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Abstract 

Epidemic disease outbreaks are among the major threats to the sustenance and health of 

human societies. Many reports in public health show that even with the current state of prevention 

and treatment technologies, epidemic diseases still cause severe health issues and loss of life, and 

hence remain a source of large public health cost on societies. Consequently, controlling the spread 

of infectious diseases has become a main area of focus for public health policy makers. Modeling 

the dynamics of epidemic disease outbreaks and the corresponding social response is one of the 

techniques that can help public health policy makers to better design and evaluate relevant policies 

with more precise and detailed knowledge of such dynamics in social interactions and self-

organization. Accordingly, we propose a modeling approach based on spatial game theory using 

public goods game, which is a prominent approach for capturing the behavior of individuals in 

response to local stimuli. The settings of public goods game enable this method to model the 

dilemma of not vaccinating and not paying the related costs of vaccination or vaccinating to 

provide a healthy living environment for the individual and other members of the community. This 

is the first time that a public goods game payoff function is used in modeling and capturing the 

behavior of populations in response to epidemics. 

In this dissertation, two variants of the proposed model are introduced. The first captures 

the behavior of individuals in response to an epidemic, in which decision making is on whether to 

vaccinate or not. The second model aims to capture the behavior of interacting populations to an 

epidemic, and the decision is on how much to change the level of vaccination in each population. 

Also, the impact of considering the time-delay between infection and emergence of symptoms of 

the disease is studied. These models demonstrate that the adoption of public goods game based 

payoff function in the modeling of epidemics can capture the vaccination behavior of individuals, 



  

and can lead to a better control of the epidemic spread in the population level. Moreover, this 

dissertation proposes two new strategy updating methods in spatial evolutionary games, which are 

shown to be capable of modeling the dynamics of decision making under different sensitivities to 

vaccination and fear of infection. 
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Abstract 

Epidemic disease outbreaks are among the major threats to the sustenance and health of 

human societies. Many reports in public health show that even with the current state of prevention 

and treatment technologies, epidemic diseases still cause severe health issues and loss of life, and 

hence remain a source of large public health cost on societies. Consequently, controlling the spread 

of infectious diseases has become a main area of focus for public health policy makers. Modeling 

the dynamics of epidemic disease outbreaks and the corresponding social response is one of the 

techniques that can help public health policy makers to better design and evaluate relevant policies 

with more precise and detailed knowledge of such dynamics in social interactions and self-

organization. Accordingly, we propose a modeling approach based on spatial game theory using 

public goods game, which is a prominent approach for capturing the behavior of individuals in 

response to local stimuli. The settings of public goods game enable this method to model the 

dilemma of not vaccinating and not paying the related costs of vaccination or vaccinating to 

provide a healthy living environment for the individual and other members of the community. This 

is the first time that a public goods game payoff function is used in modeling and capturing the 

behavior of populations in response to epidemics. 

In this dissertation, two variants of the proposed model are introduced. The first captures 

the behavior of individuals in response to an epidemic, in which decision making is on whether 

to vaccinate or not. The second model aims to capture the behavior of interacting populations to 

an epidemic, and the decision is on how much to change the level of vaccination in each 

population. Also, the impact of considering the time-delay between infection and emergence of 

symptoms of the disease is studied. These models demonstrate that the adoption of public goods 

game based payoff function in the modeling of epidemics can capture the vaccination behavior 



  

of individuals, and can lead to a better control of the epidemic spread in the population level. 

Moreover, this dissertation proposes two new strategy updating methods in spatial evolutionary 

games, which are shown to be capable of modeling the dynamics of decision making under 

different sensitivities to vaccination and fear of infection. 
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Chapter 1 - Introduction 

Prevention of infectious diseases has been an active area of research throughout the 

scientific endeavors of human civilizations. Infectious diseases can negatively affect large 

populations with severe morbidity or even mortality, thus imposing considerable costs on public 

health and state. In recent decades, the accelerating changes of the climate, which is known as 

global warming, has triggered a growing spike in infectious diseases among human societies (Wu, 

Lu, Zhou, Chen, & Xu, 2016). One consequence of this climate change is its impact on the 

development, reproduction, and survival of infectious diseases, which has led to the growing 

number of individuals at the risk of becoming infected. Furthermore, a report conducted by the 

World Health Organization (WHO) notes that globalization and its effect on economic, 

environmental, and demographic variation of societies, has increased the risk of infectious diseases 

in populations (Saker, Lee, Cannito, Gilmore, & Campbell-Lendrum, 2004). These, along with the 

paramount importance of devising effective regulations, have escalated the necessity of developing 

accurate models of disease transmissions and the corresponding behavioral prevention response. 

Hence, this project aims to contribute to this field of research by proposing novel methodologies 

that include not only the transmission dynamics of diseases, but also the decision-making 

processes of individuals in response to such outbreaks. 

1.1  Research motivation and objectives 

While prevention of infectious diseases is usually achieved by increasing the number of 

individuals who are using prevention techniques such as vaccinating or social distancing, in spite 

of vaccination being a proven and potent remedy to the spread of infectious diseases, in some 

regions of the US there is a growing trend of parents opting out of vaccinating their children 

(Haelle, 2017).  Moreover, vaccines are not required in order for children to attend school in most 
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states to respect religious and personal beliefs (Hinman, Orenstein, Williamson, & Darrington, 

2002). 

The main motivation of this research stems from the aforementioned behavior that many 

people avoid vaccination in the face of epidemics, mainly due to their localized predictions of 

probable risk of contraction and the expenses involved. This behavior is mostly prominent in 

communities with initially low infection rates, as well as the agents’ assumption that most 

members of the community are opting in for vaccinations. These conditions may give rise to a 

sense of immunity to the infection and consequent free-rider behavior in individuals. However, the 

idea of being protected by the population of vaccinated individuals is not always effective if there 

are not enough vaccinated individuals or motivators to encourage individuals to get vaccinated. In 

certain configurations, this type of response to epidemics may result in rapid spread of disease due 

to insufficient vaccination. To illustrate, in 2015, California faced the worst measles epidemic in 

the last decades because many parents declined to vaccinate their children due to perceived vaccine 

side-effects and by relying on the other vaccinated ones to be safe (Salzberg, 2015). Also, in 2019 

United States faced another measles outbreak due to similar behavioral reaction to vaccination 

(Nelson, R., 2019). Moreover, the idea of free protection has always been partnered with voluntary 

vaccination. Thus, accounting for such behaviors in the models of infectious disease outbreaks can 

greatly enhance the accuracy of predictions and decision-support, which can translate into more 

effective policies for the mitigation and control of epidemic outbreaks. 

Thus, the objective of this research is to describe the behavior of individuals in response to 

an epidemic of diseases such as measles, with respect to vaccination, when people have the choice 

of free-riding, and to design a mechanism to find the most effective set of policies to control an 

epidemic outbreak in such situations. Moreover, it is also of interest to study the behavior of 
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interacting populations and communities in response to an epidemic to see the effect of changing 

strategies for these societies. Since network of interactions is proven to affect the dynamic of 

epidemics, the objective of this research is to capture the behavioral response to the disease spread 

in a network setting. This research aims to create a novel understanding and approach in the 

modeling of disease outbreaks. Owing to the similarities of this problem with many others, such 

as influence propagation and decentralized management, the outcomes of this project may also be 

applicable to modeling of public behavior in other domains as well. 

1.2  Proposed methods 

In order to model the behavior of individuals in epidemics different methods are used. 

Some of them have shown the existence of free-riding behavior (Bhattacharyya & Bauch, 2011). 

When considering the “free protection” one of the things which comes to mind is modeling the 

spread of an infectious disease as a public goods games in which some free-riders get the advantage 

from the contribution of other individuals in the group (i.e., vaccination). However, although some 

studies have mentioned the public goods effect of vaccination and prevention behavior in 

epidemic, none of them have used it as an approach to calculate the payoff of individuals in game 

theory based models (Fu, Rosenbloom, Wang, & Nowak, 2010). This dissertation is proposed 

models to capture the dynamic of epidemics using a public goods game based payoff as a base for 

individual’s decision when facing an epidemic. In order to implement this behavior in response to 

epidemic disease, evolutionary game theory can be used, which is a method that can show the 

choice of individuals in population of interacting players with different payoffs when individuals 

are going through evolution (Nowak, 2006). Evolutionary game theory is widely used to study 

epidemic dynamics (Wang, Z., Andrews, Wu, Wang, & Bauch, 2015). To take the spatial 

interactions of individuals into account, spatial evolutionary game theory can be used. The 
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advantage of adopting a spatial evolutionary game is that it can take the location information into 

consideration when individuals balance their costs and benefits. 

Thus, we proposed methods to model the behavior of individuals when facing an epidemic 

outbreak based on spatial game theory using public goods game, demonstrating that this approach 

has the potential to describe the behavior of individuals in response to an epidemic. 

We studied epidemic spread in two levels, individual level and population level. In 

individual level we developed a model based on the public goods game in the setting of a spatial 

game on a lattice. In this model, individuals are considered as agents whose aim is to maximize 

their collective benefit by imitating other agent’s behavior, and may choose to contribute to the 

public health by paying the cost of vaccination, or choose to be protected by those who are 

vaccinated, rather than incurring the costs and risks involved in vaccination themselves but get the 

shared benefit of living in a healthy society. This model accounts for various factors affecting the 

cost assessment of individuals, including the monetary cost of vaccination, the cost of contracting 

the disease, and an “awareness” factor due to the dissemination of information through public 

media. Furthermore, the transmission dynamics of the disease are captured within the well-known 

Susceptible-Infected-Resistant (SIR) model. Consequently, this approach allows for capturing the 

effect of enhanced immunity due to communal behaviors.  

Considering the issue of time delay between exposure to infection until appearance of 

syndromes, we extended our individual level model to take into account this phenomenon and 

compared the results of this model with the previous one based on different factors. 

In the population level we developed a method for modeling the spread of diseases in a 

network of populations to see how different strategies can change the dynamics of disease spread 

and the percentage of infected and vaccinated individuals in each population. This approach is of 

great importance for policy evaluation, since there are usually not just individuals, but also 
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populations who deal with epidemics according to different health policies, standards and 

regulations. To approach this problem, we developed a model based on the public goods game in 

the setting of a spatial game on a network. In this model, populations are considered as agents 

whose aim is to maximize the collective benefit to their society and the populations which are in 

close contact with them, and may choose the level of their contribution to the public health by 

changing their level of vaccination. This model accounts for various factors affecting the cost 

assessment of these groups, including the cost of vaccination, the cost of contracting the disease, 

and willingness to contribute due to the dissemination of information through public media. 

Furthermore, the transmission dynamics of the disease are captured within the well-known 

Susceptible-Infected-Resistant (SIR) model on both a scale-free network and a lattice. 

1.3  Organization 

This dissertation is organized in 6 chapters. Chapter 2 reviews the fundamentals of 

epidemic modeling describing the role of behavioral dynamic modeling, types of transmission 

models, economic and rule based approaches in modeling, population based and network based 

approaches and specifically use of spatial games in epidemic modeling. Chapter 3 provides the 

formulation of individual based model and the effect of changing several factors such as cost of 

vaccination, transmission rate of the disease, number of initially vaccinated and sensitivity of 

individuals to taking vaccination in the epidemic dynamic. Chapter 4 shows the revisions on the 

individual model to take into account the time delay in emergence of syndromes and shows the 

variation of the dynamic according to several factors. Chapter 5 provides information on modeling 

the population level model and effectiveness of public goods game based approach as well as 

sensitivity of the model to several factors. Finally, chapter 6 presents a conclusion on the three 

models on hand with some remarks on future directions of research.  
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Chapter 2 - Literature Review 

The first attempt to model infectious disease transmission was done by Daniel Bernoulli in 

the 17th century (Dietz & Heesterbeek, 2002). Since then, several researches have used different 

methods to model epidemics. Mathematical modeling is one of the broadly used methods to 

elucidate the transmission of infectious diseases. The classical mathematical approach has treated 

human behavior as a fixed phenomenon without any dynamic pattern. However, to model a 

coupled system of human and disease, it is required to take the dynamic behavior of individuals 

into account (Wang, Z. et al., 2015). Game theory is a key tool in modeling the interactions 

between individual behaviors, and thus is used in modeling the disease transmission considering 

humans as rational decision makers in this process (Manfredi & D'Onofrio, 2013). In recent years, 

by the advance of large-scale simulations, many researchers started to use agent based simulations 

to capture the detailed behavior of agents in epidemic spread and have also taken the network of 

interactions into account. 

In the following, in section 2.1 game theory and specifically spatial evolutionary game 

theory will be discussed and public goods game will be introduced. Then, in section 2.2 a literature 

of studies in modeling infectious disease based on different approaches to capture the behavioral 

dynamics of epidemics will be introduced, and finally in section 2.3 some of the works on epidemic 

modeling which have used spatial game theory will be discussed. 

2.1  Evolutionary game theory 

Game theory is defined as the study of mathematical models that capture conflict and 

cooperation between rational decision-makers (Myerson, 2013). Classical game has three 

elementary components: players, strategies, and payoffs. In these games a player is playing a game 

with another player and has to decide between different strategies to maximize his own payoff 
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which depends on other player’s strategy, while the other player is also trying to maximize his own 

payoff. It is assumed that each player has the complete information about the game and rationally 

chooses the strategy which maximizes his own payoff. 

Although in classical game theory players choose the best strategy to maximize their own 

payoff, their best decision does not necessarily remain the best if the game is repeated several 

times (Nowak, 2006). There is a famous game named “prisoner’s dilemma” which can clearly 

show this phenomenon (Kreps, Milgrom, Roberts, & Wilson, 1982). 

In the prisoners’ dilemma game, two persons are arrested because of a joint crime. Each of 

them can either cooperate with the other person and remain silent (strategy C), or can defect and 

confess (strategy D). If both cooperate, then both get 𝑀22 points. If one cooperates while the other 

one defects, then the cooperator gets 𝑀21 points which is less than 𝑀22 and the defector gets 𝑀12 

points which is more than 𝑀22. If both defect, they both get 𝑀11 points which is more than 𝑀21 

but less than 𝑀22. So, the relation between the payoffs is 𝑀12 > 𝑀22 > 𝑀11 > 𝑀21. The payoff 

matrix is shown below. 

 D C 

D 
(

𝑀11 𝑀12

𝑀21 𝑀22
) 

C 

 

In this case, both prisoners choose to defect to maximize their own payoff regardless of 

what choice the other prisoner makes. Defecting is the Nash equilibrium for prisoner’s dilemma 

game since none of the players can gain more payoff by changing just their own strategy. However, 

it is apparent that prisoners can gain more payoff if both cooperate and remain silent since 𝑀22 >

𝑀11, and in reality sometimes individuals cooperate with each other. Thus, Nash equilibrium in 

the classical game cannot explain this phenomenon.  
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To study this phenomenon, an extension to the classical game theory is created to give the 

players the chance of changing their strategies based on a rule, such as imitating others’ strategies 

based on the previous game’s outcome, when playing the game repeatedly. Thus, players do not 

behave rationally but they test how well their strategies are. This style of game is known as 

evolutionary game theory (Nowak, 2006). Evolutionary game theory is mainly the study of a 

population of competing players in which players interact with each other and go through 

evolution. 

Evolutionary game theory was fostered by evolutionary biologist and then found many 

applications in non-biological fields such as economics and learning theory. One can say that 

evolutionary game theory, in contrast with classical game theory, deals with population of players 

who have to decide between different strategies, and strategies with high payoff will spread in the 

population through learning or copying those strategies (Hofbauer & Sigmund, 2003). This 

behavior is studied using the replicator equation which describes the evolution of frequencies of 

population types or strategies. In deriving the replicator equation, it is assumed that there exists a 

well-mixed population in which every individual interacts with all other individuals with the same 

probability. However, in many populations, individuals have different probabilities of interaction 

and the structure of the interactions between individuals can affect the outcome of evolution. 

Spatial evolutionary game theory was created to model these types of interactions (Roca, Cuesta, 

& Sánchez, 2009). 

Spatial game theory has been introduced by Nowak and May in the beginning of the 90s 

and involves evolutionary games with strategies distributed over some spatial region. Therefore, 

spatial games use evolutionary game dynamics on a spatial structure combining evolutionary game 

theory and cellular automata (CA) (Killingback & Doebeli, 1996). In these games, each player 
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plays the game with its neighbors on a grid, and based on the players’ strategy the various positions 

will be occupied by the winning strategy (or species in evolutionary games). To illustrate, assume 

a lattice in which each cell is occupied with a player, each player has a set of strategies to adopt, 

and there is a payoff associated with each strategy. At time zero a strategy is assigned to each 

player from the set of strategies and the total payoff of a player is defined as the sum of the payoffs 

resulting from playing with all the neighbors of that player. Using the total payoff, one can define 

a dynamic process to assign a strategy to a cell at the next generation which is usually the strategy 

of the player with the highest total payoff in the neighborhood of that player including itself. This 

dynamic process continues until the lattice reaches a steady state in which no one changes its 

strategy (Soltanolkottabi, Ben-Arieh, & Wu, 2019b). 

In the following, a simple example of spatial evolutionary game in a lattice is shown 

assuming two types of strategies available to each player and each player has eight neighbors 

which are the eight cells surrounding it (Moore neighborhood). It is also assumed that the 

boundaries are not wrapped and the number of neighbors for the cells at the edges and in the 

corners is equal to the number of their immediate contacted cells. Thus the cells at the edges have 

5 neighbors and the cells in the corners have three neighbors. The payoff matrix which is used is 

as follows: 

 A B 

A 
(𝑎 𝑏

𝑐 𝑑
) 

B 

 

Thus, players could choose either strategy A or strategy B and payoff value could be 𝑎, 𝑏, 

𝑐, or 𝑑 correspondingly according to players’ strategies. Considering the distribution of players in 

a lattice as is shown in initial strategy of Figure 2.1. Each player would play the game with all its 

neighbors and the summation of payoff values in the game against each neighbor is the payoff of 
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each player as is shown in Figure 2.1 payoff.  Then, each player will update its strategy to the 

strategy of its neighbor with highest payoff. If (𝑏 = 4) > (𝑑 = 3) > (𝑎 = 2) > (𝑐 = 1) as in 

prisoner’s dilemma, the result of the game will be the updated strategy in Figure 2.1. 

 

A B B  a+2b 2c+3d 3d  B B B 

A B B → 2a+3b 4c+4d 2c+3d → B B B 

B A A  2c+d 2a+3b a+2b  B B B 

Initial Strategy  Payoff  Updated strategy 

Figure 2.1 Illustration of the spatial game theory in a square lattice 

 

2.1.1 Public goods game 

The public goods game is a principle in experimental economics where players can invest 

into a common good, and then all the players get the shared benefit of the contributions irrespective 

of whether they paid in or not (Ledyard, 1994). The absence of infectious disease in a community 

or health care setting is considered a public good (Fisman & Laupland, 2009), and thus this 

approach can be used in modeling infectious disease dynamic and maintaining healthy 

communities in societies. In public goods game model, groups of players maximize their 

investment if everybody in the group contributes, but this behavior is vulnerable to “free-riders” 

where players get the shared benefit but do not invest themselves. In this game, it is advantageous 

for a player to defect while at the same time mutual cooperation would be beneficial for all; this is 

where the dilemma exists (Adami, Schossau, & Hintze, 2016). 

Public goods game, in contrast with the prisoner’s dilemma game which is discussed 

earlier, is a multi-player game. In such games, the payoff is a function of the state of more than 

two players in a group and the payoffs are not usually written in terms of a payoff matrix. The 
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payoff function for a typical public goods game is as follows In which 𝑁𝑐 is the number of 

cooperative individuals, 𝐶 is the cost of cooperation (or contribution to the public welfare), 𝑁 is 

the total number of members in a group and 𝑟 is a multiplication factor. 

𝑝𝑎𝑦𝑜𝑓𝑓𝑖 = {

𝑟𝑁𝑐𝐶

𝑁
      𝑖𝑓 𝑖 𝑖𝑠 𝑛𝑜𝑡 𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒

𝑟𝑁𝑐𝐶

𝑁
− 𝐶       𝑖𝑓 𝑖 𝑖𝑠 𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒

                                              2.1 

Many studies have used public goods game in a spatial structure to model the evolution of 

cooperation regarding the allocation of public goods and have shown the importance of 

considering group cooperation in analyzing such dynamics (Perc, Gómez-Gardeñes, Szolnoki, 

Floría, & Moreno, 2013). The basic setup for a spatial public goods game with cooperators and 

defectors is on a lattice where each player and its 𝐾 neighbors form a cooperation group, and each 

player can be either cooperative or defector. Then, each player enforces its strategy onto another 

player with some probability determined by their payoff difference. Li et al. (Li, Jin, Su, Kong, & 

Peng, 2010) also considered imitating the strategy of the player with the highest payoff in a 

neighborhood in their modeling. Some studies furthermore considered an extended cooperation 

group in which each person can be a member of several cooperation groups (Zhou, Ding, Fan, & 

Wang, 2016).  

2.2  Epidemic dynamic models 

Epidemics of infectious disease have influenced human civilization for many centuries. 

Epidemics have been documented as early as 430-427 BCE when the Athens epidemic killed as 

much as a half of the population of ancient Athens (Nelson, K. E. & Williams, 2001). From early 

times, people have tried to understand the causes and remedies to infectious diseases epidemics 

that took a huge toll on the human civilization.  Only after the later part of the 19th century did 

vaccination become a successful tool in the fight against infectious disease. 
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In recent decades, the shift in climate and global temperature has raised the concern of 

increasing exposure to infectious diseases (Wu et al., 2016). The World Health Organization 

(WHO) has stated that the climate change and warming of the atmosphere are likely causes of 

increase in transmission of many infectious diseases (World Health Organization, 2003). 

Similarly, an article in the New England Journal of Medicine, has raised the concern that the 

climate change will cause a significant increase in infectious disease (Shuman, 2010). Moreover, 

there are also studies reporting that climate change has facilitated the spread of certain infectious 

into geographical areas that were previously unaffected (Lafferty, 2009). 

Another concern raised in a report conducted by World Health Organization is that 

globalization and its effect on economic, environmental, demographic and topological change of 

societies has caused people in today’s world to be in an increased risk of confronting infectious 

disease (Saker et al., 2004).  

All these factors reemphasize the importance of controlling the spread of infectious 

diseases and motivated new approaches towards modeling infectious disease transmission and the 

behavioral response to it. 

2.2.1 Behavioral model 

Many studies have considered social and behavioral dynamics in impeding the spread of 

infectious disease since these behaviors can influence the dynamics of the spread of disease in 

populations (Wang, Z. et al., 2015). In such models, dynamic feedbacks between disease incident 

and individuals’ behavior is modeled.  

The behavioral or health belief model (HBM) is one of the models from the health 

psychology literature that represents individual behavior in response to an epidemic (Champion & 

Skinner, 2008). HBM has traditionally considered four main factors:  
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1) The perceived susceptibility of an individual or the probability that a person 

become infected 

2) The perceived severity or the cost of being infected  

3) The perceived barriers to behavior adoption or the cost of prevention  

4) The perceived benefits or the benefits of adopting a behavior 

Some studies have presented a mathematical framework to implement health belief model 

in modeling individual’s decision making when facing an epidemic (Durham & Casman, 2011; 

Karimi, Schmitt, & Akgunduz, 2015). 

A schematic illustration of the place of health belief model in the dynamic of disease 

behavior interactions is presented in Figure 2.2. 

 

Figure 2.2 Schematic illustration of the place of health belief model in the dynamic of 

disease behavior interactions 

 

The representation of the behavioral change in modeling the epidemics can be in form of 

changing one of these elements in the model, 1) the state of the individuals (see section SIS and 

Disease Dynamics Behavioral Dynamics 

Health Belief Model 

• Perceived Susceptibility 

• Perceived Severity 

• Perceived Barriers 

• Perceived Benefits 

 

Epidemic status, 

infection risk, etc. 

Behavior decision 

Preventive behaviors 
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SIR model), 2) infection rate or 3) the contact network (Funk, Salathé, & Jansen, 2010). If the 

model is dealing with vaccination, usually changing the state for the vaccinated individuals is the 

approach for modeling. If social distancing and reducing the exposure to the infection is the 

behavioral change, either the change in infection rate or the contact network is a solution. 

In this research we focus on vaccination as the behavioral response to the epidemic. 

2.2.2 SIS and SIR model 

Literature of epidemic spread modeling is very broad and extended. Researchers have used 

different methods to model this dynamic and behavior. In epidemic models it is usually assumed 

that a population can be divided into different categories based on the stage of the disease. Two of 

the well-known approaches in modeling epidemics are SIS and SIR models (Earn, Brauer, van den 

Driessche, & Wu, 2008). 

SIS model is a 2-state epidemic model which is used to model the diseases with no 

immunity such as common cold or sexually transmitted diseases. The states for SIS model are 

susceptible individuals (S) and infected individuals (I). In these models, a susceptible person can 

become infected with probability β, which is the transmission rate of the disease, and an infected 

individual will become recovered with rate µ or after some time steps, and infected individuals 

will return to the susceptible class after recovering. 

In classical understanding of dynamic of epidemics, the differential equations of the 

number of individuals in each stage of the disease is taken into account assuming a homogenous 

population with random interactions. The homogeneous random interaction leads to the conclusion 

that the larger the number of infectious individuals among one’s interactions, the higher the 

probability of becoming infected (α). This probability is defined to be equal to 𝛽 𝑁𝐼 𝑁⁄ , where 
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𝑁𝐼 𝑁⁄  is the portion of infected population. Thus, for the SIS model, the following set of equations 

shows the change in the number of susceptible and infected individuals. 

𝑑𝑆

𝑑𝑡
= −𝛼𝑆 + 𝜇𝐼                                                                                                                              2.2 

𝑑𝐼

𝑑𝑡
= 𝛼𝑆 − 𝜇𝐼                                                                                                                                 2.3 

Equation 2.2 shows the changes in the number of susceptible in the population where 𝑆 is 

the number of susceptible and 𝐼 is the number of infected individuals, considering continuous time. 

Accordingly, the number of infected population changes based on Equation 2.3. 

SIR model is a 3-state epidemic model in which a person can be susceptible (susceptible 

to become infected), infected or recovered, and is used to model the diseases in which an infected 

individual after becoming recovered is immune to the disease such chicken pox, mumps or 

measles. Thus the states for SIR model are susceptible individuals (S), infected individuals (I), and 

recovered individuals (R) which are immune. For the SIR model, the following set of equations 

shows the change in the number of susceptible, infected and recovered. 

𝑑𝑆

𝑑𝑡
= −𝛼𝑆                                                                                                                                      2.4 

𝑑𝐼

𝑑𝑡
= 𝛼𝑆 − 𝜇𝐼                                                                                                                                 2.5 

𝑑𝑅

𝑑𝑡
= 𝜇𝐼                                                                                                                                          2.6 

Equation 2.4 shows the changes in the number of susceptible individuals. The number of 

infected population changes based on Equation 2.5, and Equation 2.6 shows the changes in the 

number of recovered individuals. 

Figure 2.3 shows the schematic illustration of SIS and SIR modeling approach.  
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Figure 2.3 Schematic illustration of SIS and SIR models 

 

Studies have used different methods to overcome the limitation of the classical 

mathematical model in considering the human behavior. Poletti et al. (Poletti, Caprile, Ajelli, 

Pugliese, & Merler, 2009) assumed two behaviors for a susceptible individual, one with the normal 

level of interactions and one with the reduced level of interactions (social distancing) resulting in 

a lower transmission rate. When considering vaccination as the behavioral response, these models 

can include an additional state for the individuals who are vaccinated. To illustrate, in the SIR 

model, one more state is added for the individuals who are vaccinated and the model is upgraded 

to the following form referred to as SIRV model (V for vaccinated) as shown in Figure 2.4. In this 

model, states R and V are absorbing states (Ruan, Tang, & Liu, 2012). 

 

Figure 2.4 Schematic illustration of SIRV model 

The following set of equations shows the change in the number of susceptible, infected, 

recovered and vaccinated individuals where γ shows the rate of vaccination. 

S I 

𝜷 

𝝁 

S I R 

𝜷 𝝁 

SIS Model: 

SIR Model: 

S I R 

𝜷 

V 

𝝁 
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𝑑𝑆

𝑑𝑡
= −𝛼𝑆 − 𝛾𝑆                                                                                                                             2.7 

𝑑𝐼

𝑑𝑡
= 𝛼𝑆 − 𝜇𝐼                                                                                                                                 2.8 

𝑑𝑅

𝑑𝑡
= 𝜇𝐼                                                                                                                                          2.9 

𝑑𝑉

𝑑𝑡
= 𝛾𝑆                                                                                                                                       2.10 

Equation 2.7 shows the changes in the number of susceptible individuals. The number of 

infected population changes based on Equation 2.8, Equation 2.9 shows the changes in the number 

of recovered individuals and Equation 2.10 shows the change in the number of vaccinated 

individuals. 

In this research we focus on the transmission of the diseases which have characteristics of 

SIR systems considering vaccination as the preventive behavior. 

2.2.3 Economic and rule based models 

In modeling the epidemic disease spread, two types of behaviors exist. One type is 

emergent from individuals seeking to optimize their utility based on a cost function, and another 

is based on following pre-determined rule-sets. It is noteworthy that hybrids of both types also 

exist (Weston, Hauck, & Amlôt, 2018).  

In the context of preventive strategies, cost-benefit calculation commonly involves agents 

comparing the utility of adopting protective behavior with their perceived payoff of not taking any 

action and remaining susceptible to infection. Thus, in the simplest form, considering λ as the 

probability of becoming infected, the agents decide to vaccinate if 𝐶𝑉 < 𝜆𝐶𝐼 where 𝐶𝑉 is the cost 

of prevention technique or vaccination and 𝐶𝐼 is the cost of infection (Mbah et al., 2012). Game 

theory based models are the integral part of this category. In such studies, the payoff function for 

calculating the payoff of agent i is often of the following form: 



18 

𝑃𝑖 = {

−𝐶𝑉                                                         𝑖𝑓 𝑖 𝑖𝑠 𝑣𝑎𝑐𝑐𝑖𝑛𝑎𝑡𝑒𝑑
−𝐶𝐼                                     𝑖𝑓 𝑖 𝑖𝑠 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑜𝑟 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑
0                                     𝑖𝑓 𝑖 𝑖𝑠 𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒 (𝑓𝑟𝑒𝑒 𝑟𝑖𝑑𝑒𝑟)

                                                                 2.11               

The cost of vaccination can be in the form of the expense of vaccine administration and the 

potential risk of vaccine side-effects, and the cost of disease infection can include disease 

complications, expenses for treatment, or absence from work. 

Bhattacharyya and Bauch (Bhattacharyya & Bauch, 2011) considered that individuals take 

vaccination behavior based on their perceived cost where the total number of vaccinated (herd 

immunity) in the society can inversely affect their perceived cost. They showed that this behavior 

will result in free-riding in society. Perisic et al. (Perisic & Bauch, 2009) considered the payoff of 

each agent to be the probability of being infected at each time and then individuals choose whether 

or not to vaccinate at any step according to perceived payoff of vaccination and infection. 

On the other hand, in the rule-based models, the social or peer influence in decision making 

is incorporated. In these models, it is assumed that agents compare their behavior with behavior of 

other individuals in the society and through this comparison they can learn whether their behavior 

is optimal or not. Evolutionary game theory based models are the integral part of this category. 

Thus, agents typically sample other agents from the population and adopt either the most prevalent 

strategy, or rely on adopting the strategy implemented by a randomly selected agent (Verelst, 

Willem, & Beutels, 2016). Some studies have investigated behavior imitation using Fermi 

function, in which each individual 𝑖 randomly chooses another individual 𝑗 as role model, and 

imitates the behavior of j with the following probability (Wang, Z. et al., 2015) where 𝑃𝑖 and 𝑃𝑗 

are respectively the payoff of individual 𝑖 and 𝑗, and 𝛽 shows the strength or sensitivity of selection. 

𝜋𝑖→𝑗 =
1

1+exp [−𝛽(𝑃𝑗−𝑃𝑖)]
                                                                                                                                                   2.12 
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Thus, the larger the beneficial payoff difference and the larger the sensitivity of individuals 

to change their strategy, the larger the probability of changing the behavior. In these models, if the 

sensitivity of agents is very low, there is still a probability for the agents to adopt the behavior of 

an agent with a lower payoff. 

Liu et al. (Liu, Wu, & Zhang, 2012) considered that the social influence affects the 

probability of changing the strategy to vaccination using Fermi function. Thus, instead of the 

difference in the payoffs they considered the difference in the social influence of vaccination and 

infection. They showed that individuals’ high sensitivity to social influence will increase the 

vaccination coverage when the cost of vaccination is low, and will decrease it if the cost is high 

and the resulting vaccination coverage would converge to a certain level. Zhao et al. (Zhao, Wu, 

& Ben-Arieh, 2015) considered the payoff of each individual to be related to the estimated risk of 

infection in their neighborhood and the global risk of infection. They used the difference between 

the payoff of adopting prevention strategy and doing nothing in calculating the probability of 

changing strategy using Fermi function. Zhang (Zhang, Y., 2013) studied the impact of other-

regarding behavior on voluntary vaccination considering the payoff of neighbors of each agent to 

also affect the payoff of the agent which is used in calculating the probability of switching to 

another agent’s strategy. She showed that when the vaccination cost is small or moderate, the 

vaccination coverage is depending on the other regarding-behavior which will lead to an optimal 

total social cost.  

2.2.4 Time delay 

When modeling disease outbreaks, one of the factors that needs to be considered is time 

delay, which is intrinsic to various processes of epidemic outbreaks. Such delays can be due to the 

time it takes a population to become aware of an ongoing epidemic (awareness time), it can be due 
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to the epidemiological time delay (incubation period), or due to an individual’s delayed response 

to an outbreak (Agaba, Kyrychko, & Blyuss, 2017; Zuo & Liu, 2014; Zuo, Liu, & Wang, 2015).  

The epidemiological delay can be classified as latency time and incubation time (Armenian 

& Lilienfeld, 1983). The incubation period is the time between exposure to a pathogenic organism 

and when symptoms and signs are first apparent, during which an infected person may or may not 

be contagious. On the other hand, latency is defined as the period in which a person is infected 

without being infectious.  Some researchers have considered the incubation period and the time 

delay in transmitting a disease in mathematical models.  Most of them consider the latent period a 

time delay for an infected individual to become infectious (Laarabi, Abta, & Hattaf, 2015; 

McCluskey, 2010; Xu, 2011). In the literature there are also mathematical models that have 

considered delay in individuals’ response to a disease which can include a delay in reporting the 

disease or delay in responding with a preventive behavior (Greenhalgh et al., 2015). From the 

modeling point of view, the delay in reporting a disease is very similar to not being aware of an 

infection. 

Other researchers have focused on the importance of the incubation period for epidemic 

control. Uys et al. (Uys, Warren, & Van Helden, 2007) analyzed the consequences of delay to the 

diagnosis of TB (Tuberculosis). They found that typical delays to diagnosis present a major 

problem to the control of the TB epidemics. Carpenter et al. (Carpenter, O'Brien, Hagerman, & 

McCarl, 2011) simulated delayed detection of a foot-and-mouth disease outbreak in California and 

showed that increasing the detection time to two weeks can cause dramatic increase in the number 

of infected cows and the loss of agricultural welfare. Since this type of time delay can affect the 

dynamics of an epidemic, it is an essential factor in modeling infectious disease transmission. 

However, models that have used game theoretic approach to represent the behavior of individuals 

https://en.wikipedia.org/wiki/Symptoms
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when facing an epidemic overlooked this incubation period. Considering the incubation period in 

modeling is critical; during this period a disease can be infectious while the symptoms are still not 

apparent, and people are not aware of their risk of exposure, and thus oblivious to the need to 

change their behavior. 

2.2.5 Population based and network based models 

The spread of infectious disease can be studied at the population level or based on a social 

interacting network (Verelst et al., 2016).  In the population-level studies, it is assumed that the 

population is homogeneously mixed and every individual is in contact with every other individual 

in the population. These studies usually consider the number or percentage of the individuals in 

each state in their analysis and model the changes in the average number of individuals in that state 

(d’Onofrio & Manfredi, 2010; Reluga & Galvani, 2011).  

In contrast with population-based models, network-based models consider an individual as 

a node in a network and the relationships or contacts of that person as the edges. Epidemic 

modeling using network-based models has enormously progressed in the last years since many 

diseases are transmitted with a direct or close contact between individuals. Also, due to the fact 

that the increase of computational power has made the detailed simulation of network-based 

models easier (Pastor-Satorras, Castellano, Van Mieghem, & Vespignani, 2015) network-based 

modeling is increasingly used. In the class of network-based models, agent-based models are the 

ones in which nodes of the network are autonomous decision-makers.  

Spatially structured models are of the most commonly used in the class of network-based 

modeling, since individuals usually interact with those who share close geographic proximity with 

them (Wang, Z. et al., 2015). The simplest spatial structure is a lattice in which each cell represents 
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an individual, and the cells around it are the immediate contacts of that cell. Lattices are 

homogeneous at the individual level (Keeling & Eames, 2005). 

Scale-free networks are a group of networks with a power-law degree distribution. Thus, 

as the degree 𝑘 increases, the likelihood of finding a node with a very large degree decreases. This 

type of network indicates the presence of some few nodes (known as hubs) with a much 

higher degree than most other nodes. Consequently, in such networks there are some nodes that 

are highly connected to other nodes in the network, which is a common feature of real-world 

networks such as network of air travels. Scale-free networks are used in studying the transmission 

of diseases in populations (Barabási, 2016). 

Network based models have been widely studied in recent research works. For example, 

Fu et al. (Fu et al., 2010) modeled the role of imitation behavior in a spatial structure and showed 

that the spatial structure is more sensitive to changes in cost of vaccination in comparison with the 

population based model. Fukuda et al. (Fukuda, Tanimoto, & Akimoto, 2015) applied the same 

model but instead of one network of interactions they defined two networks in which one is the 

disease transmission network and the other one is the information transmission network. This 

approach is useful when modeling the effect of interacting through social media on peoples’ health 

belief. 

2.2.6 Meta-population models 

There are some studies which have modeled the disease spread for the interactive 

populations, known as meta-population, whose interactions are based on a network (Wang, L. & 

Li, 2014). In these models, it is assumed that the nodes of the network are not individuals but 

population of individuals who are interacting on a network. The necessity of these types of models 

stems from the fact that the large scale spatial transmission of infectious diseases is often related 
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to the human mobility pattern which can hardly be captured in the network of a single population. 

To consider the effect of human mobility, it is intuitive to generalize the network model by defining 

each node as a population with a specific location such as cities, in which a population of 

individuals interact according to some rules and people are also permitted to make connections 

among populations through mobility networks. 

Watts et al. (Watts, Muhamad, Medina, & Dodds, 2005) introduced a class of meta-

population models for epidemic spread modeling and modeled the movement of individuals 

between population to analyze the dynamic of epidemic. Colizza et al. (Colizza, Pastor-Satorras, 

& Vespignani, 2007) also analyzed epidemic spread on a network using degree based mean field 

theory. Wang et al. (Wang, L., Wang, Zhang, & Li, 2013) modeled SIS like disease transmission 

considering the disease prevails inside each subpopulation assuming a homogeneously mixed 

population, and transmits between subpopulations through the travel of infected individuals. They 

assumed the total number of connections from other populations through traveling affects the 

transmission rate of the disease in each population. 

2.3  Spatial game theory in epidemic dynamic modeling 

Spatial game theory is one of the methods which is used in modeling epidemic dynamics. 

In such studies it is assumed that individuals are interacting with each other based on the network 

of interactions (usually a lattice) and they adopt different strategies based on their payoff and some 

rules of updating. 

Representations of strategies are commonly based on the aforementioned transmission 

models (SIS and SIR model). The payoff calculation can be in several forms as mentioned in 

Economic and rule based models. Also, different updating methods are implemented such as 

imitating strategy of another player. 
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In Table 2.1 the studies with SIR transmission model having vaccination as the preventive 

strategy are classified based on the network of interactions, payoff function and updating methods. 

Some studies have also considered different epidemic seasons in which people learn from 

their behavior in the previous season. This approach is useful in modeling disease such as influenza 

(Chang, Piraveenan, Pattison, & Prokopenko, 2019). 

Table 2.1 Classification of papers used spatial game theory in modeling 

 

Author Type of network 
Type of payoff 

function 
Type of behavior 

Zhang et al. (Zhang, 

H., Wu, Tang, & Lai, 

2014) 

Square lattice and 

scale-free network 

Cost of vaccination if 

vaccinated and cost of 

infection if infected 

Rule based 

(imitation) 

Fukuda et al. 

(Fukuda et al., 2015) 

Bi-level square lattice 

and scale-free 

network 

Cost of vaccination if 

vaccinated and cost of 

infection if infected 

Rule based 

(imitation) 

Fu et al. (Fu et al., 

2010) 

Square lattice and 

random network 

Cost of vaccination if 

vaccinated and cost of 

infection if infected 

Rule based 

(imitation) 

Perisic et al. (Perisic 

& Bauch, 2009) 
Random network 

Payoff is the 

probability of being 

infected at each time 

step 

Economic based 

Zhao et al. (Zhao et 

al., 2015) 
Square lattice 

Individual payoff plus 

the global payoff 

Rule based 

(imitation) 

Yan Zhang (Zhang, 

Y., 2013) 
Square lattice 

Considered the payoff 

of an individual’s 

neighbors as a part of 

payoff function 

Rule based 

(imitation) 

Liu et al. (Liu et al., 

2012) 
Square lattice 

Cost of vaccination if 

vaccinated and cost of 

infection if infected 

Rule based 

(imitation) 

 

In the literature of epidemic modeling, although it is mentioned that the problem of decision 

making for vaccination is a public goods, none of the studies has used a public goods game based 

payoff function to model the behavior of populations. This dissertation aims to address this gap in 

the current literature.  
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Chapter 3 - Modeling Individuals’ Response to Epidemic 

This chapter presents a public goods game based model for modeling the dynamic of 

epidemics in which the payoff of each individual is calculated based on its share of perceived cost 

of susceptibility, severity and barriers for the whole group where he is a member, rather than his 

personal cost of vaccination or infection. Spatial game theory is used to consider the spatial 

network-based structure of the population of players. In this model, in every time step, all 

susceptible players update their strategy for getting vaccine or not synchronously and then each of 

them might be infected based on its strategy and the probability of becoming infected. In order to 

update the strategy to get vaccine or not a new approach is used in which each susceptible player 

updates its strategy not just to the strategy of the neighbor with the highest payoff but also to the 

strategy of the number of neighbors with highest payoffs. Thus, if there is someone vaccinated 

among the neighbors with highest payoff, the player will change its strategy to get the vaccine. 

The sensitivity factor is a measure for the number of neighbors with highest payoff that a player 

refers to in order to update its strategy. This sensitivity factor can be considered as a surrogate 

form of fear factor or the effect of media on making people aware of the severity of a disease. The 

concept of effect of media and fear factor on individual’s decision is studied in some research 

trying to show how it can affect the spread of infectious diseases (Johnston & Warkentin, 2010; 

Mummert & Weiss, 2013). The findings of this study are published in (Soltanolkottabi, Ben-Arieh, 

& Wu, 2019a). 

In section 3.1 the proposed methodology in modeling spread of infectious disease is 

presented. Section 3.2 presents the result of using this methodology considering different 

parameters and discussing the behavior of individuals facing infectious disease outbreaks. Section 

3.3 provides a summary and discussion. 
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3.1  Methodology 

In this study, individuals’ cost functions and payoffs are determined based on their 

contribution to the group and the group’s shared payoff which can be seen as a public goods game. 

This means that any payoff in a group will be distributed among the members of the group. 

In our model we have considered a person and all its immediate neighbors as a group; so, 

in a lattice, the center cell is the player in question and its cooperation group is the eight cells 

adjacent to it as shown in Figure 3.1 where the yellow cells show the cooperation group for player 

𝑖. 

     

     

  𝑖   

     

     

Figure 3.1 Cooperation group for individual 𝒊 

 

The payoff for being a member of this group is defined as follows: 

𝑃𝑎𝑦𝑜𝑓𝑓𝑔 = − ((
𝑁𝐼

𝑁
× 𝐶𝐼) + (

𝑁𝑉

𝑁
× 𝐶𝑉) + (

𝐶𝐼×∑ 𝑃inf 𝑗𝑗∈𝑆𝑚

𝑁
) + (

𝑁𝑅

𝑁
× 𝐶𝑅))                                3.1 

Where 𝑁𝐼 is the number of infected individuals in a group, 𝐶𝐼 is the cost of infection, 𝑁𝑉 is 

the number of vaccinated individuals in a group, 𝐶𝑉 is the cost of vaccination, 𝑆𝑚 is the group of 

susceptible members, 𝑃inf 𝑗 is the probability of getting infected for player 𝑗, 𝑁𝑅 is the number of 

recovered individuals in a group, 𝐶𝑅 is the cost of being recovered for the group and 𝑁 is the total 

number of members of a group.  In other words, we can say that the first and last portions of the 

equation show the perceived severity, the second portion is the perceived barriers and the third 
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portion is the perceived susceptibility of a group.  Note that the payoff is negative, treated as a cost 

rather than a benefit.  

Also, in this function, 𝑃inf 𝑗 is calculated using the following formula (Section 2.2.2): 

𝑃inf 𝑗 =
𝑁𝐼 𝑗

𝑁
× 𝛽                                         3.2 

Where 𝑁𝐼,𝑗  is the number of infected neighbors of 𝑗, 𝑁 is the total number of neighbors of 

𝑗 and 𝛽 is the disease’s transmission rate based on a one-on-one contact. 

The total payoff of a player is equal to the payoff that a player can earn from participating 

in a group minus the cost of being infected or getting the vaccine. The following formula shows 

the total payoff of a player: 

𝑃𝑎𝑦𝑜𝑓𝑓𝑖 = {

𝑃𝑎𝑦𝑜𝑓𝑓𝑔 − 𝐶𝑉                                𝑖𝑓 𝑖 𝑖𝑠 𝑣𝑎𝑐𝑐𝑖𝑛𝑎𝑡𝑒𝑑

𝑃𝑎𝑦𝑜𝑓𝑓𝑔 − 𝐶𝐼           𝑖𝑓 𝑖 𝑖𝑠 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑜𝑟 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑

𝑃𝑎𝑦𝑜𝑓𝑓𝑔                𝑖𝑓 𝑖 𝑖𝑠 𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒 (𝑓𝑟𝑒𝑒 𝑟𝑖𝑑𝑒𝑟)

                                 3.3  

 

3.1.1 Updating rule 

The updating rule is such that in every time step the top 𝑠 neighbors with highest payoff in 

the neighborhood of a player will be chosen and if there is someone vaccinated among them and 

its payoff is higher than the payoff of that player itself, the player will decide to get vaccinated, 

otherwise it remains susceptible. We call 𝑠 the sensitivity factor. 

To illustrate, in the following lattice, consider the sensitivity factor equal to 3 for the center 

player. The set of first 3 neighbors with highest payoff will be 

{(−2.111, 𝑆), (−3.055, 𝑆), (−12.38, 𝑉)} (Figure 3.2). The updating strategy of the center player 

will be to vaccinate if one of the top three neighbors is vaccinated, which is the case in Figure 3.2-

a. If we change the sensitivity factor to 2, then the player will not vaccinate as shown in the Figure 

3.2-b, since the top two players are not vaccinated. The numbers in the cells show the payoff for 

the center player and its neighbors, and the payoff of neighbors are calculated based on their 8 
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neighbors some of which are not shown here. We have considered (𝐶𝐼 , 𝐶𝑉 , 𝐶𝑅 , 𝛽) equal to 

(100, 10, 0, 0.2). 

(a) 

V S S  -12.38 -3.055 -2.111  V S S 

S S V → -14.5 -25.83 -24.22 → V V V 

I S I  -115.4 -26.5 -116.2  I V I 

Initial State  Payoff  
Updated 

Strategy 
 

(b) 

V S S  -12.38 -3.055 -2.111  V S S 

S S V → -14.5 -25.83 -24.22 → V S V 

I S I  -115.4 -26.5 -116.2  I V I 

Initial 

State 
 Payoff  

Updated 

Strategy 
 

Figure 3.2 Illustrating updating strategy 

 

3.2  Experimental results 

In the following, the result of changing different factors that can affect the dynamics of an 

epidemic are studied. In the lattices, the purple cells show susceptible, yellow cells show infected, 

red cells show recovered and light blue cells show vaccinated individuals. The parameters which 

are used in the models are presented in Table 3.1. 

Table 3.1 Parameters of the model 

Parameter Meaning Value 

𝑁 Population size 2500 

𝐼0 Percentage of initially infected individuals 5% 

𝑅0 Percentage of initially recovered individuals 0% 

𝐿 Duration of infectious period 19 time steps 

𝐶𝑅 Cost of being recovered 0 

𝐶𝐼 Cost of infection 1000 

𝐶𝑉 Cost of vaccination 10 or variable 

𝛽 Transmission rate 0.2 or variable 

𝑉0 Percentage of initially vaccinated individuals 5% or variable 

𝑠 Sensitivity factor 4 or variable 
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Figure 3.3 shows the change in the percentage of vaccinated individuals, infected 

individuals and susceptible for the values given in Table 3.1. In the figure, the purple line shows 

susceptible, yellow line shows infected, red line shows recovered and light blue line shows 

percentage of vaccinated individuals. It can be seen that during the epidemic, the percentage of 

infected individuals increases at first and then it decreases. Also, the number of vaccinated and 

recovered individuals increases and consequently, the number of susceptible will decrease until 

the epidemic dies out. 

 

Figure 3.3 Changes in the percentage of vaccinated, infected, recovered and susceptible 

individuals during an epidemic 

 

3.2.1 Effect of changing the cost of vaccination 

One of the variables that can affect the spread of infectious disease and is under control of 

the health policy makers is the cost of vaccination. It is reasonable for the cost of vaccination to 

be less than the cost of infection and practically it should be much less than the cost of infection 

otherwise people will prefer not to pay the cost of vaccination.  Thus, to examine the effect of 𝐶𝑉 
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on the epidemic and the number of vaccinated individuals, a simulation model was generated. The 

model was run on a 50 by 50 lattice in which the initial number of infected and vaccinated 

individuals are distributed randomly and 𝛽 = 0.2. It is updated for 200 time steps to make sure 

that epidemic has reached the steady state situation, then the result of steady state lattice is used 

for evaluations. 

In Figure 3.4, the results of updating a lattice using different vaccination cost from 0 to a 

cost equal to the cost of infection is presented.  

Figure 3.4-a shows the number of free-riders, infected and vaccinated individuals under 

different vaccination cost when 𝑠 = 1. The figure shows that as predicted increasing the 

vaccination cost will decrease the number of vaccinated individuals to the point that no one decides 

to get vaccinated other than the initially vaccinated ones.  However, comparing this result with the 

one with a higher sensitivity factor (𝑠 = 4, Figure 3.4-b) shows that increasing the sensitivity can 

result in more vaccinated individuals and also more free riders which is beneficial to the society. 

Moreover, in the experiments it can be seen that higher sensitivity factor can result in better control 

of the epidemic for any vaccination cost 𝐶𝑉 as long as the value of 𝐶𝑉 is not too high resulting in 

no additional vaccinated individual. This phenomena can be seen in Figure 3.5. Figure 3.5-a is the 

result of updating the lattice when 𝐶𝑉 = 10 (left) and 𝐶𝑉 = 100 (right) for 𝑠 = 1 and Figure 3.5-

b is the result of updating the lattice when 𝐶𝑉 = 10 (left) and 𝐶𝑉 = 100 (right) for 𝑠 = 4. It can 

be seen that when 𝑠 is higher there are some clusters of vaccinated individuals who surround 

infected individuals and cause the epidemic to be controlled more effectively. As a result, the 

number of free riders (purple cells) increases because there is enough protection provided by 

vaccinated individuals. Thus, the society benefits from a lower cost of vaccination and disease in 

comparison with the same level of protection when all individuals are vaccinated. It is worth to 
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mention that the epidemic season length did not show a meaningful relation with the cost of 

vaccination. 

This also shows the benefit of increasing s, indicating a higher public awareness of the risk 

and harm of the disease. Increasing s can be done practically by using public media, social 

networks and similar mass communication channels. 

(a) 

 

(b) 

 

Figure 3.4 Number of free riders, infected and vaccinated individuals for different 

vaccination costs when 𝒔 = 𝟏 (a) and 𝒔 = 𝟒 (b) 
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(a) 

 

 

 

(b) 

 

 

 

Figure 3.5 Distribution of players in the last lattice for 𝑪𝑽 = 𝟏𝟎 and 𝑪𝑽 = 𝟏𝟎𝟎 when 𝒔 = 𝟏 

(a) and 𝒔 = 𝟒 (b) 

 

3.2.2 Effect of changing the transmission rate 

The disease transmission rate is another variable in the model which depends on the 

characteristic of the disease.  In order to examine the behavior of this model facing different disease 

with different transmission rates, the number of finally vaccinated and infected individuals for 
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different transmission rates are studied. In Figure 3.6, the lattice on the left side shows the result 

of updating a 50 by 50 lattice when 𝐶𝑉 = 10 and 𝑠 = 4 for 𝛽 = 0.2 and the lattice on the right side 

shows the result of updating a 50 by 50 lattice when 𝐶𝑉 = 10 and 𝑠 = 4 for 𝛽 = 0.9. It can be 

seen that more people get vaccinated when the transmission rate is high (especially in the lower 

rates of transmission) to save themselves and their community. This phenomenon can better be 

seen in Figure 3.7 in which the number of vaccinated, infected and free riders is plotted for 

different transmission rates from 0.1 to 1.  The figure shows that the public behavior is sensitive 

to the transmission rate at the lower end, and is more stable at high rates of transmission.  This 

sensitivity was experienced during the 2003 SARS episode in Hong Kong (Durham & Casman, 

2011) .  

Moreover, the epidemic tends to end sooner with a higher transmission rate, due to the 

faster response of individuals to the epidemic because of its high threat to the players (i.e. higher 

cost) as seen in Figure 3.8. 

  

Figure 3.6 Distribution of players in the last lattice when 𝜷 = 𝟎. 𝟐 (left) and 𝜷 = 𝟎. 𝟗 (right) 
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Figure 3.7 The number of vaccinated, infected and free riders for different transmission 

rates 

 

 
 

Figure 3.8 The length of epidemic for different transmission rates 

 

3.2.3 Effect of changing the initially vaccinated population 

The number of initially vaccinated individuals in the population is another parameter that 

can be controlled by the health policy makers by encouraging some individuals in the population 

to get vaccinated either using free-subsidy policy or partial-subsidy policy. The result of changing 

0

200

400

600

800

1000

1200

1400

1600

1800

0 0.2 0.4 0.6 0.8 1

N
u

m
b
er

 o
f 

p
la

ye
rs

Transmission rate

free-riders vaccinated infected

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

L
en

g
th

 o
f 

ep
id

em
ic

Transmission rate



35 

the percentage of initially vaccinated individuals shows that increasing the percentage of 

vaccinated individuals is beneficial to the society as long as the number of vaccinated is not beyond 

a certain percentage causing some individuals to get the benefits of living among vaccinated 

individuals in an immune society. As it is apparent in Figure 3.9, the number of free-riders will 

increase as the number of initially vaccinated increase, but it will start to decrease as the number 

of vaccinated increase more than 20%. These experiments are done in a 50 by 50 lattice when 

𝐶𝑉 = 10, 𝛽 = 0.2 and 𝑠 = 4 while changing percentage of initially vaccinated ones (𝑉0) from 1% 

to 50%. Moreover, the number of finally vaccinated individuals does not exhibit a large change 

for different experiments while as the number of initially vaccinated ones increase the number of 

individuals who decide to get vaccine decrease. This can be better seen when we plot the number 

of individuals who decide to get vaccine during the epidemic (Figure 3.9- yellow line). This 

decrease in the number of voluntary vaccination can be explained by the “group protection” that 

more vaccinated individuals provide.  Additionally, the graph of infected individuals shows that 

as we increase the number of initially vaccinated people linearly, the number of infected people 

will decrease much faster. In all the experiments for Figure 3.9, the number of initially infected 

individuals was 5% of the population. 

Studying the behavior of population using different sensitivity factors and initial 

vaccination rate shows that the higher sensitivity will cause the number of free riders to grow 

faster. In Figure 3.10, each line shows the number of free-riders for each value of 𝑠 from 1 to 6 

and it is apparent that as the value of 𝑠 increases the number of free-riders increase. This can be 

explained by the fact that increasing the number of vaccinated individuals in the comparison group 

provides more protection and reduces the number of infected individuals, reducing the need of 

individuals to get vaccinated. This result is true when the number of initially vaccinated is less 
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than 20% because the number of free-riders will start to decrease as we increase the number of 

initially vaccinated individuals as it can be seen in Figure 3.9. 

 

 
 

Figure 3.9 The number of vaccinated, infected and free riders for different initial 

vaccination rate 

 

 
 

Figure 3.10 The number free-riders for different initial vaccination rate and sensitivity 

factor 
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3.2.4 Effect of changing the initial distribution of players in the lattice 

The distribution of players in the lattice is also a factor that can be controlled to achieve 

better vaccine coverage. Although the health policy makers can influence the initially vaccinated 

individuals in society, they have no control over the number of initially infected ones. Thus, to 

model the effect of changing distribution of players, the initially infected individuals are randomly 

distributed in the lattice, but three scenarios are considered. In the first scenario the vaccinated 

individuals are distributed randomly in the population (Figure 3.11 – a), in the second one the 

vaccinated individuals are evenly distributed in the lattice (Figure 3.11 – b) and in the third 

scenario the vaccinated individuals grouped into larger clusters (of 9 individuals) that are evenly 

distributed in the lattice (Figure 3.11 – c). In all scenarios the number of vaccinated and infected 

individuals are the same. These experiments are done in a 50 by 50 lattice considering  𝐶𝑉 = 10, 

𝛽 = 0.2 and 𝑠 = 4.  

Table 3.2 shows the result of each scenario. In all three scenarios the number of initially 

vaccinated is 144 which is approximately 5% of the population. We can see in Table 3.2 that if the 

individuals are evenly distributed, we will have fewer infected and vaccinated individuals and 

more free-riders. This result is the effect of accessibility of vaccinated individuals in all 

cooperation groups, so, individuals can decide sooner to get vaccine confronting a disease 

epidemic and can also save others from being infected. Moreover, the result shows that group 

vaccination is less effective while there might be some vaccination not necessary for people who 

are not at risk of being infected, and also more initial vaccinations are needed to support this 

society. However, if we distribute groups such that they are more reachable for other individuals 

for imitating their behavior the result will be improved. 
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Table 3.2 Result of each scenario 

Scenario Free-riders Vaccinated Infected Length of epidemic 

Random 517 1347 636 98 

Even 759 1240 501 90 

Cluster 232 1205 1063 100 

 

 

(a) 

 

 

 

(b) 
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(c) 

 

 

 

Figure 3.11 The first and last lattice for different distribution of vaccinated individuals 

 

3.2.5 Effect of changing the sensitivity factor 

In order to examine the behavior of the model to changing sensitivity factor, the steady 

state results of updating three different starting lattices under different sensitivity factors are 

presented in Figure 3.12.  The figure shows that as the sensitivity factor increases the infection has 

a lower chance to affect other people while individuals respond sooner to epidemic. In these 

experiments we have considered 𝐶𝑉 = 1 and 𝛽 = 0.2. It can be seen in all figures that as sensitivity 

factor increases in all three cases, vaccination has a better coverage and vaccinated individuals can 

better control the spread of infectious disease. 

Initial lattice 𝑠 = 1 𝑠 = 2 𝑠 = 3 
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 𝑠 = 4 𝑠 = 5 𝑠 = 6 

 

   

Initial lattice 𝑠 = 1 𝑠 = 2 𝑠 = 3 

    

 𝑠 = 4 𝑠 = 5 𝑠 = 6 

 

   

Initial lattice 𝑠 = 1 𝑠 = 2 𝑠 = 3 

    

 𝑠 = 4 𝑠 = 5 𝑠 = 6 
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Figure 3.12 Results of updating three custom starting lattices 

 

We have also examined the result of changing sensitivity factor when updating a lattice 

with distribution of players for three different vaccination costs (Figure 3.13-Figure 3.17). In the 

diagrams, the blue lines show the experiments for 𝐶𝑉 = 1, orange lines show the experiments for 

𝐶𝑉 = 10 and gray lines show the experiments for 𝐶𝑉 = 100. 

Figure 3.13 illustrates the total cost of each lattice of players. This cost is calculated using 

the following formula which shows the total cost of being infected or vaccinated for the society. 

𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 = 𝐶𝐼(𝑁𝐼 + 𝑁𝑅)+𝐶𝑉𝑁𝑉                                                                                            3.4 

In this case 𝑁𝐼, 𝑁𝑅 and 𝑁𝑉 are the number of infected, recovered and vaccinated individuals 

in the entire lattice.  

We can see that as the number of free-riders increases, and the ratio of infected to 

vaccinated individuals decreases, the total cost decreases. This means that the society could control 

the spread of disease with minimum number of vaccinated individuals. In Figure 3.13, the total 

cost decreases for all three different vaccination costs as the sensitivity factor increases but it does 

not change much for 𝑠 ≥ 5. 

Figure 3.14 shows the number of vaccinated players in the last lattice for each scenario. 

We can see that for sensitivity factors greater than 4, the number of vaccinated individuals does 

not change notably. However, the final number of vaccinated individuals is greater when the cost 

of vaccination is low. 
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Figure 3.15 shows the number of recovered individuals in the last lattice. In the last lattice, 

the epidemic season is over and all the infected individuals have changed their state to “recovered”.  

Thus the number of recovered individuals is used to represent the number of individuals infected 

during each run.  The figure shows that the number of recovered individuals has the same behavior 

as the total cost; this is due to the high cost of infection relative to the cost of vaccination and the 

effect of the high number of infected individuals on the total cost. Also, the figure demonstrates 

again that more people will be infected as the cost of vaccine increases. 

Figure 3.16 shows the number of free riders in each experiment. As can be seen this number 

increases as sensitivity increases but levels off after 𝑠 = 5.  Based on this output, we conclude that 

the sensitivity factor that maximizes the number of free riders is 𝑠 = 5 independently from the cost 

of vaccination.  It is interesting to observe as discussed earlier that a higher 𝑠 factor that relates to 

the fear of individuals from being infected is proportional to the number of free-riders (who choose 

not to vaccinate). This counter intuitive result can be explained as a society that is more active in 

protecting itself also provides protection to free-riders who benefit from this anxiety.  Also, s of 5 

implies that a simple majority of the neighbors decides on the strategy of the individual. This 

shows that the best policy in society is to follow the majority of the comparison group.  

Figure 3.17 shows the duration of the epidemic season in each experiment. Based on this 

result we can conclude that the length of an episode is mainly affected by the cost of vaccination; 

since cheaper vaccination results in an increase in the number of vaccinated individuals and cause 

the epidemic to end sooner.  Similarly, if the sensitivity factor is increased, the duration of an 

epidemic is reduced.  This is explained by the society that exhibits a higher sensitivity to the risk 

of being infected and is more proactive in vaccinating. 
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Figure 3.13 Total cost of each experiment 

 

 
 

Figure 3.14 Number of vaccinated individuals in each experiment 
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Figure 3.15 Number of recovered individuals in each experiment 

 

 
 

Figure 3.16 Number of free riders in each experiment 
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Figure 3.17 Length of epidemic season in each experiment 

 

3.2.6 Effect of different factors on the total cost 

When setting policies for controlling the epidemics, there are some factors that are under 

our control. Those factors are the level of sensitivity of individuals to getting vaccination, fraction 

of initially vaccinated individuals and their distribution and to some extent the cost of vaccination. 

In order to see the behavior of the model when changing more than one of these factors at the same 

time, the model is run for different cost of vaccination changing initially vaccinated percentage 

from 1 to 20 percent and sensitivity factor from 1 to 7. We define the total cost as the total cost of 

vaccination plus cost of infection for all the society as defined in Equation 3.4. The model is run 

on a 50 by 50 lattice when 𝛽 = 0.2 in which the initial number of infected and vaccinated 

individuals are distributed randomly. The following figures shows the value of total cost when 

changing sensitivity and initial vaccination rate for different cost of vaccinations. 
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Consequently, although more initial vaccination and sensitivity will result in lower total cost, it is 

not beneficial to invest too much on them mainly when the cost of vaccination is low, because the 

rate of changes in the total cost will decrease as we increase these factors.  

 

Figure 3.18 Total cost for different initial vaccination rate and sensitivity when 𝑪𝑽 = 𝟏𝟎 

 

 

Figure 3.19 Total cost for different initial vaccination rate and sensitivity when 𝑪𝑽 = 𝟑𝟎𝟎 

 

Total cost 

Total cost 
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3.2.7 Comparing individual and community based payoff function 

As discussed in chapter 2.2.3, the payoff function for calculating the payoff of player i is 

usually calculated based on the individual’s cost of taking prevention techniques such as 

vaccination and individual’s cost of being infected. Thus, vaccinated individuals pay the cost of 

vaccination 𝐶𝑣, infected individuals pay the cost of infection 𝐶𝐼 and free-riders who are neither 

vaccinated nor infected pay nothing (Equation 2.11). We call this payoff function “Individual 

based” payoff function. 

Also, in our model we considered that the payoff of a player is the payoff of its community 

and the payoff of the player itself (Equation 3.3) which we refer to as “community based” payoff 

function. 

Considering the proposed updating method in which a player changes its strategy to 

vaccinated if there is someone vaccinated with higher payoff than the individual’s payoff in the 

sorted list of its neighbors based on sensitivity factor, in the individual based payoff function, none 

of the players will change their strategy and all the susceptible individuals will become infected. 

This is due to the higher payoff of free-riders in comparison with other players which cause them 

to not find anyone with higher payoff than themselves to change to their strategy. 

However, if for the updating rule, we just consider the sensitivity factor on the sorted list 

of neighbors based on payoff without considering the attribute to choose a player with a higher 

payoff and update a 50 by 50 lattice based on this new updating rule using both “individual based” 

and “community based” payoff function, the result will be as follows having 𝐶𝑉 = 10, 𝛽 = 0.2 

and 𝑠 = 4. Table 3.3 shows the number of vaccinated, infected and free-riders in each case. We 

can see that, community based payoff function has more free-riders, less infected and more 

vaccinated individuals with a lower epidemic length. Figure 3.20 illustrates this result in which the 
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purple cells show susceptible individuals, red cells show recovered individuals and light blue cells 

show vaccinated individuals. 

Table 3.3 Number of vaccinated, infected, free-riders and length of epidemic 

 Free-riders Vaccinated Infected Epidemic length 

Individual based payoff 27 1143 1330 116 

Community based payoff 310 1865 325 55 

 

  

Figure 3.20 Distribution of players in the final lattice (Right – community based payoff, left 

– individual based payoff) 

Moreover, considering the payoff function similar to the individual based payoff function, 

but assuming the payoff of free-riders to be their probable cost of infection as defined in the 

following equation, where 𝑃inf 𝑖 is the probability of infection for node 𝑖 as defined in Equation 

3.2, we will get a different result. 

𝑃𝑖 = {

−𝐶𝑉                                                         𝑖𝑓 𝑖 𝑖𝑠 𝑣𝑎𝑐𝑐𝑖𝑛𝑎𝑡𝑒𝑑
−𝐶𝐼                                    𝑖𝑓 𝑖 𝑖𝑠 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑜𝑟 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑
−𝐶𝐼𝑃inf 𝑖                        𝑖𝑓 𝑖 𝑖𝑠 𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒 (𝑓𝑟𝑒𝑒 𝑟𝑖𝑑𝑒𝑟)

                                                                    3.5               

Figure 3.21 shows the result of updating a lattice using the public goods game method and 

the revised individual based method. It can be seen that when the cost of vaccination is low, the 

revised model shows a similar behavior to the community based payoff function and with a better 



49 

control of the epidemic. However, when increasing the cost of vaccination, it fails to show the 

free-riders behavior. 

(a) 

 

 

 

(b) 

 

 

 

Figure 3.21 Distribution of players in the final lattice (Right – community based payoff, left 

– individual based payoff) when 𝑪𝑽 = 𝟏𝟎 (a) and 𝑪𝑽 = 𝟓𝟎 (b) 
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3.2.8 Basic reproduction number 

The basic reproduction number (𝑅0), is defined as the expected number of secondary cases 

produced by a single infection in a completely susceptible population (Jones, 2007). This value 

can be defined as follow: 

𝑅0  =  𝛽 ·  𝐶 ·  𝐿                                                                                                                                                                     3.6 

where β is the transmissibility which is the probability of infection given contact between 

a susceptible and infected individual, 𝐶 is the average rate of contact between susceptible and 

infected individuals, and 𝐿 is the duration of infectiousness. 

In our model, the contact rate is different for different locations in the lattice and it also 

varies during the epidemic because of the changeing behavior of individuals, causing the contact 

rate to decrease. To illustrate this we have plotted the number of infections in each period over the 

number of infection in its previous period to see the changes in 𝑅0 (Figure 3.21).  

Figure 3.22 shows the ratio of infection in each period over the infection in its previous 

period during an epidemic for a 50 by 50 square lattice when (𝐶𝐼 , 𝐶𝑉 , 𝐶𝑅, 𝛽, 𝑠) equal to 

(1000, 10, 0, 0.2,4), blue line, when (𝐶𝐼 , 𝐶𝑉 , 𝐶𝑅, 𝛽, 𝑠) equal to (1000, 101, 0, 0.2,4), red line, and 

(𝐶𝐼 , 𝐶𝑉 , 𝐶𝑅, 𝛽, 𝑠) equal to (1000, 10, 0, 0.2,1), green line. It can be seen that at first the value of 𝑅0 

is more than 1, meaning that the epidemic is expanding. Then, after some steps this value falls 

below 1 because of the protective behavior of individuals and the infectiousness of recovered 

individuals, meaning that not everybody will become infected and the epidemic will end. Also, we 

can see that when the cost of vaccination is low and the sensitivity is high (blue line), 𝑅0 is less 

than the time that cost of vaccination is high (red line) and sensitivity is low (green line). Moreover, it can 

be observed that the value of 𝑅0 in the expanding period is much higher when the transmission rate of the 

disease is higher (Figure 3.23). 
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Figure 3.22 The ratio of infection in each period over the infection in its previous period for 

different scenarios 

 

Figure 3.23 The ratio of infection in each period over the infection in its previous period 

when 𝜷 = 𝟎. 𝟓 
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3.3  Conclusion 

In this study, a public goods game based model for modeling the behavior of population of 

players in response to an epidemic is illustrated. In this model, the payoff of each player is 

calculated using a function in which every cost of individuals in a 3 by 3 group is divided between 

the members of that group. These costs are the cost of infection for infected people in the group, 

cost of vaccination for vaccinated individuals, probable cost of being infected for susceptible 

people and cost of being recovered for recovered individuals. Using the payoff of each player, 

individuals try to imitate the behavior of the people who are in the groups with the lowest cost or 

highest payoff. Sensitivity factor is one of the parameters which is introduced to show the risk 

tolerance (fear) of players encouraging switching to the strategy of their neighbors. The sensitivity 

factor can show the number of neighbors with highest payoffs in the candidate list of a players, so, 

if any vaccinated individual is in this candidate list the player will be encouraged to get vaccinated. 

Although in our model the sensitivity factor is not varying among players and is considered to be 

influenced by the social media, it can cause different behaviors in populations. Using this model, 

we can show that if the cost of vaccination is increased, players have less tendency to get 

vaccinated, which is a representative behavior to a real-world situation.  

However, increasing the sensitivity of individuals can result in more vaccination in the 

same situation. This behavior is very similar to the effect of fear of being infected in real-world 

epidemics. Moreover, increasing the sensitivity can be beneficial for the society as individuals 

react to the epidemic sooner and decide faster to get vaccine in order to save themselves and their 

community, but increasing the sensitivity factor too much does not lead to an optimal cost for the 

society. The results show that increasing the sensitivity factor to more than 5 does reduce cost 

while the number of free-riders dose not increase and the number of vaccinated and infected 
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individuals does not change. This behavior is the result of dissuasive effect of selecting the strategy 

of the neighbors who have a higher payoff than the payoff of the player itself on the candidate list. 

Additionally, the model tests the effect of the infection transmission rate, and, the epidemic 

length is lower when facing a disease with high transmission rate.  This is explained by the fact 

that individuals respond sooner to the disease spread when there is a higher probability of being 

infected (represented as a strategy with a higher potential cost). 

In this model we also examined the effect of the number of initially vaccinated individuals 

on the epidemic which shows that mandatory vaccination can be beneficial when it does not force 

too many individuals to get the vaccine. Also, the distribution of vaccinated players in the lattice 

can affect the final result. When the players are distributed evenly in the lattice, more people are 

in contact with vaccinated individuals and this can cause them to get vaccine sooner when facing 

an epidemic and can result a better control of epidemic compared to the same number of vaccinated 

individuals who are randomly distributed. 

Last but not least, it is shown in this study that considering community based payoff 

function in modeling the spread of infectious diseases can better capture the dynamic of epidemic 

sand therefore it is recommended to be used when modeling the epidemic outbreaks to study the 

behavior of populations  and when such models are used for decision making for public health. 
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Chapter 4 - Modeling Individuals’ Response to Epidemic with 

Delayed Emergence of Syndromes 

One of the factors to be considered in the accurate modeling of epidemic outbreaks is the 

incubation period - the period in which an individual has contracted the disease and is infectious, 

but is not yet aware of it. This chapter studies the effects of the delay between the infection for an 

individual and its diagnosis. Thus, it is assumed that from the time that a person is infected until 

he becomes aware of his infection, he can transmit the disease but his contacts consider him a 

susceptible individual in their social group and not an infectious one. This study investigates the 

social dynamics of vaccination and transmission with delays in such epidemic outbreaks using a 

model of the public goods game. 

In section 4.1 the proposed methodology and updating rule to consider the time delay in 

emergence of syndromes is presented. Section 4.2 presents the result of using this methodology 

considering different parameters and discussing the behavior of individuals facing infectious 

disease outbreaks. Section 4.3 provides a summary and discussion. 

4.1  Methodology 

In this study, individuals’ cost functions and payoffs are determined based on their 

contribution to the group and the group’s shared payoff as it is described in chapter 3.1. 

However, when updating the strategy of players, a time delay in showing the syndromes is 

considered. In the following the updating rule for this model is illustrated. 

4.1.1 Updating rule 

In each iteration of the game after calculating the payoff of each player, the strategy of 

susceptible individuals is updated. Thus, a susceptible individual can decide whether to get 

vaccinated or remain susceptible. In order to update the strategy of susceptible players, at every 
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time step the top s neighbors with the highest payoff in the neighborhood of a player will be 

chosen.  If one of them has a higher payoff than that of the player itself, and it is vaccinated then 

the player will decide to get vaccinated, borrowing the strategy of that “successful” player, 

otherwise it remains susceptible. This s is referred to as a sensitivity factor which can be controlled 

by investing in awareness programs regarding the disease raising individuals’ sensitivity to the 

risk of being infected.  

Following an update of the strategy of all players, the epidemic season advances one step 

further.  At this time the individuals who are still susceptible can be infected based on the 

probability of infection, which is calculated using Equation 4.1. 

𝐴𝑃inf 𝑗 =
𝐺𝐼𝑗

𝑁𝑗
× 𝛽                                                                                                                                                                     4.1 

Where 𝐺𝐼𝑗 is the actual number of infected neighbors of 𝑗, 𝑁 is the total number of 

neighbors of 𝑗 and 𝛽 is the disease’s transmission rate based on a one-on-one contact. 

This paper looks at two types of updating: Normal updating and Delayed updating and 

compares the result of updating under each scenario. In Normal updating, if an individual becomes 

infected, his apparent strategy is available right after being infected. However, in Delayed 

updating, if an individual becomes infected in one period, his apparent strategy will not be released 

for some time steps, which is equal to the incubation period of the disease (𝐷). An infected 

individual will become recovered and will be immune to the disease after 𝐿 time steps which is 

the duration of the infection period. 

An example of the updating rule is demonstrated below. The payoff for the center player 

and its neighbors are the numbers in the cells, where the payoff of each neighbor is calculated 

based on their 8 neighbors, some of which are not shown here. The vector of initial values in this 

example is  (𝐶𝐼 , 𝐶𝑉 , 𝐶𝑅 , 𝛽) = (100, 10, 0, 0.2). 
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When the sensitivity factor is equal to 3, the set of first 3 neighbors with highest payoff 

will be {(−2.111, 𝑆), (−3.055, 𝑆), (−12.38, 𝑉)} (Figure 4.1-a). This means that the updating 

strategy of the center player will be to get vaccinated since one of the top three neighbors is 

vaccinated and has a higher payoff than the center player. Sensitivity factor of 3 has similar results 

for Delayed and Normal updating. 

When the sensitivity factor is equal to 2, the player will not vaccinate since there is no 

vaccinated player among the top two players in the neighborhood of the center player and with a 

higher payoff than the player itself (Figure 4.1-b).  If this player becomes infected during this 

period (because of an infected neighbor), in Delayed updating, its apparent status will not change, 

so its neighbors cannot learn about this infection, but its actual status will change to infected.  

Consequently, at this time the disease can be transmitted to other players. This behavior is shown 

in Figure 4.1 as apparent status and as actual status.  

 

(a) 𝑠 = 3  

Normal updating 

 

V S S  -12.38 -3.055 -2.111  V S S  V S S 

S S V → -14.5 -25.83 -24.22 → V V V  V V V 

I S I  -115.4 -26.5 -116.2  I V I  I V I 

Initial State  Payoff  

Apparent 

updated 

status 

 Actual 

updated 

status 
 

Delayed updating 

 

V S S  -12.38 -3.055 -2.111  V S S  V S S 

S S V → -14.5 -25.83 -24.22 → V V V  V V V 

I S I  -115.4 -26.5 -116.2  I V I  I V I 

Initial State  Payoff  
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updated 
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 (b) 𝑠 = 2  

Normal updating 

 

V S S  -12.38 -3.055 -2.111  V S S  V S S 

S S V → -14.5 -25.83 -24.22 → V I V  V I V 

I S I  -115.4 -26.5 -116.2  I V I  I V I 

Initial 

State 
 Payoff  

Apparent 

updated 
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 Actual 

updated 

status 
 

Delayed updating 

 

V S S  -12.38 -3.055 -2.111  V S S  V S S 

S S V → -14.5 -25.83 -24.22 → V S V  V I V 

I S I  -115.4 -26.5 -116.2  I V I  I V I 

Initial 

State 
 Payoff  

Apparent 

updated 

status 

 Actual 

updated 

status 
 

 

Figure 4.1 Illustrating Normal and Delayed updating for different sensitivities 

 

4.2  Experimental results 

The example below illustrates the effect of an incubation period on the dynamics of an 

epidemic.  This example starts with one infected and one vaccinated individuals distributed on a 5 

by 5 lattice in which the infected individual is at the top-left corner of the inner 3 by 3 square and 

the vaccinated individual is at the bottom-right corner of the inner square; all other players are 

susceptible to the disease as it is shown in Figure 4.2-a. Updating this initial lattice using Normal 

and Delayed updating will result in completely different outbreaks and outcomes (Figure 4.2-b 

and Figure 4.2-c). In Figure 2, the purple cells represent susceptible individuals, yellow cells are 

infected individuals, red cells are recovered ones and those vaccinated are shown as blue cells. The 

vector of the initial values is (𝐶𝐼 , 𝐶𝑉 , 𝐶𝑅 , 𝛽, 𝐿, 𝐷, 𝑠) = (100, 10, 0, 0.2,19,6,4). A comparison of 

Figure 4.2-b and Figure 4.2-c shows that when an incubation period is taken into account (Delayed 
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updating), the number of infected individuals will increase (more red cells) and fewer people will 

be protected by vaccinated individuals in their neighborhood which we refer to as free-riders 

(purple cells). 

a) Initial lattice b) Normal Updating c) Updating with delay 

   
Figure 4.2 Result of updating a custom lattice for Normal updating and Delayed updating 

 

To generalize this example, the result of Normal and Delayed updating of a 50 by 50 lattice 

with random distribution of 5% initially vaccinated and 5% initially infected individuals is 

illustrated. Table 4.1 shows the number of vaccinated, infected and free-riders for each scenario. 

It can be seen that for the parameters in Table 4.1, the final number of free-riders and vaccinated 

individuals is smaller considering a Delayed updating and the number of infected individuals is 

higher. This can also be seen in Figure 4.3. Similar to Figure 4.1, the purple cells represent 

susceptible individuals, red cells are recovered individuals and blue cells are vaccinated ones. It 

should be noted that not only the number of infected individuals is increased and the number of 

vaccinated individuals is decreased with delayed updating, but also the number of free-riders 

decreases due to not having enough vaccinated individuals in the population to ensure immunity 

in their communities.   

 

Table 4.1 Number of vaccinated, infected, free-riders and length of epidemic 

 Free-riders Vaccinated Infected Epidemic length 

Normal updating 488 1281 731 94 

Delayed updating 237 1123 1140 98 
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Figure 4.3 Distribution of players in the final lattice (Left - Normal updating, Right – 

Delayed updating) 

 

The following section discusses the sensitivity of the dynamics of an epidemic to changing 

various factors for Normal and for Delayed updating. In the graphs below the blue line shows the 

result of Normal updating and the orange line shows the result of Delayed updating. The 

parameters used in the models are presented in Table 4.2. 

Table 4.2 Parameters of the model 

Parameter Meaning Value 

𝑁 Population size 2500 

𝐼0 Percentage of initially infected individuals 5% 

𝑉0 Percentage of initially vaccinated individuals 5% or variable 

𝑅0 Percentage of initially recovered individuals 0% 

𝐿 Duration of infectious period 19 time steps  

𝐷 Delay time in emergence of symptoms 6 time steps or variable 

𝐶𝑅 Cost of being recovered 0 

𝐶𝐼 Cost of infection 1000 

𝐶𝑉 Cost of vaccination 10 or variable 

𝛽 Transmission rate 0.2 or variable 

𝑠 Sensitivity factor 4 or variable 
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4.2.1 Effect of changing the cost of vaccination 

Cost of vaccination is one of the factors that can change the dynamics of an epidemic 

affecting the decision of individuals to get vaccinated. Figure 4.4 to Figure 4.6 show the result of 

changing the cost of vaccination considering Delayed or Normal updating. It can be seen that for 

a lower vaccine cost, the number of free-riders is lower without considering the incubation period 

(Figure 4.4). Moreover, the number of vaccinated individuals is also lower when the time delay in 

becoming aware of an infection is considered (Figure 4.5).  This decrease in the number of 

vaccinated and free-riders is caused by a higher number of infected people not being aware of their 

status due to the delayed response (Figure 4.6). 

   

Figure 4.4 Number of free riders for Normal and Delayed updating when changing 𝑪𝑽 
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Figure 4.5 Number of vaccinated individuals for Normal and Delayed updating when 

changing 𝑪𝑽 from 0 to 1000 

 

  

Figure 4.6 Number of infected individuals for Normal and Delayed updating when 

changing 𝑪𝑽 from 0 to 1000 

 

4.2.2 Effect of changing the transmission rate  

Transmission rate is another factor that can change the dynamics of an epidemic. If the 

transmission rate is high, there is a higher possibility for individuals to become infected.  But this 
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is only true if people are not aware of the infection near them; otherwise, they will respond to it 

sooner and get vaccinated showing a relatively flat curve (Figure 4.7).   Usually, in real world 

situations diseases with a higher transmission rate have more victims. As a result of this higher 

number of infected people, fewer people have the chance to remain healthy without being 

vaccinated themselves. The number of individuals who remain healthy without vaccine (free-riders 

here) is even lower if the incubation time of the disease is also considered, as illustrated in Figure 

4.9. The number of vaccinated individuals will increase with the growing transmission rate without 

considering the incubation period. Yet, taking into account the hidden period of the disease when 

people might become infeceted before they are aware of the disease, the number of the vaccinated 

individuals will be even lower (Figure 4.8). This decline in the number of vaccinated indviduals 

when using delayed updating is caused by two factors. First, players are not aware of an infection 

and consider an incorrect payoff in deciding whether to vaccinate.  Secondly, there is a risk of 

being infected by an undiagnosed infected neighbor.  Figure 4.7 shows that the number of infected 

individulas when using normal updating scheme does not change much with the change of 

trasmission rate. This phenomenon occurs due to faster response of individuals to the epidemic 

when they know that they are in a higher risk of being infected, which is not percieved in delayed 

updating.  

Generally, the delayed updating model has always more infected individuals compard to 

the normal updating one, regardless of the parameters used in the model. 
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Figure 4.7 Number of infected individuals for Normal and Delayed updating changing 𝜷 

 

  

Figure 4.8 Number of vaccinated individuals for Normal and Delayed updating when 

changing 𝜷 
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Figure 4.9 Number of free-riders for Normal and Delayed updating when changing 𝜷 

 

4.2.3 Effect of changing the initially vaccinated population V0 

The number of initially vaccinated individuals is one of the parameters that public health 

policy makers can influence, thus influencing the spread of an epidemic. The result of the time-

delay in becoming aware of an infection is more apparent when a small percentage of the 

population is forced to get vaccinated, while the alternative of over-vaccinating the population 
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the time-delay.  This can be explained by not having enough vaccinated individuals who can 

provide immunity for others when there is an incubation period.    

However, a higher number of initially vaccinated individuals can provide better immunity 
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In studying the effect of an initial vaccination program, it is important to consider the 

change in the number of people who decide to get vaccinated themselves rather than the total 

number of vaccinated individuals (many of which were initially vaccinated). 

This comparison is illustrated in Figure 4.11 and Figure 4.12.  Here, the total number of 

vaccinated individuals and the number of individuals who decided to get vaccinated does not vary 

much for delayed and normal updating for a higher number of initially vaccinated individuals due 

to the provided immunity as a result of the mandatory vaccination. Also, the number of infected 

individuals is higher for models with time-delay and a lower number of initially vaccinated 

individuals (Figure 4.13). This higher number of infections is again the result of the hidden risk of 

infection and not responding to it in the form of preventive behavior (vaccination in this case). The 

lower number of infection for higher 𝑉0 is again the result of the provided immunity through the 

mandatory vaccination. 

  

Figure 4.10 Number of free-rider for Normal and Delayed updating when changing 𝑽𝟎 
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Figure 4.11 Number of vaccinated individuals for Normal and Delayed updating when 

changing 𝑽𝟎 from 0.01 to 0.5 

 

  

Figure 4.12 Number of vaccinated individuals who decided to get vaccine for Normal and 

Delayed updating when changing 𝑽𝟎 from 0.01 to 0.5 
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Figure 4.13 Number of infected individuals for Normal and Delayed updating when 

changing 𝑽𝟎 from 0.01 to 0.5 
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The sensitivity parameter 𝑠 represents the degree of social awareness as well as the fear of 

individuals of the disease. It represents the degree of sensitivity of individuals to reported infected 

and vaccinated cases around them. This sensitivity and willingness to change a strategy from doing 
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When not aware of a possible threat of a disease, more players choose to defer vaccination.  This 
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Figure 4.14 shows the effect of different sensitivity factors on the number of free-riders.  

This figure shows that increasing the sensitivity factor results in more free-riders.  However, when 

considering the incubation period, this increase is lower when there is a time-delay in becoming 

aware of an infection.  

The results of this analysis show that both 𝑠 and the time delay act as types of 

“responsiveness”.  Thus, the model with lower “responsiveness” (Delayed updating with a lower 

𝑠) will have fewer free-riders, fewer vaccinated and more infected individuals in comparison with 

the model with higher “responsiveness” (Normal updating with higher 𝑠) as shown in Figure 4.15 

and Figure 4.16.  This is due to the delay in becoming aware of the infection threat whether because 

of the nature of the disease or lack of appropriate awareness programs.  

This discussion also applies to the number of vaccinated individuals as illustrated in Figure 

4.15.  Increased awareness and sensitivity results in a higher level of vaccination, and lower 

sensitivity and awareness results in fewer vaccinations.  

  

Figure 4.14 Number of free-riders for Normal and Delayed updating when changing 𝒔 from 

1 to 8 
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Figure 4.15 Number of vaccinated individuals for Normal and Delayed updating when 

changing 𝒔 from 1 to 8 

 

 

Figure 4.16 Number of infected individuals for Normal and Delayed updating when 

changing 𝒔 from 1 to 8 
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individuals in a population. As shown in Figure 4.17, the main parameters have an approximately 

linear relation to the length of the time delay of an epidemic.  Therefore, a longer time delay 

(incubation period) results in more infected individuals (red line), fewer vaccinated individuals 

(blue line) and fewer free-riders (purple line).  

However, the length of the epidemic does not show a meaningful relation to the length of 

an incubation period (Figure 4.18). In summary, although an increase in the incubation period 

results in more infected individuals, fewer vaccinated and free-rider ones, it will not affect the 

epidemic length.  So, on average, an epidemic with a higher incubation period will not last a longer 

period of time. 

As discussed above, the result of increasing the incubation period is very similar to the 

result of lowering the sensitivity factor, generally indicating lower awareness of the epidemic.  

Lower awareness will ultimately result in more infected and fewer free-riders and vaccinated 

individuals.  

 

 

Figure 4.17 Number of free-riders, vaccinated and infected individuals when changing the 

incubation period from 0 to 18 
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Figure 4.18 The length of epidemic when changing the incubation period from 0 to 18 

 

4.3  Conclusion 

This paper studies the effect of an incubation period on the spread of infectious diseases. 
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an increase of the sensitivity 𝑠 results in fewer infected individuals and more free-riders but may 

not affect the number of vaccinated individuals. Moreover, the results show that increasing the 

length of the incubation period in comparison to the total time of an infection results in more 

infected individuals and fewer vaccinated and free-riders.   
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Chapter 5 - Modeling Meta-populations’ Response to Epidemic 

This chapter models the spread of diseases for a network of populations to analyze how 

different strategies can change the dynamic of disease spread and the percentage of infected and 

vaccinated individuals in each population. To approach this problem, an agent-based model is used 

in which agents are different populations and spatial evolutionary game theory with a public goods 

payoff is used to model the behavior of agents. 

In section 5.1 the proposed methodology is presented. Section 5.2 presents the result of 

using this methodology considering different parameters and discussing the behavior of 

populations facing infectious disease outbreaks. Section 5.3 provides a summary and discussion. 

5.1  Methodology 

In this study, populations’ cost functions and payoffs are determined based on their 

contribution to the group and the group’s shared payoff which can be seen as a public goods game. 

When considering populations instead of individuals at each node, each population can 

have a level of contribution to the public health. Thus, instead of having vaccinated individuals 

just paying the cost of vaccination and infected and recovered ones paying the cost of infection as 

their contribution in the public health, we have different levels of vaccination and infection as the 

contribution of each society in the public health of its communication group. 

In our model we considered each node of a graph as a society and the edges in the graph 

demonstrate the temporary transfer of individuals from one society to another one. Also, each node 

and its first order connected nodes form a communication group. To illustrate, in Figure 5.1 the 

orange nodes show cooperation group for society 𝑖. 
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Figure 5.1 Cooperation group for society 𝒊 (𝑾𝒊𝒋 is the communication weight from node 𝒊 to 

node 𝒋) 

5.1.1 Calculating 𝝀 

As described before, the infection rate in a population can be calculated using the following 

formula: 

𝜆 = 𝛽 ×
𝑁𝐼

𝑁
                                                                                                                                                                                 5.1 

In which 𝛽 is the transmission rate of the disease, 𝑁 is the population size of the node and 

𝑁𝐼 is the number of infected individuals at  the node, and 𝜆 is the effective infection rate. 

However, when a population has contacts with other populations the infection can spread 

in a society by the contacts from outside. To model this phenomena, it is considered that at each 

time step a number of links will form between chosen individuals in one society and some other 

individuals from the other societies. If an infected individual meets a susceptible one there is 𝛽 

chance for the susceptible individual to become infected. The weight of communication 𝑊𝑗𝑖 is 

equal to the number of links that can form from node 𝑗 to node  𝑖 which can resemble the travels 

from node 𝑗 to 𝑖. Thus, the expected value of the number of new infections in node 𝑖 caused as 

result of communication with node 𝑗 can be calculated using the following formula: 

 i 

j 

𝑊𝑖𝑗  
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𝐸(𝑁𝐼 𝑗𝑖) = 𝑊𝑗𝑖 × 𝛽 ×
𝑁𝐼𝑗

𝑁𝑗
×

𝑁𝑆𝑖

𝑁𝑖
                                                                                                                                  5.2 

Where 𝑊𝑗𝑖  is the weight of communication between node 𝑗 and node 𝑖, 𝛽 is the transmission 

rate of the disease, 𝑁𝐼𝑗 is the number of infected individuals in node 𝑗, 𝑁𝑗 is the population size of 

node 𝑗, 𝑁𝑆𝑖 is the number of susceptible individuals in node 𝑖 and 𝑁𝑖 is the population size of node 

𝑖. Thus, 𝛽 ×
𝑁𝐼𝑗

𝑁𝑗
×

𝑁𝑆𝑖

𝑁𝑖
 shows the probability that a link between an individual in node 𝑖 and an 

individual in node 𝑗 result in a new infection in node 𝑖. 

Consequently, the number of new infections in node 𝑖 caused as a result of communication 

with its neighbors can be calculated using the below formula where 𝑔𝑖 is the group of neighbors 

of node 𝑖: 

𝑁𝐼 𝑖 𝑜𝑢𝑡 = ∑ 𝑁𝐼 𝑗𝑖𝑗∈𝑔𝑖
                                                                                                                                                       5.3 

Therefore, the number of infected individuals in node 𝑖 will increase by  𝑁𝐼 𝑖 𝑜𝑢𝑡 and 

consequently a new population of infected individuals will enforce infection spread in node 𝑖. Thus 

at period 𝑡, 𝜆 = 𝛽 ×
𝑁𝐼

𝑁
 in which 𝑁𝐼 is the number of infected individuals at the end of period 𝑡 − 1 

(𝑁𝐼 𝑡−1) in node 𝑖 plus 𝑁𝐼 𝑖 𝑜𝑢𝑡 in period 𝑡. 

In this study, whenever 𝜆 is used to estimate the number of infections in a period, the 

expected value of infection from outside 𝐸(𝑁𝐼 𝑖 𝑜𝑢𝑡) is used for calculating the 𝐸(𝑁𝐼) and thus, 

𝐸(𝜆) = 𝛽 ×
𝐸(𝑁𝐼)

𝑁
= 𝛽 ×

𝐸(𝑁𝐼 𝑡−1)+𝐸(𝑁𝐼 𝑖 𝑜𝑢𝑡)

𝑁
                                                                                                              5.4 

In simulating this model, it is assumed that 𝑊𝑗𝑖  is the number of contacts of travelers from 

node 𝑗 to node 𝑖.  It is calculated based on the percentage of contacts times the population size. 

Thus, if the population of node 𝑗 is 100 and 2% is the percentage of communication, the value of 

𝑊𝑗𝑖  is 100 × 0.02 = 2, representing the actual number of contacts. 

To calculate the value of 𝑁𝐼 𝑗𝑖  we start with 𝑁𝐼 𝑗𝑖 = 0. At each time step, for each link from 

node 𝑗 to node 𝑖 (1 to 𝑊𝑗𝑖) a random number between 0 and 1 is generated. If the number is less 
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than 𝛽 ×
𝑁𝐼𝑗

𝑁𝑗
×

𝑁𝑆𝑖

𝑁𝑖
 the value of 𝑁𝐼 𝑗𝑖  will increase by one. The last value of 𝑁𝐼 𝑗𝑖will be used in 

calculating 𝑁𝐼 𝑖 𝑜𝑢𝑡. 

5.1.2 Payoff calculation 

Based on the public good game we can consider that each society has two payoffs. Local 

payoff (cost) which is the cost of its contribution to the communication group and global payoff 

which is the shared payoff in the communication group. 

The local payoff for each node is related to the cost that is paid by that society to contribute 

towards the health status of the community which is the cost of vaccination, cost of infection and 

cost of recovery. 

𝑃𝑙𝑜𝑐𝑎𝑙 𝑖 = −(𝐶𝑉𝑁𝑉𝑖 + 𝐶𝐼𝑁𝐼𝑖 + 𝐶𝑅𝑁𝑅𝑖)                                                                                                                        5.5 

Where 𝐶𝑉, 𝐶𝐼 and 𝐶𝑅 are cost of vaccination, cost of infection and cost of being recovered 

respectively. 𝑁𝑉𝑖 is the total number of vaccinated individuals in the node, 𝑁𝐼𝑖 is the number of 

infected individuals in the node and 𝑁𝑅𝑖 is the number of recovered individuals in the node. 

When comes to the global payoff, it is assumed that all the nodes in a community have a 

shared payoff resulting from their contribution to the community that they belong to. This shared 

payoff can be defined as the vaccination and infection status of the whole society and also the 

infection risk in the society resulting from the vaccination and infection status of each node and 

its neighbors. The vaccination and infection status can be described as the perceived barriers to 

behavior adoption or the cost of prevention and the perceived severity or the cost of being infected 

for the society, and the infection risk is the perceived susceptibility in a communication group. 

Note that the group payoff is distributed based on the population size of the nodes. Thus, a higher 

payoff occurs in the more populated nodes. 
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Based on the above definition, the shared payoff of the node 𝑖 in the community 𝐺 is 

defined as follows: 

𝑃𝑔𝑙𝑜𝑏𝑎𝑙 𝑖 = −
𝑁𝑖 ∑ (𝐶𝑉𝑁𝑉𝑗+𝐶𝐼𝑁𝐼𝑗+𝐶𝑅𝑁𝑅𝑗+𝐶𝐼𝐸(𝜆𝑗)𝑁𝑆𝑗)∀𝑗∈𝐺

∑ 𝑁𝑗∀𝑗∈𝐺
                                                                                             5.6 

Where 𝐶𝑉, 𝐶𝐼 and 𝐶𝑅 are cost of vaccination, cost of infection and cost of being recovered 

respectively. 𝑁𝑉𝑗 is the total number of vaccinated individuals in node 𝑗, 𝑁𝐼𝑗 is the number of 

infected individuals in node 𝑗, 𝑁𝑅𝑗 is the number of recovered individuals in node 𝑗, 𝑁𝑆𝑗 is the 

number of susceptible individuals in node 𝑗, 𝑁𝑖 and 𝑁𝑗 are the population sizes of the node 𝑖 and 𝑗 

respectively, 𝐺 is the cooperation group for node 𝑖 and 𝐸(𝜆𝑗) is the expected infection rate for the 

node 𝑗. 

The total payoff of each node is then calculated using the following formula: 

𝑃𝑖 = 𝑃𝑙𝑜𝑐𝑎𝑙 𝑖 + 𝑃𝑔𝑙𝑜𝑏𝑎𝑙 𝑖                                                                                                                                                       5.7 

 

5.1.3 Updating strategy 

In every time step, each node which is in risk of being infected (𝜆𝑗𝑁𝑆𝑗 > 0) can decide to 

change its vaccination rate (𝛾) to contribute towards controlling the epidemic. The updating rule 

is such that at every time step a node will update this vaccination rate strategy using the following 

formula. 

𝛾𝑖𝑡 = 𝛼𝛾𝑖 𝑡−1 + (1 − 𝛼)
max(𝑃𝑗|𝑗 ∈ 𝐺)−𝑃𝑖

max(𝑃𝑗|𝑗 ∈ 𝐺)−min(𝑃𝑗|𝑗 ∈ 𝐺)
                                                                                         5.8 

In which 𝑃𝑖 is the payoff of node 𝑖 and 𝐺 is the cooperation group for node 𝑖. α shows the 

willingness of a node to keep its previous strategy. 

5.1.4 Updating epidemic spread 

After updating the strategy of each node, the new number of vaccinated, infected and 

recovered individuals given the new strategy is calculated.  
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To find these values, we use a population based model for the given strategy. Since the 

status of each node is also related to the number of interactions with other nodes, to consider the 

interactions with other nodes and the effect of their statuses on each node status we consider that 

the number of vaccinated and infected individuals from other nodes can affect the vaccination rate 

and infection rate in the node and also the possibility that a node becomes infected. 

The following equations can be used for calculating the new status of a node: 

𝑑𝑁𝑆

𝑑𝑡
= −𝜆𝑁𝑆 − 𝛾𝑁𝑆                                                                                                                                                               5.9                                           

𝑑𝑁𝐼

𝑑𝑡
= 𝜆𝑁𝑆 − 𝑔𝑁𝐼  

𝑑𝑁𝑅

𝑑𝑡
= 𝑔𝑁𝐼  

𝑑𝑁𝑉

𝑑𝑡
= 𝛾𝑁𝑆  

Where 𝑁𝑉, 𝑁𝐼, 𝑁𝑅 and 𝑁𝑠 are the number of vaccinated, infected, recovered and susceptible 

individuals respectively. 𝜆 is the infection rate, 𝑔 is the rate of recovery and 𝛾 is the vaccination 

rate.  

5.1.5 Initialization 

In the first step of building the model, the network of interacting populations is built. To 

do that, we consider a lattice and a scale-free network. 

We assume that each population has the following attributes: 

1. Size of population 

2. List of neighbors and their weights (weight shows the number of individuals 

traveling to each node from the neighboring nodes) 

3. strategy (vaccination rate (𝛾)) 

4. Infection status (#susceptible (𝑁𝑆), # vaccinated (𝑁𝑉), #infected (𝑁𝐼) and 

#recovered (𝑁𝑅)) 
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After defining the network of populations, it is required to determine which nodes are 

infected and what is the initial infection status of each node. In modeling, we assume that 𝑝% of 

nodes are infected which are generated randomly. The initial status of those nodes is equal to 5% 

infected, 0 vaccinated and 0 recovered individuals. 

5.2  Experimental results 

In the following, the result of changing different factors that can affect the dynamics of an 

epidemic are studied. The experiments are done in 20 by 20 lattice and also a scale-free network 

with 400 nodes and an average degree of 8 generated using the Barabási–Albert model (Figure 

5.2).  

The Barabási–Albert model is a known model which is used to generate scale-free 

networks (Barabási, 2016). In this model, first we start with 𝑚0 nodes in which the links between 

the nodes are chosen arbitrarily, and each node has at least one link. Then, the network growth 

using the following two steps: 

At each time step we add a new node with m (≤  𝑚0) links that connect the new node to m 

nodes which already exist in the network. We know this step as “Growth”. 

The probability that a link of the new node connects to node 𝑖 depends on the degree of 𝑖 

(𝑘𝑖) (Equation). We know this step as “Preferential attachment”. 

𝜋(𝑘𝑖) =
𝑘𝑖

∑ 𝑘𝑗𝑗
                                                                                                                                            5.10 

Following these two steps, we can see that while most nodes in the network have only a 

few links, a few gradually turn into hubs. This behavior is because of the preferential attachment 

which leads new nodes to become more likely connected to the more connected nodes than to the 

smaller nodes.  
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The parameter values for running the model are given in Table 5.1. In the figures which 

represent the number of susceptible, infected and recovered, the purple line shows the total number 

of susceptible, blue line shows the total number of vaccinated and the red line shows the total 

number of recovered (infected) individuals. 

 
Figure 5.2 A scale free network with 400 nodes and average degree of 8  

 

Table 5.1 Parameters of the model 

Parameter Meaning Value 

𝑁 Population size of each node 100 

𝑁𝐼0 Number of initially infected individuals 5 

𝑁𝑉0 Number of initially vaccinated individuals 0 

𝑁𝑅0 Number of initially recovered individuals 0 

𝐶𝐼 Cost of infection 1000 

𝐶𝑉 Cost of vaccination 10 or variable 

𝐶𝑅 Cost of being recovered 0 

𝑔 recovery rate 0.1 

𝛽 Transmission rate of the disease 0.5 or variable 

𝛾0 Initial vaccination rate 0 

𝑊𝑖𝑗 Communication weight from node i to j 2% or variable 



81 

𝑡𝑝 Time steps between strategy updates 1 

𝑝 Probability of existence of infection in a node 5% 

𝛼 Willingness for keeping old strategy  0.5 or variable 

 

5.2.1 Comparing public goods payoff with local payoff 

In section 5.1.2, the payoff of a node is calculated based on the local payoff of the node 

itself and the local payoff of its neighbors considering its probable cost of infection and also its 

neighbors, probable cost of infection. Using such function, the effect of public goods in decision 

making is reflected.  One may ask, why considering the public payoff and not just the local payoff 

of a node itself and its probable infection cost for decision making. As discussed in section 5.1.1, 

the public goods game based payoff function can take into account the health factor of a 

communication group and therefore can help the whole group to maintain a healthier society. In 

this section, an alternate model is developed in which the payoff of a node is calculated based on 

the local payoff and the risk of infection for that node, and the result is compared with the proposed 

model. In this alternate model, the payoff of each node is calculated using the following formula: 

𝑃𝑖 = 𝑃𝑙𝑜𝑐𝑎𝑙 𝑖 − 𝐶𝐼𝐸(𝜆𝑖)𝑁𝑆𝑖                                                                                                                                              5.11 

Where 𝑃𝑙𝑜𝑐𝑎𝑙 𝑖 is the local payoff of a node and calculated using Equation 5.5, and  𝐶𝐼 is 

the cost of infection, 𝐸(𝜆𝑖) is the estimated infection rate for the node 𝑖 which is calculate using 

Equation 5.4, and 𝑖 is the number of susceptible individuals in node 𝑖. 

The following shows the average number of people in each stage of the disease for 20 

different distributions of infected nodes in both a lattice and a scale-free network, which have the 

same ratio of initially infected nodes, for proposed model of this paper (solid lines) and the 

introduced alternate model (dashed lines). 

Figure 5.3 shows the mean number of susceptible individuals in each iteration of the model 

or in the other words the mean of susceptible people at each time from the beginning to the end of 
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the epidemic. It can be seen for both types of networks that, although in the first few iterations of 

the game the number of susceptible is higher for the model with the local payoff (alternate model), 

at the end the model with public payoff (proposed model) saved more people. Conversely, as it is 

illustrated in Figure 5.4 the mean number of vaccinated individuals is higher at the first stages of 

the epidemic for the proposed model but the total vaccination is lower at the end of the epidemic 

in comparison with the alternate model. Moreover, through the whole epidemic spread, the number 

of infected (recovered) people for proposed model is less than the alternate model (Figure 5.5). 

Thus, it can be concluded that the proposed model which is based on the public goods payoff can 

more efficiently control the epidemic spread with fewer vaccinations and more susceptible 

individual but at the same time less infection. This phenomenon can also be captured in Figure 5.6 

which shows the cost of the epidemic throughout the epidemic period for each model since the 

cost of the proposed model is always less than the alternate one. 

Comparing the lattice and a scale-free network we can observe that the difference between 

the public goods game model and the alternate model is much higher when a lattice is the network 

of interactions. This lower difference in the scale-free networks is the result of the existence of 

hubs in those networks which cause the epidemic to spread faster and be harder to control. 
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(a) 

 

(b) 

 

Figure 5.3 Average number of susceptible individual for 20 different starting 

configurations under two scenarios for a lattice structure (a) and a scale-free network (b) 
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(a) 

 

(b) 

 

Figure 5.4 Average number of vaccinated individuals for 20 different starting 

configurations under two scenarios for a lattice structure (a) and a scale-free network (b) 
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(a) 

 

(b) 

 

Figure 5.5 Average number of recovered individuals for 20 different starting 

configurations under two scenarios for a lattice structure (a) and a scale-free network (b) 
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(a) 

 

(b) 

 

Figure 5.6 Average cost of epidemic for 20 different starting configurations under two 

scenarios for a lattice structure (a) and a scale-free network (b) 

  

5.2.2 Effect of changing the value of α 

One of the factors that can change the dynamic of the epidemic spread is the value of α. 

Since this value can show how willing is a population to change its vaccination rate, we can expect 

to see a better protection if the population is aware enough of the threat of the epidemic disease, 

meaning that it is willing to change its vaccination rate and consequently has a lower value of α 
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(1-α is high). To examine the effect of the value of α, a model was run for different values of α on 

both a lattice and a scale-free network in which the initially infected nodes are randomly 

distributed. Each model was run until it reaches the steady state situation and the result is used for 

evaluation. In Figure 5.7, the sum of number of susceptible, vaccinated, infected and recovered 

over all the nodes in the steady state situation for different values of α from 0 to 1 for a lattice and 

a scale-free network is represented. 

Figure 5.7 shows that as the value of α increases and populations are less willing to change 

their policy for vaccination, the number of infected people increases (red line) although the total 

number of vaccinated people increases (blue line), which means that populations are less 

successful in controlling the epidemic. This can be due to inefficient reaction of the populations 

which are close to initial infection to epidemic, causing other populations to be in threat of being 

infected and in need of more vaccination to be able to control the epidemic in their communities. 

Consequently, as a result of more infection and vaccination, the number of susceptible people will 

decrease (purple line). Comparing the lattice structure and a scale-free network, it can be seen that 

in scale-free network the epidemic spreads faster, resulting in more infection, more vaccination 

and fewer susceptible individuals. Also, in the scale-free networks, if the value of α is too high, 

the number of infected individuals grows larger and there will be no more susceptible individual 

in the societies to get vaccinated, thus the number of vaccinated people decrease. Moreover, it can 

be seen in Figure 5.8 that if populations show more interest in changing their vaccination rate 

(decreasing α), not only less people will be infected at the end, but also more populations can 

remain not infected at all. However, the number of not infected nodes is fewer for scale-free 

networks. Additionally, the total cost of all the societies is lower with smaller values of α (Figure 

5.9). The epidemic length will also decrease since fewer nodes are infected (Figure 5.10). 
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(a) 

 

(b) 

 

Figure 5.7 Number of total susceptible, vaccinated and infected for different values of α for 

a lattice structure (a) and a scale-free network (b) 
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(a) 

 

(b) 

 

Figure 5.8 Number of not infected nodes for different values of α for a lattice structure (a) 

and a scale-free network (b) 
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(a) 

 

(b) 

 

Figure 5.9 Total cost for different values of α for a lattice structure (a) and a scale-free 

network (b) 
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(a) 

 

(b) 

 

Figure 5.10 Epidemic length for different values of α for a lattice structure (a) and a scale-

free network (b) 

 

5.2.3 Effect of changing the transmission rate 

The disease transmission rate is another variable which can affect the dynamic of an 

epidemic. This variable depends on the characteristics of the disease. To examine the effect of 

changing the value of β, considering that the recovery rate is constant, a model was run for different 

values of β on both a lattice and a scale-free network in which the initially infected nodes are 

randomly distributed. Each model was run until it reaches the steady state situation and the result 
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is used for evaluation. In Figure 5.11, the sum of number of susceptible, vaccinated, infected and 

recovered over all the nodes in the steady state network for different values of β from 0 to 1 is 

represented. 

Figure 5.11 shows that the increase of transmission rate will increase the number of 

vaccinated individuals (blue line) because vaccination is the only way to protect people in an 

infected node from being infected. As a result, the number of susceptible individuals will decrease 

(purple line). Moreover, the result shows that even with a high infection rate, the effective 

vaccination response to the disease spread can control the spread of the epidemic and result in just 

a small increase in number of infected (red line). Thus, the large group of vaccination is due to the 

fear of being infected which is associated with high transmission rate of the disease. Consequently, 

as the transmission rate increases, the cost of epidemic also increases because of higher vaccination 

and a few more infections (Figure 5.13). Also, the number of not infected nodes decreases with 

the increase of transmission rate, because the higher transmission rate will result in higher 

probability of becoming infected for the nodes (Figure 5.12). Thus, since higher vaccination rate 

cannot guarantee no infection in a population, although the vaccination rate in societies increases, 

the total number of not infected nodes decreases. Again, the scale-free network has more 

vaccination and infection and is more sensitive to increase of transmission rate. 

Studying the total length of the epidemic we can observe that diseases with higher 

transmission rate have higher epidemic length while we expect it to be shorter due to the faster 

response of people considering its high threat (Figure 5.14). This unexpected observation is due to 

the fact that faster response of people to the epidemic is presented with larger vaccination rate, but 

larger vaccination rate cannot stope a node from being infected and any new infected node will 

increase the effort to stop the epidemic spread in form of more vaccination and time. 
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(a) 

 

(b) 

 

Figure 5.11 Number of total susceptible, vaccinated and infected for different values of 

transmission rate for a lattice structure (a) and a scale-free network (b) 
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(a) 

 

(b) 

 

Figure 5.12 Number of not infected nodes for different transmission rates for a lattice 

structure (a) and a scale-free network (b) 

 

 

 

 

 

 

 

 



95 

(a) 

 

(b) 

 

Figure 5.13 Total cost for different transmission rates for a lattice structure (a) and a scale-

free network (b) 
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(a) 

 

(b) 

 

Figure 5.14 Epidemic length for different transmission rates for a lattice structure (a) and a 

scale-free network (b) 

 

5.2.4 Effect of changing the communication weight 

When modeling the epidemic spread among populations, another factor which has great 

importance in spread of the disease among populations is the rate of communications between 

populations. It is expected that as the rate of communication increases, the epidemic spreads wider. 

To examine the effect of changing the communication weight between nodes, a model was run on 
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both a lattice and a scale-free network for different communication weights from 0 to 0.5 in which 

the initially infected nodes are randomly distributed. Each model was run until it reaches the steady 

state situation and the result is used for evaluation. In Figure 5.15, the sum of number of 

susceptible, vaccinated, infected and recovered over all the nodes in the steady state network for 

different values of 𝑊𝑖𝑗  for both the lattice and the scale-free network is represented. Here it is 

assumed that 𝑊𝑖𝑗  is the same for all 𝑖 and 𝑗, but it can varied to match real patterns. 

Figure 5.15 shows that the increase of communication weight between nodes, when 

communication weight is less than 0.1 for the lattice structure and less than 0.05 for the scale-free 

network, will increase the number of vaccinated individuals (blue line). This happens because 

vaccination is the only way to protect people in an infected node from being infected and increasing 

the communication weight increases the probability of existence of infection in a node, thus 

requires more vaccination. As a result of increase in vaccination, the number of (infected) 

individuals will not increase too high (red line) but the number of susceptible individual decreases 

(purple line).  Consequently, as the communication weight increases up to less than the 

aforementioned values, the number of not infected nodes decrease because the higher 

communication weight will result in higher probability of becoming infected for the nodes (Figure 

5.16). Also, the epidemic length increases (Figure 5.18). 

We can see that the behavior of epidemic dynamics when increasing the communication 

weight is very similar to the behavior of epidemic dynamic when increasing the transmission rate 

of the disease.  This is because these two factors are the ones which can increase the probability 

that an infection transfers to other nodes. However, when the communication weight grows two 

large, the spread of the disease is much faster than the vaccination and thus the population will be 
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divided to vaccinated and infected with no susceptible people, and as the communication weight 

increases the infected portion becomes larger. 

Consequently, as the communication weight increases, the cost of epidemic also increases 

(Figure 5.17). This is due the higher number of required vaccinations when the communication 

weight is small and also the higher number of infections when the communication weight is high. 

(a) 

 

(b) 

 

Figure 5.15 Number of total susceptible, vaccinated and infected for different values of 

communication weight for a lattice structure (a) and a scale-free network (b) 
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(a) 

 

(b) 

 

Figure 5.16 Number of not infected nodes for different communication weights for a lattice 

structure (a) and a scale-free network (b) 
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(a) 

 

(b) 

 

Figure 5.17 Total cost for different communication weights for a lattice structure (a) and a 

scale-free network (b) 
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(a) 

 

(b) 

 

Figure 5.18 Epidemic length for different communication weights for a lattice structure (a) 

and a scale-free network (b) 

 

5.2.5 Effect of changing the cost of vaccination 

Cost of vaccination is another variable which can affect the dynamic of an epidemic. It is 

reasonable for the cost of vaccination to be much less than the infection cost otherwise people may 

prefer not to vaccinate and accept the risk of infection. To examine the effect of changing the cost 

of vaccination, the model was run for different values of 𝐶𝑉 on both a lattice and a scale-free 
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network in which the initially infected nodes are randomly distributed. Each model was run until 

it reaches the steady state situation and the result is used for evaluation. In Figure 5.19, the sum of 

number of susceptible, vaccinated, infected and recovered over all the nodes in the steady state 

networks for different values of 𝐶𝑉 from 0 to 500 (half of the infection cost) for the lattice and the 

scale-free network is represented.  

We can see in Figure 5.19 that as it was predicted, increasing the cost of vaccination will 

decrease the total number of vaccinations when the cost of vaccinations is low, but as the cost of 

vaccination increases the model will not decrease total number of vaccination more than a certain 

limit (blue line). As a result, the number of infected individuals is kept very low (red line). This 

behavior is due to the fact that vaccination and infection both have cost for societies and since the 

cost of vaccination is still lower than the cost of infection, infected nodes still prefer to vaccinate 

to protect their communities. 

Interestingly, the number of not infected nodes will slightly increase as the cost of 

vaccination increases (Figure 5.20), because a high cost of vaccination is also a threat for 

populations and it causes the populations which are close to the infection source to vaccinate more. 

Since transmission rate is similar for both models with high vaccination cost and low vaccination 

cost, the higher vaccination close to the infection. source can protect more nodes from being 

infected. 

Comparing the lattice structure and the scale-free network it can be seen that the epidemic 

spreads much faster in the scale-free network, resulting in fewer not infected nodes, more total 

vaccinations and infections, and fewer susceptible individuals. 
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(a) 

 

(b) 

 

Figure 5.19 Number of total susceptible, vaccinated and infected for different vaccination 

costs for a lattice structure (a) and a scale-free network (b) 
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(a) 

 

(b) 

 

Figure 5.20 Number of not infected nodes for different vaccination costs for a lattice 

structure (a) and a scale-free network (b) 

 

5.3  Conclusion 

In this study, a model based on evolutionary spatial game under public goods game is 

presented to show the choice of populations which are interacting with each other when facing an 

epidemic. In this model, the payoff of each population is calculated based on its local payoff of 

vaccination and infection and also its share of global payoff considering the public goods effect. 
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The global payoff results from the local payoffs of the community of interactions of a node and 

the threat of infection in the community that a population is a member of. Based on the calculated 

payoffs, each population changes its vaccination rate to contribute in controlling the epidemic. It 

is also assumed that populations can have different willingness in changing their vaccination rate.  

Using this model, we can show that considering vaccination choice of populations as a 

public good and caring about the health of a larger community rather than a single population can 

help in controlling the epidemic with fewer required vaccinations. Moreover, increasing the 

willingness of population to contribute in getting sufficient vaccinations at the right time will result 

in fewer vaccinations and also fewer infections at the end of the epidemic. Additionally, the model 

tests the effect of increasing transmission rate of the disease and communication weight between 

populations. Both show a significant increase in the number of vaccinations and infections due to 

the higher probability of infection associated with them. Also, the effect of changing the cost of 

vaccination is examined, which shows that since the vaccination cost is less than infection cost, 

populations try to maintain a level of vaccination in their societies to control the epidemic. 

Also, the comparison of the results of the model for a lattice structure and a scale-free 

network shows a very similar behavior for both structures. However, in scale-free networks the 

epidemic spreads much faster than lattice as a result of the existence of hubs in scale-free network. 

Those hubs are causing the epidemic to spread faster because they are connected to many nodes 

and therefore have a higher probability to become infected and also to transfer infection to other 

nodes. 
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Chapter 6 - Conclusions and Future Research 

This dissertation introduced a public goods game modeling approach to model the behavior 

of individuals and populations in response to an epidemic. The models are built based on spatial 

evolutionary game theory on a network of interactions. It can be seen from the results that this 

approach can show a similar result to what we can expect to see in the real-world situation and can 

be used in controlling the epidemic spread. In the following we summarize the main contributions 

of this work, and follow with remarks on directions and avenues of future research and extensions 

of these contributions. 

6.1  Conclusions 

In chapter 3 of this dissertation, a public goods game  model for modeling the behavior of 

population of individuals in response to an epidemic is illustrated in which the payoff of each 

player is calculated using a group related payoff function. In this function, other than the cost of 

vaccination for vaccinated people and the cost of infection for infected people, the actual and 

probable cost of all individuals in a 3 by 3 group is divided between the members of that group. 

Using this payoff for each player, individuals try to imitate the behavior of the people who are in 

the groups with the lowest cost or highest payoff based on their sensitivity. This sensitivity factor 

shows the risk tolerance of players encouraging switching to the strategy of their neighbors. The 

sensitivity factor can show the number of neighbors with highest payoffs in the candidate list of a 

players, so, if any vaccinated individual is in this candidate list the player will be encouraged to 

get vaccinated. Using this model, we can show that if the cost of vaccination is increased, players 

have less tendency to get vaccinated, which is a representative behavior to a real-world situation.  

However, increasing the sensitivity of individuals can result in more vaccination in the 

same situation. This behavior is very similar to the effect of fear of being infected in real-world 
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epidemics. Moreover, increasing the sensitivity can be beneficial for the society as individuals 

react to the epidemic sooner and decide faster to get vaccine in order to save themselves and their 

community, but increasing the sensitivity factor too much does not lead to an optimal cost for the 

society. The results show that increasing the sensitivity factor to more than 5 does reduce cost 

while the number of free-riders dose not increase, and the number of vaccinated and infected 

individuals does not change. This behavior is the result of dissuasive effect of selecting the strategy 

of the neighbors who have a higher payoff than the payoff of the player itself on the candidate list. 

Additionally, the model tests the effect of the infection transmission rate, and surprisingly, 

the epidemic length is lower when facing a disease with high transmission rate.  This is explained 

by the fact that individuals respond sooner to the disease spread when there is a higher probability 

of being infected (represented as a strategy with a higher potential cost). 

We also examined the effect of the number of initially vaccinated individuals on the 

epidemic which shows that mandatory vaccination can be beneficial when it does not force too 

many individuals to get the vaccine. Also, the distribution of vaccinated players in the lattice can 

affect the final result, when the players are distributed evenly in the lattice, more people are in 

contact with vaccinated individuals and this can cause them to get vaccine sooner when facing an 

epidemic and can result a better control of epidemic compared to the same number of vaccinated 

individuals who are randomly distributed. 

Also, it is shown in that considering community based payoff function in modeling the 

spread of infectious diseases can better capture the dynamic of epidemic sand therefore it is 

recommended to be used when modeling the epidemic outbreaks to study the behavior of 

populations and when such models are used for decision making for public health. 
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In chapter 4 we studied the effect of an incubation period on the spread of infectious 

diseases. It is assumed that during an incubation period, individuals are infectious, but they and 

their contacts are not aware of their threat of transmitting the disease.  This changes the response 

of people to an epidemic and consequently can result in different epidemic dynamics.  Considering 

the time delay in responding to an epidemic requires different public health management strategies.  

This study analyzes the factors that can affect the epidemic spread.  These factors are the 

cost of vaccination, initial vaccination rate, transmission rate and sensitivity of individuals to the 

threat of a disease. The results show that in comparison with the same model without considering 

the incubation period, time delay results in fewer vaccinated individuals, fewer free-riders and 

more infected individuals. However, this effect is more pronounced when the cost of vaccination 

is relatively low, transmission rate is high and mandatory initial vaccination is low. When 

considering the effect of the sensitivity factor 𝑠 to the threat of a disease the analysis shows that 

an increase of the sensitivity 𝑠 results in fewer infected individuals and more free-riders but may 

not affect the number of vaccinated individuals. Moreover, the results show that increasing the 

length of the incubation period in comparison to the total time of an infection results in more 

infected individuals and fewer vaccinated and free-riders. 

In chapter 5, a model based on evolutionary spatial game under public goods game is 

presented to show the choice of populations which are interacting with each other when facing an 

epidemic. In this model, the payoff of each population is calculated based on its local payoff of 

vaccination and infection and also its share of global payoff considering the public goods effect. 

The global payoff results from the local payoffs of the community of interactions of a node and 

the threat of infection in the community that a population is a member of. Based on the calculated 
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payoffs, each population changes its vaccination rate to contribute in controlling the epidemic. It 

is also assumed that populations can have different willingness in changing their vaccination rate.  

Using this model, we show that considering vaccination choice of populations as a public 

good and caring about the health of a larger community rather than a single population can help in 

controlling the epidemic with lower required number of vaccinations. Moreover, increasing the 

willingness of population to contribute in getting enough number of vaccinations at the right time, 

will result in fewer vaccination and also fewer infection at the end of the epidemic. Additionally, 

the model tests the effect of increasing transmission rate of the disease and communication weight 

between populations. Both show a significant increase in the number of vaccinations and infections 

due to the higher probability of infection associated with them. Also, the effect of changing the 

cost of vaccination is examined, which shows that since the vaccination cost is less than infection 

cost, populations try to maintain a level of vaccination in their societies to control the epidemic. 

Also, the comparison of the results of the model for a lattice structure and a scale-free 

network shows a very similar behavior for both structures. However, in scale-free networks the 

epidemic spreads much faster than lattice as a result of the existence of hubs in scale-free network. 

Those hubs are causing the epidemic to spread faster because they are connected to many nodes 

and therefore have a higher probability to become infected and also to transfer infection to other 

nodes. 

6.2  Future research 

In this dissertation, two methods for modeling epidemic spread in individual level and 

population level are proposed. In the individual level model, for simplicity and better visual 

illustration, it is assumed that individuals are interacting on a lattice form structure. However, 

different network structures such as small world networks can be used as the network of 
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interactions. Also, it can be considered that the network for decision making and information 

spread is different from the network of epidemic spread. Moreover, in our model, the sensitivity 

factor is not varying among players while the result of having different sensitivities can be studied. 

It can also be assumed that the sensitivity factor is a function of the fear factor. More importantly, 

this model can be applied in real-world networks, and the in-hand data of a disease can be 

compared with the result of the model to validating the model and also adjusting the parameters. 

When studying the effect of time delay, in our model just the time delay between infection 

and emergence of syndromes has taken into account while as introduces in chapter 2.2.4, several 

types of delay exists in the disease transmission that can be taken into account. 

In the population-based model, the real network of travels can be used as the network 

instead of the scale-free networks and also the result can be compared with some real data for 

validation. Also, death and birth rate can be taken into account in modeling. 

Additionally, machine learning techniques can be used to derive optimal model parameters 

for given epidemic conditions. 
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