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Abstract 

Grain sorghum is the second major starch-rich raw material (after corn) for bioethanol 

production in the United States. Most sorghum feedstock for bioethanol production is normal 

non-tannin sorghum. Waxy sorghum and tannin sorghum are rarely used due to lack of scientific 

information about waxy sorghum fermentation performance and the way to increase 

fermentation efficiency of tannin sorghum. The main objectives of this study were to investigate 

the fermentation performance of waxy sorghum and to improve fermentation efficiency of tannin 

sorghum using techniques such as germination and ozonation treatments. The ethanol 

fermentation performance on both waxy sorghum and tannin sorghum were evaluated using a 

dry grind ethanol fermentation procedure. Fermentation efficiencies of tested waxy sorghum 

varieties ranged from 86 to 93%, which was higher than normal (non-waxy) sorghum varieties. 

The advantages of using waxy sorghums for ethanol production include less energy 

consumption, higher starch and protein digestibility, shorter fermentation time, and less residual 

starch in distillers dried grains with solubles (DDGS). Results from germination study showed 

germination significantly increased fermentation efficiency of tannin sorghum. The laboratory 

results were further confirmed by those from five field-sprouted grain sorghum samples. 

Significantly increased free amino nitrogen (FAN) contents in sprouted sorghum samples 

accelerated the ethanol fermentation process. Results from both laboratory-germinated and field-

sprouted samples demonstrated that germination not only increased fermentation efficiency 

(higher than 90%) but also reduced fermentation time by about 50%, which could result in 

energy saving and increased production capacity without additional investment. The excellent 

performance of sprouted sorghums may provide farmers a new market for field-sprouted 

sorghum (poor quality as food or feed) in a bad year. A previous study showed ozone had a 

strong connection to degradation of lignin macromolecules. The hypothesis was that ozone 

treatment may also reduce tannin activity and increase fermentation efficiency of tannin 

sorghum. Results showed that the ethanol production performance (ethanol yield, fermentation 

efficiency, and fermentation kinetics) of the ozone-treated, tannin sorghum flours was 

significantly improved compared with the untreated control. The other effects of ozonation on 

sorghum flour include pH value decrease, discoloration, and inactivation of tannin. In summary, 



  

these studies showed sorghum, no matter it was waxy, field-sprouted, or tannin sorghum, can be 

an excellent feedstock for ethanol production. 
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Chapter 1 - Introduction 

Problem Statement 

The fuel ethanol production from plant-based materials has become dominant since 

1970s and currently shows no sign of slowing down. Ethanol has many advantages over gasoline 

in reducing green house gas emission and creating a renewable energy base. Ethanol fuel as a 

gasoline alternative has been experiencing a significant jump in production in the United States 

in recent years. The availability of ethanol at the fuel pump is becoming more prevalent because 

of U.S. mandates for mixing ethanol into gasoline, which is creating strong demand and rapid 

growth in the ethanol industry. For example, The Energy Independence and Security Act of 2007 

expand the Renewable Fuels Standard (RFS2), which predicts the annual ethanol production will 

grow to 15 billion gallons by 2012 and 36 billion gallons by 2022. In the U.S., corn is the 

dominant starch-based feedstock for bioethanol. However, to meet the high demand for ethanol, 

to sustain the environment, and to revive nation’s economy, other alternative feedstocks must be 

sought for ethanol production. 

Grain sorghum not only has similarity to corn composition in starch content, but also has 

advantages over corn on drought and heat stress tolerance, low fertilizer and pesticide input, high 

yield ability, and established production systems in the Great Plains region from South Dakota to 

Texas. Grain sorghum could be a reasonable feedstock for ethanol production and could make a 

larger contribution to the nation’s fuel ethanol requirement. 

Historically, sorghum is used mainly for animal feed in the U.S. with limited amounts for 

human food. Some characteristics of grain sorghum such as high tannin content and sprouting 

tendency limit its food and feed applications. Along with these considerations, the use of tannin 

and damaged grains and/or low food/feed value grains provide additional feedstock sources for 

ethanol production. 

Tannin grain sorghum is desired for its resistance to birds, insects, weathering and high 

yield potential. From a sorghum producer’s perspective, tannin sorghum is favored for planting 

and storage. However, tannin sorghum for ethanol has been reported to have difficulty in 

liquefaction with abnormally high viscosity when compared with non-tannin samples during the 

pretreatment for ethanol production (Wu et al 2007). Mullins and NeSmith (1986) studied the 
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ethanol fermentation from bird-resistant and non-bird-resistant grain sorghum and reported high 

tannin levels greatly reduce the rate of ethanol production. 

Sprouting caused by unpredicted rainy weather prior to harvest and/or improper 

postharvest storage conditions is another common problem for grain sorghum, which decreases 

the quality of grain for food and feed applications. However, the production of fermentation 

ethanol requires applying and seeking new approaches and technology for conversion of 

agricultural byproducts and wastes which do not conflict with current food supplies. 

Waxy or glutinous grain sorghum is a special genetic cultivar for grain sorghum with 

zero or low amylose content, and is reported to have higher starch digestibility than normal grain 

sorghum. However, there is little information available on yield and efficiency for waxy 

sorghum compared with normal sorghum. 

To target these three traits of grain sorghum as feedstocks for bioethanol production, the 

goal of this study was to study the effect of genotype, sprouting, and pretreatment on ethanol 

yield and fermentation efficiency. In addition, ozonation was used to treat tannin sorghum to 

determine sorghum ethanol fermentation efficiency and yields. 

Objectives 

The goal of this research was to study the effect of genotype (tannin and waxy sorghum), 

field sprouting, and pretreatment (laboratory germination and ozone treatments) of grain 

sorghum on ethanol yield and fermentation efficiency. The ultimate goal of this study was 

achieved through the following specific objectives. 

1) to investigate the fermentation performance of waxy grain sorghum for ethanol 

production as well as the relationship among physical properties, chemical 

composition, and thermal properties on ethanol yield and fermentation efficiency; 

2) to investigate the effect of germination of tannin grain sorghum on ethanol yield and 

fermentation efficiency; 

3) to investigate physicochemical and biochemical characteristics of field-sprouted grain 

sorghum and its fermentation performance on ethanol yield; 

4) to investigate the effect of ozonation on physicochemical properties of whole tannin 

sorghum flours and their ethanol fermentation performance. 
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Related Current and Previous Research 

Grain Sorghum as Feedstock for Fuel 

Grain sorghum (Sorghum bicolor (L.) Moench) is the third leading cereal crop in the 

United States just behind corn and wheat in planted acres (USDA-NASS). In the United States, 

sorghum is mainly produced in the Great Plains region from South Dakota to Texas (other states 

include Kansas, Nebraska, Oklahoma, and Missouri). Sorghum is mainly used as a livestock feed 

in the U.S. with only a small portion for human consumption. However, sorghum has been used 

in ethanol fermentation for a long time (e.g. beer production in Africa and Mexico, and spirit 

production in China). Sorghum can produce almost the same amount ethanol per bushel as corn 

(Rooney and Waniska 2000) because sorghum is high in starch. Only in recent years has it been 

used in large scale bioethanol production in the U.S. In 2009, more than 30% of the grain 

sorghum production in the United States was used in ethanol production (Jessen 2010). Its 

ethanol by-product, distillers grains, is a value-added, high-protein feed for animals. 

Sorghum is a cereal of remarkable genetic variability. More than two hundred genes 

characterize specific genotypic, phenotypic, and cytogenetic traits in sorghum. For instance, the 

color, appearance, and quality of grain sorghum are influenced by genes controlling pericarp 

color (R and Y) and thickness (Z), the presence (B1 and B2) and or absence (b1 and b2) of a testa, 

and endosperm color and structure (wx) (Rooney and Miller 1982). Two epicarp color genes, R 

and Y, interact to produce a red (RRYY), yellow (rrYY), or colorless or white (RRyy and rryy) 

sorghum. ZZ or Zz will produce thin pericarp, whereas zz produces thick pericarp of sorghum; 

B1B2 produces a pigmented testa layer, in which tannin is located; whereas B1b2, b1B2, or b1b2 

will cause a pigmented testa to be absent in sorghum. Because the appearance and quality of 

sorghum are affected by its genetically controlled characters along with other environmental 

factors, ethanol production was reported to be related to both the chemical composition and 

physical properties of grain sorghum (Zhan et al 2003). 

It is difficult to classify sorghum due to its wide diversity. However, the U.S. Federal 

Grain Inspection Service (USDA-FGIS 1993) has classified grain sorghum into white, sorghum 

(yellow), brown, and mixed classes based on grain color and pigmented testa. White sorghum 

has a white or colorless pericarp without a pigmented testa. Nearly all of the sorghum marketed 

in the United States is yellow sorghum, which can contain red, yellow, white, pink, and many 
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other variations in pericarp color and not more than 10% kernels with a pigmented testa. Mixed 

sorghum contains mixtures of sorghum with and without pigmented testa. All sorghum kernels 

with a pigmented testa are classified as brown sorghums, or tannin sorghums (Hahn et al 1984). 

Grain sorghum cultivars have been classified into Type I, II, and III based on the tannin content 

and the genes which control it (Price and Butler 1977). Type I sorghum does not contain tannins; 

Type II and III sorghum contain low and high tannins, respectively. Tannin is the primary 

nutrient-limiting component in grain sorghum. High levels of condensed tannins can reduce 

starch and protein digestibility up to 10% (Leeson and Summers 1997). Mullins and NeSmith 

(1986) studied the ethanol fermentation from bird-resistant and non-bird-resistant grain sorghum 

and reported that high tannin levels greatly reduce the rate of ethanol production. 

The waxy gene, wx, causes the production of a waxy endosperm in sorghum. The normal 

endosperm type of sorghum is approximately 75% amylopectin and 25% amylose, while waxy 

endosperm mutants contain nearly 100% amylopectin. Heterowaxy sorghum contains less than 

20% of amylose. Waxy and heterowaxy varieties generally have higher fermentation efficiencies 

than non-waxy varieties, because amylose is likely to form amylose-lipid complexes which are 

resistant to enzymatic hydrolysis in seeds or during mashing (Wu et al 2006). Waxy sorghum is 

reported to have higher starch digestibility than normal grain sorghum in food applications. 

However, there is little information available on ethanol yield and fermentation efficiency of 

waxy sorghum compared with normal sorghum. 

Starch is the major component followed by protein in grain sorghum. Starch content in 

sorghum flour was a good predictor for ethanol yield (Lacerenza et al 2008; Zhao et al 2009). 

Protein degradation from enzymes or other treatment could provide nitrogen for yeast growth 

during fermentation. Yeast only uptakes free amino nitrogen and short peptides not proteins. 

Research has been conducted on protein and protein digestibility for ethanol fermentation from 

grain sorghum (Lacerenza et al 2008; Pérez-Carrillo and Serna-Saldívar 2007; Pérez-Carrillo et 

al 2008; Zhao et al 2008). Little research has been conducted on effect of free amino nitrogen on 

the conversion efficiency of sorghum varieties in ethanol fermentation. 

Germination, or sprouting, is a common problem for grain sorghum when weather is 

moist during harvest or the environment is humid during storage. Germination promotes the 

development of cytolytic, proteolytic, and amyloytic enzymes that are not active in dry kernels 

(Bamforth 2006; Dewar et al 1997b; Klose et al 2009) and could cause significant changes in 
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kernel composition and physical properties (Agu and Palmer 1996; Beta et al 2000; Elmaki et al 

1999; Iwuoha and Aina 1995; Lasekan et al 1995; Muria and Bechtel 1998; Murty et al 1984; 

Osuntogun et al 1989; Palmer 1991; Singh and Bains 1984; Swanston et al 1994). Germination 

not only causes compositional changes in the sorghum grain, but also initiates a series of 

biochemical and physiological changes. Intrinsic enzymes such as amylases, proteases, lipases, 

fiber-degrading enzymes, and phytases are activated; this disrupts protein bodies and degrades 

proteins, carbohydrates, and lipids to simpler molecules, which increases digestibility of proteins 

and carbohydrates in the kernel and makes nutrients available and accessible for enzymes 

(Chavan and Kadan 1989; Dicko et al 2006; Ratnavathi and Ravi 1991; Subramanian et al 1992; 

Taylor 1983). Therefore, field-sprouted grain sorghum might benefit bioethanol production. 

However, there is no information on ethanol fermentation from sprouted grain sorghum. 

Sorghum germination and malting are not the same. Sorghum has been malted and used 

for production of traditional alcoholic and nonalcoholic beverages for centuries (Dufour et al 

1992). Malting conditions have to be controlled to achieve uniform and high quality sorghum 

malts and ensure quality required for food products (Dewar et al 1997b). However, biofuel 

ethanol production does not have the same requirements. The most important issues in industrial 

ethanol production are yield, efficiency, and energy consumption. Using germination-damaged 

sorghum for industrial ethanol production might be beneficial to the producer and end user in 

expanding market uses for what has been historically considered a low value commodity (Suresh 

et al 1999). However, there is little information available for germinated or sprouted grains for 

bioethanol production. 

Using grain sorghum for bioethanol production has been proceeding in our laboratory. 

Decortication has been used to remove sorghum bran to increase starch loading to improve 

sorghum fermentation performance (Corredor et al 2006). Factors impacting ethanol production 

from grain sorghum in the dry-grind process were investigated by Wu et al. (2007). 

Physical and enzymatic treatment sorghum for ethanol fermentation has been reported 

(Pérez-Carrillo et al 2008; Pérez-Carrillo and Serna-Saldívar 2007). However, chemical 

treatment on sorghum grain for ethanol fermentation is scarce. Ozone is a strong oxidant with 

oxidation potential 2.07 eV and is advantageous since it can easily degrade ingredients and kill 

microorganisms. Ozone has been used in waste-water treatment and corn and wheat steeping 

prior to milling (Dhillon et al 2009; Ruan et al 2004). Previous studies have shown that ozone is 
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able to degrade macromolecules such as lignin, protein and carbohydrates (Wang et al 1999; 

Wang et al 2008; Yosef et al 1994). Ozone treatment could be a good alternative to chemical 

treatment because it has been used in very low dosage ppm and does not leave residue in the 

treated product. However, there is little information about ozone treatment of sorghum feedstock 

for ethanol production. 

Tannins in Sorghum 

Sorghum is unique among cereals because of relatively large amounts of polyphenols in 

the grain and plant (Hoseney et al 1987). Polyphenols widely distributed in plants are not directly 

involved in any metabolic process and are considered secondary metabolites. They serve as 

defense chemicals, protecting the plant from predatory attacks of herbivores, pathogenic fungi, 

and parasitic weeds. 

Polyphenols are named by the presence of more than one phenol unit as their molecular 

building block. Polyphenols have been divided into three categories: phenolic acids, flavonoids, 

and condensed polymeric phenols (Chung et al 1998). 

Polyphenols are well-known to have specific attributes in sorghum: to protect sorghum 

seedlings from insect attack, to prevent sorghum losses from premature germination and damage 

due to fungal attack, and to resist birds (Butler and Roger 1985; Harris and Burns 1973; Waniska 

et al 1989). Phenolic acids are present in sorghum either free or bound as esters and concentrated 

in the outer layers of the grain. They inhibit growth of microorganisms (Hahn et al 1983). In fact, 

tannic acid is one of phenolic acids but it is not present in grain sorghum. Flavonoids (e.g. lignin 

and catechin) in sorghum are called anthocyanidins, which are derivatives of the monomeric 

polyphenol flavan-4-ol. Flavonoids are reported to resist grain molds (Jambunathan et al 1986) 

and to resist birds (Subramanian et al 1983; Tipton et al 1970). Flavonoid monomers are 

synthesized and then condensed to form oligomeric proanthocyanidins of five to seven units 

during grain development. Gupta and Haslam (1980) referred to sorghum tannins as 

procyanidins (proanthocyanidins) that result from condensation of flavan-3-ols and/or flavan-4-

ols. Total phenols can be measured using the Folin-Ciocalteu reaction. Results are typically 

expressed as gallic acid equivalents (GAE). 

The term tannin was first introduced in 1796 to describe the chemical constituents of 

various plant extracts which were responsible for transforming fresh animal hides into leather 
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(Hulse et al 1980). Later, Bate-Smith and Swain (1962) defined tannins as water soluble, 

polyphenolic compounds with molecular weights ranging from 500 to over 3,000. Serrano et al. 

(2009) defined tannins as a unique group of phenolic metabolites with molecular weights 

between 500 and 30,000. Some very large condensed tannins are insoluble in water. Thus, all 

plant phenols are not tannins but all sorghums contain phenols. 

Tannins are present in sorghums having a pigmented testa layer, which is controlled by 

two complementary dominant genes designated B1 and B2 (Blakeley et al 1979). Based on the 

distribution and location of tannins in sorghum, sorghums are classified as Type I (no pigmented 

testa layer and no tannins), Type II (tannins in pigmented testa), and Type III (tannins in 

pigmented testa and pericarp) (Waniska and Rooney 2000). Therefore, not all the sorghums 

contain tannins. Only Type III includes the well-known “bird-resistant” sorghums or tannin 

sorghums. 

There are two types of tannins in plants: hydrolysable and condensed tannins. The 

hydrolysable tannins can be hydrolyzed by enzymes and acids to release sugar molecules and 

phenolcarboxylic acid; whereas the condensed tannins cannot be hydrolyzed by enzymes. 

However, the condensed tannins can be decomposed by acids to release small amounts of 

anthyocyanidins other than sugar molecules. Sorghum does not contain hydrolysable tannins but 

some sorghum cultivars contain condensed tannins. Tannin sorghums have a wide range of seed 

color, with light-colored varieties having potentially high tannin content (Waniska et al 1992). 

A number of methods have been used to determine tannins in sorghums qualitatively and 

quantitatively. Qualitatively, the scratch test along with visual observations is a fast and direct 

method for tannin sorghum classification (Waniska et al 1992; Xiang 2009). Bleaching is another 

relatively accurate, inexpensive, and rapid test method that has been used for sorghum kernel 

grading and classification. 

Burns (1971) developed the vanillin hydrochloric acid (V-HCl) method for sorghum 

tannins content determination. Maxson and Rooney (1972) evaluated ten methods and modified 

the V-HCl method (MV-HCl) by adding 1% HCl in extraction solvent for sorghum tannin 

determination and summarized another eight methods unsuitable for analysis of sorghum tannins. 

These eight methods were: Snell’s colorimetric method (1953), the Folin-Denis two methods by 

Burns (1963), the AOAC tannin in tea (1965), the ferric ammonium citrate by Burns (1963), the 

ferric ammonium sulphate by Mejbaum-Katzenellenbogen and Kudrewicz-Hubica (1966), the 
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Bate-Smith and Rasper’s methanolic-HCl method (1969), the protein precipitation method by 

Hagerman and Butler (1978) and Schanderl (1970). A few years later, Price et al. (1978) studied 

MV-HCl assay procedures in more detail and claimed a new modified MV-HCl giving excellent 

reproducibility for sorghum tannins. However, due to the complexity of tannins in sorghum and 

the specificity of each of the quantitative methods, tannins in sorghums were reported arbitrarily 

(varied quantitatively and qualitatively). Catechin equivalent (CE) of tannin content mg/100mg 

by the MV-HCl method has been used most for sorghum tannin measurement as a reasonable 

reference standard. In summary, the colorimetric method is the major method for tannin 

quantitative test in sorghum. 

Recently, sorghum tannins have been reported having antioxidant activity (Awika and 

Rooney 2004; Hagerman et al 1998; Sikwese and Duodu 2007). Rooney (2008) reported tannin 

sorghum had promise to lower cholesterol in animals and had anti-cancer compounds. Also, as 

mentioned early, the presence of tannins is associated with decreased bird preference, resistance 

to preharvest germination, insects and molding, increased storage stability, and mass reduction. 

The agronomic importance and advantages of tannins will sustain sorghum production. Effect of 

tannins on sorghum proteins and carbohydrates 

Clearly and evidently, tannins react with proteins. Tannins have been used for over a 

thousand years in the hide industry for conversion of raw animal skins to durable and 

impermeable leather. Using gelatin to form precipitates with tannins has been one of the methods 

for determination of tannins in sorghum (Hagerman and Butler 1978; Maxson and Rooney 

1972).There are at least four modes of reaction possible between tannins and proteins: 1) 

hydrogen bonds between OH groups in the tannins and receptor groups (e.g. NH, SH, and OH) in 

the proteins (Van Buren and Robinson 1969); 2) ionic bonds between anionic groups in the 

tannins and cationic groups in the proteins; 3) hydrophobic interaction; 4) covalent linkages 

between tannins and proteins (Butler et al 1984). A familiar characteristic of tannins is their oral 

stringency, a trait that probably results from their reaction with the glycoproteins in saliva 

(Loomis 1969; Haslam 1974). 

Tannins bind to both exogenous and endogenous proteins including enzymes of the 

digestive tract, affecting the utilization of proteins (Eggum et al 1983; Hagerman and Butler 

1980). Van Buren and Robinson (1969) pointed out that tannins interact with proteins to form 

soluble and insoluble complexes and act as enzyme inactivators, thus affecting the growth of 
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animals when fed tannin sorghum. Watson (1975) reported sorghum tannins inhibit enzymic 

reactions and microbial activities which are required during the brewing of beer. Daiber (1975a) 

reported that the amylase solubility of bird-resistant sorghum cultivars was the lowest compared 

with those from non-bird-resistant sorghum cultivars and other sorghum cultivars without a dark 

testa, a correlation of r = 0.981 between enzyme inhibition and total tannin content. Gomez-

Cordoves et al. (2001) studied sorghum tannins on tyrosinase activity and growth of melanoma 

cells and revealed that sorghum tannins have a greater ability to interact with proteins causing a 

consequential decrease in enzymatic activities. 

Harris et al. (1970) determined the tannin content and in vitro protein digestibility of 43 

varieties of sorghum and reported there was a highly significant and negative correlation 

between tannin content and in vitro protein digestibility. Arora and Luthra (1974) reported that 

there was a significant negative correlation between tannin content and in vitro protein 

digestibility of 17 varieties of sorghum. They also found a significantly larger amount of 

nitrogen in the residue from in vitro protein digestibility of the tannin varieties than in the residue 

from the low-tannin varieties suggesting that the protein had become bound in the tannin 

varieties. Recently, Elkin et al. (1996) reported that condensed tannins were only partially 

responsible for variations in nutrient digestibility of sorghum grain cultivars. 

Because tannins are present in a pigmented testa layer and pericarp of sorghum, some 

physical methods (e.g. decortication) have been applied to remove them to reduce their effect on 

protein digestibility for food applications. Youssef (1998) studied protein digestibility and 

extractability from tannin and low-tannin varieties of sorghum and reported that dehulling of 

sorghum led to increased protein extractability and digestibility. The protein digestibility is not 

the only component affected by tannins. Digestibility of carbohydrates is affected by tannins as 

well. Davis and Hoseney (1979) studied the biological activity of condensed tannins of some 

varieties of sorghum on starch and reported that tannins isolated from bird-resistant sorghum 

were shown not only to inhibit α-amylase but also to bind grain starch to varying degrees. Dreher 

et al. (1984) reported that the presence of tannins in the grain contributed to the poor digestibility 

of starch in some varieties of sorghum. Little information is available on the effect of tannins on 

digestibility of amylose and amylopectin and the mechanism of interaction between starch and 

tannins in sorghum. Rebole (1994) reported that condensed tannins cause a decline fiber 

digestibility and organic matter digestibility in ruminant nutrition. 
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Effect of Tannins on Grain Sorghum Fermentation 

Tannins’ astringent taste, inhibition enzymes, and negative effects on protein and starch 

digestibility limit their applications. Tannin is the primary nutrient-limiting component in grain 

sorghum. High levels of condensed tannins can reduce starch and protein digestibility up to 10% 

(Leeson and Summers 1997). The activities of intrinsic enzymes in tannin genotypes were lower 

than those in low-tannin genotypes (Ratnavathi and Sashidhar 2000). 

Since tannins are located in the testa layer of the pericarp, milling processes can remove 

them easily. Decortication was used to remove tannins from tannin sorghum in order to improve 

fermentation performance (Perez-Carrillo et al 2008). Dehulling also was used to reduce tannins 

inhibition on proteases and increase protein digestibility by Chibber et al. (1980). Wood ash is 

used in traditional treatment in Africa to reduce the level of tannin in brown sorghums and 

improve the nutritional quality (Muindi and Thomke 1981). Hassan and El Tinay (1995) reported 

that fermentation improved starch and protein digestibilities of tannin sorghum and decreased 

tannin content. Waichungo and Holt (1995) studied the use of ammonium hydroxide to treat 

tannin grain sorghum and found the level of assayable tannin in tannin sorghum decreased. 

Germination was also found to decrease tannin content in sorghum (Osuntogun et al 1989). 

Because tannins bind with proteins and inactivate malt enzymes, tannin sorghum is not 

preferred and screened for sorghum malt production in most of Africa (Taylor and Dewar 2000; 

Waniska et al 1992). However, Daiber (1975a) revealed that it was essential to inactivate tannins 

to prevent the subsequent inhibitory effects of tannins during brewing. Daiber (1975b) patented a 

process of inactivating tannins by soaking sorghum grain in a very dilute solution of 

formaldehyde for 4 to 6 hr at the beginning of steeping for tannin sorghum malting. Actually, 

alkaline, and lime water, dilute aqueous ammonia have been used to inactivate tannins in 

different regions where sorghum is used for staple cereal (Dewar et al 1997a; Okolo and Ezeogu 

1996; Price and Butler 1979; Rizley and Suter 1977; Waichungo and Holt 1995). Mullins and 

NeSmith (1986) studied the ethanol fermentation from bird-resistant and non-bird-resistant grain 

sorghum and reported high tannin levels greatly reduce the rate of ethanol production. Tannins 

affect the availability of sufficient nitrogen for yeast and reduce the ethanol fermentation rate. 
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Rationale and Significance 

With the growth of population and the development of industry, needs for energy grow 

and other sources of energy are sought. Today, society looks at the sustainability of the present 

model or resource consumption, and the use of renewable sources appears as a feasible 

alternative. Ethanol fuel as a gasoline alternative has been experiencing a significant increase in 

production and production capacity in the United States in recent years. The availability of 

ethanol at the fuel pump is becoming more prevalent because of U.S. mandates for ethanol, 

which create strong demand and rapid growth in the ethanol industry. The Energy Independence 

and Security Act of 2007 expanded the Renewable Fuels Standard (RFS2). The expected annual 

ethanol production will grow to 15 billion gallons by 2012 and 36 billion gallons by 2022. In the 

U.S., currently corn is the dominant starch-based feedstock for bioethanol. However, to revive 

the economy, to sustain the environment, and to meet the high demand for ethanol in the U.S., 

alternative feedstocks for bioethanol have to be sought. 

It is very important to select the feedstock for ethanol production from economic and 

agronomic points of view. Currently, in the United States, ethanol is mainly produced from 

starch-based crops — corn. In 2009, approximately 96% of the 10.75 billion gallons ethanol was 

produced from corn (USDA-NASS). However, to meet the high demand of renewable ethanol in 

the U.S., the door is opened for other starch-based feedstocks as alternatives for bioethanol 

production. 

Sorghum is an annual plant that can grow at harsh climate conditions, requires few 

fertilizers and pesticides, and has minimal water requirement. In addition, it has a high 

photosynthetic efficiency (2-3%) and high productivity. Sorghum as an ethanol feedstock is a 

new and growing market in the U.S. Both producers of sorghum and ethanol need to take 

advantage of this tremendous opportunity in using grain sorghum as an ethanol feedstock to 

boost local and state economies and meet the national ethanol requirement. The variability of 

grain sorghum is large because the crop is grown under diverse climate conditions which affect 

the grain composition. Also, the varieties are many in grain sorghum (e.g. normal sorghum, 

heterowaxy, waxy, tannin-free sorghum, low tannin sorghum, and tannin sorghum). 

Biological production of ethanol is accomplished by yeast through fermentation of 

glucose. All agricultural crops and crop residues containing carbohydrates can be used in the 

production of ethanol. Therefore, three types of agricultural feedstocks are available for ethanol 
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fermentation: sugar crops (e.g. sugarcane, sugar beets, sweet sorghum); starch crops (e.g. corn, 

wheat, barley, rye); and lignocellulosic residues (e.g. crop residues, forage crops, grass and 

trees). Grain sorghum is one of starch crops that could be used for ethanol production. 

Sorghum can produce almost the same amount of ethanol per bushel as corn using the 

same production process – dry grind. Current corn ethanol plants with dry grind process could 

use grain sorghum as feedstock without any modification in the ethanol production and could 

decrease their input cost because sorghum is cheaper than corn. Also, the states of major 

sorghum production could establish sorghum ethanol plants to support local farmers, to sustain 

the local economy, and to boost the nation’s ethanol demand. 

Theoretically, germination and natural sprouting could provide plenty of free amino 

nitrogen for ethanol fermentation. Yeast is a workhorse for ethanol production. Yeast needs 

nutrients to keep it working for ethanol conversion. Currently, almost 100% of industrial scale 

ethanol production uses yeast to convert sugars from starch-rich or sugar-rich biomass to ethanol. 

The availability of yeast food is vital to yeast growth and working efficiency during 

fermentation. Free α-amino nitrogen (FAN) is an essential nutrient for yeast growth during 

fermentation (Pickerell 1986; Taylor and Boyd 1986). During fermentation, yeast takes up 

fermentable sugars for ethanol production as well as nutrients (amino acids, mineral and 

vitamins) for its own invertase and permeases, which are responsible for sugar transportation and 

conversion. In this case, the fermentation efficiency of germinated/sprouted grain sorghum will 

be much higher than normal sorghum grain feedstock. Therefore, the fermentation process could 

be shortened to save energy input, which provides scientific information for ethanol industry. 

Sorghum has a large variable genus with many cultivars. A large number of varieties of 

sorghum exist and more are being developed through plant breeding for selecting and 

concentrating desired characteristics in new varieties for food and feed applications (Rooney and 

Serna-Saldivar 2000). New sorghum cultivars could be developed for ethanol fermentation when 

the scientific information is correct. Therefore, more research has to be done on different 

cultivars of grain sorghum as ethanol feedstocks. 

More studies should be conducted to 1) investigate the fermentation performance of waxy 

grain sorghum for ethanol production as well as the relationship among the physical properties, 

chemical composition, and thermal properties on ethanol yield and fermentation efficiency; 2) to 

investigate the effect of germination on tannin grain sorghum ethanol yield and fermentation 
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efficiency; 3) to investigate physicochemical and biochemical characteristics of field-sprouted 

grain sorghum and its fermentation performance on ethanol yield; and 4) to evaluate the 

performance of pretreatment on improvement of grain sorghum as feedstock for ethanol 

fermentation. The proposed research would provide scientific information and knowledge which 

will benefit both sorghum breeders and the sorghum bio-industry. Results from this research 

would lead to capabilities to improve the efficiency of sorghum bioconversion processes; 

increase sorghum bioconversion yield to biofuels; and enhancement of the economy and rural 

development, especially across the many sorghum-growing states. 
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Chapter 2 - Evaluation of Waxy Grain Sorghum for Ethanol 

Production1 

Abstract 

The objective of this research was to investigate the fermentation performance of waxy 

grain sorghum for ethanol production. Twenty-five waxy grain sorghum varieties were evaluated 

using a laboratory dry-grind procedure. Total starch and amylose contents were measured using 

colorimetric procedures. Total starch and amylose content ranged from 65.4 to 76.3% and 5.5 to 

7.3%, respectively. Fermentation efficiencies were in the range of 86-93%, corresponding to 

ethanol yields of 2.61-3.03 gallons/bushel. The advantages of using waxy sorghums for ethanol 

production include less energy consumption during the cooking process, higher starch and 

protein digestibility, higher free amino nitrogen content, and shorter fermentation times. The 

results showed a strong linear relationship between free amino nitrogen content and fermentation 

rate. Fermentation rate increased as free amino nitrogen content increased, especially during the 

first 30 hr of fermentation (R2 = 0.90). Total starch content in distillers dried grains with solubles 

(DDGS) was less than 1% for all waxy varieties. 

Introduction 

Unlike wheat, corn, and rice, grain sorghum is a starch-rich cereal that can be grown 

economically in the semi-arid regions of the world. In the United States, sorghum is the second-

ranking feed grain and is cultivated primarily in the Great Plains, including the Midwest and the 

Southwest. Although it is primarily used as feed in the United States, grain sorghum has been 

reported in wide uses such as wall board, fermented beverages, traditional foods (porridges and 

flat breads), conventional pan bread for gluten-free markets (Owuama1997; Rooney and Serna-

Saldivar 2000; Schober et al 2005; Taylor et al 2006). Sorghum utilization by the ethanol 

industry has been growing in the United States in recent years (RFA 2007; Sarath et al 2008). 

Currently, about 95% of the US fuel ethanol is produced from corn and ~4% is from sorghum 

grain, which uses 30-35% of the total sorghum production in the United States (Kubecka 2011; 

                                                 
1 Manuscript has been submitted to Cereal Chemistry. 
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USDA-NASS, 2011). Sorghum could make a larger contribution to the nation’s fuel ethanol 

requirements (Farrell et al 2006; Rooney et al 2007; Wu et al 2007). 

Overall, sorghum composition is similar to corn. Starch is the major grain component 

followed by protein. Most sorghum starches contain 20-30% amylose and 70-80% amylopectin, 

but waxy and heterowaxy sorghums contain 0-15% amylose and 85-100% amylopectin (Rooney 

and Serna-Saldivar 2000). Starch content in grains is a good predictor for ethanol yield 

(Lacerenza et al 2008; Zhao et al 2009). The presence or absence of amylose may influence 

ethanol yield and conversion efficiency. Wu et al (2007) reported that low amylose content in 

sorghum grain may be associated with increased ethanol conversion efficiency. One of the aims 

for this study, which was conducted on 25 varieties of waxy grain sorghum, was to investigate 

further whether ethanol yield and fermentation efficiency were influenced by the ratio of 

amylose and amylopectin in waxy grain sorghums. 

Both ethanol yield and fermentation efficiency have been studied to evaluate the 

performance of grain sorghum in ethanol production (Wu et al 2007). Recent research has shown 

that the key factors affecting the ethanol yield from grain sorghum include grain hardness, starch 

content, starch digestibility, level of extractable proteins, protein and starch interaction, mash 

viscosity, amount and types of phenolic compounds present in sorghum, amount of amylose, and 

formation of amylose-lipid complexes during mashing, (Wu et al 2007; Wang et al 2008; Yan et 

al 2009; Zhao et al 2008). Sorghum as a raw material can be converted to ethanol with a wide 

range of efficiency (Wu et al 2007).  

Currently, almost 100% of industrial ethanol is produced by yeast from starch-rich or 

sugar-rich biomass. The availability of yeast food is vital to yeast growth and working efficiency 

during fermentation. As such, most yeast fermentation systems need nutrient supplementation. 

Yeast uptakes not only fermentable sugars for ethanol production, but also nutrients (amino 
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acids, mineral and vitamins) for its own growth and functional maintenance (e.g. levels of 

invertase and permeases), which are responsible for sugars transportation and conversion. Free 

α-amino nitrogen (FAN) is an essential nutrient for yeast growth during fermentation (Pickerell 

1986; Taylor and Boyd 1986). Protein is the second major component in grain sorghum. Protein 

degradation could provide nitrogen for yeast growth during fermentation. Recent research has 

found that ethanol yield and conversion efficiency significantly increased as free α-amino 

nitrogen increased in laboratory-germinated and field-sprouted grain sorghum (Yan et al 2009; 

Yan et al 2010). Yeast can only utilize free amino nitrogen and short peptides, not large intact 

proteins. Much research has been conducted on protein and protein digestibility for ethanol 

fermentation from grain (Lacerenza et al 2008; Pérez-Carrillo and Serna-Saldívar 2007; Perez-

Carrillo et al 2008; Wang et al 2005; Wu 1989; Zhao et al 2008), but little research has been 

conducted on the effect of free amino nitrogen on the conversion efficiency of sorghum varieties 

in ethanol fermentation. 

Sorghum is a large, variable genus with many cultivars. A large number of varieties of 

sorghum exist and more are being developed through plant breeding to select and concentrate 

desired characteristics in new varieties for food and feed applications (Rooney and Serna-

Saldivar 2000; Mace and Jordan 2010). We believe genetically improving the quality of grain 

sorghum for ethanol production could increase the utilization of sorghum for ethanol production 

in the near future. 

The main objective of this research was to investigate the fermentation performance of 

waxy grain sorghum for ethanol production 
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Materials and Methods 

Grain Sorghum 

Twenty-five waxy grain sorghum varieties were from the USDA-ARS-NPA, Grain, 

Forage, and Bioenergy Research Unit (Lincoln, NE). The origin of these waxy varieties was 

collected from ten different countries around the world and the seeds of these accessions were 

increased by the USDA-ARS in Nebraska (Pedersen et al 2007). Detail sample information is 

listed in Table 2.1. The samples were manually cleaned by removing plant debris and foreign 

materials, and then were ground to flour using an Udy cyclone sample mill (Udy, Fort Collins, 

CO) with 1.0 mm screen. 

Preparation of Mashes and Inoculation of Yeast 

Liquozyme SC DC, a heat-stable α-amylase from Bacillus licheniformis was used for 

liquefaction (Novozyme, Franklinton, NC). The listed enzyme activity was 240 KNU/g (one 

Kilo Novo Unit, or KNU, is the amount of enzyme that breaks down 5.26 g of starch per hr at 

Novozyme’s standard method for determination of α-amylase). Spirizyme Fuel (Novozyme, 

Franklinton, NC), an amyloglucosidase from Aspergillus niger, was used for saccharification. Its 

listed enzyme activity was 750 AGU/g (one AGU is the amount of enzyme that hydrolyzes 1 

µmol of maltose per minute under specified conditions). Ethanol red active dry yeast (S. 

cerevisiae), a gift from Fermentis (Milwaukee, WI), was used for simultaneous saccharification 

and fermentation (SSF). Before inoculation, dry yeast was activated by adding 1.0 g of dry yeast 

cells into 19 mL of preculture broth (containing 20 g glucose, 5.0 g peptone, 3.0 g yeast extracts, 

1.0g KH2PO4, 0.5 g MgSO4·H2O per liter) and shaking at 200 rpm in a 38°C incubator for 30 

min. The activated yeast culture had a cell concentration of roughly 1×109 cells/mL. 

Thirty grams (db) of sorghum flour for each sample was dispersed in 100 mL of water 

(containing 0.1 g KH2PO4 and preheated to about 60°C) in a 250-mL Erlenmeyer flask. Twenty-

µL of high-temperature α-amylase (Liquozyme, 240KNU/g) was added into the sorghum flour 

slurry. The flasks were transferred to a 70°C water-bath shaker operating at 170 rpm. The water-

bath temperature was gradually increased from 70°C to 85°C over a 30 min period. The 

liquefaction process continued at 85°C for another 60 min. The flasks were then removed from 

the water-bath shaker and cooled to room temperature. Materials sticking to the inner surface of 

the flasks were scraped back into the mash with a spatula, then the inner surface was rinsed with 
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2-3 ml of distilled water using a fine-tipped polyethylene transfer pipette. The pH of the mashes 

was adjusted to 4.2-4.3 with 2N HCl. After pH adjustment, 100 µL amyloglucosidase (Spirizyme 

Fuel), 1 mL of activated yeast broth, and 0.3 g of yeast extract (1 mL of fresh prepared 30% 

yeast extract solution) were added to each flask. The inoculated flasks were then sealed with S-

shaped airlocks and transferred to an incubator shaker for ethanol fermentation (SSF). All 

samples were run in duplicate. 

Fermentation and Distillation 

Ethanol fermentation was conducted at 30°C in an incubator shaker (Model I2400, New 

Brunswick Scientific, Edison, NJ) operating at 150 rpm for 72 hr. The fermentation process was 

monitored by measuring the weight loss from evolution of carbon dioxide (CO2) during 

fermentation. The weight loss was related to ethanol yield during fermentation (C6H12O6 → 

2C2H6O + 2CO2
↑). The ratio of ethanol to carbon dioxide is theoretically 51:49. 

After 72 hr fermentation, finished mash in each 250 mL flask was entirely transferred to a 

500-mL distillation flask and the Erlenmeyer flask was washed 4 times with 100 mL (25 mL×4) 

of distilled water. Two drops of antifoam agent 204 was added into distillation mash to prevent 

foaming during distillation. The contents were distilled on a distillation unit and the distillates 

were collected into a 100-mL volumetric flask that was immersed in ice water. When the 

distillates in the volumetric flask approaching the 100mL mark (<0.5 mL to the mark), the 

volumetric flask was removed from the distillation unit and the distillation process was stopped. 

The distillates in the volumetric flask were equilibrated for a few hrs in a 25°C water bath, then 

brought to the 100 mL mark with distilled water. Ethanol concentrations in the distillates were 

analyzed by HPLC with a Rezex RCM column (Phenomenex, Torrance, CA) and refractive 

index detector (Wu et al 2006). 

Morphological Structure of Waxy Grain Sorghum 

The microstructures of waxy sorghum kernels were examined using a scanning electron 

microscope (SEM) with an accelerating voltage of 5.0 kV (Hitachi S-3500N, Hitachi Science 

Systems, Ltd., Japan). Samples were vacuum-coated with a mixture of 60% gold and 40% 

palladium particles using sputter coater-Desk II sputter/etch unit (Denton Vacuum, LLC, NJ). 
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Single Kernel Characterization and Particle Size Analysis 

Kernel hardness, kernel weight, and kernel size of waxy sorghum samples were analyzed 

by using the single kernel characterization system 4100 (SKCS) (Perten Instruments, Springfield, 

IL) controlled by Microsoft Windows software SK4100. The reported data were the means of 

300 kernels. 

The particle size of ground sorghum flour were measured by an LS 13 320 single 

wavelength Laser diffraction particle size analyzer (PSA) with Tornado dry powder system 

(Beckman Coulter Inc., Miami, FL). Samples were run in duplicate. 

Pasting Properties 

Pasting properties of the sorghum flour samples were measured using a Rapid-Visco-

Analyzer (model RVA-3D, Newport Scientific Ltd., Australia). For sample preparation, 4 g of 

sorghum flour (14% moisture basis) and distilled water (25 mL) were added to an aluminum 

canister at room temperature. A plastic paddle was inserted into the canister, jogged and rotated 

manually for about 30 sec to break up any lumps. The paddle (with the sample canister) then was 

attached to the electric motor in the head of RVA. The sample was premixed by initially running 

the motor at 960 rpm for 10 sec, then, the motor was slowed to a speed of 160 rpm for the rest of 

the test. The standard 23-min profile of AACC Method 76-21 (AACC International 2009) was 

followed for sample testing. Each sample was analyzed in duplicate. 

Thermal Properties 

Differential scanning calorimetry (DSC-Pyris 1, Perkin-Elmer, Norwalk, CT) 

measurement was conducted and calibrated with indium. Sorghum samples were weighed 

accurately (~10 mg) into stainless steel pans using a microbalance. Deionized distilled water was 

added carefully with a micropipette into the sample pan. The weight ratio of water to dry flour 

was 3:1. The pans were sealed and allowed to rest for about 1 hr. Samples were analyzed at 

heating and cooling rates of 10°C/min. The temperature regime consisted of heating from 25°C 

to 150°C with an initial 1-min hold. Data from the DSC scans were analyzed using Pyris 

software for Windows (v.7.0). Enthalpies are reported on a dry flour weight basis. Each sample 

was analyzed at least in duplicate. 
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Protein Digestibility 

Protein digestibility was determined by following the method of Mertz et al (1984) with 

modification: 200 mg of sorghum samples were suspended in 35 ml of pepsin solution (1.5g of 

enzyme/L of 0.1 M potassium phosphate buffer, pH 2.0) and incubated with vigorous shaking at 

37°C. Pepsin (Sigma P-7000; activity 924 units per mg of protein) digestion was stopped by 

addition of 2 mL of 2 M NaOH at the end of 2-hr digestion course. After centrifugation at 4,000 

×g for 15 min, the supernatant was discarded, and the residue was washed in 10 mL of 0.1 M 

phosphate buffer (pH = 2.0) and centrifuged as before. After the second washing and 

centrifugation, the residue was frozen, then lyophilized. The freeze-dried residue was then 

weighed and analyzed for nitrogen content. 

Analytical Methods 

AOAC Official Methods were used to analyze sorghum flour samples for dry 

matter/moisture (930.15), crude protein (990.03), ash (942.05), crude fiber (962.09), and crude 

fat (920.39) (AOAC International 2000). Total starch and amylose contents were measured using 

colorimetric assay procedures (Megazyme total starch and amylose/amylopectin kits, procedures 

are available at URLs http://secure.megazyme.com/downloads/en/data/K-TSTA.pdf and 

http://secure.megazyme.com/downloads/en/data/K-AMYL.pdf). The presence of amylose in the 

waxy sorghum kernels was qualitatively examined using the iodine staining techniques 

(Pedersen et al 2004). Free amino nitrogen (FAN) was analyzed by using the European Brewery 

Convention (EBC) method (EBC 1987) with modification. One hundred fifty mg grain sorghum 

flour was mixed with 1.5 mL deionized distilled water in a 2.5-mL microcentrifuge tube and 

vortexed 5 times in 10 min, then centrifuged at 12,000 rpm for 20 min. The supernatant was then 

ready for FAN analysis. A tannin bleach test followed the Xiang method (2009). Glucose, 

glycerol, and ethanol in samples were determined by HPLC (Shimadzu Scientific Instruments, 

Columbia, MD) according to the method described by McGinley and Mott (2008). The column 

used was a Rezex ROA column (Phenomenex, Torrance, CA) and the detector was refractive 

index detector (model RID-10A, Shimadzu) maintained at 40°C. The mobile phase was 5 mM 

sulfuric acid at a flow rate of 0.6 mL/min and the oven temperature was 65°C. HPLC data were 

analyzed using Shimadzu EZStart 7.4 software. Fermentation efficiency was calculated as a ratio 
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of the actual ethanol yield (determined by HPLC) to the theoretical ethanol yield (calculated 

from the total starch content in the sample) (Yan et al 2009). 

Statistical Analyses 

All experiments were performed at least in duplicate. The tabular results presented were 

the mean values of repeated experimental data. 

Results and Discussion 

As clearly indicated by the major components of the samples from proximate analyses, 

the waxy sorghum samples used in this project had very diverse genetic background and physical 

and chemical properties and such . Normal cultivars on the market have starch content of 72-

76% (db) and protein content of around 12% (db). The starch content of these samples ranged 

from 65% to 76% (db), their protein content was from 12% to 15.8% (db). Details of the 

proximate analysis results are listed in Table 2.1. 

Effect of Starch on Ethanol Production 

Figure 2.1 shows correlation between total starch content and ethanol yield from 

fermentation of 25 waxy grain sorghum samples. Ethanol yield (gallons/bushel) was linearly 

correlated with total starch content (R2=0.7946). This result is in agreement with those reported 

by Wu et al (2007) and Lacerenza et al (2008). Sorghum cultivars with high starch and low 

protein contents are cultivars of choice for fuel ethanol production. Wu et al (2008) reported that 

higher starch content means higher ethanol yield, better processing efficiency, and less residues 

after fermentation, therefore, total starch content of waxy grain sorghum can be a predicator for 

ethanol yield. Average ethanol yield from waxy grain sorghum is similar to corn (Lemuz et al 

2009). Although the sorghum samples tested in this study have diverse genetic backgrounds, 

which translate into different starch and protein contents, the ethanol yields ranged from 2.6 to 

3.0 gallons per bushel, with an average of 2.8 gallons per bushel. 

Endosperm of waxy grain sorghum contains little or no amylose when tested by rapid 

iodine staining techniques (Pedersen et al 2004). If enough amylose is present in the grain, iodine 

will bind with amylose in the endosperm of a grain kernel and turn its color into dark blue; while 

waxy grains contain no or little amylose, it will turn reddish brown (Pedersen et al 2004). The 

iodine test results showed that kernels of most waxy sorghum samples do not have enough 
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amylose, a few samples had a little higher amylose contents that the staining method barely 

detected. The Megazyme amylose assay and DSC analysis results further confirmed the iodine 

staining results. All 25 tested cultivars of waxy grain sorghum had small amount of amylose, 

ranging from 5.5% to 7.3%. Fortunately, amylose content in waxy grain sorghum had no 

significant effects on ethanol yield (R2 = 0.1341, Figure 2.1). This is probably because amylose 

contents in the tested samples were all very low (<7.3%) and within a narrow range (from 5.5% 

to 7.3%, Table 2.1). The chances for such small amount of amylose to complex with lipids in 

waxy grain sorghum were lower than in normal grain sorghum.  

DSC results confirmed that only four sorghum samples (PI220636, PI217897, PI548008, 

and PI562758) out of the 25 tested waxy cultivars showed an amylose-lipid complex enthalpy 

peak at temperatures around 100°C (Table 2.2). Fermentation efficiencies of those four cultivars 

(with amylose-lipid complex peaks) were lower than those of the other cultivars (without 

amylose-lipid complex). Actually, two of these four samples (PI562758 and PI548008) had the 

lowest fermentation efficiencies of 86.0% and 87.7% among all the 25 tested samples. The 

average efficiency of all the 25 samples was 89.6%. Previous research conducted on different 

ratios of commercial amylose and amylopectin for ethanol production showed that high amylose 

content led to low ethanol yield (Wu et al 2006). In normal wheat, corn and sorghum, amylose is 

located in amorphous region of starch granules and amylopectin is in crystalline region of starch 

granules. When amylose content is high in starch granules, amylose readily can leach out of 

starch granules when the granules are absorbing water. On the other hand, higher amylose 

content also provides increased amylose-lipid complex formation that inhibits swelling of starch 

granules. In waxy varieties, amylose content is low, and there is little amylose leaching out from 

starch granules when they are absorbing water. Thus, amylose in waxy grain sorghum flour does 

not significantly affect starch granules among waxy varieties. RVA pasting profiles of waxy 

grain sorghum flour shows a lower pasting temperature and higher peak viscosity than normal 

sorghum starch. Hence, the small amount of amylose in waxy grain sorghum does not have 

significant effect on the dry grind ethanol process and final ethanol yield. 

Two common phenomena were observed when waxy grain sorghum kernel was scanned 

with SEM (Figure 2.2). One was the feature of kernel texture (low magnification, 500x) and the 

other was features of starch granules (high magnification, 5000x). Figure 2.2A shows there are a 

lot of cracks on the kernel, the cracks may render waxy grain kernels easier to be ground and 
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generate more damaged starches in the flour. The SKCS and PSA data showed that the hardness 

index (average of 88.6) of waxy sorghum was similar to that of normal sorghum (87.7) (Pedersen 

et al 1996) and significantly lower than that of corn (Abdelrahman and Hoseney 1984), and can 

be more easily ground into fine particles, which implies less energy consumption for grinding 

and higher conversion rate in mashing and ethanol yield in fermentation. In previous research, 

Abdel-Aal et al (2002) reported there were more damaged starches in waxy wheat and waxy corn 

flour than those from normal wheat and corn. Waxy sorghum starches probably share the same 

properties with waxy wheat and waxy corn. Figure 2.2B shows many holes in waxy starch 

granules, which obviously make waxy starch granules more susceptible to enzymatic digestion 

because water and enzymes can more easily enter starch granules through these pores. The 

results are in agreement with the conclusion drawn by Sullins and Rooney (1975). That is, waxy 

starch granules were more susceptible to enzymes degradation than non-waxy starch granules. 

Sullins and Rooney (1975) also found waxy grain sorghum had a less dense peripheral 

endosperm than non-waxy grain sorghum. The waxy sorghum flours, however, absorbed 

significantly more water than did normal sorghum flours, which could be explained by the 

presence of pores on the waxy starch granules. Wu et al (2007) reported that waxy sorghum 

cultivars had higher conversion efficiency in the laboratory dry-grind ethanol process than non-

waxy cultivars because waxy starches were more easily hydrolyzed and gelatinized during 

mashing process. Data from this study came to the same conclusion as Wu et al did (2007). 

Effect of Free Amino Nitrogen on Ethanol Production 

Researchers have found one of the factors limiting the production of high levels of 

ethanol by brewing yeast to be nutritional deficiency (Casey and Ingledew 1986). When a 

nitrogen source is supplemented in the fermentation system, the nutritional supplement can 

promote the rapid fermentation to higher ethanol level without the need to genetically improve 

yeast. Therefore, free amino nitrogen in the original sample is crucial to yeast performance. A 

strong positive linear relationship between fermentation efficiency at the 30th hr of fermentation 

and free amino nitrogen content in the original samples was observed in this study (Figure 2.3), 

but by the end of fermentation, no linear correlation was found between free amino nitrogen 

contents in the original samples and the final fermentation efficiency. Sufficient free amino 

nitrogen in the fermentation mash is critical to yeast cell growth and proliferation during the 
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early stage of fermentation. The higher the free amino nitrogen levels in finished mash, the faster 

the fermentation process. Because almost all the sugars in the tested samples were converted into 

ethanol, the final fermentation efficiencies among the samples at the end of fermentation were 

very close. Our previous research strongly supports the effects of free amino nitrogen on ethanol 

fermentation efficiency from field-sprouted sorghum (Yan et al 2010). Casey et al (1984) made 

the same conclusion about the effect of free amino nitrogen on fermentation efficiency of high-

gravity brewing from wheat. Therefore, free amino nitrogen content in a sample could be a 

useful indicator of a sample’s performance in ethanol fermentation. Data from our previous 

studies (Yan et al 2009, 2010) showed similar results, which agree with results reported by 

several other investigators (Lekkas et al 2005; Casey et al 1984). Mullins and NeSmith (1987) 

studied ethanol fermentation using tannin sorghum and revealed that the addition of nitrogen 

accelerated ethanol fermentation rate. 

Effect of Protein Digestibility on Ethanol Production 

Protein digestibility has been used as a quality indicator for human foods and animal 

feeds. A protein with high digestibility potentially has better nutritional value than those with 

low digestibility. The protein digestibility of sorghum has been studied extensively in vitro using 

pepsin because the in vitro pepsin digestibility results correlate well with in vivo digestibility 

results (Maclean et al 1981), which make sense because human and animal produce pepsin in 

their digestion tracts. In contrast, yeast does not produce any exoprotease for ethanol 

fermentation. However, Wang et al (2008) reported a strong linear correlation between protein 

digestibility of some normal grain sorghum samples and their fermentation efficiency in ethanol 

production. The same protein digestibility methodology was applied in this study for waxy grain 

sorghums. The ethanol fermentation data on waxy sorghum samples showed that fermentation 

efficiency in the laboratory dry-grind process did not show any linear correlation with protein 

digestibility (R2 = 0.0093) (Figure 2.4). The presence of tannins in some of the sorghum cultivars 

used in this study could be the main cause for such a divergence. Tannins have been related with 

lowering starch digestibility by inactivating amylases (Davis and Hoseney 1979). The same 

phenomenon of enzyme inactivation may be applied here to pepsin in protein digestibility test. 

Protein hydrolyzing activity of pepsin in the digestibility test could have been inhibited by the 

tannins in the tested samples. A qualitative tannin test (bleach test) revealed that 16 of the 25 
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tested waxy cultivars contained tannins. Although yeast itself does not produce exoproteases 

during normal fermentation process, addition of proteinases during mashing or the SSF process 

nevertheless can generate favorable results (increasing fermentation rate, cell tolerance to ethanol, 

and final ethanol yield) because hydrolysis of proteins in the raw materials might help with the 

release of more starch granules from the protein matrix and increase free amino nitrogen content 

in the mash (Perez-Carrillo et al 2008; Thomas and Ingledew 1990), which will facilitate yeast 

growth, increase ethanol fermentation rate and ethanol fermentation efficiency. 

Effect of Tannins on Ethanol Production 

Sorghum tannins have attracted great attention from a number of researchers because of 

their effects on product yield and quality, processing properties, starch and protein digestibility, 

and health (Beta et al 2000; Dlamini et al 2009; Serrano et al 2009; Wang et al 2008). Wu et al 

(2007) claimed that sorghum tannins retarded the liquefaction process during mashing and 

resulted in high viscosity mash, slow starch-to-glucose conversion, and lower conversion 

efficiency. The data showed that ethanol yields and fermentation efficiencies of tannin waxy 

sorghums were 2-3% lower than those of waxy sorghums without tannins. Mullins and NeSmith 

(1986) studied ethanol fermentation from bird-resistant and non-bird-resistant grain sorghum and 

reported that high tannin levels greatly reduced the rate of ethanol production. Evidently the rate 

of ethanol production was much slower from bird-resistant grain sorghum than from non-bird-

resistant grain sorghum because tannins partially inhibited the activities of amylases and glucose 

was generated at a much slower rate in the bird-resistant grain sorghum mash. On the other hand, 

tannins could cause sorghum protein crosslinking during heating or cooking and prevent starch 

granules from absorbing water and enzymatic degradation (Duodu et al 2003). 

Chemical Composition of Distillers Dried Grains with Solubles (DDGS) 

DDGS is a by-product from ethanol production and is typically used as animal feed. The 

nutritional composition is critical to buyers. Table 2.3 shows the major components of DDGS 

from waxy and non-waxy grain sorghum varieties (Saunder and Rosentrater 2009; Stein and 

Shurson 2009; Urriola et al 2009; Wu and Sexson 1984). Residual starch contents in industrial 

corn or sorghum DDGS are around 5%. DDGS from normal grain sorghums using a laboratory 

dry-grind ethanol process had 1-2% starch. The residual starch contents in DDGS from waxy 

grain sorghum samples in this study were much lower, only around 0.5%, which means that 
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starch in waxy grain sorghum was more efficiently used for ethanol production than that in 

normal grain sorghum. Researchers have shown that waxy cereals contain elevated lipid and ash 

contents compared with their normal counterparts. Because waxy sorghum generally has higher 

protein content than corn and normal sorghum and starch in waxy sorghum is more efficiently 

utilized in ethanol production, DDGS from waxy sorghum will have higher crude protein, crude 

fat, and ash content than DDGS from normal grains (Saunders and Rosentrater 2009). Because 

the major market for DDGS right now is the animal feed industry, higher protein content means 

better quality, broader application, and possibly better market price.  

Conclusion 

This ethanol production study on waxy grain sorghum varieties demonstrated that ethanol 

yields from waxy sorghums were essentially proportional to their starch contents. Amylose 

contents in the tested waxy sorghum samples were very low and had little effect on ethanol yield 

and fermentation efficiency. Ethanol yields from the tested waxy grain sorghums were around 

2.8 gallons/bushel, which is similar to that reported for corn. The fermentation efficiency was 

greatly affected by free amino nitrogen content in waxy sorghums, which had a strong positive 

linear correlation with early stage (the first 30-36 hr) fermentation efficiency. Tannins were 

found in most of the tested waxy sorghums and had negative effects on ethanol yield and 

fermentation efficiency. DDGS from waxy sorghums had higher protein but lower starch 

contents, which implies better quality and makes the products more attractive to the animal feed 

industry. 
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Figure 2.1. Relationship between amylose contents and ethanol yield (top); starch contents of 

waxy grain sorghum and fermentation efficiency and ethanol yields (bottom). 
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Figure 2.2. SEM images of waxy grain sorghum endosperm (A) showing cracks and starch 

granules (B) with many fine pores. 

 

  

A: Cracks in endosperm starch granules  B: Many fine pores in starch granules  
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Figure 2.3. Linear correlation between free amino nitrogen contents (mg/L) in original sorghum 

samples and fermentation efficiency of waxy grain sorghum at 30th hr of fermentation. 
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Figure 2.4. Relationship between ethanol fermentation yield and protein digestibility of tested 

sorghum samples. 
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Table 2.1. Sample information and contents of major components (%, db) from proximate analysis 

Accession # Local name Origin GBSS Allele Amylose Starch Protein* Fat Fiber Ash Effic. Tannin 
PI 220636  Nai-Shaker  Afghanistan  no wxa 6.6±0.57 66.80 14.46 6.56 1.56 2.64 88.4 + 
PI 23231  Brown Kaoliang  China  yes wxb 6.8±0.38 67.46 13.75 5.02 2.22 2.01 89.4 + 
PI 548008  Huang Ke Jiao  China  no wxa 5.5±0.70 68.74 15.09 4.98 1.52 2.54 87.7 + 
PI 563576  LV 129  China  no wxa 6.9±0.87 68.38 15.80 5.70 1.59 2.38 89.8 − 
PI 563670  L 1999B-17  China  yes wxb 6.2±0.20 76.34 11.22 3.78 1.75 1.85 88.3 − 
PI 563671  L 1999B-18  China  yes wxb 5.8±0.90 72.41 12.40 3.60 1.98 1.94 90.3 − 
PI 586524  IS 27929  China  no wxa 6.2±0.35 69.88 13.53 5.21 1.86 2.16 89.6 + 
PI 586526  IS 27931  China  no wxa 7.0±0.15 69.48 12.40 5.37 1.75 1.89 90.6 + 
PI 586529  IS 27935  China  no wxa 6.7±0.45 66.79 14.29 5.69 1.55 1.72 92.2 + 
PI 455543  ETS 3634  Ethiopia  no wxa 6.6±0.15 70.76 13.60 5.35 1.53 2.01 89.4 − 
PI 586448  Cody  Hungary  no wxa 5.8±0.64 75.19 12.02 4.81 1.77 1.96 89.9 − 
PI 586454  Leoti  Hungary  no wxa 6.8±0.72 67.71 14.17 5.11 1.80 2.12 89.1 + 
PI 217897  305 Indonesia  yes wxb 5.9±0.20 68.94 12.02 5.18 1.61 1.71 89.9 + 
PI 234456  Unknown Japan  no wxa 6.4±1.12 71.30 12.15 4.94 1.58 1.75 90.2 + 
PI 82340  Kaoliang-WX  Korea  no wxa 6.5±0.30 72.30 12.34 4.23 1.89 2.09 88.3 + 
PI 87355  Bomususu  Korea  no wxa 6.1±0.40 69.71 14.40 5.17 1.88 2.14 89.9 + 
PI 88004  Susu zairai shu  Korea  no wxa 6.1±0.59 69.23 13.68 5.04 1.63 2.16 88.8 + 
PI 563015  Kaura Mai Faran Kona  Nigeria  no wxa 6.6±0.51 65.36 15.46 5.64 1.75 1.93 88.4 + 
PI 567803  Yungju South Korea no wxa 7.0±0.35 67.19 13.51 5.46 1.57 2.06 91.7 + 
PI 567809  Unknown South Korea no wxa 6.6±0.38 67.55 14.29 5.27 1.51 1.82 90.9 + 
PI 567811  Unknown  South Korea no wxa 7.3±0.20 66.80 13.43 5.09 1.70 1.97 91.3 + 
PI 562758  Basuto Red Q2-1-29  USA  no wxa 6.2±1.02 72.18 16.75 4.28 2.03 2.28 86.0 − 
PI 563068  IS 8303  USA  no wxa 6.2±0.83 71.53 14.30 3.00 2.25 2.06 88.5 − 
PI 563402  IS 10497  USA  no wxa 6.1±0.10 69.94 15.04 3.78 1.94 2.49 89.6 − 
  Ellis USA, wild no wx 6.3±0.10 72.86 13.28 4.46 1.91 1.71 90.5 − 
*: Protein contents were calculated by 6.25x N contents from the Leco method (AOAC method 990.03); Effic.= efficiency; + indicates 

presence of tannins; - indicates absence of tannins. 
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Table 2.2. Differential scanning calorimetry properties of waxy grain sorghum flour 

 

Onset Temp 

(°C) 

Peak Temp 

(°C) 

Conclusion 

Temp (°C) 

2nd Peak Temp 

(°C) 

Enthalpy of gelatinization 

(∆H,J/g) 

Min 69.91 75.59 81.47 99.00 8.19 

Max 73.51 78.13 94.38 102.6 11.88 

Mean 71.58 76.54 84.27 100.1 9.62 

Values are average of two measurements. 

Among 25 varieties, only 4 had the 2nd peak--- amylose-lipid complex. 
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Table 2.3. Chemical composition of distillers dried grains with solubles from waxy and non-

waxy grain sorghum varieties (%, db) 

Sample ID Starch Protein Lipids Fiber Ash 

Waxy 0.44-0.72 33.3-42.0 9.5-16.3 3.2-6.0 5.8-7.9 

Non-waxy 2.0-5.7 30.3-36.6 10.8-12.5 7.5-11.6 2.1-5.3 
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Chapter 3 - Germination-Improved Ethanol Fermentation 

Performance of Tannin Sorghum in a Laboratory Dry-Grind 

Process2 

 Abstract 

A tannin sorghum cultivar with 3.96% tannin content was used to study the effects of 

germination on its ethanol fermentation performance in a laboratory dry-grind process. Tannin 

sorghum sample was germinated for 3 and 4 days. Original and germinated samples were 

analyzed for tannin, starch, protein, free amino nitrogen (FAN), and glucose content. Endosperm 

structures and flour pasting properties of germinated and non-germinated sorghum samples were 

examined using a scanning electron microscope (SEM) and rapid visco analyzer (RVA). 

Germination reduced tannin content from 3.96% to negligible levels. The free fermentable sugars 

(glucose, maltose, and maltotriose) in the germinated samples were significantly higher than 

those in the non-germinated control. Judged by the starch (starch plus dextrin) and free amino 

nitrogen contents in the mashed samples, germination improved degree of hydrolysis for starch 

by 13–20% and for protein by 5- to 10-fold during mashing. Germination significantly shortened 

the required fermentation time for ethanol production by 24–36 hr, increased ethanol 

fermentation efficiency by 2.6–4.0%, and reduced the residual starch content in the distillers 

dried grains with solubles (DDGS) compared with the non-germinated control. Ethanol yield for 

the 3-day germinated samples was 2.75 gallons/bushel, which was 3.1% higher than the 2.67 

gallons for the non-germinated control. Ethanol yield for the 4-day germinated sorghum was 

2.63 gallons/bushel due to excessive loss of starch during germination. 

Introduction 

In recent years, there has been increasing interest in producing ethanol from grain 

sorghum to meet the massive demand for renewable fuel. Sorghum is one of the most important 

crops in the United States; it is the third most important cereal crop after corn and wheat based 

on production and it is more drought-tolerant than wheat and corn (U.S. Grains Council, 

http://www.grains.org/ sorghum). Because of climate diversity and continuing decline of water 

                                                 
2 This chapter has been published in 2009 in Cereal Chemistry 86:597-600. 
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resources, the use of our dry land for sorghum cultivation is becoming increasingly important 

and can help ensure sustainable economic development and rational economic distribution. 

Tannin is the primary nutrient-limiting component in grain sorghum. High levels of 

condensed tannin can reduce starch and protein digestibility up to 10% (Leeson and Summers 

1997). Ratnavathi and Sashidhar (2000) reported that activities of intrinsic enzymes in tannin 

genotypes were lower than those in low tannin genotypes. Zhan et al (2003) reported that 

extrusion reduced tannin content and increased sorghum digestibility, ethanol yield, and 

fermentation efficiency. Germination has been used to increase starch and protein digestibility 

for food applications (Evans and Taylor 1990). Germination of sorghum could activate intrinsic 

enzymes in sorghum seeds, facilitating the breakdown of starch and protein matrices, and 

resulting in increased levels of monosaccharides, oligosaccharides, and free amino acids. Free 

amino acids are essential nutrients for yeast growth and are beneficial to ethanol fermentation 

(Ratnavathi and Ravi 1991; Taylor 1983; Thomas and Ingledew 1990). Using germinated 

sorghum to produce ethanol may have advantages over the normal process using sorghum meals 

and could achieve higher ethanol yield and fermentation efficiency because of activated intrinsic 

enzymes, decreased tannin content, and increased starch digestibility in the germinated sorghum. 

A negative effect of germination is loss of fermentable sugars in respiration of the seeds during 

germination. 

The objective of this research was to investigate effects of germination on sorghum 

fermentation efficiency and ethanol yield. 

Materials and Methods 

Grain Sorghum and Germination 

A sorghum cultivar with 3.96% tannin was used. Germination was achieved by rinsing 

sorghum seeds with tap water. Seeds, covered with four layers of wet gauze, were rinsed with tap 

water for 3 min then germinated at room temperature for 3 or 4 days. During germination, 

samples were rinsed at 2-hr intervals with tap water for 1 min during daytime. After germination, 

sorghum samples were dried in an oven at 50°C for 48 hr to achieve a final moisture content of 

10% (wb). Samples for chemical analysis were milled through a 0.25-mm screen in a cyclone 

mill (Udy, Ft. Collins, CO). Samples for ethanol fermentation were ground into flour in a grain 
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mill (Magic Mill III plus, Magic Mill Products & Appliances, Monsey, NY) with particle size of 

<1 mm. 

Microorganism and Preparation of Mashes 

Yeast strain. The Saccharomyces cerevisiae strain ATCC 24860 was used for ethanol 

fermentation and was maintained on yeast extract/peptone/dextrose (YPD) agar slants sealed 

with sterile mineral oil at room temperature. The strain was subcultured to YPD agar slants and 

incubated at 25°C for 3 days before being cultured in a preculture broth (containing 20 g/L of 

glucose; 5.0 g/L of peptone; 3.0 g/L of yeast extracts; 1.0 g/L of KH2PO4, and 0.5 g/L of 

MgSO4·7H2O) for final inoculation. The 48-hr yeast culture had a cell concentration of ≈2.5 × 

108 cell/mL. 

Liquefaction. Sorghum samples (31.0–34.0 g containing 21.00 g of starch) mixed with 

distilled water (100 mL) in 250-mL Erlenmeyer flasks were liquefied using a thermostable α-

amylase, Liquozyme (240 KNU/g) from Bacillus Licheniformis (Novozymes, Franklinton, NC). 

Mash liquefaction occurred in two phases. First, mashes were combined with Liquozyme (10 µL, 

≈3 KNU) and held at 95°C in a water bath shaker (Labline microprocessor, Melrose Park, IL) for 

45 min with a rotation rate at 160 rpm. Subsequently, mash temperature was reduced to 80°C at 

which liquefaction was continued for another 30 min after the addition of more Liquozyme (10 

µL, ≈3 KNU) to each flask. 

Saccharification. After temperature of the liquefied mash was reduced to 60°C, 

glucoamylase (Spirizyme, 750 AGU/g, from A. niger, Novozymes) was added to each flask at 

150 AGU/g of starch. Flasks were kept at 60°C for 30 min in a water bath shaker rotating at 160 

rpm. Flasks with finished sorghum mashes were removed from the water bath and cooled to 

≈30°C. Mashes were adjusted to pH 4.2–4.3 with 2N HCl before inoculation with yeast. 

Fermentation 

Sorghum mashes were inoculated with 5 mL of yeast preculture (cell concentration of 

≈1.5 × 107 cells/mL), which was prepared as Wu et al (2006) described. Ethanol fermentation 

was performed at 30°C for 72 hr in an incubator shaker (model I2400, New Brunswick Scientific, 

Edison, NJ) operating at 150 rpm. Flasks were sealed with S-bubblers filled with ≈2 mL of 

mineral oil. Fermentation was conducted in duplicate. Ethanol concentrations in fermentation 

broths were determined at different time intervals and were also monitored by measuring the 
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total weights of the fermentation flasks because the weight loss by CO2 evolution is proportional 

to the amount of ethanol produced during ethanol fermentation following the method of Wu et al 

(2006). 

Pasting Properties of Sorghum Flour by RVA 

A rapid visco analyzer (model RVA-3c, Newport Scientific Ltd., Warriewood, Australia) 

was used to determine pasting properties of sorghum flours. Sorghum flour (4.0 g, 14% mc) and 

water (25 mL) were mixed at 50°C; the slurry was held at that temperature for 1 min then heated 

from 50 to 95°C. The hot paste was held at 95°C for 2.5 min, cooled to 50°C, and held at 50°C 

for 2 min. The total process was 13 min. 

Morphological Structure of Sorghum Endosperms 

Endosperm microstructures of germinated and normal sorghum seeds were examined 

using a scanning electron microscope (SEM) (Hitachi S-3500N, Hitachi Science System, Japan) 

with an accelerating voltage of 5.0 kV. Samples were vacuum-coated with a mixture of 60% 

gold and 40% palladium particles. 

Analytical Methods 

Sample moisture, starch, and crude protein contents were analyzed by using AOAC 

official methods 925.10, 996.11, and 990.03 (AOAC International 2000), respectively. A factor 

of N × 6.25 was used to calculate crude protein content. Free amino nitrogen (FAN) was 

analyzed by the European Brewery Convention (EBC 1987) method. Tannin was assayed using 

the method of Price et al (1978). Glucose, maltose, maltotriose, glycerin, and ethanol in the 

samples were determined by HPLC according to the method described by Wu et al (2006). 

Analysis of variance (ANOVA) and least significant difference (LSD) at P < 0.05 were 

conducted using statistical software (SAS Institute, Cary, NC). 

Results and Discussion 

Ethanol Production from Germinated Grain Sorghum 

Germination had a significant effect on ethanol yield and conversion efficiency when 

tannin sorghum samples were used for ethanol production. Germinated sorghum produced higher 

ethanol concentrations than non-germinated sorghum (8.43 and 8.27%, w/v, for 4-day and 8.12% 
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for 3-day germinated samples in the finish beers with volumes of 120–125 mL, which were 

equivalent to 13.16, 13.11, and 12.56%, v/v, standardized per 100 mL, respectively) and required 

less time to reach the highest concentrations (36 hr for germinated sorghum vs. 72 hr for non-

germinated). The conversion efficiency was calculated by dividing the actual ethanol yields 

measured using HPLC by the theoretical ethanol yield (assuming 1 g of starch could be 

hydrolyzed into 1.11 g of glucose, and each gram of glucose could generate 0.511 g of ethanol). 

Conversion efficiencies of germinated sorghums were 86.81% for the 3-day germinated sorghum 

and 87.14% for 4-day germinated sorghum, which were 2.6–4.0% higher than the 83.20% for the 

non-germinated sorghum (Figure 3.1). Increases in fermentation rate may be due to enzyme 

activity. Germination increased enzyme activities in sorghum seeds. Enzymes such as α-amylase, 

β-amylase, and other glucanases are important for starch hydrolysis. Among these malting 

enzymes, α-amylase is the most important in sorghum (Ratnavathi and Ravi 1991). Proteinase 

and carboxypeptidase activities may also be activated during germination, which could have 

contributed to the favorable results (Evans and Taylor 1990). Actions of proteinases break down 

protein matrices, which not only releases more starches and leads to more available starch and 

higher ethanol yield but also generates FAN, resulting in high fermentation rate (Evans and 

Taylor 1990; Taylor 1983). Results of chemical analysis (Tables 3.1 and 3.2) and SEM images 

also confirmed these results. Ethanol yields per bushel would be 2.67 gallons for non-germinated 

sorghum, 2.75 gallons for 3-day germinated, which was a 3.1% improvement. Although the 

fermentation efficiency for the 4-day germinated sorghum was higher than both the 3-day 

germinated and non-germinated sorghum, the ethanol yield for the 4-day germinated sorghum 

was 2.63 gallons/bushel. The reason for the lower ethanol yield for the 4-day germinated 

sorghum could be the excessive loss of starch during germination (Table 3.1). 

Effect of Germination on Chemical Composition and Physical Properties of Sorghum 

 

Chemical composition change. Table 3.1 shows changes in starch, glucose, maltose, 

maltotriose, tannin, FAN, and total nitrogen contents during germination. Tannin content 

decreased significantly in germinated sorghum grain. Increases in glucose, maltose, maltotriose, 

and FAN in germinated samples may be due to activities of activated enzymes during 

germination, mainly amylases and proteases, which break down starches and proteins into 

smaller molecules during germination. 
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Total starch content decreased as germination time increased from 3 to 4 days. This could 

result from development and growth of embryos during germination that consumed some 

generated glucose and released carbon dioxide and water. Although free amino acid content in 

the germinated samples was significantly higher than that in the original non-germinated sample, 

total nitrogen content essentially did not change, which implies the proteins converted between 

different forms (structural, functional, or degraded forms) but was not lost during germination. 

Pasting properties of sorghum flour. The effect of germination on viscosity is shown in 

Figure 3.2. Germinated sorghum had a higher peak viscosity than the non-germinated sorghum, 

and germinated samples took less time to reach peak viscosity. In contrast, the non-germinated 

sorghum did not show a trough viscosity during heating and holding periods but did show a 

gradual increase during the course of heating, holding, and cooling because non-damaged starch 

granules continue to swell as the water moves through the granule slowly, inhibited by the 

structure, which has no damage by the intrinsic enzymes. The final viscosity of non-germinated 

sorghum flour was much higher than that of germinated sorghum flour. Results indicated that 

starch in germinated sorghum flour is much easier to swell and breakdown than that in non-

germinated sorghum flour. Also, starches in germinated sorghum may undergo some hydrolysis 

during pasting because of the activities of activated amylases. Setback viscosities of non-

germinated sorghum were much higher than those of germinated sorghum. The higher setback 

viscosity of the non-germinated sorghum was most likely caused by the leached amylose, and the 

lower setback viscosity of germinated samples could be the result of partial hydrolysis of 

starches by the activated intrinsic amylases. 

Morphological structure of sorghum endosperms. Figure 3.3A shows the endosperm of 

non-germinated sorghum seed, where intact starch granules are wrapped in relatively thick cell 

wall, whereas Figure 3.3B and C shows endosperm of germinated sorghum seeds, where starch 

granules are wrapped in relatively thin cell wall. Many tiny holes on starch granules of 

germinated seeds were observed. Starch granules in endosperm of 3-day germinated sorghum 

were attacked less severely than those of 4-day germinated sorghum. Starch granules around the 

germ (Figure 3.3D) of the germinated seed were attacked more significantly than those in the 

endosperm. These results agree with the results of chemical composition change in Table 3.1. 

The 4-day germinated sorghum had lower starch and FAN contents and relatively higher content 

of simple carbohydrates from hydrolyzed starch compared with 3-day germinated seed. 
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Therefore, germinating sorghum seeds could be a good way to activate intrinsic enzymes to help 

degrade starches and proteins and to increase ethanol yield and conversion efficiency. However, 

longer germination time might have a negative effect on ethanol production because of excessive 

loss of starch. Probably 3-day or less germination is the optimal option for the conversion from 

starch to ethanol. 

Compositional changes during mashing and after fermentation. Table 3.2 shows 

differences in starch, glucose, maltose, maltotriose, FAN, and total nitrogen contents in sorghum 

mashes and distillers dried grains with solubles (DDGS). Total starch in the non-germinated 

sorghum mash was higher than that in germinated sorghum mashes, and starch content in mash 

from 3-day germinated sorghum was higher than from 4-day germinated sorghum. Although 

total starch content in germinated sorghum were lower than that of non-germinated sorghum, 

ethanol concentration from the same amount of 4-day and 3-day germinated sorghums was 

greater (8.43 and 8.27% in the finish beer, w/v) than that (8.12%, w/v) from non-germinated 

sorghum. Germinated sorghum must have some mechanism to compensate for starch lost during 

germination and make more efficient use of resources during the follow-up mashing and 

fermentation processes. Activation of the intrinsic enzymes could be the main cause for this. 

Higher fermentable sugars and FAN contents in the germinated sorghums indicate the actions of 

such enzymes during germination (Table 3.1). The more fermentable sugars (glucose, maltose, 

and maltotriose) in mashes and less residual starch in DDGS of germinated sorghums (Table 3.2) 

suggested that germination helped release more starch granules from germinated sorghum and 

improved digestibility of sorghum starch. 

In addition to improvement in starch digestibility, germination also increased protein 

digestibility of sorghum. Free amino nitrogen content in mashes from germinated sorghums was 

much higher than that in mash from non-germinated sorghum (Table 3.2). This indicates that 

more proteins were hydrolyzed by the activated intrinsic proteases in the germinated sorghum 

(during germination and mashing) than in the non-germinated sorghum. This damaged protein 

matrices, released more formerly embedded starch granules, and resulted in better digestibility of 

both starch and protein in germinated sorghum. The higher contents of fermentable sugars and 

free amino acids in mashes of germinated sorghum significantly improved performance of the 

yeast and contributed to the faster fermentation rate, higher ethanol concentration, and 

fermentation efficiency (Figure 3.1). This agrees with results of a previous study by Pickerell 
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(1986), the higher the initial content of FAN, the greater the rate of ethanol production, but the 

rate is greatly affected by amount of sugar in the mash. 

In summary, germination is a possible way to treat tannin sorghum to improve its 

performance in ethanol production. This treatment decreased tannin content, activated intrinsic 

enzymes to break down the protein matrix and release formerly embedded starches, increased 

ethanol yield, enhanced efficiency of fermentation conversion, and shortened fermentation time. 

Actions of activated intrinsic enzymes in the germinated sorghum improved digestibility of 

starch and protein and compensated for the starch loss due to respiration of seeds during 

germination. 
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Figure 3.1. Fermentation efficiency as a function of fermentation time; Germ-3 and Germ-4 

indicate 3-day and 4-day germinated grain sorghum, respectively. 
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Figure 3.2. Pasting properties of non-germinated (control), 3-day and 4-day germinated sorghum 

flours as tested on an RVA using the 13 min standard procedure. 
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Figure 3.3. SEM images of sorghum seeds. A, Endosperm of non-germinated sorghum. B, 

Endosperm of 3-day germinated sorghum. C, Endosperm of 4-day germinated sorghum. D, 

Endosperm close to germ of 4-day germinated sorghum. 
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Table 3.1. Chemical composition changes during germination 

Sample 
Starcha 

(%) 

Glucose 

(%) 

Maltose 

(%) 

Maltotriose 

(%) 

Tannin 

(%) 

FAN 

(mg/L) 

Total nitrogen 

(%, Protein) 

Ethanol 

(%, v/v) 

Control 

Germinated 3D 

Germinated 4D 

66.43a 

65.61b 

62.47c
 

0.36 

1.10 

2.19 

0.07 

0.53 

1.25 

0.57 

0.64 

0.84 

3.96a 

0.0113b 

0.0121b 

86.65c 

252.7a 

114.7b 

11.24 

11.89 

12.11 

10.56 

13.11 

13.16 

a Total starch includes glucose, maltose and oligosaccharides; 

Data in the same column followed by different letters are different at the 0.05 level.  
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Table 3.2. Chemical composition changes during mashing and after fermentation 

Composition 
Mashed Samples*  DDGS 

Non-germ 3day-germ 4day-germ Non-germ 3day-germ 4day-germ 

Starcha (%) 10.16a 6.85b 3.81c 2.31a 1.40b 0.94c 

Glucose (%) 27.15 31.12 34.46 0.08 0.07 0.10 

Maltose (%) 10.18 4.49 4.21 1.63 1.49 1.61 

Maltotriose (%) 2.93 1.37 1.37 0.58 0.48 0.54 

FAN (mg/L) 100.7 648.6 1,113 147.6 297.1 834.9 

Total nitrogenb 

(%, Protein) 
11.68 11.85 12.23 31.29a 31.74ab 30.69b 

Ethanol 

concentration 

(%, v/v) 

10.56 13.11 13.16    

a Starch data in mashed samples were measured after washing twice with 10 mL of water and 

centrifuging at 20,000 g for 10 min. 
b Results of 6.25*nitrogen from Leco analysis. Data in the same row under the same category 

(mashed samples or DDGS) followed by different letters are significantly different at the 0.05 

level. 

* mashed samples were collected for analysis at the end of mashing. 
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Chapter 4 - Properties of Field-Sprouted Sorghum and Its 

Performance in Ethanol Production3 

Abstract 

The objective of this research was to investigate physicochemical and biochemical 

characteristics of field-sprouted grain sorghum and its fermentation performance in ethanol 

production. Five field-sprouted grain sorghum varieties, which received abnormally high rainfall 

during harvest, were used in this study. Enzyme activities, microstructure, flour pasting 

properties, kernel harness, kernel weight, kernel size, flour size and particle distribution of field-

sprouted grain sorghum were analyzed. The effect of germination (i.e., sprouting) on conversion 

of grain sorghum to ethanol was determined by using a laboratory dry-grind ethanol fermentation 

procedure. Sprouted sorghum had increased α-amylase activity; degraded starch granules and 

endosperm cell walls; decreased kernel hardness, kernel weight, kernel size, and particle size; 

and decreased pasting temperature and peak and final viscosities compared with non-sprouted 

grain sorghum. The major finding is that time required for sprouted sorghum to complete 

fermentation was only about half that of non-sprouted sorghum. Also, ethanol yield from 

sprouted sorghum were higher (416-423 L/ton) than that from non-sprouted sorghum (409 L/ton) 

on a 14% moisture basis. 

Introduction 

The U.S. demand for ethanol has increased sharply in recent years. Currently, feedstock 

for fuel ethanol production is ~95% corn grain and ~4% sorghum grain (RFA 2007). Researchers 

and ethanol producers consider grain sorghum a viable and renewable feedstock (i.e., technically 

acceptable, fits the infrastructure, and can be economically viable) for ethanol, and sorghum 

could make a larger contribution to the nation’s fuel ethanol requirements (Farrell et al 2006; 

Rooney et al 2007; Wu et al 2006, 2007). 

Both ethanol yield and fermentation efficiency have been used to evaluate the 

performance of feedstocks in ethanol production. Recent research shows that key factors 

affecting ethanol yield and ethanol fermentation efficiency of sorghum include starch content, 

                                                 
3 This chapter has been published in 2010 in Journal of Cereal Science 51:374-380. 
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starch digestibility, level of extractable proteins, protein and starch interaction, mash viscosity, 

amount of phenolic compounds, ratio of amylose to amylopectin, and formation of amylose-lipid 

complexes in the mash (Wang et al 2008; Wu et al 2007; Zhao et al 2008). In addition to 

chemical and physical properties of grain sorghum, Yan et al. (2009) studied the effect of 

germinated sorghum on ethanol fermentation and fermentation efficiency. Results from 

laboratory-germinated, tannin-containing grain sorghum (i.e. sorghum with a pigmented testa) 

showed that germination not only decreased tannin content and improved sorghum fermentation 

performance, but also activated intrinsic enzymes and shortened fermentation time. To a certain 

degree, germination of feedstocks may not be negative for ethanol fermentation. 

Germination, or sprouting, is a common problem for grain when weather is moist during 

harvest or the environment is humid during storage. When kernels absorb moisture from their 

surroundings to a sufficient level, the embryo and endosperm are hydrated. Hydration switches 

on the metabolism of the embryo, which sends hormonal signals to the aleurone layer, triggering 

the synthesis of enzymes responsible for digesting components of the starchy endosperm. 

Germination promotes the development of cytolytic, proteolytic, and amyloytic enzymes that are 

not active in dry kernels (Bamforth 2006; Dewar et al 1997; Klose et al 2009) and could cause 

significant changes in kernel composition and physical properties (Agu and Palmer 1996; 

Bamforth 2006; Beta et al 2000; Dewar et al 1997; Elmaki et al 1999; Iwuoha and Aina 1995; 

Lasekan et al 1995; Muria and Bechtel 1998; Murty et al 1984; Osuntogun et al 1989; Palmer 

1991; Singh and Bains 1984; Swanston et al 1994). Germination not only causes compositional 

changes in the sorghum grain but also initiates a series of biochemical and physiological 

changes. Intrinsic enzymes such as amylases, proteases, lipases, fiber-degrading enzymes, and 

phytases are activated; this disrupts protein bodies and degrades proteins, carbohydrates, and 

lipids to simpler molecules, which increases digestibility of proteins and carbohydrates in the 

kernel and makes nutrients available and accessible for enzymes (Chavan and Kadan 1989; 

Dicko et al 2006; Ratnavathi and Ravi 1991; Subramanian et al 1992; Taylor 1983; Yan et al 

2009). Balogun et al. (2006) reported that in vitro fermentability of sorghum grain was 

significantly higher when grain was germinated. Research on baby food also showed that 

germination can activate enzymes, decrease the level of antinutritional factors (tannins, phytic 

acid), and increase digestibility of macronutrients, bioavailability of minerals, and content of 
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essential amino acids (Correia et al 2008; Dicko et al 2006; Subramanian et al 1992; Taylor 

1983; Taylor et al 1985).  

Sorghum has been malted and used for production of traditional alcoholic and 

nonalcoholic beverages for centuries (Dufour et al 1992). Malting conditions must be controlled 

to achieve uniform, high-quality sorghum malts and ensure quality required for food products 

(Dewar et al 1997). Biofuel ethanol production does not have the same requirements. The most 

important issues in industrial ethanol production are yield, efficiency, and energy consumption. 

Our laboratory results in terms of ethanol yield and ethanol fermentation efficiency from 

artificially germinated tannin sorghum suggest that huge potential energy savings exist in 

production of ethanol from germinated sorghum grain. Using germination-damaged sorghum for 

industrial ethanol production might benefit the producer and end user by expanding market uses 

of what has been historically considered a low-value commodity (Suresh et al 1999; Yan et al 

2009). 

The objective of this research was to investigate physicochemical and biochemical 

characteristics of field-sprouted grain sorghum and its fermentation performance in ethanol 

production. 

Materials and Methods 

Grain Sorghum 

Five field-sprouted sorghum varieties (DK5400, DK5311, Asgrow567, Pio8313, and 

Pio82G10) from south central Texas, which received abnormally high rainfall during harvest, 

were used in this study. The received dry samples had visible shoots but no visible mold-

contamination. Non-sprouted DK5400 was used as a control. Samples were carefully cleaned, 

and foreign materials were removed manually. Samples were ground to flour with a Magic Mill 

III plus grain mill (Magic Mill Products & Appliances, Monsey, NY.) set at the level IV for 

fermentation. Samples for chemical composition analysis were ground with a Udy cyclone 

sample mill (Udy, Fort Collins, CO) with a 0.5-mm screen. 
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Particle Size Analysis 

Size distributions of sorghum flour were measured with an LS 13 320 single wavelength 

laser diffraction particle size analyzer using the Tornado dry powder system (Beckman Coulter 

Inc., Miami, FL). Samples were run in duplicate. 

Morphological Structure of Field-Sprouted Grain Sorghum 

Microstructures of field-sprouted sorghum kernels and control grain sorghum were 

examined with a scanning electron microscope (SEM) with an accelerating voltage of 5.0 kV 

(Hitachi S-3500N, Hitachi Science Systems, Ltd., Japan). Samples were vacuum coated with a 

mixture of 60% gold and 40% palladium particles by using a Sputter Coater-Desk II 

SPUTTER/ETCH UNIT (Denton Vacuum, LLC, NJ). 

Measurement by the Single Kernel Characterization System 

Kernel hardness, kernel weight, and kernel size of field-sprouted sorghum samples and 

the control were measured with a single kernel characterization system (SKCS) 4100 (Perten 

Instruments, Springfield, IL) controlled by Microsoft Windows Software SK4100 as optimized 

for sorghum (Bean et al 2006). Data presented are the mean values of 300 kernels. 

Analysis of Enzyme Activity and Flour Pasting Properties 

A Megazyme alpha-amylase assay kit was used to measure α-amylase activity (CU/g). 

Flour pasting properties were determined with a Brabender Visco-Amylo-graph (VAG, C. W. 

Brabender Instruments Inc., NJ). For VAG sample preparation, 14 g of sorghum flour with 14% 

moisture content and distilled water (100 mL) was added to the amylograph bowl at room 

temperature. A 20-min measurement profile with a heat/cool rate of 7.5°C/min was used as 

follows: increase the slurry temperature from room temperature to 95°C in the first 6 min, hold at 

95°C for 5 min, decrease from 95 to 50°C in 5 min, and hold at 50°C for 2 min. Each sample was 

analyzed in duplicate. 

Microorganism, Preparation of Mashes and Inoculation 

Dry alcohol yeast (Saccharomyces cerevisiae, Red Star Ethanol Red) provided by 

Fermentis (Milwaukee, WI), was used for simultaneous saccharification and fermentation. 

Before inoculation, dry yeast was activated by adding 1.0 g of cells into 19 mL of preculture 
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broth (containing 20 g glucose, 5.0 g peptone, 3.0 g yeast extracts, 1.0g KH2PO4, and 0.5 g 

MgSO4·H2O per liter) and incubated at 38°C for 30 min in an incubator operating at 200 rpm. 

The activated yeast culture had a cell concentration of roughly 1×109 cells/mL. 

Liquozyme SC DC (Novozyme, Franklinton, NC), a heat-stable α-amylase from Bacillus 

licheniformis was used for liquefaction. Enzyme activity was 240 KNU/g (One Kilo Novo Unit, 

KNU, is the amount of enzyme that breaks down 5.26 g of starch per hr at Novozyme’s standard 

method for determination of α-amylase). Spirizyme Fuel (Novozyme, Franklinton, NC), an 

amyloglucosidase from Aspergillus niger, was used for saccharification. Enzyme activity was 

750 AGU/g (One AGU is the amount of enzyme that hydrolyzes 1 µmol of maltose per minute 

under specified conditions). 

Whole sorghum flour (30 g, db) was dispersed in a 250 mL Erlenmeyer flask with 100 

mL of fermentation broth containing 0.1 g KH2PO4 (preheated to about 60°C), and 20 µL 

Liquozyme (240 KNU/g) were added to the flask. The flasks were transferred to a 70°C water 

bath shaker operating at 170 rpm. The water bath temperature gradually increased from 70°C to 

85°C over about 30 min. After 60 min at 85°C, flasks removed from the water bath shaker and 

cooled to room temperature. Materials sticking on the inner surface of the flasks were scraped 

back into the mash with a spatula, and then the inner surface was rinsed with 2–3 mL of distilled 

water by using a fine-tipped polyethylene transfer pipette. The pH of the mashes was adjusted to 

around 4.2–4.3 with 2N HCl. After pH of each mash was adjusted, 100 µL amyloglucosidase, 

0.3 g yeast extract, and 1 mL activated yeast broth (1×109 cells/mL) were added to each flask. 

Inoculated flasks were sealed with S-bubblers/airlocks and transferred to an incubator shaker for 

ethanol fermentation. Each sample was run in duplicate. 

Fermentation and Distillation 

Ethanol fermentation was conducted at 30°C in an incubator shaker (Model I2400, New 

Brunswick Scientific, Edison, NJ) operating at 150 rpm for 72 h. The fermentation process was 

monitored by measuring the weight loss of evolved carbon dioxide (CO2) during fermentation. 

At the end of fermentation, all fermented mash in each 250-mL flask was transferred to a 

500-mL distillation flask. Each Erlenmeyer flask was washed with distilled water four times 

(4×25 mL). The washing water was pooled in the distillation flask, and then the distillation flask 

was distilled on a distillation unit. Distillates were collected in a 100-mL volumetric flask 
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immersed in ice water. When distillates in the volumetric flask was approaching the 100-mL 

mark (~0.5 mL below the mark), the distillation process was stopped. Distillates in the 

volumetric flask were equilibrated to 25°C and adjusted to 100 mL with distilled water if 

necessary. Distillates were analyzed for ethanol by a Shimadzu HPLC with a Rezex RCM 

column (Phenomenex, Torrance, CA) and refractive index detector (Wu et al 2006). 

Analytical Methods 

Methods for the analyses of dry matter/moisture, starch, crude protein, ash, crude fiber, 

and crude fat of samples were AOAC Official Methods 930.15, 996.11, 990.03, 942.05, 962.09, 

and 920.39 (AOAC International 2000), respectively. Free amino nitrogen (FAN) was analyzed 

by the European Brewery Convention method (EBC 1987) with modification. Grain sorghum 

flour (150 mg) was mixed with 1.5 mL deionized distilled water in a 2.5-mL microcentrifuge 

tube, vortexed five times within 10 min, then centrifuged at 12,000 rpm for 20 min. At this point, 

the supernatant was ready for FAN analysis. Glucose, glycerol, and ethanol in the finished beers 

were determined by HPLC (Shimadzu Scientific Instruments, Columbia, MD) according to the 

method described by McGinley and Mott (2008). The column used was a Rezex ROA column 

(Phenomenex, Torrance, CA), and the detector for HPLC was a refractive index detector (model 

RID-10A, Shimadzu) with the detection unit maintained at 40°C. The mobile phase was 5 mM 

sulfuric acid at a flow rate of 0.6 mL/min and the oven temperature was 65°C. HPLC data were 

analyzed with Shimadzu EZStart 7.4 software. Fermentation efficiency was calculated as a ratio 

of actual ethanol yield (determined by HPLC) to theoretical ethanol yield (calculated from the 

total starch content in the sample). 

Statistical Analyses 

All experiments were performed at least in duplicate. Tabular results presented are mean 

values of repeated experimental data. An ANOVA was conducted to determine the significant 

differences at a 5% significance level (P < 0.05). 
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Results and Discussion 

Chemical Composition of Field-Sprouted Grain Sorghum and Control Grain Sorghum 

Table 4.1 shows chemical composition of the five field-sprouted samples and the control 

(non-sprouted, DK5400C). The FAN in the non-sprouted sample was lower than that in the 

sprouted samples even though the non-sprouted sorghum sample had the highest protein content. 

Enzymatic degradation of protein by activated intrinsic proteases during sprouting resulted in an 

increase in FAN contents and short peptides, which accounted for the significant increase in 

FAN levels of field-sprouted sorghum samples (Agu and Palmer 1996; Evans and Taylor 1990; 

Ogbonna et al 2003; Taylor 1983). These activated intrinsic proteases have optimal temperatures 

of around 50°C and retain much activity at 70°C for some time (Ogbonna et al 2004). FAN 

contents in the mashes of sprouted sorghum samples will further increase during the slurry and 

liquefaction process. Also, α-amylase activity in the non-sprouted control was lower than that in 

sprouted grain sorghum, which agrees with results reported by Murty et al. (1984). The diverse 

values of FAN and α-amylase activity also revealed that samples had experienced different 

degrees or durations of field sprouting. All field-sprouted samples had high starch content (> 

66% wb). 

Results from SKCS and Particle Size Analyzer 

The SKCS originally was designed to analyze wheat kernels but has been modified to 

measure grain hardness, kernel size, and kernel weight for sorghum (Bean et al 2006). The SKCS 

can provide rapid measurements of sorghum grain information based on the variability present in 

the samples. Non-sprouted sorghum had higher values for kernel hardness, kernel weight, and 

kernel diameter than field-sprouted sorghum (Table 4.1). Hardness is one of the most important 

traits for grain milling; it affects grain milling quality and parameters such as particle size, 

damaged starch, and flour water absorption. The hardness index (HI) obtained from the SKCS is 

inversely related to particle size less than 200 µm. Grains with higher HI values had a lower 

percentage of small particle size. The field-sprouted Pio sorghum varieties had higher HI than 

other samples. With the same setting on the mill, the sample with high HI had a larger portion of 

particles with diameters bigger than 200 µm. In contrast, the portions of smaller particles (<200 

µm) in sprouted DK sorghum samples was higher than that in the Pio samples. The non-sprouted 

DK5400C had the highest HI, highest amount of large particles (>200 µm), and lowest amount 
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of small particles (<200 µm). The particle size distribution curve (Figure 4.1) of the control 

sample had two pronounced peaks around 18 and 450 µm, whereas those of the field-sprouted 

samples had 3 peaks-- an extra peak at about 125 ± 5 µm beside the 18 and 450 µm peaks. The 

samples with higher HI also had larger particles, whereas samples with a low HI had smaller 

particles. These results are in agreement with those reported by Beta et al. (1995) and Lee et al. 

(2002). In addition, Lasekan et al. (1995) reported that sorghum variety affected germination and 

sugar production from sorghum malts. Our HPLC data agree with the above trends (data not 

shown). One purpose of this study was to evaluate fermentation performance of sprouted 

sorghum for ethanol production. Naidu et al. (2007) reported that particle size significantly 

affects ethanol yield. Our results showed that ethanol yield was inversely related to kernel HI (a 

linear regression equation with R2 = 0.855). This is probably because sorghum with higher HI 

had a higher percentage of large particles. Previous research has shown a negative relationship 

between particle size and ethanol yield (Naidu et al 2007; Kelsall and Lyons 2003). 

Morphological Structure of Field-Sprouted Grain Sorghum 

Figure 4.2 shows SEM images of endosperm close to germ, endosperm, and whole 

kernels of field-sprouted and non-sprouted sorghum. Starch granules in endosperm close to germ 

(Figure 4.2A) had many more holes than those in endosperm (Figure 4.2B). These holes indicate 

that starch granules were degraded or attacked by activated enzymes during field sprouting. 

Grain contains abundant enzymes in the germ. While grain kernels are dry, enzymes are inactive 

(because of enzyme inhibitors) and will remain so until moisture content of the kernels is high 

enough to trigger germination. The new shoot and root will emerge from the kernel when the 

embryo begins to germinate. As the intrinsic enzymes (e.g., proteases, amylases, and lipases) in 

sorghum kernels are activated (Correia et al 2008), the reservoir chemical constituents (e.g., 

proteins, starch, and lipids) are degraded by these enzymes into simple compounds that are used 

to make new compounds (i.e., shoot and root). Because of water intake rate and germination, 

macromolecules in and around the germ are broken down by enzymes more rapidly than those in 

the endosperm (Figure 4.2A, 4.2B, and 4.2C). Moss (1977) studied the rate of moisture 

movement into the kernel using autoradiography. There was an initial rapid movement of water 

into the germ and along the edge of the endosperm region. Because of rapid movement, the 

effect of germination/sprouting is more pronounced on the germ than on the endosperm. 
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Enzymes are working not only on starch granules but also on protein and cell walls (Correia et al 

2008; Glennie et al. 1983). Figure 4.2 shows starch granules and cell walls of sprouted sorghum 

kernels (Figure 4.2A and 4.2B); relative position of endosperm, germ and root of sprouted 

kernels (Figure 4.2C); and starch granules and cell walls of non-sprouted grain sorghum kernels 

(Figure 4.2D). These SEM images clearly indicate that various degrees of damages occurred to 

starch granules both around the germ and in the endosperm of sprouted sorghum kernels (Figure 

4.2A, 4.2B and 4.2C). Cell walls of the sprouted sorghum kernels also were degraded by the 

activated intrinsic cell-wall-degrading enzymes and apparently were thinner than cell walls of 

non-sprouted sorghum kernels. These intrinsic enzymes mainly convert part of the insoluble 

polymers in sorghum kernels into soluble smaller molecules, which makes the sprouted sorghum 

a better feedstock for ethanol production. After field-sprouted grain sorghum is harvested, shoots 

and roots of some field-sprouted kernels might not be noticeable if they have shrunk during 

drying. Therefore, total mass of field-sprouted grain sorghum kernels might not change. In a 

laboratory germination test, the significant decrease in mass was due to the loss of solubles 

during rinsing and loss of shoots or roots during drying (Yan et al 2009). In industrial biofuel 

production, field-sprouted grain sorghum may be a better feedstock because of its easy 

digestibility of enzymatically damaged starch granules, thin cell walls, and higher content of 

readily available sugars. 

Pasting Properties of Field-Sprouted Sorghum Flour 

The effect of sprouting on viscosity was analyzed with a Brabender Visco-Amylo-graph. 

The visco-amylo-graph curves of field-sprouted sorghum were significantly different from those 

of non-sprouted sorghum in terms of peak viscosity, holding strength, final viscosity, peak 

temperature, and peak time (Figure 4.3). In general, field-sprouted sorghum flour had a short 

peak time (took less time to reach the peak viscosity), clear holding strength, and low final 

viscosity (low setback). In addition, field-sprouted sorghum required less time to begin pasting 

than non-sprouted sorghum, indicating that starch in the sprouted flour swelled easily and 

consumed less energy during the cooking process. Compared with field-sprouted samples, non-

sprouted sorghum had no peak viscosity but a significantly higher final viscosity. This is due to 

the difference in α-amylase activity and high content of damaged starch granules in the sprouted 

sorghum compared with the non-sprouted sorghum. Compared with intact starch granules in 
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non-sprouted sorghum, enzyme-damaged starch granules swell readily and easily break down 

into small fragments, resulting in low peak and final viscosities in the field-sprouted sorghum 

pasting profile. 

On the other hand, differences in peak viscosity, holding strength, and final viscosity also 

were observed among the field-sprouted sorghum varieties, which could be due to degree of 

sprouting and differences in kernel hardness that resulted in different particle sizes and degrees 

of damaged starch. Obviously, HI of the non-sprouted kernels was significantly higher than that 

of all sprouted samples. There were an inverse correlation between peak viscosity and kernel HI. 

Among the five sprouted samples, DK5400 had the lowest HI and highest peak viscosity and Pio 

82G10 had the highest HI and lowest peak viscosity. Among all samples, DK5400C had the 

highest final viscosity and lowest α-amylase activity, whereas Asgrow567 had the lowest final 

viscosity and highest α-amylase activity (Table 4.1). This indicates that sprouted sorghum 

samples originally had very different hardness and/or were at very different stages of the 

germination process because differences in time and duration of exposure to high moisture 

conditions before harvest (e.g., unfavorable weather in the field) would result in sprouted kernels 

with different enzyme activities and related degraded products (Evans and Taylor 1990; 

Ogbonna et al 2003). 

Ethanol Production from Field-Sprouted Grain Sorghum 

Figure 4.4A shows ethanol yield of five field-sprouted sorghum varieties and the non-

sprouted control. The ethanol fermentation process essentially was completed within 36 h for the 

sprouted sorghum, and ethanol yield did not increase significantly after the 36th h, indicating the 

fermentation process using field-sprouted sorghum could be stopped at the 36th h after yeast 

inoculation in the beginning of fermentation. This result agrees with results from a study on 

laboratory-germinated tannin sorghum (Yan et al 2009) and further confirms that using sprouted 

grain sorghum for ethanol production could shorten the fermentation time without significantly 

decreasing ethanol yield. Grain damaged by sprouting may lose value for food applications but 

may not affect ethanol production and final ethanol yield. In this study, ethanol yield from field-

sprouted sorghum actually was slightly higher than that from the non-sprouted control sorghum 

(Figure 4.4A). The actions of cell-wall-degrading enzymes in the field-sprouted sorghum might 
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have contributed to this high yield. The fermentation process for sprouted grain could be much 

shorter than that required for normal grain (Wu 1989; Yan et al 2009). 

Fermentation course varied among sorghum varieties in the 18th to 30th h (Figure 4.4A). 

The two Pio varieties had lower ethanol yield than the other three varieties within the same 

fermentation period (at 24 h). This might be due to kernel hardness, particle size, and availability 

of nutrients for yeast in the mash. The harder sorghum had larger particles, which might prevent 

nutrients from being released rapidly to the mash during this period. However, as the 

fermentation process proceeds in the mash and water continues penetrating into larger particles, 

the structures of larger particles eventually would be disrupted and nutrients would be released 

into the mash. On the other hand, availability of FAN for yeast might affect fermentation course 

and rate. Pio82G10 had the lowest FAN, highest HI, and lowest ethanol yield during the 18th to 

30th h (Table 4.1 & Figure 4.4A). 

One of the most important physicochemical changes that occurs during germination is 

degradation of the proteinaceous matrix that holds starch granules within the cells in the 

endosperm and conversion of these substances into soluble peptides and amino acids, which 

contribute to the increased FAN and provides nutrients for yeast growth. The effect of FAN on 

the fermentation process was further confirmed by the presence of yeast extracts during 

fermentation (Figure 4.4B). Sorghum mashes with added yeast extract (solid lines in Figure 

4.4B) had a much faster fermentation rate and took less time (36 h vs. 72 h) to complete 

fermentation than sorghum mashes without yeast extract (dashed lines in Figure 4.4B). These 

results support previous findings that FAN is a positive factor for the fermentation process 

(Pérez-Carrillo and Serna-Saldívar 2007; Pierce 1982, 1987). Saccharomyces cerevisiae can 

assimilate amino acids and low-molecular-weight peptides but not proteins. The non-sprouted 

control sample, DK5400C, had the lowest FAN among the samples (Table 4.1) and the lowest 

ethanol yield at the end of the 72h fermentation both with and without added yeast extract. 

Without the addition of yeast extract, fermentation rates depended on the availability of FAN in 

the mashes. Sprouted DK5400 had the highest FAN content among three samples and the fastest 

fermentation rate and highest ethanol yield both with and without added yeast extract. This 

further supports the idea that FAN is important for yeast growth and fermentation rate, especially 

for yeast proliferation. Sprouted sorghum with high FAN content benefits ethanol fermentation 

efficiency and reduces fermentation time. 
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The HPLC analysis of finished beer showed a significant amount of sugar left in the 

finished beer (72 h fermentation) when fermentation was conducted using sorghum mashes 

without added yeast extract (Figure 4.5). There was little sugar left in the finished beer when 

yeast extract was added to the sorghum mashes. In addition, the amount of sugar remaining 

varied among the three samples (peak area is proportional to the sugar concentration). Among 

three samples without added yeast extract, the non-sprouted control sample (DK5400C) had the 

most amount of residual sugar left and the field-sprouted sample of the same sorghum variety 

(DK5400) had the least residual sugar. The three samples appear in the same order when ranked 

in terms of FAN content and ethanol level: DK5400 > Pio82G10 > DK5400C (Table 4.1 and 

Figure 4.4). This finding is in agreement with previous observations (Pierce 1982, 1987). 

Conclusion 

Field sprouting damaged starch granules, protein matrices, and cell walls in sorghum 

kernels, consequently decreasing kernel hardness, kernel weight, and kernel size. Field sprouting 

also changed the chemical composition and pasting properties of field-sprouted grain sorghum, 

which could shorten fermentation time without decreasing ethanol yield. Field-sprouted grain 

sorghum had relatively high FAN content. The FAN provided efficient buffering capacity and 

optimal yeast performance, and field-sprouted sorghum had a more rapid fermentation rate than 

non-sprouted sorghum. FAN played a key role in increasing conversion efficiency for ethanol 

production. Using weathered and/or sprouted sorghum from regions affected by unusually high 

moisture events during grain fill and harvest may provide an opportunity for ethanol producers to 

maintain ethanol production efficiency, while shortening processing time. This could offer 

sorghum producers an opportunity to receive a premium, or at least a fair market, value for 

sorghum when such environmental events occur. 
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Figure 4.1. Average particle size distribution for field-sprouted sorghum and control sorghum 

flours. Average hardness index is listed after each sample ID in the legend. Note that the control 

sample has two pronounced peaks at about 18 and 450 µm, whereas the field-sprouted samples 

have three peaks, one of which is at around 125 ± 5 µm. Also, note that the samples with higher 

hardness index values have larger particle sizes. 
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C: Whole Kernel D: Non-sprouted endosperm 

Figure 4.2. Scanning electron microscope images of starch granules: A: Endosperm close to 

germ of field-sprouted sorghum. B: Endosperm of field-sprouted sorghum. C: Cell walls of field-

sprouted grain sorghums. D: Non-sprouted sorghum. 
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Figure 4.3. Pasting properties of flours from five field-sprouted sorghum varieties and a non-

sprouted control (DK5400) on a Brabender Visco-Amylo-graph using a 20 min standard 

procedure. 
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Figure 4.4. Ethanol yields from five field-sprouted sorghum variety samples and a non-sprouted 

sorghum sample (DK5400C) (A) and Effect of yeast extract on ethanol yields (B). 

B. Effect of yeast extract on ethanol yield
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Figure 4.5. Ethanol yield and residual glucose contents in the finished beers (DKC: non-sprouted 

DK5400C; P: field-sprouted Pio82G10; DK: field-sprouted DK5400; +YE: with yeast extract; -

YE: without yeast extract). 
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Table 4.1. Chemical composition, kernel hardness and kernel size of grain sorghum samples 

Sorghum 

samples 

Chemical composition (% wb) 
FAN

1
 

(mg/L) 

α-amylase 

activity 

(CU/g) 

Hardness 

index 

Kernel 

weight 

(mg) 

Kernel 

diameter 

(mm) MC
2
 Ash Protein Fiber Lipids Starch 

DK5400 C 10.38f 1.62a 11.59a 1.15e 3.22a 64.50d 162.0e 5.60c 78.97a 30.00a 1.98a 

DK5400 12.28d 1.18c 6.66e 2.12ab 2.27c 67.30c 221.9c 12.03b 49.12e 24.76c 1.68c 

DK5311 12.97a 1.19c 7.02d 2.24a 2.29c 66.78c 234.8bc 12.60b 52.56d 25.42bc 1.73bc 

Asg567 11.92e 1.26b 7.60b 2.07bc 2.34c 67.80bc 284.3a 15.79a 56.75c 25.53b 1.76b 

Pio82G10 12.71b 1.10e 7.27c 1.95cd 2.40bc 69.28ab 189.5d 13.35b 68.30b 25.98b 2.01a 

Pio8313 12.52c 1.15d 6.96d 1.91d 2.49b 69.65a 258.4ab 13.18b 66.19b 26.00b 1.78b 

1 FAN = Free amino nitrogen. 

2 MC = Moisture content (wb). 

Different superscript letters in the same column indicate significant difference (P < 0.05). 
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Chapter 5 - Ozone Treatment on Tannin Grain Sorghum Flour and 

Its Ethanol Production Performance 

Abstract 

Grain sorghum lines containing tannins have been reported to have increased resistance 

to drought, birds, mold, preharvest germination, and higher grain yield than non-tannin grain 

sorghum lines However, tannins have been considered an adverse factor in the utilization of 

sorghum as a feedstock for bio-ethanol production. Ozone is a strong oxidant and is capable of 

degrading macromolecules such as lignins. Thus we hypothesized that ozone treatment may also 

reduce tannin activity and increase fermentation efficiency of tannin sorghum lines. Therefore, 

the objective of this research was to study the physicochemical properties of ozone-treated whole 

tannin grain sorghum flour and its fermentation performance in ethanol production. Results 

showed that the ethanol yields from ozone-treated tannin grain sorghums were significantly 

higher than that from the untreated flour. The fermentation efficiency of ozone-treated tannin 

grain sorghum was approximately 90%, which was 8-14% higher than that of untreated samples 

at the 36th hour of fermentation. At the end of 72 hour fermentation, the efficiencies of ozone-

treated sorghum flour were 2-5% higher than that of untreated samples. Measured tannin levels 

of ozone treated samples decreased significantly from 3.8% to 2.7%. Gel permeation 

chromatography indicated that starch in ozone-treated flours was degraded. Rapid visco analyzer 

data show that the setback of viscosity of ozone-treated flour was lower than that of untreated 

flours. Therefore, ozonation could be a novel and useful method to improve ethanol yield and 

fermentation efficiency of tannin grain sorghum. 

Introduction 

The use of ethanol as a gasoline alternative has been experiencing a significant increase 

and ethanol production and production capacity in the United States are still growing. The 

availability of ethanol is increasing because of US federal government mandates mixing of 

ethanol in gasoline, which has created a large demand for ethanol and a rapid growth of the 

ethanol industry. As required by the Energy Independence and Security Act of 2007 and the 

expanded Renewable Fuels Standard (RFS), annual ethanol production will grow to 15 billion 

gallons by 2012 and to 36 billion gallons by 2022. Currently, ethanol is mainly produced from 
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crop-based starch-rich grains in the United States. Grain sorghum has been one of the primary 

feedstocks for ethanol production. In 2009, more than 30% of the US grain sorghum crop was 

used for ethanol production. As a major sorghum grower, the state of Kansas used approximately 

50% of its 2010 sorghum crop for ethanol production (Agri-Energy Solutions 2009; Jessen 

2010). 

Grain sorghum is a viable feedstock for ethanol production (Wang et al 2008a) and the 

performance of grain sorghum in ethanol production has been studied and evaluated recently 

(Monk et al 1984; Wu et al 2007, 2010). Ethanol conversion efficiency has been intensively 

studied because of the importance and public concern of net energy gain in ethanol production. 

Due to the fact that virtually all of the current commercial sorghum lines in the US are tannin 

free, most of the previous research involving sorghum has been focused on normal grain 

sorghum types. Little research has been conducted on ethanol production from tannin sorghum 

lines. Interest in tannin sorghum utilization has increased with the recent health benefits 

associated with tannins (Awika and Rooney 2004) and tannin grain sorghum lines have 

agronomic benefits such as resistance to drought, birds, mold, insects, disease, and higher grain 

yield than normal, non-tannin grain sorghum (Hahn and Rooney 1986; Reichert et al 1980). 

Though growing tannin sorghum has the advantages of less production and storage cost, and 

higher grain yields, the production of tannin sorghum and its use for ethanol production and 

animal feed are not desired. This is largely due to the adverse effects of tannin on enzyme 

activity, starch and protein digestion, and ethanol fermentation efficiency. For identity preserved 

and specialty markets however, the use of tannin sorghum is very attractive. 

Tannins are a group of highly hydroxylated phenolic compounds and are very common in 

plants. Sorghum tannins have been actively studied for some time now with regards to food or 

feed uses. Tannins may impact the processing, product quality, and nutritional values of sorghum 

(Kobue-Lekalake et al 2009; Awika and Rooney 2004; Elkin et al 1996). Sorghum tannins are 

located in the outer layers of the kernel, beneath the pericarp in the pigmented testa layer of 

sorghum grain. Tannins protect sorghum grains from attacks by birds, insects, mold and 

preharvest germination (Hahn and Rooney 1986; Reichert et al 1980). Because of their negative 

nutritional effects in animal nutrition, many studies have been conducted to remove or deactivate 

tannins from sorghum. Chibber et al (1978) reported that mechanical abrasion/decortication of 

sorghum coat layers could reduce tannin content of sorghum flour for food uses by physically 
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removing the tannins. Reichert et al (1980) reported that anaerobic storage of grain sorghum 

treated with water or HCl solution decreased tannin content in grain sorghum. Daiber and Taylor 

(1982) steeped sorghum seeds in dilute formaldehyde solution and dilute NaOH to decrease 

tannin levels. These methods likely degraded or cross-linked the tannins making them inactive. 

Germination of grain sorghum is another way to reduce tannin content (Reichert et al 1980; Yan 

et al 2009). Deactivation of tannins during germination was similar to the reduction reported 

during anaerobic storage of water-treated sorghum. The deactivation mechanism in both 

processes may be the same, i. e., enzymatic degradation (Yan et al 2009). 

Mullins and NeSmith (1986) studied ethanol fermentation from bird-resistant (i.e. tannin 

containing) and non-bird-resistant (i.e. non-tannin) grain sorghum and reported that high tannin 

levels greatly reduced the ethanol production rate. Wu et al (2007) reported that tannin content 

was one of the major factors affecting ethanol conversion efficiency of grain sorghum in lines 

containing tannins. Ethanol yield and fermentation efficiency increased when tannins were 

removed or inactivated (Yan et al 2009). 

Ozone is a strong oxidant with oxidation potential of 2.07 eV. Ozone has the power of 

quick degrading vital components in living cells and killing microorganisms. It works at low 

dosage levels and leaves no residues in the treated product. Because of these many advantages, 

ozone has been used in water treatment, food processing (Kim et al 1999), and in corn and wheat 

steeping prior to milling (Dhillon et al 2009; Ruan et al 2004). Previous studies have shown that 

ozone is able to degrade macromolecules such as lignin (Sugimoto et al 2009), protein and 

carbohydrates (Wang et al 1999; Wang et al 2008b; Yosef et al 1994). Seo et al (2007) reported 

chitosan could be depolymerized by ozone treatment. Thus the hypothesis of the current project 

was that ozone treatment may degrade/inactivate sorghum tannins and reduce its adverse activity 

during fermentation, thereby increasing the fermentation efficiency of tannin sorghum. 

Deactivating sorghum tannins prior to ethanol fermentation would provide additional uses for 

tannin containing sorghum lines grown for special uses, i.e. nutraceuticals, or in areas of the 

world where tannin containing sorghums are still widely grown. 
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Materials and Methods 

Grain Sorghum 

Tannin grain sorghum used in this study was cleaned manually and ground to flour with a 

Magic Mill III plus grain mill (Magic Mill Products & Appliances, Monsey, NY) set at the level 

V for fermentation use. Samples for chemical composition analysis were ground with a Udy 

cyclone sample mill (Udy, Fort Collins, CO) with a 1.0 mm screen. 

Experimental Design and Ozonation Treatment 

A factorial design was used in this study. Flow rate and treatment time were two factors 

and were investigated to determine the main effect and the interaction between the two factors 

during ozonation. Each factor was run at two levels at room temperature. Ozonation was 

conducted using a randomized design and each treatment was run in replicate. Flour samples 

(500 g each treatment) were tumbled in a metal drum (MIAG, Braunschweig) equipped with 

motor-rotation. Ozone gas was generated by a pilot scale ozone generator (Clear Water Tech, 

Inc., San Luis Obispo, CA, USA; donated by Dr. Joseph Montecalvo, California Polytechnic 

State University) using oxygen from a SeQual oxygen concentrator (SeQual Technologies, Inc., 

San Diego, CA, USA) at the set flow rates. The rate of ozone production as a function of time 

(10, 20, 30, 36 and 40 min) was measured using an iodometric method (Rakness et al 1996). 

Ozone concentration (y in ppm) at the oxygen input flow rate of 0.06 L/min is linearly correlated 

with ozonation time (x in min): y = 0.08x - 0.45 (R2 = 0.95) (Chittrakorn 2008). Ozone was fed 

into a rotary metal drum containing 500 grams of tannin sorghum flour. The residual ozone from 

the exit of the rotary metal drum was entrapped in 2% potassium iodide solution plus starch. 

Starch Isolation from Tannin Grain Sorghum Flour 

Twenty-five gram of whole tannin grain sorghum flour (ozone-treated and untreated) was 

dispersed into 200 ml distilled water in a flask. The pH was adjusted to 4.0-4.2 with 

hydrochloride acid, and 0.4% (v/v) protease GC106 (Genencor International, Inc. NY) was 

added to hydrolyze protein and facilitate starch extraction. To prevent microbial contamination, 

100 µL of 10% NaN3 was added to each flask. The flasks with mixed flour suspension were 
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incubated in a 45°C water-bath shaker for 72 hr with constant agitation. The content from the 

flask was sieved through a No. 200 wire sieve (opening 75 µm) and the retained overs were 

washed twice with 200 mL (2×200 mL) distilled water to recover starch. The washed overs were 

discarded, whereas the throughs were collected and passed through a No. 200 wire sieve 

(opening 75 µm). Again, the overs were discarded, and the throughs were centrifuge at 3000 × g 

for 30 min. Each time after centrifugation, the supernatant and tailings were removed and 

discarded. The prime starch was washed with distilled water and centrifuged at 3000 × g for 30 

min for a total of 10 times to obtain clean prime starch. The prime starch was freeze dried for gel 

permeation chromatography test. 

Gel Permeation Chromatography (GPC) 

Four milligrams of whole grain sorghum flour was mixed with 4 mL dimethyl sulfoxide 

(DMSO) and stirred in a boiling water bath for 24 hr. The sample was filtered through a 2 µm 

filter and then 200 µL was injected into a PL-GPC 220 instrument (Polymer Laboratories, Inc., 

Amherst, MA, USA) equipped with three Phenogel columns of different pore sizes (100Å, 10-

3Å, & 10-5Å, Phenogel™ GPC, 10 µm, 300 × 7.8 mm), a guard column (Phenomenex, Inc., 

Torrance, CA, USA), and a differential refractive index detector. The eluent system was DMSO 

containing 5.0 mM NaNO3 at a flow rate of 0.8 mL/ min. The column oven temperature was 

controlled at 80°C. Standard dextrans (American Polymer Standards Co., Mentor, OH, USA) 

with different molecular weights (MW) were used for MW calibration. 

pH Value Measurement 

The pH of whole sorghum flour samples was measured following the AACC method 02-

52.01 (AACC International 2009). Ten gram flour was added to 100 mL of distilled water. The 

flour suspension was stirred on a stirring plate for 15 min. Flour samples were allowed to stand 

for 10 min after removed from the stirring plate, then, the supernatant was decanted and used for 

pH measurement. 
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Pasting Properties of Sorghum Flour by RVA 

A rapid visco analyzer (model RVA-3D, Newport Scientific Ltd., Warriewood, Australia) 

was used to test pasting properties of the sorghum flours. Sorghum flour (4.0 g of 14% mc, 3.44 

g dry mass) and water (25 mL including water from the sample flour) were mixed at 50°C; the 

slurry was held at 50°C for 1 min then heated from 50 to 95°C. The hot paste was held at 95°C 

for 2.5 min, cooled to 50°C, and held at 50°C for 2 min. The total process was 13 min. 

Microorganism, Preparation of Mashes and Inoculation 

The dry yeast (Saccharomyces cerevisiae, Red Star Ethanol Red) was provided by 

Fermentis (Milwaukee, WI), and was used for simultaneous saccharification and fermentation 

(SSF). Before inoculation, dry yeast was activated by adding 1.0 g of cells into 19 mL of 

preculture broth (containing 20 g glucose, 5.0 g peptone, 3.0 g yeast extracts, 1.0g KH2PO4, and 

0.5 g MgSO4·H2O per liter) and incubated at 38°C for 30 min in an incubator operating at 200 

rpm. The activated yeast culture had a cell concentration of approximately 1×109 cells/mL. 

Liquozyme SC DC (Novozyme, Franklinton, NC), a heat-stable α-amylase from Bacillus 

licheniformis, was used for liquefaction. Enzyme activity of the Liquozyme SC DC was 240 

KNU/g (One Kilo Novo Unit, KNU, is the amount of enzyme that breaks down 5.26 g of starch 

per hr at Novozyme’s standard method for determination of α-amylase). Spirizyme Fuel 

(Novozyme, Franklinton, NC), an amyloglucosidase from Aspergillus niger, was used for 

saccharification. Enzyme activity of the Spirizyme Fuel was 750 AGU/g (One AGU is the 

amount of enzyme that hydrolyzes 1 µmol of maltose per min under specified conditions). 

Whole sorghum flour (34 g, as is) was dispersed in a 250-mL Erlenmeyer flask with 100 

mL of fermentation broth containing 0.1 g KH2PO4 and 20 µL Liquozyme (240 KNU/g). The 

flasks were transferred to a 70°C water bath shaker operating at 170 rpm. The water bath 

temperature gradually increased from 70°C to 95°C over a period of 90 min. After 90 min, flasks 

were removed from the water bath shaker and cooled to room temperature. Materials sticking to 

the inner surface of the flasks were scraped back into the mash with a spatula, and the inner 

surface was rinsed with 2–3 mL of distilled water using a fine-tipped polyethylene transfer 

pipette. One hundred µL amyloglucosidase, 0.3 g yeast extract, and 1 mL activated yeast culture 

(1×109 cells/mL) were added to each flask. Inoculated flasks were sealed with S-
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bubblers/airlocks and transferred to an incubator shaker for SSF ethanol fermentation. Each 

sample was run in duplicate. 

Fermentation and Distillation 

Ethanol fermentation was conducted at 30°C in an incubator shaker (Model I2400, New 

Brunswick Scientific, Edison, NJ) operating at 150 rpm for 72 h. The fermentation process was 

monitored by measuring the weight loss of each flask from evolved carbon dioxide (CO2) during 

fermentation.  

At the end of fermentation, the finished mash in each 250-mL flask was transferred to a 

500-mL distillation flask. Each Erlenmeyer flask was washed with distilled water four times 

(4×25 mL). The washing water was pooled in the distillation flask, and then the distillation flask 

was distilled on a distillation unit. Distillates were collected in a 100 mL volumetric flask 

immersed in ice water. When distillates in the volumetric flask approaching the 100 mL mark 

(~0.5 mL below the mark), the distillation process was stopped. Distillates in the volumetric 

flask were equilibrated in a 25°C water bath for at least two hr before adjusting the total volume 

to 100-mL with distilled water. Distillates were analyzed for ethanol using a Shimadzu HPLC 

with a Rezex RCM column (Phenomenex, Torrance, CA) and refractive index detector (Wu et al 

2006).  

Tannin Measurement 

Tannin contents in the control whole sorghum flour and ozone-treated whole sorghum 

flours were determined by following the modified vanillin assay procedures for measurement of 

condensed tannin (Price et al 1978). Pure catechin (Sigma, St. Louis) was used as a standard for 

calibration curve. The whole sorghum flours for tannin test were freshly ground using a Udy 

cyclone sample mill (Udy, Fort Collins, CO) with a 0.5-mm screen on the day of assay. 

Free Amino Nitrogen Determination 

Free amino nitrogen (FAN) was analyzed using the European Brewery Convention 

method (EBC 1987) with modification. Grain sorghum flour (150 mg) was mixed with 1.5 mL 

deionized water in a 2.5-mL microcentrifuge tube. The mixture was vortexed five times within 

10 min, then centrifuged at 12,000 rpm for 20 min. A portion of the supernatant was sampled for 

FAN analysis. 
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Color Measurement 

The L*, a*, b* color spaces system was developed in 1976 and adopted by the 

International Commission on Illumination (CIE), which became a joint ISO and CIE standard 

(ISO 11664-4:2008(E)/CIE S 014-4/E:2007 and ISO 11664-5:2009(E)/CIE S 014-5/E:2009). L* 

is a measure of the lightness with values of 0 for black and 100 for white; a* describes red-green 

color. Positive a* values indicate redness and negative a* values indicate greenness; b* describes 

yellow-blue color, Positive b* values indicate yellowness and negative b* values indicate 

blueness. A Minolta chroma meter (model CR-210, Entest, Inc., Carrollton, TX) was used for 

color determination. The instrument was calibrated with a white calibration tile. The colorimeter 

was set to an illuminant condition C and a 2° standard observer. Each sample was placed in the 

standard sample holder for color measurement. Test was done in replicate. In this study, the 

effects of ozonation on sorghum color were measured against the untreated control sample. 

Analytical Methods 

Moisture content was determined using the AACC approved method 44-15A (AACC 

International 2009). Total starch content was measured using Megazyme total starch test kits and 

the DMSO procedures according to AACC approved method 76-13 (AACC International 2009).  

Results and Discussion 

Effect of Ozonation on pH Values of Sorghum Flours  

Figure 5.1 shows pH-value changes of the tannin sorghum flours after ozone-treatment. 

Compared with the pH of the control sorghum flour, pH-values of all the ozone-treated sorghum 

flours were lower following treatment. The pH-values of the same sorghum flour decreased as 

ozonation doses increased (higher ozone flow rates and/or longer treatment time). Statistically, 

the pH-values were significantly different among treatments with ozone flow rates at 0, 0.02 and 

0.06 L/min (P< 0.05). pH-values of ozone-treated sorghum flour were significantly different 

from the control. However, No significant difference was found between pH values of the 15 

min and 30 min ozonated flours (P< 0.05). 

Decreasing in pH-values after treatment means more [H+] ions in the water slurry 

systems from treated flours. It has been reported that the increases of carboxyl and carbonyl 

contents in ozone treated starches were proportional to the doses of ozone (Chan et al 2009). The 
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increase in carboxyl groups in the oxidized starches were the results of oxidative break down of 

starch polymeric molecules. In whole sorghum flour, additional carbohydrate polymers such as 

hemicelluloses and cellulose beside starches may contribute to the formation of carboxyl groups 

during ozone treatment. This could be one explanation for the behavior of pH decrease in 

ozonated sorghum flours depicted in Figure 5.1. 

Effect of Ozonation on Sorghum Tannins 

Measured tannin levels in ozone treated sorghum flours decreased by more than 20% 

compared to that of the untreated control (Figure 5.2). The tannin content decreased as ozone 

levels increased. At either treatment time (15 min or 30 min), the tannin contents in sorghum 

flours treated at higher ozone flow rate (0.06 L/min) were significantly lower than those treated 

at lower flow rate (0.02 L/min). However, no significant difference in tannin contents was found 

between treating time of 15 min and 30 min at both ozone flow rates. The combined effect of 

flow and time dose might be the reason for such different results. At either treating time, the 

combined ozone doses tripled when the flow rate was raised from 0.02 L/min to 0.06 L/min; 

whereas, the combined ozone dose only doubles at either flow rate when the treatment time 

increased from 15 min to 30 min. If triple dosage change is the minimum required to cause 

significant changes in tannin content, then double combined ozone doses might show the 

decreasing trend in tannin content, but not enough to cause significant changes in tannin content.  

As previously reported, ozone can degrade macromolecules such as lignin, starches etc. 

similar degradation could happened to tannins in our ozone treated sorghum flours. SEC (HPLC) 

was used to test the tannins in the treated sorghum flour samples. Unfortunately, the SEC 

(HPLC) analysis could not differentiate the differences in tannins in the ozone treated and non-

treated control (data not shown). One possible reason could be that the changes in tannin 

molecules were too small for SEC HPLC to detect, or the SEC conditions used for normal tannin 

analysis did not suit for ozonated tannin analysis. Ozone treatment could change the structures of 

some functional groups in tannin molecules and therefore affect their enzyme inhibition and 

protein precipitating activity. However, such changes (e.g. formation of carboxyl, carbonyl 

groups, or break of limited amount of short branches) were not dramatic enough for SEC 

(HPLC) to detect and differentiate. 
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Effect of Ozonation on Starch Molecule Distribution 

Figure 5.3 shows the molecular weight distribution of starches from ozone-treated tannin 

sorghum flour and control sorghum flour as determined with GPC. Compared with the molecular 

weight distribution of starch in the control sorghum flour, the molecular weight distribution 

curves of starches from ozone-treated tannin sorghum flours were either shifted toward the low 

molecular weight side or the proportion of the low molecular weight fraction increased. Several 

previous investigations demonstrated that ozone treatment could change structural, 

physicochemical and functional properties of starches (An and King 2009; Chan et al 2009; 

Kuakpetoon and Wang 2006). These studies speculated that the low final viscosity of ozone-

treated starch could be attributed to degraded starch molecules and weakened starch granules 

during ozonation. However, there was no data to directly support their assumptions. Our GPC 

data showed two different types of changes occurred to ozone treated sorghum starches. First, it 

confirmed that ozone caused different degrees of degradation to starch molecules. The shift of 

GPC curves of the ozone treated starches toward the low molecule weight side (left) is direct 

evidence of such degradation (Figure 5.3). Significant amount of lower molecular weight starch 

molecules have been generated during ozone treatment. However, the shift of starch molecules 

toward the low molecular weight direction was not proportional to the ozone dosage as we 

normally expected. In contrast, more low-molecular-weight starches were found in samples 

treated at lower flow rate than at higher flow rate. On the other hand, the GPC curves showed 

that some crosslinking among starch molecules might have occurred too, because the high 

molecular weight portions of the GPC curves were obviously larger than that of the non-treated 

control. The GPC curves of starches from low flow rate treatment had larger middle portions 

(LogMW from 5.5 to 7.5) than the control; whereas, the GPC curves of starches from higher 

flow rate treated samples had larger peaks in the high molecular weight end (LogMW from 9 to 

10). Our data show that both oxidative degradation and crosslinking could have happened to 

sorghum starches during ozone treatment. The reason for less low-molecular-weight starch 

molecules in higher ozone dose treated samples was probably due to the formation of larger 

molecules from crosslinking of oxidative degraded starch molecules (starches with carboxyl and 

carbonyl groups). At present, there is no information regarding the types of crosslink reactions 

and structural features of cross-linked molecules. Further studies are needed to elucidate the 

actual mechanism behind such changes. To obtain a treated product with appropriate amount of 
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oxidized starch molecules and suitable physical and chemical properties for ethanol production, 

ozone treating doses (control of flow rate and treatment time) need to be further optimized. 

Effect of Ozonation on Pasting Properties of Sorghum Flour 

Pasting properties of ozone-treated tannin grain sorghum flours and control flour 

analyzed with a Rapid Visco Analyzer are shown in Figure 5.4. All the curves did not show clear 

peak viscosity and break down viscosity. This could be caused by two factors. One was high 

tannin content (~ 4%) in the flour. Tannins have the ability to bind, coagulate, and precipitate 

proteins. This conclusion has been reviewed by Butler et al. (1984), who summarized that under 

optimal conditions, sorghum tannin is capable of binding and precipitating at least 12 times its 

own weight of protein by means of hydrogen bonding, hydrophobic interaction, electrostatic 

attraction and covalent bonding associated with oxidation. Because tannins interact with proteins 

during mashing or during the RVA analysis, the tannin-protein complexes will inhibit the water 

absorbing rate of starch granules and prevent starch granules from swelling rapidly. Another 

factor could be particle size of sorghum flours. Whole sorghum flour samples used in this study 

were prepared using a Magic Mill III plus grain mill set at the level V. The particle sizes of such 

prepared flours were relatively larger than those from cyclone mill with 1.0 mm screen or 

industrial flours. Normally, the sizes of cereal starch granules are in the range of 0-50 µm. If a 

1.0 mm (1000 µm) screen was used, some large particles in the ground sorghum flours could 

contain more than a hundred starch granules. As a result, water absorbing rates by starch 

granules in larger particles will be inhibited. Sudden increase in mash viscosities of tannin 

sorghum samples during mashing confirmed this. 

The setback viscosity indicates degrees of retrogradation of starch molecules during 

cooling. A high setback value indicates a high tendency of starch molecules to retrograde. 

Pasting curves in Figure 5.4 shows that the setback viscosities of sorghum flours treated with 

lower ozone flow rates were ~ 200cp lower than those of sorghum flours ozonated at the higher 

flow rates. This result agrees with Figure 5.3, which shows that amylopectin degraded more in 

low flow rate treated samples but some crosslinking occurred in the higher flow rate treated 

samples. Usually, the lower setback viscosity is a sign of higher α-amylase activity. Lower 

setback viscosity is a good trait for ethanol production from grain sorghum because low setback 
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viscosity means easy disrupture of starch granules and less tendency to form retrograded starch 

molecules during mashing, which are more resistant to enzyme hydrolysis (Yan et al 2010). 

Effect of Ozonation on Ethanol Yield and Fermentation Efficiency 

Ethanol yields from ozone-treated whole grain sorghum flour and control sorghum flour 

are listed in Table 5.1. Ethanol yields from all the ozone-treated sorghum flour were significantly 

higher than that from the non-treated control sorghum flour. Ethanol yields from samples treated 

at lower flow rates were significantly higher than those from both higher ozone flow rate treated 

sorghums and non-treated control (p<0.05). This indicates that the ozone flow rate had a 

significant effect on ethanol yields in the treated flow rate range. The favorable effects of 

ozonation on ethanol yields were found not proportional to ozone doses as measured by flow 

rates (0.02 vs 0.06 L/min). In fact, some favorable effects might have been offset partially as 

ozone flow rate increased from 0.02 to 0.06 L/min. On the other hand, when we examined the 

effect of ozonation time on ethanol yield, no significant difference in ethanol yield was found 

between 15 min and 30 min of ozonation (p< 0.05). Nevertheless, ethanol yields from ozone 

treated sorghum samples showed a decrease trends as treatment time increased at both flow rates. 

The reason for the no significant changes in ethanol yields could be the duration of 30 min was 

not long enough. Interactions between the ozone flow rate and treatment duration on ethanol 

yield were not significant (p>0.05). 

Fermentation efficiency is a very important parameter to evaluate the performance of a 

material for ethanol production. Ethanol fermentation efficiencies from ozone-treated whole 

grain sorghum flours and control sorghum flour are shown in Figure 5.5. By the end of the 72 hr 

fermentation process, the efficiencies of ozone-treated grain sorghum flours were 2-5% higher 

than that of the control flour. The efficiencies of the low flow rate treated samples were ~3% 

higher than those of higher flow rate treated samples. When we examined the fermentation 

efficiencies at the 36th hr, the efficiencies of ozone-treated sorghum samples ranged from 86% to 

92%, whereas the efficiency of the non-treated control sorghum was 78%. Efficiencies of 

samples treated with lower ozone flow rate (0.02 L/min) were 12.9 to 13.8% higher than that of 

the non-treated control; whereas the fermentation efficiencies of higher ozone flow rate treated 

samples were 8-10% higher than that of the non-treated control. Figure 5.5 shows that the 

fermentation efficiency in the end of the fermentation process (72 hr) did not increase very much 
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after the 36th hr point except for that of the control. Therefore, fermentation time could be 

shortened to 36 hr to reduce energy consumption without obvious loss in ethanol yield if ozone-

treated grain sorghum flour is used for ethanol production. This indicates that ozone treatment 

could be a novel way to shorten fermentation time and increase production capacity of ethanol 

plants. 

Effect of Ozonation on Sorghum Flour Color 

Figure 5.6 shows results from color measurement using a colorimeter. Compared with the 

non-treated control grain sorghum flour, ozone-treated tannin sorghum flours had higher L* 

values indicating they became light colored. As ozonation time and ozone flow rate increased, 

the whiteness of sorghum flour increased; whereas a* values (redness) showed a decline trend as 

ozone dosage increased. Yellowness (b* values) varied among the treatments. Xiang (2009) 

reported that sorghum colors are determined and affected by many factors such as pericarp and 

the presence of pigment testa layer.  

Beside tannins, many other naturally occurred compounds such as lignin, carotenoids, 

anthocyanins etc. may give plant origin materials dark colors. Degradation of these compounds 

usually leads to a lighter colored material (Henry et al 2000; Miki 1994; Tiwari et al 2009). 

Ozone as a powerful oxidant definitely has the potential to degrade such pigment compounds 

including tannins and turn sorghum flour into lighter color, which could have contributed to the 

color changes (lighter and brighter, reduction in redness and variable in yellowness) of ozone-

treated sorghum. 

Effect of Ozonation on DDGS 

DDGS is a by-product from ethanol production. Its composition and quality are critical 

for its market value as animal feed, which accounts for a major portion of revenues in ethanol 

plants. Protein and fat contents are the two major nutrients affect the nutritional values and thus 

market prices of DDGS. Table 5.2 shows the chemical composition of DDGS from ozone-treated 

and non-treated samples. Normal DDGS has a crude protein contents of 25-29% and crude fat 

contents of 7-11% (Saunders and Rosentrater 2009). Data in Table 5.2 show that DDGS from 

sorghum has much higher protein contents than normal DDGSs in the ethanol industry and has a 

comparable crude fat contents, which gives sorghum DDGS a label of better quality at least from 

a nutritional point of view. Comparing among DDGSs from different treatments within this 
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study, protein contents were higher in DDGS from ozone-treated samples than that in DDGS 

from the non-treated control. Residual starch contents in normal industrial DDGSs are around 

5% (Belyea et al 2004), starch residues in DDGS from ozone-treated samples were all less than 

1%, and were lower than that in DDGS from the non-treated control (1.69%), which is 

reasonable due to the higher fermentation efficiencies and higher ethanol yields of the ozone-

treated sorghum flours. Overall, ozone treatment not only enhanced fermentation efficiencies and 

ethanol yields, but also generated a high quality DDGS.  

Conclusion 

Ozonation not only decreased tannin content and pH value of tannin sorghum, but also 

had effect on sorghum flour, starch granules, and starch molecular distribution. Fermentation 

efficiency is a very important parameter to evaluate the performance of a material for ethanol 

production. Ethanol fermentation efficiency from ozone-treated sorghum increased greatly over 

10% compared to that from the control. This indicates that ozonation has great impact on ethanol 

yield and fermentation efficiency and is an effective way to increase ethanol yield and shorten 

the fermentation process without decreasing ethanol yield. 
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Figure 5.1. Effect of ozone treatments on pH-value of grain sorghum flour. Numbers in the 

parentheses after the letter O are ozone doses designated by ozone flow rate (L/min)*treatment 

duration (min). 
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Figure 5.2. Effect of ozone treatments on tannin content change in grain sorghum flours. 

Numbers in the parentheses after the letter O are ozone doses designated by ozone flow rate 

(L/min)*treatment duration (min).
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Figure 5.3. Effect of ozone treatment on molecular weight distributions of sorghum starches. 

GPC was performed on a PL-GPC 220 with three 300x7.8 mm Phenogel columns (100Å, 10-3Å, 

& 10-5Å) and a RI detector. The eluent system was DMSO containing 5.0 mM NaNO3 at 0.8 

mL/ min. The oven temperature was 80°C. Numbers in the parentheses after the letter O are 

ozone doses designated by ozone flow rate (L/min)*treatment duration (min). 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

3 4 5 6 7 8 9 10

Log MW

dW
/d

L
og

M
O (0.02*15) O (0.02*30)

O (0.06*15) O (0.06*30)

Control



103 

 

 

Figure 5.4. Pasting properties of ozonated tannin sorghum flours and non-treated control flour 

using RVA with a standard 13 min procedure. Numbers in the parentheses after the letter O are 

ozone doses designated by ozone flow rate (L/min)*treatment duration (min).
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Figure 5.5. Fermentation efficiencies of ozonated tannin sorghum and non-treated control using a 

laboratory dry-grind process. Numbers in the parentheses after the letter O are ozone doses 

designated by ozone flow rate (L/min)*treatment duration (min). 
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Figure 5.6. Effect of ozone treatment on sorghum flour color measured in L*, a*, b* color space. 

Numbers in the parentheses after the letter O are ozone doses designated by ozone flow rate 

(L/min)*treatment duration (min). 
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Table 5.1. Ethanol yields from ozonated whole grain sorghum flours and control sorghum flour 

Sample Ethanol yield (L/Ton) Ethanol yield (Gal/bu) 

Control 356.47 ± 5.76 2.68±0.04 

O (0.02*15)# 375.54 ± 5.40 2.82±0.04 

O (0.02*30) 373.02 ± 1.44 2.80±0.01 

O (0.06*15) 364.39 ± 1.80 2.74±0.01 

O (0.06*30) 362.95 ± 3.96 2.73±0.03 
#: Numbers in the parentheses after the letter O are ozone doses designated by ozone flow rate 

(L/min)*treatment duration (min). 



107 

Table 5.2. Proximate analysis results on major components of DDGSs (%, db) from ozonated 

sorghum samples and non-treated control 

Sample Starch Crude protein Crude fats Crude fiber Ash 

Control 1.69 ± 0.01 33.82 ± 0.01 8.56 ± 0.01  4.99 ± 0.01 5.66 ± 0.01 

O (0.02*15)# 0.95 ± 0.01 35.34 ± 0.01 8.14 ± 0.02 4.74 ± 0.03 5.87 ± 0.11 

O (0.02*30) 0.94 ± 0.00 35.14 ± 0.88 8.63 ± 0.03 4.99 ± 0.15 5.76 ± 0.00 

O (0.06*15) 1.03 ± 0.15 35.08 ± 1.22 8.51 ± 0.02 4.86 ± 0.05 5.84 ± 0.35 

O (0.06*30) 0.99 ± 0.08 34.79 ± 0.26 8.48 ± 0.16 4.88 ± 0.48 5.74 ± 0.16 
#: Numbers in the parentheses after the letter O are ozone doses designated by ozone flow rate 

(L/min)*treatment duration (min). 
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Chapter 6 - Conclusions and Recommendations 

Conclusions 

After studying the physical, chemical, and ethanol fermentation performance of waxy 

sorghum, laboratory germinated tannin sorghum, field sprouted sorghum samples, and ozone 

treated tannin sorghum flours, we come to the following conclusions. 

Beside their common low amylose contents, waxy grain sorghum cultivars varied greatly 

in other chemical and physical features. Ethanol yields from waxy sorghums were essentially 

proportional to their starch contents. The narrow-ranged and very low amylose contents in the 

tested waxy sorghum samples showed little effect on ethanol yield and fermentation efficiency. 

Ethanol yields from the tested waxy grain sorghums were around 2.8 gallon/bushel, which is 

similar to that reported for corn. The fermentation efficiency was greatly affected by FAN 

content in waxy sorghum, which showed a strong positive linear correlation (R2=0.90) with early 

stage (the first 30-36 hr) fermentation efficiency. Tannins were found in most of the tested waxy 

sorghums and had negative effects on ethanol yield and fermentation efficiency. DDGS from 

waxy sorghums had higher protein contents than those from normal sorghum and corn, which 

implies better quality as animal feed.  

Short period (~3 days) of germination treatment could activate many intrinsic enzymes in 

sorghum kernels and cause dramatic changes to physical and chemical properties of sorghum 

kernels and its performance in ethanol production. These changes include significantly decreased 

tannin content, break down of protein matrix and release of formerly embedded starch granules, 

improvement in protein and starch digestibility, which worked favorably together in the dry-

grind ethanol process with significantly higher fermentation rate (essentially completed in 36 hr 

instead of 72 hr), enhanced fermentation efficiency, and increased ethanol yield, Activated 

intrinsic enzymes in the germinated sorghum kernels definitely played an important role in 

improving digestibility of starches and proteins (possibly the hydrolysis of other components) 

and compensated for the loss of starch due to respiration during germination. 

The study on field-sprouted sorghum samples further confirmed the results from the 

laboratory germination study in every aspect. Sprouted sorghum samples had significantly 

different features and properties compared to those of the sound control. Sprouted samples had 

smaller kernel sizes, weight and lower hardness index values, damaged physical structures 
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(starch granules, protein matrices, and cell walls etc.), changed chemical composition and 

pasting properties. Those property changes rendered sprouted sorghum not good for food or 

animal feed use anymore. Fortunately, many of these changes make it a better feedstock for 

ethanol production. Less hard makes it easier (less power consumption and equipment wear) to 

be ground into fine particles; damaged starches and protein matrix plus activated intrinsic 

enzymes improved starch and protein hydrolysis and pasting characteristics (lower viscosity 

during mashing, less residual starch in DDGS, and higher FAN in finished mash). Together, 

these features made sprouted sorghum even a better feedstock for ethanol production with more 

rapid fermentation rate, improved fermentation efficiency and ethanol yield. This could offer an 

alternative market outlet for field-sprouted sorghum when unfavorable weather caused field 

sprouting occurs. 

Ozonation not only decreased tannin contents and pH values of tannin sorghum flours, 

but also had effects on sorghum flour, starch granules, starch molecular size distribution as well 

as the ethanol production performance as evaluated with the laboratory dry-grind process. 

Ethanol fermentation efficiency from ozone treated sorghum flour increased significantly by 

more than 10% when compared with that of the untreated control flour. Therefore, ozonation 

could be an effective way to reduce tannin contents in tannin flour, overcome tannin’s adverse 

effects on starch hydrolysis, and eventually lead to improved ethanol fermentation efficiency and 

higher ethanol yield. 

Recommendations 

Tannins have been reported responsible for the low digestibility of starches and proteins 

and considered anti-nutritional factors in many plant foods. On the other hand, tannins and many 

phenolic compounds have been related with antioxidant activities of many foods and vegetables. 

Both germination and ozone treatment demonstrated effective in reducing tannin contents or 

lessening their adverse effects on starches and proteins hydrolysis. No research has been 

conducted on the molecular mechanism of the changes during germination or ozone treatment, 

nor has any investigation on the antioxidant activities of treated samples either. Information from 

such studies may not only be very useful for optimizing feedstock treatment for ethanol 

production, but also be used in food processing to make use of the antioxidant properties of 

tannin and its degraded products. 
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Germination and field sprouted sorghum both demonstrated improved performance in 

ethanol production. The significantly increased FAN contents in mashes were directly correlated 

with fermentation rate. Laboratory germinated sorghum had a more uniform and controllable 

FAN levels. However, the field sprouted samples had very diverse and unpredictable FAN 

contents, which make it difficult for an ethanol plant to adjust its processing strategies if sprouted 

sorghums do become a feedstock for ethanol production. Fast and reliable method to predicate 

FAN in finished mashes from various kinds of sprouted sorghum would be very helpful for 

ethanol plants to handle such feedstocks. The widely used instant FT-IR and quick SKCS 

methods may play a role. Nevertheless, no research on this area has been conducted. 

Ethanol fermentation results showed that ozonation significantly improved the 

performance of tannin sorghum in ethanol production (higher fermentation rate, shorter 

fermentation time, higher efficiency and yield). However, the improvement did not proportional 

to the applied ozone dosage. GPC analysis on starch molecular weight distribution revealed that 

both degradation and crosslinking occurred to starch molecules during ozone treatment. Further 

investigating the molecular mechanisms under such changes in molecular weight distribution 

could help to understand the relationship of each type of change with performance in ethanol 

production, therefore, optimize ozone treating dosage. 
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A. Supplement Materials

 Abbreviations Used 

The following is a list of abbreviations used in the dissertation.  

AACC American Association of Cereal Chemists 

AGU Amyloglucosidase unit 

AOAC Association of Official Analytical Chemists 

CE Catechin equivalent 

CIE International Commission on Illumination 

db Dry basis 

DDGS Distillers dried grains with solubles 

DMSO Dimethyl sulfoxide 

DSC Differential scanning calorimetry 

EBC European Brewery Convention 

Effic. Efficiency 

FAN Free amino nitrogen 

GAE Gallic acid equivalent 

GBSS Granule-bound starch synthase 

GPC Gel permeation chromatography 

HI Hardness index 

KNU Kilo Novo unit 

MV-HCl Modified V-HCl method for sorghum tannin determination 

RFA Renewable fuels association 

RFS Renewable Fuels Standard 

RVA Rapid visco analyzer 

SEC Size exclusion chromatography 

SEM Scanning electron microscope 

SSF Simultaneous saccharification and fermentation 

Temp. Temperature 

VAG Visco Amylo Graph 

V-HCl Vanillin hydrochloric acid method for sorghum tannin determination 
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 Figures and Tables Within Appendix A 

 

Figure A.1. Relationship between kernel hardness index measured with an SKCS and average 

particle sizes of ground sorghum samples. 
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Figure A.2 Relationship between hardness index of sorghum kernels, particle sizes of ground 

samples and fermentation efficiencies. 
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Figure A.3 Selected samples of tannin bleach test results and its relation with ethanol yield. 
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Figure A.4 Equipment used for ozone treatment of sorghum flour samples in this study. 
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Table A.1 SKCS data on the 25 tested waxy sorghum samples 

Accession # Origin 
Hardness 

index 
Weight (mg) 

Moisture 
(%) 

Diameter 
(mm) 

PI220636 Afghanistan  80.84 22.22 6.76 2.26 
PI23231 China  88.31 19.78 6.71 1.77 
PI548008 China  97.25 18.45 7.23 1.67 
PI563576 China  92.03 21.58 7.33 1.90 
PI563670 China  87.72 25.37 7.25 2.08 
PI563671 China  89.83 21.67 7.17 1.81 
PI586524 China  96.69 18.75 6.95 1.71 
PI586526 China  95.88 17.47 7.35 1.63 
PI586529 China  82.65 23.52 7.30 1.84 
PI455543 Ethiopia  96.18 21.16 7.48 1.83 
PI586448 Hungary  93.28 16.01 6.78 1.64 
PI586454 Hungary  85.33 19.14 7.36 1.91 
PI217897 Indonesia  89.04 19.78 7.18 1.83 
PI234456 Japan  81.16 18.59 7.21 1.69 
PI82340 Korea  81.08 20.41 7.01 1.95 
PI87355 Korea  91.48 21.19 6.80 1.78 
PI88004 Korea  89.70 17.99 7.18 1.79 
PI562758 Nigeria  86.49 27.74 7.63 2.21 
PI567803 South Korea  87.53 21.25 7.28 1.72 
PI567809 South Korea  86.27 23.20 7.21 1.84 
PI567811 South Korea  100.1 17.48 7.34 1.45 
PI5623402 USA  77.74 23.73 6.94 2.06 
PI563015 USA  89.68 17.28 7.13 1.62 
PI563068 USA  78.37 32.80 7.26 2.71 
Ellis USA 89.19 21.62 7.05 1.92 
 


