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INTRODUCTION 

Purpose of Investigation 

The purpose of this investigation is the analysis of geologic 

factors associated with accumulation of petroleum in the Garfield 

Field Area, Pawnee County, Kansas. 

Physiography and Location of the Area 

The Garfield Field is located in the vicinity of Garfield, 

Pawnee County, Kansas, 11 miles southwest of the City of Larned 

and 15 miles northeast of Kinsley (Plate 1). 

The area of the field occupies 22 square miles and includes 

through 36 of Township 22 South, Range 17 West and 

sections 1 through 10 and 15 through 20 of Township 23 South, 

Range 17 West. 

The area lies in Central Kansas where the Arkansas River 

flows north in the "Great Bend", forming the Great Bend Lowland 

area of the Great Plains physiographic province (Plate I). The 

surface of the area is covered with alluvium and dune sand de- 

posited during Pleistocene and Recent times. 

The term "Great Bend Lowland" is applied to the immediate 

valley of the river. This "lowland" is not low with respect to 

the area surrounding it, but is a lowland only in the sense of 

being but little above the local base level of the Arkansas 

River* whereas streams in the surrounding area have carved deeper 

valleys (Fenneman, 1931). The river is not confined to a single 

channel but is characterized by a number of channels with 
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intervening islands, thereby producing a braided pattern indica- 

tive of an aggrading or depositing stream (Schoewe, 1949). 

The Great Bend Lowland is from 1,060 to 2,200 feet above 

sea level and has a sub-humid climate. Abundance of subsurface 

water permits extensive practice of irrigation in the area. Ag- 

riculture and the production of oil and gas are the principal in- 

dustries. 

Procedure 

An appraisal of the extent of oil and gas reserves owned by 

Hilton Drilling Company, in Garfield Field, Pawnee County, Kansas, 

was completed May 1, 1955. Isopach maps of the "cherty conglom- 

erate " (Pennsylvanian basal conglomerate), Mississippian and 

Misener sandstone net oil zones were constructed. These maps 

show total thickness of saturated zones within a formation at a 

given location. The datum were provided by Hilton Drilling Com- 

pany for study and analysis. 

Four subsurface structure maps, four isopach maps and two 

cross sections were constructed. These maps were compared with 

isopach maps of the net oil zones to determine geologic conditions 

within areas of petroleum accumulation. 

Structural maps were drawn on the Pennsylvanian basal con- 

glomerate, Mississippian limestones, Misener sandstone and Viola 

limestone. Isopach maps were constructed to determine thickness 

of the Pennsylvanian basal conglomerate, Mississippian limestones, 

Misener sandstone and combined reservoir rocks. 

Two cross sections were constructed in a relatively straight 
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line in order to avoid introduction of illusory structural fea- 

tures produced in a cross section that zigzags across an inclined 

surface. Cross section AA! is parallel with the regional dip of 

sedimentary rocks. Cross section BB! is approximately parallel 

to the axis of the Central Kansas Uplift and strike of sedimen- 

tary rocks. 

The horizontal scale used on all maps Is four inches equal 

one mile. The vertical scale on cross sections AA! and BB! is 

one inch equal 50 feet. 

Two isopach maps, adapted from. Dardenne (1956), showing 

location and accumulation of gas within the Garfield Field were 

constructed. 

For the purpose of consistency, an acetate template was used 

to plot well locations. Well locations were obtained from Herndon 

maps and Kansas State Geological Survey scout cards. 

REVIEW OF LITERATURE 

Numerous geological reports of areas in Central and Western 

Kansas were available to the writer. A report by Darton (1905) 

was one of the earliest publications describing the geology and 

underground water resources of the central great plains. Twen- 

hofel (1920) described the geology of Comanchean and Dakota for- 

mations. McClellan (1930) described the distribution of pre- 

Mississippian rocks of Kansas. One of the first published geo- 

logic reports describing the stratigraphy of Pawnee County, Kansas, 

was by Ver Wiebe (1938). Leo (1940) submitted additional contri- 

butions to the description of subsurface Mississippian rocks. 
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Taylor (1946), Ver Wiebe (1947), Keroher and Kirby (1948), Lee, 

et al (194.8), and Moore, et al (1951) contributed to the know- 

ledge of regional stratigraphy in Central Kansas. Reports by 

McLaughlin (1949) and Fishel (1952) give the results of detailed 

investigations of the geology and ground-water resources of Pawnee 

and Edwards Counties and the Pawnee Valley. Fenneman (1931) and 

Schoewe (1949) described the physiography of the area. Recent 

publications are; descriptions of the producing zones of Kansas 

by Hilpman (1958), a description of the Precambrian rocks of 

Kansas by Farquhar (1957), and a subsurface correlation of Meso- 

zoic rocks in Kansas by Merriam (1957). 

A geological report by Darton (1918) described the structure 

of the central great plains. Barwick (1928) described the Salina 

Basin. The structural history of the Central Kansas Uplift was 

described by Morgan (1932). Koester (1935) summarized previous 

investigations and made additional contributions to the geology 

of the Central Kansas Uplift. Lee (1939) showed the relationship 

of thickness of Mississippian limestones in Central Kansas to oil 

and gas deposits. Walters (1946) described the structural history 

of buried Precambrian hills in northeastern Barton County, Kansas. 

Jewett (1951) presented a detailed study of structures in Kansas: 

The structural development of the Salina Basin area by Lee (1956) 

provided additional information of the geologic history. 

Information relative to production in Garfield Field was 

obtained from Kansas Geological Survey bulletins. Garfield 

Engineering Committee reports described the Pennsylvanian basal 

conglomerate and initial fluid properties in the Garfield Field. 
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STRATIGRAPHY 

Precambrian 

The Precambrian rocks of Kansas are not exposed, but crys- 

talline rocks of this age extend everywhere beneath later forma- 

tions and are encountered by any well drilled to sufficient depth 

(Farquhar, 1957). The Precambrian rocks consist of granite and 

schists, and smaller quantities of igneous and metamorphic rocks 

such as slate, quartzite, marble and gneiss. 

The Precambrian has not been encountered in the Garfield 

Field, however the nucleus of the Central Kansas Uplift and "ribs" 

or structurally higher parts of the Central Kansas Uplift are 

underlain by granite and quartzite (Dott, 1941). 

Commercial quantities of oil are found in Precambrian arkose 

on the flanks of the Central Kansas Uplift. This is'an exception 

and it is believed that oil was derived from geologically younger 

formations and has migrated into the arkose as a result of avail- 

able pore space and structural conditions (Moore, 1940). 

Cambrian System 

Rocks of Cambrian age have not been recognized in this area. 

Cambrian sediments were probably deposited in the Garfield Field 

Area but eroded away prior to deposition of the Roubidoux forma- 

tion (Keroher and Kirby, 1948). 

Ordovician System 

Lower Ordovician. The Arbuckle group lies unconformably 
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below the Simpson group. The Arbuckle group consists of the 

Roubidoux dolomite and a basal Roubidoux sandstone in contact 

with the Precambrian surface, overlain by the Cotter and Jeffer- 

son City dolomites (Keroher and Kirby, 1948). 

Ver Wiebe (1938) described the Arbuckle group in Pawnee 

county: 

The underlying Arbuckle is a dolomitic limestone 
of pale cream to pink in color. Its coarsely crystal- 
line texture and the oresence of oolitic chert make 
identification fairly definite. 

A map showing structural contours on top of the Arbuckle 

group in Ellis, Russell, Barton, Rice and Ellsworth counties 

shows characteristics typical of karst topography. Ver Wiebe 

(1947) believes accumulation of oil in the Arbuckle group is 

related to its karst topography and not structure because high 

topographic features on the karst topography yield oil and low 

topographic features dry holes. 

A structural contour map by Shapley (1956) indicates the 

Arbuckle group does not have characteristics typical of karat 

topography in the Garfield Field Area. 

The Arbuckle is not a productive group in the Garfield 

Field, however wells in the Ryan and Pawnee Rock Fields encounter 

a thin oil zone with a thick gas cap in the Arbuckle dolomite 

(Cole and Koester, 1945). 

In general, the Arbuckle may be expected to be rather thin 

in this area due to the proximity of the Central Kansas Uplift 

to the northeast (Ver Wiebe, 1939). 

Middle Ordovician. The Simpson group lies conformably 
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below the Viola and is represented by the St. Peter sandstones 

The overlying Platteville formation is absent because of post- 

St. Peter erosion. 

The Simpson group consists of fine to medium, firmly ce- 

mented, subrounded sandstone and grades both laterally and ver- 

tically into a sandy shale and shale (Imbt, 1941). 

The Simpson group is 50 to 80 feet thick and is not a reser- 

voir for petroleum in the Garfield Field. Production from the 

Simpson group occurs in the Evers and Jay fields. The Evers and 

Jay fields are structurally up dip from the Garfield Field and 

between the Garfield Field and the Ryan and Pawnee Rock Fields 

where production is from the Arbuckle group. 

is a series of dolomites and cherty 

limestones. The thickness varies from a featheredge to 80 feet 

and probably represents only a portion of the original thickness 

because of pre-Chattanooga erosion (Ver Wiebe, 1938). 

Late Ordovician. The Maquoketa (Sylvan) shale has been 

identified overlying the Viola limestone by Imbt (1941) in the 

Zenith Field to the southeast, but has not been recognized in the 

Garfield Field. Lee (1956) suggests the Maquoketa may become in- 

distinguishable from the Viola because of increased proportions 

of carbonates in most of the western wells where Maquoketa is 

recognized. 

Silurian System 

Rocks of Silurian age have not been encountered in the area. 

Silurian and Devonian rocks either were not deposited or deposited, 
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then eroded prior to deposition of Miner sandstone (McLaughlin, 

1949) . 

Devonian System 

The Misener sandstone, a member of the Chattanooga shale, 

overlies the Viola limestone in the southeast part of Garfield 

Field. 

Lee (1956) describes the Chattanooga shale, often miscalled 

the Kinderhook shale", in Pawnee and Edwards counties: 

The rocks between the Mississippian and the Viola 
differ from the Chattanooga shale in eastern Kansas 
areas. The rocks in these counties consist of greenish- 
gray and rusty-brown shale interstratified with sandy 
shale and streaks and beds of sandstone in the upper 
part as well as at the base. No black shale and no 
spores are reported. Dolomite, locally cherty, as 
much as 45 feet thick occurs in the middle of the for- 
mation in some wells on the flank of the Central Kansas 
Uplift. 

The lithology of these rocks is so strikingly 
different from the Chattanooga farther east as to 
suggest a Mississippian basal elastic deposit rather 
than Chattanooga . . . the Central Kansas Uplift had 
already begun before Mississippian time. The forma- 
tions normally deposited . . . if they were ever 
present, were removed . . . During the hiatus it 
seems probable that the exposed surface was dissected. 
Loose debris, sand, shale, and, in protected areas, dolo- 
mite might accumulate as a Mississippian basal elastic 
. . . It is probable that these mixed elastics are a 
marginal facies of the Chattanooga or a local facies of 
the Boice shale . . . 

The sequence between Mississippian limestones and Devonian 

limestones is characterized by many breaks in the neutron curve 

of radioactive logs, indicating porosity. The Misener is the 

lowest producing formation, stratigraphically, in the Garfield 

Field. 
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The Garfield Field is the only reported field in Pawnee 

county that has Misener production (Goebel, 1957). Misener 

production is also reported stratigraphically down dip from the 

Garfield Field in Embry and Kirk Fields, Edwards County, Kansas. 

Mississippian System 

Kinderhookian Series. The Kinderhookian series is present 

in the southwestern part of the Garfield Field and is represented 

by the Gilmore City limestone. The Gilmare City limestone is a 

soft non-cherty, semigranular limestone, the lower part being 

oolitic (Lee, 1953). 

Osagian Series. The Osagian Series is represented by the 

Reeds Spring formation, which consists of pink and white, non- 

cherty granular limestone at the top and varicolored agrillace- 

ous limestone at the bottom (Lee, 1953). The Reeds Spring for- 

mation is unconformable on the underlying Kinderhookian Series 

or on older rocks. 

The Osagian Series is sometimes called "Mississippian" or 

"Mississippian lime" by drillers (Koester, 1935). 

The Keokuk and Burlington limestones were probably deposited, 

but later removed by post-Keokuk erosion and slight southerly 

tilting of the region (Moore, 1951). 

Meremacean and Chesterian Series. Rocks of Meramecian and 

Chesterian age are absent in the Garfield Field. Moore (1951) 

believes Meramecian rocks may have originally extended throughout 

Kansas and later removed by pre-Pennsylvanian erosion. 
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Pennsylvanian System 

plorrowan and Atokan Series. The Pennsylvanian basal con- 

glomerate rests on rocks of Mississippian age and represents the 

erosional remnant of rocks from the Cherokee group of the Pen- 

nsylvanian System to the Osagian Series of the Mississippian 

System. 

A Garfield Field Engineering Committee Report (1956) des- 

cribes the Pennsylvanian basal conglomerate, locally known as 

cherty conglomerate" in the Garfield Field: 

The cherty conglomerate reservoir is of early 
Pennsylvanian age and is composed primarily of detrital 
materials with interfingering sand and shale lenses. 
The detrital material in the reservoir consists mostly 
of chert with some lime. The matrix within the de- 
trital zones grades from sand to shale. The better 
productive areas in the reservoir are found where the 
matrix is composed of sand or predominantly sand. The 
reservoir exhibits a high degree of both vertical and 
horizontal fracturing throughout. 

Desmoinesian Series. Above the Pennsylvanian basal conglom- 

erate lies a shaly zone correlative with the Marmaton and pos- 

sibly the Cherokee groups (Lee, 1953).' The "shaly conglomerate" 

consists of a black shale overlying red and green shales. The 

lower part becomes increasingly cherty (Ver Wiebe, 1938). The 

"shale conglomerate" apparently provides an impermeable seal 

above the nroducing formations (Plate Box, Plate 15). 

Missourian Series. The Pleasanton group, represented by a 

thin shale, lies disconforriably on the underlying Marmaton group. 

The Lansing and Kansas City groups constitute a sequence of 

deposits divided into dominantly white crystalline limestone for- 

mations with interbedded gray to dark gray shale (MeGaha and Terry, 
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1952). The Lansing and Kansas City groups are sometimes called 

the "Oswald Lime". Because of the similarity of the two units, 

they cannot be easily distinguished as separate formations. It 

has become general practice to consider the interval as the 

Lansing-Kansas City zone. According to Lee (1956) subsurface 

correlation is further complicated by intercyclic erosion which 

has upset the orderly sequence of beds. 

A cross section by Lee (1953) indicates the Kansas City 

group consists of the Bronson subgroup, the Linn subgroup and 

Zarah subgroup, and the Lansing group consists of the Plattsburg 

and Stanton limestones in ascending order. 

The Pedee group, consisting of the Weston shale and the Iatan 

limestone member, overlies the Lansing group. The latan limestone, 

locally called the "Brown Lime", is brown in color with a very 

fine and dense texture and ranges between five and ten feet in 

thickness. 

Virgilian Series. The Douglas group includes all strata 

above the Missourian-Virgilian unconformity and below the Oread 

limestone. The Douglas group consists of fine elastic, gray and 

red shales, and fine silty and calcareous sandstones (McGaha and 

Terry, 1952). 

The Shawnee group, is a massive limestone section of white 

limestones with numerous shale horizons (McGaha and Terry, 1952). 

The Shawnee group contains the following formations in ascending 

order: Oread limestone, Kanwaka shale, Lecompton limestone, 

Tecumseh shale, Deer Creek limestone, Calhoun shale and Topeka 

limestone. The development of the uniformity of sequence and 



approximately constant thickness of Virgilian rock divisions are 

best expressed by the Shawnee and Wabaunsee groups (Moore, 1949). 

The Heebner shale, a member of the Creed limestone, is present 

throughout the area and provides an excellent lithologic marker. 

The Wabunsee group includes all strata above the Topeka 

limestone and below the Pennsylvania-Permian contact. The 

Wabaunsee group consists of calcareous gray marine shale with 

interbedded white limestone. Much of the shale is sandy and 

grades laterally into sandstone beds (Moore, 1949). The thin 

limestone beds of this zone constitute a small part of the total 

thickness but radioactive logs reveal they are generally persist- 

ent throughout the subsurface. 

Permian System 

Wolfcampian Series. The Admire group lies unconformably 

upon the Pennsylvanian and consists of an erratic sequence of 

thin impure limestones, red and gray shales and sandstones. The 

Admire group consists of the Houchin Creek limestone member, the 

Five Point limestone, the Falls City limestone, and Aspinwall 

limestone (Lee, 1953). Widespread post-Pennsylvanian erosion 

probably removed the Indian Cave sandstone. 

The Council Grove group consists of predominantly limestone 

formations with intervening shales. The shales range in color 

from red to gray or varicolored (Lee, 1953). Thickness of the 

Council Grove group averages 300 feet. 

The Chase group consists of gray dolomitic limestones with 

an occasional anhydrite streak and interbedded with numerous shale 



15 

zones. The Florence Flint and Wreford formations are easily 

identified by the abundance of chert (McGaha and Terry, 1952). 

Leonardian Series. The Sumner group consists of the Welling- 

ton formation, a predominantly gray shale associated with the 

Hutchinson salt member: The Ninnescah shale, a rod shale con- 

taining impure limestone, and the Stone Corral dolomite, a vari- 

able sequence of evaporites and shales with locally interbedded 

dolomite (Lee, 1953). This is one of the most readily recognized 

"key beds" in the Kansas red bed section (Moore, 1951). 

The Nipewalla group conformably overlies the Sumner group. 

The Nipewalla group consists of siltatones and very fine grained 

sandstones, with minor quantities of silty shale and gypsum. The 

predominant color is red. Formations present are the Harper sand- 

stone, Salt Plain formation, Cedar Hills sandstone, Flowerpot 

shale, and Blaine formation. In well cuttings only the Blaine 

formations and Cedar Hills sandstone can be distinguished in the 

sequence of red silty shale and rod sandstone that make up most 

of the Leonardian Series (Lee, 1953). 

Guadalupian Series. The Quartermaster group consists of the 

lower part of the Whitehorse sandstone, a red and gray mottled 

sandstone, siltstone and silty shale, with an approximate thick- 

ness of 175 feet. The Day Creek dolomite and Tolga formation are 

missing. 

Triassic and Jurassic Systems 

Triassic and Jurassic rocks are absent in the Garfield 

Field. During these periods of geologic time the area was being 



uplifted and eroded. 

Cretaceous System 
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Commanchean Series. The Cheyenne sandstone unconformably 

overlies the Whitehorse sandstone. The Cheyenne sandstone is a 

fine to medium-grained sandstone containing gray and gray-green 

shale and some siltstone (Fishel, 1952). Thickness of the for- 

mation averages 25 feet. The Cheyenne sandstone was deposited 

from exposed Permian rocks that were reworked by wave action of 

an eastwardly advancing sea (Lee, 1956). 

The Kiowa shale overlies the Cheyenne sandstone and is a 

thinly laminated, dark calcareous shale, containing thin beds of 

sandstone, shell fragments and pyrite. A hard layer 

limestone is encountered in the middle of the formation (Latta, 

1948). Deposition of Kiowa shale represents a rapid change from 

non-marine to marine conditions as the sea advanced (Moore, 1951). 

Gulfian Series. The Dakota formation is of continental 

origin and consists of buff, yellow brown, and brown sandstone, 

varicolored and sandy clay, shale and some lignite and charcoal. 

Iron minerals such as limonite, silerite and pyrite occur in 

minor amounts (Lee, 1953). 

The Graneros shale is a dark gray to black fissle shale 

(McLaughlin, 1949). 

The Greenhorn limestone consists of alternating beds of 

gray calcareous shale and thin limestones. The lower limestone 

beds are crystalline. The upper beds are chalky and not readily 

separated lithologically from the overlying Carlile shale (Lee, 
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1956). The top of the Greenhorn limestone is marked by the Fence- 

post limestone, a prominent bed of relatively hard chalky lime- 

stone (McLaughlin, 1949). 

The Carlile shale conformably overlies the Greenhorn lime- 

stone and comprises the Fairport chalky shale below and Blue Hills 

shale above. The Fairport chalky shale member is a gray shale 

with thin limestone stringers. The Blue Hills shale member is a 

non-calcareous gray shale. 

The Codell sandstone zone at the top of the Blue Hills shale 

member is a gray to brown, fine grained, silty and calcareous sand- 

stone (Lee, 1954). 

Tertiary Period 

Pliocene Series. The Ogallala formation consists of sand, 

silt and gravel containinp! caliche (Fishel, 1952). 

Quaternary System 

Pleistocene Series. The Meade formation consists predominant- 

ly of coarse sand and gravel containing beds of fine sand, silt 

and clay. In places, the sand and gravel is cemented with calcium 

carbonate, forming hard ledges known as "mortar beds", but the 

beds are generally poorly cemented (McLaughlin, 1949). The Meade 

is the most important water bearing formation in the area. 

In the immediate vicinity of Garfield, the Meade formation 

consists of the Grand Island overlain by the Sappa member. 

Overlying the Meade formation are terrace deposits of Wis- 

consin age. These deposits consist of light tan to brown clay 
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and silt containing some caliche interbedded with fine to coarse 

sand and some gravel (McLaughlin, 1949). 

Pleistocene and Recent Series. Overlying the Wisconsin de- 

posits are the Peoria silt member and dune sand. Alluvium deposits 

of the Arkansas valley consist of sand gravel, silt and clay. 

Thickness of the alluvium is irregular because of deposition in 

channels cut into Cretaceous, Tertiary, and Pleistocene sediments.. 

Recent Series. The Garfield Field Area is overlain by dune 

sand, consisting of uniform-grained, well rounded fragments of 

quartz and some silt and clay. 

The dune sands consist of two phases: (1) the eolian or 

wind-blown phase during the time the dune is being built up, and 

(2) an eluvial or inactive phase where vegetation has prevented 

further weathering (Smith, 1940). 

Thickness of the dune sand is variable and ranges from 0 to 

50 feet. Dune sands are above the water table and yield no water 

(McLaughlin, 1949). 

GEOLOGIC HISTORY 

Precambrian History 

Little is known about Precambrian geological history. Pre- 

cambrian rocks are not exposed in Kansas, however wells have en- 

countered Precambrian in about 75 percent of the Kansas counties 

at depths from 588 feet above sea level to 5,500 feet below sea 

level (Farquhar, 1957). 

Enumerating the vertical movements experienced by a small 
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area in northeastern Barton county, Walters (1946) refers to the 

Precambrian surface as "a peneplain eroded across a varied terrane 

of igneous and metamorphic rocks". 

It is believed that intrusion by granitic igneous rocks 

caused metamorphism of the gneiss, schists and quartzites (Walters, 

1946). 

A long period of erosion resulted in an extensive peneplaned 

area during late Precambrian. Areas of resistant quartzite were 

left as low residual monadnocks rising above the average ground 

surface. 

Paleozoic Era 

During the Waucoban and Albertan epochs the Garfield Field 

Area was relatively high and erosion continued. A gradual in- 

undation of the area surrounding Garfield Field began during St. 

Croixan until the area was covered by a wide shallow sea. The 

surrounding area remained submerged until early Ordovician. The 

Regan (Lamotte) sand of upper Cambrian age is found in eastern 

Pawnee county but is not present in the Garfield Field Area 

(Shapley, 1956). The Garfield Field Area may have been a topo- 

graphic high during early St. Croixan time, similar to the buried 

Precambrian hills in northeastern Barton county described by 

Walters (1946). The relatively thin section of Roubidoux under- 

lain by Precambrian rocks support this assumption (Keroher and 

Kirby, 1948). The Central Kansas Uplift was not a structural 

feature (Lee, 1956). 

During lower Ordovician the Garfield area was buried by 
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transgressing seas, depositing the Roubidoux formation and the 

Jefferson City-Cotter dolomite sequence. The seas retreated from 

the Central Kansas area during the post-Beekmantown crustal move- 

ment. At this time the region was tilted along a line parallel 

to the northern margin of Kansas. The Jefferson City and Cotter 

dolomites and part of the Roubidoux deposits were eroded away. 

At this time the area comprising the North Kansas Basin be- 

gan a long period of differential subsidence. The Ozark Dome 

region of Missouri rose and the Chautauqua Arch and Central Kan- 

sas Uplift began their upward movement. 

Encroaching seas from the south deposited beds equivalent 

to the upper part of the Simpson of Oklahoma on an Arbuckle sur- 

face of only minor topographic relief. 

The Platteville formation was probably deposited but removed 

by post -Platteville erosion, due to the fact outliers of residual 

Viola beds occur on the Central Kansas Uplift (Taylor, 1947). 

Muddy upper Ordovician seas left shale deposits south of 

the Garfield Field Area. The Sylvan (Maquoketa) shale does not 

appear in the Garfield Field Area. 

After deposition of Viola limestone the area was positive 

and rising. The area was either too high to receive sediments 

between Viola and late Devonian or the formations were deposited, 

raised and eroded. 

Low arching of the Central Kansas Uplift had begun by late 

Devonian (Lee, 1956). During this erosional period, exposed for- 

mations were weathered. Loose debris accumulated as a Mississip- 

pian basal elastic. 
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Deposition of Siluro-Devonian (Hunton) strata may have cov- 

ered the Garfield area, but were removed by Hunton, Pre-Kinderhook 

erosion. 

The Misener sandstone member of the Chattanooga shale occurs 

in the southwestern part of the Garfield area. Taylor (1946) 

stated: 

. . . . because of the thinness, fine grained 
texture, irregular distribution and superposition on 
various formations, above which is a black or gray 
shale, a long pre-chattanooga erosion interval during 
which near-by land was near base level occurred. 

Beginning in late Devonian, extensive pre-Mississippian 

erosion truncated the Silurian and Devonian. 

The Compton limestone and Sedalia dolomite were probably 

deposited but later removed by pre-Gilmore City deformation and 

erosion along the Nemaha Ridge and Central Kansas Uplift. 

The Gilmore City limestone is found northeast and southwest 

of the Central Kansas Uplift in the Kansas subsurface. Lee (1940) 

suggested the Gilmore City limestone may have been deposited in 

an erosional basin because they are thick where they overlie the 

Chattanooga shale and thin where they overlie the Sedalia dolo- 

mite or Compton limestone. This Kinderhookian basin centered in 

Iowa and extended in a northeast-southwest direction across Kansas 

and Nebraska. 

During the early part of Osagian, movements along the trend 

of the Nemaha anticline and slight elevation of the Central Kansas 

Uplift restricted the distribution of the Reeds Spring formation 

and St. Joe limestone to southeastern Kansas. Regional tilting 

toward the south during Osage time, created a south trending 
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drainage. Kansas was the north part of an erosional basin in 

Oklahoma by the end of Osagian. 

Rocks representing the Spergen and St. Louis limestones have 

been identified east of the Nemaha Ridge. Lee (1940) believes 

Meramecian rocks could have been deposited across the Central 

Kansas Uplift and subsequently eroded during pre-Pennsylvanian 

base leveling. 

The peneplaned surface that resulted from erosion of warped 

and folded Mississippian rocks was subjected to renewed folding 

before Pennsylvanian seas reached Kansas. The folding followed 

the same pattern as folding at the end of Mississippian time 

(Lee, 1956). 

Cherokee sediments are found west of the Garfield Area. A 

portion of the Pennsylvanian basal conglomerate may be Cherokee. 

As the seas continued to advance, the Marmaton was deposited 

upon the eroded surface. The Marmaton sequence represents a pro- 

gression from non-marine to marine deposition associated with 

oscillating seas (Moore, 1949). Upper Marmaton formations were 

removed by pre-Mississippian erosion. 

Rocks of the Pleasanton group are missing in this area. 

During early Missourian time, Pleasanton deposits were formed 

from a encroaching sea from the west or southwest. The Garfield 

Field Area was probably an open sea where little deposition oc- 

curred.. The Central Kansas Uplift continued to develop and in 

Hertha time a considerable part of its area was land (Lee, 1948). 

The Kansas City and Lansing groups were deposited in sequence 

above the Pleasanton group with only cyclical interruption. 
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Absence of the Weston shale of the Pedee group represents an 

probable recession of the seas prior to deposition of the Iatan 

limestone. 

The hiatus that separated Missourian and Virgillian rocks 

was accompanied by low regional warping and regional subsidence 

toward the southeast (Lee, 1956). Seas advanced prior to dep- 

osition of the Virgilian Series. Arching of the Central Kansas 

Uplift had nearly ceased (Lee, 1948). 

Uniformity of sequence and thickness of Virgilian rocks are 

well developed. Alternation of limestones and shale in vertical 

succession are a result of cyclic sedimentation. 

Younger formations above the Dover limestone are probably 

absent (Lee, 1953).. Narrow folding and some faulting again oc- 

curred during late Pennsylvanian and early Permian. 

In Permian time a succession of seas covered Central Kansas 

and extended south and westward into Oklahoma, Texas and New 

Mexico (Taft, 1946). 

The Wolfcampian sequence of Permian System represents cyclic 

sedimentation and is similar to upper Pennsylvanian rocks. The 

Permian sea in Kansas was cut off from the south by Permian moun- 

tains in present southern Oklahoma and Texas panhandle (Taft, 1946). 

Deposition of anhydrite, gypsum and salt beds occurred. The Hut- 

chinson salt member of the Wellington shale formation is probably 

a result of restriction of marine circulation and an arid climate. 

A small advance of the sea or a short period of free circulation 

resulted in deposition of the Stone Corral dolomite (Hills, 1942). 

During deposition of the Salt Plain formation the land was probably 



low, covered with a brackish sea. 

The Cedar Hills sandstone is believed to be the northern 

extension of Duncan and Chickasha sands and shales of Oklahoma. 

The Wichita and Ouachita ranges were being uplifted (Hills, 1942). 

During lower Blaine rapidly advancing seas occurred. In late 

Permian there was general emergence that produced shallow basins 

and broad mud flats where red beds were deposited. 

Mesozoic Era 

A major unconformity marks the base of Cretaceous rocks. 

During Triassic and Juriassic periods a broad syncline developed 

in southwestern Kansas and the area was raised above the surface 

1948). 

The Cheyenne sandstone was deposited on eroded pre-Cretaceous 

rocks by an oscillating sea approaching from the south. The 

Cheyenne sandstone is believed to be either shallow sea or stream 

deposition. As the sea advanced, a marine environment developed, 

and deposition of Kiowa shale occurred. According to Twenhofel 

(1920), the Cheyenne and Kiowa were deposited during one general 

transgression of the sea, and the Dakota merely represents a halt 

in that advance rather than a complete retreat of the sea. 

Following deposition of the Dakota formation, marine dep- 

osition of shale and limestone comprising, the Gulfian series 

occurred. Part of the Niobrara formation and Pierre shale were 

probably deposited. Post-Dakota deformation tilted the syncline 

in Western Kansas toward the north and shifted the lowest part 

of the structural basin toward the east. During this time 
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Cretaceous deposits lying above the Blue Hill shale were probably 

eroded away. Merriam (1957) believes deposition of Blue Hill 

shale occurred at a time of shallow water and probably far from 

highlands because of absence of coarse elastic particles. 

Cenozoic Era 

A considerable time interval elapsed from the end of Blue 

Hill deposition until deposition of the upper Tertiary Ogallala 

formation. 

At the close of pre-Ogallala time, a widespread erosion sur- 

face extended from the Rocky Mountain front to Central Kansas. 

Smith (1940) described the Ogallala as a warped and dissected 

piedmont alluvial plain deposit. According to Smith (1940), the 

Ogallala should not be regarded as a fan deposit because its 

thickness increases away from the mountain front. Deposition of 

the Ogallala formation began with the change from stream degrada- 

tion to stream aggradation. 

The Pleistocene history has been complicated by a series of 

drainage changes that have resulted in abandoned and filled val- 

leys of several ages (Frye, 1951). During Pleistocene through 

flowing streams from the Rocky Mountain area migrated northeast- 

ward, depositing gravel, sand and silt over Cretaceous bedrock. 

Some of the material may also be Pleistocene terrace deposits. 

Existing surface features are the result of late Pleistocene 

and Recent deposition of alluvium and dune sand. 
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STRUCTURE 

Major Pre-Mississippian Regional Structures 

Ellis Arch. The Ellis Arch, (Fig. 1), considered to have 

been a part of the ancestral Barton Arch, was named by Moore and 

Jewett (1942) as being "southwest of the North Kansas Basin, in 

the region now defined as belonging to the Central Kansas Uplift". 

The Ellis Arch was called the Ancestral Kansas Uplift by Lee, et 

al. (1948). 

During pre-Mississippian time the Ellis Arch extended east- 

ward from Kansas to the Ozark dome as the Chautauqua Arch. This 

structure comprised part of the transcontinental arch of the cen- 

tral stable region that extended into Kansas and Missouri. These 

two pre-Mississippian structures separated the North Kansas Basin 

from the Southwest Kansas Basin. Local folds that developed were 

parallel with the major axis of the pro -Mississippian Ellis Arch 

trend which cut obliquely across the core of the post-Mississippian 

Central Kansas Uplift (Eardley, 1951). 

North Kansas Basin. The North Kansas Basin, formed by post - 

St. Peter, pre-Mississippian subsidence of the Southeast Nebraska 

Arch, is north of the Chautauqua Arch and north and east of the 

Ellis Arch (Fig. 1). Before development of the Nemaha Uplift and 

other post-Mississippian major structural elements, the basin was 

regarded as one of the major structures that shaped the framework 

of Kansas (Jewett, 1951). The basin was named by Rich (1933). 

Southwest Kansas Basin. The Southwest Kansas Basin, (Fig. 1) 

designated by Moore and Jewett (1942), was separated from the 
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North Kansas Basin by the Ellis-Chautauqua Arch (Jewett, 1951). 

Chautauqua Arch. Barwick (1928) described the Chautauqua 

Arch (Fig. 1) as . . . "a name for the pre-Mississippian exten- 

sion of the Ozark Uplift along the Kansas -Oklahoma line". 

Minor Pre-Mississippian Regional Structures 

Russo]. Rib. The Russel Rib (Fig. 1) is a structural "high" 

reflected in pre-Ordovician and Ordovician rocks, as well as 

being a topographic monadnock (Koester, 1935). Moore and Jewett 

(1942) regarded the Russel Rib as part of the Ellis Arch. The 

Russel Rib extends from southwestern ellsworth county, across 

southern Russel county, thence northwestward across part of 

western Ellis county into Rooks county 1951). 

Rush Rib. The Rush Rib is a term first used by Koester 

(1935) for a structural "high" reflected in Ordovician and older 

rocks trending northwest-southeast through parts of Graham, Trego, 

Ellis, Rush, Barton and Stafford counties (Jewett, 1951). The 

Rush Rib, (Fig. 1) as outlined by structure contour maps of the 

Precambrian surface, is probably a horst structure with both sides 

upfaulted parallel to the axis of the Central Kansas Uplift 

(Farquhar, 1957). 

Pawnee Rib. Koester (1935) described the Pawnee Rib (Fig. 

1) 

. . . the broad area in Pawnee County in which 
the 'siliceous lime' underlies the Pennsylvanian 
represents a third rib running approximates parallel 
with the other two. 

Jewett (1951) states the Pawnee Rib may be regarded as part 

of the Ellis Arch. 
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Major Post-Mississippian Regional Structures 

Central Kansas Uplift. The Central Kansas Uplift is a 

northwest-southeast trending structure superimposed at an ob- 

lique angle over the axis of the Ellis Arch (Eardly, 1951). The 

Central Kansas Uplift is the dominant structural feature of Central 

Kansas and separates the Salina Basin on the east from the Hugoton 

Enbayment on the west (Fig. 2). Before formation of the Cherokee 

Basin the uplift continued to the southeast and connected with 

the axis of the Chautauqua Arch. 

Originally called the Russel Arch by Denison (1926) and 

changed to Barton Arch by Barwick (1928), the name "Central 

Kansas Uplift" was first published by Morgan (1932) and Koester 

(1935) and is generally recognized as the accepted terminology 

at present (Jewett, 1951)v 

The Central Kansas Uplift contrasts strongly with the Nemaha 

Ridge in relief and symmetry. The Central Kansas Uplift is sym- 

metrical and has gentle sloping sides, whereas the Nemaha Ridge 

has a very steep eastern front and gentle west slope. The Central 

Kansas Uplift originated in Precambrian time as a series of paral- 

lel batholiths and persisted as a positive element throughout 

much of Paleozoic time (Koester, 1935). The present structure 

has been developed by several periods of warping and truncation, 

but has not lost its anticlinal character (Lee, 1953). 

Hugoton Embayment. The Hugoton Embayment is a northern 

shelflike extension of the Anadarko basin of Oklahoma (Fig. 2). 

The eastern edge of the structure is bounded by the Pratt 
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Anticline, the Central Kansas Uplift and the Cambridge Arch. 

The western limit is formed by the Las Animas Arch. The Hugoton 

Embayment plunges gently to the south and the sedimentary rocks 

thicken in a southerly direction. The embayment is developed mainly 

in Paleozoic rocks and is not expressed in Mesozoic and Tertiary 

beds (Merriam and Goebel, 1956). The Hugoton Embayment is noted 

primarily for its production of gas. 

Salina Basin. The Salina Basin, originally named by Barwick 

in 1928, occupies an area in north Central Kansas (Fig. 2). This 

basin is bounded on the east by the Nemaha Anticline, the west 

side by the Cambridge Arch, the southwest flank by the Central 

Kansas Uplift and on the south, by the saddle between the Chau- 

tauqua Arch and the Central Kansas Uplift. The axis of the basin 

trends northwest-southeast, digressing north toward the deeper 

part of the basin in Central Nebraska. The sediments decrease in 

thickness near the proximity of surrounding structures. 

Nemaha Anticline. The Nemaha Anticline trends south approxi- 

mately ]4 degrees west from Cass County, Nebraska, through Nemaha 

County to Sumner County, Kansas, and south into Oklahoma to the 

vicinity of Oklahoma City (Fig. 2). This narrow anticline sepa- 

rates the Forest City and Cherokee Basins on the east from the 

Salina and Sedgwick Basins on the west. 

The Precambrian core, or the granite ridge of the anticline, 

comes within about 400 feet of the surface near the Kansas- 

Nebraska line and plunges south. Near the Oklahoma- Kansas line 

it is about 4,000 feet below the surface. The Nemaha Anticline 

has a very steep eastern front and gentle back slope with 3,600 
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feet of relief (Eardly, 1951). 

Sedgwick Basin. The Sedgwick Basin, named by Moore and 

Jewett (1942), is a northern shelflike extension of the Anadarko 

Basin in south Central Kansas (Fig. 2). This roughly symmetrical 

basin is bounded on the east by the Nemaha Ridge and on the west 

by the Central Kansas Uplift and the Pratt Anticline. The northern 

end is indistinct and no uparched area separates it from the Salina 

Basin. The Sedgwick Basin plunges southward and the strata in- 

crease in thickness from the shelf area into the deeper part of 

the Anadarko Basin (Merriam and Goebel, 1956). 

Minor Post-Mississippian Regional Structures 

Bazine Anticline. The Bazine Anticline (Fig. 2) is an 

northeastward trending anticlinal fold, discernible in surface 

Cretaceous rocks, and situated in Ford, Hodgeman and Ness coun- 

ties (Jewett, 1951). 

Pratt Anticline, The Pratt Anticline is a large broad, 

southward-plunging nose that separates the Sedgwick Basin on the 

east from the Hugoton Embayment on the west (Fig. 2). Farther 

south in Oklahoma the Pratt Anticline dies out and the Sedgwick 

Basin and Hugoton Embayment apparently are not separated by this 

fold on the northeast flank of the Anadarko Basin (Merriam and 

Goebel, 1956). 

Areal Structure of Pawnee County, Kansas 

The Garfield Field is situated on the southwestern flank 

of the Central Kansas Uplift in Pawnee County, Kansas. Structural 
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maps of Pawnee County, Kansas, by Shapley (1956) indicate a 

southwest dip of 45 to 50 feet per mile for the Arbuckle Group, 

20 to 25 feet per mile dip for Mississippian sediments, and 10 

to 12 feet per mile dip for the Lansing Group. The dip of pre- 

Permian rocks increase near the proximity of the Central Kansas 

Uplift. The Central Kansas Uplift is obscured by a uniform cover 

of north and west dipping Permian and Cretaceous rocks. 

Structure within the Garfield Field Area 

The Garfield Field Area structure map, Plate 4, contoured 

on the top of the Pennsylvanian basal conglomerate shows a com- 

paratively large structural nose plunging southwest 20 to 25 

feet to the mile from the major structural feature of the area, 

the Central Kansas Uplift. The structure is interrupted by very 

gentle folds and local terraces. The surface on which contours 

are drawn is an unconformity representing a post-Mississippian, 

pre-Deamoinesian erosion interval. 

Cross section AA' (Plate Box, Plate 15), drawn parallel to 

regional dip and the structural nose shows progressive "pinching 

out" of pre-Desmoinesian, post-Cambrian sedimentary formations. 

Cross section BB' (Plate Box, Plate 15), drawn parallel to re- 

gional strike of sedimentary rocks, shows the configuration of 

the structural nose. 

The structural nose is flanked by steeply dipping strata to 

the west'and south and structural "highs" to the north and east. 

A structural "low" northeast of the nose has apparently 

provided a trap for migration of petroleum. Combined thicknesses 
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of the Pennsylvanian basal conglomerate, Mississippian limestones 

and Misener sandstone are similar to thicknesses over the struc- 

tural nose, however Mississippian sedimentary rocks are locally 

absent and the Misener sandstone only 10 feet thick within the 

structurally "low" area. The Pennsylvanian basal conglomerate 

is abnormally thick within the basin area. 

Plates 16, 6, and 9 are structure maps contoured on top of 

Viola, Misener, and Mississippian sedimentary rocks and show a 

series of parallel contour lines trending northeast-southwest 

through the N- sec. 17, T. 23 S., R. 17 W., and S* sec. 8, 

T. 23 Sop R. 17 W. A possibility of faulting is apparent, how- 

ever representatives of Colorado Oil and Gas, Sunray and Phillips 

Petroleum Company believe no faulting has occurred within the 

Garfield Area. 

A detailed reflection seismograph survey, conducted by Geo- 

physical Consultants, Incorporated of Delaware, Tulsa, Oklahoma, 

was completed September 2, 1953. The purpose of the survey was 

to determine if such a fault scarp or "bluff" could be located 

and defined by analysis of seismic records obtained in the area. 

The survey consisted of a line of shot points between dry holes 

located in NW* NW* NW* sec. 16, T. 23 S., R. 17 W., and SW* SW* 

NE* sec. 17, T. 23 S., R. 17 W. and continued west across an 

abandoned producer in SE* SE* NW* sec. 17, T. 23 S., R. 17 W. 

All efforts to find a sharp dip or break in the Viola proved 

unsuccessful. The area is adjacent to the Arkansas River, and 

the surface is covered by a thick layer of loose sand and gravel 

at various depths below the top of the ground. Such surface and 
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shot hole conditions were not conducive to the production of 

good seismic records. 

Plates 7 and 8 show how pre-Pennsylvanian sedimentary rocks 

"pinch out" in the northeast Garfield Area. 

HISTORY OF DRILLING AND PRODUCTION 

The Garfield Field was one of four pools discovered in 

Pawnee County, Kansas, during 1947. The discovery well was 

drilled on the Hutchinson farm in the SEi SE* NW4 sec. 17, T. 

23 S., R. 17 W., by Gabbert and Lindas Drilling Company. The 

well, first thought to be a gas producer, was logged having an 

initial daily capacity of 101 barrels of oil. This single well 

comprised the Garfield Field until abandoned in early 1953 (Ver 

Wiebe, 1953). Figures 3 and 4 denote drilling activity and pro- 

duction from 1947 to 1957. Most interest for prospecting for oil 

was in the northeast part of Pawnee County between 1947 and 1953. 

The Garfield Field was revived upon completion of the Hut- 

chinson Estate "B" number 2 well in the SW SW sec. 17, T. 

23 S., R. 17 W., by Hilton Drilling Company, October 28, 1953. 

The well produced from Misener (Kinderhookian) sand of Mississip- 

pian age through perforations at a depth of 4,285 to 4,291 feet 

for a potential of 25 barrels of fluid a day (25 percent water). 

Subsequent development has proved the Pennsylvanian basal con- 

glomerate and Mississippian "chat" also to be oil reservoirs (De 

Golyer and Mac Naughton, 1955). 

An increase in exploration for oil in the Garfield Area dur- 

ing 1954 led to the discovery of three oil pools; Garfield 
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Northeast, sec. 3, T. 23 S., R. 17 W. (Mississippian production), 

Garfield Southwest, sec. 30, T. 23 S., R. 17 W., (Mississippian 

and Misener production), and the Jab field, sec. 35, T. 23 S., 

R. 17 W., (Pennsylvanian basal conglomerate production). Thirty- 

six extension oil wells, one dry hole and one old well worked over 

and completed as an oil well were added to the Garfield Field dur- 

ing 1954 (Ver Wiebe, 1954) 

An increase of about 57 percent of the total oil production 

in Pawnee County, Kansas, was almost entirely due to a successful 

development program in Garfield Field during 1955. 

New fields discovered in Garfield Field Area during 1955 

were; Garfield West, sec. 3, T. 23 S., R. 18 W., and Jab East, 

sec. 1, T. 23 S., R. 17 W. Three fields, Jab, Jab East and 

Garfield Northeast were declared to be producing; from a common 

reservoir with Garfield and by action of the Nomenclature Commit- 

tee wore combined with that field during 1955. One hundred twenty- 

seven oil wells, three gas wells and 13 dry holes were completed 

in Garfield Field during 1955 (Ver Wiebe, 1955). 

During 1956, 62 new oil wells, two gas wells, one reworked 

well, and 12 dry holes were drilled within the Garfield Field. 

Annual oil production increased nearly one million barrels dur- 

ing 1956 (Goebel, at al, 1956). 

Garfield Southwest and Garfield West were abandoned during 

1957, reflecting a sharp decrease in drilling activity. Oil 

production declined about seven percent and gas production 27 

percent during 1957 (Goebel, at al, 1957). 

Presently, 265 oil wells are producing in the Garfield Field. 
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DRILLING, CASING AND COMPLETION METHODS 

Drilling, casing and completion methods used in Garfield 

Field are described in a Garfield Field Engineering Committee 

Report (1957) as follows: 

All wells drilled in the field to date have 
been drilled with rotary rigs. The generally used 
casing program consists of setting 8 5/8" surface 
pipe at approximately 2251 and cementing to surface, 
and the oil string is usually set through the intended 
completion interval and cemented with approximately 
150-175 sacks. There have been isolated cases where 
pipe was set on top of the completion interval and 
an open hole completion made. 

In cases where open hole logs are run, the 
practice has been to run a salt mud survey or just 
a gamma ray-neutron survey. It is necessary to run 
one of the two above desCribed surveys due to the 
salt content of the muds. 

Usually, after the long string is set, the 
rotary rig is moved off and a cable tool unit is 
moved on to do completion work. The completion is 
then made by perforating and treating. Treatments 
consist of a small mud acid cleanup treatment and 
then if necessary a formation fracture treatment 
usually of the sand-gelled crude oil variety is 
used. 

RESERVOIR AND INITIAL FLUID CHARACTERISTICS 

A study to determine and recommend methods to be used to 

obtain maximum oil recovery from the Garfield Field reservoir 

was completed in 1957 by members of the Garfield Field Engineer- 

ing Committee. Each operator of wells in Garfield Field submitted 

information (electric and radioactive logs, drill stem test re- 

sults, core analysis, bottom hole pressures and completion data) 

on wells of his field to the engineering committee. The follow- 

ing data was obtained from this report: 
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Average porosity, 1E1.16 percent. Interstitial 
water, 43.4o percent. The formation permeability 
determined from core analysis ranges from 640 milli- 
darcys (obtained in a clean chert section) to no 
permeability in the poorer productive areas. The 
average bottom hole temperature was 125 degrees 
Fahrenheit. 

In the reservoir there are facies changes both 
laterally and vertically. There have been instances 
observed where within short distances laterally, the 
lithology of the formation 'changes from conglomerate 
with clean sand matrix to a very shaly chert or even 
pure shale. Changes of this type have in some cases 
been rather abrupt, sometimes occurring between off- 
setting wells 660' apart. 

The reservoir drive is gas cap and solution gas 
drive. There is a possibility of some water drive 
acting from the west end of the field but it is not 
believed to be very strong. 

An increase in temperature with increased depth below 

the earths' surface is a result of heat conduction from the 

earths' core to the surrounding atmosphere. It is said to 

average one degree Fahrenheit for each 60 feet of depth (Uren, 

1953). Assuming an average surface temperature of 60 degrees 

Fahrenheit, an average bottom hole temperature of 125 degrees 

Fahrenheit is slightly lower than expected considering the 

total depth of most wells in Garfield Field is 4,250 to 4,350 

feet. The geothermal gradient may be modified by chemical ac- 

tion, earth stresses resulting from diastrophism, proximity of 

intrusive rock masses or circulating ground water, and expansion 

of gasses. Studies of temperature gradient in a number of oil 

fields have indicated rates of temperature increase with depth 

ranging from one degree Fahrenheit for each 30 feet of depth to 

one degree Fahrenheit for each 70 feet (Uren, 1953). 

Figure 5 is a fluid property curve taken by Big Chief 
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Drilling Company on J. A. Shoemake number one lease, NEC sec. 

19, T. 23 S., R. 17 W., and shows how viscosity increases as 

pressure decreases at a given temperature. 

Samples from two cores obtained from Godfrey "A" well 

number four, NE* NE* SEi sec. 7, T. 23 S., R. 17 W., were analyzed 

by Houston Core Laboratory for Phillips Petroleum Company August 

23, 1955. 

Procedure used in the core analysis was described by Houston 

Core Laboratory as follows: 

Samples number one through number nine and number 46 
through number 58 were analyzed or merely described in 
the conventional manner. Samples number 10 through number 
5 were conglomerate; therefore whole core porosities were 

run on the samples. The following method was used: 

The cores were thoroughly dried at 105 degrees 
Centigrade over night. They were then weighed. The 
samples were then placed in a vessel and a vacuum of 
one millimeter of mercury or better was maintained on 
them for several hours. The vessel was filled with 
kerosene while still under vacuum. When the vessel 
was filled with kerosene the pressure was run up to 

3,500 psi and held over night. The samples were 
weighed again to determine the amount of kerosene 
forced into the pore space. The per cent porosity 
was then calculated from the pore space and bulk 
volume which was determined by mercury displacement. 

Content of a letter from Nr. J. G. Firstenberger, Phillips 

Petroleum Company, Wichita, Kansas, dated May 26, 1959, proceed- 

ing a request for clarification of data describing gas content 

is as follows: 

We received an answer from our core laboratory 
in Houston today explaining the gas figures on the 
core analysis of the No. 4 Godfrey "A". Their ex- 
planation of these figures was made by describing 
how they obtained the data. 

The samples were shipped to the core laboratory 
in sealed tin cans. They pierced the cans with an 
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ice pick and withdrew samples of gas from the cans 
with a hypodermic needle and syringe. They passed 
the gas across the element of a platinum wire (hot 
wire) gas detector. 

Since the ignition temperatures for the various 
compounds in the hydrocarbon chain vary, they are 
able to ignite the gas at different temperatures by 
varying the temperature of the element, and thus 
they can determine approximately the comparative 
amounts of the different compounds by the imbalance 
of the Wheatstone bridge as it is recorded by the 
ammeter. In this way they will determine two things: 
first, the presence or absence of any combustible gas 
in the sample container, and second, a very rough and 
limited analysis of the gas that is present. 

Tabulated core data for the Godfrey "A" well number four 

is illustrated in Table 1. 

Samples number one through number three, taken from "shaley 

conglomerate", show lower permeability, slightly less porosity, 

and higher water content than producing formations. Low perme- 

ability and porosity of the "shaley conglomerate" provide a res- 

ervoir cap. 

Samples number L8 through number 60 indicate greater perme- 

ability parallel to bedding planes. Water salinity within produc- 

ing zones ranges from 93,000 to 143,600 parts per million parts 

water. This is comparatively high considering present-day sea 

water averages about 35,000 parts per million of dissolved salt 

(Uren, 1953). 

An exact oil-water contact could not be determined from 

Kansas State Geological Survey scout cards, however it probably 

lies between -2,168 and -2,194 feet (subsealevel). Wells en- 

countering an oil-water contact were in western and southwestern 

Garfield Field. Oil-water contacts were not reported for wells 

in northeastern Garfield Field. 



Table 1. Tabulated core data of the Godfrey "A" well #4, NE* NE* SE*, sec. 7, T. 23 S., 
R. 17 W., Garfield Field, Pawnee County, Kansas (Courtesy Phillips Petroleum 
Company). 

Sample . Depth : Permeability in Porosity 
number : millidarcys per cent 

: Hor. Vert. . 

Residual Fluids : Salinity 
oil % water ppmp 

Chlorine 

"shaley conglomerate" 
Red shale, slightly sandy. 
1 4:199 1.1 .5 12 
2 4:200 1.0- 1.7 12 
3 4,201 .7 .7 

"cherty conglomerate" 
Chert -white, weathered, leached, tripolitic, crumbly, fractured, vuggy, bleeding gas 
and oil at fractures and vugs. 
10 4:226 9 
11 4:227 16.5 
12 4:228 20.9 
13 4:229 21.5 
14 4:230 13.7 
15 4:231 22.0 
16 4,232 18.3 
17 4:233 6.9 
18 4,234 20.4 
19 4.235 20.6 
20 4,236 13.5 
21 4,237 16.8 
22 4:238 14.9 
23 4:239 14.2 
24 4:240 24.9 
2 );:241 1.1 
26 6 4242 18.7 
27 4:243 19.1 
28 4:P101 11.1 Same as above with shale partings. 
29 4,245 21.1 
30 4,246 13.9 



Table 1. (cont.). 

Sample : Depth : Permeability in 
number : millidarcys 

Hor. Vert, 

Porosity : Residual Fluids : Salinity 
: per cent : oil water : PPmP 

: Chlorine 

Show of oil and gas becomes poor. Chert-w 
well fractured, vuggy, red shale matrix. 
31 4i214.7 
32 4,248 
33 4,249 
34 4,25o 
35 4,251 
36 4,252 
37 4,253 
38 
9 

4=254 
3 42 
40 4,256 

55 

41 
42 4,258 
43 4,259 
44 4,260 
45 40261 

kite, weathered, leached, tripolitic, crumbly, 
Slight gas odor. 
17.2 
16.8 
16.0 
160 
18.3 
17.8 
13.6 
16.2 
34.2 
16.9 
17.4 
15.9 
15.4 
16. 
16.4 

Shale - red, conglomeratic with lime and c hert fragments. 
46 4,262 

Sa8 nd - hard, 
4426 
firm, shalt', gray, stain and flOuresence in sand. 48 64 15.0 11.0 

49 4,269 23 16 150 14.0 
5o 4,270 9 12 15.0 13.0 
51 4,271 13 7 17«0 11.0 
52 4,272 14 8 18.0 10.0 
53 4.273 12 8 18.0 12.0 

54 4,274 12 5 18.0 7.0 
55 4,275 4 5 18.0 8.0 
56 4,276 25 12 18.0 8.0 

21,0 
23.0 
38.0 
38.0 
44.0 
43.0 
55.0 
53.0 
54.0 

143.600 
137,300 
110,500 
101,300 
103,20o 
99,300 
103,200 
95,000 
94,.200 



Table 1. concl.). 

Sample 
number 

Depth : Permeability in : Porosity 
millidarcys per cent 
Hor. Vert. : 

Residual Fluids 
: % oil % water 

: Salinity 
: ppmp 
: Chlorine 

57 4,277 32 8 17.0 10.0 38.o 108,800 
58 4,278 17 23.0 9.0 43.0 93,000 
59 4,279 255 

136 

18.0 9.0 39.0 114,200 
6o 4,280 17.0 8.o 56.o 103,800 

Gas Content 
: Methane : Propane : Butane 

48 
49 
5o 

51 
55 
5h 

28 
59 
64 

37 
6 
62 

51 l 25 28 
52 42 39 
53 5o 47 bo 
54 42 18 19 
55 34 
56 58 638 2 
57 30 33 43 
58 46 54 
59 88 98 
60 40 36 41 
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Variance of oil-water contact depths within Garfield Field 

is probably due to variable reservoir rock porosities and perme- 

abilities. Water may also appear at higher levels in some wells 

than in others because of facies changes, minor fracturing, ir- 

regular rates of production, leaking well casing, edge-water en- 

croachment and water coning (Levorsen, 1956). 

Four major gas caps occur in Garfield Field. Nomenclature 

and subsealevel gas-oil contact of each gas cap are: Northeast 

gas cap (-2,080), Northwest gas cap (-2,090), Central gas cap 

(-2,110) and, Southwest gas cap (-20134). Plates 2 and 3 are 

adapted from gas cap isopach maps by Dardenne (1956). 

RELATIONSHIP OF PETROLEUM AND GAS ACCUMULATION TO STRUCTURE 
AND STRATIGRAPHY 

Gas Accumulation 

Plates 1 and 2, adapted from Dardenne (1956), and 3 show 

relationships between gas accumulation and Pennsylvanian basal 

conglomerate structure and thickness. 

The southwest gas cap, having a -2,134 foot gas-oil contact, 

is located in sections 16 and 17, T. 23 S., R. 17 W. The South- 

west gas cap is situated on a structural "high" over the south- 

east extremity of a large southwest plunging anticlinal "fold". 

Pennsylvanian basal conglomerate thickness is 20 to 40 feet. 

A -2,134 foot structural contour constructed above the anti- 

clinal nose would close, however a -2,135 foot structural contour 

will not. Evidently the local "high" is completely gas filled. 

Additional gas coming out of solution under present hydrostatic 
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pressure would probably migrate up dip. 

The Central gas cap, sections 4, 5, 8, and 9, T. 23 S., 

R. 17 W., is situated on a south plunging anticlinal fold and 

bounded east, west and south by structures lower than -2,110 

feet (gas-oil contact elevation). Plates 2 and 3, adapted from 

Dardenne (1956), indicate that the Northeast gas cap, having a 

-2,080 foot gas-cil contact, and Central gas cap, having a -2,110 

foot gas-oil contact, overlap. The overlapping gas caps suggest 

either two levels of gas accumulation separated by a zone of im- 

permeability or occurrence of a tilted gas-oil contact, however 

clarifying information was not obtained. If the gas-oil contact 

is tilted, this fact may suggest an unclosed gas reservoir. 

Inadequate control immediately east of 

Garfield Field prohibit showing actual relationship of the 

structural altitude of sediment rocks to gas accumulation, how- 

ever presence of a structural "low" on the Pennsylvanian basal 

conglomerate structure contour map in northeast Garfield Field 

has apparently permitted gas to migrate farther up dip. Pennsyl- 

vanian basal conglomerate thickness is less than 10 feet where 

accumulation of gas is greatest. Some gas production is from 

Mississippian "chat" and Misener sandstone. 

Presence of greatest gas accumulation in the northeast 

corner of Garfield Field may be an indication of lower perme- 

ability near the proximity of "pinching out" of reservoir rocks. 

Reservoir rocks may loose their effective permeability in an up 

dip direction as the result of finer rock texture, decrease in 

rock thickness, partial or complete filling of pore spaces and 



decrease in porosity. 

The Northwest gas cap, situated on a small structural ter- 

race in sec. 35, T. 22 S., R. 17 W. has a gas-oil contact at 

-2,090 feet. Plate 3 shows only five feet of gas accumulation. 

Cross sections AA/ and BB/ show how gas accumulation is 

apparently governed by reservoir rock structure and configura- 

tion and presence of an impermeable shale conglomerate above. 

Small anticlinal "highs" occur on Pennsylvanian basal conglomer- 

ate structure over local flexures and a structural nose. Gas 

accumulation may also occur up dip near reservoir rock termination. 

Petroleum Accumulation 

Plates 5, 6, and plate 7, adapted from De Golyer and Mao 

Naughton (1955), show relationships between structure, thickness, 

and petroleum accumulation of the Misener sandstone. Plate 16, 

contoured on top of the Viola limestone shows the underlying 

structural attitude of this rock unit in Garfield Field. Cross 

sections AA' and BB/ show how structural features on the Viola 

limestone are reflected in overlying producing formations. 

Plates 5, 6, and 7, show 10 feet of petroleum accumulation 

on a small plunging nose in the S10 sec. 5, T. 23 S., R. 17 W. 

between -2,180 and -2,130 feet. Misener thickness varies from 

30 to 50 feet. 

Plates 5, 6, and 7, indicate 30 feet of petroleum accumula- 

tion on a saddle between two structural "highs" in the SI,a SW-1 SE.: 

sec. 8, T. 23 S., R. 17 W., between -2,170 and -2,200 feet. "Lows" 

northwest and southeast of this saddle apparently limit petroleum 
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accumulation. Misener thickness is 30 to 40 feet. 

The WI WI sec. 16, T. 23 S., R. 17 W., has 10 feet of petro- 

leum accumulation on a local terrace flanked by steeply dipping 

strata. Elevation of accumulation is between -2,190 and -2,200 

feet. Misener thickness is 30 feet. 

Ten feet of petroleum accumulation in the SE1 SEI SE* see, 

18, T. 23 S., R. 17 W. occurs on the southern extremity of a 

large structural nose between -2,200 and -2,220 feet, Misener 

thickness is 30 to 50 feet. 

An anticlinal "high" in the E sec. 7, T. 23 S., R. 17 W., 

does not show petroleum accumulation on Plate 7. Favorable con- 

ditions for oil accumulation are indicated on Plates 5 and 6. 

Plate 7, adapted and Mac Naughton (1955), was con- 

structed prior to completion of wells in sec. 7. 

Ten feet of petroleum accumulation in the W WI sec. 9, T. 

23 S., R. 17 W., appears anamalous. Plates 5 and 6 show 30 feet 

of Misener sandstone on a "low", bounded north and west by steeply 

dipping strata and a fairly level monocline to the east. Petro- 

leum accumulation is between -2,200 and -2,220 feet. This "low" 

appears to be a topographical "low" duo to pre-Mississippian 

erosion. Plate 16 shows a local monocline or decrease in rate 

of dip of Viola limestone. This particular "low" does not appear 

to be as abrupt or deep as neighboring "lows" of the area. 

Petroleum accumulation in Misener sandstone is on a south- 

dipping structural nose. Greater petroleum accumulations occur 

between -2,170 and -2,230 feet on local structural "highs" and 

terraces relative to regional dip and where Misener thickness is 
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between 30 and 50 feet. The Misener sandstone represents a sub- 

aerial surface of erosion. Petroleum accumulation in Misener 

sandstone probably occurs where zones of solution porosity serve 

as reservoirs. Radio-activity logs indicate a porosity decrease 

in the lower part of the Misener sandstone. Apparently post- 

Misener, pre-Mississippian weathering and ground water circulation 

were accompanied by cementation and recrystallization, thereby re- 

ducing effective porosity. Presence of some shale would also tend 

to decrease porosity. 

Plates 8, 9, and Plate 10, adapted from De Golyer and Mac 

Naughton (1955), show relationships between structure, thickness 

and petroleum accumulation in Mississippian sedimentary rocks. 

Twenty feet of petroleum accumulation in the S1 sec. 3, 

T. 23 S., R. 17 W. occurs in 20 feet of Mississippian sedimentary 

rocks on the flank of a structural "high". Petroleum accumulation 

is between -2,150 and -2,080 feet. 

Twenty feet of petroleum accumulation occurs on the flank of 

steeply dipping Mississippian sedimentary rocks in the W Wi'f sec. 

3, T. 23 S., R. 17 W. Thickness of Mississippian rocks is 20 

feet. Petroleum accumulation occurs between -2,130 and -2,150 

feet Mississippian sedimentary rocks are underlain by Viola 

limestones in section 3 and appear to be entirely oil saturated. 

Twenty feet of petroleum accumulation occurs in eastern and 

southwestern portions of sec. 4, T. 23 S., R. 17 W., on a small 

monocline. Petroleum accumulation occurs between -2,130 and 

-2,150 feet. 

Twenty feet of petroleum accumulation occurs in the NW* SW 
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Sa sec. 5, T. 23 S., R. 17 W., at the base of a structural nose. 

Mississippian thickness is 30 to 50 feet. 

Thirty feet of Mississippian petroleum accumulation in the 

center of sec. 9, T. 23 S., R. 17 W., is on the flank of struc- 

tural nose. Petroleum accumulation is between -2,150 and -2,190 

feet. Mississippian sedimentary rocks are absent in the Si sec. 

9, T. 23 S., R. 17 W. 

A structural "high" in the 4 sec. 16, T. 23 S. R. 17 W., 

has 40 feet of petroleum accumulation between -2,]40 and -2,170 

feet. Mississippian thickness is 40 to 50 feet. An area slightly 

northeast is structurally higher and 60 to 70 feet thick. Petro- 

leum accumulation is not indicated to be as prolific as over ad- 

jacent structural "highs". Producing wells in this area were 

apparently drilled after Plate 10, adapted from De Golyer and 

Mac Naughton (1955), was constructed. 

Areas in the north central part and SDI= SE?,- SEA, sec. 18, T. 

23 S., R. 17 W. have 10 feet of petroleum accumulation in Missis- 

sippian sedimentary rocks. These areas are on a southwest dipping 

anticlinal "nose". Thickness of Mississippian rocks varies from 

50 to 90 feet. 

Petroleum accumulation in Mississippian sedimentary rocks 

is between -2,180 and -2,090 feet. Plate 10, adapted from De 

Golyer and Mac Naughton (1955), show Mississippian petroleum 

accumulation over the entire southwest dipping nose, however local 

petroleum accumulations are apparently not controlled by struc- 

tural "highs". Lithologic characteristics of Mississippian sedi- 

mentary rocks and Pennsylvanian basal conglomerate are probably 
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similar, especially in northeastern Garfield Field. Radio- 

activity logs show little or no porosity change between Pennsyl- 

vanian basal conglomerate and Mississippian rocks of individual 

wells. Petroleum accumulation is apparently controlled by lat- 

eral and vertical facies changes. Post-Mississippian, pre- 

Pennsylvanian erosion and ground-water circulation, accompanied 

by cementation, probably account for irregular distribution of 

permeability within the reservoir rock. 

Thickness of Mississippian rocks within the producing reser- 

voir are 20 to 110 feet. Locally, the entire Mississippian sec- 

tion appears to be saturated with oil. Apparently intercommuni- 

cation occurs between the sedimentary reservoir rocks. Wherever 

petroleum accumulation occurs in Misener sandstone, petroleum 

accumulation occurs also in overlying Mississippian strata. 

Plates 4, 11, and Plate 12, adapted from De Golyer and Mac 

Naughton (1955)s show relationships between structure, thickness, 

and petroleum accumulation in Pennsylvanian basal conglomerate. 

Thirty feet of petroleum accumulation occurs in sec. 7, 9, 

and 16, T. 23 S., R. 17 W., on local highs above a large south- 

west plunging structural "nose". Pennsylvanian basal conglomerate 

thickness varies from 30 to 40 feet, indicating the entire Pen- 

nsylvanian basal conglomerate is locally saturated. Plate 12, 

adapted from De Golyer and Mac Naughton (1955), and Plate 4, in- 

dicate some oil accumulation in the Pennsylvanian basal conglom- 

erate in all places where it overlies a large structural nose. 

Better productive areas in the reservoir are found where the 

sedimentary rock matrix is predominantly sand. Vertical and 
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horizontal fracturing within the Pennsylvanian basal conglomer- 

ate may have been due to removal of overburden by erosion in the 

zone of weathering. Upper parts of Pennsylvanian basal conglom- 

erate expanded, developing joints and fractures, as sediments 

were removed by erosion. 

As intercommunication probably exists between producing 

formations of the Garfield Field, Plates 4, 13, and ]4 were 

constructed showing relationships between structure, thickness 

and petroleum accumulation of combined reservoir rocks of Garfield 

Field. 

Greatest petroleum accumulations (40 to 60 feet) occur in 

sections 7, 8, 9, 15, 16, and 17, T. 23 S., R. 17 W. on local 

anticlinal highs" and terraces of a anticlinal 

"nose ", between -2,110 and -2,130 feet. Reservoir thickness of 

areas having greatest petroleum accumulation varies from 70 to 

150 feet, indicating petroleum accumulation in Garfield Field 

is related to porosity, permeability, and structure rather than 

thickness only. 

Termination of petroleum accumulation appears to be along a 

line parallel to the 90 foot isopachous line north of Garfield 

Field. The reservoir rock probably loses its effective permea- 

bility near the proximity of the "pinch out" as the result of 

finer texture, decrease in thickness and partial or complete 

filling of pore spaces. 

FUTURE POSSIBILITIES 

Future possibilities for discovery of additional petroleum 
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reserves in the Garfield Field Area are limited, however a few 

new wells may be discovered along.margins of proven areas. 

Figure 6 shows locations of dry wells drilled in the Garfield 

Field area which delimit areas of petroleum accumulation. 

Garfield Engineering Committee Members have decided against 

the use of water flooding as a means of secondary recovery (per- 

sonnel communication, Mr. Eugene Hilton). To satisfy require- 

ments for a successful water-flood operation, the following con- 

ditions would have to be fulfilled: (1) an adequate source of 

water, (2) possibility of achieving cooperation or a unitization 

agreement among various operators and lessors in Garfield Field, 

(3) the reservoir must contain substantial amounts of recoverable 

oil and be amenable to water flooding, and (4) income resulting 

from expected oil recovery must be sufficient to yield a satis- 

factory profit after cost of development and expense of operation 

(Kepplinger and Wanenmacher, 1954). 

Conditions such as: (1) non-uniformity of permeability, (2) 

presence of natural crevices and fractures, (3) vugular type por- 

osity, and (4) repeated fracture treatments of many of the wells, 

would probably prohibit satisfactory results from water flood- 

ing in Garfield Field. Gas-caps may also make flooding difficult, 

because water could pass through the gas sands more readily than 

oil sands. 

Pressure restoration, pressure maintenance or gas drive 

would probably be a better means of secondary recovery. Levorsen 

(1956) states: 

Interstitial water may occupy from a few percent 
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up to 50 percent, but generally between 10 and 30 
percent, of the pore space . . . A gas drive has 
generally been found to be more effective in a 
reservoir with a high interstitial water saturation, 
whereas a water flood is more effective in a reser- 
voir with a high oil saturation and a low water 
saturation. 

A detailed study of information including production records, 

well logs, radio-active and electric logs, and core data would be 

required before justification of the use of any means of secondary 

recovery. 

CONCLUSIONS 

Petroleum accumulation in'the Garfield Field Area is associ- 

ated with the following structural and stratigraphic features: 

(1) a large anticlinal "nose" plunging southwest from the major 

structural feature of the area, the Central Kansas Uplift, (2) 

truncation of Misener and Mississippian formations in the north- 

east Garfield Field Area, (3) presence of an impermeable seal 

above all producing formations, (4) lateral changes in effective 

porosity and permeability, (5) local structural "highs" and terraces 

superimposed on a structural nose, (6) permeable bedding and un- 

conformity planes, (7) anticlinal "highs" north and east of Gar- 

field Field, and (8) a porosity "pinch out" northeast of Garfield 

Field. 

Gas accumulation may be found in Garfield Field in folds 

which are associated with structural closure at the surface of 

a disconformity, where the irregular Pennsylvanian basal conglom- 

erate erosional surface is overlain by impervious "shalt'" conglom- 

erate. 



58 

ACKNOWLEDGMENTS 

It is with a feeling of sincere appreciation that the 

writer acknowledges his indebtedness to Dr. Claude W. Shenkel, 

Jr., Professor of Geology and Geography, who has given freely 

of his time in providing valuable information and directing 

this study. The writer also wishes to express his appreciation 

to the staff of the Department of Geology and Geography for their 

help and consideration. 

The writer also acknowledges with sincere appreciation the 

valuable information which was so willingly given by the follow- 

ing: Hilton Drilling, Inc., Colorado Oil and Gas Corporation, 

Phillips Petroleum Company, Sunray Mid-Continent Oil Company, 

Herndon Map Service, and the State Geological Survey of Kansas. 



59 

REFERENCES 

Anonymous 
Stratigraphic traps renew interest in western Kansas. The 
Oil and Gas Jour., Vol. 40, No. 10, 19L1, pp. 18-19. 

Bartram, J. G., W. C. Imbt, and E. F. Shea 
Oil and Gas in Arbuckle and Ellinburger formations. Amer. 
Assoc. Petr. Geol. Bull., Vol. 34, 1950, pp. 682-700. 

Barwick, J. S. 

The Salina Basin of north-central Kansas. Amer. Assoc. 
Petr. Geol. Bull., Vol. 12, 1928, pp. 177-199. 

Bass, N. W. 
Geologic investigations in western Kansas with special 
reference to oil and gas possibilities. State Geol. Sur- 
vey of Kansas, Bull. 11, 1926, 95 pp. 

Cole, Virgil B. and E. A. Koester 
Developments in north Mid-Continent in 19J1!. Amer. Assoc. 
Petr. Geol. Bull., Vol. 29, 1945, pp. 706. 

Clair, J. R. 
Preliminary notes on lithologic criteria for identification 
and subdivision of the Mississippian rocks in western Kan- 
sas. World Oil, Vol. 129, No. 8, 1949, pp. 61-62, 64, 66. 

Darton, N. H. 

Preliminary report on the geology and underground water 
resources of the central Great Plains. U. S. Geol. Survey 
Proff. Paper 32, 1905, 229 pp. 

The structure of parts of the central Great Plains. U. S. 
Geol. Survey, Bull. 691, 1918, pp. 1-26. 

Dardenne, C. R. 

(Adapted) Central and Southwest Gas Cap Isopachons, Gar- 
field Field, Pawnee County, Kansas, 1956. 

(Adapted) Northeast and Northwest Gas Cap Isopachons, Gar- 
field Field, Pawnee County, Kansas, 1956. 

De Golyer and Mac Naughton 
Report on oil and gas reserves of certain properties owned 
by Hilton Drilling Company, Inc. in the Garfield Field, 
Pawnee County, Kansas, as of May 1, 1955, Unpublished re- 
port, Dallas, Texas, 1955, 11 pp. 



Denison, A. R. 
Discussion of early Pennsylvanian sediments west of the 
Nemaha granite ridge, Kansas. Amer. Assoc. Petr. Geol. 
Bull., Vol. 10, No. 6, 1926, p. 636. 

Dott$ R. H. 
Regional stratigraphy of Mid-Continent. Amer. Assoc. 
Petr. Geol. Bull., Vol. 25, No. 9, 1941, pp. 1619-1705. 

Eardley A. J. 

Structural geology of North America. New York: Harper 
Brothers, 1951, 624 pp. 

Edson, F. C. 

Pre-Mississippian sediments in central Kansas. Amer. 
Assoc. Petr. Geol. Bull., Vol. 13, No. 5, 1929, pp. 111!1- 

458. 

Farquhar, 0. C. 

The Precambrian rocks of Kansas. State Geol. Survey of 
Kansas, Bull. 127, 1957, 122 pp. 

(Abstract) Precambrian surface of Kansas. Geol. Soc. 
Amer. Bull., Vol. 67, p. 1994. 

60 

Fenneman, N. M. 

Physiography of western United States. New York: McGraw- 
Hill Book Co., Inc., 1931. 534 PP. 

Fent, 0. S. 
Pleistocene drainage history of central Kansas. Kans. 
Acad. Sci., Trans., Vol. 53, No. 1, 1950, pp. 81-90. 

Fishel, V. C. 

Ground water resources of Kansas. Kans. Acad. Sci., 
Trans., Vol. 50, No. 2, 1947, pp. 105-114. 

Ground water resources of Pawnee Valley, Kansas. State 
Geol. Survey of Kansas, Bull. 94, 1952, 144 PP. 

Folger, Anthony 
Development of the oil and gas resources of Kansas in 
1928 and 1929. Kansas Geol. Survey, Min. Res. Ciro. 2, 
1933, 105 pp. 

Frye, J. C., and Leonard, A. B. 

Pleistocene geology of Kansas. State Geol. Survey of 
Kansas, Bull. 99, 1951, 230 pp. 



61 

Garfield Field Engineering Committee 
Revised Garfield Field Engineering Committee Report, 
Unpublished report, Wichita, Kansas, 1957, 9 PP. 

Geil, D. D. 

Structure and stratigraphy of Stafford County, Kansas 
related to petroleum accumulation, Unpublished Master's 
Thesis, Kansas State College, 1957, 250 pp. 

Geophysical Consultants, Inc., of Delaware 
Seismic survey report, Pawnee County, Kansas, for Westpan 
Hydrocarbon Co., Amarillo, Texas, Oklahoma, 1953, 4 pp. 

Goebel, E. D., at al. 
Oil and Gas Developments in Kansas during 1955. State 
Geol. Survey of Kansas, Bull. 128, 1956, 250 pp. 

Oil and Gas Developments in Kansas 
Geol. Survey of Kansas, Bull. 128, 

Oil and Gas Developments in Kansas 
Geol. Survey of Kansas, Bull. 133, 

during 1956. State 
1957, 250 pp. 

during 1957. State 
1958, 264 PP. 

Hills, John Moore 
Rhythm of Permian seas, a paleogeographic study. Amer. 
Assoc. Petr. Bull., Vol. 26, No. 2, 1942, pp. 217-255. 

Hilpman, P. L. 

Producing zones of Kansas oil and gas fields. State Geol. 
Survey of Kansas, Oil and Gas Inves., No. 16, 1958, 9 pp. 

Imbt, William C. 
Zenith pool, Stafford County, Kansas, an example of 
stratigraphie trap accumulation, in Levorsen, A. I., ed., 
Stratigraphic type oil fields. Amer. Assoc. Petr. Bull., 
1941, pp. 139-165. 

Jewett, J. M. 

Geologic structures in Kansas. State Geol. Survey of 
Kansas, Bull. 90, Pt. 6, 1951, pp. 105-172. 

Keplinger, C. H., and J. M. Wanenmacher 
Evaluating the water flood possibilities of a lease. 
World Oil. Vol. 139, No. 5, 19540 pp. 220-224. 

Keroher, R. P., and Kirby, J. J. 
Upper Cambrian and Lower Ordovician rocks in Kansas. 
State Geol. Survey of Kansas, Bull. 72, 1948, 1/111 pp. 



62 

Keroher, R. P., and Landes, K. K. 
Geology and oil and gas resources of Rush County (Kansas). 
State Geol. Survey of Kansas, Min. Res. Circ. 4, 1938, 
31 pp. 

Koester, Edward A. 
Geology of Central Kansas Uplift. Amer. Assoc. Petr. Bull., 
Vol. 19, No. 10, 1935, PP. 1405-1426. 

Kornfield, J. A. 

Peace Creek Field (Kansas), a stratigraphic trap. World 
Petroleum, Vol. 14, No. 13, 1943, PP. 38-47. 

Landes, K. K. 
Mineral resources of Kansas counties. State Geol. Survey 
of Kansas, Min. Res. Circ. 6, 1937, 110 pp. 

Latta, BY F. 

Geology and ground-water resources of Kiowa County, Kansas. 
State Geol. Survey of Kansas, Bull. 65, 1948, 151 pp. 

Lee, Wallace 
Relation of thickness of Mississippian limestones in central 
and eastern Kansas to oil and as deposits. State Geol. 
Survey of Kansas, Bull. 74, 1939, 155 pp. 

Subsurface Mississippian rocks of Kansas. State Geol. 
Survey of Kansas, Bull. 33, 1940, 114 pp. 

Subsurface geologic cross section from Meade County to 
Smith County, Kansas. State Geol. Survey of Kansas, Oil 
and Gas Inves., No. 9, 1953, 23 PP. 

Thickness maps as criteria of regional structural movement. 
State Geol. Survey of Kansas, Bull. 109, Pt. 5, 1954, 80 PP. 

Stratigraphy and structural development of 
Area. State Geol. Survey of Kansas, Bull. 

Lee, Wallace, Constance Leatherock, and Theodore 
The stratigraphy and structural development 
Basin. State Geol. Survey of Kansas, Bull. 

the Salina Basin 
121, 1956, 167 pp. 

Bottinelly. 
of the Salina 
74, 1948, 155 PP- 

Lee, Wallace, and D. F. Merriam 
Preliminary study of the structure of western Kansas. 
State Geol. Survey of Kansas, Oil and Gas Inves., No. 11, 
1954, 23 PP. 



63 

Levorsen, A. I. 
Geology of Petroleum. San Francisco: W. H. Freeman and Co., 
1956, 703 pp. 

McClellan, Hugh W. 
Subsurface distribution of pre-Mississippian rocks of 
Kansas and Oklahoma. Amer. Assoc. Petr. Geol. Bull., Vol. 
14# No. 12, 1930# pp. 1535-1556. 

MoGaha S. W., and J. M. Terry 
Lane-Wells correlation study: central Kansas area. Lane 
Wells Companyi 1952, 3 pp. 

McLaughlin, T. G. 
Geology and ground water resources of Pawnee and Edwards 
Counties,:Kansas. State Geol. Survey of Kansas, Bull. 80, 

1949, 189 pp. 

Merriam, D. F. 
Kansas structural provinces Offer varied types of traps. 
The Oil and Gas Journal, Vol. 54, No. 52, 1956, pp. 141-154. 

Subsurface correlation and stratigraphic relation of rocks 
of Mesozoic age in Kansas. State Geol. Survey of Kansas, 
Oil and Gas Inves., No. 14, 1957, 25 pp. 

Merriam, D. F., and E. D. Goebel 
Kansas structural provinces offer varied types of 
The Oil and Gas Jour., Vol. 54, No. 52, 1956, pp. 

Moore, R. C. 

Stratigraphy of Kansas. The Oil and Gas Journal, 
No. 7, 1940, pp. 73-74, 90-91. 

traps. 
141-154. 

Vol. 39, 

Divisions cf the Pennsylvanian system in Kansas. State 
Geol. Survey of Kansas, Bull. 83, 1949, 203 pp. 

Moore, R. C., and J. M. Jewett 
Oil and Gas Fields of Kansas, Mines Mag., Vol. 32, 1942, 
pp. 481-488. 

Moore, R. C., et al. 
The Kansas rock column. State Geol. Survey of Kansas, 
Bull. 89, 1951, 128 pp. 

Morgan, L. C. 
Central Kansas Uplift. Amer. Assoc. Petr. Geol. Bull., 
Vol. 16, No. 5, 1932, pp. 483-484. 



Plummer, N. V., and J. F. Romary 
Stratigraphy of the pre-Greenhorn Cretaceous beds of 
Kansas. State Geol. Survey of Kansas, Bull. 41, Pt. 9, 
1942, pp. 313-348. 

Rich, J. L. 

Distribution of oil pools in Kansas in relation to pre- 
Mississippian structure and areal Geology. Amer. Assoc. 
Petr. Geol. Bull., Vol. 17, 1933, pp. 793-815. 

Roth, R. I. 

Regional extent of Marmaton and Cherokee mid-continent 
Pennsylvanian formations. Amer. Assoc. Petr. Geol. Bull. 
Vol. 14, No. 10, 1930, pp. 1249-1278. 

Schoewe, W. A. 
The geography of Kansas. Kans. Acad. Sci., Trans. Vol. 52, 
1949, pp. 261-333. 

Shapley, R. A. 
Subsurface structure and stratigraphy related to petroleum 
accumulation in Pawnee County, Kansas, Unpublished Master's 
Thesis, Kansas State College, 1956, 50 pp. 

Smith, H. T. U. 
Geologic studies in southwestern Kansas. State Geol. Survey 
of Kansas, Bull. 34, 1940, 212 pp. 

Taft, Robert 
Kansas and the nations salt. Kans. Acad. Sci.* Trans. 
Vol. 49, Yo. 3, 1946, pp. 223-272. 

Taylor, M. H., Jr. 
Siluro-Devonian strata in central Kansas. Amer. Assoc. 
Petr. Geol. Bull., Vol. 30, 1946, pp. 1221-1245. 

Middle Ordovician limestones in central Kansas. Amer. 
Assoc. Petrol. Geol. Bull., Vol. 31, No. 7, 1947, pp. 12112- 
1282. 

Twenhofel, W. H. 

(Abstract) The Cretaceous sediments of Kansas. Geol. Soc. 
Amer., Bull., Vol. 31, No. 1, 1920, pp. 135-136. 

Uren, L. C. 

Petroleum Production Engineering. New York: McGraw -Hill 
Book Co., Inc., 1953, 807 PP. 

Ver Wiebe, W. A. 
Oil and gas resources of western Kansas. Kansas Geol. 
Survey Min. Resources Circ, 10, 1938, 179 pp. 



(Abstract) Karst topography in the Kansas subsurface. 
Geol. Soc. Amer., Bull., Vol. 58, No. 12, Pt. 2, 1947, 
p. 1236. 

Oil and gas developments in Kansas during 1947 State 
Geol. Survey of Kansas, Bull. 75, 1948, 230 PP. 

Oil and gas developments in Kansas during 1948. State 
Geol. Survey of Kansas, Bull. 78, 1949, 186 pp. 

Oil and gas developments in Kansas during 1949. State 
Geol. Survey of Kansas, Bull. 87, 1950, 176 PP. 

Oil and gas developments in Kansas during 1950. State 
Geol, Survey of Kansas, Bull. 92, 1951, 187 pp. 

65 

Oil and gas developments in Kansas during 1951. State Geol. 
Survey of Kansas, Bull. 97, 1952, 188 pp. 

Oil and gas developments in Kansas during 1952. State Geol. 
Survey of Kansas, Bull. 103, 1953, 201 pp. 

Oil and gas developments, in Kansas 
Survey of Kansas, Bull. 107, 1954, 

Oil and gas developments in Kansas 
Survey of Kansas, Bull. 122, 1955, 

Walters* Robert F. 
Buried Precambrian hills in northeast Barton County,.Kansas. 
Amer. Assoc. Petrol. Geol. Bull., Vol. 30, No. 5, 1946, 
pp. 660-710. 

during 1953. State Geol. 
203 pp. 

during 1954. 
215 pp. 

State Geol. 



66 



.1111 
A' 
I 

B 

\ Bs 

R. 18 W. 

i 0 1 mi. 
11116...a 
SCLLE 

A 

=1, .1.1! 

R. 17 W. 

111, 

Garfield Field 

?Avr:Et, CD. 

R. 16 W. 

Fic. 7. Map of Garfield Field Are, showinc points used for 
construction of cro:ls sections. 

41 

T. 

22 

S. 

T. 

23 

S. 



.. 

, W 

. 
A : 

I 

r 

. 

. 
a 

. 

. 

1 

a 

4 

. 

a 

. 

. 
. .. , ,.. ' 

1 

. . 

: 

5 

e 

. 

. 
. 

I 

, 
s . 

c I I 
. 

4 , 

I i 
t's 

I 

- 
, - a - - --.- _ ......_. _ __.. -- '- PAYTEE 

..... -.a.. 
C:. 

a 

0 

R. 10 

1 

SCALE 
I 

R. 17 w. R. 16 . 

T. 

r-1G0 

S. 

23 

S. 

Fi. F. 141 - of the G rfield F.4..Td Are-, 711.c-In- loc-tl.ms of 
control u2od fcr frn!1:1 7trlIctur-1 contourr, on 
the rennc ylir nim con-:lomeroto. 



 

R. 18 W. 

0 lmi. 

SCALE 

R. 17 W. 

1111 
AW177E CO. 

R. 16 W. 

44 

T. 

22 

S. 

T. 

23 

S. 

FiT. 9. Mo of the Grrficld Field AreP, chovin loc-tions of 
control nointr used for drawin,_. structur 1 contours cn 

Kisnissi71.1-11 lietones. 



1 
R. 18 W. 

0 1 mi. 

SC' Lam: 

Fi-. 10. 

R. 17 W. 

' 

R. 16 1.'7. 

T. 

S. 

L:7.r of the C'irtrfield Field Arer-, shoyinn lottions of 
contrcl mints u3eC, for dr7v.in structur1 ccnteurr, cn 

the ::ironer sruadstonc. 



 

. 

, 11 

. 

: 

0. 
:, 

. . 
.. 

. 

. 
. 

. 
. 

. 

4.0 

. 
. 

: .. 

. 

. 
. 

.. 

0 

. 

. 
. t 

I 

4 

. 
. 

ot 

....- 

6 

WYEE CC I ._... 

Fi 

R. 18 W. 

0 1 mi. 

SCAT ;: 

R. 17 W. R. 16 ". 

T. 

T. 

Map of the Garfield Field firer, sho',yin7 Toc-tr.--hF1 of 
control noints used for dr- .;;. structural contours on 
the Viola limestones. 



, 

F. 1C W. 

0 1 mi. "Liia 
SCALE 

N 

1 

R. 17 W. 

PAWJEE CQ 

R. 16 W. 

7* 

T. 

22 

S. 

T. 

S. 

Ff. 12. of the Garfield Field Ares, shcwin- 'cc-tions 
cf control points used for drawing the Celitral rand 

Southwot gas cap isonachcus man. 



V 

I. 

IL 

f. 

0 

. . 

4 . . 
1 

. 

. 

. 

. . 

. 
. 

. I 

. 

a I, 

. 

4 8 

. , 
a 

. 

. 

. 

a 

lo 

0 

I 

z 

- _ ...... ......- - ... ... 

1ThAr:EZ CD. 
....... 

R. 1C W. 

0 1 :21. 

SCAI 

R. 17 W. R. 16 W. 

Fir. 13. Y.r.7, of the Garfield Field Area, showin;^ locrtione of 

control points used for drnwinL- the Northenrt 
Northwest ors cr.() isopachous mar. 

73 

2 

































GEOLOGIC FACTORS OF THE GARFIELD FIELD AREA, 
PAWNEE COUNTY, KANSAS, IN RELATION TO PETROLEUM ACCUMULATIO 

by 

RONALD EUGENE MYERS 

B. S., Kansas State University 
of Agriculture and Applied Science, 1955 

AN ABSTRACT OF A THESIS 

submitted in partial fulfillment of the 

requirements for the degree 

MASTER OF SCIENCE 

Department of Geology 

KANSAS STATE UNIVERSITY 
OF AGRICULTURE AND APPLIED SCIENCE 

1959 



2 

This study is an analysis of geologic factors associated 

with accumulation of petroleum in the Garfield Field Area, 

Pawnee County, Kansas. Garfield Field occupies an area of 

approximately 22 square miles in the vicinity of Garfield, Paw- 

nee County, Kansas, 11 miles southwest of the City of Larned and 

15 miles northeast of Kinsley. Garfield Field lies within the 

Great Bend Lowland area of the Great Plains physiographic prov- 

ince, 

Four subsurface structure maps, four isopach maps and two 

cross sections were constructed. These maps were compared with 

isopach maps of the net oil zones of Pennsylvanian basal conglom- 

erate, Mississippian limestones and Misener sandstones and isopach 

maps of gas accumulation to determine geologic conditions within 

areas of petroleum accumulation. 

The discovery well of the Garfield Field Area was drilled 

in 1947. This single well comprised Garfield Field until aban- 

doned in early 1953. Garfield Field was revived upon completion 

of the Hutchinson Estate "B" number 2 well in the SW* SW* SE* 

sec. 17, T. 23 S., R. 17 W., October 28, 1953. Production was 

from Misener sand of Mississippian age. Subsequent development 

has proved the Pennsylvanian basal conglomerate and Mississippian 

"chat" also to be oil reservoirs. By 1957 cumulative production 

exceeded 1,900,000 barrels. Presently, 265 oil wells are produc- 

ing in Garfield Field. 

Accumulation of petroleum in the Garfield Field Area is 

associated with the following structural and stratigraphic 
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features: (1) a large anticlinal nose plunging southwest from 

the major structural feature of the area, the Central Kansas 

Uplift, (2) truncation of Misener and Mississippian formations 

in the northeast Garfield Field Area, (3) presence of an imperme- 

able seal above all producing formations, (4) lateral changes in 

effective porosity and permeabilit y, (5) local anticlinal "highs" 

and terraces superimposed on a structural nose, (6) permeable 

bedding and unconformity planes, (7) structural "highs" north and 

east of Garfield Field, and (8) a porosity "pinchout" northeast 

of Garfield Field. 

Gas accumulation may be found in Garfield Field in folds 

which are associated with structural closure at the surface of 

a disconformity, where the irregular Pennsylvanian basal conglom- 

erate erosional surface is overlain by impervious "shaly" con- 

glomerate. 

Possibilities for discovery of additional petroleum reserves 

in the Garfield Field Area are limited. A detailed study of res- 

ervoir characteristics would be required before secondary re- 

covery methods could be used.. 


