R2) for all n and ϕn ≤ ϕm for n ≤ m. Suppose

||ϕn||2 > 0 for sufficiently large n (otherwise, the result is trivial). We use the above inequality

to say

||ϕn||22 ≤
∫
R2

∑
i∈I

aiIB(xi,λri)|ϕn| dA ≤ Cλ2||ϕn||2
∣∣∣∣∣∣∣∣∑

i∈I

aiIB(xi,ri)

∣∣∣∣∣∣∣∣
2

||ϕn||2 ≤ Cλ2

∣∣∣∣∣∣∣∣∑
i∈I

aiIB(xi,ri)

∣∣∣∣∣∣∣∣
2

lim
n→∞

||ϕn||2 ≤ Cλ2

∣∣∣∣∣∣∣∣∑
i∈I

aiIB(xi,ri)

∣∣∣∣∣∣∣∣
2

.
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Once again, we use the monotone convergence theorem to conclude

∣∣∣∣∣∣∣∣∑
i∈I

aiIB(xi,λri)

∣∣∣∣∣∣∣∣
2

= lim
n→∞

||ϕn||2 ≤ Cλ2

∣∣∣∣∣∣∣∣∑
i∈I

aiIB(xi,ri)

∣∣∣∣∣∣∣∣
2

.

Squaring both sides gives the desired conclusion.

The following lemma is similar to a lemma of Bonk1, although he assumed uniform

relative separation, and there is no such assumption here. It is also similar to a lemma of

Merenkov38, though he showed it only for circle domains.

Lemma 3.3.5 (37). Let Ω ⊂ R2 be Borel and Γ a collection of curves in Ω. Fix τ > 0 and

λ ≥ 1. Let K = {Ki}i∈I be a countable collection of pairwise disjoint, τ -fat, λ-quasiround

continua in Ω. Suppose Ω \K is a domain. Then there are constants c1 and c2 depending

only on λ and τ such that

modK(Γ) ≥ min(c1, c2 mod (Γ)).

Proof. Let c = (1 + 12λ + 4λ2)/τ . Let c1 := 1/(8c2). Suppose modK(Γ) ≤ 1/(8c2); as

otherwise, we have nothing to show. For ϵ < 1/(8c2), let P = (ρ; {ρi}i∈I) ∧K Γ be such that

AK(P ) ≤ modK(Γ) + ϵ ≤ 1

4c2
.

Since each Ki is λ-quasiround, we can find xi ∈ Ki and ri > 0 such that

B(xi, ri) ⊂ Ki ⊂ B(xi, λri).

For brevity, let Bi := B(x, 2λri). Define g : Ω → [0,∞) as

g = 2

(
ρ IΩ\K +

∑
i∈I

ρi
λri

IBi∩Ω

)
.

73



We claim g ∧ Γ. To see this, pick any γ ∈ Γ and define

Iγ := {i ∈ I | γ ∩Ki ̸= ∅, 2λdiam(Ki) ≥ diam(γ)}.

Now if i ∈ I \ Iγ, then we either have that γ ∩Ki = ∅ or

diam(γ) > 2λdiam(Ki) ≥ 4λri = diam(Bi);

the latter implies that γ is not contained in Bi. Therefore,

ℓg(γ) = 2

(∫
γ\K

ρ ds+
∑
i∈I

ρi
λri

ℓ(γ ∩Bi)

)
≥ 2

(∫
γ\K

ρ ds+
∑

γ∩Ki ̸=∅,i∈I\Iγ

ρi
λri

ℓ(γ ∩Bi)

)

≥ 2

(∫
γ\K

ρ ds+
∑

γ∩Ki ̸=∅,i∈I\Iγ

ρi

)

= 2

(
ℓKP (γ)−

∑
i∈Iγ

ρi

)

Observe that ρi ≤
√

AK(P ) ≤ 1/(2c); also, we can use Proposition 3.3.3 to say #(Iγ) ≤ c.

Hence ∑
i∈Iγ

ρi ≤
#(Iγ)

2c
≤ 1

2
.

This gives us admissibility:

ℓg(γ) ≥ 2

(
ℓKP (γ)−

∑
i∈Iγ

ρi

)
≥ 2

(
ℓKP (γ)−

1

2

)
≥ 1.

We will now use g to estimate the modulus. Since B(xi, ri) are pairwise disjoint, we can

use Bojarski’s Lemma (Lemma 3.3.4) to say
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mod(Γ) ≤
∫
Ω

g2 dA = 4

∫
Ω

(
ρ IΩ\K +

∑
i∈I

ρi
λri

IBi∩Ω

)2

dA

≤ 8

∫
Ω

(
ρ IΩ\K

)2

+

(∑
i∈I

ρi
λri

IBi∩Ω

)2

dA

= 8

(∫
Ω\K

ρ2 dA+

∫
Ω

(∑
i∈I

ρi
λri

IBi∩Ω

)2

dA

)

≤ 8

(∫
Ω\K

ρ2 dA+

∫
R2

(∑
i∈I

ρi
λri

IBi

)2

dA

)
≤ 8

(∫
Ω\K

ρ2 dA+ c2λπ
∑
i∈I

ρ2i
λ2r2i

r2i

)
= 8

(∫
Ω\K

ρ2 dA+
c2λπ

λ2

∑
i∈I

ρ2i

)
≤ 8max(1,

c2λπ

λ2
)

(∫
Ω\K

ρ2 dA+
∑
i∈I

ρ2i

)
≤ 8max(1,

c2λπ

λ2
)(modK(Γ) + ϵ)

By letting c2 := (8max(1, c2λπ
λ2 ))−1 and taking ϵ → 0, we obtain the result.

Corollary 3.3.6. Let Ω ⊂ R2 be a Borel set with countably many compact boundary com-

ponents and K = {Ki}i∈I a countable collection of pairwise disjoint continua in Ω which are

τ -fat and λ-quasiround for some τ > 0, λ ≥ 1. Let K = ∪i∈IKi, and suppose Ω \ K is a

domain. If Ω is Loewner then Ω \K is transboundary Loewner.

Proof. Let Ω be Loewner with decreasing function Ψ. Let

Ψ′(t) = min(c1, c2Ψ(t)),

where c1, c2 are the constants from Lemma 3.3.5. Then for any disjoint, non-degenerate

continua E,F ⊂ Ω \K, by Lemma 3.3.5 we have

mod K(Γ(E,F ; Ω)) ≥ min(c1, c2 mod (Γ(E,F ; Ω))) ≥ min(c1, c2Ψ(∆(E,F ))) = Ψ′(∆(E,F )).
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Let J be the set of all connected components of ∂Ω. To show Ω \ K is transboundary

Loewner, we need to show

modJ∪K(Γ(E,F ; Ω \K)) ≥ Ψ′(∆(E,F )).

Let K ′ = ∂(Ω \K), the boundary of the interior of K. Observe that πK(K
′) = πK(K), and

thus πK(Ω) = πK((Ω \K) ∪K ′).

modJ∪K(Γ(E,F ; Ω \K)) ≥ modJ∪K(Γ(E,F ; (Ω \K) ∪K ′))

= modK(Γ(E,F ; (Ω \K) ∪K ′))

= modK(Γ(E,F ; Ω)) ≥ Ψ′(∆(E,F )).

Example 3.3.7. Countably connected circle domains in R2 and Ĉ are transboundary Loewner.

Proof. Let X be a countably connected circle domain in R2. Let K be the collection of

non-degenerate, bounded complementary components of X and Ω := X ∪K. Then K is a

collection of closed disks, which are uniformly fat, uniformly quasiround continua. If Ω is

Loewner, then we can apply Corollary 3.3.6 to say X is transboundary Loewner. If none

of the boundary components of X are points, then Ω is either the plane or a disk, both of

which are Loewner. If some of the boundary components are points, then Ω is the plane

or the disk with countably many points removed. By Proposition 2.4.2, we have that Ω is

Loewner.

Now letX be a countably connected circle domain in R2. To see this, note that the sphere

is Loewner. If X is the sphere, then X is transboundary Loewner. If X is the sphere with

only countably many points removed, then X is Loewner by Proposition 2.4.2, which implies

X is transboundary Loewner. Suppose that X has at least one non-trivial complementary

component: D. Rotate the sphere so that the center of D is the north pole; such a rotation

is conformal and quasisymmetric. Use stereographic projection to map X into the plane.
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Recall that stereographic projection is conformal and it sends circles not touching the north

pole to circles. Thus the image will be a bounded circle domain in the plane. Notice Ĉ\D is

Loewner, and that its image under stereographic projection is bounded and linearly locally

connected. By Theorem 2.5.1, we have that stereographic projection is quasisymmetric as a

map from Ĉ \D, and thus its restriction to X is quasisymmetric. By Proposition 3.2.2, the

circle domain in the sphere is transboundary Loewner since the image in the plane is.

One can make similar statements for countably connected square domains. Let us es-

tablish a larger class of uniformly fat, uniformly quasiround shapes. A subset of Ĉ or R2 is

called an open η-quasidisk , if it is the quasisymmetric image of D for some η-quasisymmetry.

A closed quasidisk is a quasisymmetric image of D. An η-quasicircle is an η-quasisymmetric

image of ∂D. We say a collection of quasicircles or quasidisks is uniform if they are all

η-quasisymmetric images of a circle or disk for the same η. If one has a Jordan curve which

is a quasicircle, its interior will be a quasidisk. The converse is true since quasisymmetries

extend to the boundary. We will exclude a vast amount of theory of quasicircles; restricting

our discussion to the following properties.

Proposition 3.3.8 (Bonk1 (Proposition 4.3)). An η-quasidisk is λ-quasiround with λ de-

pending only on η.

Proposition 3.3.9 (Schramm4 (Corollary 2.3)). An η-quasidisk is τ -fat with τ depending

only on η.

It becomes immediate then, that one can use Corollary 3.3.6 when K is a collection of

uniform quasidisks. On the topic of quasidisks, they give more examples of spaces which are

Loewner.

Proposition 3.3.10 (Bonk1 (Proposition 7.5)). Let {Di}ni=1 be a finite collection of pairwise

disjoint, closed η-quasidisks in Ĉ. Suppose ∆(Di, Dj) ≥ α for all i ̸= j. Then

Ĉ \ ∪n
i=1Di

is Loewner with Ψ depending only on n, η, and α.
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We remark that this result holds true in the plane as well. Indeed, much like the discussion

in Example 3.3.7, we can put the north pole in the interior of D1 by rotation, and then say

that stereographic projection on Ĉ \ D1 is quasisymmetric. Thus the image, which will be

a bounded domain whose boundary components are uniform quasicircles, will be Loewner

with Ψ still depending only on n, η, and α (see Proposition 2.1.9). This process can be

reversed for bounded, finitely connected domains in the plane whose boundary components

are uniformly relatively separated uniform quasicircles bounding disjoint Jordan regions. If

unbounded, there is some sufficiently large disk in which the domain will be Loewner and the

relative distance between boundary quasicircles isn’t decreased. Then mod(Γ(E,F ;R2)) is

greater than the modulus connecting E and F in the disk, which is bounded below.

3.4 N-transboundary Loewner property

A standard technique to show that geometrically quasiconformal maps are quasisymmetric

is to reach a contradiction; the failure of quasisymmetry allows one to construct continua

which have small relative distance in the domain of the function and large relative distance

in the image. So if the domain is Loewner, and the modulus in the image goes to 0, then the

contradiction is complete. If the domain is transboundary Loewner, and the transboundary

modulus in the image goes to 0, then the contradiction is complete. However, in the context

we are concerned with, the transboundary modulus is too big: it doesn’t go to 0 in the image.

Also, the modulus is too small: the domains fail to be Loewner. Neither of these will give a

contradiction; thus, a new quasisymmetrically quasi-invariant quantity is necessary for this

argument to work. This was precisely the observation of Bonk1 when he was uniformizing

circle carpets in the plane. His idea was to use a mixed modulus; where one doesn’t go

through all the boundary components, so as to be smaller than transboundary modulus, but

one still goes through some, so as to be larger than modulus. We give a name for spaces

which are Loewner with respect to this mixed modulus, and we define it here.

Definition 3.4.1. Let (X, d, µ) be a metric measure space with µ locally finite and N ∈ N.

Suppose X is homeomorphic to a domain in Ĉ, ∂X is compact, and ∂0X is countable. We say
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X is N-transboundary Loewner in case there is an decreasing function Ψ : (0,∞) →

(0,∞) such that the following holds for all K ⊂ ∂0X with #(K) ≤ N . For all disjoint,

non-degenerate continua E,F ⊂ X,

mod∂0X(Γ(E,F ;X \K)) ≥ Ψ(∆(E,F )).

If X is Loewner, then it will be N -transboundary Loewner for all N :

mod∂0X(Γ(E,F ;X \K)) ≥ mod∂0X(Γ(E,F ;X)) = mod(Γ(E,F ;X)).

Conversely, if ∂0X is finite and N ≥ #(∂0X), then X being N -transboundary Loewner gives

X is Loewner by selecting K = ∂0X. Notice that being 0-transboundary Loewner is identical

to be transboundary Loewner, as X \K = X. In fact, if X is N -transboundary Loewner for

any N , then X is transboundary Loewner, as one can always take K = ∅. More generally, for

all M,N ∈ N with M ≥ N , if X is M -transboundary Loewner, then X is N -transboundary

Loewner.

Proposition 3.4.2. Let (X, dX , µX), (Y, dY , µY ) be metric measure spaces with µX and µY

locally finite. Suppose X and Y are homeomorphic to domains in Ĉ, ∂X, ∂Y are compact,

and ∂0X, ∂0Y are countable. Suppose f : X → Y is quasisymmetric and geometrically

quasiconformal. If X is N-transboundary Loewner, then Y is N-transboundary Loewner.

Proof. Pick any non-degenerate, disjoint continua A,B ⊂ Y and any K ⊂ ∂0Y with #(K) ≤

N . Let A′ = f−1(A) and B′ = f−1(B), noticing that they are disjoint, non-degenerate

continua in X. Since f is quasisymmetric, f extends to a homeomorphism of the completions

(see Remark 2.1.6). This means that f gives rise to a homeomorphism f : (X)∂0X → (Y )∂0Y .

LetK′ ⊂ ∂0X correspond toK, and notice #(K′) ≤ N . Since f isN -transboundary Loewner,

mod∂0X(Γ(A
′, B′;X \K ′)) ≥ Ψ′(∆(A′, B′))

where Ψ′ is the function obtained from the transboundary Loewner property ofX. Now apply
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Lemma 3.1.3 on X and Y . Letting f−1 be ν-quasisymmetric and f be H-quasiconformal,

and recalling Proposition 2.1.9, we conclude

mod∂0Y (Γ(A,B;Y \K)) ≥ H−1 mod ∂0X(Γ(A
′, B′;X \K ′))

≥ H−1Ψ′(∆(A′, B′))

≥ H−1Ψ′(ν(2∆(A,B))).

Ψ(t) := H−1 Ψ′(ν(2t)) is decreasing since Ψ′ is decreasing and ν is increasing, so Y is

N -transboundary Loewner.

Let us establish some examples (and non-examples) of N -transboundary Loewner spaces.

Example 3.4.3. There are domains which are transboundary Loewner and not 1-transboundary

Loewner.

Proof. We construct a domain in R2 as follows. Define the following polar rectangle for

n ∈ N, n ≥ 1:

An := {(r, θ) | 1 ≤ r ≤ 2, 0 ≤ θ ≤ 2π − 1

n
}+ (6n, 0).

These polar rectangles are pairwise disjoint and uniformly separated. Let Ω = R2 \ ∪∞
n=1An,

and notice Ω is a domain. Since the plane is Loewner, and An are uniformly fat and

quasiround, we can say, by Corollary 3.3.6, that Ω is transboundary Loewner.

To see that it fails to be 1-transboundary Loewner, let En = ∂B((6n, 0), 0.9) and let

Fn = ∂B((6n, 0), 2.1). Notice

∆(En, Fn) =
1.2

1.8
=

2

3
.

Now

Γ(B[(6n, 0), 1],R2 \B((6n, 0), 2);A[(6n, 0), 1, 2] \ An) < Γ(En, Fn;R2 \ An).
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By the overflowing property and Example 2.3.10, we have

mod ∂0Ω(Γ(En, Fn;R2\An)) ≤ mod (Γ(B[(6n, 0), 1],R2\B((6n, 0), 2);A[(6n, 0), 1, 2]\An)) =
1/n

log(2)
.

For any decreasing function, Ψ, pick n > (Ψ(2/3) log(2))−1, then

mod∂0Ω(Γ(En, Fn;R2 \ An)) < Ψ(2/3) = Ψ(∆(En, Fn)).

Hence it cannot be 1-transboundary Loewner.

In the previous example, the complementary components failed to be uniform quasidisks.

If we require our complementary components to be uniform quasidisks, we establish a large

class of N -transboundary Loewner spaces.

Proposition 3.4.4 (Bonk1). Let K be countable collection of uniformly relatively separated,

closed, η-quasidisks in R2, and suppose R2\K is a domain. Then R2\K is N-transboundary

Loewner for all N ∈ N with decreasing function Ψ depending only on η, the relative separa-

tion, and N .

Proof. Pick any disjoint, non-degenerate continua E,F ⊂ R2 \ K and any J ⊂ K with

#(J ) ≤ N . η-quasidisks will be uniformly fat and quasiround, so we can use Lemma 3.3.5

to say

modK(Γ(E,F ;R2 \ J)) ≥ min(c1, c2 mod (Γ(E,F ;R2 \ J))),

where c1 and c2 depend only on η. We use Proposition 3.3.10 and following remarks to

conclude that R2 \ J is Loewner with Ψ depending only on η, the relative separation, and

N . Since η and the relative separation are fixed, we have the same Ψ for all J of size N .

The same proof applies to bounded domains in the plane whose boundary components

are uniform quasicircles which are uniformly relatively separated and whose union is closed.

It also applies to quasidisks in the sphere satisfying the same assumptions by noting stere-

ographic projection is quasisymmetric on bounded subsets of the plane. This can be gen-
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eralized for N = 1. Much like how we don’t need uniform relative separation to conclude

transboundary Loewner, we don’t need it for 1-transboundary Loewner.

Proposition 3.4.5. Let K be countable collection of closed, η-quasidisks in R2, and suppose

R2 \ K is a domain. Then R2 \ K is 1-transboundary Loewner with decreasing function Ψ

depending only on η.

Proof. Pick any disjoint, non-degenerate continua E,F ⊂ R2 \ K and any η-quasidisk,

Ki ∈ K. Use Proposition 3.3.10 to say R2 \ Ki is Loewner with Ψ depending only on η.

Then use the fact that uniform quasidisks are uniformly fat and uniformly quasiround to use

Proposition 3.3.5:

modK(Γ(E,F ;R2 \Ki)) ≥ min(c1, c2 mod (Γ(E,F ;R2 \Ki))) ≥ min(c1, c2Ψ(∆(E,F ))),

where c1, c2 and Ψ depend only on η. Thus the same bound will hold for any choice of

Ki.

Once again, this argument will also apply to bounded domains in the plane whose bound-

ary components are uniform quasicircles, as well as quasidisks in the sphere. This proposition

suggests that 1-transboundary Loewner does not imply 2-transboundary Loewner.

Example 3.4.6. There are domains which are 1-transboundary Loewner and not 2-transboundary

Loewner.

Proof. For n ∈ N, n ≥ 2, let Sn = [3n, 3n+1]× [0, 1] and Tn = [3n+1+ 1
n
, 3n+2+ 1

n
]× [0, 1].

Let Ω = R2 \ (∪nSn ∪ Tn). Notice that Ω is a domain. Since Sn and Tn are all squares,

they are uniform quasicircles. By Proposition 3.4.5, this domain must be 1-transboundary

Loewner.

To see that it fails to be 2-transboundary Loewner, let En = {3n + 1 + 1
2n
} × [1

8
, 3
8
] and

Fn = {3n+1+ 1
2n
}× [5

8
, 7
8
]. Then ∆(En, Fn) = 1 for all n. However, every curve connecting

En and Fn which avoids Sn and Tn contains a subcurve connecting the vertical sides of one of

three rectangles: [3n+1, 3n+1+ 1
n
]×[0, 1

8
], [3n+1, 3n+1+ 1

n
]×[3

8
, 5
8
], [3n+1, 3n+1+ 1

n
]×[7

8
, 1].
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Thus by the overflowing property and subadditivity, we can conclude

mod∂0Ω(Γ(En, Fn;R2 \ (Sn ∪ Tn))) ≤
1/n

1/8
+

1/n

1/4
+

1/n

1/8
=

20

n
.

Thus, for any decreasing function Ψ, we can find an n so that 20
n
< Ψ(1), and we conclude

mod∂0Ω(Γ(En, Fn;R2 \ (Sn ∪ Tn))) < Ψ(1) = Ψ(∆(En, Fn)).

The previous examples suggest that uniform relative separation of the boundary compo-

nents is important for a space to be 2-transboundary Loewner. Indeed, it is necessary for

circle domains.

Example 3.4.7. For countably connected circle domains, the following are equivalent.

(1) They are N-transboundary Loewner for all N ∈ N.

(2) They are 2-transboundary Loewner.

(3) The bounding circles are uniformly relatively separated.

Proof. Note that (1) ⇒ (2) follows from the definitions.

(3) ⇒ (1) : If the circles are uniformly relatively separated, and none of them are points,

then by Proposition 3.4.4, we have that the domain is N -transboundary Loewner for all

N . If some of the boundary components are points, then Proposition 2.4.2, we have that

Proposition 3.3.10 still holds with countably many points removed. So the complement of N

complementary components is still uniformly Loewner, and Lemma 3.3.5 can still be used.

We deduce N -transboundary Loewner.

(2) ⇒ (3) : We’ll prove the contrapositive. Suppose that the circles fail to be uniformly

relatively separated. It will suffice to show that the domain fails to be 2-transboundary

Loewner. Let K be the collection of complementary components of the circle domain. Let

Cn, Dn ∈ K, diam(Cn) ≤ diam(Dn), be closed disks such that ∆(Cn, Dn) <
1
n
. For simplicity,
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Figure 3.3: Cn and Dn are in gray and En and Fn are in red

let us assume that the centers of Cn and Dn are in the x-axis, and that the center of Cn is

left of the center of Dn. We’ll say a rectangle, R, is α-good if its sides are parallel to the

coordinate axes, the two left vertices are in the circle bounding Cn, the two right vertices

are in the circle bounding Dn, the x-axis is the perpendicular bisector of the left and right

sides, the centers of Cn or Dn are not in R, and the lengths of the left and right sides are α.

Let

α = diam(Cn)
√

1− (1−∆(Cn, Dn))2

Let R1
n be the α/4-good rectangle, R2

n be the 3α/4-good rectangle, and R3
n be the α-good

rectangle. Let us compute the widths of these rectangles. To see this, note first that R3
n has

the largest width, call it w. Consider the triangle created by the center of Cn, the top left

corner of R3
n, and some point (x, 0) intersecting the left side of R3

n. Then the Pythagorean

Theorem dictates

x2 = (diam(Cn)/2)
2 − (α/2)2 = (diam(Cn)/2)

2(1−∆(Cn, Dn))
2.

Since Cn has the smaller diameter, we can conclude

w ≤ diam(Cn)− 2x+ d(Cn, Dn)

= diam(Cn)− diam(Cn)(1−∆(Cn, Dn)) + d(Cn, Dn)

= diam(Cn)(1− (1−∆(Cn, Dn)) + ∆(Cn, Dn))
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= diam(Cn)(2∆(Cn, Dn))

Let En be any continuum contained in the circle domain connecting the top edge of R2
n and

the top edge of R1
n. Let Fn be any continuum connecting the bottom edge of R2

n and the

bottom edge of R1
n. Notice that min(diam(En), diam(Fn)) ≥ α/4, and their distance is at

least the height of R1
n. Thus

∆(En, Fn) ≤ 1.

Let LT
i and LB

i be the top and bottom sides of Ri
n respectively. Let Γ1 := Γ(LT

1 , L
B
1 ;R

1
n \

(Cn ∪Dn)), Γ2 := Γ(LT
2 , L

T
3 ;R

3
n \ (Cn ∪Dn)), and Γ3 = Γ(LB

2 , L
B
3 ;R

3
n \ (Cn ∪Dn)). Observe

that

Γ1 ∪ Γ2 ∪ Γ3 < Γ(En, Fn;R2 \ (Cn ∪Dn)).

Hence we can use overflowing and subadditivity to get

modK(Γ(En, Fn;R2 \ (Cn ∪Dn))) ≤ modK(Γ1) + modK(Γ2) + modK(Γ3).

Let

ρ =
4

α
IR1

n
.

If Ki ∩R1
n = ∅, set ρi = 0. Also, if Ki = Cn or Ki = Dn, set ρi = 0. Otherwise, let

ρi =
4hi

α
,

where hi = diam(π2(Ki ∩R1
n)). We claim (ρ; {ρi}) ∧K Γ1, as for all γ ∈ Γ1,

∫
γ\K

ρ ds+
∑

Ki∩γ ̸=∅

ρi =
4

α
(ℓ(γ \K) +

∑
Ki∩γ ̸=∅

hi) ≥
4

α
(H1(π2(γ \K)) +H1(π2(γ ∩K))) ≥ 1.
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Now use this to estimate the modulus:

modK(Γ1) ≤
∫
R1

n\K
ρ2 dA+

∑
Ki∩R1

n ̸=∅

ρ2i

≤ 16

α2

(
A(R1

n \K) +
4

π

∑
Ki∩R1

n ̸=∅

π

(
hi

2

)2)

≤ 16

α2

(
A(R1

n \K) +
4

π

∑
Ki∈K

A(Ki ∩R1
n)

)
≤ 64

πα2
A(R1

n) ≤
16

πα
w =

4

π

w

α/4
.

We remark that a similar argument will show

modK(Γ2) ≤
4

π

w

α/8
=

32

π

w

α
, and

modK(Γ3) ≤
4

π

w

α/8
=

32

π

w

α
.

Thus the sum can be estimated as follows.

modK(Γ(En, Fn;R2 \ (Cn ∪Dn))) ≤
80

π

w

α

≤ 80

π

2diam(Cn)∆(Cn, Dn)

diam(Cn)
√
1− (1−∆(Cn, Dn))2

=
160

π

∆(Cn, Dn)√
2∆(Cn, Dn)−∆(Cn, Dn)2

=
160

π

√
∆(Cn, Dn)

2−∆(Cn, Dn)
<

160

π

√
1

2n− 1
.

For any decreasing function, Ψ, we can find an n so that

modK(Γ(En, Fn;R2 \ (Cn ∪Dn))) ≤
160

π

√
1

2n− 1
< Ψ(1) ≤ Ψ(∆(En, Fn)).

Hence, it cannot be 2-transboundary Loewner.
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The argument just presented assumed that Cn and Dn were disks. For a bounded circle

domain, the failure to be uniformly separated may occur for Dn being the unbounded com-

plementary component, for all sufficiently large n. We remark that a similar argument will

show that it fails to be 2-transboundary Loewner. Then, since circle domains in the sphere

are quasisymmetric to bounded planar circle domains, we conclude the statement is true for

spherical circle domains.
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Chapter 4

Quasisymmetric Koebe

Uniformization of Metric Surfaces

In this chapter, we establish results characterizing when metric spaces are quasisymmetric

to uniformly relatively separated circle domains. Our characterization is complete for metric

surfaces: homeomorphic images of a domain in Ĉ with locally finite H2 measure; in that, all

other properties assumed are invariant under (geometrically quasiconformal) quasisymme-

tries.

4.1 Transboundary modulus in circle domains

We are going to need a few facts about the geometry of circle domains as they are our model

space for the quasisymmetric uniformization.

Proposition 4.1.1. Let z ∈ R2 and R > r > 0. Let D be a collection of pairwise disjoint,

closed disks in R2 intersecting both B[z, r] and R2 \B(z, R). If

R

r
≥ 14,

then #(D) ≤ 2.
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Proof. Let D = B[z′, r′] be a closed disk intersecting B[z, r] and R2 \ B(z, R). Notice

r′ ≥ (R − r)/2. If z′ = z, then we have that B(z, R) ⊂ D, and any disk intersecting B[x, r]

is not disjoint with D. So suppose z ̸= z′, and let L be the ray starting at z and going

through z′. Every circle centered around z intersects L exactly once. Let C be the circle

of radius (R + r)/2 centered at z. Let c be the intersection point of L with C. We claim

c ∈ B[z′, r′ − (R− r)/2]. To see this, we’ll break it down into cases.

If z′ ∈ B[z, r], then r′ ≥ R− |z′ − z|, and

|c−z′| = (R−r)/2+(r−|z−z′|) = (R+r)/2−|z′−z| ≤ (R+r)/2+r′−R = r′− (R−r)/2.

If z′ ∈ A[z, r, R] then r′ ≥ |z′ − c|+ (R− r)/2, and

|c− z′| ≤ r′ − (R− r)/2.

Finally, if z′ ∈ R2 \B(z,R) then r′ ≥ |z − z′| − r and

|c− z′| = (R− r)/2 + (|z − z′| −R) ≤ (R− r)/2 + (r + r′ −R) = r′ − (R− r)/2.

Pick any w ∈ B[c, (R− r)/2]. Then

|w − z′| ≤ |w − c|+ |c− z′| ≤ (R− r)/2 + r′ − (R− r)/2 = r′.

Thus, B[c, (R − r)/2] ⊂ D. Let C ′ be the circle of radius (R + r)/4 centered at z, and let

d be one of the two points satisfying d ∈ C ′ ∩ ∂B(c, (R − r)/2), and consider the triangle

spanned by d, c, and z. Let θ be the angle corresponding to the vertex z. Law of Cosines

tells us

(
R− r

2

)2

=

(
R + r

2

)2

+

(
R + r

4

)2

− 2
R + r

2

R + r

4
cos(θ)

cos(θ) =
5

4
−

(
R− r

R + r

)2

=
5

4
−
(
R/r − 1

R/r + 1

)2
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Figure 4.1:

Notice that x−1
x+1

is an increasing function on x ≥ 1. So

R

r
≥ 14 >

2 +
√
3

2−
√
3
⇒ R/r − 1

R/r + 1
>

√
3

2
.

Thus
5

4
−
(
R/r − 1

R/r + 1

)2

<
1

2
.

Since arccos(x) is a decreasing function, we have

θ > arccos

(
1

2

)
=

π

3
.

Now we conclude

H1(C ′ ∩D) ≥ H1(C ′ ∩B[c, (R− r)/2]) = 2θ
R + r

4
>

π(R + r)

6
.
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This is true for all D ∈ D. By disjointness,

H1(C ′) ≥ H1

( ⋃
D∈D

(C ′ ∩D)

)
=

∑
D∈D

H1(C ′ ∩D) >
π

6
(R + r)#(D).

Hence

#(D) <
6

π(R + r)

(
2π

R + r

4

)
= 3.

A similar statement will carry over to the sphere as stereographic projection is conformal

and quasisymmetric on bounded subsets of the plane, and it sends circles in the plane to

circles in the sphere. Quasisymmetries will distort the thickness of an annulus by η and

conformalities will preserve all the angles.

Lemma 4.1.2 (1). Let Ω ⊂ R2 be a circle domain. If Ω is bounded, let K0 be the bounding

circle of its unbounded complementary component. Let K be the collection of the bounded

complementary components of Ω and let K0 ∈ K. Let Ω′ = Ω ∪ K. There is a decreasing

function, Φ : (0,∞) → (0,∞) with limt→∞Φ(t) = 0 such that the following holds. If

E,F ⊂ Ω are disjoint, non-degenerate continua with ∆(E,F ) > exp(log(14)27), then there

exists J ⊂ K with #(J ) ≤ 2, such that

modK(Γ(E,F ; Ω′ \ J)) ≤ Φ(∆(E,F )).

Proof. We introduce the following notation for this proof. For an annulus, A := A(x, r, R)

(or A[x, r, R]), and a set C, we define

RA
C = sup

y∈A∩C
|x− y|

and

rAC = inf
y∈A∩C

|x− y|.
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We will also use

wA(C) := log

(
RA

C

rAC

)
,

which we will refer to as the width of the set. If C is disjoint with A, we’ll say the width is

0.

Suppose, without loss of generality, that min(diam(E), diam(F )) = diam(E), and pick

any x ∈ E. Let r0 = diam(E) and R0 = d(E,F ). Then E ⊂ B[x, r0] and F ⊂ R2 \B(x,R0).

Moreover, since ∆(E,F ) > 1, we have r0 < R0. Let A := A[x, r0, R0] and notice that curves

connecting E and F contain a subcurve connecting the bounding circles of A.

We claim there is a subannulus, A′ := A[x, r′, R′] ⊂ A, with R′/r′ ≥ 14 and the following

property:

#{Ki ∈ K | wA′(Ki) > log(R′/r′)1/3} ≤ 2.

If we have

wA(Ki) ≤ log(R0/r0)
1/3

for all Ki, then we’re done as A′ = A. Take J = ∅. If not, let D ∈ K satisfy

wA(D) > log(R0/r0)
1/3,

and let A1 = A[x, rAD, R
A
D] ⊂ A. Notice wA1(D) = wA(D) and

RA
D

rAD
> exp(log(R0/r0)

1/3) > 14.

Now if

wA1(Ki) ≤ log(RA
D/r

A
D)

1/3

for all Ki ̸= D, then we’re done as A′ = A1. Take J = {D}. If not, there exists D′ ∈ K,

D′ ̸= D, with

wA1(D
′) > log(RA

D/r
A
D)

1/3,
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and let A2 = A[x, rA1

D′ , R
A1

D′ ] ⊂ A1. We claim A′ = A2 works. First notice

RA1

D′

rA1

D′

> exp(log(RA
D/r

A
D)

1/3) > exp(log(R0/r0)
1/9) > 14.

Now if there is some D′′ ∈ K, D′′ ̸= D′, D′′ ̸= D, with

wA′(D′′) > log(R′/r′)1/3,

then
RA′

D′′

rA
′

D′′
> exp(log(R′/r′)1/3) > exp(log(R0/r0)

1/27) > 14.

D touches both bounding circles of A1 and D′ touches both bounding circles of A2. Thus we

haveD,D′, D′′ all touch both bounding circles of A[x, rA
′

D′′ , RA′

D′′ ] ⊂ A2 ⊂ A1 which contradicts

Proposition 4.1.1 if they’re all disks. If one of them is K0, then (R2 \ Ω′) ∪ K0 contains a

closed disk touching both bounding circles of the annulus, and this disk is disjoint with the

other 2, so it still contradicts Proposition 4.1.1. Take J = {D,D′}.

Let {Cn} be a countable collection of continua such that C := (∪nCn)∩A′ is connected.

Pick any ϵ > 0. By virtue of being connected, if RA′
Cn

< RA′
C then there exists a n′ with

RA′
Cn

< RA′
Cn′ and rA

′
Cn′ ≤ RA′

Cn
(1 + ϵ). Define Gϵ(n) to be the n′ value which maximizes RA′

Cn′ ;

such a value exists because its non-existence implies C is disconnected. Similarly, if rA
′

Cn
> rA

′
C

then there exists an n′ with rA
′

Cn
> rA

′
Cn′ and RA′

Cn′ (1+ϵ) ≥ rA
′

Cn
. Define gϵ(n) to be the n′ value

which minimizes rA
′

Cn′ ; such a value exists because its non-existence implies C is disconnected.

Fix any δ > 0 and take positive numbers {ϵj}j∈Z so that
∑

j∈Z(log(1 + ϵj)) < δ. If there

exists some Cn not attaining the width of the union, one can define nj = Gϵj ◦ ... ◦ Gϵ1(n)

for integer j > 0, nj = gϵj ◦ ... ◦ gϵ−1(n) for integer j < 0 and n0 = n with ϵ0 = 0, stopping at

some finite point if we ever have rA
′

Cnj
= rA

′
C or RA′

Cnj
= RA′

C . Since C is connected, we must

have

wA′(∪j∈ZCnj
) = wA′(C).
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Thus we have

∑
n

wA′(Cn) ≥
∑
j∈Z

wA′(Cnj
)

= lim
j0→∞

wA′(Cn0) +

j0∑
j=1

log

(RA′
Cnj

rA
′

Cnj

)
+

−j0∑
j=−1

log

(RA′
Cnj

rA
′

Cnj

)

= lim
j0→∞

wA′(Cn0) + log

( j0∏
j=1

RA′
Cnj

rA
′

Cnj

)
+ log

( −j0∏
j=−1

RA′
Cnj

rA
′

Cnj

)

≥ lim
j0→∞

wA′(Cn0) + log

( j0∏
j=1

RA′
Cnj

RA′
Cnj−1

(1 + ϵj)

)
+ log

( −j0∏
j=−1

rA
′

Cnj+1

(1 + ϵj)rA
′

Cnj

)

= lim
j0→∞

wA′(Cn0) + log

(RA′
Cnj0

RA′
Cn0

)
− log

( j0∏
j=1

(1 + ϵj)

)
+ log

(
rA

′
Cn0

rA
′

Cn−j0

)
− log

( −j0∏
j=−1

(1 + ϵj)

)

= lim
j0→∞

log

(RA′
Cnj0

rA
′

Cn−j0

)
−

∑
|j|≤j0

log(1 + ϵj)

≥ lim
j0→∞

log

(RA′
Cnj0

rA
′

Cn−j0

)
− δ

= wA′(∪j∈ZCnj
)− δ

= wA′(C)− δ.

Take δ → 0 to say that the sum of the widths exceeds the width of the union.

Now let E ′ = B[x, r′] and F ′ = R2 \ B(x,R′). Consider Γ := Γ(E ′, F ′; Ω′ \ J). Let

P = (ρ; {ρi}i∈I) be transboundary mass distribution with

ρ(z) =
1

log(R′/r′)|x− z|
IA′ ,

ρi = 0 for Ki ∈ J or Ki disjoint with A′, and

ρi =
wA′(Ki)

log(R′/r′)
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for Ki ∈ K \ J . Notice that, for any curve γ′ in A′ \K, we have

∫
γ′
ρ ds ≥ log(R′/r′)−1wA′(γ′).

Pick any γ ∈ Γ.

Let {γm} be a collection of subcurves of γ each corresponding to a connected component

of γ−1(A′ \K) (see discussion preceding Definition 3.1.1). Notice then that

⋃
m

γm ∪
⋃

γ∩Ki ̸=∅

Ki

is connected, and we can say the sum of the widths exceeds the width of the union, which is

log(R′/r′). Thus,

∫
γ\K

ρ ds+
∑

γ∩Ki ̸=∅

ρi = log(R′/r′)−1(
∑
m

wA′(γm)+
∑

γ∩Ki ̸=∅

wA′(Ki)) ≥ log(R′/r′)−1(log(R′/r′)) = 1.

Thus P ∧K Γ. We will now use this to get an upper bound.

Notice, for all Ki ∈ K intersecting A′ and Ki ̸= K0, we have that Ki ∩A′ contains a disk

of radius (RA′
Ki

− rA
′

Ki
)/2. Moreover,

∫
A′∩Ki

ρ2 dH2 ≥ log(R′/r′)−2H2(A′ ∩Ki)

(RA′
Ki
)2

≥ π log(R′/r′)−2 (R
A′
Ki

− rA
′

Ki
)2

4(RA′
Ki
)2

.

For K0, if it intersects A
′, let K ′

0 = (R2 \ Ω′) ∪K0. Notice that RA′
K0

= RA′

K′
0
and rA

′
K0

= rA
′

K′
0
.

The above statement holds for K ′
0.

Let

K1 = {Ki ∈ K \ J | Ki ∩ A′ ̸= ∅, wA′(Ki) ≤ log(2)}.

If K0 ∈ K1, replace it with K ′
0. For Ki ∈ K1, we have RA′

Ki
≤ 2rA

′
K1
, and

log

(
RA′

Ki

rA
′

Ki

)
= log

(
1 +

RA′
Ki

− rA
′

Ki

rA
′

Ki

)
≤

RA′
Ki

− rA
′

Ki

rA
′

Ki

≤ 2
RA′

Ki
− rA

′
Ki

RA′
Ki

.
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Thus we can say

∑
Ki∈K1

ρ2i ≤ log(R′/r′)−2
∑

Ki∈K1

4

(
RA′

Ki
− rA

′
Ki

RA′
Ki

)2

≤ 16

π

∑
Ki∈K1

∫
A′∩Ki

ρ2 dH2 ≤ 16

π

∫
A′
ρ2 dH2 =

32

log(R′/r′)
.

Let

K2 = {Ki ∈ K \ J | wA′(Ki) > log(2)}.

If K0 ∈ K2, replace it with K ′
0. For all Ki ∈ K2, we have

∫
A′∩Ki

ρ2 dH2 ≥ π log(R′/r′)−2 (R
A′
Ki

− rA
′

Ki
)2

4(RA′
Ki
)2

=
π

4
log(R′/r′)−2

(
1−

rA
′

Ki

RA′
Ki

)2

>
π

16
log(R′/r′)−2.

Thus we can say

2π

log(R′/r′)
=

∫
A′
ρ2 dH2 ≥

∑
Ki∈K2

∫
A′∩Ki

ρ2 dH2 > #(K2)
π

16
log(R′/r′)−2.

Recall that for Ki /∈ J , we have wA′(Ki) ≤ log(R′/r′)1/3. Use this to say

∑
Ki∈K2

ρ2i ≤ #(K2) log(R
′/r′)−2 log(R′/r′)2/3 <

16

π
log(R′/r′)2/3

2π

log(R′/r′)
=

32

log(R′/r′)1/3
.

Now we apply the modulus estimate.

∫
Ω

ρ2 dH2+
∑
Ki∈K

ρ2i ≤
∫
A′
ρ2 dH2+

∑
Ki∈K1

ρ2i+
∑

Ki∈K2

ρ2i ≤
2π

log(R′/r′)
+

32

log(R′/r′)
+

32

log(R′/r′)1/3
;

hence

modK(Γ(E
′, F ′; Ω′ \ J)) ≤ 1

log(R′/r′)1/3

(
2π + 32

log(14)2/3
+ 32

)
.

Recall log(R′/r′) > log(R0/r0)
1/9 = log(∆(E,F ))1/9. Now, since A′ separates E and F , we

can say every curve in Γ(E,F ; Ω′ \ J) contains a subcurve in Γ, and hence

modK(Γ(E,F ; Ω′ \ J)) ≤ 1

log(∆(E,F ))1/27

(
2π + 32

log(14)2/3
+ 32

)
=: Φ(∆(E,F )).
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Observe that Φ decreases and limt→∞ Φ(t) = 0.

We remark that this result still holds in the sphere; since any spherical circle domain

is quasisymmetric to a bounded planar circle domain. That is, for any E and F with

sufficiently large relative distance, there are at most two complementary disks such that the

transboundary modulus of curves avoiding those disks and connecting E and F is less than

a function of their relative distance which goes to 0 as the relative distance goes to infinity.

In fact, Bonk1 proved this for finitely connected circle domains in the sphere; the proof just

presented mimics his proof.

The final geometric fact about circle domains which we’ll need concerns their linear local

connectivity.

Proposition 4.1.3. Circle domains are linearly locally connected with λ = 1.

Proof. Let Ω be a circle domain and x ∈ Ω and r > 0. It suffices to show B(x, r) ∩ Ω and

Ω\B(x, r) are connected. Notice that if R2\Ω contains a continuum, E, then that continuum

must be contained in a single disk, because the disks are disjoint and closed. If B(x, r)∩Ω is

disconnected, then there is a continuum, E, in B(x, r)\Ω disconnecting it. Since E must be

contained in a single disk, it means that a single disk is disconnecting B(x, r) ∩ Ω. In other

words, there is a closed disk, D, such that B(x, r) \D is disconnected. This cannot happen.

A similar argument will show Ω \B(x, r) can’t be disconnected because a single disk would

have to disconnect it.

4.2 Quasisymmetric and quasiconformal equivalence

The following definition takes inspiration from the duality of modulus (Proposition 2.3.9).

Definition 4.2.1 (5). Let (X, d, µ) be a metric measure space with µ locally finite. Suppose

X is homeomorphic to a domain in Ĉ and κ ≥ 1. We say X is κ-reciprocal in case for all

Q ⊂ X homeomorphic to [0, 1]2 with AL, AR, AB, AT ⊂ Q corresponding to {0}× [0, 1], {1}×
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[0, 1], [0, 1]× {0}, [0, 1]× {1} respectively, we have

1

κ
≤ mod(Γ(AL, AR;Q)) mod (Γ(AB, AT ;Q)) ≤ κ.

Moreover, we require that for all x ∈ X and R > 0 with X \B(x,R) ̸= ∅ we have

lim
r→0

mod(Γ(B[x, r], X \B(x,R);X)) = 0.

We say X is reciprocal in case it is κ-reciprocal for some κ.

The plane is reciprocal with κ = 1. Reciprocality is a (geometrically) quasiconformal

invariant. Its use below in quasiconformal uniformization of metric spaces homeomorphic to

R2 gives a complete characterization.

Theorem 4.2.2 (Rajala5). Let (X, d) be a metric space with H2 locally finite. Suppose

furthermore that X is homeomorphic to R2. Then X is (geometrically) quasiconformal to a

domain in R2 if and only if X is reciprocal.

Theorem 4.2.3 (Rajala5). Let (X, d) be a metric space with H2 locally finite. Suppose

furthermore that X is homeomorphic to R2. If X is upper Ahlfors 2-regular, then X is

reciprocal.

This characterization was later generalized to include spaces not necessarily homeomor-

phic to the plane. We say X is locally reciprocal in case for every x ∈ X, there is a neighbor-

hood of x which is reciprocal. If X is homeomorphic to a domain in Ĉ, by Theorem 4.2.2,

this is equivalent to stating every point has some neighborhood which is quasiconformal to

a disk.

Theorem 4.2.4 (Ikonen6). Let (X, d) be a metric space with H2 locally finite. Suppose

furthermore that X is homeomorphic to a domain in Ĉ. If X is locally reciprocal, then X is

(geometrically) π
2
-quasiconformal to a Riemannian surface.

We are also going to need quasisymmetric maps to be geometrically quasiconformal.
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Lemma 4.2.5 (Ikonen6 (Lemma 6.5)). Let (X, d) be a metric space with H2 locally finite.

Suppose X is locally reciprocal and homeomorphic to a domain in Ĉ. If f : D → V is

η-quasisymmetric, for some V ⊂ X, then f is (geometrically) K-quasiconformal with K

depending only on η.

Lemma 4.2.6. Let (X, d) be a metric space with H2 locally finite. Suppose X is locally re-

ciprocal and Ω ⊂ Ĉ is a domain. If f : Ω → X is η-quasisymmetric, then f is (geometrically)

K-quasiconformal with K depending only on η.

Proof. Use the fact that X is locally reciprocal and Theorem 4.2.4 to say that X is π/2-

quasiconformal to a Riemannian surface. Koebe (42, Theorem 11C) proved that any Rie-

mannian surface homeomorphic to a domain in Ĉ is conformal to a domain in Ĉ. Thus

we obtain a π/2-quasiconformal homeomorphism g : X → Ω′ for some domain Ω′ ⊂ Ĉ.

Thus g ◦ f : Ω → Ω′ is a homeomorphism. By Lemma 4.2.5, f is locally geometri-

cally K ′-quasiconformal where K ′ depends only on η. So g ◦ f is locally geometrically

K ′π/2-quasiconformal. It is well known for homeomorphisms between domains in Ĉ that

local geometric quasiconformality is equivalent to global geometric quasiconformality (see

Ahlfors34, for example). Hence g ◦ f is geometrically K ′π/2-quasiconformal. Since g−1 is

geometrically π/2-quasiconformal, we get that f is geometrically K ′π2/4-quasiconformal.

Let K := K ′π2/4.

The final lemma we’ll need is for quasiconformal maps to extend to the quotient spaces,

so that transboundary modulus can be preserved. A sufficient condition comes from linear

local connectivity. We say a metric space is LLC-1 if it satisfies property (i) of linear local

connectivity (see Definition 1.4.3). Notice that LLC-1 is a quasisymmetric invariant (see

Proposition 2.1.7).

Lemma 4.2.7 (Merenkov-Wildrick2). Let (X, d) be a metric space with X compact. Suppose

there is a homeomorphism f : X → Ω where Ω ⊂ Ĉ is a domain. If X is LLC-1, then f

extends to a homeomorphism f : X∂0X → Ω∂0Ω.

Any homeomorphism will extend to the end compactifications of X and Ω. What

Merenkov and Wildrick2 showed was that if X is LLC-1, then ∂0X can be identified with the
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ends of X homeomorphically. They also showed that for any domain Ω ⊂ Ĉ, ∂0Ω is homeo-

morphic to the ends compactification of Ω. Thus, f extending to the end compactifications

implies f gives rise to a bijection, f0 : ∂0X → ∂0Ω, satisfying (xn) converges to a point in

Ki ∈ ∂0X if and only if (f(xn)) converges to a point in f0(Ki) ∈ ∂0Ω.

4.3 Proof of main result

In this section we prove Theorem 4.3.2, which is the main result of this work.

The 2-transboundary Loewner property will enable upgrading a quasiconformal map to

a quasisymmetric one. The following argument is of standard type for such results. In

particular, it’s similar to an argument by Bonk1; though it’s adapted for a more general

context.

Lemma 4.3.1. Let (X, d, µ) be a metric measure space with µ locally finite. Suppose X

is metric doubling, X is compact, and ∂0X is countable. Suppose there is a geometrically

Q-quasiconformal map f : X → Ω where Ω ⊂ Ĉ is a circle domain, which extends as

a homeomorphism f : X∂0X → Ω∂0Ω. If X is 2-transboundary Loewner with decreasing

function Ψ, then f is η-quasisymmetric where η depends only on Q, Ψ, diam(X), and the

doubling constant.

Proof. Since X is compact, diam(X) < ∞. There exists a0, a∞ ∈ X such that d(a0, a∞) >

3diam(X)/4. Notice then that B(a0, diam(X)/4) ∩ B(a∞, diam(X)/4) = ∅. Since X

is homeomorphic to a domain in Ĉ, X must be connected. Hence B(a0, diam(X)/4) ∪

B(a∞, diam(X)/4) ̸= X. Let a1 ∈ X \ (B(a0, diam(X)/4) ∪ B(a∞, diam(X)/4)). Let

δ = min(diam(X)/4, 1). Notice that d(a0, a1), d(a1, a∞), d(a0, a∞) ≥ δ. Compose f with

a Möbius transformation so that f(a0) = 0, f(a1) = 1, and f(a∞) = ∞. Since Möbius

transformations are conformal, the composition is still Q-quasiconformal.

We first want to show that this map is weakly quasisymmetric. Suppose, by way of

contradiction, that f fails to be weakly quasisymmetric. Then for all H > 0 there exists

pairwise distinct a, b, c ∈ X such that d(a, b) ≤ d(b, c) and |a′ − b′| > H|b′ − c′| where
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a′ = f(a), b′ = f(b), c′ = f(c). b′, c′ ∈ B(b′, 1.5|b′ − c′|). Since Ω is linearly locally connected

with λ = 1 (Proposition 4.1.3), we have that there exists a continua E ′ ⊂ Ω connecting b′

and c′ such that

diam(E ′) ≤ 3|b′ − c′|.

Since δ ≤ 1 we have B(0, δ/2), B(1, δ/2), B(∞, δ/2) are pairwise disjoint: b′ must fail to

be in two of them. Moreover, B(a0, δ/2), B(a1, δ/2), B(a∞, δ/2) are pairwise disjoint, so a

must fail to be in two of them. Thus there exists a u′ ∈ {0, 1,∞} such that |u′ − b′| ≥ δ/2

and d(au′ , a) ≥ δ/2.

Since |a′ − b′| ≤ 2, we have

δ

4
|a′ − b′| ≤ 1

2
δ ≤ |u′ − b′|.

So u′ /∈ B(b′, δ/4|a′ − b′|). Also, since δ ≤ 1, a′ /∈ B(b′, δ/4|a′ − b′|). We can use linear local

connectivity (Proposition 4.1.3) to say there is an F ′ ⊂ Ω connecting u′ and a′ such that

F ′ ∩B[b′,
δ

4
|a′ − b′|] = ∅.

If H ≥ 24/δ then we have
δ

4
|a′ − b′| > 6|b′ − c′|.

So we have E ′ ⊂ B(b′, 3|b′ − c′|) ⊂ B(b′, δ/4|a′ − b′|), and hence

d(E ′, F ′) ≥ δ

4
|a′ − b′| − 3|b′ − c′| > δ

4
|a′ − b′| − δ

8
|a′ − b′| > Hδ

8
|b′ − c′|.

Since we have min(diam(E ′), diam(F ′)) ≤ 3|b′ − c′|, we can say

∆(E ′, F ′) ≥ δ

24
H.

Now let E = f−1(E ′) and F = f−1(F ′). Notice E and F are disjoint continua and

101



b, c ∈ E, a, au′ ∈ F . Observe that

diam(F ) ≥ d(a, au′) ≥ δ

2
≥ δ

2

diam(E)

diam(X)
.

Since δ ≤ diam(X), we have 2diam(X)/δ ≥ 1. Thus

d(E,F ) ≤ d(a, b) ≤ d(b, c) ≤ diam(E) ≤ 2diam(X)

δ
min(diam(E), diam(F )).

Thus

∆(E,F ) ≤ 2diam(X)

δ
.

Take H large enough to apply Lemma 4.1.2 in Ω. Letting K′ and Φ be as in the lemma,

we obtain J ′ ⊂ K′ with #(J ′) ≤ 2, such that

mod∂0Ω(Γ(E
′, F ′; Ω \ J ′)) = modK′(Γ(E ′, F ′; Ĉ \ J ′)) ≤ Φ(∆(E ′, F ′)) ≤ Φ(H(δ/24)).

Since f : X∂0X → Ω∂0Ω is a homeomorphism, we can define J as the set of connected

components of J := π−1
∂0X

(f−1(π∂0Ω(J
′∩Ω))). Notice #(J ) ≤ 2. Since X is 2-transboundary

Loewner, say with decreasing function Ψ, we can say

mod∂0X(Γ(E,F ;X \ J)) ≥ Ψ(∆(E,F )) ≥ Ψ(2diam(X)/δ).

Now use Lemma 3.1.3 to say

mod∂0X(Γ(E,F ;X \ J)) ≤ Q mod ∂0Ω(Γ(E
′, F ′; Ω \ J ′)),

and thus, for all sufficiently large H,

0 < Ψ

(
2diam(X)

δ

)
≤ QΦ

(
H

δ

24

)
.

The above inequality must fail for sufficiently large H because limt→∞Φ(t) = 0; hence, we
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have a contradiction and f must be weakly quasisymmetric. In fact, since the constant from

Proposition 4.1.2 and the function Φ are entirely independent of X, Ω, and f , we can say H

depends only on Q, Ψ, and diam(X).

Notice any subset of Ĉ is doubling. Since X is doubling, we can apply Lemma 2.1.14. We

have that f must be η-quasisymmetric where η depends on H and the doubling constant.

We will now use Ikonen6 to obtain a quasiconformal map through local reciprocality. We

will also need to assume LLC-1 to extend the map to the quotient spaces.

Theorem 4.3.2. Suppose (X, d) is a metric space with H2 locally finite. Let X be compact

and ∂0X countable. Suppose X is (metric) doubling, LLC-1, homeomorphic to a domain in

Ĉ, and locally reciprocal. If X is 2-transboundary Loewner with decreasing function Ψ, then

X is η-quasisymmetric to a circle domain in Ĉ, where η depends only on Ψ, diam(X), and

the doubling constant.

Proof. Use the fact that X is locally reciprocal and Theorem 4.2.4 to say that X is π/2-

quasiconformal to a Riemannian surface. Koebe (42, Theorem 11C) proved that any Rie-

mannian surface homeomorphic to a domain in Ĉ is conformal to a domain in Ĉ. Since X is

LLC-1 and X is compact, by Lemma 4.2.7, this domain must have countably many boundary

components. Thus we use Theorem 1.2.5 to say it is conformal to a circle domain. Thus we

obtain a (geometrically) π/2-quasiconformal map f : X → Ω where Ω ⊂ Ĉ is a countably

connected circle domain. Moreover, by use of Lemma 4.2.7, we can say f extends to be a

homeomorphism f : X∂0X → Ω∂0Ω. By Lemma 4.3.1, we have that f is η-quasisymmetric

with η depending only on Ψ, diam(X), and the doubling constant.

Uniformization results for metric surfaces with finitely many boundary components given

by Rajala-Rasimus28 and Merenkov-Wildrick2 have η depend on the number of boundary

components; it’s worth pointing out that this result has no such dependency. However,

there is a hidden dependency on the relative distance between boundary components, which

is revealed in the following necessary conditions for a metric space to be 2-transboundary

Loewner.
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Corollary 4.3.3. Suppose (X, d) is a metric space with H2 locally finite. Let X be compact

and ∂0X countable. Suppose X is metric doubling, LLC-1, homeomorphic to a domain in Ĉ,

and locally reciprocal. If X is 2-transboundary Loewner, then X is N-transboundary Loewner

for all N and ∂0X consists of uniformly relatively separated uniform quasicircles or points.

Proof. By Theorem 4.3.2, we have a quasisymmetric and geometrically quasiconformal map

to a circle domain in Ĉ. This will imply that ∂0X consists of uniform quasicircles or points.

Moreover, by Proposition 3.4.2, we have that the circle domain is 2-transboundary Loewner.

Use Example 3.4.7 to say the circle domain is N -transboundary Loewner for all N and that

its bounding circles are uniformly relatively separated. Use Proposition 3.4.2 and Corollary

2.1.10 to deduce X is N -transboundary Loewner for all N and ∂0X is uniformly relatively

separated.

Thus, in this context, 2-transboundary Loewner is equivalent to being N -transboundary

Loewner for all N . So if ∂0X is finite, we have X is 2-transboundary Loewner if and only

if it is Loewner, although the function making X Loewner will depend on the number of

boundary components. This also reduces greatly in the case of domains in the sphere, so

that we can say the following.

Corollary 4.3.4. Let Ω ⊂ Ĉ be a countably connected domain. Then Ω is 2-transboundary

Loewner if and only if its complementary components are uniformly relatively separated uni-

form quasidisks or points.

Proof. Every domain in Ĉ will have H2 locally finite, Ω compact, be metric doubling, and

locally reciprocal. Also, looking at the discussion following Lemma 4.2.7, we can always

extend homeomorphisms between spherical domains to a homeomorphism between the quo-

tient spaces, so we don’t need LLC-1. If Ω is 2-transboundary Loewner, by Corollary 4.3.3,

we have that the complementary components are uniformly relatively separated uniform

quasidisks or points. The converse is given by Proposition 3.4.4.

Merenkov and Wildrick2 showed that the boundary components of a metric space being

uniformly relatively separated uniform quasicircles is insufficient to conclude quasisymmetric
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equivalence to a circle domain (see Example 3.2.3); despite the fact, which Bonk1 showed,

that it is sufficient for domains in Ĉ. However, the counterexample they gave fails to be

transboundary Loewner, and hence it fails to be 2-transboundary Loewner. Thus, the above

result shows that the 2-transboundary Loewner property is, in some sense, an appropriate

perspective for generalizing Bonk’s sufficient condition to metric spaces.

Corollary 4.3.5. Suppose (X, d) is a metric space homeomorphic to a domain in Ĉ with H2

locally finite and ∂0X countable. Suppose X is locally reciprocal. Then X is quasisymmetric

to a circle domain with uniformly relatively separated bounding circles if and only if

• X is compact,

• X is (metric) doubling,

• X is LLC-1, and

• X is 2-transboundary Loewner.

Proof. Use Theorem 4.3.2 and Corollary 4.3.3 to conclude that any X satisfying the assump-

tions is quasisymmetric to a circle domain with uniformly relatively separated boundary. For

the other direction, notice that uniformly relatively separated circle domains in Ĉ have all of

the properties listed (see Example 3.4.7). Use Lemma 4.2.6 to say the quasisymmetry is also

geometrically quasiconformal. All of the listed properties are invariant under maps which are

quasisymmetric and geometrically quasiconformal (see Corollary 2.1.5, Proposition 2.1.12,

Proposition 2.1.7, and Proposition 3.4.2).

The statement here simplifies if we additionally assume Ahlfors regularity.

Corollary 4.3.6. Suppose (X, d) is a metric space homeomorphic to a domain in Ĉ with ∂0X

countable. Suppose X is Ahlfors 2-regular. Then X is quasisymmetric to a circle domain

with uniformly relatively separated bounding circles if and only if

• X is compact,

• X is LLC-1, and
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• X is 2-transboundary Loewner.

Proof. Observe that Ahlfors regularity gives H2 locally finite. It also gives metric doubling,

since it gives the existence of a doubling measure on X. Use Theorem 4.2.3 combined with

the fact that X is homeomorphic to a domain to conclude that every point in X has a

neighborhood which is reciprocal. Then apply Corollary 4.3.5 to reach the conclusion.

4.4 Examples and applications

In this section, we establish a class of examples, which we show are 2-transboundary Loewner,

that hitherto were not known to be quasisymmetric to circle domains.

For each n ∈ N , let

Dn = {[i2−n, (i+ 1)2−n]× [j2−n, (j + 1)2−n] : i, j ∈ N, 0 ≤ i, j ≤ 2n − 1};

that is, the collection of all dyadic squares of generation n. Let D = ∪n∈NDn. For Q ∈ D,

let c(Q) denote the center of Q. Let L = (ℓn)n∈N be a sequence of real numbers satisfying

0 ≤ ℓn ≤ 2−n−1. For each n ∈ N and Q ∈ Dn, let

CQ(L) =

(
{0} ×

[
− ℓn

2
,
ℓn
2

]
∪
[
− ℓn

2
,
ℓn
2

]
× {0}

)
+ c(Q),

and

Cn(L) = {CQ(L) | Q ∈ Dn}.

Thus Cn(L) is a collection of 4n disjoint “plus” signs with width and height ℓn, centered

at the center of dyadic squares of generation n. In fact, ∆(CQ(L), CQ′(L)) ≥ 1/2 for all

Q,Q′ ∈ D. Now, for each k ∈ N, define the metric space

Tk(L) = (0, 1)2 \ (∪k
n=0 ∪Q∈Dn CQ(L)),

equipped Tk(L) with its path metric. Notice that ∂0Tk(L) consists of uniformly relatively
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Figure 4.2: T3

(
1
2
, 1
4
, 1
8

)

separated uniform quasicircles. There is a natural projection map πk : Tk(L) → [0, 1]2

satisfying πk(x) = x for all x ∈ Tk(L), and defined on ∂Tk(L) so that the projection is

continuous. Notice that πk|Tk(L) is conformal, so the transboundary modulus of any family

of curves with the path metric will be the same as with the Euclidean metric (Proposition

3.1.3). Also observe that πk is 1-Lipschitz. We wish to show that Tk is 2-transboundary

Loewner. We proceed with this goal in mind.

Transboundary Modulus of Dyadic Squares in Tk

Let Kk = ∪k
n=0Cn(L). Let AL = {0} × [0, 1], AR = {1} × [0, 1], AB = [0, 1] × {0}, and

AT = [0, 1]× {1}. Use duality (Proposition 3.1.8) to say

modKk
(Γ(AL, AR;Tk(L))) mod Kk

(Γ(AB, AT ;Tk(L))) = 1.

However, symmetry will mean that they must be equal. That is, reflecting along the diag-

onal maps Tk to itself and sends Γ(AL, AR;Tk(L)) to Γ(AB, AT ;Tk(L)). Since this map is

conformal, we conclude their transboundary modulus must be the same, which implies

modKk
(Γ(AL, AR;Tk(L))) = modKk

(Γ(AB, AT ;Tk(L))) = 1.

Let QL, QR, QB, QT denote the left, right, bottom, and top sides respectively of any

Q ∈ D. Let Q◦ denote the interior of Q. Since Q is symmetric in its interior, we can
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map curves connecting the vertical sides to curves connecting the horizontal sides through

reflection and use duality to say

modKk
(Γ(QL, QR; π

−1
k (Q◦))) = modKk

(Γ(QB, QT ; π
−1
k (Q◦))) = 1.

Chains of Dyadic Squares

We are going to use geometric objects we’re calling chains to give estimates on trans-

boundary modulus. Fix n ∈ N and 2 ≤ j ≤ 4n. An (n, j)-chain is an ordered tuple of

pairwise distinct dyadic squares, (Q1, Q2, ..., Qj), where Qi ∈ Dn for all 1 ≤ i ≤ j, satisfying

Qi and Qi′ intersect at more than one point if and only if |i− i′| ≤ 1. Thus for every square

in the chain there are exactly two other squares which share a side with it, excepting Q1 and

Qj, which share a side with exactly one other square. For any k ∈ N, let

V := π−1
k

(
∪j

i=1 Qj

)
.

Let V0 ⊂ V correspond the side of Q1 opposite Q1 ∩Q2. Let Vj ⊂ V , correspond to the side

of Qj opposite Qj−1 ∩Qj. Notice that there is a homeomorphism mapping ∪j
i=1Qj to [0, 1]2

which sends πk(V0) and πk(Vj) to the left and right sides. Let V+, V− ⊂ V correspond to the

other two sides. We would like to estimate modKk
(Γ(V+, V−;V )).

Constructing a Symmetric Transboundary Mass Distribution for Dyadic Squares

To do so, pick any ϵ > 0, and let Q = [0, 2−n]2. Let P = (ρ; {ρQ′})∧Kk
Γ(QL, QR; π

−1
k (Q◦))

be such that AKk
(P ) ≤ 1+ ϵ

j
. Let r1 : Q

◦ → Q◦ be reflection across the horizontal line going

through c(Q). Define

ρ1 =
1

2
(ρ+ ρ ◦ r1)

on the interior of Q \K and

ρ1,Q′ =
1

2
(ρQ′ + ρr1(Q′))

for Q′ ⊂ Q and CQ′(L) ∈ Kk. Let P1 = (ρ1; {ρ1,Q′}). We claim P1 ∧Kk
Γ(QL, QR; π

−1
k (Q◦)).

Indeed, by conformality of reflection, we have P (r1) := (ρ(r1); {ρr1(Q′)})∧Kk
Γ(QL, QR; π

−1
k (Q◦)),
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and thus for all γ ∈ Γ(QL, QR; π
−1
k (Q◦)),

ℓP1(γ) =
1

2

(∫
γ\K

ρ ds+
∑

CQ′ (L)∩γ ̸=∅

ρQ′

)
+

1

2

(∫
γ\K

ρ(r1) ds+
∑

CQ′ (L)∩γ ̸=∅

ρr1(Q′)

)
≥ 1.

By conformality of reflection, we have AKk
(P (r1)) = AKk

(P ). Thus, using the fact that

1
2
(a+ b)2 ≤ a2 + b2, we have

AKk
(P1) =

1

2

(∫
Q\K

1

2
(ρ+ ρ ◦ r1)2 dH2 +

∑
CQ′ (L)⊂Q

1

2
(ρQ′ + ρr1(Q′))

2

)

≤ 1

2

(∫
Q\K

ρ2 + (ρ ◦ r1)2 dH2 +
∑

CQ′ (L)⊂Q

ρ2Q′ + ρ2r1(Q′)

)

=
1

2
(AKk

(P ) + AKk
(P (r1)))

= AKk
(P ).

Thus, in the interior of Q, we can replace P with P1, which is symmetric across the horizontal

line going through c(Q). A similar argument will show that, in the interior of Q, we can

replace P1 with a distribution P2 which is symmetric across the vertical line going through

c(Q), and thus will be symmetric both horizontally and vertically.

Estimate on the Transboundary Modulus of a Chain

Now we want to construct a transboundary mass distribution, P ′, to estimate mod

Kk
(Γ(V+, V−;V )). For each Qi in the chain, divide it into two closed right triangles, U1

i , U
2
i ,

sharing a hypotenuse along a diagonal of Qi. Ensure that, with the exception of Q1 and Qj,

each triangle shares a side with a neighboring square in the chain. Notice, then, that each

Um
i has exactly one side contained in V+ ∪ V−, and that the union of these sides is V+ ∪ V−.

Let U be the closed right triangle with vertices (0, 0), (0, 2−n), and (2−n, 0). All of these

triangles are congruent to each other; in particular, we can obtain an isometry rmi : Um
i → U

which sends (V+ ∪ V−) ∩ Um
i to the left side of U . Define P ′ in the interior of any triangle

Um
i to be P2 ◦ rmi . On the boundary of Um

i , define ρ′ to be ∞. If CQ′(L) intersects V at

more than one point and is not contained in Qi for some i, define ρ′Q′ = 1.
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To show P ′ ∧Kk
Γ(V+, V−;V ), pick γ ∈ Γ(V+, V−;V ). If γ intersects some CQ′(L) ∈ Kk

intersecting V at more than one point with Q′ ∈ Dm, m < n, then ℓP ′(γ) ≥ ρ′Q′ = 1. Suppose

that γ doesn’t intersect any such boundary components. If γ satisfies its intersection with

the boundary of some Um
i has positive length, then ℓP ′(γ) = ∞ ≥ 1. Suppose then, that all

the length of γ is to be found in the interiors of the triangles Um
i . Consider its image in U

via rmi ; that is, let

γ′ =

j⋃
i=1

r1i (γ ∩ U1
i ) ∪

j⋃
i=1

r2i (γ ∩ U2
i ).

γ′ \K will consist of countably many curves connecting the boundary of U to itself, to K,

or connecting K to itself. For each of the subcurves, there is a suitable reflection so that

the curve obtained from applying all these reflections connects the left and right sides of

Q0 := [0, 2−n]2. Indeed, each such subcurve, γ′
0, of γ

′ will have an associated γ0, subcurve of

γ, which is contained in some Um
i . Since rmi is an isometry, we obtain, for all t,

d(γ0(t), V+ ∪ V−) = d(γ′
0(t), Q

L
0 ∪QR

0 ),

where γ′
0(t) = rmi (γ0(t)). Moreover, if necessary, we can reflect γ′

0 over x = 2−n−1 to obtain

γ′′
0 satisfying

d(γ0(t), V−) = d(γ′′
0 (t), Q

L
0 )

and

d(γ0(t), V+) = d(γ′′
0 (t), Q

R
0 ),

for all t. Additionally consider γ′
1, another such subcurve of γ′ with corresponding subcurve

γ1 of γ. Take γ : J → VKk
to not be constant on any non-trivial interval, where J is an

interval. We obtain disjoint subintervals J0, J1 ⊂ J with γ0 : J0 → VKk
and γ1 : J1 → VKk

.

Suppose J0 ∪ J1 is connected, and that inf(J0) ≤ inf(J1). If γ′
0 ends in the boundary of

U (γ0(sup(J0)) ∈ ∂U), then γ0 and γ1 must share an endpoint, and this endpoint has two

corresponding points in γ′′
0 and γ′′

1 which must fall on the same vertical line since they share

the same distance to QL
0 and QR

0 . If γ
′′
0 and γ′′

1 don’t share an endpoint, then reflect γ′′
1 over
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Figure 4.3: Transboundary paths connecting V+ and V− in a chain, their reflection into U
(middle), and the adjustment to a horizontal path (right)

y = 2−n−1 and call this curve γ′′′
1 . γ

′′′
1 and γ′′

0 must share an endpoint now, as the symmetry of

the Um
i means that any point falling in two of the triangles, when mapped into two points in

U , must have some vertical or horizontal reflection making those two points the same. Now

if γ′
0 ends in K, then that means γ0 and γ1 have an endpoint in the same CQ(L). Once again,

if γ′′
0 and γ′′

1 don’t have corresponding endpoints in the corresponding boundary component,

then reflect γ′′
1 vertically to obtain γ′′′

1 . γ′′
0 will end at the same boundary component γ′′′

1

begins in, because of the symmetry. In this way we obtain a transboundary curve γ′′′.

Notice also that d(γ′′′(t), QL
0 ) = d(γ(t), V−) and d(γ′′′(t), QR

0 ) = d(γ(t), V+) for all t. Thus

γ′′′ connects the left and right sides of Q0. Since P2 in invariant under horizontal and vertical

reflections, and since each rmi is conformal we can say ℓP ′(γ) = ℓP2(γ
′′′) ≥ 1.

If we use this transboundary mass distribution to estimate the transboundary modulus.

Notice that the boundary of Um
i has 0 area, so the integral of ρ′ = ∞ over that set is 0.

Recall also that if CQ′(L) intersected V at one point, and Q′ isn’t contained in any Qi, then

we defined ρ′Q′ = 1; however, since ℓi′ ≤ 2−i′−1 for all i′, we can say each Qi intersects at most

one such C ′
Q(L). Since P2 is symmetric vertically and horizontally, we can say its integral

over U is exactly half its integral over Q0. Thus,

modKk
(Γ(V+, V−;V )) ≤ AKk

(P ′)

=

j∑
i=1

∫
(Q◦

i )Kk

ρ2P ′dµKk
+

∑
CQ′ (L)⊈V

ρ′Q′
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≤
j∑

i=1

(1 + ϵ/j) +
∑

CQ′ (L)⊈V

1

= (j + ϵ) + j = 2j + ϵ

Since this holds for all ϵ, we can say

modKk
(Γ(V+, V−;V )) ≤ 2j.

Claim: Tk(L) is transboundary Loewner.

Now we will show that Tk(L) is transboundary Loewner. Pick any disjoint, non-degenerate

continua E,F ⊂ Tk(L) with diam(E) ≤ diam(F ). Fix 2−100diam(E) > ϵ > 0 Let γ be a

curve connecting E and F in Tk(L) with ℓ(γ) ≤ d(E,F ) + ϵ; such a path exists because Tk

is equipped with the path metric. Without loss of generality, suppose that γ intersects E

and F exactly once, and that e ∈ γ ∩ E and f ∈ γ ∩ F with d(e, f) = d(E,F ).

Constructing the Chain Near E and F

For the moment, consider E ⊂ πk(Tk) recalling that πk is 1-Lipschitz. Notice that

E ∩ B[e, diam(E)/2] must connect e to Tk \ B(e, diam(E)/2); say e′ ∈ ∂B(e, diam(E)/2) is

in the same connected component of E ∩B[e, diam(E)/2] as e. Let n be the largest integer

satisfying 2−n ≥ diam(E)/8; this will imply 2−n < diam(E)/4. Notice that

max(|π1(e)− π1(e
′)|, |π2(e)− π2(e

′)|) ≥ diam(E)

2
√
2

>
diam(E)

4
>

1

2n
.

Hence, there is some dyadic interval J := [j′2−n, (j′ + 1)2−n] satisfying E ∩B[e, diam(E)/2]

connects the left and right sides of π−1
1 (J) or the top and bottom sides of π−1

2 (J). Thus

there is a horizontal or vertical (n, jE)-chain, whose interior doesn’t contain e nor e′, with

E ∩ B[e, diam(E)/2] connecting its longer sides, and jE ≤ 8. Call the union of the squares

in the chain V E. A similar analysis on B[f, diam(E)/2] gives the existence of a vertical or

horizontal (n, jF )-chain with F ∩ B[f, diam(E)/2] connecting its longer sides, and jF ≤ 8.

Call the the region the chain spans V F .
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Figure 4.4: A chain connecting continua (in red) around a path connecting them (in blue)

Case 1: E and F are Relatively Close

Suppose ∆(E,F ) ≤ 2. If V E∩V F ̸= ∅, then it contains a chain, V , satisfying Γ(V0, V1;V ) <

Γ(E,F ;Tk(L)). We use the overflowing property and duality to say

modKk
(Γ(E,F ;Tk(L))) ≥ modKk

(Γ(V0, V1;V )) =
1

modKk
(Γ(V+, V−;V ))

≥ 1

32
.

If V E ∩ V F = ∅, then we can form a chain V containing both of them. Indeed, using at

most 14 squares (7 perpendicular to V E and 7 parallel to V E), we can extend V E past e to

intersect γ. Similarly, we can extend V F to intersect γ by adding at most 14 squares. If V E

and V F still don’t intersect, then we can use the fact that

ℓ(γ) ≤ d(E,F ) + ϵ ≤ 2diam(E) + ϵ,

we can extend V E to reach V F using at most 32 squares in Dn. Thus we build a chain, V ,

containing V E and V F , that has at most 76 links. Thus we can argue, much like before,

modKk
(Γ(E,F ;Tk(L))) ≥ modKk

(Γ(V0, V1;V )) =
1

modKk
(Γ(V+, V−;V ))

≥ 1

152
.
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Case 2: E and F are Relatively Distant

Now suppose ∆(E,F ) > 2. As above, we extend V E and V F to intersect γ, and we do so

adding at most 14 squares each. Like above, we want a chain, V , containing V E and V F , as

any such chain will allow us to use the overflowing property to estimate the transboundary

modulus. We will do so by looking at all of the squares in Dn which intersect γ. Any

subcurve, γ′, of γ with 2−n−1 ≤ ℓ(g′) < 2−n touches at most 4 squares in Dn. We can divide

γ into at most 2n+1ℓ(γ) such subcurves which are disjoint. Hence, the number of dyadic

squares γ touches is at most

2n+3(d(E,F ) + ϵ) ≤ 64

diam(E)
(d(E,F ) + ϵ) ≤ 64∆(E,F ) + 2−94.

Every connected collection of squares in Dn will contain a chain. Combining this with V E

and V F will yield a chain, V , with at most 64∆(E,F ) + 45 links. Moreover, since E and F

connect V+ and V−, we can say Γ(V0, V1;V ) < Γ(E,F ;Tk(L)). Use overflowing, duality, and

the estimate on chains to say

mod Kk
(Γ(E,F ;Tk(L))) ≥ mod Kk

(Γ(V0, V1;V )) =
1

modKk
(Γ(V+, V−;V ))

≥ 1

128∆(E,F ) + 90
.

Thus, Tk is transboundary Loewner with function Ψ(t) = min(1/152, (128t+ 90)−1).

Claim: Tk(L) is 1-transboundary Loewner.

We would like to upgrade this statement to 1-transboundary Loewner. If one chooses

the bounding square as the boundary component to avoid, it will likely not intersect the

chain we constructed above. If it does, the transboundary modulus of curves in the chain

avoiding it doesn’t change, so the same estimate as above will work. Pick any CQ(L) ∈ Kk.

Let E,F be as above. If the chain we constructed, V , avoids CQ(L), then we can use the

same estimate. Suppose CQ(L) intersects V at more than one point.

Case 1: the side length of Q is at most 2−n.

If the side length of Q is at most 2−n, then CQ(L) is contained in one of the links of

V , say Qi. Notice each square in V can be subdivided into 16 squares from Dn+2. For Qi,
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either the collection of these subsquares which touch V+ or the collection of these subsquares

which touch V− won’t touch CQ(L), without loss of generality suppose it is V+. Replace V

with all of the squares in Dn+2 contained in V , which touch V+. This will still be a chain

and it will have at most 7 times the links that V had. Hence, the transboundary modulus

of Γ(E,F ;Tk \ CQ(L)) will be bounded below by Ψ′ where Ψ′ = Ψ/7.

Case 2: the side length of Q is greater than 2−n.

Consider the collection of squares in Dn touching γ as well as those in V E and V F .

Recall that we built V from this collection. Since the side length of Q is more than 2−n,

every square in Dn which intersects CQ(L) at more than a point has a side contained in it,

with at most 8 exceptions: the dyadic squares containing the tips of CQ(L). We will call

those squares the exceptional squares. If there are no exceptional squares in V E or V F , then

both of these will contain a long side not touching CQ(L) at more than a point. Divide each

square into 4 subsquares in Dn+1 and replace the square with the two subsquares touching

the side not intersecting CQ(L). Observe that if the short sides intersect CQ(L), then the

transboundary modulus of curves in the chain avoiding CQ(L) doesn’t change. We note that

V E and V F can always be chosen to avoid given exceptional squares. For non-exceptional

squares intersecting γ, divide them into 4 subsquares and throw out all the ones touching

CQ(L). This will still be connected since γ doesn’t touch CQ(L). For exceptional squares

intersecting γ, look at the dyadic squares in Dn which are opposite CQ(L) but adjacent to

the exceptional square; such a square exists since ℓi′ ≤ 2−i′−1 for all i′. Subdivide that into

4 squares, and take the two squares neighboring the exceptional square. Add two squares

on either side to connect them to the chain. This collection of squares will contain a chain,

V , with Γ(E,F ;Tk \ CQ(L)) < Γ(V0, V1;V ). The number of links will, at most, be 16 more

than triple the number of squares we had. Thus for Ψ′ = 1/(3/Ψ + 32) will bound the

transboundary modulus from below. We get that Tk is 1-transboundary Loewner.

Claim: Tk(L) is 2-transboundary Loewner.

Let us now show that Tk is, in fact, 2-transboundary Loewner. If one of the boundary

components chosen to avoid is the bounding square, then the transboundary modulus of

curves in the chain doesn’t change, and one can use the chain obtained from 1-transboundary
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Loewner to avoid the second boundary component chosen. Let E,F be as above and pick

any CQ(L), CQ′(L) ∈ Kk. Consider the collection of squares touching γ as well as the squares

in V E and V F . If either CQ(L) or CQ′(L) fail to intersect this collection, then we can use

the same estimate we got from 1-transboundary Loewner, so suppose both of them intersect

it at more than one point.

Case 1: the side length of Q or Q’ is at most 2−n.

If both Q and Q′ have side lengths less than or equal to 2−n, we can say they are

contained in squares in our collection. If they are contained in the same square, we can

remove that square from our chain and add at most 4 more to reconnect the chain avoiding

that square. If they are in different squares, we can do that twice and add at most 8 squares

to our collection. Thus, we can bound modKk
(Γ(E,F ;Tk \ (CQ(L) ∪ CQ′(L)))) from below

by Ψ′′ = 1/(1/Ψ+ 16).

If only one of them has side length at most 2−n, then (much like we did with 1-

transboundary Loewner), chop each square into 16 subsquares from Dn+2; take the ones

touching the side of the chain which avoid the small boundary component. Then our col-

lection of squares is increased by at most 7-fold and only intersects at most one boundary

component that ought to be avoided: use the construction from 1-transboundary Loewner

to avoid that component. We conclude a lower bound with Ψ′′ = 1/(7/Ψ+ 16).

Case 2: the side length of both Q and Q’ are greater than 2−n.

The final case to consider is when both Q and Q′ have side lengths greater than 2−n. This

argument is very similar to the 1-transboundary Loewner case applied twice. By cutting the

non-exceptional squares into fourths, one can avoid one of the boundary components, and

by cutting into fourths again, we can avoid the other one. This works because γ avoids both

CQ(L) and CQ′(L). This will increase the number of squares by at most a factor of 9. Also,

this time, we can have up to 16 exceptional squares. We deal with them the same by moving

to an adjacent square and adding two more; though this time we remark that it is important

that the interior of the square adjacent to a square exceptional for CQ(L) won’t intersect

CQ′(L), so that the smaller squares still avoid both. This is only true because ℓi′ ≤ 2−i′−1 for

all i′; in particular, because the boundary components are uniformly relatively separated. In
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conclusion, we triple and add 16, then triple again and add 16, and conclude a lower bound

with Ψ′′ = 1/(9/Ψ+128). We conclude that Tk is 2-transboundary Loewner with Ψ′′ entirely

independent of k. The spaces Tk are uniformly 2-transboundary Loewner.

Apply the main result to examples built from Tk(L).

We claim that diam(Tk) ≤ 4 for all k. Indeed, any point in Tk can be connected to the

outer square via a piecewise linear path, consisting of line segments parallel to the sides

of the square, with π1 injective outside the vertical segments and π2 injective outside the

horizontal segments. For a point, p, with πk(p) = (x, y) such a path can be constructed to

have length less than or equal to min(x, 1 − x) + min(y, 1 − y) ≤ 1. Since any two points

on the outer square can be connected by a curve of length 2, we get that for any p, q ∈ Tk,

d(p, q) ≤ 4.

Let k ≥ k′. Define πk,k′ : Tk(L) → Tk′(L) be defined as πk,k′(z) = z for z ∈ Tk(L), and

defined on ∂Tk to be continuous. This is a natural projection which will allow us to define

an inverse limit of

(
Tk(L), πk,k′

)
. That is

T (L) := {(p0, p1, ...) | pk ∈ Tk(L), pk+1 = πk+1,k(pk)}.

Since πk,k′ is 1-Lipschitz, the sequence (dTk
(pk, qk)) is monotonic. Since it is bounded above

by 4, we can say that it converges; hence, we can define a metric on T (L) as the limit of the

metrics of Tk(L).

Example 4.4.1. T (L) is quasisymmetric to a round carpet in Ĉ provided that ℓn ≤ 2−n−1.

Proof. We use Theorem 4.3.2 to say that Tk is η-quasisymmetric to a circle domain in

Ĉ. However, for all k, Tk has the same doubling constant and upper bound on diameter.

Also, each Tk is 2-transboundary Loewner with the same function Ψ. Therefore, the Tk are

all quasisymmetric to circle domains with the same η. Keith and Laakso proved (Lemma

2.4.743) that with suitable normalizations, these uniformly quasisymmetric maps will have

a subsequence converge to a quasisymmetry f : T (L) → C where C ⊂ Ĉ. The boundary

components of C will all be circles. Moreover, these circles will bound disjoint regions,
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they will be dense in Ĉ, and their diameters will go to 0. By Whyburn’s Theorem44, C is

homeomorphic to the Sierpiński carpet. Thus it is a round carpet.

We note here that the previous example can be shown through the following alternative

method. First one can use a result of Keith-Laakso43 to say that the conformal dimension

of T (L) is less than 2. Then one can use a result of Haissinsky45 to show that it can be

quasisymmetrically embedded in Ĉ. Then one can use a result of Bonk1 (Theorem 1.5.3) to

say it is quasisymmetric to a round carpet. However, the following example is inaccessible

by this method.

Define the set

T (L) =
∞⋂
k=0

(
(2−kTk(L)) ∪ (0, 2−k−1)2 ∪ ((0, 1)2 \ (0, 2−k)2)

)
.

In other words, for each k, scale Tk(L) down to a square of side length 2−k, and place it in

the lowest, leftmost dyadic square. Then fill in the open bottom left quarter of that square,

and repeat for k + 1. Equip T (L) with its path metric, and notice that it is homeomorphic

to a domain in the plane.
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Example 4.4.2. T (L) is 2-transboundary Loewner as long as ℓn ≤ 2−n−1.

Proof. Pick any disjoint continua E,F ⊂ T (L) and CQ(L), CQ′(L). In the same way as Tk,

we can construct a chain connecting them which avoids CQ(L) and CQ′(L) with number of

links comparable to the relative distance. Symmetry and duality give that the transboundary

modulus of curves connecting opposite sides of a dyadic square is 1, and thus the chain will

have transboundary modulus of curves connecting opposite sides bounded above by twice

the number of links. In the same way as the Tk, we use the overflowing property to get a

lower bound on the modulus.

This means that T (L) is quasisymmetric to a circle domain, by Corollary 4.3.6. If∑
n(2

nℓn)
2 = ∞, then this is an example where Theorem 1.5.6 doesn’t apply. In fact,

one can use Theorem 1.2.5 to say that it is conformal to a circle domain. Lemma 4.3.1 will

imply that this conformal map is quasisymmetric.
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uncountably connected, 5

uniformly relatively separated, 9

upper Ahlfors 2-regular, 40

upper gradient, 46

weak metric doubling measure, 13

weak quasisymmetry, 28

weak upper gradient, 46

weight (transboundary mass distribution),

51
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