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Abstract 

Rural crashes, specifically roadside crashes, account for a disproportionately high number 

of fatal vehicle crashes in the United States. In 2017, the fatality ratios of rural crashes in Kansas 

was higher than the national average. Therefore, the Kansas Department of Transportation 

(KDOT) is continuously seeking to prevent and reduce rural roadside crashes. This research 

project was funded by KDOT to study the benefit-cost ratios of implementing guardrails to shield 

bridges, culverts, and embankments on low-volume rural roads in Kansas to reduce vehicle crash 

fatalities and decrease rural transportation expenditures. 

This study utilized RSAPv3 simulation because it implements previous crash statistics and 

could be readily updated with local data. With the help of KDOT staff, the research team 

synthesized traffic operation data and geometric features on rural roads in Kansas and carried out 

crash simulations using RSAPv3 to determine if the benefits of guardrail implementation exceeded 

the corresponding costs. The results were intended to help local engineers decide whether to 

implement guardrails in roadside locations with hazards. Meanwhile, the simulation also revealed 

significant contributing factors to rural roadside crashes.  

Survey results and simulation outcomes showed similar patterns. Based on project results, 

the benefit-cost ratios did not justify the implementation of new guardrails for bare culverts or bare 

embankments on rural roads in Kansas. However, W-beam guardrails were efficiently 

implemented on bridges with medium-hazard-level edges without attaching bridge-approach 

guardrails. Likewise, for bridges with TL-2 bridge rails, study results did not justify implementing 

bridge-approach guardrails. 
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Chapter 1 - Introduction 

 1.1 Background 

 According to the National Highway Traffic Safety Administration (NHTSA), rural crashes 

accounted for at least half of the total traffic fatalities from 2008 to 2017, as shown in Figure 1.1.  

 

Figure 1.1: Motor Vehicle Traffic Fatalities, 2008–2017 (NHTSA, June 2019) 

 

 The American Community Survey from the United States Census Bureau revealed that 

only 19% of the U.S. population lived in rural areas in 2017, but of the 37,133 total traffic fatalities 

in that year, 17,216 fatalities (46%) occurred in rural areas. In addition, approximately 30% of the 

total vehicle miles traveled (VMT) were in rural areas, according to NHTSA. In rural areas of 

Kansas, the fatality rate per 100 million VMT was 2.07 in 2017, according to NHTSA, while the 

average fatality rate in the United States was 1.79, as shown in Table 1.1. and Table 1.2. The 

vehicle crash deaths in rural and urban areas, listed in these tables, show that single-vehicle crashes 

accounted for 55% of fatalities in rural crashes and 53% in urban crashes.  

 

 



2 

Table 1.1: Traffic Fatality Rate, 2017 (NHTSA, June 2019) 

State 
Fatality Rate Per 100 Million VMT 

Rural Urban 

Kansas 2.07 0.85 

U.S. Total 1.79 0.85 

 

 

 Table 1.2: Motor Vehicle Crash Fatalities, 2017 (IIHS, Nov. 2019) 

Crash Types 
Rural Urban Total* 

Deaths Percent Deaths Percent Deaths Percent 

Single-Vehicle Crashes 9,384 55% 10,099 53% 19,969 54% 

Multiple-Vehicle 

Crashes 
7,832 45% 8,939 47% 17,164 46% 

Total 17,216 100% 19,038 100% 37,133 100% 

*Total included other and/or unknowns 

 

 Single-vehicle crashes include crashes resulting from fallen rocks or debris on the road, 

rollover crashes within the road, crashes with animals, and roadside crashes, the most common 

crash type. Therefore, this research project focused on roadside crashes when considering 

improved traffic safety. KDOT typically implements new guardrails to shield roadside hazards on 

rural roads, but limited evidence has proven the limited effectiveness of this method, especially 

for rural roads in Kansas. This research was intended to fill that gap using crash simulation of 

guardrail implementation to shield culverts, embankments, and bridges to help local engineers 

determine optimal safety treatments.  

Benefit-cost analyses were used to economically quantify the results and compare various 

implementations. With the help of KDOT staff, the research team synthesized traffic operation 

data and geometric features on rural roads in Kansas and carried out crash simulations using 
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RSAPv3 to determine if the benefits of guardrail implementation exceeded the corresponding 

costs. The research team also reviewed extensive literature related to roadside safety and 

concluded that the encroachment approach with RSAPv3 yielded the most efficient benefit-cost 

analysis because it utilizes real crash data to predict accident possibility and crash cost.  

 1.2 Previous Research 

Benefit-cost analyses have become one of the primary methods to prioritize sometimes 

limited resources that a state highway agency may have and must use to improve the roadway 

network. Previous research of crash prediction models and benefit-cost analyses have been 

incorporated into current advanced software packages, thereby rapidly increasing the accuracy of 

prediction. This chapter reviews the development of roadside safety software packages. In 

addition, because guardrails are frequently used as effective prevention for severe loss in roadside 

crashes, numerous researches have tried to determine how to optimize implementation benefits. 

This chapter also describes some previous research using RSAPv3, the main tool used in this study. 

 1.2.1 Roadside Safety Issues 

The Federal Highway Administration (FHWA) has defined a roadway departure, or run-

off-road (ROR) crash, “as a crash that occurs after a vehicle crosses an edge line or the centerline 

or otherwise leaves the traveled way”. Statistics provided by the FHWA show that roadway 

departures resulted in an average of 19,233 fatalities from 2015 to 2017, which accounted for 52% 

of all traffic fatalities in the United States (FHWA, 2019). Considering the significant damage 

attributed to roadside crashes, the American Association of State Highway and Transportation 

Officials (AASHTO) Roadside Design Guide (RDG), 4th edition, suggests six ways to reduce 

roadside obstacles. These measures include removing the obstacle, redesigning the obstacle for 

safe navigation, relocating the obstacle, reducing impact severity with appropriate breakaway 
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devices, shielding the obstacle with a longitudinal barrier or crash cushion, and delineating the 

obstacle if the other measures are not applicable. The RDG also introduces the clear zone, an 

unobstructed, traversable area beyond the edge of the through-traveled way to help errant vehicles 

recover (AASHTO, 2011). The clear zone typically includes shoulders and other auxiliary systems, 

as shown in Figure 1.2. 

 

 
Figure 1.2: Depiction of Clear Zone (Transportation Engineering Agency) 

 

 Previous research has shown that widening lanes, medians, bridges, or shoulders, as well 

as relocating fixed objects farther from the roadway and flattening side slopes and medians could 

reduce the frequency and severity of ROR accidents (Lee & Mannering, n.d.). Zegeer & Council 

(1995) further quantified the ratio of crash reduction on two-lane rural roads using the mentioned 

improvements, while Mak, Sicking, & Ross Jr (1986) studied impact conditions for ROR crashes, 

as well as impact speed and angle distributions for various functional classes, thereby providing a 

basis for further study of severity prediction and encroachment prediction models. Research by 

Albuquerque, Sicking, & Stolle (2010) extracted typical crash data from the years 1997 to 1999 

using previous studies and investigation to reconstruct departure and impact speeds, angles, and 
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orientation. Bivariate normal distribution successfully fit to the impact speed and angle data, and 

the results were used to improve the encroachment prediction model, which was the foundation of 

mainstream benefit-cost analysis. Mak (1995) synthesized the previous researches to predict crash 

possibility, providing an overview of roadside safety issues, such as design philosophy, cost-

effectiveness analysis, and benefit-cost methodology. The researchers estimated unreported 

crashes and established a model based on the accident database and an encroachment probability 

model.  

Although a guardrail is typically implemented to shield vehicles from dangerous hazards, 

the guardrail itself can become a roadside hazard, leading to severe crashes. Michie & Bronstad 

(1994) sought to justify the efficacy of guardrails for highway safety by estimating unreported 

crashes with guardrails to obtain actual fatal and injury ratios in guardrail crashes. Results showed 

that approximately 98% of all length-of-need impacts resulted in property-damage-only (PDO) 

crashes when guardrails were properly installed and maintained, with only 2% to 3% causing 

injuries or fatalities for vehicle occupants. Moreover, the primary causes of severe crashes with 

guardrails included improper installation of guardrails, non-crashworthy end-treatments, and 

collisions that occurred outside the practical design range of modern guardrail systems. 

 1.2.2 Benefit-Cost Analysis 

Because funding is limited for roadside safety treatments, especially in rural areas, 

prioritization of limited resources is essential. Chapter 2 of the RDG introduces benefit-cost 

analysis to compare various designs (AASHTO, 2011). In the chapter, benefits are defined as the 

expected reduction in future costs of crashes associated with project improvements, while costs 

include expenses related to initial construction, maintenance, and repair. Benefits and costs must 
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be annualized to compare treatments with each project life. Ray, Carrigan, Plaxico, Miaou, & 

Johnson (2012) established the equation of benefit-cost ratio as 

𝐵𝐶𝑅!/# =
𝐶𝐶! − 𝐶𝐶#
𝐷𝐶# − 𝐷𝐶!

 Equation 1.1 

where 𝐵𝐶𝑅!/#  is the incremental benefit-cost ratio of alternative j with respect to alternative i, 

𝐶𝐶! , 𝐶𝐶# is the annualized crash cost for alternatives i and j, and 𝐷𝐶! , 𝐷𝐶# is the annualized project 

cost for alternatives i and j. According to RDG, data related to encroachments, roadside geometry, 

and crash costs are necessary to conduct a benefit-cost analysis (AASHTO, 2011). 

A benefit-cost analysis can economically quantify a comparison of safety treatments, 

which comprises the core of traffic safety research and safety analysis software. An early research 

systematically reviewed benefit-cost methodology and developed a procedure that resulted in a 

computer program called ABC. Benefit was the product of accident prediction and corresponding 

crash costs, and the accident prediction model was based on a summation of all predicted 

encroachments and corresponding accident possibilities (Ross, n.d.). Encroachment characteristics 

were inferred from another study, which collected vehicle encroachment data from Canadian 

highways with similar speed range as most U.S. highways. Crash cost was obtained via severity 

index and distributions of PDO, injury, and fatal accidents and summated using estimated societal 

costs for each type of accident (Cooper, 1981).  

 1.2.3 Research on Guardrail Implementation 

 Previous guardrail research reviewed for this study focused on performance levels, end 

treatments, rational lengths, embankment and culvert evaluations, low-volume road applications, 

guardrail type comparisons, and evaluation methods for existing guardrails. Although guardrails 

are often used as a safety treatment to contain errant vehicles, they may cause impact injuries in 

the event of a vehicle crash. Lampela & Yang (1974) surveyed investigating officers at the scene 
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of crashes to study the performance of W-beam guardrails in accidents in Michigan. Their research 

acquired angles of impact, speeds, results to the impacting vehicle, evidence of other objects or 

vehicles being impacted, locations of impact along the rail, the presence of curbs, and the types 

and spacing of guardrail posts. Accident severity, vehicle type, vehicle impact areas were obtained 

from official traffic accident reports. Variables significantly related to injury rate and severity 

included impact speed, guardrail types and post spacing, and end treatments. Research results also 

indicated that rates of redirecting or stopping, as well as breaking through or hurdling guardrail, 

were related to guardrail type. 

 End treatments have also been shown to be an essential part of a guardrail’s performance. 

Ivey, Bronstad, & Griffin (1993) investigated the relationship of guardrail end treatments and 

guardrail performance, usage, and cost to determine the most efficient type of end treatment. 

Another research reviewed performance of end treatment in some case (Glennon & Engr., 2012). 

Blunt-end treatments, as shown in Figure 1.3, have been used as guardrail end treatments on U.S. 

roadways since 1950s, but in the mid-1960s, a blunt-end was recognized as a potential hazard in 

many vehicle crashes because it could strike an errant vehicle, as shown in Figure 1.4.  

 

Figure 1.3: Blunt-End of Guardrail (Glennon & Engr., 2012) 
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Figure 1.4: An Example of a Vehicle Crash with a Guardrail Blunt-End (Glennon & Engr., 
2012) 

 

 Turndown end treatments, in which the guardrail is bent and twisted 90 degrees and 

anchored flat on the ground (Figure 1.5), were widely implemented on guardrail systems during 

the late 1960s and are found on many roadways today. 

 

 

Figure 1.5: Turndown End of Guardrail (Glennon & Engr., 2012) 
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Although the turndown end was initially a favorable, economical solution, the treatment 

was shown in some cases to vault and roll vehicles and even channel vehicles into shielded hazards 

upon impact. To help reduce this crash occurrence, a breakaway cable terminal (BCT), shown in 

Figure 1.6, was developed to minimize striking and rolling tendencies of blunt-end and turndown 

end treatments. Another example of a BCT, the energy-absorbing terminal is Figure 1.7. Both 

treatments are common on many roadways. 

 
Figure 1.6: Breakaway Cable Terminal 

 

 
Figure 1.7: Energy-Absorbing Terminal (Glennon & Engr., 2012) 
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The economically optimal length of a guardrail reduces vehicles crashes where the guard 

the vehicle runs off the roadway and optimizes construction costs. Previous research studies, which 

were based on the Roadside Design Guide (RDG) philosophy, explored appropriate guardrail 

lengths (Albuquerque, Sicking, Stolle, Faller, & Lechtenberg, 2014; Coon, Sicking, & Mak, 2006; 

Wolford & Sicking, n.d., 1996). Figures 1.8 and Figure 1.9 show required guardrail lengths for 

approaching and opposing traffic, respectively in the current RDG. 

 

 
Figure 1.8: Guardrail Length for Approaching Traffic (AASHTO, 2011) 

 
Figure 1.9: Guardrail Length for Opposite Traffic (AASHTO, 2011) 
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Traditionally, the required guardrail length is determined via the encroachment probability, 

which results in the straight line from the travelled way to the furthest extent of the hazard shielded 

by the guardrail. The safety concern was to reduce the number of vehicles that surpass the barrier 

and directly impact the hazard. These researches, however, adopted encroachment data from 

Cooper (1981) to establish an encroachment model instead of the dataset used by RDG. The 

researchers asserted the validity of their choice based on the following considerations:  

1. Data for RDG were collected on a snow-covered median, which is not a typical condition. 

2. The speed limit was higher than current standard on US highway when the data for RDG 

were collected. 

3. Cooper collected data under similar speed limits and with roadside conditions typical of 

most modern U.S. highways.  

These research studies used benefit-cost analyses to evaluate the needed guardrail length which 

could significantly decreased from the RDG recommendation. 

 Since the main hazards covered in this research included embankments and culverts, 

previous researchers on the same hazards were reviewed. Wolford & Sicking (1997) studied 

guardrails for embankments and culverts using encroachment probability, benefit-cost analysis, 

and ABC software. Data from Cooper (1981) were used to establish the encroachment probability 

model, combined the effort in analyzing crash data from Michigan and associated distribution of 

crash severity (fatal, injury, and PDO) with roadside hazards. With encroachment characteristics, 

they established a relationship between severity index and impact speed, as shown in Figure 1.10. 
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Figure 1.10: Relationship between Severity Index and Impact Speed (Wolford & Sicking, 

1997) 

 

As RDG recommends, the researchers connected severity index and societal costs with a 

distribution of crash severity (Table 1.3). 

 

Table 1.3: Severity Index and Accident Cost (AASHTO, 2011) 

Severity 

Index 

Property 

Damage (1) 

Property 

Damage (2) 

Slight 

Injury 

Moderate 

Injury 

Severe 

Injury 

Fatal 

Injury 
Total 

Probability 

of Injury 

Accident 

Cost ($) 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 $0 

0.5 100.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 $625 

1.0 66.7 23.7 7.3 2.3 0.0 0.0 100.0 9.6 $1,719 

2.0 0.0 71.0 22.0 7.0 0.0 0.0 100.0 29.0 $3,919 

3.0 0.0 43.0 34.0 21.0 1.0 1.0 100.0 57.0 $17,244 

4.0 0.0 30.0 30.0 32.0 5.0 3.0 100.0 70.0 $46,063 

5.0 0.0 15.0 22.0 45.0 10.0 8.0 100.0 85.0 $106,919 

6.0 0.0 7.0 16.0 39.0 20.0 18.0 100.0 93.0 $225,694 

7.0 0.0 2.0 10.0 28.0 30.0 30.0 100.0 98.0 $363,938 

8.0 0.0 0.0 4.0 19.0 27.0 50.0 100.0 100.0 $556,525 

9.0 0.0 0.0 0.0 7.0 18.0 75.0 100.0 100.0 $786,875 

10.0 0.0 0.0 0.0 0.0 0.0 100.0 100.0 100.0 $1,000,000 
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 Crash severity was often overestimated due to lack of unreported, often minor, accidents. 

Therefore, Wolford & Sicking (1997) also estimated the magnitude of unreported crashes by 

tracking scratch marks and repair rates of guardrails. The costs of installation, repair, and 

maintenance were obtained from engineers at the Nebraska Department of Transportation. 

 Similar research on culverts evaluated safety treatments in terms of benefit-cost analysis 

and compared three common treatments: culvert extensions, guardrail installations, and grating. 

Local roads, rural arterials, and freeways were also investigated, and a parametric study was 

utilized to determine which variables influence crash cost most significantly. Variables with 

relatively limited impact on crash cost were eliminated from the simulation; the research proceeded 

with combinations of typical roadside characteristics. Results showed no optimal solution for all 

situations, although culvert extensions and grates were typically preferable (Albuquerque & 

Sicking, 2009). The study used RSAPv2 simulation, which had difficulty modeling triangular 

hazards. Therefore, three rectangular hazards were combined to approximate a culvert extension, 

as shown in Figure 1.11. Additional details regarding simulations of this research are discussed in 

Section 1.2.4. 

 

 
Figure 1.11: RSAPv2 Approximation on Triangular Hazard 
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 Russell & Rys (1997) investigated guardrail performance on low-volume roads, focusing 

on reinforced concrete box culverts with straight wings, reinforced concrete box culverts with 

flared wings, and reinforced concrete pipe culverts with pipe/headwall, as shown in Figure 1.12. 

 

 

Figure 1.12: (a) Reinforced Concrete Box Culvert with Straight Wings; (b) Reinforced 
Concrete Box Culvert with Flared Wings; (c) Reinforced Concrete Pipe Culvert with 

Pipe/Headwall 
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The researchers used ROADSIDE program Version 5.0 to conduct cost-effectiveness 

analysis. Guardrail implementation was the only safety treatment considered, excluding the 

options of removing or relocating the hazard. They obtained crash costs and installation, repair, 

and maintenance expenditures from KDOT and then implemented simulation on ROADSIDE with 

a revised encroachment model to approximate field conditions. Research results provided a 

guardrail guideline for culverts and embankments on rural, low-volume roads. Annual average 

daily traffic (AADT), speed limit, offset of culvert, and slope of embankment were relevant 

variables for determining the guideline. 

 Safety evaluations of current guardrails are crucial for maintaining traffic safety. Therefore, 

Wiebelhaus, Lechtenberg, Sicking, Faller, & Rosenbaugh (2013) calibrated cost-effective 

treatments of existing guardrail systems using RSAPv2 simulations. A field survey of the barrier 

system along rural arterial highways in Kansas was carried out to record all system geometries, 

components, deviations from up-to-date practices, types of obstacles shielded by the guardrail, and 

roadway conditions. After conducting sensitivity analysis to determine significant variables to 

crash cost, the researchers developed a decision matrix for safety options for culverts depending 

on combinations of road curve, guardrail drop height, culvert length, culvert offset, and existing 

guardrail height. The safety treatments included doing nothing, removing the deficient system, or 

removing the deficient system and then installing a W-beam guardrail with a crashworthy end 

treatment. 

 1.2.4 RSAP Application 

 RSAP has been the primary software for roadside safety research since the publication of 

NCHRP Report 492: “Roadside Safety Analysis Program (RSAP) – Engineer’s Manual,” which 

introduced the second version of this software (RSAPv2) and utilized benefit-cost analysis to 
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compare various roadside safety treatments. The most significant advantage of the newest RSAP 

version (RSAPv3) compared to its predecessors is that its prediction models rely heavily on 

previous crash datasets instead of predicting outcomes based only on physics equations. This 

project used RSAPv3 for simulation because it utilizes similar existing crashes according to input 

parameters to predict crash results. However, since RSAPv3 is relatively new and very few 

research studies have used it as an analysis tool, this section reviews both RSAPv2 and RSAPv3 

applications. All reviewed RSAP research studies synthesized relevant parameters to approximate 

field conditions and conducted simulation based on a combination of related variables. 

 RSAP can simulate point hazard, line hazard, and area hazard; roadside trees are typically 

point or line hazards. Wiebelhaus et al. (2013) evaluated safety treatments for trees on low-volume 

rural roadways. A cost-effective recommendation was developed for the safety treatment of trees 

along roadways with AADT less than 500 vehicles per day and posted speed limits of at least 55 

mph. Trees with diameters of 6 inches, 10 inches, and 12 inches or more were chosen for the 

analysis. A total of 120 scenarios were configured, including 3 tree diameters, 4 lateral offsets 

from the roadway, and 10 traffic volumes ranging from AADT 50 to 500 in increments of 50. 

Three safety treatments were considered: do nothing, removing the tree, or installing a crashworthy 

guardrail system. The researchers created a decision table to determine the optimal option based 

on the threshold of benefit-cost ratio associated with various combinations of parameters. 

 A series of studies explored safety treatments for culverts (Albuquerque & Sicking, 2009; 

Albuquerque, Sicking, Faller, & Lechtenberg, 2011). First, the researchers conducted a sensitivity 

analysis using combinations of parameters set in normal ranges. The analysis utilized AADT, 

traffic growth factor, horizontal curvature, culvert size and offset, slope offset, slope steepness, 

slope depth, lane width, and lane numbers. Significant variables were selected after the sensitivity 
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analysis was complete. The studies focused on four safety treatments: leaving the culvert 

unprotected or doing nothing; extending the culvert outside the clear zone; shielding the culvert 

with a guardrail; and placing safety grates over the culvert. A decision matrix for identifying the 

most appropriate safety treatment for roadside cross-drainage culverts was created, as shown in 

Figure 1.13. As shown in the figure, guardrail installation was not applicable for any highway 

scenario, and safety grates and culvert extensions were preferred. 

 

 

Figure 1.13: Decision Matrix of Safety Treatment for Culverts (Albuquerque et al., 2011) 

 

 Embankments are another common hazard for roadside safety. Multiple research studies 

have utilized RSAPv2 to calibrate crash severity for various embankment geometries (Schrum, 

Albuquerque, Sicking, Falle, & Reid, 2014; Schrum, Albuquerque, Sicking, Faller, & Reid, 2014; 

Schrum et al., 2011; Schrum, Albuquerque, Sicking, & Faller, 2014). Prior to RSAPv3, severity 

index was commonly used to estimate crash cost; however, RSAv2 often overestimated crash 

costs, but the results were difficult to validate. In order to obtain accurate estimates, they 

established relationships between real-world accident data and embankment geometry, associating 
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the numbers of fatal and incapacitating accidents with the total mileage for each combination of 

slope and height and implementing benefit-cost analysis using RSAPv2. Research results showed 

improved accuracy with a revised severity index in RSAPv2. In RSAPv3, however, the severity 

index was not used, and the cost prediction model was established upon real crash data with 

estimated unreported crashes. 

 Schrum, Lechtenberg, Stolle, Faller, & Sicking (2012) also studied RSAP application on 

low-volume roads to develop recommendations for safety treatments of common features found 

on roadways with traffic volumes less than 500 vehicles per day (VPD) and posted speed limits of 

at least 55 mph. They conducted field investigations in Kansas and Nebraska to identify common 

roadside fixed objects and geometric features along very low-volume roadways. Culverts, trees, 

slopes, ditches, and bridges were considered. Benefit-cost analyses showed it was advantageous 

to removed substandard safety systems for most of the analyzed scenarios.  

 1.3 Research Objectives 

The primary objective of the current research study was to evaluate the rationality of 

implementing new guardrails to shield three types of common hazards on Kansas rural roadways 

under various roadway operation data and geometric features. To accomplish this objective, 

previous crashes on Kansas rural roadways were evaluated, current Kansas roadway specifications 

for typical rural roadways were synthesized, and RSAPv3 was used to calibrate and develop 

simulations. 

 1.4 Thesis Organization 

This thesis is comprised of four chapters. Chapter 1 included the background, previous 

research, and research objectives. Chapter 2 will describe a survey of previous roadside crashes in 

Kansas, the engineering principles underlying RSAPv3, specifications of Kansas rural roadways, 
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and an overview of RSAPv3 simulation. Chapter 3 will explain the simulation results for three 

types of hazards, and Chapter 4 provides significant findings, contributions to highway safety, 

limitations of the research project, and recommendations for future studies. 
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Chapter 2 - Research Methodology 

 As mentioned, the objective of this research project was to use benefit-cost analysis to test 

the rationality of implementing new guardrails to shield roadside hazards on rural roadways in 

Kansas. During an initial teleconference, the research team and Kansas Department of 

Transportation (KDOT) staff established the empirical setting of the study which was to focus on 

the Kansas rural secondary system, which are rural major collector roads receiving federal-aid as 

secondary system (versus federal-aid primary state highway). The research team then requested a 

crash dataset from the KDOT Open Records Request Portal, which included 10,294 crashes with 

valid locations information. With help from the Geographic Information System (GIS) staff at 

KDOT, approximately 1,051 roadside crashes were identified that occurred on the rural secondary 

system from 2008 to 2017. The roadside features of guardrail crashes were investigated using 

Google Maps. Since culverts are difficult to determine in Google Maps, this study did not focus 

on this roadside feature. A benefit-cost analysis was the primary method used to compare the 

various safety treatments. 

 In order to obtain the most approximated crash simulation of typical hazards on Kansas 

rural roads, this study synthesized essential parameters, including crash and construction costs, 

from years of experiences by the project monitors. To focus the project scope, the research team 

(in conjunction with KDOT staff) determined to evaluate the rationality of implementing bridge 

rail, bridge-approach guardrails, guardrail shielding a culvert wingwall, or against an embankment 

across fill areas, and over crossroad pipes. 
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 2.1 Crashes on the Kansas Rural Secondary System 

 2.1.1 Crash Dataset 

 This study investigated roadside crashes that occurred on the rural secondary system in 

order to identify common roadside features and basic crash patterns. Figure 2.1 shows the file link 

for the requested crash dataset. 

 

 
Figure 2.14: Ten-Year Crash Dataset Provided by KDOT 

 

The crash dataset contained 35 tables, or contributing causes, including ACCIDENTS, 

DRIVERS, OCCUPANTS, PEDESTRIANS, TRUCKS, VEHICLES, CC_DRIVER, 

CC_ENVIRONMENT, CC_ROADWAY, and CC_VEHICLE. CC, as shown in Figure 2.2. Each 

table stored specific information about crashes. For example, the ACCIDENT table contained 

crash details such as crash location, intersection type (if applicable), light conditions, weather 

conditions, road surface type, road conditions, road character, road class, road maintenance 

information, date of crash, time of crash, day of crash, accident class, injury severity (fatal, injury, 

or PDO) and manner of collision. The DRIVERS table provided information such as traffic unit 

(potential of multiple vehicles in one case), state of license, license information, and alcohol and 
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drug involvement. The OCCUPANTS table contained ACCIDENT_KEY, traffic unit, seat 

location, name, city, state, gender, and age of every occupant in the vehicle. This study utilized 

key information from different tables. 

 

 

Figure 15.2: Table List in Crash Dataset 

 

Using the Kansas motor vehicle accident report-coding manual, fixed-object crashes with 

guardrails and culverts were extracted from the crash dataset, as indicated in Figures 2.3 and 2.4. 
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Figure 16.3: Kansas Motor Vehicle Accident Report Coding Manual 

 

 

Figure 17.4: Accident Charts 

 

A total of 11,031 crashes were filtered from the dataset, including 10,294 crashes with 

valid locations (latitude and longitude) that were loaded onto the GIS system. GIS shape files, 

including road system and corresponding AADT, were acquired from the FHWA website (Figure 

2.5) to identify the locations of projected crashes. 
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Figure 18.5: GIS Shape File from the FHWA 

 

Additionally, Kansas county maps were obtained through KDOT’s website (Figure 2.6) to 

determine which roads belong to the Kansas rural secondary system. As shown in Figure 2.7, the 

county maps were compared to GIS maps to identify crashes on specific road systems. 
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Figure 19.6: County Map Files from KDOT 

 

 

Figure 20.7: County Map (a) and GIS Map (b) 

 

In Figure 2.7(a), the rural secondary system is highlighted in purple, and the blue point in 

Figure 2.7(b) shows a crash that occurred on that system. Following this comparison, 1,051 of 

10,294 crashes occurred on the rural secondary system, including 288 guardrail crashes and 763 

crashes involving culverts.  
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 2.1.2 Survey of Crashes with Guardrails 

Google Maps was then used to survey the 288 guardrail crashes. Approximately one-third 

of the crash locations contained guardrails (Table 2.1), and among those locations, nine crash 

sites contained low-tension cable guardrails (Figure 2.8).  

 

Table 4.1: Guardrail Crash Survey Results 

Locations Number  Percentage 

Guardrails Observed 99 34.38% 

Fences Observed 55 19.09% 

Nothing Nearby 134 46.53% 

Total Locations 288 100.00% 

 

 
Figure 218: Low-Tension Cable Guardrail 

 

Of the 288 guardrail crashes, no guardrail was observed at 134 locations, and 55 crash 

locations only had fences nearby. Table 2.2 contains statistics for all the fence locations and what 

was observed by the researcher. 
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Table 5.2: Fence Type 

Fence Type Number  Percentage 

Metal Fence 4 7.27% 

Wire Fence 25 45.45% 

Barbed Wire Fence 20 36.36% 

Irrigation System 2 3.64% 

Wood / Fiberglass Fence 2 3.64% 

Sign 2 3.64% 

Total Locations 55 100.00% 

  

Objects that could be mistaken for guardrails were screen-captured by the research team 

for validation, as shown in Figures 2.9 through 2.14. 

 
Figure 229: Metal Fence 

 

 

Figure 23.10: Wire Fence 
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Figure 2411: Barbed Wire Fence 

 

 
Figure 25.12: Irrigation System 

 

 

Figure 26.13: Wood/Fiberglass Fence 
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Figure 2714: Sign Frame 

Moreover, for the 99 locations with guardrails nearby, 79 sites contained end treatments 

on the guardrails. Table 2.3 lists the types and statistics of observed end treatments. Various end 

treatments were photographically documented, as shown in Figures 2.15 through 2.18. 

Table 6.3: Types of End Treatments 

End-Treatment Type Number  Percentage 

Energy Absorbing End 8 10.13% 

Breakaway Cable End 32 40.51% 

Blunt End 35 44.30% 

Turn Down End 4 5.06% 

Totally Observed 79 100.00% 

  

 
Figure 28.15: Energy-Absorbing Guardrail End in the Field 
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Figure 29.16: Breakaway Cable Terminal in the Field 

 

 
Figure 30.17: Blunt-End in the Field 

 

 

Figure 31.18: Turndown End in the Field 
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 2.1.3 Crash Statistics 

This section describes in-depth research of the dataset to capture basic patterns and 

contributing factors of roadside crashes on the Kansas rural secondary system. This study used 

GIS shape files, as described in section 2.1.1, to correspond every roadside crash with a 

corresponding AADT using GIS. Of the 1,051 crashes involving guardrail or culvert, only five 

crashes occurred in locations with AADT ranging from 5,000 to 7,500 vehicles per day. AADTs 

of the rest of the crash locations were less than 4,700 vehicles per day. Therefore, in order to obtain 

a balanced sample, the entire dataset was truncated, and only crash locations with AADTs less 

than 4,700 vehicles per day were analyzed, resulting in 1,046 crashes. The AADTs were divided 

into a sequence from 100 to 4,700 vehicles per day, with increments of 100. The cumulative 

number of crashes for each sequence is shown in Figure 2.19. 

 

 

Figure 32.19: Cumulative Number of Culvert and Guardrail Crashes and AADT 
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 As shown in Figure 2.19, the graph could be roughly divided into three sections of AADT. 

The first section includes 100–1,900 vehicles per day, with a sharp increasing trend. The second 

section ranges from 1,900 to 3,200 vehicles per day, with a moderate increasing trend, while the 

third section encompasses 3,300–4,700 vehicles per day, a nearly flat trend. Results showed that 

AADT was a contributing factor to roadside crashes, or crashes involving guardrails and culverts. 

 This study also investigated posted speed limit as another crash-contributing factor 

mentioned in previous research studies. Among the 1,046 analyzed crashes, 17 crashes did not 

have valid data pertaining to posted speed limit. Approximately 1,029 crashes were specifically 

studied for this factor. AADT and posted speed limit were exploited simultaneously to calibrate 

their effects on roadside crashes. Crashes were grouped according to posted speed limit, starting 

at 20 mph and ranging to 65 mph, with increments of 5 mph for each sequence. For a fixed posted 

speed limit, the number of crashes were divided into an AADT sequence, such as 0–500, 500–

1,000, until 5,000 vehicles per day. The average AADT of crash locations for a certain posted 

speed limit was calculated via arithmetic mean. Table 2.4 shows the results of this analysis.  

 

Table 7.4: Number of Crashes, AADT, and Posted Speed Limits 

Posted 

Speed 

Limit 

(mph) 

Average 

AADT 

Total 

Number 

of 

Crashes 

Number of Crashes in Each AADT Sequence 

0–

500 

500–

1000 

1000–

1500 

1500–

2000 

2000–

2500 

2500–

3000 

3000–

3500 

3500–

4000 

4000–

4500 

4500–

5000 

20 1679 1       1             

25 1205 4 2       2           

30 831 28 12 6 5 3 1 1         

35 1038 19 8 4 3 1 1 1   1     

40 1110 21 5 9 2 2     3       

45 1097 89 29 21 22 5 3 4 1 1   3 

50 1153 50 10 15 16 1 2 3 2     1 

55 926 801 393 152 88 57 28 30 31 11 7 4 

60 1640 4 1       3           

65 1694 12 4 1     3   4       
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In the table, the relevant numbers in bold from 30 mph to 55 mph are significant because the 

sample size for each section was relatively sufficient. The number of crashes roughly increased 

with increasing posted speed limit, although the average AADT did not differ significantly, 

meaning the posted speed limit contributed more substantially to roadside crashes than AADT. 

Further discussion of this topic is beyond the scope of this research.  

 2.2 Introduction to RSAPv3 

 This section includes a succinct review of the RSAPv3 engineering manual. 

 2.2.1 Overview of RSAPv3 

RASPv3 was designed to perform benefit-cost analysis for alternatives of roadside safety 

treatments. As stated in section 1.2.2, benefit is defined as a reduction in crash costs associated 

with project improvements, while cost includes construction, maintenance, and repair 

expenditures. When performing a benefit-cost analysis, RSAPv3 divides a crash into a series of 

conditional events, including the probability of encroachment, the probability of a crash given an 

encroachment, the severity of a crash, and the cost of the sequence. Based on this philosophy, 

RSAPv3 consisted of four modules: encroachment probability module, crash prediction module, 

severity prediction module, and benefit-cost analysis module. 

 The expected annual crash cost is calculated by a cumulative probability equation: 

E(CC)N, M = ADT · LN · P(Encr) · P(Cr|Encr) · P(Sev|Cr) · E(CCs|Sevs) Equation 2.1 

Where: 

E(CC)N, M = expected annual crash cost on segment N for alternative M, 

ADT = average daily traffic in vehicles/day, 

LN = length of segment N in miles, 

P(Encr) = the probability a vehicle will encroach on the segment, 
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P(Cr|Encr) = the probability a crash will occur given that an encroachment has occurred, 

P(Sevs|Cr) = the probability a certain severity will occur given that a crash has occurred, and 

E(CCs|Sevs) = the expected cost of a severe crash in dollars. 

 2.2.2 Encroachment Probability Model 

 The encroachment probability model was implemented upon Cooper encroachment data 

(Cooper, 1981) which were collected on 59 road sections ranging from 60 km to 100 km in 

length in five geographically dispersed Canadian provinces. The collection team recorded tire 

tracks and objects struck by vehicles beyond the paved and gravel shoulders. Efforts were made 

to exclude improper encroachment records such as tire tracks generated by maintenance work, 

and inclement weather conditions were underrepresented due to limited time for data collection. 

Cooper’s survey targeted three parameters for each detected encroachment, including maximum 

extent of lateral encroachment, longitudinal distance, and encroachment angle. 

 When using RSAPv3, the current study used the negative binomial regression model to 

predict roadside encroachment rate and frequency. Basic encroachment frequencies associated 

with AADT and highway type are listed in Table 2.5. 

 Base conditions for the encroachment module of RSAPv3 included posted speed limit of 

65 mph, flat ground, nearly straight segment, lane widths of approximately 12 ft. RSAPv3 can 

adjust for variation from base conditions, such as multiple lanes, posted speed limit, access density, 

terrain type, vertical grade, horizontal curve, and lane width. RSAPv3 users also can add new 

encroachment data and adjustment factors, as well as new vehicle types. 
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Table 8.5: Basic Encroachment Frequency, AADT, and Highway Type (RSAPv3 
Engineer’s Manual) 

AADT (bi-directional) Two-Lane Undivided (encr/mi/yr) Four-Lane Divided (encr/mi/yr) One-Way (encr/mi/yr) 

1,000 1.2244 0.8473 0.4236 

5,000 2.6514 3.5915 1.7958 

10,000 1.8631 5.8435 2.9217 

15,000 0.9819 7.1306 3.5653 

20,000 1.3091 7.7344 3.8672 

25,000 1.6364 7.865 3.9325 

30,000 1.96.37 7.6779 3.8389 

35,000 2.2909 7.2870 3.6435 

40,000 2.6182 6.7749 3.3874 

45,000 2.9455 7.6206 3.8103 

50,000 3.2728 8.4673 4.2337 

55,000 3.6000 9.314 4.657 

60,000 3.9273 10.1608 5.0804 

65,000 4.2546 11.0075 5.5038 

70,000 4.5819 11.8542 5.9271 

75,000 4.9091 12.7010 6.3505 

80,000 5.2364 13.5477 6.7738 

85,000 5.5637 14.3944 7.1972 

90,000 5.8910 15.2412 7.6206 

95,000 6.2182 16.0879 8.0439 

100,000 6.5455 16.9346 8.4673 

 

 2.2.3 Crash Prediction Module 

 In order to determine the probability of a collision associated with a given encroachment, 

RSAPv3 constructs trajectories to reveal intersections with hazards. RSAPv3 identifies 

three types of hazards: point hazards, line hazards, and area hazards. Point and line hazards can be 

explicitly defined in the analysis by type and location, while area hazards are identified by terrain 

features and automatically handled by RSAPv3. Figure 2.20 shows an RSAPv3 flowchart for the 

crash prediction module. 
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Figure 33.20: RSAPv3 Crash Prediction Module Flowchart (RSAPv3 Engineer’s Manual) 

 

 Because driver response, such as reacting to roadside features or maneuvering to avoid 

collision, significantly influences collision trajectory after encroachment, this trajectory cannot be 

reconstructed solely with data from non-crash-related research, such as research in Cooper (1981). 

Therefore, RSAPv3 established a trajectory look-up table to match crash routines with data found 

in NCHRP Project 17-22, Identification of Vehicular Impact Conditions Associated with Serious 

Ran-Off-Road Crashes. NCHRP 17-22 assembled a ROR database of 890 crash cases from the 

FHWA rollover study, NCHRP Project 17-11, Determination of Safe/Cost Effective Roadside 

Slopes and Associated Clear Distances, and new cases. Although a crash-trajectory dataset is 

advantageous because it is based on real conditions, the disadvantage of this dataset is that all the 

trajectories from the source terminate at the point of impact. Due to the limited number of crashes 
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and rare cases that occurred downstream far from initial impact, the research team extrapolated 

trajectory path beyond the collision point with the last known trajectory information (e.g., straight 

path, last known velocity vector, and braking rate), which was verified by the cumulative 

distribution chart.  

RSAPv3 matched crash simulation with relevant cases in the trajectory database by 

comparing geometry features similarity. Four criteria were used in this procedure: roadside cross-

section profile, horizontal curve radius, highway vertical grade, and posted speed limit. A 

composite score was computed based on the weighted average of the four criteria. 

𝑆$ =	𝑊%𝑠% +𝑊&𝑠& +𝑊'𝑠' +𝑊(𝑠( Equation 3.2 

Where: 

𝑠% = score of roadside cross section, 

𝑠& = score of horizontal curvature, 

𝑠' = score of vertical grade, 

𝑠( = score of posted speed limit, and 

𝑊# = a weight factor for each individual score, with default value: 	𝑊% = 3,𝑊& = 2,𝑊' =

1,𝑊( = 1, which can be adjusted. 

 RSAPv3 uses side slope, horizontal curve radius, and highway grade to determine the 

probability of a terrain rollover along a trajectory path. A user can modify or add relevant data 

via the Encr Freq and Adj worksheet in RSAPv3. 

𝑃(𝑅) =
1
𝐿)*)

4𝑃(𝑅|𝑠𝑙𝑜𝑝𝑒)! ∗ ∅+!,- ∗ ∅+!,./ ∗ 𝐿!

0

!

 Equation 4.3 

Where: 

𝑃(𝑅)	= probability of a rollover for the trajectory, 
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𝑃(𝑅|𝑠𝑙𝑜𝑝𝑒)! 	= probability of a rollover based on the side slope at increment i,  

∅+!,- 	= adjustment factor for vertical grade and side slope at increment i,  

∅+!,./ 	= adjustment factor for horizontal curve radius and side slope at increment i,  

𝐿! 	= length of current increment, 

𝐿)*)	= total length of the trajectory path, and 

N = total number of increments along the trajectory path during analysis. 

 RSAPv3 generally defines hazard penetration as bumping through a hazard, vaulting over 

a hazard, or rolling over the top of a hazard. Penetration outcomes for point hazards include vehicle 

penetration of a hazard, which is justified by comparing the kinetic energy of the collision with 

the strain energy of a hazard, or discontinuation of movement when a vehicle encounters a hazard. 

RSAPv3 matches various levels of severity to each type of a hazard. Line hazards have six possible 

outcomes of penetration: stop upon contact with a hazard (90-degree impact), redirection, 

redirection with a rollover on the impact side of a hazard, hazard penetration to cause structural 

failure of the barrier, rollover hazard on the other side, and vaulting on the other side. The RSAPv3 

Severity worksheet contains analysis ratios of redirection, vaulting, and rollovers based on real 

crash data. Unlike previous roadside safety benefit-cost software that relied on mechanistic 

methods with structural penetration, RSAPv3 uses both mechanistic and statistical methods to 

perform benefit-cost analyses (Table 2.6).  

 
  



39 

Table 9.6: Comparison of Mechanistic and Statistical Methods (RSAPv3 Engineer’s 
Manual) 

Mechanical Statistical 
Strength Weakness Strength Weakness 

Based on physics Capacity of barriers is seldom 
know a priori 

Based on real-world 
data and therefore 
likely to be accurate 

May not be data available for 
many types of barriers, especially 
new or special barriers 

Useful for barriers with 
unknown field performance 

Simple equations for prediction 
are not very accurate 

Easy to compute and 
implement using 
RSAP 

May not be able to determine 
impact conditions most associated 
with performance 

Based on impact conditions 
and structural assessment 

Complex simulations are not 
practical and are difficult to 
implement 

    

Simple equations are easy to 
implement       

 

2.2.4 Severity Prediction Module 

The severity module implemented in RSAPv3 was based on police-reported crashes and 

then adjusted for unreported crashes and speed effects to develop a dimensionless severity 

measure that can be associated with impact speed of each simulated collision.  

The example of estimate for crash severity of utility pole accidents in the Sates of 

Washington to demonstrate how to obtain the equivalent fatal crash cost ratio (EFCCR), which is 

an average dimensionless severity measure scaled to fatal crash cost. 
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Table 10.7: Police-Reported Severity of Utility-Pole Crashes in Washington, 2002–2006 
(RSAPv3 Engineer’s Manual) 

Posted 

Speed Limit 

(mph) 

Police-Reported Severity 

K A B C PDO Unknown Total 

Cases No. % No. % No. % No. % No. % No. % 

2002–2006 WSDOT HSIS 

25 0 0.00 3 5.45 12 21.82 4 7.27 33 60.00 3 5.45 55 

30 1 1.39 1 1.39 11 15.28 11 15.28 35 48.61 13 18.06 72 

35 1 0.40 9 3.63 42 16.94 57 22.98 115 46.37 24 9.68 248 

40 4 3.70 3 2.78 22 20.37 20 18.52 51 47.22 8 7.41 108 

45 1 0.95 4 3.81 23 21.90 25 23.81 40 38.10 12 11.43 105 

50 6 1.77 15 4.42 75 22.12 57 16.81 161 47.49 25 7.37 339 

55 4 1.87 10 4.67 55 25.70 37 17.29 98 45.79 10 4.67 214 

60 1 1.56 1 1.56 9 14.06 16 25.00 31 48.44 6 9.38 64 

65 1 33.33 0 0.00 0 0.00 1 33.33 1 33.33 0 0.00 3 

70 0 0.00 0 0.00 0 0.00 1 33.33 2 66.67 0 0.00 3 

 

 Previous research has shown that police-reported crash data underrepresented low-severity 

crashes because a significant number of PDO crashes were not reported. Using estimated 

unreported crashes, total crash costs for respective posted speed limit were estimated, as shown in 

Table 2.8. 

 

  



41 

Table 11.8: Crash Costs and EFCCRs of Utility-Pole Crashes in Washington, 2002–2006 
(RSAPv3 Engineer’s Manual) 

Posted 

Speed Limit 

(mph) 

Police-Reported Severity 
Unreported Total 

Crash 

Cost 

EFCCR 
K A B C PDO Unknown 

$2,600k $180k $36k $19k $2k $2k $1k 

% % % % % % $ 

 Washington State HSIS (2002–2006) 

25 0.00 1.15 4.60 1.53 12.64 1.15 78.93 5,080 0.001954 

30 0.44 0.44 4.80 4.80 15.29 5.68 68.56 15,888 0.006111 

35 0.13 1.18 5.50 7.46 15.05 3.14 67.54 9,959 0.003830 

40 1.52 1.14 8.37 7.61 19.39 3.04 58.93 47,098 0.018115 

45 0.44 1.78 10.23 11.12 17.80 5.34 53.28 21,567 0.008295 

50 1.14 2.85 14.27 10.85 30.64 4.76 35.49 43,086 0.016572 

55 1.33 3.32 18.28 12.30 32.57 3.32 28.88 50,472 0.019412 

60 1.55 1.55 13.98 24.85 48.14 9.32 0.62 54,076 0.020798 

65 24.60 0.00 0.00 24.60 24.60 0.00 26.19 64,510 0.248116 

70 0.00 0.00 0.00 57.07 42.93 0.00 0.00 12,413 0.004774 

 

𝐸𝐹𝐶𝐶𝑅&1 =
𝑇𝑜𝑡𝑎𝑙	𝐶𝑟𝑎𝑠ℎ	𝐶𝑜𝑠𝑡
𝐹𝑎𝑡𝑎𝑙	𝐶𝑟𝑎𝑠ℎ	𝐶𝑜𝑠𝑡 =

5,080
2,600,000 = 0.001954	 Equation 5.4 

RSAPv3 research team developed a regression model to estimate the EFCCR as a function of 

posted speed: 

𝐸𝐹𝐶𝐶𝑅 = J
𝐸𝐹𝐶𝐶𝑅21
65' K 𝑉!'. Equation 6.5 

 2.2.5 Benefit-Cost Module 

 The benefit-cost module in RSAPv3 is based on the same principle described in section 

1.2.2. The user can input local project costs and fatal crash costs, which RSAPv3 transfers to a 

particular type of crash cost via EFCCR, as described in section 2.2.4.  
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 2.3 Engineering Conditions for Kansas 

 All of the geometric features of a hazard, including offset and slope (Figure 2.21), and 

traffic operation data are necessary to define a hazard in RSAPv3. This section details the 

engineering conditions specific to local roadways in Kansas. 

 

 

Figure 34.21: Defining a Water Hazard (RSAPv3 User’s Manual) 

 

 2.3.1 Rural Roadway Conditions 

 Rural roadways in Kansas are primarily comprised of two-wheel-track gravel roads (Figure 

2.22) or three- to four-wheel-track gravel or paved roads (Figure 2.23). Roadway widths of two-

wheel-track roads in this project were 18 ft., 20 ft., 22 ft., and 24 ft., with the 10 ft. width wheel 

track in the center of the road defining the lane width. Any extra space on the roadway besides the 

lane width was considered the shoulder width, measured from the edge of the wheel track through 

the edge of the roadway. Shoulder widths for this study were 4 ft., 5 ft., 6 ft., and 7 ft. for each 

road width in sequence. The AADT was especially low on these roads, usually 100 or 200 vehicles 

per day.  
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In three- or four-wheel-track gravel or paved roads, however, two lanes, each with widths 

of 12 ft., are defined by the wheel track. One lane is considered the primary direction, and the other 

lane is the opposing direction. Roadway widths of three- or four-wheel-track gravel or paved roads 

in this project were 24 ft., 26 ft., 28 ft. After deducting the two-lane width from the road, shoulder 

widths were 0 ft., 1 ft., and 2 ft. for each road width in sequence. The AADT for three- or four-

wheel-track gravel or paved roads in this study were 100, 400, and 1,000 vehicles per day.   

 

 

Figure 35.22: Rural Two-Wheel-Track Gravel Road (Bowers, 2019) 

 

  

Figure 36.23: Rural Three-or Four-Wheel-Track Gravel or Paved Road (Bowers, 2019) 
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For both types of rural roadways, the foreslope beside the road was 3:1 with a height of 2 ft, as 

shown in Figure 2.24.  

 

 
Figure 37.24: Cross Section Before and After Transition 

 

 2.3.2 Culvert Simulation 

 This study set up a culvert simulation, including use of a bare culvert and a culvert shielded 

with a guardrail, to determine whether new guardrails should be used to shield culverts based on 

benefit-cost analysis. Two-wheel-track gravel roads and three- or four-wheel-track gravel or paved 

roads were included in every simulation with parameters such as posted speed limit, AADT, lane 

width, shoulder width, and slope and height beside the road before and after transition. The 

simulated culvert, delineated by a water stream (Figure 2.28), consisted of a hubguard and a 

wingwall. Culvert simulation using RSAPv3 required a description of its geometric features, 

including boundaries (offset to the road, length, width, and height) and the slope of its wingwall. 

The guardrail length was provided by KDOT. Table 2.9 summarizes the culvert simulation plan.   
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Table 12.9: Simulation Plan for Culverts 

Road Types 

  Parameters 
Two-Wheel-Track Gravel Road 

Three- or Four-Wheel-

Track Gravel or Paved 

Road 

Posted Speed Limit 45, 55 mph 

AADT 
100 vehicles, 200 vehicles per day (all 

traffic primary-no opposing traffic) 

100 vehicles, 400 vehicles 

and 1,000 vehicles per day 

Lane Width 10 ft Two 12 ft 

Shoulder Width 4 ft, 5 ft, 6 ft, and 7 ft 0 ft, 1 ft, and 2 ft 

Before & After 

Transition 

Slope 3:1 

Height 2 ft 

Culvert 

Offset 0, 2, and 4 ft 

Height 10 and 14 ft 

Foreslope 3:1 

Width 20 ft 

Length height * slope - offset 

Guardrail 245 ft 

  

 A transition connected the culvert and roadway before and after the hazard; the length of 

the transition was 50 ft for each side, as shown in Figures 2.25 and 2.26. The foreslope from the 

transition through the culvert was 3:1, identical to the roadway, and the filling that covered the 

culvert extended 75 ft. Culvert width was estimated to be 20 ft, which was the worst-case scenario 

in the field according to engineering experience. 
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Figure 38.25: Plan View for Culvert on Two-Wheel-Track Gravel Road 

 

 

Figure 39.26 Plan View of Culvert on Three- or Four-Wheel-Track Gravel or Paved Road 

  

 The heights of the culvert rising from the flowing line of the channel to the roadway 

surface were 10 ft. and 14 ft., as shown in Figure 2.27. The length of the stream delimited by the 
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culvert was the distance that the foreslope extended minus the offset of the culvert, which was 

based on the culvert’s slope and height. Since the slope was 3:1 and the height was h, the length 

of the stream was (3h – offset), as shown in Figure 2.27. The distances from the hubguard to the 

edge of the shoulder were 0 ft., 2 ft., and 4 ft., which were the offsets of the culvert to the edge of 

the shoulder, also shown in Figure 2.27. 

 

 

Figure 40.27: Cross Section of Culvert 

 

 The new guardrail-shielding culvert included 175 ft. in front of the culvert and 35 ft. for 

transition on each side. Therefore, the total length was (175 ft. + 35 ft. × 2) = 245 ft. The guardrail 

was established on the edge of the road with an end treatment according to KDOT. Figures 2.28, 

2.29, and 2.30 showed real culverts in the field. In Figure 2.28, the length of the wingwall was 

immaterial since it was vertical and aligned with the stream bank. 
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Figure 41.28: Culvert on Rural Road (Bowers, 2019) 

 

  

 

Figure 42.29: Culvert with Zero Offset (Bowers, 2019) 
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Figure 43.30: Guardrail Shielding a Culvert (Bowers, 2019) 

 

 2.3.3 Embankment Simulation 

 This study set up an embankment simulation, using a bare embankment and an 

embankment with a new guardrail, to test the rationality of using new guardrails to shield an 

embankment across a fill area over pipe based on benefit-cost analysis. The simulated roads were 

identical to the roads in the culvert simulation, and the embankment parameters included height 

and foreslope. The simulated embankment began directly beside the road. Table 2.10 summarizes 

the embankment simulation plan.  
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Table 13.10: Simulation Plan for Embankments 

Road Types 

  Parameters 

Two-Wheel-Track Gravel 

Road 

Three- or Four-Wheel-

Track Gravel or Paved 

Road 

Posted Speed Limit 45, 55 mph 

AADT 

100 vehicles, 200 vehicles 

per day (all traffic primary-

no opposing traffic) 

100 vehicles, 400 vehicles 

and 1,000 vehicles per day 

Lane Width 10 ft. Two 12 ft. 

Right Shoulder Width 4 ft., 5 ft., 6 ft., and 7 ft. 0 ft., 1 ft., and 2 ft. 

Before 

Transition 

Slope 3:1 

Height 2 ft. 

Embankment 

Height 6ft, 12ft, and 18 ft. 

Foreslope 2:1, 3:1, and 4:1 

Guardrail 220 ft. 

 

 A transition connected the embankment and roadway before and after the embankment. 

The length of the transition was 50 ft. for each side, as shown in Figures 2.31 and 2.32. The 

foreslopes beside the road, from the transition through the embankment, were 2:1, 3:1, and 4:1. 

The length of the filling that covered the embankment was 50 ft. The embankment heights were 6 

ft., 12 ft., and 18 ft., as shown in Figure 2.33, and the embankment length was the extension 

distance of the foreslope, based on the slope and height of the embankment. The embankment 

length was (Foreslope * h). 

 The new guardrail-shielding embankment included 150 ft. in front of the embankment and 

35 ft. for transition on each side. Therefore, the total length was (150 ft. + 35 ft. × 2) = 220 ft. A 

guardrail was also established on the edge of the road with an end treatment. 

 



51 

 

Figure 44.31: Plan View of Embankment on Two-Wheel-Track Gravel Road 

 

 

Figure 45.32: Plan View of Embankment on Three- or Four-Wheel-Track Gravel or Paved 

Road 
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Figure 46.33: Cross Section of Embankment 

 

 2.3.4 Bridge Simulation 

 This study conducted two bridge simulations to test the rationality, based on benefit-cost 

analysis, of replacing bridge edges with W-beam guardrails or using new guardrails attached to 

bridge rails to deter errant vehicles. The first simulation had three alternatives: alternative one, the 

base condition, had bridge edge only, without bridge rail nor bridge-approach guardrails; 

alternative two replaced the bridge edge with a W-beam guardrail; and alternative three added 

bridge-approach guardrails. The second simulation used TL-2 rail as bridge rail, meaning that any 

transformation from other types of bridge rail to TL-2 required extra modification with bridge 

structure according to KDOT. Therefore, TL-2 bridge rail was implemented as the base condition, 

and the simulation was divided into two alternatives to avoid additional modification to the bridge 

structure. Alternative one used TL-2 bridge rail as the base condition, while alternative two added 

bridge-approach guardrails to TL-2 bridge rail on each side. 

 The roadways were identical to previous simulations, but the bridge widths varied on 

different roadways. The bridge widths were 20 ft. and 24 ft. on two-wheel-track gravel roads, but 

on three- or four-wheel-track gravel or paved roads the bridge widths were 20 ft., 24 ft., 26 ft., and 

28 ft. In fact, the width of the bridge could be wider than the width of the roadway. For example, 

the widest bridge on a three- or four-wheel-track gravel or paved road was 28 ft; considering when 
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the shoulder width of the roadway was 0 ft., the roadway width was (12 ft. × 2 + 0) = 24 ft. As 

previously advised, the guardrail should be implemented on the edge of the roadway for optimal 

performance, but since bridge-approach guardrails was attached to the bridge end, when the bridge 

was wider than the roadway, the guardrail was located on the slope beside the roadway. In practice, 

a transition is typically implemented to enlarge the width of roadway to match the bridge and keep 

bridge-approach guardrails on the edge of the roadway. For simplicity in this study, only the 

shoulder width was extended in the transition. Table 2.11 summarizes the bridge simulation plan. 
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Table 14.11: Simulation Plan for Bridges 

Road Types 

  Parameters 

Two-Wheel-Track Gravel 

Road 

Three- or Four-Wheel-

Track Gravel or Paved Road 

Posted Speed Limit 45, 55 mph 

AADT 

100 vehicles, 200 vehicles per 

day (all traffic primary-no 

opposing traffic) 

100 vehicles, 400 vehicles, 

and 1,000 vehicles per day 

Lane Width for Road 10 ft. Two 12 ft. 

Shoulder Width for Road 4 ft., 5 ft., 6 ft., and 7 ft. 0 ft., 1 ft., and 2 ft. 

Before & After 

Bridge 

Slope 3:1 

Height 2 ft. 

Transition Before & After 

Bridge 

Expand the shoulder width to match the bridge width if the road 

width is less than the bridge width, transition length 100 ft. 

Bridge 

Width 20 ft. and 24 ft. 20 ft., 24 ft., 26 ft., and 28 ft. 

Lane Width (Shoulder 

Width) 
10 ft. (5 ft.) and 10 ft. (7 ft.) 

10 ft. (0), 12 ft. (0), 12 ft. (1 

ft.), and 12 ft. (2 ft.) 

Length 120 ft. 

Water Height from 

Bridge Surface 
12 ft. (existing hazard for all alternatives) 

Simulation 

1 

Alt 1 
Medium bridge edge without W-beam bridge-approach 

guardrails 

Alt 2 
W-beam bridge rail without W-beam bridge-approach 

guardrails 

Alt 3 W-beam bridge rail with W-beam bridge-approach guardrails 

Simulation 

2 

Alt 1 TL-2 bridge rail without W-beam bridge-approach guardrails 

Alt 2 TL-2 bridge rail with W-beam bridge-approach guardrails 

Approaching Guardrail 
87.5 ft. on each side of road, attached to bridge ends with end-

treatments 

   

The simulation also included scenarios in which the road was wider than the bridge and 

bridge-approach guardrails attached to the bridge end narrowed the road. No transition was used 

if the bridge was narrower than the road. Lanes were striped across the paved bridge, and the 

simulation was assumed to extend the lane across the bridge, leaving extra space as shoulder on 
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the bridge. The transition length was 100 ft for each side of the bridge, and the length of the bridge 

was 120 ft, as illustrated in Table 2.11 and Figures 2.34 and 2.35. The average height from bridge 

surface to water surface was 12 ft., as shown in Figure 2.36. 
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Figure 47.34: Plan View of Bridge on Two-Wheel-Track Gravel Road 
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Figure 48.35: Plan View of Bridge on Three- or Four-Wheel-Track Gravel or Paved Road 
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Figure 49.36: Bridge Cross Section for Three- or Four-Wheel-Track Gravel or Paved Road 

 

 Four bridge-approach guardrails were attached to the bridge end including end treatments 

on both sides of the bridge with lengths of 87.5 ft. each. Figures 2.37 and 2.38 show bridge-

approach guardrails found on Kansas roadways. 

 

 
Figure 50.37: Bridge-approach guardrails to Bridge End (Bowers, 2019) 
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Figure 51.38: Bridge-approach guardrails to Bridge End (Bowers, 2019) 

 

 2.4 RSAPv3 Simulation 

 2.4.1 Input Parameters on RSAPv3 

 Input parameters for the simulations were divided into Project, Traffic, Highway, 

Alternative, and Cross-Section worksheets in RSAPv3. The data needed for each worksheet, as 

well as values and sources, are listed in Table 2.12. Common information shared by all the 

alternatives, such as project conditions, traffic data and highway features, were input into the first 

three worksheets, while specific features for each alternative were included in the Alternative and 

Cross-Section worksheets.  

 The Project worksheet used Kansas data to obtain estimated crash costs in accordance with 

local conditions. For example, guardrail life is typically 20 years in Kansas. For a crash occurring 

during the life of a guardrail, benefit-cost analysis was used to evaluate annual cost given design 

life and return of rate. 
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Table 15.12: Input Parameters for RSAPv3 
 

Worksheet Specific Data Sources 
KDOT Other Sources 

Project 

Design Life 20 years   
Construction Year   2019 

Rate of Return   4% (default) 
GDP Values during Life   N(default) 

Current Year by GDP   Y(default) 
GDP Deflector to 
Construction Year   1.07 (default) 

Base Year for Crash-Cost 
Data 2017   

Value of Statistical Life $4,733,650   

Traffic 

AADT Simulation Plan   
Traffic Growth 0%   

Vehicle Percentage (FHWA)   Previous simulation in 
Kansas 

Highway 

% of Traffic in Primary 
Direction   

50% for two directions and 
100% for one direction 

(default) 
% of Traffic Encroaching 

Right   50% (default) 

Highway Type 

Simulation Plan 

  
Flat, Rolling, or Mountainous   

Posted Speed Limit   
User Encroachment 

Adjustment   

Access Density   
Lanes Total   
Lane Width   

Median Shoulder Width   
Median Width   

Primary Road Curve   
Primary Vertical Grade   

Number of Primary Lanes   
Rumble Strips   

Right Shoulder Width   

Alternative 

Hazard Type 

Simulation Plan 

  
Hazard Length   
Hazard Offset   
Hazard Width   

Construction Cost 
$80/ft. for non-state 

highway; $3,000 for each 
end-treatment 

  

Annual Maintenance Cost $0    
Cross-
Section 

Slope Width Simulation Plan   
Slope   
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As mentioned, RSAPv3 uses EFCCR, an average dimensionless severity measure scaled 

to fatal crash cost, to estimate various crash costs. Once the value of fatal crash costs, called the 

Value of Statistical Life, was updated using Kansas data, the crash cost reflected local conditions. 

As shown in Figure 2.39, the fatal crash cost used in this study was $4,733,650 in fiscal year 2017. 

The rest of the data in this project utilized default values with KDOT approval as in Table 2.12.  

 

 

Figure 52.39: Costs of Fatal Crashes in Kansas for Fiscal Year 2017 (KDOT, 2019) 

 

 The Traffic worksheet contained AADT, traffic volume growth rate, and vehicle 

percentage. AADT information was previously described in the simulation plan, and the growth 

rate of traffic on Kansas rural roadways was 0%, according to KDOT. As for vehicle percentage, 

or the comprising percentage of each type of vehicle in traffic volume, percentages from previous 

simulations in Kansas were used since KDOT had no validated data on rural roads.   
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 Most of the information included in the Highway worksheet was previously described in 

the simulation plan in section 2.3. If the roadway contained two directions, a default value of 50% 

was used for traffic in the primary direction, meaning the division of traffic volume between 

primary and opposing directions was equal. Moreover, a value of 100% was used for traffic in the 

primary direction on two-wheel-track gravel roads, and the value for percentage of traffic 

encroaching right was set as a default value of 50%, meaning half of the total number of errant 

vehicles would advance to the right. 

 Geometric features of hazards in the Alternative worksheet were also described in section 

2.3. KDOT provided the costs of construction and maintenance. Likewise, the Cross-Section 

worksheet contained dimensions of cross sections associated with homogeneous sections of roads 

separated by users, as described in section 2.3. 

 2.4.2 Implementing RSAPv3 Simulation 

 This section provides RSAPv3 simulation instructions using the complicated example of a 

bridge simulation on a three- or four-wheel-track gravel or paved road with bridge edge as a base 

condition. 

 As shown in the RSAPv3 interface in Figure 2.40, the RSAPv3 controls dialog box allows 

the user to navigate between worksheets, manipulate tasks or check results, and restore default 

settings and hazards. Useful resources, such as Manual or Help, are also accessible via the dialog 

box. Project information was input on the right side of the box. As shown in the figure, the rose-

colored cells suggest editable default values, and the yellow cells represent specific data for this 

project, which must be filled. The “Value of Statistical Life” refers to the average cost of a fatal 

crash.  
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Figure 53.40: RSAVPv3 Project Interface 

 

 After completing the data entry in all the Project worksheet fields, clicking on “Traffic” 

initiates the Traffic worksheet (Figure 2.41). Since traffic growth was 0% in the task, the default 

“Mid-Life” option was satisfactory. With the exception of crash cost adjustment, the rest of the 

values were described in section 2.4.1. The default values were used in this task with no changes. 
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Figure 54.41: RSAVPv3 Interface of Traffic Information 

 

 Figure 2.42 shows the interface of the Highway worksheet. The “U” value in the Highway 

Type cell denotes an undivided road, which applied to the two types of roadways in this study, and 

the “F” option in the Terrain cell means flat. This study used default value 1 in the cell for “User 

Encroachment Adjustment.” The information entered in the Highway worksheet was used to 

generate yearly encroachments based on results from the study by Cooper (1981). Expected 

encroachments are shown in the green table below the input cells in Figure 2.42.  
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Figure 55.42: RSAVPv3 Interface of Highway Characteristics 

 

 The roadway was divided into homogeneous sections based on geometric features, 

including lane number, lane width, shoulder width, grade, and curves. After completing data entry 

for the Highway worksheet, clicking on the “Enter Highway Characteristics” button in the dialog 

box opens the “User-Entered Characteristics” form, as shown in Figure 2.43. The right side of the 

box contains default characteristic values; only values that differ from default values need to be 

entered. In this study, the 120-ft bridge was located in the middle of the roadway, which started 

from 590 ft. to 710 ft. In addition, the bridge width was 28 ft., the lane width was 12 ft. for each 

direction, and the shoulder width of roadway was 1 ft., meaning the total width of the roadway 

was 26 ft. As discussed in section 2.3.4, two transitions (100 ft. each) were established on both 

sides of bridge if the bridge was wider than the roadway. Two transitions, 490–590 ft. and 710–

810 ft., were implemented with shoulder width equal to the bridge shoulder. After finishing the 

entry, one click on the “Segment Project” button saves the results and opens the next module. 
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Figure 56.43: RSAVPv3 Interface of Highway Characteristics (User-Entered) 

 

 As described in section 2.3.4, three alternatives were used for the first bridge simulation. 

Figure 2.44 shows the first alternative, in which the initial offset is the distance from the baseline, 

or the left edge of travel in this simulation, and 200 ft. is the maximum extension of the hazard. 

Therefore, the bridge edge was 14 ft. from the baseline, which was half the width of the bridge. 

The water below the bridge was defined by three water lines on each side of the bridge (Figure 

2.21, section 2.3). The perpendicular line of water extended from the bridge edge (14 ft. from the 

baseline) to the far end (200 ft. from the baseline).  
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Figure 57.44: RSAVPv3 Interface of Alternatives (Alternative 1) 
 

 In alternative two, the bridge edge was replaced with a W-beam guardrail. The cost for 

guardrail implementation was $80/ft., so the total construction cost was $80/ft. × 120 ft. × 2 = 

$19,200, as shown in Figure 2.45. 

 

 

Figure 58.45: RSAVPv3 Interface of Alternatives (Alternative 2) 
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In alternative three, the W-beam bridge-approach guardrails was attached to bridge end. 

The cost for each guardrail end treatment was $3,000, so the total construction cost was $80/ft. × 

(120 × 2) ft. + $80/ft. × (87.5 × 2) ft. + $3,000 × 4 = $59,200, as shown in Figure 2.46. 

 

 

Figure 59.46: RSAVPv3 Interface of Alternatives (Alternative 3) 

 

 In the Cross-Section worksheet, segment one (0–490 ft.) and segment two, the transition, 

(490–590 ft.) were nearly identical except for the roadway shoulder width, which was input from 

the Highway worksheet. The 12-ft offset shown in Figure 2.47 was the lane width, or the distance 

from the lane edge to the baseline (left edge of travel). The 13-ft offset included the roadway 

shoulder width (1 ft.). In addition, the 19-ft offset contained the slope length, which was 6 ft for 

the roadway. The elevation denoted the height (2 ft.) from the bottom of the slope to the roadway 

surface. Details are explained in section 2.3.1. 
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Figure 60.47: RSAVPv3 Interface of Cross Section (Segment 1, 0–490 ft.) 

 

 In the bridge cross section (Figure 2.48), the height from the water surface to the bridge 

surface was 12 ft. However, an error occurred when the shoulder width was displaced, which was 

read from Alternative Worksheet because RSAPv3 can only display the lane width and shoulder 

width from the first segment of the roadway. The RSAPv3 research team promised to fix this bug 

in the future.   
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Figure 61.48: RSAVPv3 Interface of Bridge Cross Section (Segment 3, 590–710 ft.) 

 

 Simulation results are shown in Figure 2.49. When the threshold of benefit-cost ratio was 

set as 2.0, the ratio in green showed that alternative two was the optimal implementation in terms 

of benefit-cost analysis. 

 

 

Figure 62.49: Interface of Results 
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Chapter 3 - Simulation Results and Analyses 

 This study performed a total of 718 simulation runs. The average time required for each 

depended on the simulation complexity. For the same hazard size and offset, simulations for a two-

wheel-track gravel road took much less time than a simulation for a three- or four-wheel-track 

gravel or paved road because AADT on three- or four-wheel-track gravel or paved roads was 

typically much higher than two-wheel-track gravel roads. In addition, two-way directions required 

more errant-track calculations. Therefore, this study utilized nine computers with approximately 

18 hours of computing time per day. Computing time last for approximately three months, 

including initial communication with KDOT and simulation plan revisions. This chapter contains 

simulation results and analyses. 

 3.1 Result and Analysis of Culvert Simulation 

 The culvert simulation provided benefit-cost ratios with or without guardrails under 

various combinations of features. As synthesized in sections 2.3 and 2.4, roadway geometric 

features, traffic data, and culvert profiles were essential for the culvert simulations, in which 

roadside slope was 3:1 on three- or four-wheel-track gravel or paved roads. The simulation 

contained two lanes, each with widths of 12 ft., and the culvert width was 20 ft. The three 

parameters were fixed and used for all culvert simulations on three- or four-wheel-track gravel or 

paved roads, as shown in Table 3.1. Values for shoulder width, AADT, and posted speed limit 

were combined in sequence on the left side of B/C (benefit-cost) ratio in Table 3.1. The B/C 

ratios under various combinations were easily retrieved in accordance with field conditions. The 

parameters contained in Table 3.1 were extracted from Table 2.9 in section 2.3.2. A total of 108 

simulations are presented in the table.  
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Table 16.1: W-Beam Guardrail for Culvert on Three- or Four-Wheel-Track Gravel or 
Paved Roads 

Roadside slope=3:1, two lanes width = 12 ft., culvert width = 20 ft. 

Shoulder 
Width AADT 

Posted 
Speed 
Limit 

B/C Ratio 
Culvert Height = 10 ft. Culvert Height = 14 ft. 

offset 0 ft. offset 2 ft. offset 4 ft. offset 0 ft. offset 2 ft. offset 4 ft. 

0 ft. 

100 45 0.00 0.00 0.00 0.00 0.00 -0.01 
55 0.00 0.00 -0.01 0.01 0.00 0.00 

400 45 0.00 -0.01 -0.02 0.01 0.00 -0.01 
55 0.01 0.00 -0.01 0.02 0.01 0.00 

1000 45 0.00 0.01 -0.04 0.01 0.00 -0.02 
55 0.02 -0.01 -0.04 0.06 0.03 0.00 

1 ft. 

100 45 0.01 0.01 0.00 0.01 0.01 0.01 
55 0.02 0.02 0.01 0.02 0.02 0.01 

400 45 0.05 0.04 0.02 0.06 0.04 0.02 
55 0.09 0.06 0.04 0.09 0.06 0.03 

1000 45 0.13 0.09 0.05 0.14 0.10 0.06 
55 0.22 0.16 0.09 0.23 0.15 0.08 

2 ft. 

100 45 0.01 0.01 0.00 0.01 0.01 0.00 
55 0.02 0.01 0.01 0.02 0.01 0.01 

400 45 0.04 0.03 0.01 0.05 0.04 0.02 
55 0.08 0.05 0.03 0.08 0.05 0.02 

1000 45 0.11 0.07 0.02 0.13 0.09 0.05 
55 0.19 0.13 0.06 0.20 0.13 0.06 

  

 As shown in Table 3.1, when shoulder width was 0 ft., each B/C ratio was almost zero; 

positive non-zero ratios only appeared when shoulder width was 1 ft. or 2 ft. Engineering 

experience has shown that guardrails typically protect roadside hazards when they are 

implemented far enough from traffic volume to avoid unnecessary minor crashes, as shown in 

Table 3.1.  

 The highlighted values in Table 3.1 allow several factors affecting B/C ratios to be inferred. 

When other parameters were fixed, B/C ratios decreased with increasing offset for the same culvert 

height. In other words, the farther away the hazard from the road, the less dangerous the hazard 

becomes, decreasing the frequency of subsequent crashes. In addition, the B/C ratios increased 

when AADT increased, and other parameters remained unchanged because traffic exposure 

increased, thereby increasing crash possibilities. Posted speed limit also significantly affected the 

B/C ratios; with other parameters fixed, the B/C ratio for a certain culvert was much higher at 55 
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mph than at 45 mph. Higher speeds decreased driver reaction time and increased crash severity. 

Culvert size slightly influenced the B/C ratio, proven by the large culvert (culvert height as 14 ft.) 

displaying a slightly higher B/C ratio than the small culvert (culvert height as 10 ft.).  

 The results of culvert simulation on a two-wheel-track gravel road are shown in Table 3.2. 

As mentioned in section 2.3.1, this roadway had only one direction, and lane width was 10 ft. 

Shoulder width and AADT differed from the previous culvert simulation but posted speed limit 

and culvert profiles were identical to the previous simulation. The B/C ratios in Table 3.2 are 

almost all zeros because traffic exposure or AADT was too low for crashes to occur on this type 

of roadway and, although the lane was narrow, the shoulder was wide enough (at least 4 ft) to 

absorb most potential encroachments, providing a forgiving environment for errant vehicles. 

Moreover, these results could be applicable for guardrail performance, for which the inference 

could be made that proper space to contain errant vehicles on the road is a key factor in guardrail 

performance. In this case, guardrail implementation was not practical when AADT was low and 

roadway width was large that keeps hazard far away from traffic. 
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Table 17.2: W-Beam Guardrail for Culvert on Two-Wheel-Track Gravel Road 
Slope = 3:1, lane width = 10 ft., culvert width = 20 ft.    

Shoulde
r Width 

AA
DT 

Posted 
Speed 
Limit 

B/C Ratio 
Culvert Height = 10 ft. Culvert Height = 14 ft. 

offset 0 ft. offset 2 ft. offset 4 ft. offset 0 ft. offset 2 ft. offset 4 ft. 

4 ft. 
100 45 0.00 0.00 0.00 0.00 0.00 0.00 

55 0.00 0.00 0.00 0.00 0.00 0.00 

200 45 0.01 0.00 0.00 0.00 0.00 0.00 
55 0.01 0.00 0.00 0.01 0.00 0.00 

5 ft. 
100 45 0.00 0.01 0.00 0.00 0.00 0.00 

55 0.00 0.00 0.00 0.00 0.00 0.00 

200 45 0.01 0.00 0.00 0.00 0.00 0.00 
55 0.01 0.00 0.00 0.01 0.00 0.00 

6 ft. 
100 45 0.00 0.00 0.00 0.00 0.00 0.00 

55 0.00 0.00 0.00 0.00 0.00 0.00 

200 45 0.01 0.00 0.00 0.00 0.00 0.00 
55 0.01 0.00 0.00 0.00 0.00 -0.01 

7 ft. 
100 45 0.00 0.00 0.00 0.00 0.00 0.00 

55 0.01 0.00 0.00 0.00 0.00 0.00 

200 45 0.01 0.00 0.00 0.00 0.00 0.00 
55 0.01 0.01 0.00 0.01 0.00 0.00 

   

 From the results shown in Tables 3.1 and 3.2, the general finding was made that new 

guardrails should not be implemented to shield culverts on Kansas rural roadway. 

 3.2 Result and Analysis of Embankment Simulation 

 The embankment simulation, which included one alternative with a bare embankment and 

another alternative with a guardrail to shield the hazard, intended to explore the benefit-cost ratios 

under various combinations of roadway geometric features and traffic operation data. The 

embankment simulation on three- or four-wheel-track gravel or paved roads was similar to the 

culvert simulation on the same type of roadway, except that the embankments had  2:1, 3:1, and 

4:1 slopes, as shown under the B/C ratio column on the right side of Table 3.3. The table also 

displays the three embankment heights and shoulder widths, AADT, and posted speed limit.  
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Table 18.3: W-Beam Guardrail for Embankment on Three- or Four-Wheel-Track Gravel 
or Paved Road 

 Two-lane width = 12 ft.       

Shoulder 
Width AADT 

Posted 
Speed 
Limit 

B/C Ratio 
Embankment 
Height = 6 ft. 

Embankment 
Height = 12 ft. 

Embankment Height 
= 18 ft. 

slope 
2:1 

slope 
3:1 

slope 
4:1 

slope 
2:1 

slope 
3:1 

slope 
4:1 

slope 
2:1 

slope 
3:1 

slope 
4:1 

0 ft. 

100 45 -0.01 -0.02 -0.02 -0.02 -0.02 -0.03 -0.02 -0.02 -0.02 
55 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 

400 45 -0.09 -0.09 -0.09 -0.09 -0.10 -0.11 -0.09 -0.09 -0.09 
55 -0.12 -0.12 -0.13 -0.12 -0.12 -0.14 -0.12 -0.12 -0.12 

1000 45 -0.22 -0.22 -0.23 -0.06 -0.24 -0.29 -0.22 -0.22 -0.23 
55 -0.30 -0.30 -0.31 -0.30 -0.30 -0.34 -0.29 -0.29 -0.30 

1 ft. 

100 45 -0.03 -0.03 -0.03 -0.03 -0.03 -0.04 -0.03 -0.03 -0.03 
55 -0.04 -0.04 -0.04 -0.04 -0.04 -0.05 -0.04 -0.04 -0.04 

400 45 -0.11 -0.12 -0.12 -0.12 -0.13 -0.17 -0.11 -0.12 -0.12 
55 -0.16 -0.16 -0.17 -0.16 -0.16 -0.19 -0.15 -0.15 -0.16 

1000 45 -0.28 -0.30 -0.30 -0.30 -0.33 -0.42 -0.28 -0.29 -0.30 
55 -0.38 -0.40 -0.41 -0.39 -0.39 -0.46 -0.38 -0.38 -0.39 

2 ft. 

100 45 -0.03 -0.03 -0.03 -0.03 -0.04 -0.04 -0.03 -0.03 -0.03 
55 -0.04 -0.04 -0.04 -0.04 -0.05 -0.05 -0.04 -0.04 -0.04 

400 45 -0.12 -0.12 -0.12 -0.12 -0.15 -0.17 -0.11 -0.12 -0.12 
55 -0.15 -0.16 -0.17 -0.16 -0.19 -0.19 -0.16 -0.16 -0.16 

1000 45 -0.29 -0.30 -0.31 -0.31 -0.38 -0.43 -0.28 -0.29 -0.30 
55 -0.38 -0.40 -0.41 -0.41 -0.46 -0.48 -0.39 -0.39 -0.40 

  

All the B/C ratios were negative in Table 3.3, meaning that guardrail implementation to shield 

embankments is not justified in terms of a benefit-cost analysis. Additional crash patterns are 

shown in Table 3.4. 

 

Table 19.4: Embankment Simulation for Three- or Four-Wheel-Track Gravel or Paved 
Road 

Alternatives 
Annualized 

Construction 
Cost 

Expected 
Maintenance 

Cost 

Expected 
Repair 
Cost 

Expected Annual 
Crash Cost (with 

rollover) 

Expected Annual 
Crash Cost 

(without rollover) 
One: Bare 

Embankment $0 $0 $0 $411 $0 

Two: Guardrail 
Shielding Embankment $1,737 $0 $33 $1,109 $797 

  

The highlighted B/C ratio in Table 3.3 was: $%,%456$(%%
($48$48$4)6($%,:':8$48$'')

=	−0.39 
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 Table 3.4 shows all the costs related to the highlighted simulation in Table 3.3. Although 

the B/C ratio was -0.39, the alternative with a bare embankment still reported minimal crash costs 

(i.e., $411). In addition, all the crashes were rollover, meaning rollover was the only harm expected 

from bare embankments. Alternative two also reported crash costs related to rollover crashes: 

$1,109 (with rollover) - $797 (without rollover) = $312. However, rollover crash cost decreased 

by N1 − '%&
(%%
O ∗ 100%	 = 	24.09%	 due to guardrail implementation. Other kinds of crashes 

occurred with new guardrails, though, with inferred crash costs of $797. The results in Table 3.4 

confirm that the expected reduction of crash costs associated with rollover crashes was relatively 

lower than the reduction of crash costs associated with new guardrails. 

 Results of embankment simulation on a two-wheel-track gravel road are shown in Table 

3.5. The roadway in this simulation had only one direction, and lane width was 10 ft. The shoulder 

width and AADT differed from the previous embankment simulation, but embankment profiles 

stayed the same.  

 All B/C ratios in Table 3.5 were negative and near zero. The minor crashes associated with 

the new guardrail overweighed the improvement in rollover crashes as shown in Table 3.4, causing 

all the B/C ratios to be negative because the traffic exposure or AADT was too low on two-wheel-

track gravel roads for crashes to occur or because the shoulder was wide enough to offset the 

influence of errant encroachment. Results in Tables 3.3 and 3.5 prove that new guardrails are 

unnecessary to shield embankments on both types of Kansas rural roadways. 
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Table 20.5: W-Beam Guardrail for Embankment on Two-Wheel-Track Gravel Road 
lane width = 10 ft.            

Shoulder 
Width AADT 

Posted 
Speed 
Limit 

B/C Ratio 
Embankment Height 

= 6 ft. 
Embankment Height 

= 12 ft. 
Embankment Height 

= 18 ft. 
slope 
2:1 

slope 
3:1 

slope 
4:1 

slope 
2:1 

slope 
3:1 

slope 
4:1 

slope 
2:1 

slope 
3:1 

slope 
4:1 

4 ft. 
100 45 -0.01 -0.02 -0.02 -0.02 -0.02 -0.02 -0.01 -0.01 -0.01 

55 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 

200 45 -0.03 -0.03 -0.03 -0.03 -0.04 -0.04 -0.03 -0.03 -0.03 
55 -0.04 -0.04 -0.04 -0.04 -0.05 -0.04 -0.04 -0.04 -0.04 

5 ft. 
100 45 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.01 -0.01 -0.01 

55 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 

200 45 -0.03 -0.03 -0.03 -0.03 -0.04 -0.04 -0.03 -0.03 -0.03 
55 -0.04 -0.04 -0.04 -0.04 -0.05 -0.04 -0.04 -0.04 -0.04 

6 ft. 
100 45 -0.02 -0.02 -0.02 -0.01 -0.02 -0.02 -0.01 -0.01 -0.01 

55 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 

200 45 -0.03 -0.03 -0.03 -0.03 -0.04 -0.04 -0.03 -0.03 -0.03 
55 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 

7 ft. 
100 45 -0.01 -0.01 -0.01 -0.01 -0.02 -0.02 -0.01 -0.01 -0.01 

55 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 

200 45 -0.03 -0.03 -0.03 -0.03 -0.04 -0.04 -0.03 -0.04 -0.03 
55 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.05 -0.04 

  

 3.3 Result and Analysis of Bridge Simulation 

 As discussed in section 2.3.4, the bridge simulations were the most complicated task in this 

project. To avoid extra complexity associated with the influence of TL-2 rails on bridge structures, 

one type of simulation utilized a medium bridge edge and another type of simulation used a TL-2 

bridge edge as the existing condition. Table 3.6 shows all the parameters and results of bridge 

simulations on three- or four-wheel-track gravel or paved roads. The height below the bridge to 

the surface of the water was 12 ft. “Shoulder Before and After Transition” in the table denotes the 

shoulder width of the roadway beyond the transition part, as described in section 2.3.4. The lane 

was assumed to extend across the bridge, leaving the rest as shoulder. The first simulation had 

three alternatives for each combination, and the second simulation had two alternatives. The 

examples in the rectangle and the circle in the table illustrate the B/C ratios of bridge simulation. 
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Table 21.6: W-Beam Guardrail as Bridge Rail or Bridge-approach guardrails on Three- or 
Four-Wheel-Track Gravel or Paved Road 

Two lanes with 12-ft width each; below bridge to water surface = 12 ft. 

Shoulder 
Before & 

After 
Transition 

AADT 
Posted 
Speed 
Limit 

B/C Ratio 
Existing Condition: Medium Bridge Edge Existing Condition: TL-2 Bridge Rail 

Bridge Width 
= 20 ft. 

Bridge Width = 
24 ft. 

Bridge Width 
= 26 ft. 

Bridge 
Width = 28 

ft. 

Bridge 
Width
= 20 ft. 

Bridge 
Width
= 24 ft. 

Bridge 
Width
= 26 ft. 

Bridge 
Width
= 28 ft. 

0 ft. 

100 
45 1.17 -0.01 0.96 -0.02 0.65 0.01 0.61 0.00 -0.01 -0.01 0.01 0.01 0.37 0.30 0.22 0.20 

55 1.45 -0.01 1.17 -0.01 0.91 0.01 0.83 0.01 0.00 -0.01 0.01 0.01 0.47 0.37 0.30 0.27 

400 
45 4.65 -0.04 3.82 -0.06 2.58 0.03 2.44 0.02 -0.03 -0.06 0.03 0.02 1.49 1.20 0.86 0.81 

55 5.75 -0.02 4.66 -0.03 3.59 0.03 3.30 0.02 -0.02 -0.03 0.04 0.03 1.85 1.49 1.19 1.08 

1000 
45 11.48 -0.09 9.47 -0.15 6.34 0.07 6.01 0.05 -0.08 -0.15 0.08 0.05 3.68 2.98 2.11 1.99 

55 14.20 -0.05 11.53 -0.08 8.84 0.08 8.12 0.05 -0.04 -0.07 0.09 0.06 4.59 3.70 2.92 2.67 

1 ft. 

100 
45 1.17 -0.01 0.96 -0.02 0.65 0.01 0.62 0.00 -0.01 -0.01 0.01 0.01 0.37 0.30 0.22 0.20 

55 1.45 -0.01 1.17 -0.01 0.91 0.01 0.83 0.01 0.00 -0.01 0.01 0.01 0.47 0.37 0.30 0.27 

400 
45 4.65 -0.04 3.83 -0.06 2.60 0.03 2.44 0.02 -0.03 -0.06 0.03 0.02 1.49 1.20 0.86 0.81 

55 5.75 -0.02 4.66 -0.03 3.61 0.03 3.30 0.02 -0.02 -0.03 0.04 0.03 1.85 1.49 1.19 1.08 

1000 
45 11.48 -0.09 9.47 -0.19 6.39 0.08 6.01 0.05 -0.08 -0.15 0.09 0.05 3.18 2.96 2.13 1.99 

55 14.20 -0.05 11.53 -0.13 8.89 0.08 8.11 0.05 -0.04 -0.07 0.10 0.06 4.59 3.67 6.94 2.67 

2 ft. 

100 
45 1.17 -0.01 0.96 -0.02 0.65 0.01 0.62 0.01 -0.01 -0.01 0.01 0.01 0.37 0.30 0.22 0.20 

55 1.45 -0.01 1.17 -0.01 0.91 0.01 0.84 0.01 0.00 -0.01 0.01 0.01 0.47 0.37 0.30 0.27 

400 
45 4.65 -0.04 3.82 -0.07 2.59 0.03 2.46 0.02 -0.03 -0.06 0.04 0.02 1.49 1.19 0.86 0.81 

55 5.75 -0.02 4.66 -0.05 3.61 0.03 3.32 0.02 -0.02 -0.03 0.04 0.03 1.85 1.48 1.19 1.09 

1000 

45 11.48 -0.09 9.46 -0.20 6.38 0.08 6.06 0.05 -0.08 -0.15 0.09 0.05 3.68 2.96 2.13 2.01 

55 
14.19 

-0.05 
11.53 

-0.13 
8.88 

0.08 
8.17 0.05 -0.04 -0.08 0.09 0.06 4.59 3.67 2.93 2.69 

  

 Table 3.7 shows the results of a simulation that used a medium bridge edge as the existing 

condition on a three- or four-wheel-track gravel or paved road. 

Table 22.7: B/C Ratio with Medium Bridge Edge as Existing Condition 
8.17 
2.69 0.05 Alt1. Medium Bridge 

Edge 
Alt2. W-Beam Bridge 

Rail 
Alt3. W-Beam Bridge Rail & 
Bridge-approach guardrails 

Benefit (Crash 
Cost) $                    15,129.00  $                      3,282.00  $                            3,127.00  

Project Costs $                                   -    $                      1,450.00  $                            4,466.00  

Benefit-Cost 
Ratio 

Alt2 to Alt1: ($15,129–$3,282)/($1,450–$0) = 8.17 
Alt3 to Alt1: ($15,129–$3,127)/($4,466–$0) = 2.69 

Alt3 to Alt2: ($3,282–$3,127)/($4,466–$1,450) = 0.05 
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 The benefit-cost ratio of using a W-beam bridge rail without bridge-approach guardrails 

compared to using a medium bridge edge was	$%1,%&56$',&;&
$%,(146$4

= 8.17. The benefit-cost ratio of using 

a W-beam bridge rail with bridge-approach guardrails compared to using a medium bridge edge 

was	$%1,%&56$',%&:
$(,(226$4

= 2.69. Moreover, the benefit-cost ratio of alternative three to alternative two 

was	$',&;&6$',%&:
$(,(226$%,(14

= 0.05. Table 3.8 shows results of a simulation using a TL-2 bridge rail as the 

existing condition on a three- or four-wheel-track gravel or paved road.  

 

Table 23.8: B/C Ratio with TL-2 Bridge Rail as Existing Condition 
-0.04 Alt1. TL-2 Bridge Rail Alt2. TL-2 Bridge Rail & 

Bridge-approach guardrails 
Benefit (Crash Cost) $            6,484.00  $                      6,600.00  

Cost (Construction and 
Repair Cost) $                   3.00  $                      2,976.00  

Benefit-Cost Ratio Alt2 to Alt1:  ($6,484-$6,600)/($2,976-$3) = -0.04 
  

The benefit-cost ratio of using a TL-2 bridge rail with bridge-approach guardrails 

compared to using a TL-2 bridge rail without bridge-approach guardrails was$2,(;(6$2,244
$&,5:26$'

=

−0.04. 

 Overall, the B/C ratios increased with AADT and posted speed limit when other parameters 

were fixed, but the B/C ratios decreased with increasing bridge width, as in the culvert and 

embankment simulations. Moreover, the shoulder width before and after the transition had almost 

no influence on B/C ratios because the shoulder width on the bridge differed from the shoulder 

width of the roadway. The roadway lane width was 12 ft. and extended across the bridge, so the 

shoulder width for one side of the bridge was 0 ft., 1 ft., and 2 ft. when the bridge width was 24 ft., 

26 ft., and 28 ft., respectively. While other parameters were fixed, B/C ratios of alternative two to 
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alternative one using a medium bridge edge decreased with increasing bridge shoulder width in 

accordance with previous simulations. 

 If the threshold of B/C ratio was 2.0 and the AADT exceeded 400 vehicles per day, all the 

B/C ratios of alternative two to alternative one exceeded the threshold when a medium bridge edge 

was used as an existing condition. Therefore, W-beam bridge rails were recommended to replace 

medium bridge edges. Regarding W-beam bridge-approach guardrails, the results were reflected 

in the B/C ratios of alternative three to alternative one when a medium bridge edge was used as 

the existing condition and the B/C ratios of alternative two to alternative one when a TL-2 bridge 

rail was used as the existing condition. As shown in Table 3.6, none of the B/C ratios were larger 

than 1.0, and most values were almost zero. Therefore, under the given conditions, there was no 

practical justification for implementing bridge-approach guardrails on Kansas rural roadways. 

 Table 3.9 shows the results of bridge simulation on a two-wheel-track gravel road, with 

parameters adjusted to one-direction lanes. As shown in the table, none of the B/C ratios were 

larger than 1.0, meaning that benefit-cost analysis did not justify replacing medium bridge edges 

with W-beam guardrails, nor implementing W-beam bridge-approach guardrails. 
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Table 24.9: W-Beam Guardrail as Bridge Rail or Bridge-approach guardrails on Two-
Wheel-Track Gravel Road 

lane width = 10 ft.; below bridge to water surface = 12 ft. 

Shoulder 
Before & 

After 
Bridge 

AADT 
Posted 
Speed 
Limit 

B/C Ratio 
Existing Condition: Medium 

Bridge Edge 
Existing Condition: TL-2 Bridge 

Rail 
Bridge Width = 

20 ft. 
Bridge Width 

= 24 ft. 
Bridge Width 

= 20 ft. 
Bridge Width = 

24 ft. 

4 ft. 

100 
45 0.30 0.00 0.30 0.00 0.00 0.00 0.09 0.10 

55 0.44 0.00 0.42 0.00 0.00 0.00 0.14 0.14 

200 
45 0.60 -0.01 0.59 0.00 -0.01 0.00 0.19 0.19 

55 0.87 -0.01 0.84 0.00 -0.01 0.00 0.28 0.28 

5 ft. 

100 
45 0.30 -0.01 0.30 0.00 0.00 0.00 0.09 0.10 

55 0.44 0.00 0.42 0.00 0.00 0.00 0.14 0.14 

200 
45 0.60 -0.01 0.59 0.00 -0.01 0.00 0.19 0.19 

55 0.87 -0.01 0.84 0.00 -0.01 -0.01 0.28 0.28 

6 ft. 

100 
45 0.30 -0.01 0.29 0.00 0.00 0.00 0.09 0.10 

55 0.44 -0.01 0.42 0.00 0.00 0.00 0.14 0.14 

200 
45 0.60 -0.01 0.59 0.00 -0.01 0.00 0.19 0.19 

55 0.87 -0.01 0.84 0.00 -0.01 0.01 0.28 0.28 

7 ft. 

100 
45 0.30 -0.01 0.30 0.00 0.00 0.00 0.09 0.10 

55 0.44 0.00 0.42 0.00 0.00 0.00 0.14 0.14 

200 
45 0.60 -0.01 0.59 0.00 -0.01 0.00 0.19 0.19 

55 
0.87 

-0.01 
0.85 

0.00 -0.01 0.01 0.28 0.28 

  

Because the lane width was 10 ft., the shoulder widths on the bridge were 5 ft. or 7 ft. for 

each side, which was wide enough to contain most errant vehicles. Moreover, because the AADT 

was very low, the results in this case showed patterns similar to the previous simulations. 
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Chapter 4 - Discussion and Significant Findings 

 4.1 Discussion of Results 

Crashes that occur in rural areas caused almost 50% of the traffic fatalities in the United 

States in 2017, with Kansas having a higher fatality rate per 100 million VMT than the national 

average for rural areas in that same year. For all fatality crashes in rural areas, approximately 50% 

are single-vehicle, roadside crashes. This research study was performed for KDOT investigate 

methods to reduce roadside crashes in rural areas and test the rationality of shielding roadside 

hazards with new guardrails. Benefit-cost analyses were implemented to economically quantify 

comparison results of various safety treatments. Benefit was defined as reduced crash costs 

associated with project improvements, while cost included design, construction, maintenance, and 

repair expenditures associated with project improvements. Analysis was annualized because 

crashes occurred in the life cycle of the project. This research project focused on bridge rails and 

bridge-approach guardrails, culverts with wingwalls, and embankments.  

A 10-year crash dataset was used to capture the basic patterns of rural roadside crashes and 

field conditions in Kansas. A survey of crash locations revealed that nearly 50% of guardrail  

end -treatments of guardrail were still blunt and turndown types. Descriptive statistics of crashes 

involving guardrails and culverts showed that crash frequency increased with increasing AADT. 

However, the trend decreased after a certain turning point of AADT. For rural roadways with high 

traffic volumes, the increasing trend was rather flat. However, results showed a steady increasing 

trend of crashes with increasing posted speed limits, while the average AADT for related crashes 

experienced almost no change. AADT and posted speed limit were confirmed as contributing 

factors to roadside crashes in the crash records of Kansas rural roadways. 
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RSAPv3 was used to carry out simulations in this research study because it utilizes real 

crash data to predict crashes, and is easily updated with local data. KDOT provided data pertaining 

to costs related to fatal crashes in 2017 to use in the simulation, and traffic operation data and 

geometric features of rural roadways in Kansas were synthesized. Two-wheel-track gravel roads 

with one direction and three- or four-wheel-track gravel or paved roads with two directions were 

determined to be the most common types of rural roadways in Kansas. Geometric roadway 

parameters, such as foreslope, lane width, and total roadway width, as well as traffic operation 

data, such as AADT and posted speed limit, were established for the two types of roadways. Extra 

space on the roadway besides the lane width was used as the shoulder width in the simulation.  

This study tested three hazards on the two types of rural roadways. For the culvert, the 

foreslope was the same as that of the roadway, and the offset of the culvert was the distance from 

the edge of the roadway to the hubguard. The culvert width, provided by KDOT, was relatively 

conservative to include the most severe situations in the field. Guardrail lengths were also provided 

by KDOT, and the simulated guardrail was implemented along the edge of the roadway in a 

straight line. The embankment simulation using RSAPv3 followed the same style as the culvert.  

The bridge simulation included a TL-2 bridge rail, which requires modification of bridge 

structure if the bridge edge was the base condition. Therefore, the simulation was divided into two 

parts. Part one included three alternatives: using a medium bridge edge, replacing a medium bridge 

edge with a W-beam bridge rail, and implementing W-beam bridge-approach guardrails. Part two 

included two alternatives: using a TL-2 bridge rail as the base condition and implementing W-

beam bridge-approach guardrails, thereby preventing bridge structure modifications and 

subsequent costs. Another key point in this simulation was that the bridge width potentially 

differed from the roadway width. When the bridge was narrow, the bridge-approach guardrails 
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further narrowed the roadway, which was acceptable in this case, but when the bridge was wide, 

the bridge-approach guardrails was implemented on the slope beside the roadway, which was 

against common practice. Therefore, two transitions were set up before and after the bridge. 

Roadway shoulders in the transition were enlarged to make the roadway width equal to the bridge 

width. The bridge-approach guardrails was implemented in the transition along the edge of the 

road, as required by KDOT. Moreover, because a lane of the roadway should extend across the 

bridge, leaving extra space as a shoulder on the bridge, the width of the bridge shoulder differed 

from the shoulder width on the roadway. 

 4.2 Significant Findings 

 Culvert simulation results were displayed as the benefit-cost ratios of implementing new 

guardrails to shield bare culverts under various combinations of traffic operation data and roadside 

geometric features. For simulations on three- or four-wheel-track gravel or paved roads with no 

shoulders, nearly all the benefit-cost ratios were zero. Non-zero benefit-cost ratios only occurred 

when shoulder width was larger than zero, as determined in common practice that guardrails need 

sufficient space to prevent crashes efficiently. The contributing factors to benefit-cost ratios were 

observed when other parameters were fixed, including offset of culvert, AADT, posted speed limit, 

and culvert size. For the simulation on a two-wheel-track gravel road, almost all the results were 

zero due to wide shoulders that absorbed potential encroachment and low AADT, which was too 

low for crashes to occur. Since none of the ratios was larger than 1.00, the benefit-cost analysis 

did not justify the implementation of new guardrails to shield culverts on both types of roadways. 

 The pattern of embankment simulation differed from the culvert simulation. For 

simulations on three- or four-wheel-track gravel or paved roads, all benefit-cost ratios were 

negative, meaning that the harm caused by the guardrail exceeded the benefits. A case study proved 
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this intuition. Only rollover crashes were expected on the bare embankment, while the guardrail 

caused more severe crashes. Simulation results from a two-wheel-track gravel road were also 

negative and near zero due to wide shoulders and low AADT. Therefore, benefit-cost analysis did 

not justify implementation of new guardrails to shield embankments on both types of roadways. 

 The bridge simulation included two parts. For part one, which used a medium bridge edge 

as the base condition, the benefit-cost ratios of replacing a medium bridge edge with a W-beam 

bridge rail were larger than 2.00, with AADT larger than 400 vehicles per day, on three- or four-

wheel-track gravel or paved roads. Some ratios were even higher than 10.00, which was significant 

as a threshold. Moreover, these ratios decreased with increasing shoulder width on the bridge, 

which was in accordance with previous simulations. Therefore, it was recommended to replace a 

medium bridge edge with a W-beam bridge rail on three-or four-wheel-track gravel or paved roads, 

given a specific threshold according to field conditions. However, the implementation of bridge-

approach guardrails was not recommended. For part two, which used a TL-2 bridge rail as the base 

condition, the highest benefit-cost ratio was not significant, due to the wide shoulder on the bridge 

and low AADT. Benefit-cost analysis results showed that, medium bridge edges do not need to be 

replaced with W-beam bridge rails, and bridge-approach guardrails are not cost-justified on two-

wheel-track gravel roads. 

 4.3 Contribution to Highway Safety 

 The insight from this research project could save lives from roadside crashes in rural areas. 

The research team found significant benefit-cost ratios in the bridge simulation that replaced 

medium bridge edges with bridge rails. With feasible conditions, this implementation would save 

lives or mitigate injuries from roadside crashes, which is the most valuable principle of traffic 

engineers. One objective of this study was to allocate resources according to priorities in terms of 
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benefit-cost analysis, thereby saving limited funding from unnecessary expenditures. Since 

benefit-cost ratios for shielding culverts and embankments and implementing bridge-approach 

guardrails to bridges were not significant, it is not rational to implement new guardrails for these 

hazards on rural roadways in Kansas. In addition, this study established a process of RSAPv3 

application on local crash prediction. Updating this research project or implementing new projects 

on various types of hazards could follow the same procedure. 

 4.4 Limitations and Future Research 

Although this study was conducted on the most advanced traffic safety software, there were 

still several limitations in this research. First, assumptions were made in the simulation to simplify 

the case, including geometric features and comparisons, which potentially affected the results. 

Second, RSAPv3 relies heavily on previous crash datasets, meaning accurate predictions depend 

on similarities between predicted crashes and the dataset, as well as the availability of sufficient 

data. If engineering conditions differ significantly from the crash dataset in RSAPv3, the results 

may be inaccurate. However, this issue could be solved by updating inside parameters of RSAPv3 

with local crash datasets. A future study could continue the research on statistics of roadside 

crashes on rural roadways in Kansas, as partially explored in section 2.1.3. 
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Appendix A - Communication with KDOT Staff 

KTRAN Guardrail Study-Various simulations  

Version May 7, 2019  Norm Bowers 

Local Roads Only 

Speed Limit:  45 & 55 

Two Wheel Track Gravel Road:  10 ft. lane at center of road, all traffic primary-no opposing 

traffic. Road widths of 18, 20, 22 & 24.  ADT 100 & 200 

Three Wheel track road & blacktop road:  Two 12 ft. lanes.  Road Widths of 24, 26 & 28.  ADT 

of 100, 400 & 1000 

First Priority:  Approach guardrail at bridge:  When guardrail needs to be replaced.  Compare no 

guardrail-medium hazard to new guardrail.  Bridge widths on two track road of 20 and 24 ft.  

Bridge widths of three wheel path and blacktop road: 20, 24, 26 & 28.  Use 120 ft. of bridge.  We 

will need to get you average length of approach and exit guardrail. 

Second Priority Culvert Wingwall:  Distance from road edge to hubguard (opening): 0, 2, 4 New 

guardrail at edge of road, can’t be down slope.  Rise from flow line of channel to road: 10 ft. and 

14 ft.  Fill:  Would be reasonable to assume 75 ft. at max fill and transition to standard 50 ft. each 

way.  Guardrail required 175 ft. plus 35 ft. transitions total 245 ft.  New guardrail at edge of road. 

Third Priority Embankments across fill area over pipe:  Fill Height 6, 12 & 18.  Foreslopes 2:1, 

3:1 & 4:1. Fill:  Would be reasonable to assume 50 ft. at max fill and transition to standard 50 ft. 

each way.  Guardrail required 150 ft. plus 35 ft. transitions total 220 ft.  New guardrail at edge of 

road. 

 

Discussion on KTRAN Guardrail Study-Various simulations 

Based on Version May 17, 2019 Norm Bowers & May 22. 

 (1) Since there’s extra space on the local roads (both two wheel track and three wheel track 

gravel ones), can we simulate it as shoulder? Or just use the whole space as road and no 

shoulder? After testing in RSAPv3, I found the result would be different even though the total 

width did not change. 
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Norm:  For the two-wheel track road, this is really a Tod question as I have never used RSAP.  

For a typical section, use 3:1 forelsopes with a fill of 2 ft.  See drawing I made-apologies for 

light scan, I am working from home.  

Peng: Tod, can we get any suggestions on this question? 

Tod Jun 03: For gravel roads, the wheel paths define the “travel way”, so the “shoulder” starts at 

the edge of the wheel path. 

 
(2) For the local roads, if we try to implement guardrails to shield the hazard, do we need to 

make it on both sides of the hazard? Or just for the primary traffic.  Norm:  All the roads are 

local so not sure what you are asking I will address under the other scenarios.   

Peng: Two pictures were added here to illustrate this question. Do we need to consider guardrails 

for both primary and opposing traffic on two-wheel and three-wheel track roads?  Norm May 22:  

We always put guardrail on both sides of the road on bridges 

 
(3) Sketch on scenario 1 (bridge). Is it correct?  Norm:  I think it is correct.  This gets analyzed 

with and without guardrail at all four corners.  We probably need to talk about severity factors to 

use with and without guardrail.  Tod is supposed to give you average approach guardrail lengths. 

I suppose on the three-wheel track road the approach guardrail is needed worse than the 
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departing guardrail, but I assume that is outside the scope of this project. Tod, what do you 

think? 

 
(4) Sketch on scenario 2 (culvert).  

• Distance of road edge to hub guard is 0, 2 and 4 ft. Can we use it as the offset of culvert 
to road edge? Norm: Yes, that is what it is, but to be clear on the three-track road the 
offset would be from the shoulder, if any.   

• Is it right that the height of from culvert to road surface is 10 ft. and 14 ft.? Norm: Yes 
the vertical distance from flow line of the culvert to road surface:  The length of the 
stream would be the distance that the foreslope would extend. The length of the foreslope 
then is based on the slope, so if we assume 3:1 the length as you describe it is 3 x 10 
fill=30 ft. and 3 x 14 fill=42 ft. as measured from the edge of road. 

• Would you please explain which section is for fill and transition? Is the sketch below 
right? Norm:  Your sketch labels the guardrail as huguard, the width of fill is not as you 
indicated- it is the road width plus the foreslopes.   See attached sketch for transition of 
the fill from the normal road section. 

• About the guardrail length (175 ft. plus 35 ft. transition total 245 ft.). Is it starting from 
middle of the culvert and both sides 245/2 = 122.5 ft.?  Norm.  Yes 
Peng: Thanks for providing the length of the guardrail. Is this the length for the existing 

guardrail, or for the new implemented one?  Now we are considering one hazard under 

both protected and unprotected scenarios. For the protected one, we are using Roadside 

Design Guide to get the length of need.   Norm May 22:  The two scenarios are without 

guardrail and with new guardrail.  The length I gave you was for a typical situation, I 

don’t know how you would compute length of need without knowing a lot more about 

the geometry at a particular location.   

Peng: Some of the guardrails on local roads have been through a long time of use. They 

might not be proper to shield the hazard anymore. We have calibrated the crash severity 

of such guardrails according the instruction of RSAPv3 manual. So, one option is to 

replace these outdated guardrails with new ones. Can we use the same length you have 
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offered for the existing guardrail? (I mean use the length for the outdated guardrails 

which have already been implemented before hazards) 

Norm May 22: On all three of the scenarios, bridge, culvert or embankment, you need to 

forget about the existing guardrail.  The two options are no guardrail or new guardrail.  Is 

it cost effective to install new guardrail? If not, you don’t install new guardrail. 

If the local agency is considering replacing an existing guardrail it is because it is so bad 

that it is not effective.  So just forget about trying to evaluate existing guardrail it can be 

anyplace from not effective to worse than nothing. 

• In RSAPv3, the culvert would be simulated as headwall plus stream, and the stream 
would play an important role as hazard. Can we get the size of wingwall and the stream 
(stream length and width)?  Norm:  The stream width is the width of the box, I think we 
are using worst case of 20 ft., kind of like you drew it.  The length of the stream would be 
the distance that the foreslope would extend. The length of the foreslope then is based on 
the slope and the height, so if we assume 3:1 the length as you describe it is 3 x 10 fill=30 
ft. and 3 x 14 fill=42 ft. as measured from the edge of road.  I was just assuming straight 
wingwalls and vertical channel banks, so you need two sections at almost the same 
station to simulate a vertical wall.  The length of the wingwall is immaterial since it is 
vertical and in the same location as the stream bank.   
Peng: For the culvert, now we have height (10 ft. and 14 ft. from last email), what about 

the range of width of box and foreslopes? In this example, you have used width as 20 ft. 

and foreslpe 3:1. Can we get all the value range?  Norm May 22:  As noted above we use 

the worst case of 20 ft. width(span).  The slope daylights to natural ground so for a 3:1 

slope it would be 30 ft. for 10 ft. fill and 42 ft. for 14 ft fill as measured from the edge of 

the road.  No range of slopes, just 3:1 for the culvert.  

•  
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(5) Scenario 3 (embankment). 

• The same question about fill and transition, as in scenario 2.  Norm:  See my sketch. Fill 
transitions from typical to maximum in 50 ft, with maximum fill for 50 ft. rather than 75 
to represent a smaller channel.  

(6) About implementation of new guardrail. Now we’re following Roadside Design Guide. If the 

shy-line offset of guardrail were beyond the edge of the local roads, then we would assume it 

should be implemented on the edge. If it’s within the edge, we would just use the distance 

recommended by Roadside Design Guide. Do you think if it is proper? Or should we implement 

new guardrail just on the edge without considering Roadside Design Guide.  Norm:  At the 

bridge, the guardrail has to attached to the bridge.  For the culvert and embankment, the guardrail 

is placed at the edge of the road.   
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