A MASTER'S THESIS

submitted in partial fuifiliment of the

requirements for the degree

MASTER OF ARTS

Department of Architecture and Allied Arts

KANBAS STATE UNIVERSITV Manhattan, Kansas

1903

Approved by:

TABLE OF CONTENTS

> page
Introduction 1
The Development of Broken Color in Palnting 5
Previous Use of Broken Color on Stage 10
Theoretical Aspects of Broken Color on Stage 20
The Use of Broken Color on Stage 41
Summery 58
Acknowledgement 61
Literature Cfted 68

The perceptive inventiveness generally ascribed to the painter can in no leee way be assigned to ths scsilc designer. As the painter etrivee for a compoeltion, working with color and IIght, emotional and intellectual responses and the lllusione of the visual world, so too does the scenle designer. The deelgner's realm ie one of continual changs. Actore move in and through hie compoeltion changing the focus of attention and the balance of the stage, arbitrary lighting becomes a part of the lllusion of color, form, epacs and time - all before the eyes of the audience. His design must be working partner with the action of the play, yet in thie role, it hae the opportunity to be a vehicls of creative expression.

Thie writer as a novice, confronted with the problem of stage pelinting and dssigning, sxplored varloue techniques in search of thoee thet would be most practical and satiefying to his method of expression. Ons which devsloped into gsneral use was the application of paint with a natural sponge. Another wee the large bruch manipulatsd to throw or spatter the paint onto a surface. The handiling of thsse toole, and the marks left by them, led rather naturally into the use of color and plgment In much the same manner developed in Impressioniat and NeoImpreseionlst palintings.

The intent of this paper is to investigate to what sxtent the ideas and principles of broksn color, ae embodied in the Impressioniet and the Neo-impreseionlst movemente and as studied
both physically and physiologically since then, might be applied to stage painting and design.

In the same menner that these movements in art were marriages of the intultive workings of the painter and the objective observations of the scientist, so too must any attempt to use broken color on stage have the ingredients of both. In terme of human perception, IIght and color are relative as is the action on stage. If presented in e manner which possesses tonality, both may heve great latitude and still be acceptable as plaum sible and as an art form to the audience. Therefore, this paper While dealing with the more technical aspects of broken color, recognizes that point where objective knowledge ends and the intuftions of the artist as a painter or scenfe designer must begin.

PLATE I

Broken Color

Broken color is the Juxtaposition of small areas of color, which when viewed from an appropriate distance wili mix optically by simultaneous contrast. The resultant tone will be different both in hue and in apparent intensity from the original colors.

THE DEVELOPMENT OF BROKEN COLOA IN PAINTING

The term broken color refers to the perceptual or optlcal mixing of color. The observer statloned at an appropriate distance will see separate small areas of color, which have been lald side by slde, resolve into a vibrating and luminous tone that is different both in hue and intensity from the original colors. This is a physlological phenomenon rather than a physical fact as in the material mixing of pigments, and the effect can not be dupllcated by the latter.

The development of broken color in palnting is correlated with the concept of color as light and palntings as visual sensations, coupled with research into the physiological aspects of color. The use of this optical mixture, began intultively with the artist, and broken color was simply a means of making colors vibrate and suggest movement of sunlight. Later, few artists applied formulas, and for them, intuition was replaced with precise scientific reasoning.

Credit for the discovery of broken color cannot go to one individual alone. The Impressionist palnters, as a very independent and loosely organized group, used it to brighten their palettes as they attempted to make their canvases a source of IIght itself. Others had used it in varying degrees before them, and later the Neo-lmpressionlsts claimed Delacrolx as their Immediate procursor. Charles Blanc called attention to the work of Delacrolx with these words, "slashing green lines upon pink torsos, which produce exactly the effect of what we now call the optleal mix-
ture". ${ }^{1}$
The effect Delacrofx had used Instinctively, was noted and formulated in a scientific treatise by Chevreul in 1838. in his "law of simultaneous contrast of colors" he stated the two fold phenomenon; calling the modification of intensity of the colors "contrast of tone", and the modification of hue, "contrast of color". 2 This has also been called the "law of complementary colors", as indeed the effects noted were usually Ifimited to these combinations.

Monet, one of the leaders of the Impressionism movement, made use of situations in his paintings that invited contrasts of complementary colors. Orange reflections of sunlight shimmer on top of blue water, and yellow roads, walls and faces change into violet as Ifght moves into shadow. ${ }^{3}$ Broken color was not Just applled where nature was most obvious, but became a means of adding what Monet termed "plein-airism" or a brilliant atmospheric light that penetrated all parts of his picture. To capture falthfully this effect, as in his painting Bridge on the seine at Argenteull, (Plate II), he insisted on painting out of doors, breaking his areas into decisive daubs of bright color.

In the beginning, the nature of the movement was one of complete spontanelity. The vital reality was the fmediate sensations of color and IIght and the continual flux of appearances. Tech-

1 Maurice Raynal, History of Modern Painting from Baudelaire to Bonnard, P. 54
${ }^{2}$ M.E. Chevreul, The Princioles of Harmony and Contrast of colors, p. 7
${ }_{3}$ Jean Leymarie, Impressionism Vol. 2, p. 14

nique and execution were intuitive reflexes and at once unifled with the emotions. Ite realism wae subjective and its appeal primary, without compllcated reasoning or Intellectualism.

By the end of 1873, this freely exchanged approach was established In the palettes of Monet, Manet, Plesarro, Renlor, Degas, sisley, Cezanne and others. This group, with the exceptlon of Manet, formed the Societe anonyme artistes peintres, sculpteurs et graveurs in order that their work might be publicly seen. The year 1874 marks thelr first public exhiblt and the coming of age of the movement. From thie showing, the term "Impressioniem" was colned in ridicule by a Journalist to note the whole collection of meaningless daubs. 4

The unifying force of their approach to painting, and their common rejection from the academic norms of the salon, held the group together for rather a brief perfod of time. Then various key artists began to drift away from the original nucleus. Some sought recognition on their own and away from the rebel group. Others worked to solidify their pereonal concepts of ImpressionIsm whlle etill othere explored different methode of pletorial bullding or expreselon.

One of the new directione taken was the application of scientific reasoning and analysis to the divielon of tonee as practiced by the Impressionlets. The new Inovatore recognized their heritage and designated their movement, "Neo-impressionism". This direction was in keeping with the general philoeophy and

[^0]trend of the dayi that of placing the practice of the arts on a scientific basis. As a forecast, David sutter wrote in 1880,

Rules do not hamper the spontanelty of invention or execution. Science delivers us from every form of uncertainty and enables us to move freely within a wide circle; it would be an insult both to art and to science to believe that one necesserily excludes the other. 5

One who practiced this marriage of painting and sclence was Georges seurat. His ambltion was to replace the emplrical approach of the Impressionists with a scientific method of rational expression of 11 ght in terms of pure color. ${ }^{6}$ He gained many followers to his "polntilifam" or "Divisionlam" spproach with Signac and Cross committing themselvea completely, while painters like Monet, Pissarro, Van Gogh and Matisse eventually rejected the method as contrary to their nature.

Seurat and signac were influenced by the work of the physfelsts of the day and of their research in analysis of Ilight and color and of their delvings into psychology and the physfological nature of vision. As mentioned before, Chevreul had published in 1838 his treatise on the Neture of Simultaneous Contrast, and later investigations by Hermann Helmoltz and N. O. Hood completed these experiments. These and other writings were studied by both painters. Signac confined his investigation to the phenomene of color, while seurat was able to also synthesis geometry into his theorles. 7

5 Jean Leymarie, Impressioniam Vol. 2. p. 90
6 loid., D. 84
7 Maurice Raynal, History of Modern palnting erom Baudelaire to Bonnard, p. 58

Primarily, the principles of Divisionism were based on this law of simultaneous contrast. The optical mixture of color was substituted for the physical mixture of pigmente through the technlque of laying down small dots or polnts of pure color slde by side. The tone produced was more luminous and intense than the original colors, and the resulting hue was also found to be different as the Juxtapositfoned dots influenced one another.

Seurat summed up his theories this way in a letter to Maurice Beaubourd:

Aesthetic. Art is harmony. Harmony implies an analogy of contraries, and also an analogy of similarities of tone, hue and IIne, disposed in relation to their dominants and under the influence of Iight, in gay, calm or sad combinations. The contraries are:

For a tone, more luminous or pale tone as against a darker.

For the hue, the complementaries; as when a certain hue of redts opposed to Its complementary colour (e.g. redgreen; orange-blue; yelloweviolet).

For the line, Ilnes forming a right angle.
Galety of Zone is given by the luminous dominant;
of hue, by its warm dominant; of IIne, by lines ascendIng from the horizontal.

Calm of tone is equality of dark and IIght; of hue, equaltty of warm and cool; of line, the horizontal IIne.
sadness of tone is given by the dark dominant; of hue, by the coot dominant; of line, by lines descending from the horizontal.

Technique. In view of the phenomenon of the duration of a Ilght-impression on the retina, aynthesis necesaarily ensues. The mesns of expression if the optleal mixture of the tones and hues (local colour and that reaulting from Illumination, by the sun, by an oll-lamp, by gas and 80 forth): that is to say, of ifght elements and their reactions (shadows). according to the laws of contrast, gradation, and Irradiation.

The frame should be in a harmony opposed to that of the tones, hues and lines of the picture.

8 Maurice Raynal, History of Modern Painting from gaudelaire to Bonnard. P. B4
PLATE III
Sunday Afternoon on the Island of La Grande Jatte

It is also noted that seurat IImited his palette to Chevreul's circle of four fundamental colors and their immediate tones: blue, blue-violet, violet, violet-red, red, red-orange, orange, orange-yellow, yellow, yellow-green, green, green-blue and blue again. To these colors he would add white, but would not $m i x$ them among themselves. ${ }^{9}$

With this highly organized Divisionism, Seurat replaced the disorder of Impressfonlsm. His execution became the methodical brushing of tiny dots which soon became known as "pointillism". His painting A Bunday Afternoon on the Island of La Grande Jatte (plate ili) is a well known example of thls method, and also indicates his competent handiling of the architectural peatures of pletorial structure. Indeed, history has shown that this movement would have had less importance as art, and would have only been of scientific interest, had it not been that those involved were better artists than theorists.

Few accepted the Neo-impressionist approach in its entirety, as its rigorous formula was not of their nature. The aftermath of the two movements was one of trends and counter-trends. The conflict that arose is still present with the painters of today. On the one hand is the subjective painter, with his intultions as his only guide. On the other is the intellectuallet who demands reasoning in his art expression. significantly, today both are abstract in character and bear little resemblance to elther movement.

[^1]The legacy of broken color in contemporary painting is found in varlous forms and degrees of applicatton. Pollack and Dekooning represent an emotional use of color interplay and visual sensations. Albers contemplates with geometrical preclsion the interaction of light and color. These are further explorations Into the physlologleal effects of color, some Intultively and aome objectively, but both are contributions to the enrichment of man's visual and spiritual worlds.

PREVIOUS USE OF BROKEN COLOR ON BTAGE

Most references written on producing the play, are elther vague or elementary in dealing with scene painting and the use of color as pigment or light. Thia may be due to several reasons. The principle reason seems to de that the writer is generally encompassing the whole theatre field, and la not sufficiently knowledgeable in this specific area. Another reason may be the inablifty of those practicing this art to commulcate the subtleties of technique that have been gained through personal inventiveness and experlence.

Against the acene designer or palnter aa a source, is the Paet that scene painting, in contrast to sasel painting, is not generally subject to critical examination for itself. The painted set, as is the play, is a part of a pleeting experience for the observer. Most contemplations about the technical aspects would be in retrospect and therefore not as susceptible to anaIytical review. It la difficult then to find material in depth about the interaction of color on stage.

Some use of broken color in atage painting has been mentioned and it is to be expected thet other methods have been tried or are in use. The most common usage la the application of small dots of color to break up the effect produced by a large monochromatic surface. If the area is of any appreciable size, the aurface becomes a monotonous attraction, moving forward in apace and overpowering the action on stage. Ita aubsequent apattering with varlous colora, wlll cause the eye to vibrate on the surface and the
offending area will move back Into acceptable space.
Lee simonson records the use of a falriy dry brush to drag or scumble broken colors on the surface for the same affect. The colors are close in value, and he suggests the use of gray, violet or blue on warm ground tones, and warm colors on a cool baekground. ${ }^{1}$

Another technique as noted by 3 imonson, is one perfected by Robert Bergman and is known as the Bergman Dath. This method is a succession of thln washes of paint, floated over a ground tone as the scenery lles on the floor. Colors in close values of grays, blues, violets, ocher and occasionally silver or gold, are used to produce a surface rich in texture and responsiveness to 1 ight. ${ }^{2}$

A secondary effect of the spattering or scumble technique is the effectiveness in hiding flaws in painting or in the structure of the scenery. In general practice this often becomes the main purpose for its use, and the spattering applied is more in the nature of value than color.

A variation, which in the total scope of the use of broken color on stage can only be considered as different in degree, is the method called Permanent palnting. The effects of broken color as in impressionism painting is primarily physiological, with the assumption, more or less, that ideal or netural IIght is used In viewing. Of course thls is not always the case, and in applyIng broken color for the stage, extreme variations in IIghting wlll

[^2]be arbitrarily made. The effects noted in this method are physical and are a part of the total consfderation of broken color viewed under varying ifghting situations.

The term Permanent Painting is one Merbert Make has given to a unit that has been palnted in such a manner as to reflect a succession of colors upon proper stimulus. Conceivably, the same unit could be used in many scenes, changing color and mood under a Iatitude of Ifghting conditions. To whet extent it has been ueed is not known to this writer, but appears worthy of exploration. Hake's description of his method is as follows:

In order to obtain a reflected color which will correspond to the color of Ifght used in every case, it is necessary to use combination of three colors of paint which will correspond to the three primary colors of IIght. The three colors which will satisfactorily reflect these three primaries are burnt sienna (a neutralized red), chrome green and ultramarine blue.

The scene units are first given a solid coat of burnt sienna. When this is dry, the entire surface is spattered (or aprayed) with chrome green. The surface will then have a broken texture in which both red and green will be represented. When the green paint has dried, the surface is finally spattered with ultramarine blue, and three colors will be in evidence. Although the undercoat has been spattered twice, some of the red will still be visible, and enough of it will be avaliable for reflecting red Ifght.

These units will now reflect any color of IIght that is thrown on them. When only red IIght is used, the green and blue paint will be neutralized, and then the red paint will give the effect of color to the set. When green ilght is used, the red and blue paint will be neutralized and only the green will be reflected. When blue light is used, the red and green paint will be neutralized, and the set mill appear to be blue. Further variation is possibles when yellow light is used, the blue paint will be neutralized and the red and green paint, in combination, will reflect the If ght and give the set a yelow appearance. Blue-green Ifght will be reflected by the blue and green paint, while the red is neutralized; and magenta or purple IIght will be reflected by the red and blue paint, while the green is
neutralized.
Meny transformations can be effected in this way. It would eeem that the neutrallzing of a part of the painted surface in each case mould result in a visible mottiling of tone. The contrary is true, however. The individual spote of color are so small, and their distribution is so uniform, that there is no evidençe of omission when one or the other color is not reflected. 3

In visiting the scene shop at the University of Kansas in Lawrence, a direct example of broken color on stage was observed by this writer. The ecenery flats for a garden ecene had just been peinted, and the finlshed product in style and technique wes reminlecent of the peintings by Monet. The palnters had used sparkling colors over a dark background, and for the most part, It appeared they had employed $1^{\prime \prime}$ to $2^{\prime \prime}$ brushes. The effect was quite fluld and spontaneous. Though not knowing the temper of the pley or how it was to be ilghted, the audience ehould have found it to be a delightful experience. While exciting as a garden, the same techniques were not employed in painting the other architectural scenes and it is difficult to see he\% they could have been treated in quite the same manner.

It can be seen from these examples thet broken color hae been used on etage In varying degrees. In a few instances, it can be noted there were direct references to the impressionism movement in painting.

[^3]
THEORETICAL ASPECTS OF BROKEN COLOR ON STAGE

The perception of color is complex and highly personal, and any consideration of the nature of color must be in terms of the physicel cause, the physlological process of the eye and the psychological elements of human experience. When analyzing broken color as it might be used in the theatre, all of these elements must be noted in the usual sense of perception and application with the added dimension of the arbitrary lighting of the stage.

In theory, the mixing of broken color is an optlcel mixture, or mixture by addition. In practice, the effects might be a comblnation of the two, mixture by addition with some elements contributed by subtraction. In some areas of color mixing, the results are similar with both methods, while with others the areas differ greatly.

A total analysis of the effects must include the study of three different color circles. Each of these wheels is an arbltrary fllustration of a particular element or phenomenon of color, and cannot be used a dogmatic entity. The terms of color notetion are also relative, as each system employs a elightly different meaning for the same name.

Credit for plrat placing color in the form of a circle is given to SIr isaac Newton. In studying the spectrum, he noted the simliarity of the red on one end of the seale, and violet on the other. Placing the spectrum in a circle left a vold segment, which he fliled with huee of purple, or mixturee of the two end
colors, red and violet. His color wheel contained seven basic colors; red, orange, yellow, green, blue, indigo and violet in unequal spacing according to the spectrum. ${ }^{1}$

The eye always tends towards simplification in form or in identification of colors. The accepted grouping of identifiable colors of today are red, yellow, green, blue and violet. In general, color theories use these five or add orange and use six as basic colors. Those colors that are fundamental to the formation of other hues are called primaries, and differ according to the manner in which they are considered.

> The Pigment color circle

The first color circle to note is the plgment color wheel (Fig. 1). This is color by subtraction. The reflecting surface subtracts or absorbs part of the wavelengths of the IIght, reflecting a certaln few. While the pigment may be quite selective In the color it reflects, all pigments give off some traces of other colors and can never equal in intensity a spectrum color.

The primarles of the plgment wheel are rad, yellow and blue. secondary colors are produced by comblning any two such as red and yellow for orange, blue and red for purple and yellow and blue for green. By mixing adjacent colors the intermediate hues may be formed. The mixing together of all three primaries, subtracts all of the wave lengthe producing black, which is considered the absence of 11 ght.

In the lves color circle, the primaries are listed as mag-

Fig. 1
The Plgment color circle
The plgment efrcie is afxture by subtraciton and has primare les of red, yellow and blue with soconderlee of orange, grean and violet. The lues color circle has primarles of magenta, yellow and turquotso-blue. A mfxture of the primertes or complementarles would ppoduce, in thoory, black.

FIg. 2
The Light Color cipcle
The ilght color circle 18 mixture by addition with primaries of red, green and bluemviolet and seconderies of yellow, magenta and turquolse. The mixture of all three primaries produces white which is she presence of all hues in balance.

Fig. 3
The Vision color circle
The vision circle has four primarles, yellow, red, blue and green. The secondariea are orange, violet, blue-green and yellowgreen, with the conter of the circie as gray. When used as an lllustration for the mixture of broken celor, the eccondarles are formed by addition.
enta, yellow and turquoise blue. ${ }^{2}$ Thls would appear to be a cloeer deseription of true primaries in pigment for full mixture of secondary and intermediate hues. It coincides with the primary colore ueed in color printing which must rely on these three to form multitude of color variations.

A method of illustrating the change in chrome ae result of mixing two colors in pigment, involves the wee of the color circle with gray in the center. All of the hues placed on the rim of the circle are thought to be spectrum colors or at maximum Intensity. Any Ifine drawn then between two colors will cut across the circle coming closer to the center or gray. If the colors are mixed in equal propertione, the mid point of the line will show Its position in relation to hue and intensity. Ae can be seen, neighboring colors will lose some intensity when mixed, and ae the colors become farther apart or complementary, the position of the Ifne moves closer towarde center and the resultant color decreases in intensity.

The Light Color Circle
The second color wheel for consideration relatee to the mixIng of color as filtered light (Fig. 2). This ie mixture by addition, ae the wavelength of one color is added to the wavelength of another and seen ae accondary color. The primariee of IIght are red, green and blue-violet. The secondaries are turquoise blue (a mixture of blue-violet and green), purplieh magenta (red added to blue-violet), and yellow (a mixing of red and green).

2 Faber Birren, Creative Color, p. 20

The mixture of all three primaries produces white IIght, which is the presence of all the colors in balance.

The Vision color circle
Theorles have been advanced on the means of color perception in human vision, and many are based on the agrecment that the human eye responds to four elementary hues; red, yellow, blue and green and two hueless sensations white and black. These have been consfdered as pafre of primaries which are complementary in nature and whoss interactions would correspond to the known facts of color mixing, color circles, complementary colors, aftersenm sations and simultaneous contrasts. ${ }^{3}$ These palrs are red and green, yellow and blue, and white and black. White and black are percefved not necessarfly as the presence or absence of Ifght and color, but as separate sensations.

The third system of color arrangement in a circle, relates to this physfological and phychological parception and can be called the vision circle.s Here the primaries are four in nume ber; red, yellow, green and blue with secondaries of orange, yellow-green, blue-green and violet. A mixture of the primerfes at the center would result in gray (Fig. 3).

The color solid
The discussion to this point has bean primarily about color as a hue or as a differentiated segment of the spectrum. As Indicated, white and black are percefved as separate sensations.

3 Ralph Pickford, Individual Differences In Colour Vision, 4 Faber Birren, Creative Color, p. 18

fig. 5
The celor solld
The color solid hae an aula of value with the spectrum huee loceted on the oquator of the sphere. Chroma or intensity is the perpendtcular movement from the emi e to the ourface.

Fig. 5
The color Triangle
All colors are percelved as being one of the seven forms noted in the color triangle. The triangle might also be considere ed a leaf or segment of the color colfd. If color is designated as a particular hue, the tinte, shades and tones ifil be mixtures of that hue with white and black.

They are unlike the spectrum colors, but as ths other primary sensations mfx and form intermediatses, so too do white and bleck combins with themselves and with those containing hue. This expands the color circle into solid (Fig. 4).

The term hue has been noted before as a particular segment of the epsetrum and refsre to the name commonly given that part such ae rad, yellow or blue. This is the first dimension of color as eolid. The eccond le value and relates to the Ifghtnsss or darknese of a color. The baefc unit of value is a sals of white and black and the mixtures of thsse two in varlous degress of gray. The third dimeneion ie an interaction of the seneations of hue and value. This is called chroma or intensity and Is the movement from a liks valus of gray (which is neutral or lacking in chroma), towards the spectrum color which contains no other slements except of that particular hue. The dimensions used In describing color as a solid (Fig. 4) Is the same for color as pigment or as Ifght, although the eteps or the latitude of these dimensions will differ gratly between the two.

Figure 5 chows a hus segment of the color solid and the additional dimensions of color and color mixing. This hae besn referred to by Birran ae the Color Triangle, and Indicates the seven forms in which color is expsrienced. ${ }^{5}$ in addition to the dirsctions already notsd, is ths mixture of hus and white for a tint, hue and black for a shade and the mixture of any of the diagonals (tint and black, shade and white, hus and gray) for a

6 Faber Birran, Color, Form and Space. p. 37
tone. These terme are further notations of color positions or movements within the eolid.

Simultaneous Contrast

The heart of broken color ie the phenomenon of simultaneous contrast. Two colors are shown as separates in Fig. 6 , they are mixed ae pigments in Fig. 7 and mixed optically in Fig. 8. The effect as perceived in the last figure, was defined originally by Chevreul in his statement on simultaneous contrast:

If we look simultaneously upon two stripes of different tones of the same colour, or upon two stripee of the same tone of different coloure placed side by elde, if the stripes are not too wide, the eye perceives certain modifications which in the first place influences the intensity of colour, and in the second, the optical compoeltion of the two Juxtaposed coloure respectively. ${ }^{\circ}$

The small stripes of red and blue have become a ohimmering magenta which is more intense than efther of the parent colors. This is a spreading or irradiation of the two colors, as the eye at a dietance loese the abllity to discriminate the colors as separate areas.

When viewed separately, the stronger the contrast in hue, the weaker the effect of increased intensity will be when diffused optically. The weaker the contrast, the stronger the offect will be of increased vividness. Thus when two colors are analogous or elose together in hue, their fusing by the eye will produce a vivid vibrating tone. As the colore move farther apart towards complementary positions, this effect will decreaee in nature.

6 M.E. Chevreul, The Princloles of Harmony and Contrast of colours, p. 7

Fig. 6 The original colors as they appear before mixing.

Fig.
The Effect of Contrast of Hue

The Effect of Contrast of velue

The Effect of Contrast of Intensity

The same effects will be noted in relation to the degree of value contrast. Those colors close in value will produce a stronger effect than those with more contrast. Hence, the degree of this Increase in Intensity is altered by both hue and value. Viewed simultaneousiy as large areas, colors in proximity Influence the appearances of each other. Figure 9 shows how a surrounding area will change the appearance of hue in a given color. In both cases the small shape is the same green, but viewed against different backgrounds the hue seems to change. In Fig. 10 a like situation lilustrates the change in apparent value as the same value gray is placed againet different grounds. An apparent change in intensity is made in Fig. 11 through the use of a medium intense red agalnst areas of higher and lower chroma. mixing by simultaneous Contrast/Broken Color

The first assumption when laying plgments down as broken color and to be viewed as the effects of simultaneous contrast, is that the resultant huee will be formed according to the pigment or subtractive color circle. This is not true, in that the mixing le optical in nature and there fore by addition or the addIng of one color sensation to another. Yet, as the results are within the Ifitations of plgment reflections, nelther can the effects be fully explolted if only the light primary colors are used as plgment.

In both the Ifght and pigment color circles, the results of mixing secondaries in the areas of violet and blue-green are alike in some respects. In the light circle, blue-violet mixes with green to form turquolse. This is simllar to the results expect-
ed in pigment mixing. Blue-violet mixed with red for magenta would also be simflar. Still, there are noticeable differences In hue and intensities.

The area of most difference is in the region of yellow. While a primary in the pigment circle, it is a secondary mixed by red and green in the 11 ght circle. As pigmente, these two are complementary and a mixture would give a muddy gray. At best, an area of these two as jurtapositioned dots or stripes would only appear as silghtly different in either mixture. This can be explained in term of changes in value and intensity. Red and green at maximum intensity are in the middle of a value scale. To bring these colors up in value to match yellow et its point of maximum intensity, would be to dilute almost all of the chrome from these two colors. Hence, the effect of yellow as a secondary by the additive method cannot be obtained in paints. This necesittates the adding of yollow to the basic palette for a full range in broken color.

As noted before, seurat used Chevreul's four fundamental colors and their intermediate tones. Further reference to this could not be found, but the colncidence would suggest that Chevreul was aware of this visual paychological discrimination and that seurat incorporated at least part of it into his theories. How closely he may have followed the Idea of these four as basfes would apeculative, and the colors then Ifsted are inconsistant to the statement in that it includes violet and an intermediate. This makes five basic colors in his palette. still, the manner and degree in which these were applied, would not necessarily
change the meane by which the broken color is percelved opticaliy by the viewer.

These colors were not mixed among themselves as pigment, however white was added for tints. Tones or shades by the mixing of paint wae not a part of Seurat's palette, and no mention is made of black even as accent. His palette then, conelsted of epectrum colors and their tinte. This is only segment of the colors avallable, but optically he produced or suggested whatever else he needed.

Modeling Around the Hue circuit

The hue circuit can be divided into two groups that possess the propertiee of elther warmth or coolness. Red, orange and yellow are warm in feeling and are also known as advancing, lumfnous or hard; all of which describes the characteristics of these hues against a neutral background. Green, blue and violet are cool and receding in nature, and also thought of as somber or soft. Yellow-green and red-violet remain rather neutral against gray, or could be used in efther group. White is coneldered to be hard, though not warm, and black is soft and receding.

These characteristics have been employed by artists in many ways to suggest space or distance. One example is aerial perepective, with the use of cool colors, generally with white added in the distance and warm colors in the poreground.

Another method is the modeling by the hue circuit rather than by value, although a degree of value change is involved. Modeling of light and shade can be indicated by the shifting of a tone around the color wheel towards an advancing and then a reced-
ing color. Warm colore suggest sunlight, and shadows are generalIy cool; this coupled with the advancing and receding characteristics of each create an lllusion of modeling on a flat surface. This shift of a tone is towards orange as advancing, and towards blue for receding. This is not necessarily a complete movement to these colors but only towards them, depending upon the position of the original tone and the degree to which the modeling is forced.

Visual Aculty

The last three areas for consideration in thls chapter assume added importance because of the extreme range of 11 ghting conditions practiced on stage. The sensitivity of the eye in visual aculty varies under different degrees of lllumination. In bright ilght, the spectrum will be most intense in the area of yellow and yellow-green. As the illumination dims, there is a definite shift to green and in darkness, blue-green is the hue of highest intensity.

In illumination as filtered IIght, yellow has been found to be almost as satisfactory as balanced light in the ablifty of the eye to distinguish objects clearly. Orange-yellow, yellow-green, and green follow in that order of maintaining visual acuity. Deep red and violet are increasingly difficult, and blue as illuminatlon causes blurring and creates halo effects. Under extreme dark conditions red has been found to have excellent acuity. ${ }^{7}$

7 Faber Birren, Color, Form and Space, p. 45

Filtered Light

To be perceived, a color must be present in both the surface that is reflecting the Iight, and in the source of the IIlumination. Sunlight, the uitimate in lllumination, contalns all of the colors that the human eye experiences. Any other source is generally noticeably deficient. When IIght is produced by a heated element, the lllumination may be strong in warm colors and weak in cool, specifically blue. Some lamps, notably those fllled with a gaseous matter, are stronger in the cool colors and weak in reds. Knowledge of the strengths and weaknesses of your flIumination is vital to planning a plgment palette that will reflect the desired effect.

When the Ifght beam is filtered by a gelatine, the material Bllowa certain lightwaves to go through and stops the passage of others. If the filtered beam is a primary ilght color, the gelatine has blocked the other two primaries from passing. As an example, a blue filter subtracts both red and green, and only blue IIght passes. Conversely, yellow filter will subtract only its complement blue, passing both red and green, as yellow is a secondary in light and therefore a mixture of the two other colors.

When two filtered beams overlap, the resulting mixture of their hues will be by addition and according to the IIght circle. Thus the overlapping of red and blue would produce magenta, red and green would give yellow, and green and blue would be turquolse. If all three primary light beams were to overlap, the result would be white, as white is the balanced presence of all hues.

Filtered Light on Pigment

To be perceived as a reflected color, the hue must be present In the surface as well as in the IIIumination. All colors present in the surface, that are not in the filtered IIght, will be seen as gray. The existence of a color as Illumination will be noted in relation to the light primaries, and the presence or absence of a color on the surface will be according to the pige ment primaries.

A pure blue surface color in a blue illumination will rem flect as an intense Ifght valued blue. Green and violet contain some blue as pigments, and would reflect in the same ilght as a grayed blue. The same kind of experience will result relative to the use of efther of the other light primaries, red or green.

If ecendary colored filter is used, it will reflect not only that same color in pigment, but also the hues of the parent primaries. Thus a yellow illumination would reflect yellow, and a lso red and green. Any other variations of colored ifghting must be considered in the same manner.

When two different colored beams overlap, the colored fllumination is a total of the wavelengths present in each. Thus the range of colors that can be reflected has been extended. If the primaries of red and green as filters were used, the pigments of violet, red, orange, yellow, green and blue-green would reflect. The firet and last pigments would appear as grayed red and grayed green rather than violet or blue-green, as blue is missing in the Illumination.

A full range of reflected Ifght can be achieved with the use
of all three primaries, or any two of the light complimentaries. The center of the light circle is white light or the presence of all colors, making possible the reflection of all the colors of the surface.

Color Constancy

The phenomenon of color constancy is considered as one of the most curfous of visual perceptions. A color may be experfenced as the same tone even though viewed under a variety of lighting conditions in terms of brightness or filtered color. A white cardboard, viewed first out of doors in the sunlight, then in the shadow of a room, then under the colored IIghts of the stage, $m i g h t$ be experienced by the viewer as the same white though a camera would record three different tones. Birren quotes David katz on this phenomenon:

The way in which we see the color of a surface is in large measure independent of the Intensity and wavelength of the light it reflects, and at the same time definitely dependent upen the nature and Intensity of the lllumination in which it appears. ${ }^{8}$

The distinction between IIght and Illumination becomes all important in understanding this statement. It is the surroundIngs in which a particular color is seen that determines how it is recognlzed. If all other parts are Illumlnated by the same degree of brightness or color, the viewer is not likely to sense that particular reflecting area has noticeably changed.

This phenomenon, with all of the other aspects of color and vision discuseed in this chapter, has decised implications in

[^4]the use of broken color on stage. The mixing of pigmente themm selvee for a painting has many ramifications. When this is compounded by the physfological and psychological overtones of broken color, and then placed under extreme changes in degree and kind of lliumination for viewing, the understanding of the process at best becomes quite complex.

THE USE OF BROKEN COLOR ON STAGE

The research for this paper wes to find to what extent broken color could be used in stage design. The discussion of the findings to this polnt, have been in relation to braken color as used by the impressionlst palnters, any previous application on stage, and notations on the phenomenon and theories accompanying Its use.

As noted before, the interest in this area for the writer began in the need to explore various methods of painting stage scenery in lieu of previous training. The author's experiences to be noted here were Ifmlted to one type of drama, that of the muslcal play. However, as the basle approach of broken color has been used in six major high school productions, some conclusions and statements can be made concerning the use of broken color on stage.

Musical plays usually require a large amount of scenery and many scene changes. The designer's first problem was to become aware of the movements of the actors and their particular needs for visual support in terms of scenery. Then within the facilltles and dimensions of the stage, the movement of the scenery changes and storage was planned. All other technlcal demands were considered and became a part of the final decision as to the amount, the appearance and construction of the sets. In general, any scenery that did not have to be three dimensional and played upon or used by the actors, was made as a two dimensional plece for ease in handiling and storage.

A complete chapter could be written about the role of the
designer in his interaction with the story, director and players In presenting a total experience to the audience. For the specific purposes of this paper, only a notation will be made as to the awareness by thls writer of the nature of thls responsibility. Partly because of the lack of facilitles to fly palnted drops and the avallablifty of a versatile light blue skydrop, most of the scenery pleces used in the productions were self-supporting cutouts. Belng able to see past parts of the scenery added to the feelling of apace and distance on the stage, and a change of Ifghting situations on the skydrop suggested various types of |llumfnations.

The palnting of the stage set cannot be approached in the same manner and spirit as an easel palnting. The area to be covered was many times larger in size and rarely was the work in a position that progress could be checked as to how it would be seen in final form. The lighting was seldom right, and the amount of time allowed did not give opportunlty for great care or detall.

The application of broken color by the author usually followed this procedure. First, a general color tone was applied in stage paints. Then any drawing or defining of the areas as form was made with a small brush. An animal sponge was then used to lay in one color at a time, modeling around the hue circuit on those parts that were to have dimension. After the modeling or modiflcation of the base coat was complete, the drawing was checked for any parts that needed revision or strengthening. The final step was to spatter the entire set with spectrum colors for

a unifying effect.

Where seurat may have built up a tone by completely covering an area with omell dots of color, the procedure here was to start with the flet painting of a tone, adding the effects of vibration and Intensity of broken color that many times was more of a suggestion than a complete coverage. Ae can be seen, it generaliy produced the desired effect and the rapld appilcation was withIn the limltations of time.

The base tone was often an earth color or at least very neutral, and as mentfoned, stage paint was used for economy. The drawing was usually done in black, but many times was a complew mentary color to the base tone. It might be noted here, that the drawing served to give additional definftion to the forms, but also contributed to the realization that the set was an art form and not an attempt to produce naturalistic objects.

The broken color applied was usually tempera palnts for ease of handifin. Only spectrum colors were used, with reliance prim marily upon yellow, red, green and blue. Tinted mfxtures were not used with the exception of violet. Violet would appear as dark gray under most Ifghting unless tinted and was seldom used in favor of red and blue juxtapositioned. Tinting wes usually sfmplified to the use of white Isid alongside the other colors. Black was used only once or twice in sponging but was abandoned as not necessary or contributing.

Because of the Inherent weakness of stage Iighting in the region of cool colors, a larger proportion of blues and greena were generally needed. Often an Italian blue was used as an in-
termediate color to supplement ultramarine blue.
Figure 12 shows the modeling around the hue circuit of a cardboard cutout, achleving a feeling of three dimenslonal form with an Indication of a single IIght source. Figure is is a detail of the same plece and is truer to the colors of the original. The plece was painted first with a flat coat of burnt sienna, then the sponging of the sunlit areas was begun with yellow ocher. Most of the ocher was covered in subsequent layers of color, but served as a Ifght-dark pattern in which to work. The white was used separately, rather than mixed as tints. The base coat of burnt sfenna served as a subdued red and when sponged with blue gave a purple shadow. This was generally neutralized to a degree with green and orange. As the use of broken color developed, it became a common practice to use a color in all parts of the area In varying proportions, rather than a sharp division of warm colors for the IIght side and cool for the shadow. The photograph also shows the use of red lines as part of the drawing. Colored IInes were not unusual, especfally in the shadows as a means of adding more color and light to that area.

Often the two dimensfonal pleces appeared to have more form than those with constructed dimension. To correct this appearance, shadows and highlights were palnted on them also. This kept a sameness in treatment and contributed to the feelling of a tonality in the atage picture. Figure is shows a three dimensional set with a practical door, and with a window, porch posts, lantern and pans in two dimensions and modeled in broken color.

The general fllumination of the stage is unidirectional and

Fig. 12
Ground row barn from Oklahomal. A self supporting cardboard cutout, modeled in broken color.

Fig. 13
Detail from the barn above, showing colors as applied by sponge and brush.

Fig. 14
Aunt Eller's back porch from Oklahomal. A combination of two and three dimensional pleces painted in - like manner for tonality.
three dimenstonal shapee lose their form in euch light. This is one argument for the stressing of color on stage, in that both lllumination and form can be suggested through a knowledgeable use of color. Form invites critical judgement on the part of the viewer, whereas color ls more direct or elementary in its appeal to the sensee. Color becomes a more acceptable medium for an arbitrary use. Since the etage eetting is a direct meane of conveying the temperament of the play itself, color can prepare the audlence and then supplement the elaboratione and completion of the etory by the players.

Seldom doee the play or the audience demand a completely naturalistlc setting. Muefcale, and for that matter many other typee of playe, are usually realiam or suggested reallsm. In eplte of the tendency for a higher degree of empathy in the theatre art form, the audience recognlzes that the situation of viewIng a play is, after all, unreal. A wide latitude of eftuatione In story, acting or eetting will be accepted as plauslable if the forme have continulty and tonality.

The Show Boat in Fig. 16 would not etand the critical eye of a river boatman, as proportione and placement of vital parts have been altered for the demands of the stage. What was a barge in the novel and original play, a stern wheeler in the motion pleture, became a eldewheeler in thie production in order that a distinctive part of the riverboat could be eeen on the etage. Within limitations, euch changee are possible, as the audlence recognlzes the settings as a euggested environment rather than a real one.

Fig. 15 A cutout tree for the Levee in show Boat, sponged and spattered for suggested form.
Fig. 16 Opening scene of Show Boat on the Levee at Natchez
on the Mississippl River.

The photograph in Fig. 17 shows the main characters from the Wizard of Oz in front of a section of the Emerald city set. This was tsken at rehearsal, and the painting of the set was incomplete. It might be injected here, thet much scenery peinting tom day rarely progresses beyond this point; relying upon flat areas of color and some drawing. This may ise sufficiont in some inc stances, but in many cases it looks as if it were only a beginm ning.

The Emerald City was a particularly special place In this story of fantasy. The name of the city leaves no doubt as to the color of the efty nor the implication that it should be bright and Iuminous. The discussion of broken color as applied before was in relation to modeling around the hue circuit. Mere the effects of broken color or sfmultaneous contrast are used to produce the intense luminous quality needed in this particular scene.

A tone was established first of all by the application of a gray-green base coat. It could not be too intense because of the large areas involved. Next came the brush drawing of the mortar and architectural forms. The sponging of broken colors was ifmited to analagous or nefghboring colors of grean, using yellowe grean and an ltalian blue. The complementary colors of red, orenge and yellow were then spattered over the entire set. As not enough was used to neutralize the mixture optically, it only served to helghten the effect. Figure 18 and Fig. 29, though not accurate in color, will give some Indication of the final results. A truer Illustration of the colors actually used can be found in FIg. 20.

Fig. 17
Dorothy, Tinman, Scarecrow and Lion from The Wizard of $0 z$ in front of the incomplete set of Emerald city.

Fig. 18
Full stage set of Emerald City In The Wizard of oz, using the effects of simultaneous contrast for Iuminosity.

Fig. 19
Detall of Emerald City set.

Fig. 80 Illuatration of broken color se uaed in the Emerald City. The effect of apparent Increased Intenefty wes achleved shrough the ube of analagoue colors in almulm taneous contraat.

In the forest scene for the same show (Fig. 21 and Fig. 22), an attempt to model with a sponge on the loose musiln cutout drop was not successful. A switch to the use of a two inch brush to indicate the rough texture of bark met with ilmited success. This approach has much merit for broken color, but too much time was needed to bring such a large area to a satisfactory completion.

The face of Oz in fig. 23 and Fig. 24 was another method of application of broken color, only this time the problem was the exploration as to what extent a three dimensional form should be modeled. Various attempts were made using a sponge again, but the results seemed very unsatisfactory and any forced modeling seemed unnecessary. Earlier attempts were painted out with a pale green base color and the return to spattering the form with the usual baslc colors was declded upon. The brush was manipulated to spatter according to the hue clrcult. The effect was not forced modeling, and thls proved sufficient as the face was IIghted with directional light.

The element of distance, so necessary for the optical mixing of broken color, is a bulit-in physical feature of the theatre. The areas of juxtapositioned dots of color can be relatively large and free in. handiling, and still be acceptable to the eye of the viewer. With study the viewer might discern the method of application and the color breakmup. However, if the whole scene is unified with the same treatment, as perhaps a sponge and the resultant bulld-up of paint, and then bathed in a film of spattered broken color, the effect of the vibrations on the eye wlll be the same as a soft focusing of the scene.

Fig. 21
Forest scene from The wizard of Oz.

Fig. 22
Detail of above, showing broken color as applied only with a brush.

Fig. 83
The face of Oz, using broken color on three dimensional forms.

FIg. 24
Detafl of above.

As one of the effects of simultaneous contrast is the apparent increase of intensity, broken color offers the possibilities of suggesting a higher degree of Illumination without the washing out of colors so often accompanying a brightning of the stage lighting. Thls suggestion of bright illumination should work no less for the stage than it did for the Impressionlat palnters, if applied in a like manner.

The area that cannot be properly covered in thls paper, is the reaction of broken color as reflected Ifght under the filtered stage Ilghts. It is one of the regrets of thls writer, that at the time of the productions and before the sets were struck, and usually destroyed, that experiments could not have been made along this line. The lighting of the sets was delegated to another group as thls task alone requires considerable time and effort for the performances.

As noted in the prevlous chapter, the results could be calculated with a knowledge of the light and the pigment circles. There will be variations in the actual resulte according to the avallable color in the lights, and the filiters used. Any method of testing would need to include speciflc designations of the type of light fixture used, its apectrum range, and the measured steps of degree of illumination. since there are a multitude of filters, certain ones would have to be declded upon for partlcular qualities, and these might not be the hues corresponding to the IIght color primarles. An attempt to use filters that would produce a balanced white light is not a common practice on most stages. Such investigations, if carried out to any extent,
might have some contributions to the actual praetice of the art, but in general would be more of a scientific curiosity.

One of the most intriguing aspects of vision is that of color constancy. Within the enclosure of the theatre and with no other point of reference, the perception of color is quite inde= pendent of physical facts. This phenomenon alone negates some manipulations of colored Ifghting on stage. Unless the degree or color of illumination is changed considerably or abruptly, color retains ite stability to the viewer.

In spite of knowledge of this phenomenon, photographing on stage with stage Ifghting can be quite fruetrating and fliugtrates the range of the effects. Unless an accurate measurement of the color temperature can be made, any attempts to rely upon the perceptions of the eye and previous experience, will prove how far from physical fact such judgementa might be.

SUMMARY

Reference to broken color is usually in relation to painting and the imprassionists. This is as it should be, for this phenomenon of If ght and color was explored to the fullest by this particular art form. Evidence would indicate also, that broken color has been applied to the stage more than generally realized.

The knowledge galned from the study of written material for this research, and the accumulated experfences of six musfcal productions, has convinced this writer that the use of broken color on stage has many possfbilities and can be contributing I лnovation.

The investigation and understanding of the phenomenon and problems involved need not hamper any free and creative approach. Techniques can be developed without pigidmethodology. it is recognized though, that as the full ramifications of the complexIties of broken color are known, that it will be of limited use for many, in favor of a simpler method.

The total effect created on stage by broken color, is in general quite setisfactory. Many times the effect is a vast improvement over other techniques. The unity achleved with a like treatment of the three and two dimensional surfaces with broken color, Including a final spattering of the entire set, gives the scens an atmosphere and fliumination of its own. This plays best under a balanced Ifght, though coupled with the stability of color constancy is acceptable over a wide range of ifghting conditions. The more elaborate and refined the acheme becomes, the more sensitive it is to change.

Further research is needed to determine the range of stage Ifghting and what variations in the palette would extend the capabilities and use of broken color. It is evident that broken color can be planned for an extreme lighting situation, and need not be considered usable only for theatre productions that tend to be decorative or IIght in nature.

In any form of application or theory, the problem is easiest to understand when the components have been reduced to the fundamental elements. In mixing color this becomes the reduction of the avallable colors to the least number from which all of the others can be mixed.

The mixing of hues in broken color is by simultaneous contrast, therefore by addition and according to the color circle for light. Since the medium used is pigment, this becomes the mixing of one medium according to the laws of another. The complexity of this interaction of the effect and the medium are at odds with the advantages of simplification for a freedom of expression. A different means of lllustration that might embody the essential characteristics of each could be of value in application.

Perhaps more than by Just colncidence, the vision color circle seems a satisfactory way of arranging the hues of pigment that are fundamental to the optical mixing of a complete range of color. As yellow in plgment cannot be produced effectively as a secondary for the light eirele, it becomes necessary as a primary color. The vision circle uses the light primary colors; red, green and blue (blue-violet), and yellow; and
provides a basic palette for broken color. The addition of white produces tints and contributes to the completion of the color solid. Black is used only as aecents in arbitrary drawing. As it is perceived as a separate color it becomes important to the total effect.

One of the qualities of simultaneous contrast is the increase of apparent intensity. On stage, this must be used with a degree of restraint. This allows for simplification in the method of applying broken color. The application of a flat base tone as a ground simplifles the amount of broken areas to be added without considerable loss of effect. The nature of the sponge as a means of bullding color areas allows for experimentation and change as the painting progresses. The palette is reduced to a minimum (four primaries and white) for ease of handing and speed, though refinements can be made through inclusion of intermediate hues.

The complexities of the physical, physlological and psychological aspects of color and vision as discussed in this paper, invites rigid and involved patterns of application. As broken color is used in the art form of scenic design, the tendency must be towards simplification. An understanding of the cause and effect of IIght and color is important to the mastering of the craft. It will not deter a creative expression, however, if an attitude of exploration is maintained.

ACKNOWLEDGEMENT

The author wishes to express grateful appreciation for the assistance and counsel of Dr. John F. Helm, Department of Archi tecture and Allied Arts as me jor Instructor; and Dr. Roy C. Langford of the Department of Peychology in the preparation of thls thesis.

LITERATURE CITED

Birren, Faber. Color, Form and Space. New York: Reinhold Publishm
Ing, 1961.

- Creative Color. New York: Refnhold Publishing, 1081.

Chevreul, Michel Eugene. The Princloles of Harmony and contrast of Colours and Their ApplTcations to the Arts. Londons G. Bell. 1899.

Cogniat, Paymond. The Impresoionista. New York: Mecmilian, 1051. Hake, Herbert V. Mere's Howt (A Guide to Economy in Stagecraft). Evanston, IllTnots: Row, Petterson and Co., 1047.

Leymarle, Jean. Impressionism. Two volumes. Paris: Albert Skira, 1959

Pickford, Ralph W. Individual Differences In Colour Vision. London: poutledge and Kegan Paul, 2951.

Raynal, Maurice. Hlstory of Modern Painting from Baudelafre to Bonnard. Geneva: Albert 8kira, 1049.

Rewald, John. The History of Impressionism. New Vork: Museum of Modern Art, 1946.

Simonson, Lee. The Art of Scenic Design. New York: Marper a Bros., 1950.

THE USE OF BROKEN COLOR

 If SCENIC DESIGNby

CLYDE W. WATSON
B.F.A., Bethany College, 1952

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

> requifements for the degree

MASTER OF ARTS

Department of Architecture and Allied Arts

KANSAS STATE UNIVERSITY Manhattan, Kansas

Broken color is the phenomenon of mixing color by simultancous contrast. When small areas of color are lafd side by side the colors will influence the appearance of each, and when viewed from an epproprlate distance will opticelly fuee together and produce tone that is different from the eriginal both in hue and apparent intensity.

The intent of this paper is to investigate to what extent the ideas and principles of broken color, as embodied in the Impressionist and the Neo-impressfonist movements in peinting, and as studied, both physically, physiologically and psychologically since then, might be applied to stage painting and design.

The use of broken color by the founders of Impressionism began as an intuitive means of suggesting the movement and vibration of sunlight. The atmosphere created was permeated with Ifght as color rather than value. The reliance was on the optlcal perception of bright colors Juxtapositioned, rather than on the mixing of pigment.

The Neo-impressionistlc movement of Beurat and others, gave a sefentific basis to this concept, and ended in the formulas of Polntillism. One of scurat's principles was the palette based on Chevreul's four fundamental colors, red, yellow, green and blue, and their intermediate tones. None of these were mixed among themselves, although white was added to produce tints.

The mixing of colors by ofmultaneous contrast is according to the light circle, or mixing by addition. However; the medium is pigment, and while the effects achieved in mixing the Ifght
primaries of red and blue for magenta, and blue and green for turquolse is falrly satisfactory, the mixing of red and green for yellow is quite IImlted. Therefore, yellow becomes a necessary fundamental color in the simplification of a palette for broken color. This coincides with the arrangement of the vislon circle, and is a means of lllustrating the least number of hues needed for producing a complete range of hues.

The modelling of form can be suggested through the shift of a color around the color circle. As the color moves towards orange, the effect would be one of advancing or moving into the Ilight. As the color moves towards blue, the tone recedes and moves Into shadow. Thus color can give the lllusion of form as well as an atmosphere of independent illumination.

As applled to the stage, broken color is influenced greatly by the arbitrary IIghting situations of filtered IIght with its varied changes in the appearance of the colors. A resistance to this change is experienced by the eye according to the phenomenon of color constancy.

The complexities Involved, even with simplification of a palette and methods of application, IImits to degree its use. However, broken color on stage has unlimited possibilities for those who are willing to combline the understanding of the phenomenon with an exploratory approach.
primaries of red and blue for magenta, and blue and green for turquolse is falrly satisfactory, the mixing of red and green for yellow is quite IImlted. Therefore, yellow becomes a necessary fundamental color in the simplification of a palette for broken color. This coincides with the arrangement of the vislon circle, and is a means of lllustrating the least number of hues needed for producing a complete range of hues.

The modelling of form can be suggested through the shift of a color around the color circle. As the color moves towards orange, the effect would be one of advancing or moving into the Ilight. As the color moves towards blue, the tone recedes and moves Into shadow. Thus color can give the lllusion of form as well as an atmosphere of independent illumination.

As applled to the stage, broken color is influenced greatly by the arbitrary IIghting situations of filtered IIght with its varied changes in the appearance of the colors. A resistance to this change is experienced by the eye according to the phenomenon of color constancy.

The complexities Involved, even with simplification of a palette and methods of application, IImits to degree its use. However, broken color on stage has unlimited possibilities for those who are willing to combline the understanding of the phenomenon with an exploratory approach.

[^0]: 4 Raymond Cogniat, The Impressionists, p. 25

[^1]: 9 John Rewald, The Hlatory of Impressioniom, p. 382

[^2]: 1 Lee Simonson, The Art of 8cenic Design, p. 38 2 Loc. clt.

[^3]: 3 Herbert V. Hake, Here's How, A Gulde to Economy In stagecraft, P. 87

[^4]: 8 Faber Birren, Color, Form and Space, p. 93

