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Abstract 

The project explores the possibility of increasing efficiency in the clusters formed out of massive 

data sets, which are formed using the threshold blocking algorithm, clusters thus formed are 

denser and qualitative. Clusters that are formed out of individual clustering algorithms alone, do 

not necessarily eliminate outliers and the clusters generated can be complex, or improperly 

distributed over the data set. The threshold blocking algorithm, a current research paper from 

Michael Higgins of Statistics Department on other hand, in comparison with existing algorithms 

performs better in forming the dense and distinctive units with predefined threshold. Developing 

a hybridized algorithm by implementing the existing clustering algorithms to re-cluster these 

units thus formed is part of this project. 

Clustering on the seeds thus formed from threshold blocking algorithm, eases the task of 

clustering to the existing algorithm by eliminating the overhead of worrying about the outliers. 

Also, the clusters thus generated are more representative of the whole. Also, since the threshold 

blocking algorithm is proven to be fast and efficient, we now can predict a lot more decisions 

from large data sets in less time. Predicting the similar songs from million-song dataset using 

such a hybridized algorithm is considered as the data set for the evaluation of this goal.  
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Chapter 1 - Introduction 

(Higgins, Savje, & Sekhon, 2016) describes a novel approach for sampling algorithm to any 

covariate dataset. The goal of this project aims at analyzing the performance variations of the 

mentioned threshold blocking algorithm in association with prominent clustering algorithms. In 

order to achieve this goal, the following sequence is carried out. 

The threshold blocking algorithm is used along with clustering algorithm to form clusters among 

the dataset. Since blocks formed out of threshold blocking algorithm contain centroids representing 

similar units, clustering algorithm applied on the centroids of these blocks form more efficient 

clusters. For this purpose, DBSCAN (D ensity-B ased S patial C lustering of A pplications with N 

oise) and k-means clustering algorithms are used in this project. The clusters formed from 

DBSCAN in association with threshold blocking algorithm are compared against the clusters 

formed from running DBSCAN alone on the data. In the similar way, the clusters formed from the 

k-means clustering in association with threshold blocking algorithm are compared against the 

clusters formed from running only k-means clustering on the data. Thus, the performance and 

compatibility of the algorithm with prominent clustering algorithms is analyzed. 
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Chapter 2 - Background 

Experiments executed with random samples chosen from the data ensure that estimated treatment 

effects are equal to the true causal effects of interest in expectation. However, the assigned data 

sample may not be a right fit to test the experiment result or effect. For Example, consider a 

medical study on the effect that a drug has on life expectancy, it may occur by chance that the 

control group is older and sicker than the treatment group. In such cases, there is high likelihood 

to observe inaccurate estimations or results as there are imbalances in covariates.  Therefore, the 

studies based on such data contain high variance and the results from the data tend to be biased 

conditionally on the distribution of covariates. 

Unadjusted estimates for even massive experiments are often too variable to enable reliable 

inferences because the effects of interest may be small and distributional issues result in 

surprisingly large variances. In the case of massive data, the experiment of interest might be draw 

fine-grained inferences and targeting the treatments to subgroups. Due to dimensionality curse and 

random assignment, subgroups of interest used for such experiments might lack sufficient data 

needed for analysis. 

Blocking has become the default experimental design of choice for dealing with the above 

scenarios. With this design, the investigator forms groups of units, or blocks, that are as similar as 

possible. Treatments are then randomly assigned in fixed proportions within blocks and 

independently across them. This prevents imbalances in observed covariates, which can increase 

precision if these covariates are predictive of outcomes. Blocking improves precision in the test 

result by adjusting for covariates in the design of study rather than from the test result. 

Also, existing blocking methods are not sensitive to clustering of data points and are often 

heuristic. Therefore, the samples generated by these blocking methods do not form a good dataset 

to the clustering algorithms and thereby leading to erroneous results. Also, the existing algorithms 

that are proven to be optimal are computationally expensive and especially not feasible for large 

data sets. 

Considering all the above scenarios, the proposed threshold blocking algorithm aims to solve all 

these problems. The algorithm takes an input to threshold value, which is minimum number of 

points to be contained in each block or group and a distance metric. The algorithm tries to minimize 

the maximum distance between any two units in the same group. Thus, the algorithm offers 
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flexibility in the block structure and forms blocks resembling natural cluster units, which may 

improve performance. One more advantage of threshold blocking algorithm when compared to 

fixed size blocking is that in the case of fixed size we might not respect natural clustering of units 

and one is sometimes forced to assign similar units to different blocks just to satisfy the cardinality 

condition where as in the threshold blocking we can specify the number of units a cluster should 

contain based on the type of data thus respecting natural clustering of units. 

 

2.1 NP-Hardness of Threshold Blocking Problem 

We consider the blocking problem where one wants to minimize the greatest within-block 

dissimilarity, as measured by an arbitrary distance metric, subject to a minimum required block 

size. Solving this is an NP-Hard problem. Let us see why this is an NP Hard Problem. 

 

Let k denote a threshold for the minimum block size. Consider the complete graph G = (V, E) 

describing an experimental sample, where V denotes the set of n vertices (the experimental units) 

and E denotes the set of edges connecting all pairs of vertices. For each 𝑖𝑗 ∈ 𝐸 there is an associated 

cost, 𝑐𝑖𝑗 , indicating the dissimilarity between i and j; lower costs mean that units are more 

similar. We require that these costs satisfy the triangle inequality: 

               

 ∀𝑖𝑗, 𝑗𝑙, 𝑖𝑙 ∈ 𝐸 , 𝑐𝑖𝑗 + 𝑐𝑗𝑙 ≥ 𝑐𝑖𝑙 (1) 

 

This ensures that the direct route between two vertices is no longer than a detour through a third 

vertex. All distance metrics fulfill this criterion by definition. 

 

Definition 1: A threshold blocking with threshold k is a partition 𝑏 =  {𝑉1 … 𝑉𝑚} of V where each 

block satisfies the size threshold: 

∀ 𝑉𝑥 ∈ 𝑏, |𝑉𝑥| ≥ 𝑘 (2) 
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Definition 2: The subgraph generated by a blocking 𝑏 =  {𝑉1 … 𝑉𝑚}, denoted G(b) = (V,E(b)), 

is the union of subgraphs of G induced by the components of b; that is, an edge 𝑖𝑗 ∈ 𝐸(𝑏) only 

if i and j are in the same block:   

𝐸(𝑏) ≡ {𝑖𝑗 ∈ 𝐸: ∃𝑉𝑥 ∈ 𝑏, 𝑖, 𝑗 ∈ 𝑉𝑥} (3) 

              

Let Bk denote the set of all possible threshold blockings of G with a threshold of k. The 

bottleneck threshold blocking problem is to find a blocking in Bk such that the 

maximum within-block dissimilarity is minimized. This amounts to finding an optimal 

blocking 𝑏∗ ∈  𝐵𝑘 such that the largest edge cost in 𝐺(𝑏∗), is as small as possible; let 

λ denote this minimum:      

 

max
𝑖𝑗∈𝐸(𝑏∗)

𝑐𝑖𝑗 =  min
𝑏∈𝐵𝑘

max
𝑖𝑗∈𝐸(𝑏)

𝑐𝑖𝑗 ≡ λ (4) 

 

Definition 3: An α-approximation algorithm for the bottleneck threshold blocking problem derives 

a blocking 𝑏 ∈  𝐵𝑘 with a maximum within-block cost no larger than 𝛼𝜆 : 

                                    

max
𝑖𝑗∈𝐸(𝑏)

𝑐𝑖𝑗 ≤ 𝛼 λ (5) 

 

So unless P = NP, no polynomial-time (2 − ) −approximation algorithm exists for any  >  0. 

Therefore, the problem is NP-hard, and finding an optimal solution is computationally intractable 

except for special cases or very small samples. 

 

2.2 Approximate of Threshold Blocking Algorithm 

The threshold blocking problem can be solved with 4-approximation algorithm. The algorithm 

guarantees a threshold blocking with maximum within block no longer than 4λ. 

 

max
𝑖𝑗∈𝐸(𝑏𝑎𝑙𝑔)

𝑐𝑖𝑗 ≤ 4λ 
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Proof: Before going into proof let’s look at our lemma’s  

Lemma 1: For any non-seed vertex, 𝑖 ∉ 𝑆: 

1. There exist no two seeds both adjacent to i in 𝐺𝑛𝑛. 

2. There exists a walk in 𝐺𝑛𝑛 of two or fewer edges from i to the seed of the block that i is 

assigned to.  

 

Lemma 2: No edge cost in 𝐺𝑛𝑛 can be greater than the maximum cost in the optimal blocking 

Let 𝑏𝑎𝑙𝑔 denote the blocking produced by the algorithm. Consider any within-block edge    𝑖𝑗 ∈

𝐸(𝑏𝑎𝑙𝑔).We must show that 𝑐𝑖𝑗 is bounded by 4𝜆. 

 

If 𝑖𝑗 ∈ 𝐸𝑛𝑛, we have 𝑐𝑖𝑗 ≤  𝜆 by Lemma 2. If 𝑖𝑗 ∉  𝐸𝑛𝑛 and 𝑖 ∉ 𝑆, 𝑗 ∈ 𝑆, then by Lemma 1, there 

exists some l so that 𝑖𝑙, 𝑙𝑗 ∈  𝐸𝑛𝑛. Lemma 2 applies to both these edges. By Equation 1, the triangle 

inequality, it follows: 

𝑐𝑖𝑗 ≤  𝑐𝑖𝑙 + 𝑐𝑙𝑗 ≤  𝜆 +  𝜆 = 2 𝜆 

If 𝑖𝑗 ∉ 𝐸𝑛𝑛and 𝑖, 𝑗 ∉ 𝑆, let 𝑙 ∈ 𝑆 be the seed in the block that vertices i and j are assigned to. From 

above we have 𝑐𝑖𝑙 + 𝑐𝑙𝑗 ≤  2 𝜆, and by the triangle inequality: 

𝑐𝑖𝑗 ≤  𝑐𝑖𝑙 + 𝑐𝑙𝑗 ≤  2𝜆 +  2𝜆 = 4 𝜆 

As there is exactly one seed in each block, 𝑖, 𝑗 ∈  𝑆 is not possible and we have considered all 

edges in 𝐸(𝑏𝑎𝑙𝑔). 

 

2.3 Algorithm 

Given the graph representation of the experimental sample, G = (V, E), and a pre-specified 

threshold k, the approximate blocking algorithm proceeds as follows:  
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1 Construct a (k-1)-nearest neighbor subgraph of G. Denote this graph 

Gnn = (V,Enn). 

2 Find a maximal independent set of vertices, S, in the second power of the (k-1)-nearest 
neighbor subgraph, . Vertices in S are referred to as the block seeds. 

3 For each seed i S, create a block comprised of its closed neighborhood in 

Gnn,Vi = NGnn[i] 
4 For each yet unassigned vertex, assign it to any block that contains one of its adjacent vertices 

in Gnn. 

 

 

When the algorithm terminates, the collection of blocks, 𝑏𝑎𝑙𝑔 =  {𝑉𝑖}𝑖∈𝑆
, is a valid threshold 

blocking of the experimental units that satisfies the optimality bound. 

 

 

2.4 Complexity 

The blocking algorithm terminates in T(n) = O(n logk n) using 𝑂(𝑘𝑛) space. Currently, available 

or any of the commonly used blocking algorithms run in polynomial time, but the threshold 

blocking algorithm runs in quasilinear time. Moreover, in the case of fixed k and an efficient 

nearest neighbor subgraph construction algorithm, blocking algorithm runs in 𝑂(𝑛𝑙𝑜𝑔𝑛) time and 

O(n) space complexity. 

 

 

  

Algorithm1: Threshold Blocking 
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Chapter 3 - Literature Survey 

3.1 Density-Based Spatial Clustering of Applications with Noise (DBSCAN) 

Algorithm 

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a data clustering 

algorithm proposed by (Martin, Hans-Peter, Jiirg, & Xu, 1996). It is a density-based clustering 

algorithm. Given a set of points in some space, the algorithm groups together points that are closely 

packed together i.e., points with many nearby neighbors while marking as outlier’s points that lie 

alone in low-density regions whose nearest neighbors are too far away. 

The brief description of the algorithm is as follows: - 

Given a set of points in some space, which are to be clustered, they are classified as core points, 

density reachable points and outliers. 

 Core Points: - A point p is a core point if at least minPts points are within distance ε (ε is 

the maximum radius of the neighborhood from p) of it (including p). Those points are 

said to be directly reachable from p. By definition, no points are directly reachable from 

a non-core point. 

 Reachable Points: - A point q is reachable from p if there is a path p1, 

..., pn with p1 = p and pn = q, where each pi+1 is directly reachable from pi (all the points 

on the path must be core points, with the possible exception of q). 

 Outliers: - All points not reachable from any other point are outliers. 

Now if p is a core point, then it forms a cluster together with all points (core or non-core) that 

are reachable from it. Each cluster contains at least one core point; non-core points can be part of 

a cluster, but they form its "edge", since they cannot be used to reach more points. 
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3.1.1 Algorithm 

     Algorithm : DBSCAN 

 

A cluster then satisfies two properties: - 

 All points within the cluster are mutually density-connected where two 

points p and q are density-connected if there is a point o such that both p and q are 

density-reachable from o.  Density-connectedness is symmetric. 

 If a point is density-reachable from any point of the cluster, it is part of the cluster as 

well. 

Parameter Estimation 

Every data mining task has the problem of parameters. Every parameter influences the algorithm 

in specific ways. For DBSCAN, the parameters ε and minPts are needed. The parameters must be 

specified by the user. Ideally, the value of ε is given by the problem to solve (e.g. a physical 

distance), and minPts is then the desired minimum cluster size. 

 MinPts: As a rule of thumb, a minimum minPts can be derived from the number of 

dimensions D in the data set, as minPts ≥ D + 1. The low value of minPts = 1 does not make 

sense, as then every point on its own will already be a cluster. With minPts ≤ 2, the result will 

be the same as of hierarchical clustering with the single link metric, with the dendrogram cut 

at height ε. Therefore, minPts must be chosen at least 3. However, larger values are usually 

better for data sets with noise and will yield more significant clusters. The larger the data set, 

the larger the value of minPts should be chosen. 

1 Initialisation: C =0 
2 foreach point P ∈ D do 
3 if P is visited then Continue next point 
4 
5 mark P as visited 
6 NeighborPts = regionQuery ( P,eps ) 
7 if sizeof ( NeighborPts ) ≤ MinPts then Mark P as NOISE 
8 
9 else 

10 C = nextcluster ; 
expandCluster ( P,NeighborPts,C,eps,MinPts ) 
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 ε: The value for ε can then be chosen by using a k-distance graph, plotting the distance to the k 

= minPts nearest neighbor. Good values of ε are where this plot shows a strong bend: if ε is 

chosen much too small, a large part of the data will not be clustered; whereas for a too high 

value of ε, clusters will merge and the majority of objects will be in the same cluster. In general, 

small values of ε are preferable, and as a rule of thumb only a small fraction of points should 

be within this distance of each other. 

 Distance function: The choice of distance function is tightly coupled to the choice of ε, and has 

a major impact on the results. In general, it will be necessary to first identify a reasonable 

measure of similarity for the data set, before the parameter ε can be chosen. 

 

3.1.2 Advantages 

1. DBSCAN does not require one to specify the number of clusters in the data a priori, as opposed 

to k-means. 

2. DBSCAN can find arbitrarily shaped clusters. It can even find a cluster completely surrounded 

by (but not connected to) a different cluster. Due to the MinPts parameter, the so-called single-

link effect (different clusters being connected by a thin line of points) is reduced. 

3. DBSCAN has a notion of noise, and is robust to outliers. 

4. DBSCAN requires just two parameters and is mostly insensitive to the ordering of the points 

in the database. (However, points sitting on the edge of two different clusters might swap 

cluster membership if the ordering of the points is changed, and the cluster assignment is 

unique only up to isomorphism.) 

5. DBSCAN is designed for use with databases that can accelerate region queries, e.g. using 

an R* tree. 

6. The parameters minPts and ε can be set by a domain expert, if the data is well understood. 
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3.1.3 Complexity 

DBSCAN visits each point of the database, possibly multiple times (e.g., as candidates to different 

clusters). For practical considerations, however, the number of region query invocations mostly 

governs the time complexity. DBSCAN executes exactly one such query for each point, and if an 

indexing structure is used that executes a neighborhood query in O(log n), an overall average 

runtime complexity of O(n log n) is obtained (if parameter ε is chosen in a meaningful way, i.e. 

such that on average only O(log n) points are returned). Without the use of an accelerating index 

structure, or on degenerated data (e.g. all points within a distance less than ε), the worst case run 

time complexity remains O(n²). The distance matrix of size (n²-n)/2 can be materialized to avoid 

distance recomputations, but this needs O(n²) memory, whereas a non-matrix based 

implementation of DBSCAN only needs O(n) memory. 

 

3.2 K-Means Algorithm 

K-Means is an unsupervised learning technique, giving us the information about underlying 

structure in the data without being told the labels. K-means clustering is the most popular 

partitioning method. It requires the analyst to specify the number of clusters to extract. A plot of 

the within groups sum of squares by number of clusters extracted can help determine the 

appropriate number of clusters. A bend in the above plot gives us the number of clusters to be 

given as input to algorithm. This method is used if number of clusters in the dataset or the number 

of clusters dataset is to be K-means works by separating the training data into k clusters. It 

calculates the center point (mean) of each cluster, giving k means. New data points are clustered 

based on their distance to all the cluster centers: the nearest cluster is considered the most similar 

and best fit. divided is not known. 

3.2.1 Algorithm 

The k-means algorithm divides a set of  samples  into  disjoint clusters , each described 

by the mean  of the samples in the cluster. The means are commonly called the cluster 

“centroids”; note that they are not, in general, points from , although they live in the same 



11 

 

space. The K-means algorithm aims to choose centroids that minimize the within-cluster sum of 

squared criterion: 

 

 

K-means is often referred to as Lloyd’s algorithm. In basic terms, the algorithm has three steps.  

 The first step chooses the initial centroids, with the most basic method being to 

choose  samples from the dataset . After initialization, K-means consists of 

looping between the two other steps. The first step assigns each sample to its 

nearest centroid.  

 The second step creates new centroids by taking the mean value of all of the 

samples assigned to each previous centroid.  

The difference between the old and the new centroids are computed and the algorithm repeats these 

last two steps until this value is less than a threshold. In other words, it repeats until the centroids 

do not move significantly. 

 

3.2.2 Advantages 

1. It scales well to large number of samples and has been used across a large range of application 

areas in many different fields. 

2. As such, it has been successfully used in various topics, including market segmentation, 

computer vision, geo-statistics, astronomy and agriculture. It often is used as a preprocessing 

step for other algorithms, for example to find a starting configuration. 

3. K-Means is used for vector quantization, feature learning and cluster analysis. 

3.2.4 Complexity  

Regarding computational complexity, finding the optimal solution to the k-means clustering 

problem for observations in d dimensions is: 
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1. NP-hard in general Euclidean space d even for 2 clusters. 

2. NP-hard for a general number of clusters k even in the plane. 

3. If k and d (the dimension) are fixed, the problem can be exactly solved in time O(n{dk+1}), 

where n is the number of entities to be clustered. 
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Chapter 4 - Dataset 

The Million Song Dataset is a freely available collection of audio features and metadata for a 

million contemporary popular music tracks. The dataset contains only the feature analysis and 

metadata for one million songs but not the audio provided by (Lamere, Million Song Dataset, 

2011) . The size of the entire dataset is around 280GB containing almost one million song records. 

The features of each record in the dataset consists of the following features. 

4.1 Data Filtering 

The data is distributed using hdf5 files, which are converted, to .csv extension files using python 

wrapper. The created .csv files are further filtered to retrieve only the required parameters for the 

analysis of given problem. Thus, from the .csv files the fields loudness, tempo, time_signature, 

duration and key are filtered to form the dataset used in the prediction task. 

4.2 Data Validation 

Cross-Validation is used to validate the model to check how the statistical analysis results will 

generalize to an independent data set. It is used here to estimate how accurately our predictive 

model will perform in practice. Usually in a supervised learning for a prediction problem, the 

known set of data (i.e., data with cluster labels) is partitioned into training data and testing data. 

The model is trained on training data and is validated against testing data. This is done to avoid 

problems like overfitting and will give an insight on how the model will generalize to an 

independent dataset. In case of unsupervised learning for prediction problem, the dataset does not 

contain labels to follow the same approach. So, the cross-validation is done against the error rate 

on clustering results of training data and test data. In this project, average intra-cluster distances 

are used to identify the differences in clustering results of training data and test data. 

In the holdout method, we randomly assign data points to two sets d0 and d1, usually called the 

training set and the test set, respectively. The size of each of the sets is arbitrary although typically 

the test set is smaller than the training set. We then train on d0 and test on d1. In typical cross-

validation, multiple runs are aggregated together; in contrast, the holdout method, in isolation, 

involves a single run. While the holdout method can be framed as "the simplest kind of cross-
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validation", many sources instead classify holdout as a type of simple validation, rather than a 

simple or degenerate form of cross-validation. We start from 90% training data and 10% test data. 

The training data size percentage is decreased by 10% and test data set size is increased by 10% 

in each iteration of hold-out cross-validation. This is carried out until we reach 10% training data 

and 90% test data. 

Hold out cross-validation is done against the threshold values suitable for both DBSCAN and K-

Means algorithm to run on entire 1 million dataset. The below process is illustrated for 1 run of 

cross-validation among the 10 folds. This process remains same for the rest of the folds but the 

size of training and test data set changes with each fold.  

1. In the project, training data and test data are formed out of the samples of the dataset. 

2. The hybridized algorithm model is trained on the training data and thus, formed model is 

used to predict the cluster number for the testing data. The process of prediction will not 

affect in changing the cluster center formed out of the model.  

3. The inter-cluster and intra-cluster average distances for the clusters are used as measures 

to validate the system. These measure are used to validate the model. 

4. These measures are calculated for the clusters that are formed from training data is 

validated against the clusters that are formed after merging the test data with training data 

model clusters.  

5. The measures are to be similar in order to avoid overfitting of the model. 

4.3 Feature Selection 

The original Million Song Dataset does not contain any labels or genre information. The goal of 

clustering task in the project is to predict the genre label of each song. To identify the features 

corresponding to the task on given data set, a feature selection algorithm PCA or random forest is 

chosen. An alternative data set exists which contains partial data from the Million Song Dataset 

along with genre labels. This dataset is chosen to identify the predictors.  
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Chapter 5 - Proposed Model 

The project aims to study the performance of threshold algorithm in association with clustering 

algorithms. The focus is on how the efficiency and accuracy of the clustering algorithm is bolstered 

by the use of threshold blocking algorithm as a preprocessing step. The threshold blocking 

algorithm published in the paper, when combined with either K-Means or DBSCAN for clustering 

purpose is referred to as hybridized clustering algorithm. In order to obtain the performance 

metrics such as efficiency and accuracy, the hybridized clustering algorithm is compared against 

the clustering algorithm. Data is run individually on both on hybridized clustering algorithm and 

as well as on the clustering algorithm. The clusters thus formed out of both the approaches are 

evaluated against parameters like inter-cluster distance, intra-cluster distance, Silhouette 

Coefficient and similarity between the cluster outputs. This project uses K-Means and DBSCAN 

as clustering algorithms to study the performance threshold blocking algorithm by carrying out the 

below two experimental approaches: - 

 Threshold blocking algorithm with K-Means vs K-Means. 

 Threshold blocking algorithm with DBSCAN vs DBSCAN. 

The project uses Million Song Dataset to evaluate the performance in both the experiments. The 

Million Song Dataset, which is a covariate data, is chosen for this experiment and the clusters thus 

formed out of this data depict the similarity between the songs in the dataset. The clusters formed 

by running the clustering algorithms are expected to produce different genre sets, where each 

cluster is representative of a genre. So, all the songs in a cluster belong to a genre which is different 

from the genre of a point belonging to different cluster. As the dataset contains only 13 genres, we 

run the clustering algorithms to divide the data into 13 clusters.  

Initially, The Million Song Dataset is given to threshold blocking algorithm to form clusters such 

that each cluster contains minimum number of elements equal to threshold value. These samples 

are closely connected points in multi-dimensional space. The threshold value ensures that data is 

divided into samples, where each sample consists of points with high similarity measure between 

any two points in the sample. The centroid calculated for the sample represents the characteristics 
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of sample as a whole. The centroids calculated from each of these clusters is given to both k-means 

clustering algorithm and DBSCAN algorithm. So, the project consists of two parts. Firstly, we 

analyze the performance and validate the results of hybridized algorithm consisting of threshold 

blocking algorithm and k-means algorithm. Secondly, the same steps are repeated against 

threshold blocking algorithm and DBSCAN algorithm.  

5.1 K-Means with Threshold Blocking Algorithm 

The Million Song Data set is initially clustered using a random k value by threshold blocking 

Algorithm. The centroids of the above clusters formed out of this algorithm is given as input to K-

Means Algorithm. The K-Means algorithm is made to divide these centroids into 13 clusters where 

each cluster representing the genre. The centroid of the sample and the points corresponding to the 

sample are clustered into the same cluster consisting of the centroid of the sample. Since, the 

centroid of the sample represents it as a whole, the points of the sample as well can be clustered 

into the same cluster as the centroid. Thus, all the records of the data set are divided into 13 

clusters.  

On the other hand, the entire data set is given to K-Means for cluster analysis. The clusters thus 

formed using K-Means are compared against the clusters formed by above hybridized algorithm 

to check how many points overlap and how many points do not overlap. Also, with various values 

of k , the change in intra-cluster and inter-cluster distances, time, memory and other such cluster 

evaluation factors are used to depict the performance of hybrid algorithm. 

 

5.2 DBSCAN with Threshold Blocking Algorithm 

In the DBSCAN, the first step of sampling based on the k value remains same as above. The 

Million Song Dataset in divided into samples or clusters consisting of minimum k points in each 

sample. The centroids of these samples are passed to DBSCAN for analysis. The minimum number 

of points and epsilon values that are to be given as input to DBSCAN are determined using 

KNNDistplot. These values and the centroids of the samples are passed to DBSCAN for cluster 

analysis. 
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DBSCAN do not require the number of clusters to be given to the algorithm. DBSCAN generates 

clusters of arbitrary number representing the genres. The cluster evaluation metrics like intra-

cluster and inter-cluster distances, time, memory are calculated for the generated clusters.  These 

metrics are calculated for every instance of k value that is passed to algorithm. A range of k values 

are chosen to be given as input to the threshold blocking algorithm like in k-means to check the 

performance variance over various values of k. 

DBSCAN is also run on the dataset without any processing step of threshold blocking algorithm. 

The clusters thus generated are used to compare the similarity with the clusters generated by 

DBSCAN and threshold blocking algorithm. The metrics of generated clusters are also computed 

which are compared with the hybridized algorithm for every instance of k.  
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 5.3 Data Flow Diagram 

  
Figure 1 Data Flow Diagram 
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5.4 Implementation 

1. The Million Song Dataset is obtained from the following source. (Lamere, The Million Song 

Dataset)  

2. The files provided by the dataset are in .h5 format which are converted using python wrapper 

code into .csv files. 

3. Data is pre-processed by removing the covariate variables and features obtained by running 

feature selection algorithm are retrieved either from the .csv files or during the conversion from 

.h5 to .csv files. This forms the dataset for the project. 

4. Dataset consisting of million records is used for running the hybridized K-Means, hybridized 

DBSCAN, DBSCAN and K-Means algorithm. 

5. Due to computation limits, entire data set for clustering is given to hybridized K-Means and 

K-Means algorithm while a random subset is chosen for clustering to DBSCAN and hybridized 

DBSCAN. It is cross-validated against the K-Means model before running the experiment. 

6. R wrapper of the threshold blocking algorithm provides an implementation of the algorithm. 

This library is used to initially run on the dataset chosen for the experiment i.e., 1 million 

record dataset for K-Means and 30,000 record dataset for DBSCAN. Given a threshold value 

k, the algorithm divides the dataset into blocks which consist of minimum k points. 

7. For each of these clusters formed out of threshold blocking algorithm, centroids are calculated 

such that it represents the block as a whole. These centroids are written to another file which 

is given as input to K-Means or DBSCAN algorithm for clustering. 

8. In Experiment 1, the output from threshold blocking algorithm in given to K-Means algorithm 

for clustering. On the other part, the data set, which is given to threshold blocking algorithm, 

is given to K-Means to compute the clusters for the data set. The output from hybridized K-

Means algorithm is compared against the output of K-Means algorithm to evaluate the 

performance of the algorithm. 

9. In Experiment 2, the output from threshold blocking algorithm in given to DBSCAN algorithm 

for clustering. On the other part, the data set which is given to threshold blocking algorithm is 

given to DBSCAN to compute the clusters for the data set. The output from hybridized 

DBSCAN algorithm is compared against the output of DBSCAN algorithm to evaluate the 
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performance of the algorithm. Before running the DBSCAN algorithm, based on the 

knndistPlot parameter values are estimated. 

10. The above two experiments are carried out for various threshold values given to threshold 

blocking algorithm and evaluated against various metrics. 

 

 5.5 System Configuration 

  Operating System: Windows 64-bit Operating System 

Programming Language: R 

RAM: 32 GB Memory 

Processor: i7-6700K  CPU@4.00GHz 

  No of CPU Cores: 4 

  

   

mailto:CPU@4.00GHz
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Chapter 6 - Experimental Results 

The two experiments that are performed on the given dataset are  

 1) The Million Song Dataset is first passed to threshold blocking Algorithm which performs 

clustering and assigns cluster numbers. We then calculate mean of all points belonging to same 

cluster. Above processed data is again passed to K-Means clustering which perform clustering and 

assigns cluster numbers to the processed data. We now try to identify the final cluster number of 

each point in the original data based on cluster number assigned for processed data. We call this 

as hybridized K-Means clustering. Separately the original dataset is passed directly to original K-

Means clustering and cluster numbers are assigned directly to the original dataset. We now 

compare the performance of hybridized K-Means clustering with original K-Means clustering. 

2) The Million Song Dataset is first passed to threshold blocking Algorithm which performs 

clustering and assigns cluster numbers. We then calculate mean of all points belonging to same 

cluster. Above processed data is again passed to DBSCAN which perform clustering and assigns 

cluster numbers to the processed data. We now try to identify the final cluster number of each 

point in the original data based on cluster number assigned for processed data. We call this as 

hybridized DBSCAN. Separately the original dataset is passed directly to original DBSCAN and 

cluster numbers are assigned directly to the original dataset. We now compare the performance of 

hybridized DBSCAN with original DBSCAN. 

The threshold blocking algorithm was run for a range of values of k such as 

5,10,15,20,50,60,70,80,90,100,150,200,250. Due to computational limits, only some among the k 

values are chosen to execute in the case of hybridized DBSCAN. This is because, if the centroid 

data points data set is too large for the clustering algorithm like DBSCAN to run, it takes infinite 

amount of time to figure out the clusters.  

In the case of DBSCAN, a random subset of data is taken to measure the below cluster evaluation 

measures as well as the performance metrics of the algorithm. While in the case of K-Means, entire 

Million Song Dataset is considered for analysis. 
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6.1 Cluster Evaluation Measures 

For an unsupervised clustering approach, the evaluation measures are not based on ground truth 

or on comparison with true label. It is based on the separation of data into clusters. Various indexes 

and metrics are present to evaluate the performance of the algorithm based on how efficiently an 

algorithm can separate the data into clusters. Silhouette Coefficient, Calinski-Harabaz Index are 

some of the examples. Silhouette Coefficient is considered as the standard index among them. 

6.1.1 Silhouette Index Value  

The Silhouette Coefficient is calculated using the mean intra-cluster distance (a) and the mean 

nearest-cluster distance (b) for each sample. The Silhouette Coefficient for a sample 

is (b - a) / max(a, b). Where, b is the distance between a sample and the nearest cluster that the 

sample is not a part of. It’s important to know that Silhouette Index and Silhouette Coefficient are 

synonyms to each other. 

The below table summarized the range of values taken by the index value measure when run on 

the clustering output and the interpretation of value related to the performance of the algorithm. 

Range of SC Interpretation 

0.71-1.0 A strong structure has been found 

0.51-0.70 A reasonable structure has been found 

0.26-0.50 The structure is weak and could be artificial 

< 0.25 No substantial structure has been found 

 

6.1.2 Cluster Overlap Measure 

Cluster overlap measure determines how many clusters overlap between two clustering algorithm 

outputs. The overlap of two clusters i.e., cluster1 output from clustering algorithm1 and cluster1 

output from clustering algorithm2 is calculated by the number of points in cluster1 of algorithm1 

that are also present in the cluster1 of clustering algorithm2. 

Given two clustering algorithm outputs, in an unsupervised approach the numbers from both the 

algorithms do not necessarily talk about the same cluster. For Example, cluster 1 from the output 
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of algorithm1 can relate to the cluster 3 of algorithm 2. In such a case comparing the number of 

points in Cluster 1 of algorithm1 present in Cluster1 of algorithm2 is not correct and also leads to 

erroneous results. Also, with each iteration of the algorithm the clusters numbers are randomly 

assigned to the data set. 

To avoid this, the following procedure is carried out in determining the cluster overlap measure: - 

1. A matrix is constructed out of clustering algorithm outputs where the row on the top 

corresponds to cluster number of algorithm1 and column on the left contains the cluster 

number of algorithm2. 

2. The matrix contains values of how many elements match between the cluster outputs from 

both the algorithms.  

3. At the intersection of row i and column j, the value of the cell ij gives the information about 

how many elements of clusteri matches with elements of clusterj. 

4. For each row i , the maximum value among the intersection of row i and various values of 

column j is identified. Cluster i and Cluster j are assumed to be representing the same 

cluster. 

5. The same process is carried out for rest of the rows as well and the cluster number 

represented by the row is matched with some column with which it shares maximum 

number of elements. 

6. At the end of nth row, the column value assignments of all the rows have to be distinct. 

That is each cluster number represented by the column is assigned to one of the cluster 

number represented by row. 

In some cases, at the end of nth row it is possible for one column cluster number to be assigned to 

more than one row cluster number. It is possible in this case, that a column cluster number is not 

assigned to any cluster number represented by the row. In such case, use backtracking to assign 

the column cluster number to row by minimizing the error value. Continue this process until all 

column cluster numbers are assigned to row cluster numbers and the error is minimized while 

maximizing the throughput. 

Since, the relation between the cluster output labels given by both the algorithms is determined 

they are compared like in the case of supervised algorithm. One of the cluster outputs is replaced 
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with the mappings obtained from the above algorithm so as to have a baseline to compare both the 

algorithms. One output of the cluster acts as the ground truth while the other output values of 

clustering algorithm are evaluated against it. Hence, we obtain the cluster overlap measure between 

both the clusters. 

6.1.3 Cluster Distances 

Algorithms that produce clusters with low intra-cluster distances have high intra-cluster 

similarity and high inter-cluster distances have low inter-cluster similarity. Such a clustering 

algorithm that produces a collection of clusters having low intra-cluster distance and high inter-

cluster distance is considered as the best algorithm based on this criterion. 

6.1.3.1 Intra-Cluster Distance 

The intra-cluster distance d '(k) is measured as the maximal distance between any  pair of 

elements in cluster k. 

6.1.3.2 Inter-Cluster Distance  

The inter-cluster distance d(i,j) between two clusters may be any number of distance measures, 

such as the distance between the centroids of the clusters. 

6.2 Experiment 1- Comparing Hybridized K-Means with K-Means 

A random subset from 1 Million Song data set is given as input to both Hybridized K-Means  

algorithm and K-Means Algorithm. The K- value for K-Means denotes the number of clusters to 

be formed which is 13. Since, the data set contains collection of songs from 13 unique genres as 

per the source, this value is chosen as K input to K-Means. The output is 13 different clusters 

where each cluster contains similar songs. The below performance metrics of the algorithm for 

computation and cluster evaluation are collected over various values of “k”. The “k” value 

represents the threshold value given to threshold blocking algorithm. When k=0, it implies the data 
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set is run on K-Means itself. The chosen threshold values for the experiment are 

15,20,25,50,60,70,80,90,100,150,200,250. 

6.2.1 Silhouette Coefficient 

Silhouette Coefficient value for K-Means algorithm on the random subset taken is 0.32 which 

remains same. After K=150, the silhouette value starts dropping. Silhouette Coefficient values 

above 0.25 is a good indicator to say that cluster output value have high chance of being the actual 

output value. 

 

Figure 2 Silhouette Coefficient for K-Means on data subset 

6.2.2 Intra-Cluster Distance 

Average intra cluster distance is taken and plotted against various values of k. For k=0  i.e., on 

original K-Means algorithm, the value is around 70. This average distance increases initially until 

threshold value k =15 which is being run on hybridized K-Means algorithm, but later decreases 

and remains the same having a value around 40.  This indicates there is good high intra-cluster 

similarity in the clusters obtained from the hybridized algorithm when compared to original K-

Means algorithm. 
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Figure 3 Intra Cluster distance for K-Means on data subset 

6.2.3 Inter-Cluster Distance 

 

Figure 4 Inter-Cluster distance for K-Means on data subset 

 

 

6.2.4 Cluster Overlap 

On an average, 80% of the clusters formed by threshold blocking algorithm are overlapping with 

K-Means algorithm. 
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Figure 5 Cluster Overlap percentage for K-Means on data subset 

6.2.5 Processing Time 

The processing time of the hybridized K-Means algorithm remains low when compared with K-

Means algorithm until a certain threshold value k=90. But there is only a significant drop in the 

processing time below k=50. This could be because, with increase in k value the time taken to 

form blocks with nearest neighbors increases. 

 

Figure 6 Processing Time for K-Means on data subset 
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6.2.6 Memory 

The memory required to run the hybridized K-Means algorithm is comparatively low when 

compared to the memory required to run the Original K-Means algorithm on the dataset. This 

could be because, the size of dataset reduces after the formation of blocks by threshold blocking 

algorithm and only the centroids are given to K-Means after that step. The threshold blocking 

algorithm do not seem to occupy much memory to form the blocks. 

 

Figure 7 Memory for K-Means on data subset 

The same experiment is carried out on 1Million Dataset. Due to computational limits, intra-cluster, 

inter-cluster and silhouette measures are not calculated but memory, processing time and cluster 

overlap are calculated. 
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 6.2.7 Cluster Overlap for K-Means on 1M dataset :- 

 

Figure 8 Cluster Overlap for K-Means on 1M data 

6.2.8 Processing Time 

There is an increasing in the processing time slightly until a certain value of k, but later has a sharp 

increase in the processing time. This could be because it might be taking longer time to find similar 

samples in the dataset for large values of k. 

 

Figure 9 Processing Time for K-Means on 1M data 
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6.2.9 Memory 

There is drop in the memory required for computation with increasing value of K since k-means 

has fewer points to cluster upon with increasing values of k. 

 

Figure 10 Memory required for K-Means on 1M data 

6.3 Experiment 2 - Comparing Hybridized DBSCAN with DBSCAN 

A random subset from 1 Million Song data set is given as input to both Hybridized DBSCAN  
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knndistplot while eps value is obtained from the bend of the curve in the plot. The output of the 

algorithm is 13 different clusters where each cluster contains similar songs. The below 

performance metrics of the algorithm for computation and cluster evaluation are collected over 
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values for the experiment are 10,20,25,50,60. 

2537.9

1968.1
1848.3 1788.9

1521.7
1439.4 1444.7 1479.8 1509.6 1488 1464.7 1422.5 1451

0

500

1000

1500

2000

2500

3000

k0 k15 k20 k25 k50 k60 k70 k80 k90 k100 k150 k200 k250

M
em

o
ry

 S
iz

e 
in

 m
b

Threshold Values

K-Means Memory for 1M dataset



31 

 

6.3.1 Silhouette Coefficient 

Silhouette Coefficient value for DBSCAN algorithm on the random subset taken is 0.9. Silhouette 

coefficient values do not seem to follow a pattern but on an average the value stays between 0.5 to 

0.6. Though there is a drop in value, the value still lies above 0.5 ensuring that the cluster output 

is an acceptable result.  

 

 

Figure 11 Silhouette Coefficient value for DBSCAN on data subset 

 6.3.2 Intra-Cluster Distance 

Average intra cluster distance is taken and plotted against various values of k. For k=0  i.e., on 

original DBSCAN algorithm, the value is around 360 . This average distance decreases and 

remains at an average value of 200 with various values of K. This indicates there is good high 

intra-cluster similarity in the clusters obtained from the hybridized algorithm when compared to 

original DBSCAN algorithm. 
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Figure 12 Intra Cluster distance for DBSCAN on data subset 

 6.3.3 Inter-Cluster Distance 

 

Figure 13 Inter Cluster distance for DBSCAN on data subset 
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 6.3.4 Cluster Overlap 

 

Figure 14 Cluster Overlap measure for DBSCAN on data subset 

6.3.5 Processing Time 

The processing time of the hybridized DBSCAN algorithm remains significantly low when 

compared with DBSCAN for all values of K. Also, this increases the DBSCAN capability of 

clustering large data sets. 

 

 

Figure 15 Processing Time for DBSCAN on data subset 
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6.3.6 Memory 

The memory required to run the hybridized DBSCAN algorithm is comparatively low when 

compared to the memory required to run the Original DBSCAN algorithm on the dataset. This 

could be because, the size of dataset reduces after the formation of blocks by threshold blocking 

algorithm and only the centroids are given to DBSCAN after that step. The threshold blocking 

algorithm do not seem to occupy much memory to form the blocks. 

 

Figure 16 Memory for DBSCAN on data subset 
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Chapter 7 - Summary and Future Work 

 

 

7.1 Summary 

Hybridized K-Means and DBSCAN algorithm are proved to perform better when compared with 

Original DBSCAN and K-Means algorithm. In terms of memory or processing time, the hybridized 

algorithms show a significant drop which indicates the capability of threshold blocking to be 

extensible to perform (Higgins, 2016) clustering on large datasets. DBSCAN is initially not 

feasible to execute on Million song dataset while also taking large amount of time to run on the 

subsets of the data. When combined with threshold blocking algorithm, there is drop in the time 

and memory taken for execution without affecting the efficiency of the clustering Algorithm. The 

same applies to K-Means and Hierarchical Agglomerative Clustering. This is tested for 1 million 

data but the experiments are limited by computing demand of algorithms which calculates metrics 

on the output of clusters. The distance metric that is calculated for 1 million data requires a huge 

RAM around 2500 GB. Ideally, such an amount of computing memory is not required to generate 

clusters or for calculating metrics on 1 million data set. To avoid this problem, the computation of 

metrics, cross-validation have to be calculated using map-reduce algorithms executed on big data 

technologies like Hadoop, Spark and soon. The performance of threshold blocking algorithm in 

association with clustering algorithms is tested over various values of K but the performance of 

threshold blocking algorithm for different sizes of data sets is yet to be explored. The limit of 

dataset size that threshold blocking algorithm can efficiently handle needs to be calculated.  

 

 

 

 

 

 

 

 



36 

 

 

7.2 Future Work 

Even though the experiment helped us to understand better about the efficiency of hybridized 

algorithm on large dataset, the research can be expanded in many other ways. Map Reduce 

Framework is helpful to overcome the memory issues that will arise while calculating the 

clustering evaluation metrics for large datasets. In addition, threshold blocking algorithm can be 

executed iteratively using large and small values of k to measure the variation in performance. 

Further, it would be interesting to see how threshold blocking algorithm works on various data 

sizes.   
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Appendix A - Attributes of the Dataset 

 

artist_mbid: db92a151-1ac2-438b-bc43-b82e149ddd50 

the musicbrainz.org ID for this artists is db9... 

artist_mbtags: shape = (4,) 

this artist received 4 tags on musicbrainz.org 

artist_mbtags_count: shape = (4,) 

raw tag count of the 4 tags this artist received on musicbrainz.org 

artist_name: Rick Astley 

artist name 

artist_playmeid: 1338 

the ID of that artist on the service playme.com 

artist_terms: shape = (12,) 

this artist has 12 terms (tags) from The Echo Nest 

artist_terms_freq: shape = (12,) 

frequency of the 12 terms from The Echo Nest (number between 0 and 1) 
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artist_terms_weight: shape = (12,) 

weight of the 12 terms from The Echo Nest (number between 0 and 1) 

audio_md5: bf53f8113508a466cd2d3fda18b06368 

hash code of the audio used for the analysis by The Echo Nest 

bars_confidence: shape = (99,) 

confidence value (between 0 and 1) associated with each bar by The Echo Nest 

bars_start: shape = (99,) 

start time of each bar according to The Echo Nest, this song has 99 bars 

beats_confidence: shape = (397,) 

confidence value (between 0 and 1) associated with each beat by The Echo Nest 

beats_start: shape = (397,) 

start time of each beat according to The Echo Nest, this song has 397 beats 

danceability: 0.0 

danceability measure of this song according to The Echo Nest (between 0 and 1, 0 => not 

analyzed) 

duration: 211.69587 
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duration of the track in seconds 

end_of_fade_in: 0.139 

time of the end of the fade in, at the beginning of the song, according to The Echo Nest 

energy: 0.0 

energy measure (not in the signal processing sense) according to The Echo Nest (between 

0 and 1, 0 => not analyzed) 

key: 1 

estimation of the key the song is in by The Echo Nest 

key_confidence: 0.324 

confidence of the key estimation 

loudness: -7.75 

general loudness of the track 

mode: 1 

estimation of the mode the song is in by The Echo Nest 

mode_confidence: 0.434 

confidence of the mode estimation 
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release: Big Tunes - Back 2 The 80s 

album name from which the track was taken, some songs / tracks can come from many 

albums, we give only one 

release_7digitalid: 786795 

the ID of the release (album) on the service 7digital.com 

sections_confidence: shape = (10,) 

confidence value (between 0 and 1) associated with each section by The Echo Nest 

sections_start: shape = (10,) 

start time of each section according to The Echo Nest, this song has 10 sections 

segments_confidence: shape = (935,) 

confidence value (between 0 and 1) associated with each segment by The Echo Nest 

segments_loudness_max: shape = (935,) 

max loudness during each segment 

segments_loudness_max_time: shape = (935,) 

time of the max loudness during each segment 

segments_loudness_start: shape = (935,) 
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loudness at the beginning of each segment 

segments_pitches: shape = (935, 12) 

chroma features for each segment (normalized so max is 1.) 

segments_start: shape = (935,) 

start time of each segment (~ musical event, or onset) according to The Echo Nest, this 

song has 935 segments 

segments_timbre: shape = (935, 12) 

MFCC-like features for each segment 

similar_artists: shape = (100,) 

a list of 100 artists (their Echo Nest ID) similar to Rick Astley according to The Echo Nest 

song_hotttnesss: 0.864248830588 

according to The Echo Nest, when downloaded (in December 2010), this song had a 

'hotttnesss' of 0.8 (on a scale of 0 and 1) 

song_id: SOCWJDB12A58A776AF 

The Echo Nest song ID, note that a song can be associated with many tracks (with very 

slight audio differences) 

start_of_fade_out: 198.536 
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start time of the fade out, in seconds, at the end of the song, according to The Echo Nest 

tatums_confidence: shape = (794,) 

confidence value (between 0 and 1) associated with each tatum by The Echo Nest 

tatums_start: shape = (794,) 

start time of each tatum according to The Echo Nest, this song has 794 tatums 

tempo: 113.359 

tempo in BPM according to The Echo Nest 

time_signature: 4 

time signature of the song according to The Echo Nest, i.e. usual number of beats per bar 

time_signature_confidence: 0.634 

confidence of the time signature estimation 

title: Never Gonna Give You Up 

song title 

track_7digitalid: 8707738 

the ID of this song on the service 7digital.com 

track_id: TRAXLZU12903D05F94 
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The Echo Nest ID of this particular track on which the analysis was done 

year: 1987 

year when this song was released, according to musicbrainz.org 

 

Since the project aims to identify similar songs to group them into genres, only few fields among 

all the above fields are sufficient for the task. Loudness, Tempo, Time_Signature, Duration and 

Key are the fields that will be used in this project. So, the million records consisting only these 

fields is used in the experiment. 


