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CHAPTER 1: INTRODUCTION

The information in a database represents or

codifies the current knowledge of its users. Since

knowledge may be incomplete the database must provide

a means of representing values collectively not known

by the user. These unknown values vary in type from

data that is not currently available but will be in

the near future, such as monthly sales figures, to

data that is missing and ca.r\ not be provided, such as

a telephone number for a client with an unlisted

number. In relational databases the null value,

commonly represented by the symbol i?, provides the

means for users to store these kind of values. The

null value is generally categorised as a value which

is unknown, incomplete, or inconsistent.

The inclusion of null values in a relational

database leads to the problem of processing those

values correctly. Queries made by the user must

provide accurate, hopefully not misleading, if

incomplete, results. In a relational database this

means defining relational operators so that semantic

correctness is preserved.

Unfortunately, most research on the subject of

null values has attempted to solve or lessen the

problem of correctness by severely limiting the types
1



of null values allowed in the database. For example,

Imielinski and Lipski (ImiLip84) define a null value

as v at present unknown (but the attribute applicable)'

Vassiliou (VasSO) limits the definition of nulls to

those values which are 'missing' on 'nothing'.

Buckles and Petry (BucPet82) note that researchers

believe while data could be missing (incomplete), the

existing data was exact. Boridga (BorS5) also

mentions limitations placed on null value types. He

states, "The different ways in which knowledge is

allowed to be incomplete is usually very limited:

'value exists but is unknown', 'no value possible', or

'total lack of knowledge'." By restricting the types

of null values allowed knowledge that csn be derived

from incomplete data is very limited. The null values

essentially become placeholders in the database,

contributing no additional useful information of their

own.

One important type of incomplete data left out of

null values is data which can be estimated. Borgida

(Bor85) calls those values which can be estimated

'informative nulls' and notes their usefulness by

stating, "These values (informative nulls) are known

not to be accurate reflections of reality (they may be

out of date or just projections) but are certainly not

equivalent to a total lack of knowledge. " For example



the projected employee turnover of a company estimated

by an experienced personnel manager is far more

informative than no value at all. Furthermore, if the

manager is extremely accurate the estimate can become

as valuable to the user as the unknown data it

represents.

Unfortunately Borgida does not attempt to solve

the problem of processing estimates in a relational

database. He only stores the estimates in the

database and notes their existence to the user. The

problem addressed in this work is to increase the

information provided to users by broadening the

acceptable null values in the database to include

estimates and to create ways of maintaining and

querying databases containing these null values such

that the results are logically consistent with

reality. Chapter £ addresses the difficulty of

processing estimates and suggests a solution to a

constrained problem of processing estimated data by

using fuzzy logic. In Chapter 3 the method of

including estimates in the database is presented and

the database representation of estimates is defined.

Chapter 4 outlines the querying of databases

containing estimates using fuzzy set logic. Chapter 5

discusses the implementation of this solution to

processing estimated data.



CHAPTER £: EXISTING APPROACHES

Several different approaches have been taken to

solve the problem of processing null values in

relational databases. These approaches include

predicate (first-order) logic, relational algebras,

knowledge representation, and fuzzy logic.

PREDICATE LOGIC:

In predicate logic expressions correspond to

mathematical statements. N-valued logics are used in

predicate logic to allow the expression of nulls.

Biskup <BisS3) introduces a three-valued logic where

the third value is provided by extending the relational

table with a two—valued tag field. The tag field is

called the "Status" of the value and may be either

definite or maybe, with the maybe used to represent

null values. Vassiliou (Vas79) also used n-valued

logic (modal logic) to represent nulls. His

foui—valued logic system allows nulls to have the

values of either "missing" or "nothing".

RELATIONAL ALGEBRAS:

Relational algebras use range domains, sets, and

logical quantifiers to represent nulls. Codd's

(Cod75) approach was to extend predicate (first-order)

logic to three-valued logic, therefore, extending the
4



operators of the relational algebra to include missing

values. Grant (Gra77) and others have criticised

Coda's approach on semantic grounds and Grant developed

a method of representing partial values as ranges or

sets of possible values. In Grant's approach, null

values may be properly replaced with an actual range

which is defined for the given domain by integrity

constraints. He introduces three notions of

operations which might be applied to his representation

— set theoretic, true, and maybe versions. ^or

example, his true intersection operation omits all

non-single entries while the maybe intersection selects

all entries for which the ranges overlap even slightly.

Figure £.1 below gives a relation CLIENT with value

ranges allowed in both the age and premium attributes.

CLIENT

# AGE PREMIUM

£50
null

(105, 125)
140

Figure £.1: Sample Relation - CLIENT

If the Query is: Select Client where AGE > 35 and

Premium > 100 the selections shown in Figure £. £ or, the

following page would occur for true and maybe operations.

5
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TRUE SELECTION

310 SO 140

MAYBE SELECTION

113 (40,45) null
740 55 (105, 125)
310 60 140

i-igure £.2: True and Maybe Selection Operations

KNOWLEDGE REPRESENTATION:

Knowledge representation evolves from the a.re& of

artificial intelligence. The emphasis in this approach

is to use human reasoning and knowledge bases with

proper constraints to maintain semantics. Lipski

(Lip79) defines the semantics of a query both

internally and externally. The internal semantics is

determined based on the information in the database.

The external semantics is based on the real world

modeled by the database and is not limited by

incomplete information in the database. For example

if the query is (Height < 5' 5") the external

interpretation is the set of persons who are in

reality of height less than 5' 5", whereas the internal

interpretation consists of persons known (in the

system) to be under 5' 5". Alternatively, the internal

interpretation may be altered to include unknown values

by responding with all persons possibly under 5' 5".

The internal interpretation can ONLY approximate the

external property (Height < 5' 5").



FUZZY LOGIC:

Fuzzy logic, based on fuzzy set theory, is a more

recently developed approach to processing null values.

In fuzzy logic nulls ar^e represented by their degree

of membership in a fuzzy set. Buckles and Petry

<BucPetS£> present a structure in which the non-fuzzy

database is a special case of the fuzzy database.

Components of tuples can be multivalued and a

similarity relation is required for each domain set of

the database. ft sample similarity relation for playing

instruments would appear as shown in figure £.3 below.

piano guitar banjo accordion

piano 1

guitar 1 . &
banjo .& 1

accord ion .7

. 7

1

Figure £.3: Similarity Relation

The relation of the musicians and the instruments they

might play is given in figure £.4 below.

Name Instrument

Jim piano, accordion
Sally banjo, guitar
Alan piano, accord i an

Figure £.4: Result of Similarity
Relat ion

Note: The attribute 'Instrument' can have multiple
7



values. Zadeh (Zad83) uses fuzzy logic to include

both possibi 1 ist ic and probabilistic theory in a

single system. He applies the use of fuzzy logic

specifically to solving the problem of inference in

expert systems. The use of fuzzy logic reduces the

problem of inference to that of solving a nonlinear

program and leads to conclusions whose uncertainty is

a cumulation of the uncertainties in the premises

from which the conclusions are derived. The result is

that the conclusions are fuzzy sets which are

characterized by their possibility distributions. For

example, the fuzzy set THIN is shown in figure £.5

below.

DEGREE OF MEMBERSHIPWEIGHT

110
125
140
155
180
195
:io

i. oo
. 95
.8
.5
. 45

0. 00

Figure £.5: Fuzzy Set - THIN

The degree of membership given for each weight in the

fuzzy set THIN represents the possibility that a given

weight-X is a member of the fuzzy set THIN. That is,

if X = 1£5 then the possibility that 1E5 lbs. may have

the value THIN is 95rt.

8



LIMITATIONS OF PREDICATE LOGIC AND PROBABILITY THEORY:

When examining these solutions to query processing

of estimates the first three approaches have two main

limitations. They all ane based on or strongly

associated with predicate logic and probability theory.

Predicate logic can be either two-valued, multivalued

or n-vaiued. In two-valued predicate logic a

proposition is either true or false. N-valued

predicate logic allows a proposition to be true or have

an intermediate truth-value which is an element of a

finite or infinite truth-value set. Rescher (Res69)

noted that the first step beyond two-valued logic

into a third valued logic came from J. Lukasiewicz in

19E0. Lukasiewicz introduced the idea of a third,

"intermediate" or "neutral" or "indeterminate" value.

A modern adaption of the example he provided for

multiple valued logic or modality could be written

as fol lows:

I can assume without contradiction that - My
whereabouts at this time next year are at present
unknown. Based on this assumption the
proposition "I shall be in New York at noon on
June 9, 1987", can at the present be neither true
or false. For if it were true now, my future
presence in New York would have to be necessary,
which is contradictory to the assumption. If it
were false now, on the other hand, my future
presence in New York would have to be impossible,
which is also contradictory to the assumption.
Therefore the proposition considered is at the
moment neither true nor false and must possess a
third value, different from ' 0' or falsity and

9



'1' or truth. The third value represents the
possible arid is represented by ' l/£'.

Multi-valued logic continues along this line of

reasoning to provide more than or\e possible value

between the given truth or falsity of a proposition.

The theory of probability is viewed in the

classical sense as reducing all events which cary occur

in a given circumstance to a certain number of equally

possible cases, that is we airs equally undecided about

their existence. The number of those cases that are

favorable to a given event is determined. The ratio

of this number to all possible cases is the

probability. (NidGO) ft common example used to

demonstrate probability is the throwing of a die. The

events which can occur, are the equally possible cases

of the numbers: 1, £, 3, 4, 5, 6. If the given event

is throwing a six, the number of cases favorable to

that event is 1 because only or\e six appears on the

die. The ratio of the number of cases (1) to the total

number of possible cases (6) is 1/6. (i.e., the

probability of throwing a six is 1/6)

Predicate logic and probability theory are

limiting for estimates because they assume all

information is known and provide no mechanism to

handle uncertainty. Zadeh (Zad83) notes this

limitation can result in poor or questionable results.
10



"In the existing expert systems, the fuzziness of

knowledge is ignored because neither predicate logic

nor probability-based methods provide a systematic

basis for dealing with it. As a consequence, fuzzy

facts and rules are generally manipulated as if they

were nonfuzzy, leading to conclusions whose validity

is open to question." For example, if the following

statement is given as a fact: Stan will win the

election (CF = 0.6). The CF (conditional factor) of

0.6 could be either Stan will win by 60* or that the

probability of Stan winning is 60*. Probability

theory allows the certainty factor to be ambiguous.

Bias (Gla83) also states the limitations of

probability theory when he states, "The probabilistic

approach cannot represent uncertainties attached to

systems where some deterministic dynamical

characteristics a^e unknown or deliberately ignored as

well as uncertainties attached to their mathematical

model .

"

COMPARISON OF FUZZY LOGIC AND PREDICATE LOGIC:

The limitations of systems based on predicate

logic and probability theory become more obvious when

compared to the alternative of fuzzy logic. In fuzzy

logic a proposition can have a truth-value over a

range of fuzzy subsets. The relationship of a fuzzy

11



set to an ordinary set can best be shown by recalling

the definition of the characteristic function of a set.

With two-valued predicate logic a set has the form

shown in figure 2. 6 below.

U -> -CO, 1>

Figure 2.6: Predicate Logic Set Function

This set maps the universe U to a set of two elements.

There is a binary choice between being in or out of

the set. (With n-valued predicate logic the set may

be extended to have a third, fourth or nth value.

)

However with fuzzy logic the set function would be

defined with values in a unit interval as shown in

figure 2.7 below.

u -> -co, . .
. , i>

Figure 2.7: Fuzzy Logic Set Function

This function allows an infinite number of possible

choices. By using this function fuzzy quantifiers

(old, frequently, almost 0.8, few) can become

meaningful. For example, the term 'tall' oar, be

defined in the range of human heights. If a person is

of above average height, 6' 2", the degree of membership

of that height in the set would be 0.8. Thus more than

whether that person is 6' 2" or not car, be determined.

The term 'tall' can be defined mathematically. Fuzzy
12



logic also extends the framework of the system to deal

with both probabilistic and possi bi 1 ist i c theory. In

possibil ist ic theory the possibility value of a

variable is determined by the 'degree of easiness'

with which the elements of a given universe of

discourse might be assigned to the variable. (BorKru83)

Pin example of the difference between probability and

possibility theory is best demonstrated by comparing a

probability and possibility distribution. Consider the

statement: Karen sold X units this month. The

probability distribution would interpret X as a random

variable and compute Px(u) (the probability of X o\>er-

the values in U where U = {1,2,3,...} as the

probability of Karen selling u units in an arbitrary

month. The possibility distribution would compute

Posx(u) as the 'degree of ease' with which Karen could

sell u units in art arbitrary month. Figure 2. 8

provides a possible set of distribution results.

u 1 2 3 4 5 & 7

Px(u) 0.1 0.6 0.3
Posx(u) 0. 2 0. 3 0. 7 1 1 0.4 0.1

Figure 2.8: Probability and possibility
Distributions of X.

The probability distribution must sum to a total

probability of 1, whereas the possibility can

13



represent a much wider range of values in the domain.

This difference provides possibility theory with a

flexibility to handle uncertain data not present in

probability theory. Borisov and Krurnberg (BorKru83)

demonstrate the importance of this flexibility when

they state, "In many situations the decision maker has

less information than required to use probability

theory. There are cases in which one can speak in

terms of possibilities but no concept of probability

exists. "

Based on these comparisons of predicate logic and

probability theory to fuzzy logic the obvious solution

to query processing of estimates is provided in fuzzy

reasoning and possibility theory. Zadeh (Zad83)

clearly states the usefulness of fuzzy logic when

processing uncertain data. "Fuzzy logic provides a

natural framework for the management of uncertainty in

expert systems because - in contrast to traditional

logical systems - its main purpose is to provide a

systematic basis for representing and inferring from

imprecise rather than precise knowledge. " Zadeh

(Zad83) goes on to state that fuzzy logic provides

the basis for possibility theory to be included in the

database. As he explains, "... a fuzzy-logic-based

computational framework (can) be employed to deal with

possibilist ic and probabilistic uncertainty within a
14



single conceptual system. In this system, test-scone

semantics — which is the meaning—representat ional

component of fuzzy logic - forms the basis for the

representation of knowledge...".

With fuzzy logic as a means for manipulating

data, estimates cs.r\ now be introduced into the

database and processed in database queries. The next

chapter will outline the representation of estimates

in the database system.



CHAPTER 3: THE MODEL: REPRESENTATION OF ESTIMATED
VALUES

INTRODUCTION:

Before describing in detail the form of

representation of an estimated value some consideration

should be given to the type of values that will be

candidates for estimates in the database. Not all

values in a database car\ be estimated nor would art

estimate be desirable in some cases. For example the

name of an individual would not be a likely value to

estimate because there would be no basis on which to

make an educated guess. Another example of a value

that is not a candidate for estimating and could even

disrupt normal operation of the database is a social

security number (SSN) . The SSN could be estimated

with some accuracy based on date of birth but if the

estimating resulted in two people with the same SSN

major problems could occur especially if the SSN were

being used as a key. For instance transactions meant

for only one of the individuals would affect both of

them since the SSN was the same. The types of values

much more suited for estimating are sales, costs of

production, time to complete a project, etc. These

values have a good basis for being estimated and are

probably not key values that could cause problems by

being duplicates of actual or other estimated data in
16



the database.

Once an attribute value is selected as a candidate

to allow estimates the user must be informed that the

value provided is not actual data but ar estimate.

This can be done by attaching a second value to each

estimate. The second value would reoresent the

accuracy of the estimate. This second value serves two

functions: its presence notifies the user that the

information provided is an estimate and its contents

tells the user of the accuracy of the estimate. This

second value can be termed a 'certainty factor' as it

represents the certainty of the user about the

accuracy of the estimate.

The certainty factor could be represented in many

forms. In fuzzy logic the fuzzy quantifiers (as they

are called) are often given in terms such as most,

many, few, not very many, infrequently, etc. In this

research, however, the choice was made to represent

the certainty factors as percentages. The certainty

factors range between -
/. and 100"/. with 100* being

reserved for known values. The higher the percentage

the more accurate the estimate. For example, if the

sales of company XYZ to other companies were unknown

the estimated sales figure might be represented in the

XYZ Sales relation as shown in figure 3. 1 on the

following page.
17



XYZ SALES

SOLD TO LOCATION SOLES

Ace
Bums
ccc
Dow

Toledo
Dallas
Miami
New York

$£.', 000
$30, 000
($5, 000/. S)

(4700, 000/. 95)

Figure 3.1: XYZ SALES - Estimated Values

The sales values for CCC and Dow ar^s both estimates

with certainty factors of 8054 and 95'/. respectively.

These estimates with their corresponding

certainty factors could be generated by using past

history, forecasting, statistical regression analysis,

etc. However, these types of estimates car\ be no more

accurate than past information ar>d can not account for

the constantly changing environment of a company and

the markets around it. Therefore, the model provides

a means for know led gable individuals to enter their

"educated guesses" into the database as estimates.

These estimates could easily be updated to match

internal changes in the company and market changes

that affect the company directly.

Each estimate entered by an individual would

contain both the value of the estimate and the

certainty factor mentioned above. To provide a common

ground for users when estimating values a set of terms

has been selected to represent the accuracy or
18



certainty factor. These terms are provided in figure

3. £ below:

"EXTREMELY LIKELY" (A5)
"VERY LIKELY" (A4)
"HIGHLY LIKELY" (A3)
"LIKELY" <A£)
"QUESTIONABLE" (Al)

Figure 3. £: Certainty Factor Terms

The terms can be replaced by the acronyms at the right

with "EXTREMELY LIKELY" being replaced by A5 ar,d so on

for simplicity. Therefore the individual could enter

art estimate as: 5,000 - "HIGHLY LIKELY" or

5,000 - A3. These terms allow different estimators to

enter values in a consistent marker but are not in the

form of percentages that was presented earlier in this

chapter. Transforming terms into percentages is done

by using the mapping of a fuzzy set. The fuzzy set -

ACCURACY - with the terms and their degree of

memberships is shown in figure 3.3 below.

ACCURACY

DEGREE OF
TERMS MEMBERSHIP

"EXTREMELY LIKELY" A5 .95
"VERY LIKELY" AA . 9
"HIGHLY LIKELY" A3 .8
"LIKELY" A£ .65
"QUESTIONABLE" Al .5

Figure 3.3: Fuzzy Set - ACCURACY

19



The degree of membership in the set ACCURACY becomes

the percentage used in the database as the accuracy of

the estimate. So that if the estimate is given as

(5,000 - A3) the estimate would be placed in the

database as (5, 000/. 8). The degree of membership

values would initially be selected by the best means

available to the company (i.e. a consensus of users)

but could be adjusted later when estimates are

compared to actual values.

THE MODEL:

Each estimate must be stored in the database.

The estimate must be stored with the information about

what value it is estimating, what the estimate is and

who is doing the estimating. A formal model designed

to include the needed information about &r\ estimate is

provided in figure 3.4 on the following page. The

model is given as a 6-tuple entitled ESTIMATES with the

values required for each component.

£0



ESilMflTES (Name, Estimate, Time, Value, Certainty
Factor, Creator)

Where: Name is the name of the relation in which
the value being estimated appears.

Estimate is the specific attribute and
database tuple that is being estimated in
the relation Name.

Time is the date and time of day that the
estimate was entered into the database.

Value and Certainty Factor &-re the actual
estimate value and its accuracy.

Creator is the name of the individual
entering the estimate.

Figure 3.4: Formal Model - ESTIMATES

The information provided by adding components to

the basic estimate name and value serves several

purposes. For example, by including the Time component

a user can select recent estimates or estimates made

during a given period of time. The Creator component

allows a user to include or omit certain individual's

estimates when processing data. The Creator component

also identifies the estimate so that an individual can

refer back to his or her own previously made estimates.

Pin example set of estimates in the form of a

relational table is given in figure 3.5 on the

following page.

£1



. 9 Jim

.a Ann S

.95 Art

.65 Jean

ESTIMATES

Name Estimate Time Value Certainty Creator
Factor

Ace Sales/5 5/25/86 $5,000
06 : 05 : 30

XYZ Sales/2 4/29/36 $3,000
1 2 : 57 : 35

Ace Time/4 6/1/36 200
16: 03 : 43

CCC Cost/7 3/25/36 $3.50
03:00:21

Figure 3.5: Sample Relation of Estimated Data

The attribute Estimate provides the attribute name in

the relation first and then &r< identifier of the tuple

in which the value to be estimated is located (i.e.

the relation CCC has an attribute named Cost and the

estimate shown is for record 7.

)

In Chapter 4 the querying of estimated values and

their certainty factors will be further outlined using

fuzzy logic as a basis of the database.

22



Chapter 4: QUERIES ON ESTIMATED VALUES

An estimate could simply be provided by one user

but it is often more desirable that more than one

individual estimate a value in the database. For

example, if a manager has several salespeople in his

division of the company and wants to project the

potential of a new product he/she would probably want

to have each salesperson provide their estimate of the

future sales of that product. Also if several teams

are each developing one section of a large computer

program each team leader could provide sr\ estimate of

the time it would take his/her team to complete their

section of the programming. By allowing for multiple

estimates of a single value in the database a method

for determining what value (s) will be provided when

the database is queried must be determined. If the

user also happens to be ar\ estimator of values in the

database he or she could select their own estimates to

be provided by a query. However, most users will only

be estimators of a few of the database values and some

users may be outside the company and have no access

rights at all. For these users the system must have

the means for providing and handling all the estimates

of a queried value or for combining the estimates into

one or a few values that can be presented to the user.



The system must also maintain the integrity of data

when operations are performed on values with multiple

est i mates.

UNION, INTERSECTION AND COMPLEMENT OPERATIONS

One method that has been proposed for handling

queries on fuzzy data is to use the fuzzy set

operations of Union, Intersection and Difference.

Umano (Uma83) , for example, uses the fuzzy set

operation Union to do the projection of a fuzzy relation.

The three operations of Union, Intersection and

Complement &r^e shown in figure 4. 1 below.

Union: fi U B = fix V Bx

Intersection: A B = fix -s Bx

Complement: fix = 1 - fix

Figure 4.1: Fuzzy Set Operations: Union,
Intersect ion, Complement

The operators V, x and - represent maximum, minimum

and arithmetic difference, respectively. The result

of the Union operation is the maximum of the certainty

values. The result of the Intersection is the mimimum

of the certainty factors. The result of the complement

is 1 minus the certainty factor. To demonstrate the

effect of these operations on a fuzzy set the following

fuzzy set THIN provided in Chapter £ is shown again in

figure 4.2 on the following pages, with the result of
£4



the Union, Intersect ion and Difference operations each

given in order below the original set. second set

FAT, not previous mentioned, is used for the Union and

Intersection operations.

THIN FflT

WEIGHT DEGREE OF WEIGHT DEGREE OF
MEMBERSHIP

1. 00

MEMBERSHIP

110 110 0. 00
125 . 95 125 . 08
140 .8 140 . 25
155 . 5 155 . 45
ISO . 45 ISO . 55
195 . 3 195 . 75
210 — 210 . 89
c.'iz;5 0. 00 225 1 . 00

UNION INTERSECTION
(THIN &• FftT) (THIN & FflT)

WEIGHT DEGREE OF WEIGHT DEGREE OF
MEMBERSHIP MEMBERSHIP

110 1. 00 110 0. 00
125 . 95 125 . 08
140 . a 140 . 25
155 . 5 155 . 45
180 . 55 180 .45
195 . 75 195 . 3
210 . 89 210 .2
225 1 . 00 225 0. 00



COMPLEMENT
(THIN)

WEIGHT

110
125
140
155
180
135
£10

DEGREE OF MEMBERSHIP

0. 00
. 05
. £
.5
. 55
.7
.8

££5 1 . 00

Figure 4.£: Example of Set Operations:
Union, Intersection, Complement

In the same manner as the Union operation shown above

Umano' s (Uma83) projection is the maximum of the

certainty factors in the fuzzy relation. fin example

of a Union operation as a projection on a fuzzy set is

given in figure 4.3 below.

STUDENTS

Name Major Grade

Jim EE w5« %j

Sally Biol. <£. 5/. 8)
Ar\r\ CS £.8
John Biol. (£.5/. 65), (£.9/. 8)
Ben EE (3. £/.65)

Project ion [STUDENTS] : Grades of Biology Majors =

Major Grade

Biol. (£. 5/. 8) , (£. 9/. 8)

Figure 4.3: Example Projection using Union Operation

The projection results in only the maximum certainty
£6



factor of .8 remaining for the estimated value of £.5

and the lower certainty factor of .65 is lost.

ALGEBRAIC SUM OPERATION:

Although the fuzzy operations of Union,

Intersection and Difference (to a lesser degree) have

gained acceptance their application has mainly been

limited to expert systems. The use of these operations

on null or estimated values seems limited, as in

Urnano' s projection operation (Uma83), in that

information is lost when only maximum or minimum values

ar^e preserved. A more reasonable solution is provided

by the fuzzy set operation Algebraic Sum. Novak and

Nekola (NovNek83) list the Algebraic Sum operation as

ar\ alternative to the Union operation. The Algebraic

Sum operation preserves the fact that a second or

multiple estimated values were present by combining

the certainty factors. The Algebraic Sum operation is

defined as follows: Given the fuzzy sets A and B with

degree of membership values xA and xB the Algebraic Sum

of these sets is given in figure 4.4.

A+B=l- (1- xA) (1 - xB)

Figure 4.4: Algebraic Sum Operation

The result of the Algrebraic Sum operation is a single

value that is higher than both of the degree of
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memberships of the individual sets. The basis for this

result is that given two sets of data the answer is

more likely than with a single set or in the case of

estimates, if two people estimate the same value that

value should have a higher certainty than a value

estimated by only one person. The effect of the fuzzy

set operation Algebraic Sum on a projection operation

is to combine the certainty factors of like estimates.

For these reasons, the Algebraic Sum operation was

incorporated into this model. Using the same example

relation and projection shown for the Union operation

earlier the results with the Algebraic Sum operation

are given in figure 4.5 below.

STUDENTS

Name Major Grade

Jim
Sally
Ann
John
Ben

Project ion [STUDENTS!): Grades of Biology Majors =

Major Grade

Bio1 - (£.5/. 93), (2. 9/. S)

(A + B) = 1 - (i - xfl) (1 _ xB)
(£.5 + £.5) = 1 - (i - .SMI - .65)

= 1 - (.£) (.35) = . 93

Figure 4.5: Example Projection using Union Operation

£8

EE 3.5
Biol.
CS

(£. 5/. 8)

£.8
Biol.
EE

(£.5/. 65), (£. 9/. 8)
(3. £/. 65)



With the Algebraic Sum operation the single fuzzy value

of £.9 remains the same but the fuzzy value £.5 has a

certainty factor calculated using the Algebraic Sum

operation. The calculation is shown directly below the

result of the projection. Since two estimates were

made of the single value £.5 the certainty factor

becomes much higher than with the one estimate of the

value £.9.

The Algebraic Sum operation can also be used to

combine a large number of estimates for a single value

in the database. One instance where a value would have

a large number of estimates attached to it would be

when the user desired to rate the possible estimated

values from high to low. The user could provide

estimators with a range of values and ask each person

to rate the estimates from "EXTREMELY LIKELY" to

"QUESTIONABLE" (as used in the fuzzy set ACCURACY).

An example of using the Algebraic Sum operation for

this purpose is provided in the following example:

Given a set of possible estimates for the value - # of

units sold and the accuracy of those estimates as

provided by three users the result of the Algebraic Sum

operation would be as shown in figure 4.6 on the

following page:



# of Units Sam Joe Jirn Algebraic
Sold Sum

10,000 A£ .65
9, 000 Al A5 . 955
8, 000 A5 A4 . 995
7, 000 A4 A£ A3 . 993
6,000 A3 A4 Al .99
5, 000 A2 A5 . 965
4, 000 A3 . 8
3,000 Al .5
£, 000
1 , 000

Ex. (5,000): 1 - (1 - xA)(l -xEO =

1 - (1 - .65) <1 - .9) =

1 - (.35) (.1) = 1 - .035 = .965

Figure 4.6: Example Algebraic Sum Operation

The example given below the table shows how the result

for the estimate of 5,000 units was obtained. The

estimated values that were selected £ or- 3 times have

significantly higher results than those only selected

once. At this point 15 estimates have been reduced to

8 estimates and the system could select all 8 estimates

to be provided when queried. If all the estimates a.re

not deemed useful or there are still too many the single

highest estimate or the top few estimates selected by

statistical or other means could be provided.

Having provided a means for performing the

projection operation in a database query the selection

operation should also be addressed. The selection

operation on fuzzy data in a relation car\ be viewed as

Grant approached the may be operation created by Codd.
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A maybe selection as discussed in Chapter 2 selects all

tuples that intersect with the value or range of values

provided in the query. Pin example of the maybe

selection as performed on a set of estimated values is

provided in the figure 4.7 below.

XYZ SOLES

SOLD TO LOCATION SALES

Ace To 1 edo (41, 500 / . 65

)

Burns Dallas $£,000
CCC Miami ($500/. 8, $375/. 9)
Dow New York ($450/. 35)

If the Query is: Select XYZ SALES where Sales >= 500

the following selections would result.

MAYBE SELECTION

Ace Toledo ($1,500/. £5)
Burns Dallas $£,000
CCC Miami ($500/. 8, $375/. 9)

Figure 4.7: Maybe Selection on Estimated Values

The tuples which fell in the range of sales equal or

over $500 were selected. Both the values for the

tuple CCC were provided in the selection even though

only one estimate fell in the range given. This

informs the user that the estimate of $500 was not the

only estimate and in fact in this instance a higher

certainty estimate of $375 exists.
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CARDINALITY!

Before leaving the subject of fuzzy set operations
a definition of cardinality or counting of fuzzy set

elements should be provided. Zadeh (Zad33) uses the
notion of a Sigma-Count which is the arithmetic sum of
the degrees of membership. The arithmetic sum of the
fuzzy set THIN is shown in figure 4.3 below.

THIN

DEGREE OF
MEMBERSHIP

WEIGHT

1 1

125
140
155
180
195
£10

1 . 00
. 95
.8
. 5
. 45
. -1

i

. cl

0. 00

Sigma-Count (THIN) = DEGREE 0F MEMBERSHIp = ^ ^
Figure 4.8: Cardinality of Fuzzy Set - THIN

The resulting value may be rounded off to the nearest
integer if needed. Unfortunately the Sigma-Count can
be a deceptive value when the fuzzy data has values
with low degrees of membership. fl lar.ge nuniber of ^
degrees of membership can become count-equivalent to a

small number of terms with high membership. Both Zadeh
<Zad83> and Buckles and Petry (BucPet8S ) suggest the
same solution for this problem. They both suggest some



type of minimum threshold value to determine if a degree

of membership is included in the cardinality. Neither

of the authors, however, suggest how the thresholds

should be determined. Another more recent approach to

cardinality is provided by Wygralak (WygSS) and

introduces the notion of fuzzy sernicardinals. ft fuzzy

sernicardinal is essentially a range of values using

fuzzy numbers. Wygralak explains "...we construct

fuzzy natural numbers defining degrees to which a

finite fuzzy subset has, respectively, at most/least

and less than/more than k elements.

"



CHAPTER 5: TESTING THE ALGEBRAIC SUM OPERATION

The implement at ion portion of this study centers

on the Algebraic Sum operation used to combine

estimated values. The intention of this implementation

is to study the results from the Algebraic Sum

operation using widely varying test data. By testing a

wide range of estimates, the results provide a basis

for making a determination of the soundness,

reasonableness and consistency of the result of the

Algebraic Sum operation.

The estimated data are entered onto a spreadsheet

in the form of the model given in Chapter 3. The

spreadsheet was selected for several reasons. First,

the spreadsheet provides a clear mechanism for the

manipulation of data with a formula. The Algebraic Sum

operation is stored as a formula for operating or\

certainty factors. Secondly, multiple sets of test

data are generated by simply dividing the certainty

factors into ranges and raising or lowering one or more

ranges while other ranges remain unchanged. Finally,

the form of the spreadsheet allows a clear illustration

of both the data and results on the same screen or

printed page. With a database the results would be

separated from the estimates making test data

comparisons more difficult.
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. 9 Jim

. a firm S.

.95 Art

.65 Jean

Each component of the data model is located in a

separate column of the spreadsheet as shown in figure

5. 1 below.

fi B C D E F
1 Name Estimate Time Value Certainty Creator
2 Factor
^t

--——————•—-——————————————^— — i i ——— —~—

4 flee Sales/5 5/25/86 $5,000
5 OS : 05 : 30
6 XYZ Sales/2 4/29/36 $3,000
7 12:57:35
8 flee Tirne/4 6/1/36 £00
9 16:03: 43

10 CCC Cost/7 3/25/36 $3.50
11 09:00:21

Figure 5.1: Sample Spreadsheet of Estimated Values

The Algebraic Sum operation is entered as a formula

operating on the column corresponding to the certainty

factors for the estimates. Certainty factors that are

being combined are selected and addressed through the

formula.

Test data are entered to simulate both single and

multiple estimates of a unique database value. The

test data varies both in degrees of membership and in

the number of estimates. Sets of test data include

estimates with high certainty factors, low certainty

factors and a wide and narrow range of certainty

factors. Each of these sets of data is tested for

instances where numerous estimates or only a few

estimates are available. The results of the Algebraic
35



Sum oDsra^ion are compared and contrasted between

each set of test data.

The spreadsheet provided in figure 5.2 illustrates

the method used for varying test data. Sets of test

data are grouped into ranges and seperated from other

data with a solid line. Figure 5.2 is shown below.

ft B C D E F
1 Marne Estimate Time Value Certainty Creator
c Factor
3

flee 5/35/8S4 Sales/3 45, 000 . 9 Jim
or OS : 05 : 30
s flee Sales/3 5/36/36 $2, 000 . 8 Sal
7 07 : 58 : 30
3 flee Sales/3 3/01/86 $6, 500 . 95 G 1 en
3 19:35:45

10 flee Sales/3 7/35/86
' 15:22:00

4/33/86

*4, 000 . 9 ft be
± -

flee4
-

i

X c Sales/5 $5, 000 . 5 Joe
I w< 13:35:49
14 flee Sales/5 5/36/86 44, 000 . 65 Sam
15 14:35:39
13 flee Sales/5 6/30/86 $5, 000 . 7 Jean
17 16:32:31
13 flee Sales/5 7/31/86

09 : 35 : 44
$6, 500 . 5 firt

13

Figure 5.2: Spreadsheet of Test Data Sets

The ranges of four elements each are shown in the

Estimate, Value and Certainty Factor columns. By

changing the values within each range the test data is

varied. For example, if the values in the lower range

of the Estimate column were all changed to 'Sales/3'

the sample spreadsheet would represent eight estimates

of one database value instead of two sets of four
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estimates for two database values. The ranges in the

Value column allow for changing from multiple to single

estimates. By changing ail the values in the top range

to ' *4, 000' the test data has changed from four

different estimated values to or\e estimated value to be

combined using the Algebraic Sum operation. One use

for the certainty factor ranges is to compare results

from values that Are grouped closely together or far

apart. By lowering all the values in the top certainty

factor range and raising the values in tie bottom range

the result is a wide and narrow range of test data.

The testing method described above is also used to

simulate the projection operation in a relational

database. Assuming the Name column does not change

value, the two ranges of the Estimate column in figure

5.2 aoove represent two different tuples of a relation.

By treating all the estimated values of each tuple (or

range) as a group the tuples can be combined as in a

projection operation. With more test data sets the

projection operation is simulated for queries involving

a few or a large number of tuples.

RESULTS:

The Algebraic Sum operation was tested on

estimated values with two, four and eight similar

estimates. The comparison of two similar estimates is
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the smallest number of estimates that could be combined.

The comparison of four and eight estimates provide a

middle and high number of similar estimated values.

The comparison of over eight values was not informative

because all results from the Algebraic Sum operation

were identical to six significant digits (the accuracy

provided by the spreadsheet program). The results of

the Algebraic Sum operation are provided in the

Appendix in figures A. i through A. 7. A discussion and

analysis of those results with reference to the figures

fol lows.

The comparison of two similar estimates is

provided in Figure A. 1. The results of the Algebraic

Sum operation on two high and two low certainty factors

have a significant difference of .995 to .775. The

comparison of a high and a low certainty factor with

two medium certainty factors results in the high and

low certainty factor (.975) being above the two medium

certainty factors (.95). The high certainty factor has

a more significant influence on the result than the low

certainty factor. This results because the Algebraic

Sum operation weights upward to demonstrate that two

different individuals selected the value, not one.

Algebraic Sum results on two estimated values are two

high certainty factors (.995) first, a low and high

certainty factor (.975) second, two medium certainty
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factors (.35) third and two low certainty factors

(.775) fourth.

In figures ft. 2 and ft. 3 the results are provided

for the Algebraic Sum operation on four similar

estimated values. On comparison the results are very

similar to the results for two estimates. The high and

low certainty factors have a significant difference in

their resulting values (. 333375-hi gh & . 343375-iow)

.

The Algebraic Sum of a wide range of certainty factors

results in a higher value than the Algebraic Sum of a

narrow range of medium certainty factors ( . 338875-wide

& . 33625-narrow) . fls with two estimates, the high

certainty factors in the wide range have a more

significant influence on the result than the low

certainty factors in that range. The ranking of the

Algebraic Sum results for four estimated values is four

high certainty factors (.33375) first, four varied or

wide range of certainty factors (.338875) second, four

medium certainty factors (.33625) third, and four low

certainty factors (.343375) fourth.

In comparing the Algebraic Sum operation on two and

four certainty factors the four similar estimates are

significantly higher that the two similar estimates in

each area tested. For example the result for two high

certainty factors was .335 and for four high certainty

factors was .933375. This result follows the reasoning
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behind the Algebraic Sum operation in that a four

different individuals selecting the same estimated

value is more significant than two individuals

selecting the same estimated value.

Figures A. 4 through 0.7 provide the results of the

Algebraic Sum operation on eight similar estimated

values. The results follow in the same order of

ranking as with the two and four certainty factor

results (. 999999-high, . 999994-varied or wide range,

. 999988-rned ium or narrow range, . 99S405-low) . The

difference in the values resulting from the high,

varied and medium certainty factors is not very

significant with only the low certainty factor result

showing a not i cable difference in value. This lack of

difference is due to the results extending beyond the

number of significant digits provided by the

spreadsheet. fis more Algebraic Sum operations AY^e

performed the values approach .999999, which is the

limit of significance for the spreadsheet. The

comparison of the results for the eight certainty

factors with the results for the four and two certainty

factors is significant between the eight and two with

little difference between the eight and four results.

For the high certainty factors the results for eight

values is .999994, for four values is .999975 and for

two values is .995.
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The overall soundness, reasonableness and

consistency of the Algebraic Sum operation tests are

favorable. The soundness of the operation is shown by

all results falling in the range of 0. . 1. The

resonableness of the results can be viewed in the

ranking of the results and the comparison of two, four

and eight estimated values. In the ranking the high

certainty factors always had the highest resulting

value and the low certainty factors had the lowest

resulting value. The certainty factors with high and

low estimates had higher results than those with medium

estimates. This seems reasonable since the higher

certainty factors are weighted more than the lower

certainty factors thus not allowing B.ry uncertain

estimate to pull down the result. The comparison of

two, four and eight certainty factors was reasonable in

snowing that as the number of individuals selecting the

same estimated value increased the result was

significantly higher. The difference between the

results for four and eight certainty factors seemed to

diminish because of a loss of significant digits. The

consistency of the results was demonstrated by the

rankings remaining the same for the two, four and eight

certainty factors. The results from eight certainty

factors was consistent but the loss of significant

digits would make comparison or analysis of more than
41



eight similar estimated values useless.
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CHAPTER 6: THE ESTIMATE AS A USABLE NULL VALUE

The estimated null value provides information to

the user that has previously been ignored. By

expanding null values beyond current definitions of 'at

present unknown', 'nothing', ' nc> value possible', and

others valuable data is provided to the user. The

information included in the estimated null values

represents the expertise of people who work constantly

in the areas they are estimating. This research has

resulted in the following:

. an expanded model of a datum

. a model for estimated null values

. a method based on the Algebraic Sum for
processing these null values

. use of Grant's maybe operation to select
the tuples.

EXPANDED DATUM:

The basic attributes of a data item, the name and

value, have been expanded with additional informational

components. The components of Name and Estimate

uniquely identify the database value being estimated.

The Value and Certainty Factor components provide an

estimated value and the accuracy of the estimate. The

components of Creator and Time allow the user to

identify the individual making the estimate and the

time the estimate was entered. The Creator and Time
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components can also be utilized to selectively process

certain estimates while ignoring others.

A MODEL FOR ESTIMATED NULL VALUES:

The model for an estimated value provides all the

vital data of what, when, whom and even how accurate

the estimate is believed to be. Each estimate has a

unique set of data associated with it. The estimates

and data can be easily maintained in the form of a

relation to fit into the relational database format.

Access rights limit the individuals allowed to enter

estimates to those deemed as qualified. Multiple

estimates of an individual value in the database allow

comparison between estimates and provide a consensus of

information for user queries.

PROCESSING ESTIMATED NULL VALUES - ALGEBRAIC SUM:

Fuzzy set theory provides a means of processing

estimated null values without losing valuable

information. The fuzzy set oDeration of Algeoraic Sum

is used to combine the certainty factors for similar

estimates. The Algebraic Sum operation produces a new

certainty factor of higher value to represent the

combining of multiple estimated values. The Algebraic

Sum operation can be performed on two or more estimated

values. A large number of estimates on a single

database value can be combined without losing the range
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of estimates or giving estimates occuring only or\ce the

same weight as estimated values selected several times.

The Algebraic Sum operation can also be used for

projection operations to maintain integrity of the data

by adjusting the certainty factor of similar estimates

that are combined.

SELECTING ESTIMATED NULL VALUES - MAYBE OPERATION:

The maybe operation developed by Grant for ranges

of null values fits in well with estimated fuzzy data.

A maybe selection operation produces all tuples that

fall in the range of the query. The user is provided

with all possible and known values for a query and thus

has more complete information to base a decision on.

Even estimates not in the range of the query but in the

tuple with a selected estimate are provided so the user

cain be aware of all estimates made on the database

vai ue.

FUTURE WORK:

The Algebraic Sum operation of fuzzy set theory is

a beginning for manipulating fuzzy data in a relational

database. Although the Algebraic Sum is well accepted

as a part of fuzzy logic the application in a fuzzy

database should be supported with proven theorems and

tested data. The implementation discussed in Chapter 5

starts the process of testing results from operations
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on estimated fuzzy data. fit a later time the use of

the maybe operation and fuzzy data should also be

supported with additional theoretical work. The maybe

operation should be tested on a varied set of estimated

values. The estimated values should have a wide and

narrow range to test the range overlap function of the

maybe selection operation.

Cardinality or the counting of estimates is still

an uncertain area. Although the means of counting

members of a fuzzy set has been provided by several

individuals the accuracy of the count for data with low

degrees of memberships is in question. The solution of

setting a threshold to degrees of memberships that are

summed is not viable if no means for establishing the

threshold is provided. The development of a method for

determining the threshold value of cardinality on fuzzy

data is an obvious area for future work.

CONCLUSION:

This representation of estimated values as fuzzy

data in a relational database demonstrates the wealth

of information not currently captured by null values.

The Algebraic Sum and maybe operations both provide

the user with complete and consistent information in

response to a query. The fuzzy database system is a

natural basis for handling estimated null values.
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P B

Name Est i mat e

APPENDIX

C

Time Value Certainty Creator
Fact or

Pce Sales/£ 5/E5/86 5000
08 : 05 : 30

flee Sales/2 5/£6/ 86 5000
07 : 53 : 30

Pice Sales/£ 6/01/86 6500
13: £5: 45

Pice Sales/2 7/£5/86 6500
15: £2: 00

Pice Saies/5 4/£3/86 4000
1£:£5:49

Pee Sales/5 5/£6/86 4000
14: £5: 39

Pee Sales/5 6/30/86 3500
1 6 : ££ : £

1

Pee Sales/5 7/£l/86 3500
09 : 35 : 44

Values
E4-E6 (2-high)
E8-E10 (2-low)
El£-E14 (low & high)
E16-E18 (2-rnedium)

0.3 Jim

0. 35 Sal

0. 55 Glen

0. 5 Pbe

0. 5 Joe

0. 35 Sam

0. 75 Jean

o. a Art

Result 3

0. 995
0. 775
0. 975
0. 95

Figure P. 1 : Algebraic Sum of Two Estimated Values
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A 3 C

i
1 Name Est irnate T i me
c
3

4 Ace Sales/3 5/25/86
5 08 : 05 : 30
S Ace Sales/2 5/26/86
7 07 : 58 : 30
8 Ace Sales/3 6/01/86
g 19:25:45

10 Ace Sales/3 7/25/86
n 1 5 : 22 : 00
12 Ace Sales/5 4/23/86
13 12:25:49
14 Ace Sales/5 5/26/86
15 14:25:39
16 Ace Saies/5 6/30/86
17 1 6 : 22 : 2

1

13 Ace Sales/5 7/21/86
19 09 : 35 : 44
SO
21 Val ues
22 E4-E10 (4-h i gh

)

£3 E12-E18 (4-low)

Fig .ire A. 3: Algebraic Sum of

D

Value Certainty Creator
Fact or

500 <:

5OOt

500C

5000

350C

3500

3500

3500

0. 9 Jim

0. 95 Sal

0. 95 Glen

0. 9 Abe

0. 5 Joe

0. 55 Sam

0.5 Jean

0. 55 Art

Results
0. 999975
0. 949375

(high & low)



fi B C

1 Name Est irnate Time
2

3
4 flee Sales/2 5/25/86
C7 08 : 05 : 30
& flee Sales/2 5/26/86
7 07 : 58 : 30
8 flee Sales/2 6/01/86
3 19:25:45

10 flee Sales/2 7/25/86
11 1 5 : 22 : 00
12 flee Sales/5 4/23/86
13 1 2 : 25 : 49
14 flee Sales/5 5/26/86
15 14:25:39
16 flee Sales/5 6/30/86
17 16:22:21
IS flee Sales/5 7/21/86
19 09 : 35 : 44
20
£1 Va 1 ues
22 E4-E10 (4—wide
23 E12-E1S (4-narr

Value Certainty Creator
Factor

500<

500 <

500C

500 (

350(

350C

3500

350C

o. a Jim

0. 95 Sal

0. 75 Glen

0. 55 Abe

0.7 Joe

0. 75 Sam

0.8 Jean

0. 75 Art

Results
0. 998875
0. 99625

Figure A. 3: Algebraic Sum of Four Estimated Values (wide
& narrow range)



a B C

:

iZ.

Name Est imate T i me

3

4 fice Sales/2 5/£5/86
5 08 : 05 : 30
£ Ace Sales/£ 5/£S/86
7 07 : 58 : 30
a flee Sales/2 6/01/86
g 19: £5: 45

10 flee Sales/2 7/£5/86
11 1 5 : ££ : 00
12 flee Sales/£ 4/£3/86
13 1£:£5:49
14 flee Sales/2 5/26/8S
15 14:25:39
16 flee Sales/2 6/30/86
17 16:22:21
18 flee Saies/2 7/21/86
19 09 : 35 : 44
£0
21 Vali .ies

£2 E4-EIIS (3-var

Value Certainty Creator
Factor

5000

5000

5000

5000

5000

5000

5000

3500

. 7

0. 95

0. 75

0. 55

0. 65

0. 9

0. a

0. 5

Results
0. 999994

J lrn

Sal

Glen

Abe

Joe

Sarn

Jea.ri

Art

Figure A. 4: Algebraic Sum of Eight Estimated Values
(varied)



fl 3 C D

1 Name Est irnate T i me Value

3

4 fice Sales/2 5/25/86 5000
s 08 : 05 : 30
6 Ace Sales/2 5/26/86 5000
7 07 : 58 : 30
8 flee Sales/2 5/01/86 5000
9 19:25:45

10 flee Sales/2 7/25/86 5000
11 1 5 : 22 : 00
12 flee Sales/2 4/23/86 5000
13 12:25:49
14 flee Sales/2 5/26/86 5000
15 14:25:39
16 flee Saies/2 6/30/86 5000
17 16:22:21
13 flee Sales/2 7/21/86 5000
19 09:35:44
£0
£1 Val ues
22 E4-E18 (8-high)

Certainty Creator
Faet or

0. 9 J irn

0. 95 Sal

0. 85 Glen

0. 9 Abe

0. 95 Joe

0. 9 Sam

0. 85 Jean

0. 95 Art

Results
0. 999999

Figure A. 5: Algebraic Sum of Eight Estimated Values
(high)



H B C D E F

1 Name Est irnate Time Value Certainty Cl•"eat o
cl

3
Fac-t;or

4 flee SaIes/£ 5/25/86 5000 0. 55 Jim
5 08 : 05 : 30
6 flee Saies/2 5/26/86 5000 0. 5 Sal
7 07 : 58 : 30
8 flee Sales/£ 6/01/88 5000 0. 6 G 1 en
9 19:25:45

10 flee SaIes/£ 7/25/86 5000 0. 55 Abe
11 1 5 : 22 : 00
1£ flee Sales/2 4/23/86 5000 0. 5 Joe
13 12:25:49
14 flee Sales/£ 5/26/86 5000 0. 55 Sam
15 14:25:39
16 flee Saies/S 6/30/86 5000 0. 65 Jean
17 16:22:21
18 flee Sales/2 7/21/86 5000 0. 5 Pint

19 09 : 35 : 44
£0
£1 Values Results
££ E4-E1S ( 8- 1 ow

)

0. 998405

Figure A. 6: Algebraic Sum of Eight Estimated Value
(low)



H B C

J

X Name Est irnate Time
c

3

4 Ace Sales/2 5/25/86
5 08 : 05 : 30
6 Ace Sales/2 5/26/86
7 07 : 58 : 30
S flee Sales/2 6/01/86
9 1 9 : 25 : 45

10 flee Sales/2 7/25/86
11 1 5 : 22 : 00
12 flee Sales/2 4/23/86
13 12:25:49
14 flee Sales/2 5/26/86
15 14:25:39
16 flee Saies/2 6/30/86
17 16:22: 21
IS flee Saies/2 7/21/86
19 09 : 35 : 44
£0
£1 Val ues
£2 E4-E1S (8-med i u

D

Value Certainty Creator
Factor

5000

5000

5000

5000

5000

5000

5000

5000

o. a Jim

0. 7 Sal

0. 75 Glen

0. 75 Abe

0. 8 Joe

0. 3 Sam

0. 7 Jean

0. 75 Art

Results
0. 999988

Figure ft. 7: Algebraic Sum of Eight Estimated Values
(med i urn)
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ABSTRACT

Since knowledge may be incomplete the relational

database must provide a means of reDresenting values

collectively not known by the user.

In existing database systems uncertain, incomplete

or inconsistent information is represented by values

called nulls. Unfortunately the information provided

by null values is severely limited by predicate logic

artd probability-based methods of processing data. fin

alternative approach to managing null values suggested

in this work is based on the use of fuzzy logic. Fuzzy

logic provides the natural basis for handling null

values by extending the framework of the systems to

deal with both probabilistic and possi bi 1 ist ic t^aory.

Null values, which car\ be estimated, are

represented in the database by a S-tuple model. Each

estimated null value has ar\ attached certainty factor

corresponding to the accuracy of the estimate.

Acceptable terms for use as certainty factors are

defined by a fuzzy set - ACCURACY. Each term in the

fuzzy set - ACCURACY - has a degree of membership

representing inclusion in the set.

The Algebraic Sum operation of fuzzy logic

utilized to combine estimates and implement projection

operations. Grant's maybe operation compares ranges of

values for processing selection operations.


